
Don’t Be Pessimistic Too Early: Look K Steps Ahead!

Chaoqi Wang Ziyu Ye Kevin Murphy Yuxin Chen
Unversity of Chicago Unversity of Chicago Google DeepMind Unversity of Chicago

Abstract

Offline reinforcement learning (RL) considers
to train highly rewarding policies exclusively
from existing data, showing great real-world
impacts. Pessimism, i.e., avoiding uncertain
states or actions during decision making, has
long been the main theme for offline RL. How-
ever, existing works often lead to overly con-
servative policies with rather sub-optimal per-
formance. To tackle this challenge, we in-
troduce the notion of lookahead pessimism
within the model-based offline RL paradigm.
Intuitively, while the classical pessimism prin-
ciple asks to terminate whenever the RL agent
reaches an uncertain region, our method al-
lows the agent to use a lookahead set carefully
crafted from the learned model, and to make
a move by properties of the lookahead set. Re-
markably, we show that this enables learning
a less conservative policy with a better per-
formance guarantee. We refer to our method
as Lookahead Pessimistic MDP (LP-MDP).
Theoretically, we provide a rigorous analysis
on the performance lower bound, which mono-
tonically improves with the lookahead steps.
Empirically, with the easy-to-implement de-
sign of LP-MDP, we demonstrate a solid per-
formance improvement over baseline methods
on widely used offline RL benchmarks.

1 Introduction

Offline reinforcement learning presents a fertile ground
for research, especially in its applicability to scenar-
ios requiring RL policies to be learnt strictly from
existing datasets, negating the need for online explo-
ration [Levine et al., 2020]. This approach is crucial

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s). Correspondence to chaoqi@uchicago.edu.

in real-world applications such as autonomous driv-
ing [Fang et al., 2022] and healthcare [Wang et al.,
2018], where direct interactions can be expensive or
dangerous. However, a unique challenge presents itself
in the offline RL paradigm: the distribution shift issue,
primarily due to the often inadequate representation of
online scenarios by pre-existing datasets. To address
this, an essential principle for offline RL is to incor-
porate algorithmic regularization to prevent erroneous
extrapolations beyond the available data, a concept
commonly referred to as pessimism [Jin et al., 2021].

Research in this domain is largely bifurcated into model-
free and model-based approaches. While model-free
methods utilize policy regularization [Fujimoto et al.,
2019, Wang et al., 2020] or the learning of a conserva-
tive value function [Kumar et al., 2020, Kostrikov et al.,
2022], they are inherently limited by the constraints of
offline data, leading to potential poor generalization [Yu
et al., 2020]. Model-based methods, in contrast, typi-
cally manifests the principle of pessimism by truncating
uncertain transitions [Kidambi et al., 2020], or by im-
posing penalties on rewards in uncertain states [Yu
et al., 2020, 2021]. In addition, they also afford the
ability to interpolate and extrapolate from offline data
through learning dynamics models, promising superior
generalization and sample efficiency [Kidambi et al.,
2020, Yu et al., 2020, 2021].

Building on this, we focus on the model-based offline
RL paradigm, and more specifically, on extending the
work of Kidambi et al. [2020], known as P-MDP. In
comparison, methods like MOPO [Yu et al., 2020]
and COMBO [Yu et al., 2021] rollout from the of-
fline data using the fitted dynamics model for only a
few steps (e.g., 1 to 5 steps), functioning as a form
of data augmentation, akin to MBPO [Janner et al.,
2019]. Hence, they could also be considered a hybrid
of model-free and model-based methods, potentially
still constrained by the static offline data due to the
restricted rollout steps. Thus, our goal is to augment
the performance of algorithms in the style of P-MDP,
which exclusively perform rollouts in the learned model
for a potentially extensive number of steps.

The main issue with P-MDP [Kidambi et al., 2020] is



Don’t Be Pessimistic Too Early: Look K Steps Ahead!

π!"#$!∗ = (L, L, . . . )
π&!"#$!∗ = (R, L/R,… )

Possible Path 
of π!"#$!∗

Possible Path 
of π&!"#$!∗

L R

L L RR

(b)

e

(a)

P-MDP LP-MDP 

(Ours)

Fitted MDP

Uncertain region

𝑟(				) = 1 𝑟(						) = 2 𝑟(					) = 10 𝑟(					) = 0

Figure 1: In this tree-structured MDP (middle figure), the fitted dynamics model isn’t sure about the right action
(R) at the red node. P-MDP (or MOReL) sets the next state as the absorbing state (see (a) on the left). In
contrast, LP-MDP looks one step ahead in the fitted model dynamics to create a less pessimistic path around the
uncertain region (see (b) on the right). As a result, the policies π⋆

P-MDP (edges highlighted with ) and π⋆
LP-MDP

(edges highlighted with ) have different trajectories in the true MDP.

its tendency to be overly pessimistic too soon when it
comes across an uncertain state. In this study, we put
forward a refined version of the P-MDP approach by
introducing the idea of lookahead pessimism, which we
call LP-MDP. Our approach lessens the conservatism
and provides a tighter lower bound for the actual per-
formance of the policy learned, compared to P-MDP.
We achieve this by creating a lookahead set that starts
from the uncertain states, as opposed to the immediate
termination when encountering them, as in P-MDP.

As an elucidatory example, we provide a graphical il-
lustration in Figure 1, demonstrating how P-MDP can
lead to a highly conservative policy with subpar per-
formance. In the tree-structured MDP depicted in the
center, the cloudy region symbolizes the area where the
learned model is uncertain about the true transition
distribution. In such a scenario, P-MDP truncates the
transition and compels the subsequent state to be an
absorbing state e with the minimal reward (as shown
in Figure 1(a)). Conversely, our LP-MDP method
looks ahead one step in the search for a less conserva-
tive MDP, as depicted in Figure1 (b). Consequently,
the policies learned under P-MDP (π⋆

P-MDP) and LP-
MDP (π⋆

LP-MDP) will exhibit different behaviors when
deployed in the true MDP. In particular, π⋆

P-MDP will
avoid the right branch as it will yield the lowest return
in the P-MDP, whereas π⋆

LP-MDP will opt for the right
branch, given that it provides a superior payoff in the
LP-MDP, which is indeed better.

Main Contributions:

• We present the Lookahead Pessimistic MDP (LP-
MDP), a novel model-based method for offline RL.
Notably, we bring forth the concept of lookahead
pessimism, which lessens the conservatism by incor-
porating future transitions from the learned model.

• Theoretically, we prove a performance lower bound
for the policy learnt under LP-MDP. We also illus-
trate that this lower bound improves with the looka-
head steps K, thus offering a tighter lower bound
compared to previous works [Kidambi et al., 2020].

• Empirically, we showcase a simple-to-implement mod-
ular design of LP-MDP, and demonstrate a solid im-
provement over previous methods on both gridworld
tasks and D4RL benchmarks.

2 Backgrounds and Preliminaries

Notations. We focus on the fully-observed Markov
decision processes (MDPs), which can be represented
by M = (S,A, p, r, ρ0, γ). Here, S and A are the
state space and action space, p(s′|s,a) is the transition
dynamics, r(s,a) : S × A → [−R,R] is the reward
function, ρ0(·) denotes the initial state distribution,
and γ ∈ (0, 1) is the discount factor. The goal of rein-
forcement learning is to find a policy that maximizes
the expected discounted return,

ηM(π) := Es∼ρ0(·) [V
π
M(s)] , (1)

where V π
M(s) is the value function defined as V π

M(s) :=
Eπ,p,ρ0

[
∑∞

t=0 γ
tr(st,at)|s0 = s] . Lastly, we say two

players (x⋆, y⋆) with utility functions fx and fy are
at an equilibrium if no player can deviate from its
current strategy to achieve a better utility, i.e., ∀x, y

fx(x
⋆, y⋆) ≥ fx(x, y

⋆), fy(x
⋆, y⋆) ≥ fy(x

⋆, y). (2)

Offline RL as the maximin optimization. In offline
RL, the goal is to learn a high-performing policy from
the logged data. The key challenge is to handle the
distribution shift in online deployment. Essentially, this
problem can be formulated as the following maximin
optimization problem,

max
π∈Π

min
M∈M

ηM(π), (3)

which aims to maximize the worst case performance.
Consequently, the choice of the class of MDPs (i.e., M)
is crucial to the performance of the resulting policy. As
long as M contains the true MDP, we will have that
the true performance of the resulting policy is lower
bounded by Equation 3.



