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Abstract

Graph classification is an important learning
task for graph-structured data. Graph neural
networks (GNNs) have recently gained grow-
ing attention in graph learning and shown
significant improvements on many important
graph problems. Despite their state-of-the-art
performances, existing GNNs only use local
information from a very limited neighborhood
around each node, suffering from loss of multi-
modal information and overheads of excessive
computation. To address these issues, we pro-
pose a novel Tensor-view Topological Graph
Neural Network (TTG-NN), a class of simple
yet effective topological deep learning built
upon persistent homology, graph convolution,
and tensor operations. This new method in-
corporates tensor learning to simultaneously
capture Tensor-view Topological (TT), as well
as Tensor-view Graph (TG) structural infor-
mation on both local and global levels. Com-
putationally, to fully exploit graph topology
and structure, we propose two flexible T'T and
TG representation learning modules that dis-
entangle feature tensor aggregation and trans-
formation, and learn to preserve multi-modal
structure with less computation. Theoreti-
cally, we derive high probability bounds on
both the out-of-sample and in-sample mean
squared approximation errors for our pro-
posed Tensor Transformation Layer (TTL).
Real data experiments show that the pro-
posed TTG-NN outperforms 20 state-of-the-
art methods on various graph benchmarks.
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1 Introduction

Graph data are ubiquitous: many real-world objects
can be represented by graphs, such as images, text,
molecules, social networks, and power grids. Tremen-
dous advances on graph analysis have been achieved in
recent years, especially in the field of machine learning
(ML) and deep learning (DL) Defferrard et al.| [2016],
Bronstein et al.| [2017], |Zhang et al|[2020]. In par-
ticular, graph neural networks (GNNs) have emerged
as effective architectures for various prediction prob-
lems, e.g., node classification Kipf and Welling| [2017],
Velickovié et al|[2018], Hamilton et al.| [2017], link
prediction [Zhang and Chen| [2018], |Chen et al.| [2022a],
graph classification Xu et al.| [2018], [Ying et al. [2018],
and spatio-temporal forecast |Guo et al.| [2019], [Zhao
et al. [2019], Bai et al.| [2020]. GNNs are neural net-
work architectures specifically designed to handle graph-
structured data. The fundamental idea behind GNNs
involves treating the underlying graph as a computa-
tion graph and leveraging neural network primitives
to generate node embeddings. This process involves
transforming, propagating, and aggregating node fea-
tures and graph structural information throughout the
graph. However, most GNNs follow a neighborhood
aggregation process where the feature vector of each
node is computed by recursively aggregating and trans-
forming the representation vectors of its neighbors.
Consequently, they are unable to capture higher-order
relational structures and local topological information
concealed in the graph, which are highly relevant for
applications that rely on connectivity information [You
et al.| [2018], Huang et al.| [2020], |Sun et al|[2022|. For
instance, understanding the behavior and properties of
molecules and protein data within the drug discovery
and development process requires capturing crucial in-
formation, such as higher-order interactions between
atoms, the triangular mesh of a protein surface, and
ring-ring interactions within a molecule, etc.

To address these challenges, the integration of ML/DL
methods with persistent homology (PH) representa-
tions of learned objects have been intensively stud-
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ied [Wasserman)| [2018], |Carlsson and Gabrielsson| [2020],
O’Bray et al|[2021], Edelsbrunner and Harer| [2022].
PH is a methodology under the topological data analy-
sis (TDA) framework that captures the topological fea-
tures (like connected components, holes, voids, etc.) of
a shape at various scales and provides a multi-scale de-
scription of the shape. In this case, we can say that PH
studies the observed object at multiple resolutions or
evaluates topological patterns and structures through
multiple lenses. By incorporating this multi-scale topo-
logical information, topological-based models can cap-
ture both the geometric and topological structures, and
gain a more comprehensive representation of the data.
Previous research has generated a topological signa-
ture and computed a parameterized vectorization that
can be integrated into kernel functions Bubenik| [2015],
Kusano et al.| [2016], Reininghaus et al.| [2015]. With
growing interest in DL, several topological DL (TDL)
methods have been proposed Hofer et al.| [2017], Car;
riere et al. [2020]. Specifically, they extract topological
features from underlying data (e.g., topological features
encoded in persistence diagrams) and integrate them
into any type of DL. Recently, |Zhao et al.| [2020], |Chen
et al.| [2021], [Yan et al.| [2021], [Horn et al|[2021] prove
that it is important to learn node representations based
on both the topological structure and node attributes
for the graph learning problems. However, these above
topological-based models cannot (1) fully capture the
rich multi-dimensional /multi-filtrations topological fea-
tures in objects and (2) exploit the low-rank structure
from intermediate layers of TDL models. For instance,
topological GNN |Zhao et al.||2020], (Chen et al|[2021]
only calculates the topological features of nodes via
a single filtration. In [Horn et al.[2021], |Chen et al.
[2022b], Horn et al. and Chen et al. have addressed the
filtration issues, but their methods fail to model topo-
logical feature tensors while preserving their low-rank
structures.

In this paper, we develop a novel framework, namely
Tensor-view Topological Graph Neural Network (TTG-
NN) to address the above problems for real-world graph
data. More specifically, we propose two novel and
effective tensor-based graph representation learning
schemes, i.e., Tensor-view Topological Convolutional
Layers (TT-CL) and Tensor-view Graph Convolutional
Layers (TG-CL). Technically, we first produce topo-
logical and structural feature tensors of graphs as 3D
or 4D tensors by using multi-filtrations and graph con-
volutions respectively. Then, we utilize TT-CL and
TG-CL to learn hidden local and global topological
representations of graphs.

A naive aggregation of multiple feature tensors will
increase the complexity of NN and incur excessive
computational costs. We carefully design a module

of Tensor Transformation Layers (TTL) which em-
ploys tensor low-rank decomposition to address the
model complexity and computation issues. By smartly
combining the three modules of TT-CL, TC-GL, and
TTL, we can safely incorporate multiple topological
and graph features without losing any potential dis-
criminant features, and, at the same time, enjoy a
parsimonious NN architecture from the low-rankness
of the input feature tensors. The advantages of our
TTG-NN are validated both theoretically by Theorem
and empirically through our extensive experiments.

