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Abstract

We study the generalization capability of
nearly-interpolating linear regressors: β’s
whose training error τ is positive but small,
i.e., below the noise floor. Under a ran-
dom matrix theoretic assumption on the
data distribution and an eigendecay assump-
tion on the data covariance matrix Σ, we
demonstrate that any near-interpolator ex-
hibits rapid norm growth: for τ fixed, β has
squared ℓ2-norm E[∥β∥22] = Ω(nα) where n is
the number of samples and α > 1 is the ex-
ponent of the eigendecay, i.e., λi(Σ) ∼ i−α.
This implies that existing data-independent
norm-based bounds are necessarily loose. On
the other hand, in the same regime we
precisely characterize the asymptotic trade-
off between interpolation and generalization.
Our characterization reveals that larger norm
scaling exponents α correspond to worse
trade-offs between interpolation and general-
ization. We verify empirically that a similar
phenomenon holds for nearly-interpolating
shallow neural networks.

1 INTRODUCTION

Regularization (Nakkiran et al., 2020) and early stop-
ping (Ji et al., 2021) are techniques to mitigate the ef-
fect of harmful overfitting by training models to nearly,
rather than perfectly, interpolate the training data. A
key question is: how do near-interpolators generalize?

A long line of work has investigated this question for
perfect-interpolators. Zhang et al. (2017) noted the
surprising phenomon that, even with noise, perfect-
interpolators do not necessarily overfit catastrophi-
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cally, and can still generalize to some extent. The
phenomenon is later formalized as “benign overfitting”
and proven to hold in linear regresion in Bartlett et al.
(2020). Mallinar et al. (2022) introduced the more nu-
anced notion of tempered overfitting which is closer to
the empirical observation in Zhang et al. (2017) that
the test error of perfect-interpolators do degrade some-
what. Koehler et al. (2021) establish a setting under
which benign overfitting can be explained by uniform
bounds. However, to the best of our knowledge, no
work have studied generalization of near-interpolating
linear regression 1.

Our results. Under random matrix-theoretic and
power-law spectra assumptions, we prove that nearly-
interpolating ridge regressors have norms that grows
rapidly (Theorem 1.6), implying that existing (non-
asymptotic) generalization bounds are loose (Sec-
tion 4.2). Moreover, we derive the exact formula re-
lating the large-sample limit training and the testing
error (Theorem 1.5), using the eigenlearning frame-
work of Simon et al. (2023). Finally, we show that
our theoretical results on near-interpolating ridge re-
gressors are relevant empirically and can give insight
into the behavior of early-stopped near-interpolating
shallow neural networks.

Implications. Our result on the norm growth im-
plies that existing data-independent bounds and pos-
sible extension are necessarily loose. See Section 4.2.
Thus, in order to explain the learning capability of
near-interpolators, there is a need to develop data-
dependent generalization bounds.

On the other hand, our result allows the analysis of the
trade-off between nearness of interpolation and gener-
alization. Our result reveals delicate interplay between
the overparametrization ratio and the power-law spec-
tra exponent. In particular, for larger power-law spec-
tra exponent implies larger asymptotic excess test er-
ror ratio of 5%- over 50%-noise floor interpolation, for

1Ghosh and Belkin (2022) establishes lower bound for
the interpolation-genearlization trade-off, which is related
to but distinct from our contributions.
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instance. Put more simply, the harmfulness of overfit-
ting depends on the data distribution. Moreover, this
effect is stronger at high level of overparametrization
(large p/n). (See Figure 2 and Figure 1-left panel.)
Experimentally, this effect appears in shallow neural
networks as well (Figure 4).

1.1 Related works

Near interpolation. Learning algorithms that
(nearly) interpolate the training data, such as deep
neural networks, have been surprisingly effective in
practice despite conventional statistical wisdom sug-
gesting otherwise (Zhang et al., 2021). Many practices
in modern machine learning e.g., early stopped neu-
ral network and high-dimensional ridge regression, re-
sult in near- rather than perfect-interpolators (Ji et al.,
2021; Kuzborskij and Szepesvári, 2022). In terms of
theory work, Ghosh and Belkin (2022) provides a lower
bounds on the test error for near-interpolators.

Power law spectra. Empirically, power law spectra
arise in neural tangent kernels computed from practi-
cal networks for common datasets, e.g., MNIST (Ve-
likanov and Yarotsky, 2021) On the theory side, the
power law spectra assumption has been used previ-
ously to analyze benign (Bartlett et al., 2020, Theo-
rem 2) and tempered overfitting phenomena (Mallinar
et al., 2022, Theorem 3.1).

Looseness of existing generalization bounds.
Our work is motivated by the empirical evidence found
by Wei et al. (2022) suggests that norms of kernel ridge
regressors grow rapidly potentially beyond the purview
of norm-based bound. We confirm that bounds simi-
lar to ones in Koehler et al. (2021, Corollary 1) grow
to infinity. Even more refined bounds such as Koehler
et al. (2021, Theorem 1) grow as n goes to infinity.
Therefore, our work suggests that explaining the gen-
eralization capability of near-interpolators will require
new tools.

1.2 Notations

Throughout this work, we assume the setting of high-
dimensional linear regression as described below. Let n
denote the number of samples and p denote the feature
dimension. Consider the setting where n, p → ∞ at
the same time. The sample-to-feature ratio is denoted
γ := n/p ∈ R>0 and the asymptotic sample-to-feature
ratio is denoted γ∗ := limn→∞ γ ∈ R≥0. Here, n is the
fundamental parameter which p depends on implicitly.

Let X ∈ Rp and Y ∈ R denote a random vector (resp.
variable), referred to as the sample (resp. label). Sup-
pose that β⋆ ∈ Rp is such that Y = ε +X⊤β⋆ where
ε ∈ R is a random variable denoting independent, zero

mean noise, i.e., E[ε] = 0 and ε ⊥ X. Here ⊥ denotes
independence between random variables. The noise
variance is denoted σ2 := E[ε2].

The training data is denoted {(xi, yi)}ni=1 where xi ∈
Rp and εi ∈ R are i.i.d realizations of X and of the
noise, and yi = εi + x⊤

i β
⋆. Let X = [x1, . . . , xn] ∈

Rp×n be the data matrix obtained by horizontally
stacking the xi’s, and let y = (y1, . . . , yn)

⊤ ∈ Rn be
the (column vector) by concatenating the yi’s. Like-
wise, define ε = (ε1, . . . , εn)

⊤ ∈ Rn. For a positive
integer p, let Ip denote the p× p identity matrix. Let
β ∈ Rp be arbitrary. The empirical training mean
squared error (MSE) of β is denoted

En
train(β) =

1

n
∥X⊤β − y∥22.

Likewise, the expected test error of β is denoted

En
test(β) = E[∥X⊤β − Y ∥22].

Let Σ̂ := n−1XX⊤ denote the sample covariance ma-
trix and Ǧ := n−1X⊤X the (scaled) gram matrix. Let

Σ := E[Σ̂] denote the population covariance.

We note that all quantities defined on the training data
implicitly depend on n. When the dependencies need
to be made explicit, we shall write β⋆

n, Σ̂n and so on.

1.3 Our contributions

Recall the minimum norm near-interpolator:

Definition 1.1. Let τ ∈ (0, σ2). The minimum norm
τ -near-interpolator is defined as

βτ := argminβ∈Rp∥β∥22 s.t. 1
n∥X

⊤β − y∥22 ≤ τ. (1)

A τ -near-interpolator (not necessarily of the minimum
norm) is any β ∈ Rp satisfying the inequality in (1).

In the overparameterized (p > n) regime, near-
interpolators can often be realized by ridge regression:

Definition 1.2. Let ϱ > 0. The ridge regressor with
regularizer ϱ is defined as

β̂ϱ := argminβ∈Rp
1
n∥X

⊤β − y∥22 + ϱ∥β∥22. (2)

Main problems: For any τ ∈ (0, σ2), 1 . find a se-
quence of regularizers {ϱn}n so that

E∗
train := lim

n→∞
E[En

train(β̂ϱn)] = τ (3)

where the expectation is over all sources of randomness
and 2 . compute the associated asymptotic test error:

E∗
test := lim

n→∞
En
test(β̂ϱn

). (4)
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Definition 1.3. Let τ ∈ (0, σ2) be arbitrary and
{ϱn}n be any sequence of regularizers. If Equation (3)

holds, then we say the sequence of regressors {β̂ϱn
}n

is an asymptotic τ -near interpolator with asymptotic
test error given by Equation (4).