Chaoqi Wang, Ziyu Ye, Kevin Murphy, Yuxin Chen

In Uehara and Sun [2022], the authors choose M to
be the set of MDPs that are not too far away from
the MDP obtained by maximuim likelihood estima-
tor, i.e.,Mp̂, and the distance is measured by the
total variation (TV) distance dTV ( ·| ·), i.e., M =
{M|dTV (Mp̂|M) ≤ ξ}. However, their formulation
is impractical due to the poor computation feasibility
and efficiency of the set M.

In contrast, Kidambi et al. [2020] propose a family of
pessimistic MDP (P-MDP) that truncates transitions
of Mp̂ based on such TV distances, which is more
tractable to handle. Specifically, for the state-action
pair (s,a) who has a large TV distance between the its
estimated transition distribution and the true transition
distribution, their next state will be replaced by the
absorbing state e, that is:

∀ a ∈ A : p(e|s,a) = 1, and r(e,a) = −R. (4)

To be noted, the class of P-MDPs may not contain the
true MDP. However, for any policy π, its performance
under the P-MDP is (approximately) a lower bound
of that in the true MDP. Therefore, maximizing the
performance under the P-MDP is equivalent to (ap-
proximately) maximizing the performance lower bound
in the real environment.

Revisiting P-MDPs. Our example in Figure 1
demonstrates that P-MDPs may be too conservative,
leading to inferior performance. In this tree-structured
MDP, the agent can decide to either go left (L) or
right (R) at each node. We assume that the fitted dy-
namics modelMp̂ is uncertain about the transitions
of taking the right action (R) on the red node. For the
remaining nodes, Mp̂ is aligned with the true distri-
bution, i.e., the predicted transition distribution has a
small TV distance with the true transition distribution.

Consequently, P-MDP will force the next state of taking
action R on red node to be the absorbing state e (see
Figure 1 (a)). However, although we are unsure about
the true transitions, what we are certain is that it will
either transit to the node with treasure or the one with
two coins in the end. Therefore, we can construct a
worst-case path to circumvent the uncertain region as
demonstrated in Figure 1 (b). In contrast, the policy
obtained under (a) will be {L, L, . . . }. However, for
(b), the resulting policy is {R, L or R, . . . }, which will
perform better in the true environment.

3 The Lookahead Pessimistic MDP

In this section, we formalize the intuition conveyed
from Figure 1. We use p(·|·, ·) to denote the true tran-
sition distribution, p̂(·|·, ·) is the transition distribu-
tion estimated from the offline data, and p̃(·|·, ·) is the

pessimistic transition distribution, which will be in-
stantiated later. To distinguish different MDPs, we
denote the true MDP asMp, and the one obtained by
maximizing likelihood asMp̂.

As demonstrated by Figure 1, it may be overly con-
servative if we truncate all the transitions on those
state action pairs that have a large TV distance with
the true distribution. The motivating example implies,
that instead of replacing the next state to be an absorb-
ing state, we can lookahead several steps to construct
a less conservative transition distribution.

We denote the estimation error on any pair (s,a) as

d(s,a) := dTV ( p̂(·|s,a)| p(·|s,a)) , (5)

which quantifies the total variation distance from the
estimated distribution p̂ to the true distribution p.1

This leads to the definition of the following set contain-
ing all state-action pairs with estimation errors larger
than some threshold ξ:

Definition 1 (Uncertain State-Action Set)
∀ ξ ≥ 0, the set of uncertain state-action pairs is

U(ξ) := {(s,a) ∈ S ×A : d(s,a) ≥ ξ} . (6)

For simplicity, we drop the dependency on ξ in the
notations. Intuitively, U refers to the regions that the
learned model has less confidence in, which may lead to
more inaccurate transition estimation and end up with
biased exploitation. To avoid such issues, the pessimism
principle is implemented to tweak the transitions for
all the state action pairs in U . Specifically in MOReL,
the next state is forced to be the absorbing state e if
the current state action pair is in U .
Next, we consider to assign less conservative transition
distributions for some state-action pairs in U given
some properties of their lookahead sets (which we later
show in Section 3.1 that guarantees a better lower
bound). We hereby formally introduce the kth-step
lookahead set for a state-action pair, which contains all
the states that are reachable at exactly kth step away
from this state-action pair, by following the policy π
under the designated MDP.

Definition 2 (Lookahead Set) For any (st,at) ∈
S × A under MDP Mp′ with p′(·|·, ·, π) denoting the
transition distribution relying on π, the kth-step looka-
head set is

Lπ,k
Mp′

(st,at) := {s ∈ S| p′(st+k = s|st,at, π) > 0} .
1Be aware that d(s,a) cannot be computed in prac-

tice yet is widely adopted in many prior works [Jin et al.,
2020, Kidambi et al., 2020, Uehara and Sun, 2022] to make
the theoretical analysis feasible. We discuss a practical
surrogate for it in Section 3.2.



Don’t Be Pessimistic Too Early: Look K Steps Ahead!

The intuition is, that considering a far-sighted agent,
though the current transition is uncertain, if it is sure
that reachable future transitions give better payoffs,
the agent will go for it. Our decision under current
uncertainty thus depends on such an outlook – techni-
cally this asks to divide U by some certainty criteria of
lookahead sets, as elaborated below.

We say a state-action pair (s,a) is kth-certain if for
all the states in its kth-step lookahead sets, the fitted
dynamics Mp̂ induces only a small estimation error,
that is:

∀s′ ∈ Lπ,k
Mp̂

(s,a), d(s′, π(s′)) ≤ ξ, (7)

where d(s, π(s)) := maxa:π(a|s)>0 d(s,a). The set U
thus can be partitioned into disjoint subsets by the
above lookahead certainty criteria. For all k ∈ [1,K],
we define the subset Uπ

k as

Uπ
k :=

{
(s,a) ∈ U \ ∪k−1

i=1 Uπ
i : (s,a) is kth-certain

}
.

Intuitively, Uπ
k contains all kth-certain state action

pairs in U which are uncertain for intermediary steps
before k. 2 We further use Uπ

−(1:K)
:= U \ ∪Ki=1Uπ

i to
denote all the remaining state-action pairs in U . We
are now ready to define LP(ξ, π,K)-MDP, or LP-MDP
for short.

Definition: Pessimistic MDP with K-step Looka-
head (LP-MDP)

Definition 3 (LP(ξ, π,K)-MDP) For any (st,at),
and Mp̂ and Mp, the LP(ξ, π,K)-MDP of Mp,
(i.e.,Mπ

p̃ ) is constructed by modifying the transition
p̂ to be p̃ as:a

Case 1 (current transition is certain) If (st,at) /∈ U :

p̃(·|st,at) = p̂(·|st,at), (8)

Case 2 (current transition is uncertain) If (st,at) ∈
U :
Case 2.1 (all K-step look ahead is uncertain) If
(st,at) ∈ Uπ

−(1:K):

p̃(st+1 = e|st,at) = 1, (9)

Case 2.2 (some kth-step look ahead is certain) If
(st,at) ∈ Uπ

k for some k ∈ [K], then we construct a
deterministic path such that ∀ i ∈ {1, ..., k − 1},

p̃(st+k = s⋆|st,at, π) = 1, r̃(st+i, ·) = −R. (10)

where s⋆ is defined as: s⋆ =
argmins′∈Lπ,k

Mp̂
(st,at)

V π
Mπ

p̃
(s′),

aThe associated reward r̃(·) := r(·) unless otherwise
stated.