In short, our main contributions are as follows: (1)
This is the first approach bridging tensor methods
with an aggregation of multiple features constructed
by persistent homology and graph convolution. (2) We
provide the first non-asymptotic error bounds of both
in-sample and out-of-sample mean squared errors of
TTL with Tucker-low-rank feature tensors. (3) Our
extensive experiments of TTG-NN on graph classifica-
tion tasks show that TTG-NN delivers state-of-the-art
classification performance with a notable margin, and
demonstrates high computational efficiency.

1.1 Related Work

Graph Neural Networks. Recently, Graph Neural
Network (GNN) has emerged as a primary tool for
graph classification |Zhou et al.|[2020], Xia et al.|[2021],
Zhou et al.| [2022], |Zhang et al. [2022], |Chikwendu
et al.| [2023]. Different methods have been proposed
to capture the structural and semantic properties of
graphs. For instance, Weisfeiler-Lehman (WL) [Shery
vashidze et al.| [2011] proposes an efficient family of
kernels for large graphs with discrete node labels, and
Shortest Path Hash Graph Kernel (HGK-SP) Morris
et al|[2016] derives kernels for graphs with continuous
attributes from discrete ones. Graph Convolutional
Network (GCN) Kipf and Welling| [2017] extends the
convolution operation from regular grids to graphs.
To handle large-scale graphs, Top-K pooling opera-
tions |Cangea et al.| [2018], |Gao and Ji [2019] design
a pooling method by using node features and local
structural information to propagate only the top-K
nodes with the highest scores at each pooling step. To
leverage topological information, Topological Graph
Neural Networks (TOGL) Horn et al|[2021] proposes a
layer that incorporates global topological information
of a graph using persistent homology and can be inte-
grated into any type of GNN. A common limitation is
that they fail to accurately capture higher-order and lo-
cal topological properties of graphs or incorporate rich
structure information both in local and global domains.

Tensor-input Neural Networks. Neural Networks
that take tensors as inputs are designed to process and
analyze data in a tensor format, allowing for the efficient
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processing of high-dimensional data. A tensor analysis
on the expressive power of deep neural networks|Cohen
et al. [2016] derives a deep network architecture based
on arithmetic circuits that inherently employs locality,
sharing and pooling, and establishes an equivalence
between neural networks and hierarchical tensor factor-
izations. Tensor Contraction Layer(TCL) Kossaifi et al.
[2017] incorporates tensor contractions as end-to-end
trainable neural network layers, regularizes networks
by imposing low-rank constraints on the activations,
and demonstrates significant model compression with-
out significant impact on accuracy. Tensor Regression
Layer(TRL) Kossaifi et al.|[2020] further regularizes net-
works by regression weights, and reduces the number
of parameters while maintaining or increasing accu-
racy. Graph Tensor Network(GTN) Xu et al.|[2023]
introduces a Tensor Network-based framework for de-
scribing neural networks through tensor mathematics
and graphs for large and multi-dimensional data. In
conclusion, current Neural Networks with tensor inputs
lack both theoretical and empirical in-depth study.

2 Preliminaries

Problem Setting Let G = (V, £, X)) be an attributed
graph, where V is a set of nodes (|V| = N), € is a set
of edges, and X € RV*F is a feature matrix of nodes
(here F' is the dimension of the node features). Let
A € RV*N be a symmetric adjacency matrix whose
entries are a;; = w;; if nodes ¢ and j are connected and
0 otherwise (here w;; is an edge weight and w;; = 1
for unweighted graphs). Furthermore, D represents
the degree matrix of A, that is d;; = Ej ai;. In the
graph classification setting, we have a set of graphs
{G1,G2,...,Gx}, where each graph G, is associated with
a label y;. The goal of the graph classification task is
to take the graph as the input and predict its corre-
sponding label.

Persistent Homology Persistent Homology (PH) is a
subfield of algebraic topology which provides a way for
measuring topological features of shapes and functions.
These shape patterns represent topological properties
such as 0-dimensional topological features (connected
components), 1-dimensional topological features (cy-
cles), 2-dimensional topological features (voids), and,
in general, ¢-dimensional “holes” represent the char-
acteristics of the graph G that remain preserved at
different resolutions under continuous transformations
(where ¢ = {0,1,...,Q} and Q denotes the maximum
dimension of the simplicial complex). Through the use
of this multi-resolution scheme, PH tackles the inher-
ent restrictions of traditional homology, enabling the
extraction of latent shape characteristics of G which
may play an essential role in a given learning task.
The key is to select a suitable scale parameter ¢ and

then to study changes in the shape of G that occur
as G evolves to €. Thus, given an increasing sequence
€1 < -+ < €, we no longer study G as a single object
but as a filtration G, C ... C G., = G. To ensure
that the process of pattern selection and count are
objective and efficient, we build an abstract simplicial
complex ¢(Ge,;) on each G, which results in filtration
of complexes €(G.,) C ... C €(G.,). For instance, we
consider a function on a node set V. That is, we choose
a very simple filtration based on the node degree, i.e.,
the number of edges that are incident to a node u € V,
and get a descriptor function (i.e., filtration function)
f(u) = deg(u). When scanning G via the degree-
based filtration function f, it results in a sequence
of induced subgraphs of G with a maximal degree of
€; for each j € {1,...,n}. A standard descriptor of
the above topological evolution is Persistence Diagram
(PD) Barannikov| [1994] Dg = {(b,.d,) € R?|b, < d,},
which is a multi-set of points in R?. Each persistence
point (b,,d,) corresponds to the lifespan (i.e., d, — b,)
of one topological feature, where b, and d, represent
the birth and death time of the topological feature p.