Assumption 1.4 (Power-law spectra2). Suppose
there exists α > 1 such that the population data co-
variance matrix Σ = diag(λ1, · · · , λp) where λi = i−α.

There are many examples of random matrix ensem-
bles exhibiting power-law spectra in a broader sense
than that of Assumption 1.4. For instance, see (Arous
and Guionnet, 2008; Mahoney and Martin, 2019; Wang
et al., 2024). For simplicity, we do not pursue a general
setting and will consider the setting of Assumption 1.4.

The asymptotic test error of an asymptotic τ -near in-
terpolator can be calculated as follows. Let F = 2F1

denote the Gaussian Hypergeometric function (Dutka,
1984, Eqn. (27)).

Theorem 1.5 (Exact trade-off formula). Let τ ∈
(0, σ2) be arbitrary. Suppose that supn=1,2... ∥β⋆∥2 <

+∞, Assumption 1.4 holds, and X = Σ1/2Z where
Z ∼ N (0, Ip). There exists unique number k ∈
R>0 such that that the following hold. Define the
regularizer-factor

r := 1− γ−1
∗ F (1, 1

α ; 1 +
1
α ;−kγ−α

∗ )

and let ϱn := rn−α. Then {β̂ϱn}n is an asymptotic
τ -near interpolator whose asymptotic test error is

E∗
test = σ2 1

1− γ−1
∗ F (2, 1

α ; 1 +
1
α ;−kγ−α

∗ )
. (5)

Moreover, E∗
test is a decreasing function w.r.t α, fixing

all other quantities.

The reason we call Theorem 1.5 an “exact trade-off
formula” is that Equation (5) allows the calculate of
the trade-off curve between train and test error (Fig-
ure 1-right). The fundamental parameter is k. The
asymptotic testing error and training error, i.e., τ , all
depend on k via monotonic 1-1 correspondences on the
domain k ∈ (kcrit,∞). See Figure 3 below. Thus, the
asymptotic testing error depends on the training error
implicitly through k.

Figure 1-right panel demonstrates that, empirically,
training and test MSEs concentrate closely around
Equation (5). We further discuss in detail the impli-
cations of Theorem 1.5 after stating Proposition 3.2.

Figure 1-right shows that for near-interpolators, the
test error does not degrade much when training be-
low the noise floor. A natural question is if this can

2Also referred to as the eigenvalue decay condition
(Goel and Klivans, 2017).

be explained by data-independent norm-based gener-
alization bound such as the one found in Koehler et al.
(2021). Our next result shows that the growth rate of
an asymptotic τ -near interpolator is superlinear:

Theorem 1.6 (Rapid norm growth). In the situation
of Theorem 1.5, for any τ ∈ (0, σ2), suppose ϱn > 0 is a

sequence of regularizers such that {β̂ϱn}n is an asymp-

totic τ -near interpolator. Then E[∥β̂ϱn∥22] = Ω(nα).

As a consequence, data-independent norm-based gen-
eralization bound for near-interpolators, similar to the
one in Koehler et al. (2021), are necessarily loose. See
Section 4.2.

The key technical result that enables the proof of The-
orem 1.6 is the following

Proposition 1.7 (Rapid norm growth - generic).
Suppose Assumption 1.4 holds and the random
matrix-theoretic Assumptions 2.5, 2.6 and 2.9 all hold.
For any r > 0, let ϱn := rn−α be the regularizer for
the ridge regression. Then E[∥β̂ϱn

∥22] = Ω(nα).

Remark 1.8. Proposition 1.7 still holds when the
stronger Assumption 1.4 is replaced by the weaker As-
sumption 2.2. See Proposition 4.1.

Remark 1.9 (Effective-factor). The quantity k in The-
orem 1.5 has the following interpretation. Let κ :=
kn−α, which is known as the effective regularizer in
Wei et al. (2022). The connection between the effec-
tive regularizer and the statistical learning theoretic-
literature’s notion of effective dimension is explained
in (Jacot et al., 2020a, §4.1). For this reason, we refer
to k with the shortened name eff-reg-factor.

1.4 Organization

In Section 2, we present the necessary background
as well as new technical on random matrix theory
(RMT). In Section 3 and 4, we sketch the proof of
Theorem 1.5 and Proposition 1.7, respectively. In Sec-
tion 4.2, we discuss the implication of our results on
the looseness of norm-based generalization bounds. In
Section 5, we discuss our experiments. We discuss re-
lated works and the context of our work in greater de-
tails in Section 6. Finally, we conclude with discussion
of future works and limitations.

2 PRIMER ON RANDOM MATRIX
THEORY

We start with a fundamental concept in random ma-
trix theory (RMT), followed by a review of RMT
adapted to the power-law spectra setting and a new
result (Proposition 2.10) to prepare for our main re-
sults.
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Figure 1: Left: Synthetic experiments validating the norm lower bound of norms of 0.2-near-interpolators given
by Proposition 1.7. The squared norms are fitted by least squares (in log-log space) to estimate the norm-growth
exponent α using only data points. See Section 5 for additional experiment details. Right: Trade-off between
the testing and training errors from Theorem 1.5. The solid curves are the parametrized curves whose (x, y)-
coordinates are (E∗

train, E∗
test) and parametrized by k (which is in 1-to-1 correspondence with r see Theorem

1.5). The scatter points, subsampled for visualization, denote ridge regression run results on the HDA model
(Example 2.8). The colored ribbons denote the 20-80 quantiles for the scatter points. The horizontal dotted line
denotes the noise σ2 which is set to 1 without the loss of generality.

Definition 2.1 (Empirical spectral measure). For c ∈
R, let δc denote the Dirac measure on R at c. Let M ∈
Rp×p be a matrix with real eigenvalues λ1, . . . , λp. The
empirical spectral measure of M, denoted by esd(M),
is the measure on R given by esd(M) = 1

p

∑p
i=1 δλi .

Our random matrix theoretic-assumptions differs from
the standard RMT ones in order to accomodate for
power-law spectra. The following is a random matrix-
theoretic extension of the earlier Assumption 1.4:

Assumption 2.2 (Power-law spectra, RMT version).
In the situation of Section 1.2, let α > 1 andH be some
probability measure on R≥0. Assume that esd(nαΣ)
converges to H (in the sense of convergence in distri-
bution). We refer to H as the α-scaled limiting spectral
distribution (α-scaled LSD).

Morally, we can think of the above α as the same as
that of Assumption 1.4.

Remark 2.3 (Comparison with standard LSD). In
RMT, the condition that “esd(Σ) converges to H”
is standard, where H is simply referred to as the
limiting spectral distribution (LSD) (Bai and Silver-
stein, 2010). For power-law spectra covariance, i.e.,
Σ satisfying Assumption 1.4, esd(Σ) may not have a
measure-theoretic limit while esd(nαΣ) does, as we
will show in Section 4.1.

Definition 2.4 (Stieltjes transform). Let µ be a mea-
sure on R with support S. The Stieltjes transform of µ
is the (complex-valued) function with input z ∈ C \ S
given by Sµ(z) :=

∫ µ(t)dt
t−z .

Next, we recall the so-called the self-consistent equa-

tion (Tao, 2011) which relates the regularizer-factor r
with the eff-reg-factor k:

Assumption 2.5 (Self-consistent equation). In the
situation of Section 1.2, denote by λi the i-th largest
eigenvalue of Σ. For each r > 0, there exists a unique
k ≡ k(r) ∈ R such that the tuple (r, k) satisfies

1 =
r

k
+ lim

n→∞

1

n

p∑
i=1

1

1 + kn−αλ−1
i

. (6)

Similar to Remark 2.3, Equation (6) includes a n−α

scaling term that does not show up in the standard
self-consistent equation. Again, our Assumption 2.5
differs from this standard one in order to deal with
the power-law spectra.