2Notice that Uπ
1 := {(s,a) ∈ U : (s,a) is 1th-certain}.

…

𝑘 steps
Traj. in Mp

…

UUπ
1

Uπ
2

Uπ
K

Uπ
3

…
…

…

(a) (b)

Lπ,k
Mp̂

Lπ,k
Mp

−R
m
ax

−Rmax
−RmaxU π

-(1:K)
arg min

−Rmax

Traj. in Mπ
p̃

s!

st

Figure 2: Illustration of (a) partitioning U into
{Uπ

k }Kk=1 and Uπ
−(1:K); and (b) Case 2.2 of Definition 3

under K-step lookahead, where the gray dot represents
s⋆ and the blue dot denotes a current state st whose
transitions are unknown; as a side note, while P-MDP
halts after st, LP-MDP constructs a worse-case (locally,
only for k steps) but less conservative (globally) path,
enabling the agent to transit from st to s⋆ after exactly
k steps.

For LP(ξ, π,K)-MDP Mπ
p̃ , the modification to p̂ is

done in three parts.3 For the state action pairs that
fall in Case 1, we keep p̃ the same as the original
transition distribution p̂. In Case 2.1 when the current
state action pair is in Uπ

−(1:K), it will deterministically
transit to the terminal state with the lowest reward
−R. To be noted, if we ignore Case 2.2, the P-MDP
formulation is recovered.

Case 2.2 plays a central role in LP(ξ, π,K)-MDP. For
any state action pairs that fall in this case, we can
construct a less pessimistic path for them instead of
always forcing their next state to be the absorbing
state e. Specifically, we will set the new transition
probability p̃ such that it will deterministically transit
to the state in Lπ,k

Mp̂
(st,at) with minimal values after

exactly k steps.

To further demonstrate this lookahead pessimism con-
cept, we provide an illustration for Case 2.2 in Fig-
ure 2 (b), where the blue dot represents the state action
pair (st,at) ∈ Uπ

k . Here, we force the transition of p̃ to
follow the black deterministic path for k steps, and the
kth state st+k is set to be the one in Lπ,k

Mp̂
(st,at) that

has the minimal reward-to-go. Notably, the RL agent
will deterministically navigate through st to st+k by
transitioning to an external state with the minimal
reward −R at each step. Notice that such path con-
struction is fundamentally different from model roll-
outs [Yu et al., 2021, Sikchi et al., 2022]. Intuitively,
our agent will circumvent the uncertain regions in p̂,
by constructing a worst-case (locally, only for k steps)
but less conservative (globally) path in p̃.

Once we construct the LP(ξ, π,K)-MDPMπ
p̃ , we can

optimize the policy under it with any off-the-shelf RL

3We add a superscript π to indicate that the transition
distribution depends on the running policy π.



Chaoqi Wang, Ziyu Ye, Kevin Murphy, Yuxin Chen

algorithms. Next, we provide a theoretical analysis on
the properties ofMπ

p̃ .

3.1 Theoretical Analysis

In this section, we present the theoretical guarantee of
the policy learned under LP-MDP. We also illustrate
the effect of K, i.e., the number of lookahead steps, on
the policy performance.

We start by defining several notations to use throughout
the analysis. We first define a intermediary distribution
q̃, which satisfies

(s,a) ∈ U : q̃(·|s,a) = p̃(·|s,a), (11)

(s,a) /∈ U : q̃(·|s,a) = p(·|s,a). (12)

The distribution q̃ can be regarded as a distribution
which shifts between p̃ or p, depending on whether
the next transition for the current state action pair is
uncertain or not. Next, we introduce the hitting time
and the occupancy measure.

Definition 4 (Hitting Time & Occupancy Measure)
Given an MDP Mp, a policy π, a state action pair
(s,a) and an initial state s0, we define

• Hitting time: T π
s0→(s,a) is a random variable de-

noting the first time step that the action a is taken
at s by following the policy π starting from s0 in
Mp. For any set of state action pairs U , we define
T π
s0→U := min(s′,a′)∈U T π

s0→(s′,a′) .
• Occupancy measure: ρπs0→(s,a) denotes the prob-

ability of π encounter (s,a) when navigating inMp

by starting from s0. For a set of state action pairs
U , we define ρπs0→U :=

∑
(s′,a′)∈U ρπs0→(s′,a′) .

We hereby present the theorem quantifying the perfor-
mance of the policy learned under LP-MDP.

Theorem 1 (Performance Guarantee) Let π̃⋆ de-
note the equilibrium policy learned under the
LP(ξ, π̃⋆,K)-MDP, and let π⋆ be the optimal policy un-
der the true MDPMp. Suppose that for any (st,at) ∈
U π̃⋆

k with k ∈ [1,K], Lπ̃⋆,k
Mp

(st,at) ⊆ Lπ̃⋆,k
Mp̂

(st,at) holds,

then for any state s

V π⋆

Mp
(s)− V π̃⋆

Mp
(s)

≤ 4γξRmax

(1− γ)2︸ ︷︷ ︸
(a)

+

2ρπ
⋆

s→U π̃⋆

−(1:K)

E

[
γ
T π⋆

s→Uπ̃⋆
−(1:K)

]
Rmax

1− γ︸ ︷︷ ︸
(b) Incurred by hitting U π̃⋆

−(1:K)

(13)

+

K∑

k=1

ρπ
⋆

s→U π̃⋆

k

E
[
γ
T π⋆

s→Uπ̃⋆
k

](∑k−1
i=1 2γiRmax + γk∆π⋆,k

p,q̃ (U π̃⋆

k )
)

︸ ︷︷ ︸
(c) Incurred by hitting U π̃⋆

k for k∈[K]

.

The notation ∆π,k
p,q (U) above is defined as (we omitted

the dependency on π̃⋆ in notation for clarity.)

∆π,k
p,q (U) := max

(s,a)∈U
∆π,k

p,q (s,a), (14)

where ∆π,k
p,q (s,a) := max

s1,s2∈Lπ̃⋆,k
Mp

(s,a)
V π
Mp

(s1) −
V π
Mq

(s2).

Theorem 1 bounds the difference between the perfor-
mance of the policy learnt under LP(ξ, π,K)-MDP and
that of the optimal policy in the true environmentMp.
The bound can be decomposed into three parts: (a)
comes from those certain state action pairs (s,a) with
d(s,a) ≤ ξ; (b) is incurred by hitting the state action
pair in U π̃⋆

−(1:K), whose next state is the absorbing state

e; Lastly, (c) is caused by hitting the state action pair
in U π̃⋆

k with k ∈ [K], of which the kth next state is the
one that minimizes the reward to go. To be noted, our
proof requires a detailed analysis on the property of
the lookahead set and cannot be directly adapted from
the proof of Kidambi et al. [2020].

Next, we show that we can achieve a tighter lower
bound by increasing the value of K, such that LP-MDP
is guaranteed to be comparable or better than P-MDP,
the classical model-based offline RL baseline [Kidambi
et al., 2020]. Denoting Equation 13 in Theorem 1 as
LBK , we present the corollary below, which holds due to
the fact that the blue term is smaller than 2R/(1− γ).

Corollary 1 Under the same conditions as in Theo-
rem 1, LBK ≤ LBK+1 holds for any K ∈ Z≥0.

In particular, when K = 0, the term (c) in Equation 13
will be 0, which recovers the lower bound of P-MDP.
The above corollary shows that a simple way to improve
the lower bound is using a larger value of K to look
ahead. 4 In addition to the above results, we also prove
that the policy improvement lemma holds for LP-MDP
under some additional assumptions in Appendix A.5.