3 Methodology: Tensor-view
Topological Graph Neural Network

In this section, we introduce our Tensor-view Topologi-
cal Graph Neural Network, dubbed as TTG-NN. Our
proposed TTG-NN framework is summarized in Fig-
ure [Tl As illustrated in Figure [T} our method consists
of two components. First, tensor-view topological fea-
tures are extracted by multi-filtrations from multiple
views of a graph, and then we design a tensor-view
topological representation learning module (7op) for
embedding tensor-view local topological features into a
high-dimensional space. Second, we develop a tensor-
view graph convolutional module (Bottom) on a graph
to generate a global shape descriptor.

Figure 1: The architecture of TTG-NN.
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3.1 Tensor-view Topological Convolutional
Layers (TT-CL)

Our first representation learning module utilizes multi-
ple topological features simultaneously by combining
the persistent homology and the proposed tensor learn-
ing method. To capture the underlying topological
features of a graph G, we employ K vertex filtration
functions: f; : V— R for ¢ € {1,...,K}. Each filtra-
tion function f; gradually reveals one specific topolog-
ical structure at different levels of connectivity, such
as the number of relations of a node (i.e., degree cen-
trality score) , node flow information (i.e., betweenness
centrality score), information spread capability (i.e.,
closeness centrality score), and other node centrality
measurements. With each filtration function f;, we
construct a set of ) persistence images of resolution
P x P using tools in persistent homology analysis.

Combining ) persistence images of resolution P x P
from K different filtration functions, we construct a
tensor-view topological representation, namely Persis-
tent Image (PI) Tensor Zpir of dimension K X @ x
P x P. We design the Tensor-view Topological Convo-
lutional Layer (TT-CL) to (i) jointly extract and learn
the latent topological features contained in the Zprr,
(ii) leverage and preserve the multi-modal structure in
the Zprr, and (iii) capture the structure in trainable
weights (with fewer parameters). Firstly, hidden rep-
resentations of the PI tensor Zpir are encoded by a
combination of a CNN-based neural network and global
pooling layers. Mathematically, we obtain a learnable
topological tensor representation defined by

Xprp = {fCNN(ZPIT) if|Q| =1 LW

EpooL(fonn(Zpir)) i Q| >1

where fonn is a CNN-based neural network, £poor
is a pooling layer that preserves the information of
the input in a fixed-size representation (in general, we
consider either global average pooling or global max
pooling). Equation provides two simple yet effective
methods to extract learnable topological features: (i) if
only considering g-dimensional topological features in
Zpyr, we can apply any CNN-based model to learn the
latent feature of the ZprT; (ii) if considering topological
features with () dimensions, we can additionally employ
a global pooling layer over the latent feature and obtain
an image-level feature. Secondly, Xpr7 is fed into our
Tensor Transformation Layer (TTL) as HO = XprT,
whose ¢-th layer is defined in . The output of TTL
in TT-CL is denoted as X p;r, which captures the local
topological information of a graph.

3.2 Tensor-view Graph Convolutional Layers
(TG-CL)

Parallel to the TT-CL is our second representation
learning module, Tensor-view Graph Convolutional
Layer (TG-CL). Tt utilizes the graph structure of G
with its node feature matrix X through the graph con-
volution operation and a multi-layer perceptron (MLP).
Specifically, the graph convolution operation proceeds
by multiplying the input of each layer with the 7-th
power of the normalized adjacency matrix. The 7-th
power operator contains statistics from the 7-th step
of a random walk on the graph, thus nodes can indi-
rectly receive more information from farther nodes in
the graph. Unlike (Choromanski et al.|[2022], different
7-th steps of random walk on the graph are allowed to
combine thanks to our tensor architecture, which can
enhance the representation power of GCN.

Combined with an MLP, the representation learned at
the /-th layer is given by

S(ng) = fmLp (90 (;{S(gz)@“))) ) (2)

matrix of A. S(go) = X, fmrp is an MLP with batch
normalization, ¢(-) is a non-linear activation function,
©Y is a trainable weight of /-th layer. To exploit multi-
hop propagation information and increase efficiency,
we apply our proposed Tensor Transformation Layer
(TTL) defined in over an aggregation of the outputs
of all layers in Equation to provide structure-aware
representations of the input graph. Specifically, we
first concatenate all layers of a L-layer graph convolu-
tions [S(gl), S(gz), e
tensor denoted by Xg of dimension N x L x D x D;
then Xg is fed into TTL as H? = X, whose ¢-th
layer is defined in (). Note that Xg is of dimension
N x L x D x D so as to facilitate TTL. That is, we
prefer both the output tensors of TT-CL and TG-CL
to have the same number of dimensions. Suppose the
dimension of each node’s representation is D originally,
we further conduct D convolutional transformations,
which increases the dimension from D to D?, then it is
reshaped to D x D. The output of TTL in TG-CL is
denoted as X ’g, which captures the global topological
information of a graph.

,S(QL)} to form a node embedding

3.3 Global and Local Aggregation

Finally, to aggregate both local and global topological
information, we combine representations learned from
TT-CL and TG-CL together to obtain the final embed-
ding and feed the concatenated tensor into a TTL then
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a single-layer MLP for classification. The aggregation
operation is defined as

So = fMLP(TTL([Xi:’IT7 X/gm7

where s, is the final score matrix for graph classifica-
tion.

3.4 Tensor Transformation Layer (TTL)

The Tensor Transformation Layer (TTL) preserves
the tensor structures of feature X of dimension D =
Hf\le D,, and hidden throughput. Let L be any pos-
itive integer and d = [d(l)7 e ,d(L‘H)] collects the
width of all layers. A deep ReLU Tensor Neural Net-
work is a function mapping taking the form of

f(x) :E(L+1)OUO£(L)OU...05(2)0005(1)(1')’ (3)

where o(-) is an element-wise activation function.
Affine transformation £ () and hidden input and
output tensor of the ¢-th layer, i.e. HAFY and HO
are defined by

£® (%w)) - <W<e>7H<e>> +BY,

and HY =4 (ﬁ(z) (’H(@))) (4)

where H®) = X takes the tensor feature, (-,-) is the
tensor inner product, and low-rank weight tensor w
and a bias tensor BY). The tensor structure kicks in
when we incorporate tensor low-rank structures such
as CP low-rank, Tucker low-rank, and Tensor Train
low-rank.