Next, we state a version of the classical Marchenko-
Pastur law for a random matrix X (and its associated
Gram matrix nαǦn):

Assumption 2.6 (Marchenko-Pastur law). In the set-
ting of Assumption 2.5, further assume that

lim
n→∞

rSesd(nαǦn)
(−r) = kSH(−k), almost surely

and limn→∞
d
dr

(
rSesd(nαǦn)

(−r)
)

= d
dr (kSH(−k)).

We note that the k on the RHS depends on r.

Remark 2.7. Assumption 2.5 and Assumption 2.6
are standard assumptions in random matrix theory.
Both of them are satisfied by the well-studied high-
dimensional asymptotic (HDA) model (Example 2.8).
For instance, see Dobriban and Wager (2018) under
“Marchenko-Pastur theorem”.
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The HDA model serves as an exemplary model in ran-
dom matrix theory possessing many properties that
are particularly amenable to analysis. It is defined as:

Example 2.8. Let γ∗ ∈ (0,∞). The high-dimensional
asymptotic (HDA)3 model:

1. X = Σ1/2Z where the entries of Z = {Zij} ∈
Rp×n are i.i.d, have zero mean E[Zij ] = 0 and
unit variance E[Z2

ij ] = 1. The matrixΣ is positive
semidefinite.

2. n/p → γ∗

3. Spectral distribution of nαΣ converges to a dis-
tribution H supported on R≥0.

Note that our Example 2.8 is somewhat different com-
pared to the conventional HDA model, wherein the
third item is “Σ converges to a distribution H”. Since
we are working with power-law spectra in the covari-
ance matrix, we require the nα coefficient in our Ex-
ample 2.8.

We now state a new random matrix-theoretic assump-
tion that is one of the key steps for proving rapid norm
growth under the RMT setting (Proposition 4.1):

Assumption 2.9 (Positivity condition). In the set-
ting of Assumption 2.5, further assume that for every
r > 0, we have

lim
n→∞

E
[
d

dr
(rSesd(nαǦn)

(−r))

]
> 0.

We show that the HDA model satisfies Assump-
tion 2.9, a fact that appears to be new:

Proposition 2.10. Assumption 2.9 holds for the
HDA model.

We prove the proposition in Appendix C. Now, hav-
ing introduced the necessary RMT background, we
now turn to proving Theorem 1.5 on the interpolation-
generalization trade-off.

3 INTERPOLATION-
GENERALIZATION TRADE-OFF

Simon et al. (2023) derived “estimates” of the testing
and training errors of kernel ridge regression. These
estimates, dubbed the eigenlearning framework, are
non-rigorous4 due to invoking a Gaussian universal-
ity condition. However, when the kernel is linear and

3See Bai and Silverstein (2010); Dobriban and Wager
(2018).

4See Mallinar et al. (2022) for a thorough discussion.
Works in similar vein include Bordelon et al. (2020);
Canatar et al. (2021)

the data is Gaussian (as is the case in Theorem 1.5),
the framework is rigorous. See Jacot et al. (2020b).

Given this, we use the eigenlearning framework to rig-
orously calculate the asymptotic training and testing
error of the estimators in Theorem 1.5. To this end,
we first define two key functions of the eff-reg-factor k
(See Remark 1.9 for the terminology):

Definition 3.1. Let α > 1 and γ∗ ∈ [0,∞). Define
functions5 I(·) ≡ Iα,γ∗(·) and J (·) ≡ Jα,γ∗(·) as

I(k) :=
∫ 1

γ∗

0

dx

1 + kxα
, J (k) :=

∫ 1
γ∗

0

dx

(1 + kxα)2
.

When γ∗ = 0, we take 1/0 := +∞.

These integrals arise in explicit calculations of the
eigenlearning equations for the train and test MSEs
applied to our setting. They can be computed via the
integral representation of the Gaussian hypergeomet-
ric function given in (Dutka, 1984, Eqn. (27)). The
calculations are in Appendix A.1, where we show that
I and J are, respectively, equal to

∫ 1
γ∗

0

dx

1 + kxα
= γ−1

∗ F (1, 1
α ; 1 +

1
α ;−kγ−α

∗ ), and

∫ 1
γ∗

0

dx

(1 + kxα)2
= γ−1

∗ F (2, 1
α ; 1 +

1
α ;−kγ−α

∗ ).

To relate the above to E∗
test, E∗

train estimates of the
testing and training errors in the eigenlearning frame-
work, we prove

Proposition 3.2. In the situation of Theorem 1.5,

E∗
test ≡ lim

n→∞
En
test(β̂ϱ) = σ2 · 1

1−J (k) , and

E∗
train ≡ lim

n→∞
E[En

train(β̂ϱ)] = σ2 · (1−I(k))2
1−J (k) .

Moreover, there exists kcrit ∈ R≥0 such that

1. For each r > 0, there exists a unique k ∈
(kcrit,+∞) such that r = R(k) := k(1− I(k)),

2. R is monotonically increasing on (kcrit,+∞),

3. E∗
test > σ2 for all k ∈ (kcrit,+∞),

4. limk→+∞ E∗
test = σ2.

For the proof of Proposition 3.2, see Appendix A.2. At
a high level, to prove the first part we apply the eigen-
learning framework while accounting for the additional
layer of complexity due to the power-law spectra. For

5Throughout this work, α and γ∗ are fixed constants.
For brevity, we often simply write I or J .
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Figure 2: Larger power-law spectra exponent implies
larger asymptotic excess test error when interpolating
to 5% of the noise compared to 50% of the noise floor.
Let E∗

test = E∗
test(α, γ∗, τ) be as in Theorem 1.5 where

we make the dependency on parameters α, γ∗, τ ex-
plicit. The color and contour line of plot shows the ra-
tio of test errors at two levels of nearness of interpola-
tion E∗

test(α, γ∗, 0.05)/E∗
test(α, γ∗, 0.5) over an (α, γ∗)-

grid.

the “Moreover” part, we directly analyze R, E∗
train and

E∗
test as functions of r, k and α. Now, note that Propo-

sition 3.2 immediately implies Theorem 1.5.

We now discuss some of the consequences of Propo-
sition 3.2 First, R is a bijection that relates the eff-
reg-factor k and the regularizer-factor r. The plot of
R is visualized in Figure 3. Furthermore, note that
limk→+∞ E∗

test = σ2 precisely states that the test er-
ror can be made arbitrarily close to the noise floor as
k (equivalently, r) goes to infinity.

Using Proposition 3.2 with the implemenation of 2F1

in SciPy, we illustrate the trade-off between the train-
ing error versus the test error in Figure 1-Right and
the test error ratio in Figure 2.

Remark 3.3 (Data-independent regularizer-selection).
Let τ ∈ (0, σ2) be a desired level of nearness of in-
terpolation. To select a regularizer ϱn that achieves
τ ′-near-interpolation for τ ′ ≈ τ , we use the follow-
ing method: Step 1. Find k ∈ (kcrit,+∞) such that
E∗
train = E∗

train(k) = τ , using the expression for
E∗
train(k) in Proposition 3.2. Let kτ be such a k. Step

2. Next, set r := R(kτ ), where R is also as in Propo-
sition 3.2. Step 3. Set the regularizer as ϱn := rnα.

4 RAPID NORM GROWTH

Proposition 1.7 can be proven in even greater general-
ity under random matrix-theoretic assumptions.

Proposition 4.1 (Rapid norm growth under RMT).
Suppose Assumptions 2.2, 2.5, 2.6, and 2.9 all hold.
For any r > 0, let ϱn := rn−α be the regularizer for

the ridge regression. Then E[∥β̂ϱn∥22] = Ω(nα).

The goal of this section is to sketch the proof for
Proposition 4.1. Complete proofs of all results are in-
cluded in the Appendix. Throughout, we assume the
setting of Section 1.2.