3.2 Practical Implementation

We introduce the practical implementation of LP-MDP
in this section. Our algorithm can be decomposed into
three parts: 1) the model learning; 2) the LP-MDP
construction; and 3) the policy learning. We elaborate
as follows.

Dynamics model learning. We use the deep
ensemble [Lakshminarayanan et al., 2017] for dynamics
model learning, which has been commonly adopted in

4We have provided empirical verification on the effect
of K. Additional computational cost may arise though –
in practice, we should properly choose the value of K to
trade-off the performance and computation.



Don’t Be Pessimistic Too Early: Look K Steps Ahead!

� � � � � �
6WHS

�����

�����

�����

�����

3RVLWLRQ

� � � � � �
6WHS

í�����

í�����

í�����

�����

�����

$QJOH

Model Predictions
Predicted Trajectories
Real Trajectory

Lπ,1
Mp̂

Lπ,2
Mp̂

,WHUDWLRQV

9
DO
XH

9͔Q�͔Q�S

9͔Q���͔Q�S

…

…

Policy Step

Model Step

V
al
ue

Iteration

V
πn+1

Mπn
p̃

Figure 3: (1) The left two figures show the trajectory rollouts under a ensemble of 4 networks trained on the
Hopper-medium-replay dataset with a fixed policy π. The black curve corresponds to the trajectory of running
the policy π in real environment. (2) The rightmost figure presents an illustration of policy learning under
LP-MDP, where the policy step and model step correspond to updating policy and constructing LP-MDP for the
policy (Equation 19).

the RL literature [Janner et al., 2019, Chua et al., 2018,
Kidambi et al., 2020]. For each network in the ensemble
fθ, it takes a normalized state action pair (st,at) as
input, and predicts the residual of the next state ∆st,

fθ ((st − µs)/σs, (at − µa)/σa) = ∆st, (15)

where ∆st := (st+1 − st)/σs, and µ and σ are com-
puted using the offline dataset. All the networks are
trained on the offline dataset independently using the
mean-squared loss with the Adam optimizer [Kingma
and Ba, 2015].

LP-MDP construction. Given the learned dy-
namics models, we construct the LP-MDP based on
Definition 3. As a practical solution, we consider the
discrepancy-based uncertainty quantification as a proxy
for d(s,a), which has been successfully applied in prior
works [Kidambi et al., 2020] and achieved impressive
performance. Specifically, given an ensemble of dynam-
ics models {fθi}Ni=1, the discrepancy for a state action
pair (st,at) is computed by,

disc(st,at) = max
i,j

∥∥fθi
(st,at)− fθj

(st,at)
∥∥
2
. (16)

In addition, for constructing the lookahead set defined
in Definition 2 (see the middle plot in Figure 3), we
discretize the search space using with a finite number
of particles, where each particle corresponds to the
prediction of a single neural network in the ensemble
for continuous tasks.

Policy learning under LP-MDP. Learning policy
under LP-MDP can be viewed as a game between the
policy and LP-MDP. In contrast to typical RL settings,
there is no standard workhorse for solving continuous
games. Following prior works in online model-based
RL [Rajeswaran et al., 2020], we formulate our problem
as a Stackelberg game [Von Stackelberg, 2010], where
the two players are the policy π and its corresponding
LP(ξ, π,K)-MDP. Since the best response of LP-MDP
can be computed analytically, we choose the policy to

be the leader and LP-MDP to be the follower, which
results in the optimization problem below,

max
π

{
ηM(π) s.t. M =Mπ

p̃

}
. (17)

For policy learning, we adopt the soft actor-critic algo-
rithm [Haarnoja et al., 2018]. Then, the above nested
optimization can be solved by repeating the following
updates (see Figure 3 for illustration),

Model Step : Mi ←Mπi

p̃ , (18)

Policy Step : πi+1 ← SAC Step(πi,Mi). (19)

4 Experiments

In this section, we present two sets of tests to check
how well our proposed algorithm works. The first set of
experiments is conducted on a grid-world task, where
the dynamics of the environment are known. This en-
ables us to calculate the estimation error of the model
and gain insights into how our method enhances perfor-
mance. In the second set of experiments, we investigate
our method’s performance on a standard benchmark,
D4RL [Fu et al., 2020], compared to baseline methods.
Further details about the experimental setups can be
found in the appendix.

4.1 Grid Environment

Our gridworld environment is adapted from the one
used in Eysenbach et al. [2022] with increased difficulty.
The environment is a 10× 10 gridworld with stochastic
dynamics (see Figure 9 (a)). At each grid, the agent
can take four possible actions, i.e., {←, ↑,→, ↓}. Once
an action is taken, there is 20% of the chance it gets
flipped, due to the stochastic dynamics. Each episode
lasts for 200 steps.

At the beginning, the agent starts from the top left
corner, and the treasure is located at the top right



Chaoqi Wang, Ziyu Ye, Kevin Murphy, Yuxin Chen

0 500 1000 1500 2000
Iterations

5

6

7

R
et

ur
n

ξ=0.05

0 500 1000 1500 2000
Iterations

5

6

7

ξ=0.1

0 500 1000 1500 2000
Iterations

5

10

15

20

25

ξ=0.15

LP-MDP (K=1)
LP-MDP (K=2)
MOReL
MnM

0 500 1000 1500 2000
Iterations

5

10

15

20

25

30
ξ=0.2

Figure 4: Results on the gridworld task. The dashed green curve is the performance of the expert policy obtained
with MnM [Eysenbach et al., 2022]. The shaded region is the one standard error of three trials with different
random seeds.

Figure 5: A visualization of the policies. The yellow
policy (left) is the one learnt under LP-MDP with
k = 2 and ξ = 0.15. In the middle, the green policy is
the expert policy learnt using MnM [Eysenbach et al.,
2022]. Lastly, the red policy corresponds to the one
learnt using MOReL. The grey trajectories are possible
paths from the starting grid to the treasure by following
the learned policies.

corner. If the agent hits the grid with the treasure, it
receives a reward of +50. For those grids with yellow
shades, the reward is +1, and all the remaining grids
has a reward of +0.5.

To generate the offline data, we first train a policy
using MnM [Eysenbach et al., 2022] until convergence.
We then randomly sample 20% of the data from its
replay buffer as the data for offline model learning. The
results are presented in Figure 4 under different model
estimation error constraints ξ ∈ {0.05, 0.1, 0.15, 0.2}
and lookahead steps K ∈ {1, 2}. Remarkably, we can
observe that the larger the value of K, the better the
performance of the learned policy as well as a tighter
lower bound on the values (see Figure 5), which is
consistent to our Theorem 1 and Corollary 1. Our
method also converges either faster than MOReL or
achieves better returns in the true environment.

We further visualize the learned policies of MnM,
MOReL and our method in Figure 5, where we ob-
serve that our method learns a policy that is similar to
that of MnM. In contrast, the policy of MOReL will
get stuck at the lower left region, where each grid has
a slightly higher reward. To investigate why MOReL
fails to find a path that leads to the treasure, we fur-
ther plot the uncertain states in Figure 6 right, i.e., U .
For MOReL (middle figure), the grid with treasure is
mostly surrounded by those uncertain states, whereas
our method (right figure) has far fewer uncertain states.

� ��� ���� ���� ����
,WHUDWLRQV

í���

í���

í��

�

4
�9
DO
XH

/3�0'3��. ��
/3�0'3��. ��
025H/

Figure 6: (1) The left figure shows the estimated Q
value of the starting grid (up left corner). (2) The
right two figures (the middle figure for P-MDP, and
the right figure for LP-MDP) visualize the uncertain
states (colored in black) whose next states contain the
absorbing state. The red grids correspond to walls in
the map.