The Tucker low-rank structure is defined by
X=Cx Ui x3---xy Uy +E, (5)

where £ € RP1*XDPum ig the tensor of the idiosyncratic
component (or noise) and C is the latent core tensor
representing the true low-rank feature tensors and U,
m € [M], are the loading matrices.

The complete definitions of three low-rank structures
are given in Appendix [A] CP low-rank is a special
case where the core tensor C has the same dimensions
over all modes, that is R,, = R for all m € [M], and
is super-diagonal. TT low-rank is a different kind of
low-rank structure, which inherits advantages from
both CP and Tucker decomposition. Specifically, TT
decomposition can compress tensors as significantly as
CP decomposition, while its calculation is as stable as
Tucker decomposition.

Theoretically, the provable gain of preserving tensor

structures and incorporating low-rankness is estab-
lished in the next section. Empirically, we perform
an ablation study for the effect of different tensor de-
composition methods on molecular and chemical graphs.
Results in Table [3] align with our theoretical discovery
in Theorem [3.61

3.5 Provable Benefits of TTL with Tucker
Low-Rankness

In this section, we show provable benefits from Tensor
Transformation Layer (TTL) with Tucker low-rankness.
Note that under Tucker low-rankness, it is equivalent to
consider either low-rank feature X or low-rank weight
W. Without loss of generality, we consider the low-
rankness of feature tensor X for theoretical develop-
ment. The feature tensor X in this section corresponds
to the aggregated feature [X'pp, Xg] constructed from
TT-CL and TG-CL. The theoretical result applies gen-
erally to any M-th order tensor feature X of dimension
Dl X oo X DM

The feature tensors and their corresponding labels
{X;,yi}.—, are observable and their corresponding la-
tent cores {C;}!"_, are i.i.d. copies of latent C. The
underlying true regression model is given by

Ely[X]=Ely|C]=m"(C). (6)

TTL uses deep ReLLU Neural Networks to approximate
m*(C). When {C;}; is not directly observable, TTL
estimates it from {X;}? ; using Tucker decomposition
Kolda and Bader| [2009]. In this section, we provide
the first theoretical guarantee for TTL. The following
definition and regularity Conditions are necessary for
the theoretical development.

The following regularity conditions are standard in the
literature of Tucker decomposition and non-parametric
regression.

Condition 3.1 (Structured features X'). The tensor
feature X assumes an intrinsic low-rank structure spec-
ified by Tucker low-rank structure.

Condition 3.2 (Sub-Gaussian noise). Consider the
regression model y = m*(X)+e, there exists a universal
constant C' such that P(le| > ¢ | X) < 2¢=<" for all the
t > 0 almost surely.

Condition 3.3 (Regression function). The true re-
gression function m* satisfies |m*| < C* and m*
is c-Lipschitz for some universal constants M* and c.
We further assume that 1 < M* < M < ¢ M* for some
universal constant ¢’ > 1.

Condition 3.4 (Boundedness). For Tucker low-rank
model , there exists universal constants Cy such that
(i) The factor loading matrices satisfies |Up, || 0 < C1

for all m € [M]; (i) Elements in the core tensor C is
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zero-mean and bounded in [—B, B].
Definition 3.5 (Deep ReLU Tensor Network Class).
For any depth L € N, width vector d € N1, B, M €
R* U {0}, the family of deep ReLU Tensor Network
truncated by M with depth L, width parameter d, and
weights bounded by B is defined as

where
f(X) defined in and with
LAt R L TS

max

max

and Ty (+) applies truncation operator at level C to
each entry of a dri1 dimensional vector, that is,
[nf(z)]il"'iML = Sgn(zil“'iML)(|Zi1“'iML| A M) We
denote it as C(L, Dy, Doy, W, M, B) if the width pa-
rameter d = (D, W, W, -+ [ W, Dyyt), which we re-
ferred as deep ReLU network with depth L and width
W for brevity.

We now define quantities we aim to bound theoretically.
The empirical ¢ loss is defined as

Ralf) = 23" (= S0 = 23 (w = Fie))
i=1 i=1 (7)

where the last equality holds since X assumes a Tucker
low-rank structure. For arbitrary given neural network
hyper-parameters L and W, we suppose that our TTL
estimator is an approximate empirical loss minimizer,
that is,

m(X) = f(C) with

~ . (8)
R < nf R + 19
n(f) = fGC( 7;17 M, ) n(f) opt

with some optimization error d,,;. We first present the
error bound on the excess risk of the TTL estimator
under the Tucker low-rankness.

Theorem 3.6. Assume Conditions 3.1-3.4 hold with
maXIE|ei|2 < ¢ for a universal constant c. Tensor
feature X is a D1 x --- x Dy tensor with low Tucker
rank (Ry,---,Rar). Let R = [[M_, Ryn. Then with
probability at least 1 — 3exp(—t), for large enough n,
we have

I~ - i R )
=3[ — (€ + Exe [M(X) —m* (€
=1
< C (bopt + Gapr + Osto + Scor + 10" 1)
)

for a universal constant C' that only depends on ¢ and
constants in Conditions B.1-B.4. The components in

the error bounds are, respectively:
NN approximation error

Oapr = inf

%112
- 10
fec(L,7,1,W,M,o0) If =m ||°° (10)

Stochastic error
8sto = (W?L? + WLR)log(WLR)logn/n  (11)

Tensor core error

M 1M
Seor = 02 (H Dm> > DnBp (12)

m=1 m=1

Theorem [3.6] establishes a high probability bound
on both the out-of-sample mean squared error
Ex.c [m(X;) — m*(C;)] and in-sample mean squared
error 3" |m(X;) —m*(C;)|. The error bound
is composed of four terms: the optimization error
dopt, the meural network approximation error dgp,
to the underlying true regression function m*, the
stochastic error d4, scales linearly with logn/n and
(W2L? + WLR)log(WLR) which is proportional to
the Pseudo-dimension of the neural network class we
used, and the error ., related to inferring the latent
core tensor C from the observation X. Such an error
bound is not applicable without specifying the network
hyper-parameters W and L. An optimal rate can be
further obtained by choosing W and L to trade off the
approximation error ¢4y, and the stochastic error .