The next step is the following:

Proposition 4.2. Let ϱ := rn−α. Then we have

E∥β̂ϱ∥22 ≥ nασ2 · E
[ d
dr

(rSesd(nαǦ)(−r))
]
.

The proof of Proposition 4.2 and other omitted proofs
in this section can be found in Appendix B.

Given Proposition 4.2, the proof of Proposition 4.1 is
straightforward:

Proof of Proposition 4.1. Let

L := lim
n→∞

E
[

d
dr (rSesd(nαǦ)(−r))

]
> 0

be as in Assumption 2.9. Thus, for all n ≫ 0 suffi-
ciently large, we have E

[
d
dr (rSesd(nαǦ)(−r))

]
> L/2 >

0. By Proposition 4.2, we get that E∥β̂ϱ∥22 ≥ nασ2 · L
2

for all n ≫ 0, as desired.

4.1 α-scaled limiting spectral distribution

In this section, we check that power-law spectra co-
variance matrices has an α-scaled limiting spectral
distribution. In other words, Assumption 1.4 implies
Assumption 2.2. Note that this is necessary because
we have proved Proposition 4.1 rather than Proposi-
tion 1.7. So we need to make sure that the special
case, i.e., Proposition 1.7, is indeed the “special case”.

Definition 4.3. Given a measure µ on R, we let
cdf[µ] denote the cumulative distribution function
(CDF) of µ.

Proposition 4.4. Under Assumption 1.4, we have
that Assumption 2.2 holds. In other words,

lim
n→∞

cdf[esd(nαΣ)](t) =

{
1− γ∗t

−1/α : t ≥ γα
∗

0 otherwise.

4.2 Looseness of norm-based generalization
bounds

Conjecturally, a norm-based generalization bound for
near-interpolators should have the following form: un-
der suitable assumptions, with high probability

sup
β:∥β∥≤B,Etrain(β)≤τ

Etest(β) = O

(
B2Tr(Σ)

n

)
.
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Figure 3: The R(k) function from Proposition 3.2.
The x-axis is the input k. Note that for k < kcrit the
regularizer r is negative. Although we are only inter-
ested in the (kcrit,+∞) portion, negative regularizers
have been studied by Tsigler and Bartlett (2020); Wu
and Xu (2020).

where τ ∈ R≥0. For τ = 0, the best known bound for
(perfect) interpolators is given by Koehler et al. (2021,
Corollary 1) under Gaussian assumption on the data
X ∼ N (0,Σ) and B ≥ ∥β⋆∥.

To the best of our knowledge, there is no known exten-
sion to the case of near-interpolators, i.e., where τ > 0.
However, such bound is not informative for our sce-
nario, since by Theorem 1.5 and Proposition 1.7, it is
possible to choose ϱn such that 1 . E[Etrain(β̂ϱn

)] → τ ,

2 . Etest(β̂ϱn
) → c ∈ R≥0, and 3 . ∥βϱn

∥2 = Ω(nα) for
any α > 0. Thus, the bound goes to infinity while
Etest(β̂ϱn

) is finite.

5 EXPERIMENTS

We run two types of synthetic experiments. The first
type, plotted in Figure 1, employs (linear) ridge re-
gression. The second type, plotted in Figure 4 employs
neural networks. The data for both types of experi-
ments are drawn from the HDA model (Example 2.8).
Moreover, we have conducted experiments on several
real world regression datasets from the UCI regression
collection.

5.1 Experiments on synthetic data

To generate Figure 1-left, we run experiments with
α ∈ {1.25, 2.5} and n

p = γ∗ = 2
3 . We sweep over

the train MSE parameter E∗
train to explore the trade-

off between the train and testing MSE in linear ridge
regression as described in Theorem 1.5. The value of
E∗
train are sweeped on a linearly-spaced grid of size 16

from 0.05σ2 to 0.8σ2. The parameters are ntrain =

5000, ntest = 1000, γ∗ = 0.5, α = 1.75 and σ2 = 1.

The regularizer achieving a desired training MSE τ ∈
(0, σ2) is chosen according to the method described in
Remark 3.3. We sample β⋆ ∈ Rp such that β⋆

i are i.i.d
Gaussian with zero mean and variance = 10/p.

The same set up is used for Figure 1-right, except we
sweep over ntrain rather than over E∗

train. The value
of ntrain are sweeped on a logarithmically-spaced grid
of size 20 from 200 to 5000.

For Figure 4, the identical set-up is used as in the
Figure 1, except ridge regression is replaced with neu-
ral networks6 during training. We emphasize that the
ground truth data (i.e., the teacher) is still generated
via the same linear function β⋆. All code for the ex-
periments are included in Appendix E.

Remark 5.1. As discussed in the introduction, near-
interpolating neural network and its interpolation-
generalization trade-offs exhibit similar phenomenon
as in the case of ridge regression. Namely, larger
power-law spectra exponent implies larger asymptotic
excess test error when interpolating to 5% of the noise
compared to 50% of the noise floor, for instance.

Remark 5.2. Intriguely, in both the ridge regression
(Figure 1) and neural network (Figure 4) experiments,
the setting with to larger value of the norm-growth
exponent α (right panels) results in poorer trade-offs
(left panels). For ridge regression, this is explained by
the “Moreover” part of Theorem 1.5. We believe it is
an interesting future direction whether this behavior
can be proved in the neural network setting.

5.2 Experiments on UCI datasets

We conduct experiments on the forest and the stock
datasets from the UCI regression collection (Kelly
et al., 2023). Using neural tangent kernels (Arora
et al., 2019), we observe power-law spectra in the ker-
nel matrices for both of these datasets (Figure 5-right
and Figure 6-right). In this subsection, we discuss the
experiments on the forest dataset in relation to our
theoretical results. Due to space constraints, we refer
the reader to Appendix F for details of the experimen-
tal setup.

In Figure 5-left, note that the curve corresponding to
forest.2-1 has the fastest spectra decay and simul-
taneously the worst trade-off. Evidently, larger decay
exponent corresponds to a poorer trade-off, especially
for near-interpolators, i.e., as the training error ap-
proaches 0. This is in agreement with our theoretical
results under random matrix theory assumptions illus-
trated in Figure 2. Similar phenomenon occurs for the

6We use the default settings in sklearn, except with
early stopping for near-interpolation.
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Figure 4: Experiments with neural networks (top row: 1-hidden layer, bottom row: 5-hidden layers). Analogous
to Figure 1. See Section 5 and Remark 5.1 for details.

stock dataset. See Appendix F.

6 ADDITIONAL RELATED WORKS
AND NOVELTY OF OUR WORK

Technical Novelty of Theorem 1.7. Prior works of
Hastie et al. (2022); Derezinski et al. (2019) require
a lower bound on the smallest eigenvalue of the co-
variance matrix. Hence, the scenario studied in this
paper is not amenable to their results. Further, The-
orem 1.5 shows that when we have a sharper decay
(larger α) of the eigenvalues, we have a worse tradeoff
between the test and training error. Hence, we show
that the scenario from Hastie et al. (2022) is the most
benign one. This well conditioning assumption is re-
laxed in Cheng and Montanari (2022), however, they
require that ∥Σ−1/2β∥ is finite. We do not require this
assumption. Finally, Dobriban and Wager (2018) does
not need the well-conditioning assumption but instead
needs to assume an isotropic distribution on β. Since
we work with fixed β, their results do not apply.

Trade-offs in interpolation-based learning. Prior works
(Ghosh and Belkin, 2022; Belkin et al., 2018; Sonthalia
et al., 2023) have studied the tradeoff between near
interpolation and generalization. For regression, pre-

vious works have also studied the fundamental trade-
off in learning algorithms between overparametrization
and (Lipschitz) smoothness (Bubeck and Sellke, 2021),
and robustness and smoothness (Zhang et al., 2022).

Loosenss of existing generalization bounds. Belkin
et al. (2018, Theorem 1) establishes for classification
that the RKHS norm of a “near-interpolating” clas-
sifier grows at rate Ω(exp(n1/p)). The growth is un-
bounded if n = Ω(exp(p)). If the number of samples
n = Θ(poly(p)), then the lower bound does not grow to
infinity. While our results are for regression and thus
not directly comparable, our lower bound is meaning-
ful in the more practical n ∝ p regime.