Intuitively, the lookahead mechanism serves as a way
to increase the data coverage, which is crucial to the
performance of offline RL algorithms [Uehara and Sun,
2022, Kumar et al., 2022, Lu et al., 2022].

4.2 D4RL

Our second set of experiments is conducted on the
D4RL benchmark [Fu et al., 2020], covering three envi-
ronments: HalfCheetah, Hopper, and Walker2d. We
benchmark our method against several model-free al-
gorithms, such as SAC [Haarnoja et al., 2018], BEAR
[Kumar et al., 2019], BRAC [Wu et al., 2019], and CQL
[Kumar et al., 2020]; along with three model-based algo-
rithms, MOPO [Yu et al., 2020] and MOReL [Kidambi
et al., 2020]. For MOReL, given that its original imple-
mentation utilized the natural policy gradient (NPG)
for policy optimization, we adapted MOReL to also use
SAC to ensure a fair comparison. The configurations
(e.g., hyperparameters) for our method are the same as
those used for MOReL-SAC, which were determined by
fine-tuning MOReL-SAC for reasonable performance.
For our approach, we set the lookahead step K to be
1.

We report the results in Table 1. Firstly, with looka-
head, our method achieves a solid improvement over
our major baseline MOReL-SAC across 5 out 12 tasks
and a significant improvement in the overall scores.
Our method is also the best performing one in terms
of the overall score. We further plot the distribution
of trajectory length and the average trajectory length



Don’t Be Pessimistic Too Early: Look K Steps Ahead!

Table 1: We present the highest average normalized scores obtained from D4RL throughout the training process,
calculated across three distinct random seeds, and include the standard error for each score. Furthermore, we
highlight the best-averaged scores using a blue box . Also, we use ⋆ to indicate the tasks where our method has
a solid improvement over MOReL-SAC.

Dataset Environment LP-MDP
(Ours)

MOReL
(SAC)

MOReL
(NPG)

MOPO CQL SAC-off BEAR BRAC-p BRAC-v

random halfcheetah 47.4 ±2.2 47.6 25.6 34.4 35.4 30.5 25.1 24.1 21.2

random hopper 33.3 ±0.5 33.0 53.6 11.7 10.8 11.3 11.4 11 12.2

random walker2d 22.2 ±0.2 22.2 37.3 13.6 7.0 4.1 7.3 -0.2 1.9

medium halfcheetah 47.8 ±3.4 47.6 42.1 42.1 44.4 -4.3 41.7 43.8 46.3

medium hopper 101.9 ±1.1⋆ 75.8 95.4 28.0 86.6 0.8 52.1 32.7 31.1

medium walker2d 64.5±5.1 76.8 77.8 17.8 74.5 0.9 59.1 77.5 81.1

medium-replay halfcheetah 50.2±2.3 56.4 40.2 53.1 46.2 -2.4 38.6 45.4 47.7

medium-replay hopper 101.2 ±0.8 101.1 93.6 67.5 48.6 3.5 33.7 0.6 0.6

medium-replay walker2d 82.7 ±5.9⋆ 46.5 49.8 39.0 32.6 1.9 19.2 -0.3 0.9

medium-expert halfcheetah 68.8 ±8.9⋆ 67.6 53.3 63.3 62.4 1.8 53.4 44.2 41.9

medium-expert hopper 103.7±1.2⋆ 78.5 108.7 23.7 111.0 1.6 96.3 1.9 0.8

medium-expert walker2d 81.5±8.5⋆ 68.0 95.6 44.6 98.7 -0.1 40.1 76.9 81.6

Overall Scores 805.2 ⋆ 721.1 773.0 438.7 658.2 49.6 478.0 363.0 378.3

200 400 600
Lengths

0

2

4

D
en
si
ty

1e−3

MOReL
LP-MDP

0 250 500 750 1000
Iterations

1

2

3

4

A
ve

ra
ge

 L
en

gt
h

1e2

Figure 7: The distribution of trajectory lengths (left)
and the averaged trajectory length (right) dur-
ing the training of MOReL and LP-MDP on
Walker2d-medium-replay.

during training in Figure 7. In contrast to MOReL-
SAC, our method can explore longer trajectories more
frequently during training. This is achieved by “stitch-
ing” together trajectories with lookahead when encoun-
tering uncertain states in LP-MDP, whereas P-MDP
will directly truncate the trajectory. Furthermore, the
(L)P-MDP algorithms significantly outperform MOPO
on random splits. This could be attributed to their
confinement on low-performing data, a result of the
limited rollout steps.

5 Related Works

Model-Based Offline RL. This line of work usu-
ally focuses on learning robust transition dynamics
by the pessimism principle which penalizes unknown
state visitation [Kidambi et al., 2020, Yu et al., 2020,
2021, Argenson and Dulac-Arnold, 2021, Uehara and
Sun, 2022, Rigter et al., 2022], or training a more
adaptable policy based on a diverse model dynamics
set [Chen et al., 2021]. Specifically, Kidambi et al.
[2020] (MOReL) propose to truncate state transitions
for those uncertain state-action pairs. Nevertheless,
naive pessimism-based methods may behave too con-

servatively, leading to inferior performance. In contrast,
our LP-MDP construction allows the offline RL agent
to embark on a less conservative path, while guaran-
teeing a even better performance lower bound.

Lookahead in RL. The concept ofK-step lookahead
has been considered in general RL algorithms [Efroni
et al., 2020, El Shar and Jiang, 2020, Sikchi et al., 2022,
Rosenberg et al., 2023], yet the goal is mainly to aid
model-free planning. Specifically, Sikchi et al. [2022]
propose to learn a model for looking ahead into the
future (i.e., imaginary model rollouts) to choose the
best action sequence, compensating for the inaccuracy
of the value function for typical model-free agents. To
our knowledge, our work is the first to employ the
concept of lookahead in model-based offline RL. Impor-
tantly, compared to prior methods relying on model
rollouts, our lookahead set construction leads to an
extrinsic pessimistic path (as illustrated in Figure 2)
in the offline scenario.

6 Conclusion

We have presented a novel class of pessimistic MDPs
with lookahead (LP-MDPs) for model-based offline RL.
LP-MDPs learn a less conservative policy yet with
remarkable performance guarantees in the real environ-
ment. Particularly, we prove that the guarantee can be
improved by simply increasing the lookahead horizon,
enabling a better guarantee than the baseline’s [Ki-
dambi et al., 2020]. LP-MDPs are straightforward to
implement and have demonstrated a consistent perfor-
mance improvement for both (discrete) gridworld tasks
and (continuous) locomotion control tasks. One promis-
ing future direction is offline-to-online RL [Nair et al.,
2020, Schrittwieser et al., 2021], where our lookahead
concept naturally kicks in as a bridge.



Chaoqi Wang, Ziyu Ye, Kevin Murphy, Yuxin Chen

References

Arthur Argenson and Gabriel Dulac-Arnold. Model-
based offline planning. In International Conference
on Learning Representations, 2021. URL https:

//openreview.net/forum?id=OMNB1G5xzd4.

James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake
VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of
Python+NumPy programs, 2018. URL http://

github.com/google/jax.

Xiong-Hui Chen, Yang Yu, Qingyang Li, Fan-Ming Luo,
Zhiwei Qin, Wenjie Shang, and Jieping Ye. Offline
model-based adaptable policy learning. Advances
in Neural Information Processing Systems, 34:8432–
8443, 2021.

Kurtland Chua, Roberto Calandra, Rowan McAllister,
and Sergey Levine. Deep reinforcement learning in a
handful of trials using probabilistic dynamics models.
Advances in neural information processing systems,
31, 2018.

Yonathan Efroni, Mohammad Ghavamzadeh, and Shie
Mannor. Online planning with lookahead policies.
Advances in Neural Information Processing Systems,
33:14024–14033, 2020.