The NN approximation error dq,, can be controlled
by the architecture of NN and the optimization error
dopt can be controlled by an optimization algorithm.
Given the depth L and hidden width W of a NN, the
stochastic error dg, is increasing in R = Hf\f:l R,,,
which is the intrinsic dimension of the low-rank weight
tensor in the affine transformation of a single neu-
ron. The ambient dimension of the weight tensor is
D = Hn]\le D,,. Under a low-rank structure, the in-
trinsic dimension R is much smaller than the ambient
dimension D. As a result, our proposed Tensor Trans-
formation Layer (TTL) greatly reduces the stochastic
error. At the same time, the low-rankness also controls
the core tensor estimation error d.,, remarkably well.

The benefit of Tucker low-rankness shows up in the
stochastic error d4, where R = H%:l R,, is the to-
tal number of elements in the core tensor C and is
also equivalent to the total number of unknown coef-
ficients in low-rank weight tensor W in the affine
transformation . The latent Pseudo-dimension of
the neural network class we used is reduced thanks to
the incorporation of Tucker low-rankness.
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4 Experiments

4.1 Experiment Settings

Datasets We validate our TTG-NN on graph classifica-
tion tasks using the following real-world chemical com-
pounds, protein molecules, and social network datasets:
(i) 4 chemical compound datasets: MUTAG, DHFR,
BZR, and COX2, where the graphs are chemical com-
pounds, the nodes are different atoms, and the edges
are chemical bonds; (ii) 6 molecular compound datasets:
D&D, PROTEINS, PTC_MR, PTC_ MM, PTC_FM,
and PTC_FR, where the nodes represent amino acids
and edges represent relationships or interactions be-
tween the amino acids, e.g., physical bonds, spatial
proximity, or functional interactions; (iii) 1 social net-
work dataset: IMDB-B, where the nodes represent
actors/actresses, and edges exist between them if they
appear in the same movie. For all graphs, we follow
the training principle [Xu et al| [2018] and results of
the 10-fold cross-validation are reported using standard
deviations. OOT indicates out of time (we allow 24
hours for each run).

Baselines We compare our TTG-NN with 20 state-
of-the-art (SOTA) baselines including (1) Comprised
of the Subgraph Matching kernel (CSM) [Kriege and
Mutzel [2012], (2) Shortest Path Hash Graph Kernel
(HGK-SP) Morris et al.||2016], (3) Weisfeiler-Lehman
Subtree Kernel (HGK-WL) Morris et al.|[2016], and (4)
Weisfeiler-Lehman (WL) [Shervashidze et al.|[2011], (5)
Graph Convolutional Network (GCN) [Kipf and Welling
[2017], (6) Chebyshev GCN (ChebNet) Defferrard et al.
[2016], (7) Graph Isomorphism Network (GIN) Xu et al.
[2018|, (8) Deep Graph Convolutional Neural Network
(DGCNN) |Zhang et al.| [2018], and (9) Capsule Graph
Neural Network (CapsGNN) Xinyi and Chen| [2019],
(10) GNNs with Differentiable Pooling (DiffPool) [Ying
et al.[2018], (11) Graph U-Nets (g-U-Nets) |Gao and Ji
[2019], (12) GCNs with Eigen Pooling (EigenGCN) [Ma
et al.[[2019], (13) Self-attention Graph Pooling (SAG-
Pool) [Lee et al|[2019], (14) Spectral Clustering for
Graph Pooling (MinCutPool) Bianchi et al.|[2020|, and
(15) Haar Graph Pooling (HaarPool) [Wang et al.| [2020],
(16) Topological Graph Neural Networks (TOGL) [Horn
et al. [2021], (17) PD-based Neural Networks (Per-
sLay) [Carriére et al.|[2020], (18) Filtration Curve-based
Random Forest (FC-V) |O’Bray et al. [2021], (19) Deep
Graph Mapper (MPR) Bodnar et al|[2021a], and (20)
Simplicial Isomorphism Networ (SIN) [Bodnar et al.
[2021D).

TTG-NN Setup We conduct our experiments on
one NVIDIA Quadro RTX 8000 GPU card with up to
48GB memory. The TTG-NN is trained end-to-end
by using Adam optimizer with the learning rate of
{0.001, 0.01, 0.05, 0.1}. We use ReLU as the activation

function o(-) across our model. The tuning of TTG-NN
on each dataset is done via the grid hyperparameter
configuration search over a fixed set of choices and
the same cross-validation setup is used to tune the
baselines. In our experiments, we set the grid size
of Plp, from 20 x 20 to 50 x 50. The batch size is
different for every dataset and ranges from 8 to 128.
Each graph convolutional layer and MLP has between
16 and 128 hidden units depending on the dataset
regarded. The number of hidden units of TTL are
set as {4, 16, 32}. We set the layer number of graph
convolution blocks as 3, the layer number of MLPs as
2, and choose the dropout ratio as 0.5 for all datasets.
We train the models with up to 500 epochs to ensure
full convergence and randomly use 50 batches for each
epoch. Our code is available on |GitHub.