Power-law spectra datasets. Synthetic data with arti-
ficial power law EVD covariance have been used fre-
quently as toy examples (Berthier et al., 2020; Mallinar
et al., 2022). On real datasets, power law EVD is of-
ten observed to describe neural tangent kernels (NTK)
well in practice, including on MNIST ((Bahri et al.,
2021, Fig, 4) and (Velikanov and Yarotsky, 2022, Fig.
2)), Fashion-MNIST (Cui et al., 2021, Fig. 7) Cal-
tech 101 (Murray et al., 2022, Fig. 1), CIFAR-100
(Wei et al., 2022, Fig. 3).

Theoretical machine learning works using power-law
spectra. Bordelon et al. (2020) shows that power law
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Figure 5: Left. Training/testing error trade-off on the “forest” dataset from the UCI regression dataset collec-
tion using kernel ridge regression with the neural tangent kernel. Each curve is labeled by “DatasetName.d-f”
where “d” and “f” represents the number of layers and the number of fixed layers in the NTK corresponding to
ReLU networks. Right. The eigenvalue index vs eigenvalue plot of the NTK matrix exhibits power-law spectra.
A tiny value is added to the eigenvalues for better visualization on the log-scale.

EVD implies power law learning curve. Velikanov and
Yarotsky (2021, §6.2) computes the power law EVD
exponent for certain NTKs with ReLU to be α = 1+ 1

d .
Murray et al. (2022) computes the EVD for NTKs with
several different activations. Bartlett et al. (2020, The-
orem 6) shows that benign overfitting occurs when the
covariance matrix eigenvalues λi = i−1 log−b(i+1) for
b > 1. Mallinar et al. (2022) studies power law decay
for α ≥ 1 and proposes a taxonomy of overfitting into
three categories: catastropic, tempered and benign.
The EVD condition is also known as the capacity con-
dition in the kernel ridge regression literature. See
Bietti et al. (2021) and the references there-in.

Random matrix theory (RMT). The signal processing
research community have long been using RMT for
theoretical analysis (Couillet and Debbah, 2012). In-
creasingly RMT has been applied to machine learning
as well as a key tool for analysis.

In particular, Dobriban andWager (2018); Hastie et al.
(2022); Jacot et al. (2020b); Liang and Rakhlin (2020)
have applied RMT for (kernel) ridge regression, Son-
thalia and Nadakuditi (2023); Kausik et al. (2023)
use it to understand generalization of linear denois-
ers, Paquette et al. (2022, 2021) uses the so-called lo-
cal Marchenko-Pastur law (Knowles and Yin, 2017) to
analyze gradient-based algorithms. Finally, Wei et al.
(2022) also applies such local law to analyze the so-
called generalized cross- validation (GCV) estimator.

7 DISCUSSION AND LIMITATIONS

We conclude with several future research directions
that we believe will be fruitful:

Connection to early stopping. Typically, early stop-
ping prevents the trained algorithm from perfectly

interpolating the data. Can early stopped learn-
ing theory results, e.g., Ji et al. (2021); Kuzborskij
and Szepesvári (2022), be applied to analyze near-
interpolators?

Near-interpolators and uniform convergence general-
ization bound. Is possible to use uniform convergence-
based approach to give non-vacuous generalization
bound under the setting studied in this work? This
question has already been raised by Dobriban and Wa-
ger (2018) in the context of classification in a similar
setting. An interesting question is if classical learning
theory can be used to obtain results that are currently
only obtained via random matrix theoretic or similar
techniques. Another approach is to extend the results
of Koehler et al. (2021) to the near-interpolation set-
ting.

Limitations. Our work is restricted to analyzing
a random matrix model. Understanding the phe-
nomenon uncovered in this paper in more general mod-
els and additional real world settings will be needed.
Moreover, our work does not rule out the existence of
uniform convergence generalization bound.

Code availability. Code used to run and
plot the experiments shown in all figures is
available at https://github.com/YutongWangUMich/
Near-Interpolators-Figures.
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Karp, D. B. and López, J. L. (2017). Representations
of hypergeometric functions for arbitrary parame-
ter values and their use. Journal of Approximation
Theory, 218:42–70.

Kausik, C., Srivastava, K., and Sonthalia, R. (2023).
Generalization error without independence: Denois-
ing, linear regression, and transfer learning. arXiv
preprint arXiv:2305.17297.

Kelly, M., Longjohn, R., and Nottingham, K. (2023).
The uci machine learning repository. https://

archive.ics.uci.edu.

Knowles, A. and Yin, J. (2017). Anisotropic local laws
for random matrices. Probability Theory and Related
Fields, 169(1):257–352.

https://archive.ics.uci.edu
https://archive.ics.uci.edu


Wang, Sonthalia, Hu

Koehler, F., Zhou, L., Sutherland, D. J., and Srebro,
N. (2021). Uniform convergence of interpolators:
Gaussian width, norm bounds and benign overfit-
ting. Advances in Neural Information Processing
Systems, 34:20657–20668.

Kuzborskij, I. and Szepesvári, C. (2022). Learning
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(time, space, sample size) of any algorithm.
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(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
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the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
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cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data,
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(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]
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Appendix

A Proof of Theorem 1.5 — the exact trade-off formula

Our goal is to calculate the asymptotic test error E∗
test under the assumptions of Theorem 1.5. This is accom-

plished through the following three steps.

The first step is to calculate the closed-form solution for the integrals defined in Definition 3.1 which are key
ingredients for the expression of E∗

test. This is done in Appendix A.1. The second step is to relate the integrals
from Definition 3.1 to the self-consistent equations in Equation (6). This is done in Appendix A.2. The final
step is to relate the self-consistent equations Equation (6) to the asymptotic test error E∗

test. This is done in
Appendix A.3.

A.1 Closed-form expression for the integrals in Definition 3.1

We prove the identities ∫ 1
γ∗

0

dx

1 + kxα
= γ−1

∗ F (1, 1
α ; 1 +

1
α ;−kγ−α

∗ ), and

∫ 1
γ∗

0

dx

(1 + kxα)2
= γ−1

∗ F (2, 1
α ; 1 +

1
α ;−kγ−α

∗ ).

as shown in the main text following Definition 3.1.

Proof. Let 2F1(a, b; c; z) be the Gauss hypergeometric function. Note that the function can be implemented in
SciPy as scipy.special.hyp2f1 and is used to plot Figure 1. Let Γ denote the Gamma function. The integral
representation of the Gaussian hypergeometric function is well-known and is given by7

2F1(σ, a; b;−z) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0

ta−1(1− t)b−a−1

(1 + zt)σ
dt. (7)

Moreover, (7) is finite for z ∈ C \ (−∞,−1] and ℜ(b− a) > 0 and ℜ(a) > 0. Thus, by Equation (7), we have

2F1(1,
1
α ; 1 +

1
α ;−kγ−α

∗ ) =
Γ(1 + 1

α )

Γ( 1
α )Γ(1)

∫ 1

0

t1/αt−1

1 + kγ−α
∗ t

dt =
1

α

∫ 1

0

t1/αt−1

1 + kγ−α
∗ t

dt

where the second inequality follows from the well-known identity z = Γ(1 + z)/Γ(z) for the Gamma function.
Let u = t1/α. Then we have du = 1

α t
1/αt−1dt. Thus, by u-substitution, we have

1

α

∫ 1

0

t1/αt−1

1 + kγ−α
∗ t

dt =

∫ 1

0

1

1 + kγ−α
∗ uα

du =

∫ 1/γ∗

0

γ∗
1 + kxα

dx

where the second inequality used u-substituted with x = u/γ∗. Now, we have by the definition of I in Defini-
tion 3.1 that

I(k) =
∫ 1/γ∗

0

1

1 + kxα
dx =

1

γ∗

∫ 1/γ∗

0

γ∗
1 + kxα

dx =
1

γ∗
2F1(1,

1
α ; 1 +

1
α ;−kγ−α

∗ )

as desired. By an analogous calculation, we get J (k) = 1
γ∗ 2F1(2,

1
α ; 1 +

1
α ;−kγ−α

∗ ).