Ibrahim El Shar and Daniel Jiang. Lookahead-bounded
q-learning. In International Conference on Machine
Learning, pages 8665–8675. PMLR, 2020.

Benjamin Eysenbach, Alexander Khazatsky, Sergey
Levine, and Ruslan Salakhutdinov. Joint model-
policy optimization of a lower bound for model-
based RL. In Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho, editors, Ad-
vances in Neural Information Processing Systems,
2022. URL https://openreview.net/forum?id=

LYfFj-Vk6lt.

Xing Fang, Qichao Zhang, Yinfeng Gao, and Dongbin
Zhao. Offline reinforcement learning for autonomous
driving with real world driving data. In 2022 IEEE
25th International Conference on Intelligent Trans-
portation Systems (ITSC), pages 3417–3422. IEEE,
2022.

Justin Fu, Aviral Kumar, Ofir Nachum, George
Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint
arXiv:2004.07219, 2020.

Scott Fujimoto, David Meger, and Doina Precup. Off-
policy deep reinforcement learning without explo-
ration. In International conference on machine learn-
ing, pages 2052–2062. PMLR, 2019.

Dibya Ghosh, Anurag Ajay, Pulkit Agrawal, and Sergey
Levine. Offline rl policies should be trained to be
adaptive. In International Conference on Machine
Learning, pages 7513–7530. PMLR, 2022.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and
Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochas-
tic actor. In International conference on machine
learning, pages 1861–1870. PMLR, 2018.

Matt Hoffman, Bobak Shahriari, John Aslanides,
Gabriel Barth-Maron, Feryal Behbahani, Tamara
Norman, Abbas Abdolmaleki, Albin Cassirer, Fan
Yang, Kate Baumli, et al. Acme: A research frame-
work for distributed reinforcement learning. arXiv
preprint arXiv:2006.00979, 2020.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey
Levine. When to trust your model: Model-based
policy optimization. Advances in Neural Information
Processing Systems, 32, 2019.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I
Jordan. Provably efficient reinforcement learning
with linear function approximation. In Conference
on Learning Theory, pages 2137–2143. PMLR, 2020.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pes-
simism provably efficient for offline rl? In Inter-
national Conference on Machine Learning, pages
5084–5096. PMLR, 2021.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netra-
palli, and Thorsten Joachims. Morel: Model-based
offline reinforcement learning. Advances in neural in-
formation processing systems, 33:21810–21823, 2020.

Diederick P Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Confer-
ence on Learning Representations (ICLR), 2015.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline
reinforcement learning with implicit q-learning. In In-
ternational Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=

68n2s9ZJWF8.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker,
and Sergey Levine. Stabilizing off-policy q-learning
via bootstrapping error reduction. Advances in Neu-
ral Information Processing Systems, 32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey
Levine. Conservative q-learning for offline reinforce-
ment learning. Advances in Neural Information Pro-
cessing Systems, 33:1179–1191, 2020.

Aviral Kumar, Joey Hong, Anikait Singh, and Sergey
Levine. Should i run offline reinforcement learning
or behavioral cloning? In International Conference
on Learning Representations, 2022. URL https:

//openreview.net/forum?id=AP1MKT37rJ.

https://openreview.net/forum?id=OMNB1G5xzd4
https://openreview.net/forum?id=OMNB1G5xzd4
http://github.com/google/jax
http://github.com/google/jax
https://openreview.net/forum?id=LYfFj-Vk6lt
https://openreview.net/forum?id=LYfFj-Vk6lt
https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=AP1MKT37rJ
https://openreview.net/forum?id=AP1MKT37rJ


Don’t Be Pessimistic Too Early: Look K Steps Ahead!

Balaji Lakshminarayanan, Alexander Pritzel, and
Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Ad-
vances in neural information processing systems, 30,
2017.

Sergey Levine, Aviral Kumar, George Tucker, and
Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv
preprint arXiv:2005.01643, 2020.

Cong Lu, Philip Ball, Jack Parker-Holder, Michael
Osborne, and Stephen J. Roberts. Revisiting de-
sign choices in offline model based reinforcement
learning. In International Conference on Learning
Representations, 2022. URL https://openreview.

net/forum?id=zz9hXVhf40.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and
Sergey Levine. Awac: Accelerating online reinforce-
ment learning with offline datasets. arXiv preprint
arXiv:2006.09359, 2020.

Aravind Rajeswaran, Igor Mordatch, and Vikash Ku-
mar. A game theoretic framework for model based
reinforcement learning. In International conference
on machine learning, pages 7953–7963. PMLR, 2020.

Marc Rigter, Bruno Lacerda, and Nick Hawes.
RAMBO-RL: Robust adversarial model-based offline
reinforcement learning. In Alice H. Oh, Alekh Agar-
wal, Danielle Belgrave, and Kyunghyun Cho, editors,
Advances in Neural Information Processing Systems,
2022. URL https://openreview.net/forum?id=

nrksGSRT7kX.

Aviv Rosenberg, Assaf Hallak, Shie Mannor, Gal
Chechik, and Gal Dalal. Planning and learning with
adaptive lookahead. In Association for the Advance-
ment of Artificial Intelligence (AAAI), 2023.

Julian Schrittwieser, Thomas Hubert, Amol Mandhane,
Mohammadamin Barekatain, Ioannis Antonoglou,
and David Silver. Online and offline reinforcement
learning by planning with a learned model. Advances
in Neural Information Processing Systems, 34:27580–
27591, 2021.

Harshit Sikchi, Wenxuan Zhou, and David Held. Learn-
ing off-policy with online planning. In Conference
on Robot Learning, pages 1622–1633. PMLR, 2022.

Masatoshi Uehara and Wen Sun. Pessimistic model-
based offline reinforcement learning under partial
coverage. In International Conference on Learning
Representations, 2022. URL https://openreview.

net/forum?id=tyrJsbKAe6.

Heinrich Von Stackelberg. Market structure and equi-
librium. Springer Science & Business Media, 2010.

Lu Wang, Wei Zhang, Xiaofeng He, and Hongyuan
Zha. Supervised reinforcement learning with recur-

rent neural network for dynamic treatment recom-
mendation. In Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery &
data mining, pages 2447–2456, 2018.

Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S
Merel, Jost Tobias Springenberg, Scott E Reed,
Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nico-
las Heess, et al. Critic regularized regression. Ad-
vances in Neural Information Processing Systems,
33:7768–7778, 2020.

Yifan Wu, George Tucker, and Ofir Nachum. Behav-
ior regularized offline reinforcement learning. arXiv
preprint arXiv:1911.11361, 2019.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Er-
mon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline pol-
icy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Ra-
jeswaran, Sergey Levine, and Chelsea Finn. Combo:
Conservative offline model-based policy optimization.
Advances in neural information processing systems,
34:28954–28967, 2021.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [No]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
[Yes, code will be released. Other details are
explained in the supplemental material.]

https://openreview.net/forum?id=zz9hXVhf40
https://openreview.net/forum?id=zz9hXVhf40
https://openreview.net/forum?id=nrksGSRT7kX
https://openreview.net/forum?id=nrksGSRT7kX
https://openreview.net/forum?id=tyrJsbKAe6
https://openreview.net/forum?id=tyrJsbKAe6


Chaoqi Wang, Ziyu Ye, Kevin Murphy, Yuxin Chen

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes, we used TPUs.]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. [Yes]

(b) The license information of the assets, if appli-
cable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data provider-
s/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]



Don’t Be Pessimistic Too Early: Look K Steps Ahead!

Algorithm 1 Policy Learning under Pessimistic MDP with look-ahead (LP(ξ, π,K)-MDP).