4.2 Classification Performance

As shown in Table [I] except for DHFR, the perfor-
mances of our TTG-NN model are significantly bet-
ter than the runner-ups. More specifically, we found
that (i) compared with spectral-based ConvGNNs (i.e.,
GCN and ChebNet), TTG-NN yields more than 2.20%
relative improvements to the existing best results for
all datasets, (ii) compared with 3 spatial-based Con-
vGNNs, i.e., DGCNN, GIN, and CapsGNN, TTG-NN
achieves a relative gain of up to 16.20% on all datasets,
(iii) TTG-NN outperforms all 6 graph pooling meth-
ods (i.e., g-U-Nets, MinCutPool, DiffPool, Eigen GCN,
SAGPool, and HaarPool) with a significant margin,
and (iv) TTG-NN further improves PH-based models
and simplicial neural networks by a significant margin
on all 11 datasets. To test our TTG-NN’s performance
on large-scale dataset, we have conducted experiment
on the ogbg-molhiv dataset |Hu et al.|[2020] with 41,127
graphs. The results in Table [2] show our proposed
model is able to achieve promising results on large-
scale networks. To sum up, the results show that our
TTG-NN accurately captures the key structural and
topological information of the graph, and achieves a
highly promising performance in graph classification.

4.3 Ablation Study

To better understand the importance of different com-
ponents in TTG-NN, we design the ablation study
experiments on MUTAG, BZR, COX2, PTC_ MM,
and PTC_FM. As shown in Table [3] if we remove
the tensor-view topological convolutional layer (TT-
CL), the performance will drop over 8.70% on average.
Specifically, we observe that when removing TT-CL,
the performance on graph classification is affected sig-
nificantly, i.e., TTG-NN outperforms TTG-NN without
TT-CL with a relative gain of 12.39% for PTC_FM.
Moreover, we find that on all 5 datasets, TTG-NN out-
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Table 1: Performance on molecular and chemical graphs. The best results are given in bold.

BZR COox2 DHFR D&D MUTAG PROTEINS PTC_MR PTC_MM PTC_FM PTC_FR IMDB_B
84.5440.65 79.78+1.04  77.994+0.96 ooT 87.29+1.25 ooT 58.24+2.44 63.30+1.70 63.80+1.00  65.51+9.82 ooT
81.9940.30 78.16+£0.00  72.48%0.65 78.26+0.76 80.9040.48 74.53%0.35 57.26%1.41 57.5249.98 52.41%£1.79  66.91£1.46 73.34+0.47
81.4240.60 78.16+£0.00  75.35+0.66 79.01£0.43 75.51£1.34 74.53£0.35 59.90+4.30 67.2245.98 64.7241.66 67.90+1.81 72.75£1.02
86.1640.97 79.67£1.32 81.7240.80 79.78+0.36 85.7541.96 73.06£0.47 57.97£0.49 67.2840.97  64.80%0.85 67.64+0.74 71.15+0.47
79.40£1.71 79.85£2.64  70.70%5.00 79.37£0.94 85.8341.66 75.54+0.94 58.59£2.47  62.10£14.09  60.28+6.67  65.434+11.30  70.0040.90
79.34+2.43 76.53+1.82 74.56+1.44 79.1243.07 80.4242.07 70.31+1.93 62.26+4.80 67.80+4.00 62.39+0.85 69.80+4.40  66.53+2.33

N/A N/A N/A N/A 84.40%1.60 75.50£0.40 N/A N/A N/A N/A N/A
85.6042.00 80.304+5.17  82.204+4.00  75.40+2.60 89.3945.60 76.16+2.76 64.60£7.00 67.18+7.35 64.1942.43 66.97+6.17 75.10£5.10
79.40£1.20 80.3044.21 69.10£4.80 75.10£2.20 67.6143.36 69.60£3.50 64.70£6.80 67.51£5.96 65.8844.26 66.28+3.71 N/A
82.6445.05 80.0743.85 72.78+6.25 77.60£3.10 79.17£1.64 76.52+2.58 64.16£3.47 N/A N/A N/A 70.77+£4.89
83.93+4.41 79.66+£2.64  70.50%7.80 77.90£2.40 79.22+1.02 73.63£3.60 64.85+4.30 66.00+5.36 63.00£3.40  69.80+£4.40  68.60+3.10
83.0546.00 80.1645.80 N/A 75.90£3.90 79.50+0.66 74.10£3.10 N/A N/A N/A N/A 70.40+£3.30

N/A N/A N/A 75.38+4.17 86.6746.88 76.28+3.63 66.00£5.90 N/A N/A N/A N/A
82.9544.91 79.45£2.98  T4.67+4.64 76.45+0.97 76.78+2.12 71.86+0.97 56.41£1.63 66.67£8.57  67.65+3.72  65.71£10.69  74.87+4.09
83.9545.68 82.614+2.69  73.33£3.72 77.40£3.40  90.00£3.60 dd  73.23£2.51 66.68+3.22 69.69+5.10 65.594£5.00  69.40£5.21 73.29+£3.40
82.1643.18 80.9041.00 N/A N/A 89.8040.90 74.80£0.30 N/A N/A N/A N/A 71.20£0.70
85.6140.59 81.01+0.88  81.43%0.48 N/A 87.3140.66 74.54£0.48 N/A N/A N/A N/A 73.84+0.36

N/A N/A N/A N/A 84.00+8.60 75.20+2.20 66.36-£6.55 68.60+6.30 63.9445.19 64.27+3.78 73.80+4.50

N/A N/A N/A N/A N/A 76.50£3.40 66.80+£4.56 70.55+4.79 68.68+6.80  69.80+£4.36 75.60£3.20

N/A N/A N/A 75.70£2.10 N/A 76.00£3.90 N/A N/A N/A N/A N/A

87.40 + 2.62 86.73+£3.41 78.72+5.33 80.90+2.57 93.65+4.18 77.62+3.92 68.91+4.02 74.11+4.57 69.33+2.09 73.23+£3.91 76.40+2.50

Table 2: Graph classification results (%) on ogbg-
molhiv dataset.

GCN GIN GSN PNA
7599+ 119 77.07+£1.49 77.90£0.10 79.05+1.32

Dataset
ogbg-molhiv

TTG-NN (ours)
81.50 + 0.86

performs TTG-NN without the tensor transformation
layer (TTL) with an average relative gain of 3.41%.
Furthermore, TTG-NN significantly outperforms TTG-
NN without TG-CL on all datasets, which illustrates
the importance of learning the tensor-view global struc-
tural information. In summary, these results show
the effectiveness of both convolutional and topological
tensor representation learning for the graph classifica-
tion problem. In summary, ablating each of the above
components leads to performance drops on all datasets
compared with the full TTG-NN model, which suggests
that the designed components are critical and need to
be sufficiently learned.