A.2 Proof of Proposition 3.2

We begin by analyzing the functions defined in Definition 3.1 and prove the items 1 and 2 of the “Moreover”
part of Proposition 3.2:

7We used the formula stated in Karp and López (2017).
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Proposition A.1. Let I and J be functions as defined in Definition 3.1. Under Assumption 1.4 and Assump-
tion 2.5, we have that r = R(k) := k · (1− I(k)) and dr

dk = 1− J (k).

Furthermore, the following holds:

1. R(k) ≍ k for k ≫ 0,

2. There exists kcrit > 0 such that R(kcrit) = 0, R is increasing and positive on (kcrit,+∞).

3. J (k) < 1 for k ∈ (kcrit,+∞) and J (+∞) = 0.

Proof of Proposition A.1. We begin by proving the first part: that r = R(k) := k · (1−I(k)) and dr
dk = 1−J (k).

Rewrite the limit in Equation (6) as follows:

lim
n→∞

1

n

p∑
i=1

1

1 + kn−αλ−1
i

= lim
n→∞

1

n

n/γ∑
i=1

1

1 + k(i/n)
α =

∫ 1/γ∗

0

dx

1 + kxα

The right-most equality follows from the definition of the (Riemann) integral. If γ∗ = 0, then 1/γ∗ = +∞ and
the above is interpreted as an improper Riemann integral. Now, rearranging Equation (6), we get the desired
formula of r = R(k) := k · (1−I(k)). The formula for dr

dk follows by “differentiating under the integral” (Leibniz
integral rule).

For the first item of the “Furthermore” part, it suffices to show that limk→+∞ I(k) = 0. This follows from the
fact that limk→+∞

1
1+kxα = 0 for all x > 0, integrability of the function (1+xα)−1 over R≥0, and the dominated

convergence theorem. Likewise, limk→∞ J (k) = 0 as well.

For the second item of the “Furthermore” part, we note that for all x sufficiently large, we have dr
dk > 0 since

limk→∞ J (k) = 0. Now, let kcrit be the largest real number such that R(kcrit) = 0. Since R(0) = 0, we must
have kcrit ≥ 0.

For all k > kcrit, we claim that I(k) < 1. To see this, assume the contrary. Then by the fact that limk→+∞ I(k) =
0 and the intermediate value theorem, there must exists k′ such that k′ > k such that I(k′) = 1 which implies
that R(k′) = 0. This contradicts the maximality of kcrit.

Finally, since 1 + kxα ≤ (1 + kxα)2 for all k ≥ 0 and x ≥ 0, we have that I(k) ≥ J (k) for all such k’s. Thus,
by the previous claim, for all k > kcrit, we have 1 > I(k) ≥ J (k). This proves that dr

dk > 0 for all k > kcrit, as
desired.

A.3 Review of the eigenlearning framework (Simon et al., 2023)

Before proceeding with finishing the proof of Proposition 3.2, we briefly review the eigenlearning framework.
Simon et al. (2023) calculates the test error for the estimator

β̌δ := X(X⊤X+ δIn)
−1y = X(nǦ+ δIn)

−1y (8)

for kernel ridge regression using the so-called eigenlearning equations (Simon et al., 2023, Section 4.1). Below,
we recall some relevant parts of the framework:

Definition A.2 (Eigenlearning eqn. specialized to setting in Section 1.3). Suppose that the ground truth
regression function is linear, i.e., f(x) = x⊤β⋆ for some β⋆ ∈ Rp. Let δ and κ satisfy the equation

n =
δ

κ
+

p∑
i=1

λi

λi + κ
. (9)

Define the following n-dependent quantities:

1. Overfitting coefficient : Ecoef := ndκ
dδ

2. Testing error : Etest := Ecoef(σ2 + C) where

C =
∑p

i=1(1− Li)(β
⋆
i )

2 and Li :=
λi

λi+κ .
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3. Training error : Etrain := δ2

n2κ2 Etest.

Proof of Proposition 3.2. Simon et al. (2023) uses a different scaling for ridge regression than the one we use.
To bridge the different notations, we first resolve this discrepancy. Comparing Equation (8) with the expression

in Equation (11), if we let δ := nϱ, then the expressions are equivalent, i.e., β̌δ = β̂ϱ. To see this, note that

β̌δ = β̌nϱ = X(X⊤X + nϱIn)−1y

= (XX⊤ + nϱIp)−1Xy ∵ Lemma B.2

= (n(n−1XX⊤ + ϱIp))−1Xy

= (Σ̂ + ϱIp)−1 1
nXy = β̂ϱ ∵ Definition of β̂ϱ

Below, let r > 0 be arbitrary. Furthermore, we claim that as n → ∞, we have r, k satisfies Equation (6) if and
only if the tuple (δ, κ) := (nrn−α, kn−α) satisfies Equation (9):

n =
δ

κ
+

p∑
i=1

λi

λi + κ
⇐⇒ n =

nrn−α

kn−α
+

p∑
i=1

λi

λi + kn−α
⇐⇒ 1 =

r

k
+

1

n

p∑
i=1

1

1 + kn−αλ−1
i

.

Taking limit as n → ∞, we have proved the claim.

Next, we show that limn→∞ C = 0 where C is as in Definition A.2. We have Li := λi

λi+κ = 1
1+k(i/n)α . Note

that limn→∞ Li = 1 for all fixed i. On the other hand, since supn=1,2... ∥β⋆∥2 < +∞, dominated convergence
theorem implies that limn→∞ C = 0

We claim that the following asymptotic expression for the testing and training error hold:

lim
n→∞

Etest = σ2 · dk
dr and lim

n→∞
Etrain = σ2 · r2

k2 · dk
dr (10)

where r and k satisfy Equation (6) from from Assumption 2.5.

To see this, first note that the overfitting coefficient satisfies

Ecoef := ndκ
dδ = ndκ

dϱ
dϱ
dδ = ndκ

dϱ
1
n = dκ

dϱ = dk
dr .

Thus, we obtain the following asymptotic expression

lim
n→∞

Etest = Ecoef · σ2 = σ2 · dk
dr .

On the other hand, the training error is given by

Etrain = δ2

n2κ2 Etest = ϱ2

κ2 Etest = Etest · r2

k2 .

Therefore, limn→∞ Etrain = σ2 · r2

k2 · dk
dr . This proves (10), as desired.

B Proof of Proposition 4.1 — rapid norm growth under RMT assumptions

The first key technical step the following:

Proposition B.1. E∥β̂ϱ∥22 ≥ n−1σ2E[tr((Σ̂+ ϱIp)
−2Σ̂)].

Proof. Below, for brevity we let a := X⊤β⋆ and M := (Σ̂ + ϱIp)
−1 1

nX. Recall the closed-form solution for
Equation (2) is given by the formula

β̂ϱ := (Σ̂+ ϱIp)
−1 1

nXy. (11)

Thus,

β̂ϱ = (Σ̂+ ϱIp)
−1 1

n
Xy = (Σ̂+ ϱIp)

−1 1

n
X(f(X) + ε) = M(a+ ε).
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Thus,
∥β̂ϱ∥22 = (a+ ε)⊤M⊤M(a+ ε) = a⊤M⊤Ma︸ ︷︷ ︸

≥0

+ε⊤M⊤Mε+ 2ε⊤M⊤Ma.

Note that ε ⊥ M⊤Ma since ε ⊥ X. Thus, since E[ε] = 0, we have

E[∥β̂ϱ∥22] = E[(a+ ε)⊤M⊤M(a+ ε)] ≥ E[ε⊤M⊤Mε] = E[tr(M⊤Mεε⊤)].

Since M⊤M ⊥ εε⊤, we have

E[tr(M⊤Mεε⊤)] = tr(E[M⊤M]E[εε⊤]) = tr(E[M⊤Mσ2In]) = σ2E[tr(M⊤M)].

On the other hand, M⊤M = 1
n (Σ̂+ ϱIp)

−1Σ̂(Σ̂+ ϱIp)
−1. Using the cyclic property of trace, we get the desired

inequality.