Require: Offline data D, threshold ξ, look-ahead steps K, and learning rate α.
1: Fit the dynamics modelMp̂ on D
2: Initialize the policy π0

3: for n = 0, 1, 2, . . . do
4: Construct the LP(ξ, π,K)-MDP for πn: Mπn

p̃

5: Improve policy: πn+1 ← SAC Step(πn,Mπn

p̃ )
6: end for
7: return πn

A Appendix

A.1 Limitations

The primary limitation in our research lies in the presumption that we can access the total variation distance
between the fitted transition distribution and the true transition distribution, an assumption that may not be
feasible in practical situations. Consequently, we resort to a surrogate for the total variation distance, specifically,
we adopt a disagreement-based metric. This method, previously utilized in extant literature [Kidambi et al.,
2020, Yu et al., 2020], has proven effective in actual implementations. Nonetheless, in contrast to methods
like MOPO [Yu et al., 2020] and COMBO [Yu et al., 2021], where a substantial divergence exists between the
theoretical constructs and their real-world algorithms (for instance, they only execute the model for a limited
number of steps, starting from the offline data), our algorithm exhibits a tighter correlation with the theoretical
version, exhibiting minimal divergences.

A.2 Extended Related Works

Model-Free Offline RL. The typical practice for such work is to regularize the learned policy or the value
function [Kumar et al., 2019, Wu et al., 2019, Kumar et al., 2020, Wang et al., 2020, Jin et al., 2021, Kostrikov
et al., 2022]. For example, Fujimoto et al. [2019], Wu et al. [2019], Kumar et al. [2019], Wang et al. [2020] propose
to regularize the learned policy so that it stays close to the behavior policy; Kumar et al. [2020], Kostrikov et al.
[2022] consider to regularize the value function by penalizing rewards for out-of-distribution state action pairs.
Some recent work also considers to adaptively train policies under a Bayesian perspective [Ghosh et al., 2022].
However, model-free approaches can have high sample complexity or unstable convergence properties, or are weak
at generalizing to unseen data, which leads to the rising of model-based approaches.

A.3 Definitions

We first restate the definitions from the main paper to make them more easily referenced for the readers.

Definition 1 (Uncertain State-Action Set) ∀ ξ ≥ 0, the set of uncertain state-action pairs is

U(ξ) := {(s,a) ∈ S ×A : d(s,a) ≥ ξ} . (6)

Definition 2 (Lookahead Set) For any (st,at) ∈ S ×A under MDPMp′ with p′(·|·, ·, π) denoting the transi-
tion distribution relying on π, the kth-step lookahead set is

Lπ,k
Mp′

(st,at) := {s ∈ S| p′(st+k = s|st,at, π) > 0} .

Definition 3 (LP(ξ, π,K)-MDP) For any (st,at), andMp̂ andMp, the LP(ξ, π,K)-MDP ofMp, (i.e.,Mπ
p̃ )

is constructed by modifying the transition p̂ to be p̃ as:5

Case 1 (current transition is certain) If (st,at) /∈ U :

p̃(·|st,at) = p̂(·|st,at), (8)

Case 2 (current transition is uncertain) If (st,at) ∈ U :
5The associated reward r̃(·) := r(·) unless otherwise stated.



Chaoqi Wang, Ziyu Ye, Kevin Murphy, Yuxin Chen

Case 2.1 (all K-step look ahead is uncertain) If (st,at) ∈ Uπ
−(1:K):

p̃(st+1 = e|st,at) = 1, (9)

Case 2.2 (some kth-step look ahead is certain) If (st,at) ∈ Uπ
k for some k ∈ [K], then we construct a

deterministic path such that ∀ i ∈ {1, ..., k − 1},

p̃(st+k = s⋆|st,at, π) = 1, r̃(st+i, ·) = −R. (10)

where s⋆ is defined as: s⋆ = argmins′∈Lπ,k
Mp̂

(st,at)
V π
Mπ

p̃
(s′),

Definition 4 (Hitting Time & Occupancy Measure) Given an MDPMp, a policy π, a state action pair
(s,a) and an initial state s0, we define

A.4 Proof of Theorems

Theorem 1 (Performance Guarantee) Let π̃⋆ denote the equilibrium policy learned under the LP(ξ, π̃⋆,K)-
MDP, and let π⋆ be the optimal policy under the true MDP Mp. Suppose that for any (st,at) ∈ U π̃⋆

k with

k ∈ [1,K], Lπ̃⋆,k
Mp

(st,at) ⊆ Lπ̃⋆,k
Mp̂

(st,at) holds, then for any state s

V π⋆

Mp
(s)− V π̃⋆

Mp
(s)

≤ 4γξRmax

(1− γ)2︸ ︷︷ ︸
(a)

+

2ρπ
⋆

s→U π̃⋆

−(1:K)

E

[
γ
T π⋆

s→Uπ̃⋆
−(1:K)

]
Rmax

1− γ︸ ︷︷ ︸
(b) Incurred by hitting U π̃⋆

−(1:K)

(13)

+

K∑

k=1

ρπ
⋆

s→U π̃⋆

k

E
[
γ
T π⋆

s→Uπ̃⋆
k

](∑k−1
i=1 2γiRmax + γk∆π⋆,k

p,q̃ (U π̃⋆

k )
)

︸ ︷︷ ︸
(c) Incurred by hitting U π̃⋆

k for k∈[K]

.

Proof: Our proof relies on bounding the difference in value function caused by hitting those state action pairs
in each groups separately. Specifically, for those state actions pairs that are not in U , the fitted transition
distributions on them have a small total variation distance with the true distribution. Therefore, the simulation
lemma can be applied to characterize the difference. For the state action pairs that are in U , we will need to take
the effect of pessimism into account.

Recall the definition of the following sets for a policy π,

k = 0 : U := {(s,a) ∈ S ×A : d(s,a) ≥ ξ} , (20)

K ≥ k ≥ 1 : Uπ
k :=




(s,a) ∈ U \ ∪k−1

i=1 Uπ
i : d(s′, π(s′)) ≤ ξ ∀ s′ ∈ Lπ

Mp̂,k
(s,a)

︸ ︷︷ ︸
(s,a) is kth certain.





, (21)

k = K + 1 : Uπ
K+1 := U \ ∪Ki=1Uπ

i . (22)

In addition, we also rely on the following intermediate transition distribution q̃ for derivation.

∀ (s,a) ∈ U : q̃(·|s,a) = p̃(·|s,a), (23)

Otherwise : q̃(·|s,a) = p(·|s,a). (24)

The MDPMπ
q̃ has the same transition distribution with the true MDPMp except for those state action pairs in

U , which follows the same transition as p̃. For any (s,a) ∈ S × A, we have dTV ( q̃(·|s,a)| p̃(·|s,a)) ≤ ξ. This
gives the following bound by applying the simulation lemma,

∣∣∣V π′

Mπ
p̃
(s)− V π′

Mπ
q̃
(s)
∣∣∣ ≤ 2γξRmax

(1− γ)2
. (25)



Don’t Be Pessimistic Too Early: Look K Steps Ahead!

Figure 8: An illustration of two cases that will result in a difference in the value functions of the true MDP and
the LP-MDP. Two MDPs have the same transitions on all blue nodes, and differs on the red node, which will
result in a difference in the reward to go. For (b), since (s′,a′) ∈ Uπ

K+1, the next state will be replaced by an
absorbing state e.