Table 3: TTG-NN ablation study.

Architecture MUTAG BZR COX2 PTC_MM PTC_FM
TTG-NN W/o TT-CL ~ 85.67+7.80  82.73+3.05 78.13+£1.96 68.67£7.16  60.74£3.37
TTG-NN W/o TG-CL ~ 90.60£3.15  86.14+6.31 79.58+1.84 68.20£7.50  62.42+1.96
TTG-NN W/o TTL 91.2245.26  85.36£5.58  83.08+2.49 73.80£5.05 64.10£1.83
TTG-NN 93.65+4.18 87.40+2.62 86.73+3.41 74.11+4.57 69.33+2.09

4.4 Sensitivity Analysis

To evaluate the model performance with different ten-
sor decomposition methods, we test the performance
of our proposed TTG-NN model with 3 different ten-
sor decompositions, i.e., Tucker, TT, and CP. As Ta-
ble [4] shows that (i) on MUTAG, BZR, and COX2, CP
method always show better performance than Tucker
and TT, and the average relative gain is 5.02%; (ii) on
PTC_ MM and PTC_FM, we can see that TTG-NN
equipped with TT outperforms TTG-NN with Tucker

and CP decompositions respectively.

Table 4: Sensitivity analysis of tensor decomposition.

Decomposition MUTAG BZR COX2 PTC_MM PTC_FM
TTL With Tucker ~ 88.89+9.94 86.91+4.41 79.23+6.89 66.12+5.52 61.03+£3.89
TTL With TT 88.36+6.37  86.91+£3.98  82.22+3.49  74.11+4.57 69.33+2.09

TTL With CP 93.65+4.18 87.40+2.62 86.73+3.41  67.00£5.23 62.4545.31

Furthermore, we use five filtration functions, i.e., De-
gree(deg.), Betweenness Centrality(betw.), Closeness
Centrality(close.), Eigenvector Centrality(eign.), and
Communicability Centrality(comm.) on most bench-
marks, as they cover most essential topological proper-
ties. However, comm. would incur computation errors
on a few datasets, e.g., PROTEINS, D&D. Also, con-
sidering that deg. is arguably the most fundamental
and essential property, we test deg., betw., eigen., close.
individually and in combination on MUTAG and PRO-
TEINS datasets. From Table [8] we can see that the
effect of certain choices of filtration functions varies
from data to data. However, we observe that the model
performance generally increases with the number of
filtration functions used.

4.5 Computational Complexity

The topological complexity of the standard PH matrix
reduction algorithm [Edelsbrunner et al.| [2000] runs in
time at most O(Z?), where Z is the number of sim-
plices in a filtration. For O-dimensional PH, it can be
computed efficiently using disjoint sets with complex-
ity O(Za~1Z), where a~1(-) is the inverse Ackermann
function |Cormen et al. [2022]. Furthermore, in Ta-
ble [5| we show the running time (i.e., training time
per epoch) of the proposed TTL with 3 different ten-
sor decomposition methods on MUTAG, BZR, COX2,
PTC MM, and PTC_ FM datasets. We also compare
the running time (training time per epoch; along with
the accuracy (%)) between our TTG-NN model and
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three runner-ups. Specifically, for MUTAG, TTG-NN:
18.58 seconds (93.65%) vs. HaarPool: 19.31 seconds
(90.00%) vs. PersLay: 13.00 seconds (89.80%) vs. GIN
0.38 seconds (89.39%); for PTC_MM: TTG-NN 3.97
seconds (74.11%) vs. SIN: 5.62 seconds (70.55%) vs.
HaarPool: 7.72 seconds (69.69%) vs. MPR: 9.61 sec-
onds (68.60%). Compared with runner-ups, TTG-NN
always achieves competitive classification performance
and computation cost.

Table 5: Run time analysis of tensor decomposi-
tion(seconds per epoch).

Decomposition MUTAG BZR COX2 PTC_MM PTC_FM
TTG-NN With Tucker 1341 s 44.71s  7.52s 3.73s 447 s
TTG-NN With TT 17.58 s 36.28s  7.20s 397 s 3.60 s
TTG-NN With CP 18.58 s 45.02s 17.55s 12.72 s 12.85s

5 Conclusion

In this paper, we have proposed a novel Tensor-view
Topological Graph Neural Network (TTG-NN) with
graph topological and structural feature tensors. In
TTG-NN, TT-CL and TG-CL harness tensor structures
to consolidate features from diverse sources, while TTL
exploits tensor low-rank decomposition to proficiently
manage both model complexity and computational
efficiency. TTG-NN architecture can be flexibly ex-
tended by incorporating additional graph representa-
tion learning modules through the integration of paral-
lel structures with TT-CL and TG-CL. Moreover, we
theoretically show that the proposed Tensor Transfor-
mation Layer (TTL) reduces the stochastic noise and
error. Extensive experiments on graph classification
tasks demonstrate the effectiveness of both TTG-NN
and the proposed components. Future research direc-
tions include further extending the tensor-view topo-
logical deep learning idea to unsupervised/supervised
spatiotemporal prediction and community detection.
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A Tensor Algebra

A.1 Tensor Low-Rank Structures

Consider an M-th order tensor X of dimension Dy X - -+ x Dys. If X assumes a (canonical) rank-R CP low-rank
structure, then it can be expressed as
R
X:ZCruerUZTO"’uMm (13)

r=1

where o denotes the outer product, U, € RP" and ||ty |, = 1 for all mode m € [M] and latent dimension
r € [R]. Concatenating all R vectors corresponding to a mode m, we have U,, = [umn1, -+ ,Umg] € RPm*E
which is referred to as the loading matrix for mode m € [M].