Proof sketch of Prop. B.1. We first simplify ∥β̂ϱ∥22 using the well-known formula for ridge regression: Next, let

M := (Σ̂ + ϱIp)
−1 1

nX. Using the independence of X and ε, we get E[∥β̂ϱ∥22] ≥ E[tr(M⊤Mεε⊤)]. Since M⊤M
and εε⊤ are also independent, we have

E[tr(M⊤Mεε⊤)] = σ2E[tr(M⊤M)].

By M⊤M = 1
n (Σ̂+ ϱIp)

−1Σ̂(Σ̂+ ϱIp)
−1 and the cyclic property of trace, we get the desired inequality.

For the sake of completeness, we prove Equation (11) though its well-known

Proof of Equation (11). Start with the objective function F(β) := 1
n∥X

⊤β−y∥22 + ϱ∥β∥22. Take derivative with
respect to β, we have

1

2
∇β

(
1

n
∥X⊤β − y∥22 + ϱ∥β∥22

)
=

1

2
∇β

(
β⊤(Σ̂+ ϱIp)β − 2

n
β⊤Xy

)
= (Σ̂+ ϱIp)β − 1

n
Xy.

Since ∇βF(β̂ϱ) = 0, we are done.

Lemma B.2 (Special case of Woodbury formula). Let

M ∈ Rp×n (12)

be an arbitrary matrix and ϱ ∈ (0,∞). Then

(MM⊤ + ϱIp)
−1M = M(M⊤M+ ϱIn)

−1 ∈ Rn×p.

Proof of Lemma B.2. It suffices to prove Lemma B.2 for the special case when ϱ = 1, which we assume below.
By the Woodbury matrix identity, we have

(MM⊤ + Ip)
−1 = I−M(M⊤M+ In)

−1M⊤ (13)

For brevity, let P := MM⊤ + Ip and let N := M⊤M+ In. To proceed, we have

P−1M

= M−MN−1M⊤M ∵ Multiplying (13) by M on the right

= M(In −N−1M⊤M) ∵ Factoring out M on the left

= M(In − (In −N−1)) ∵ In = N−1N = N−1 +N−1M⊤M

= MN−1

as desired.
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Lemma B.3. Let M ∈ Rp×p be any symmetric matrix and z ∈ R. Then we have

d
dz tr(z(M+ zIp)

−1) = tr(M(M+ zIp)
−2).

Proof of Lemma B.3. Without the loss of generality, suppose that M = diag(λi, . . . , λp). Then we have f(z) :=
tr(z(M+ zIp)

−1) =
∑p

i=1
z

λi+z . Now, from elementary calculus, we have

d

dx

x

y + x
= (y + x)−1 − x(y + x)−2 = (y + x)−2((y + x)− x) =

y

(y + x)2
.

From this, we recover the fact that d
dz f(z) =

∑n
i=1

λi

(λi+z)2 = tr(M(M+ zIp)
−2), as desired.

Lemma B.4 (Gram-to-covariance). Let c ∈ R and z ∈ C be arbitrary, then Sesd(cΣ̂)(z) = γ · Sesd(cǦ)(z)−
(1−γ)

z .

Proof of Lemma B.4. Without the loss of generality, we may assume that c = 1. Let λ̂1 ≥ · · · ≥ λ̂p be the

eigenvalues of Σ̂. Since p > n, we necessarily have that λ̂n+1 = · · · = λ̂p = 0. Moreover, λ̂1, . . . , λ̂n are the
eigenvalues of Ǧ. Now, unwinding the definition, we have

Sesd(Σ̂)(z) =
1

p

p∑
i=1

1

λ̂i − z

and

Sesd(Ǧ)(z) =
1

n

n∑
i=1

1

λ̂i − z
.

Thus,

Sesd(Σ̂)(z) =
1

p

(
n∑

i=1

1

λ̂i − z
+

p∑
i=n+1

1

−z

)

=

(
n

p

1

n

n∑
i=1

1

λ̂i − z

)
− p− n

p

1

z

= γ · Sesd(Ǧ)(z)−
(1− γ)

z

as desired.

Proof of Proposition 4.2. Recall from Proposition B.1 that E∥β̂∥22 ≥ n−1σ2E[tr((Σ̂ + ϱIp)
−2Σ̂)]. Below, we

analyze the term inside the expectation. By the definition of the Stieltjes transform, we have

tr(ϱ(Σ̂+ ϱIp)
−1) = tr(rn−α(Σ̂+ rn−αIp)

−1) = tr(r(nαΣ̂+ rIp)
−1) = prSesd(nαΣ̂)(−r).

Therefore, by Lemma B.3, we have

d

dr

(
prSesd(nαΣ̂)(−r)

)
=

d

dr
tr(ϱ(Σ̂+ ϱIp)

−1)

=
dϱ

dr
· d

dϱ
tr(ϱ(Σ̂+ ϱIp)

−1) = n−αtr((Σ̂+ ϱIp)
−2Σ̂).

By Lemma B.4, we have

prSesd(nαΣ̂)(−r) = pr

(
γ · Sesd(nαǦ)(−r) +

(1− γ)

r

)
= nrSesd(nαǦ)(−r) + p(1− γ)
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Thus, we have
d

dr

(
prSesd(nαΣ̂)(−r)

)
= n

d

dr

(
rSesd(nαǦ)(−r)

)
from which we conclude that

tr((Σ̂+ ϱIp)
−2Σ̂) = nα+1 d

dr

(
rSesd(nαǦ)(−r)

)
.

In view of E∥β̂∥22 ≥ n−1σ2E[tr((Σ̂+ ϱIp)
−2Σ̂)] from Proposition B.1, we get the desired inequality.

B.1 Proof of Proposition 4.4

Proof of Proposition 4.4. To simplify notations in this proof, we write γ instead of γ∗. Now, the set of eigenvalues
of nαΣ can be expressed as

{(n/i)α}i=1,...,p

= {(np )
α︸ ︷︷ ︸

=γα

, , . . . , ( n
n+1 )

α, n
n︸︷︷︸
=1

, ( n
n−1 )

α, . . . , (n1 )
α︸ ︷︷ ︸

=nα

}.

Thus, cdf[esd(nαΣ)](t) = 0 if t < γα and = 1 if t ≥ nα. It remains to calculate cdf[esd(nαΣ)](t) = 0 if t < γα

for t ∈ [γα, nα].

To this end, let t ∈ [γα, nα) and j(t) ∈ {1, . . . , p} be the smallest index such that (n/j(t))α ≤ t. By definition of
the CDF, we have cdf[esd(nαΣ)](t) = 1

p (p− j(t)+1). We first argue that j(t) ̸= 1 by contradiction. If j(t) = 1,

then we have nα ≤ t. Since t ∈ [γα, nα], this implies that t = nα, a contradiction. Thus, j(t) ̸= 1.

Now, by the definition of j(t), we have (n/(j(t)−1))α > t. Therefore, n/j(t) ≤ t1/α < n/(j(t)−1) which implies
that j(t) − 1 < nt−1/α ≤ j(t). By the definition of the ceiling function, we have that j(t) = ceil(nt−1/α).
Therefore,

cdf[esd(nαΣ)](t)

= 1
p (p− ceil(nt−1/α) + 1)

= 1− γ
nceil(nt

−1/α) + γ
n .

Taking limit of both side as n → ∞ and using the fact that limn→∞ ceil(nc)/n = c for any positive number
c > 0, we get the desired result.

C Proof of the Positivity Condition portion of Proposition 2.10

This section will focus on the proof of Proposition 2.10, in particular the Positivity Condition (Assumption 2.9)
portion. Thus, throughout this section, we assume the setting of Example 2.8. As mentioned in the main text,
it is well-known that Assumptions 2.5 to 2.6 for the HDA model. As such, we assume these assumptions. Now,
using Assumption 2.6 and elementary calculus, we first show that

lim
n→∞

E
[

d
dr (rSesd(nαǦ)(−r))

]
=
(
dr
dk

)−1 · d
dk (kSH(−k))

where r and k are as in Assumption 2.5. Thus, we reduce to showing the positivity of dr
dk and d

dk (kSH(−k)).