If X assumes a rank-(Ry, -+, Ry) Tucker low-rank structure , then it writes
Ry Rm
X=C X1 Ul X2 Xy UM = Z o Z C7'1~~T'M(u1r1 O OuMT'IW)7
T1:1 TM:1

where w,,,,, are all D,,-dimensional vectors, and ¢, ...,,, are elements in the R; X --- X Rp-dimensional core
tensor C.

Tensor Train (TT) low-rank|Oseledets [2011] approximates a Dy X --- x Dy tensor X with a chain of products
of third order core tensors C;, i € [M], of dimension R;_; x D; x R;. Specifically, each element of tensor X can
be written as

T
Tiy e ing = €113y, X C2isin,: X 00 X CMyzing s X CMA41,:,1,15 (14)

where ¢, . 4, . 18 an Ry,_1 X Ry, matrix for m € [M]U{M + 1}. The product of those matrices is a matrix of
size Ry X Rpr41. Letting Ry = 1, the first core tensor C; is of dimension 1 x D; x Ry, which is actually a matrix
and whose i1-th slice of the middle dimension (i.e. €11, ;) is actually a Ry vector. To deal with the “boundary
condition” at the end, we augmented the chain with an additional tensor C;41 with Dysy1 =1 and Rpy41 =1
of dimension Rj; x 1 x 1. So the last tensor can be treated as a vector of dimension Rj;.

CP low-rank is a special case where the core tensor C has the same dimensions over all modes, that is
R,, = R for all m € [M], and is super-diagonal. TT low-rank is a different kind of low-rank structure and
it inherits advantages from both CP and Tucker decomposition. Specifically, TT decomposition can compress
tensors as significantly as CP decomposition, while its calculation is as stable as Tucker decomposition. We
further perform the ablation study to the effect of different tensor decomposition methods on molecular and
chemical graphs (see Table [3|in the main body).

B Notation and Additional Details of Datasets

B.1 Notation

Frequently used notation is summarized in Table [6]

B.2 Topological Tensor Feature

To incorporate topologlc)al features from more dimensions, we calculate a set of PDs for each filtration function
fi, ie., PH(G, f;) = Dg; = {Dg(l) ...,Dg(Q)}, where Q € Z§ is the number of graph topological features.

K3 ? 1
Moreover, to encode above topological information presented in a PD Dg into the embedding function, we use its
vectorized representation, i.e., persistence image (PI)|[Adams et al.| [2017]. The PI is a finite-dimensional vector
representation obtained through a weighted kernel density function and can be computed in following two steps
(see more details in Definition . First, we map the PD Dg to an integrable function gpy, : R? — R?, which is
referred to as a persistence surface. The persistence surface gp, is constructed by summing weighted Gaussian
kernels centered at each point in Dg. In the second step, we integrate the persistence surface gop, over each grid

box to obtain the value of the PIp,.
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Table 6: The main symbols and definitions in this paper.

Definition

an attributed graph

the set of nodes of G

the set of edges of G

the number of nodes

the adjacency matrix of G

the degree matrix of G

the feature matrix of G

the label of G

the number of graphs

a simplicial complex

the maximum dimension of a simplicial complex
the number of filtration functions

the number of persistent images for each filtration function
the resolution of each persistent image

the output dimension of graph convolutional layers
the number of graph convolutional layers

an affine transformation

a tensor

a core tensor

the total number of elements in C

Z
o
o+
®
o
S
5
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Definition B.1 (Persistence Image). Let g : R? — R be a non-negative weight function for the persistence plane
(w—pg)? (y*uy)2>
— 7+7
e ( 202 25 ) dydz, where

R. The value of each pizel z € R? is defined as PIpy(z) = [[ > ueT(Dy) 27255/:2%

T(Dg) is the transformation of the PD Dy (i.e., for each (z,y), T(z,y) = (z,y — x)), pp = (la, p1y) € R?, and §,
and 0, are the standard deviations of a differentiable probability distribution in the x and y directions respectively.

B.3 Datasets

Table [7] summarizes the characteristics of all ten datasets used in our experiments.

Table 7: Summary statistics of the benchmark datasets.

Dataset # Graphs Avg. |V| Avg. |£| # Class

BZR 405 35.75 38.35 2
COX2 467 41.22 43.45 2
DHFR 467 42.43 44.54 2
D&D 1178 284.32 715.66 2
MUTAG 188 17.93 19.79 2
PROTEINS 1113 39.06 72.82 2
PTC MR 344 14.29 14.69 2
PTC MM 336 13.97 14.32 2
PTC_FM 349 14.11 14.48 2
PTC_FR 351 14.56 15.00 2

C Additional Experimental Results

In our study, we use five filtration functions, i.e., Degree(deg.), Betweenness Centrality(betw.), Closeness
Centrality(close.), Eigenvector Centrality(eign.) and Communicability Centrality(comm.) on most benchmarks,
as they cover most essential topological properties. However, comm. would incur computation errors on a few
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datasets, e.g., PROTEINS, D&D. Also, considering that deg. is arguably the most fundamental and essential
property, we test deg., betw., eigen., close. individually and in combination on MUTAG and PROTEINS datasets.
From Table[8] we can see that the effect of certain choices of filtration functions varies from data to data. However,
we observe that the model performance generally increases with the number of filtration functions used.

Table 8: Sensitivity analysis of filtration functions

Dataset/filtrations deg. betw. eigen. close. [deg., betw.] [deg., eigen.] [deg., close] [deg., betw., eigen] [deg., betw., close.] [deg., eigen., close.] [deg., betw., eigen., close.]
MUTAG 86.17+6.23 80.294+10.96 83.42+11.64 8243+£7.87 88.89£579 8512+£6.65 86.23+6.68 88.36 + 8.08 88.30 £6.12 87.31 £1.00 93.65 £ 4.18
PROTEINs 72.32+6.43 T7448%5.01 72.754+6.15  73.504+4.88 73.31£6.17 74.39£4.56 73.6845.71 T4.75 £ 5.47 73.224+7.04 73.76 £ 6.61 77.62 +3.92
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