Before proceeding, we recall several definitions and notations adapted from Dobriban and Wager (2018):

lim
n→∞

E
[
Sesd(nαǦ)(z)

]
= v(z) (14)

is analogous to the v(z) defined in the paragraph immediately following (Dobriban and Wager, 2018, Eqn. (2)).
The difference is our Equation (14) is for the limit of the nα-scaled matrices nαǦ, rather than for Ǧ as in
Dobriban and Wager (2018).
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Let H = limn→∞ cdf[esd(nαΣ)] be the limiting distribution as in Assumption 2.2. Plugging in z = −r into
Dobriban and Wager (2018, Eqn. (A.1)), we have

− 1

v(−r)
= −r − 1

γ

∫
tdH(t)

1 + tv(−r)
.

Letting k ≡ k(r) := 1
v(−r) , we can rewrite the above as

1 =
r

k
+

1

γ

∫
tdH(t)

k + t
. (15)

By construction, we have

1

γ

∫
tdH(t)

k + t
= lim

n→∞

1

n

p∑
i=1

1

1 + kn−αλ−1
i

where the RHS is as in Assumption 2.5. Consequently, the tuple r, k from Assumption 2.5 coincide with the
earlier definition of k := 1

v(−r) right before Equation (15). Having established the above, we now proceed to:

Lemma C.1. Under the HDA model (Example 2.8) and the EVD condition (Assumption 2.2), we have that
limn→∞ E

[
d
dr (rSesd(nαǦ)(−r))

]
> 0.

Proof of Lemma C.1. By the product rule, we have

d
dr

(
rSesd(nαǦ)(−r)

)
= Sesd(nαǦ)(r)− rS ′

esd(nαǦ)
(−r)

Now, taking the limit of the above equation on both side, we have

lim
n→∞

E
[

d
dr

(
rSesd(nαǦ)(−r)

)]
= lim

n→∞
E
[
Sesd(nαǦ)(−r)− rS ′

esd(nαǦ)
(−r)

]
= v(−r)− rv′(−r) ∵ Definition of v and v′

= d
dr (rv(−r)) ∵ Product rule

= d
dr (kSH(−k)) ∵ Marchenko-Pastur law (Assumption 2.6)

= dk
dr · d

dk (kSH(−k)) ∵ Chain rule

=
(
dr
dk

)−1 · d
dk (kSH(−k)) ∵ Inverse function theorem

To complete the proof, it suffices to show that both dr
dk and d

dk (kSH(−k)) are positive which will be checked in
the next two lemmas.

Lemma C.2. The function dr
dk evaluated at k is positive.

Proof of Lemma C.2. Recall that k = 1
v(−r) . Thus, we have

dk

dr
(r) = (−1)

1

v(−r)2
(−1) · v′(−r) =

v′(−r)

v(−r)2
.

From the proof of Silverstein and Choi (1995, Theorem 4.1), we see that v′(·) > 0 for all negative inputs. In
particular, v′(−r) > 0 which implies that dk

dr is positive. By the inverse function theorem, we have dr
dk = (dkdr )

−1

is also positive.

Lemma C.3. The quantity d
dk (kSH(−k)) is positive.

Proof of Lemma C.3. Plugging in z = −r into Dobriban and Wager (2018, Eqn. (3)), we have

v(−r)− 1

r
=

1

γ

(
m(−r)− 1

r

)
. (16)
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Now,

rm(−r) = γrv(−r) + (1− γ) ∵ Equation (16) (17)

= γ
r

k
+ (1− γ) ∵ Definition of k (18)

=

(
γ −

∫
tdH(t)

k + t

)
+ (1− γ) ∵ Equation (15) (19)

= 1−
∫

tdH(t)

k + t
(20)

=

∫
kdH(t)

k + t
∵ 1 =

∫
dH(t) =

∫
k + t

k + t
dH(t) (21)

= kSH(−k). (22)

Thus, differentiating under the integral, we have

d

dk
(kSH(−k)) =

∫
d

dk

(
k

k + t

)
dH(t) =

∫
tdH(t)

(k + t)2
> 0

as desired.

D Proof of Theorem 1.6 — rapid norm growth

Proof of Theorem 1.6. Let τ ′ := τ+σ2

2 . Then by definition, we have τ ′ ∈ (0, σ2). From Theorem 1.5, we can pick
r′ > 0 so that the sequence of regularizers ϱ′n = r′n−α satisfies E∗

train(r
′) = τ ′. Next, we note that there exists

c > 0 such that
Pr(Etrain(β̂ϱ′

n
) ≥ Etrain(β̂ϱn)) ≥ c

for all n sufficiently large. Such a c is guaranteed to exist by the fact that

lim
n

Etrain(β̂ϱ′
n
) = τ ′ =

τ + σ2

2
> τ = lim

n
Etrain(β̂ϱn).

Now, note that

Etrain(β̂ϱ′
n
) ≥ Etrain(β̂ϱn

) (23)

⇐⇒ β̂ϱn
is a Etrain(β̂ϱ′

n
)-near interpolator (24)

=⇒ ∥β̂ϱn
∥2 ≥ ∥β̂ϱ′

n
∥2 (25)

From this, we conclude that there exists a c > 0 such that

Pr(∥β̂ϱn
∥2 ≥ ∥β̂ϱ′

n
∥2) ≥ c

for all n sufficiently large. From this, it follows that E[∥β̂ϱn
∥2] ≥ cE[∥β̂ϱ′

n
∥2]. By Proposition 1.7 and the

preceding inequality, we are done.

E Code for implementation I and J

Implementation of the I and J functions from Definition 3.1 can be implemented in SCIPY as:

1 import scipy.special as sc
2 gamma = 0.5
3 alpha = 1.75
4

5 # I helper
6 I_gen = lambda x,k, alpha: x*sc.hyp2f1 (1,(1/ alpha), 1 + (1/ alpha), -k*x** alpha)
7 # J helper
8 J_gen = lambda x,k, alpha: x*sc.hyp2f1 (2,(1/ alpha), 1 + (1/ alpha), -k*x** alpha)
9
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10 I = lambda k : I_gen (1/gamma , k, alpha) #\mathcal{I}
11 J = lambda k : J_gen (1/gamma , k, alpha) #\mathcal{J}
12

13 N = lambda k : 1 - I(k) # helper
14 D = lambda k : 1 - J(k) # helper
15

16 Etst = lambda k : 1/D(k) #\Etest /\sigma ^2
17 Etrn = lambda k : N(k)**2/D(k) #\Etrain /\sigma ^2
18 R = lambda k : k*(1-I(k)) # \mathcal{R}

F Experiments

Code for reproducing all figures are included in the official GitHub repository:

https://github.com/YutongWangUMich/Near-Interpolators-Figures/

For downloading the UCI regression datasets, we use the following repository:

https://github.com/treforevans/uci_datasets

For the neural tangent kernel, we use the official repository associated to Arora et al. (2019):

https://github.com/LeoYu/neural-tangent-kernel-UCI

In Figure 6-left, note that the curve corresponding to stock.2-1 has the fastest spectra decay and simultaneously
the worst trade-off. Evidently, larger decay exponent corresponds to a poorer trade-off, especially for near-
interpolators, i.e., as the training error approaches 0. This is in agreement with our theoretical results under
random matrix theory assumptions illustrated in Figure 2.

Figure 6: Left. Training/testing error trade-off on the “stock” dataset from the UCI regression dataset collection
using kernel ridge regression with the neural tangent kernel. Each curve is labeled by “DatasetName.d-f” where
“d” and “f” represents the number of layers and the number of fixed layers in the NTK corresponding to ReLU
networks. Right. The eigenvalue index vs eigenvalue plot of the NTK matrix exhibits power-law spectra. A tiny
value is added to the eigenvalues for better visualization on the log-scale.

https://github.com/YutongWangUMich/Near-Interpolators-Figures/
https://github.com/treforevans/uci_datasets
https://github.com/LeoYu/neural-tangent-kernel-UCI
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