In the next, we bound the difference between V π′

Mπ
q̃
(s) and V π′

Mp
(s). To be noted, for all the state action pairs

that are not in U , we have q̃ = p. Therefore, we only need to deal with those state action pairs that are in U . If
the policy π hits any state action pairs (s′,a′) ∈ Uπ

k with 1 ≤ k ≤ K, it will incur at most the following expected
difference between the total rewards due to hitting (s′,a′) (see Figure 8 (a) for an illustration),

E
[
γT π′

s→(s′,a′)

]
·
(

k−1∑

i=1

2γiRmax + γk∆π′,k
p,q̃ (s′,a′)

)

︸ ︷︷ ︸
≤2Rmax/(1−γ)

. (26)

Lastly, the difference incurred by hitting any state action pair (s′,a′) ∈ Uπ
−(1:K) is trivially upper bounded by the

property of the absorbing state (see Figure 8 (b)),

2RmaxE
[
γT π′

s→(s′,a′)

]

1− γ
. (27)

Combining the above two results, we can have the following result forMq̃ andMp for any running policy π′,

∣∣∣V π′

Mp
(s)− V π′

Mπ
q̃
(s)
∣∣∣ ≤

2ρπ
′

s→Uπ
−(1:K)

E
[
γ
T π′
s→Uπ

−(1:K)

]
Rmax

1− γ

+

K∑

k=1

ρπ
′

s→Uπ
k
E
[
γ
T π′
s→Uπ

k

]
·
(

k−1∑

i=1

2γiRmax + γk∆π′,k
p,q̃ (Uπ

k )

)
. (28)

In the next, we give a performance bound for the equilibrium or optimal policy π̃⋆ of the LP(ξ, π̃⋆,K)-MDP
under the true MDPMp. We further denote π⋆ as the optimal policy underMp.

V π⋆

Mp
(s)− V π̃⋆

Mp
(s) (29)

= V π⋆

Mp
(s)− V π⋆

Mπ̃⋆

q̃
(s) + V π⋆

Mπ̃⋆

q̃
(s)− V π̃⋆

Mp
(s) (30)

= V π⋆

Mp
(s)− V π⋆

Mπ̃⋆

q̃
(s) + V π⋆

Mπ̃⋆

q̃
(s)− V π̃⋆

Mπ̃⋆

q̃
(s) + V π̃⋆

Mπ̃⋆

q̃
(s)− V π̃⋆

Mp
(s) (31)

≤ V π⋆

Mp
(s)− V π⋆

Mπ̃⋆

q̃
(s) + V π⋆

Mπ̃⋆

q̃
(s)− V π⋆

Mπ̃⋆

p̃
(s) + V π̃⋆

Mπ̃⋆

p̃
(s)− V π̃⋆

Mπ̃⋆

q̃
(s) + V π̃⋆

Mπ̃⋆

q̃
(s)− V π̃⋆

Mp
(s) (32)

= V π⋆

Mp
(s)− V π⋆

Mπ̃⋆

q̃
(s)

︸ ︷︷ ︸
Bnouded by equation 28

+V π⋆

Mπ̃⋆

q̃
(s)− V π⋆

Mπ̃⋆

p̃
(s)

︸ ︷︷ ︸
Bounded by equation 25

+V π̃⋆

Mπ̃⋆

p̃
(s)− V π̃⋆

Mp
(s) (33)

The first inequality is due to the fact that π̃⋆ is the optimal policy ofMπ̃⋆

p̃ , and hence

V π̃⋆

Mπ̃⋆

p̃
(s)− V π⋆

Mπ̃⋆

p̃
(s) ≥ 0. (34)

In the next, we bound the following difference

V π̃⋆

Mπ̃⋆

p̃
(s)− V π̃⋆

Mp
(s) (35)



Chaoqi Wang, Ziyu Ye, Kevin Murphy, Yuxin Chen

To bound the above difference, we further introduce another MDPMπ
q̃min

, which is similar toMπ
q̃ , except that

for any (st,at) ∈ Uπ
k with k ∈ [1,K], we set the distribution of q̃min as

q̃min(st+k|st,ak, π) = argmin
s′∈Lπ,k

Mp̂
(st,at)

V π
Mπ

q̃min

(s′) (36)

Since for any (st,at) ∈ U π̃⋆

k with k ∈ [1,K], Lπ̃⋆,k
Mp

(st,at) ⊆ Lπ̃⋆,k
Mp̂

(st,at) holds, then the following holds trivially,

V π̃⋆

Mπ̃⋆

q̃min

(s) ≤ V π̃⋆

Mp
(s). (37)

Similarly, we defineMπ
p̃′ , such that

∀ (s,a) ∈ U : p̃′(·|s,a) = q̃min(·|s,a), (38)

Otherwise : p̃′(·|s,a) = p̂(·|s,a). (39)

Then, we will have the following holds,

V π̃⋆

Mπ̃⋆

p̃
(s)− V π̃⋆

Mp
(s) (40)

= V π̃⋆

Mπ̃⋆

p̃
(s)− V π̃⋆

Mπ̃⋆

q̃min

(s) + V π̃⋆

Mπ̃⋆

q̃min

(s) (41)

≤ V π̃⋆

Mπ̃⋆

p̃′
(s)− V π̃⋆

Mπ̃⋆

q̃min

(s) + V π̃⋆

Mπ̃⋆

q̃min

(s)− V π̃⋆

Mp
(s)

︸ ︷︷ ︸
≤0

(42)

≤ 2γξRmax

(1− γ)2
. (43)

The first inequality holds because by definition of LP-MDP, which is the minimizer of the value function. The
last inequality holds because the two MDPs has the same transition on those state action in U , whereas for all
the other state action pairs, their total variation distance is at most ξ. Hence, we can obtain the result by simply
applying the simulation lemma.

Now, we combine the above results and obtain the final bound

V π⋆

Mp
(s)− V π̃⋆

Mp
(s) (44)

≤ 4γξRmax

(1− γ)2
+

2ρπ
⋆

s→U π̃⋆

−(1:K)

E

[
γ
T π⋆

s→Uπ̃⋆
−(1:K)

]
Rmax

1− γ

+

K∑

k=1

ρπ
⋆

s→U π̃⋆

k
E
[
γ
T π⋆

s→Uπ̃⋆
k

]
·
(

k−1∑

i=1

2γiRmax + γk∆π⋆,k
p,q̃ (U π̃⋆

k )

)
(45)

□

A.5 Additional Theorems

Theorem 2 (Policy Improvement Theorem for LP-MDP) Under the tabular case, for any two policies π
and π′, if Qπ

Mπ
p̃
(s, π′(s)) ≥ V π

Mπ
p̃
(s) for any states s ∈ S, then we will have V π′

Mπ′
p̃

(s) ≥ V π
Mπ

p̃
(s) hold for all the

states s ∈ S if for any (si,ai), (sj ,aj) ∈ U , the expected hitting time from si to sj is +∞ for any polices.

Proof: The only difference betweenMπ′

p̃ andMπ
p̃ is how are the transition distributions p̂(·|s,a) with (s,a) ∈ U

modified based on the value functions of policy π′ and π. Recall that the definition of U is

U := {(s,a) ∈ S ×A : d(s,a) ≥ ξ} . (46)

Consider the following process of constructing a sequence of MDPs such thatM0 =Mπ
p̃ andM|U| =Mπ′

p̃ ,



Don’t Be Pessimistic Too Early: Look K Steps Ahead!

1. Initialize i = 1, and U (i) = U ;
2. Randomly choose an element (si,ai) ∈ U (i) and set U (i+1) = U (i) \ {(si,a)};
3. Change the transition on (s,a) ofMi to be exactly the same as it inMπ′

p̃ ;

4. Increment i by 1 and repeat the steps 2-4 until i = |U|.

The above process modifies the transition on one state action pair at each iteration. Suppose that the resulting

sequence of state action pairs is {(si,ai)}|U|
i=1 (corresponds to step 2). SinceM1 only modifies the transition on

(s1,a1) to be same as it inMπ′

p̃ , and by the assumption that the probability of revisiting state s1 is 0, we have
the following hold

p
[
st′ = s1|π,M0, s0

]
= p

[
st′ = s1|π,M1, s0

]
. (47)

The above argument states that, under any policy π, the probability of hitting state s1 at time step t′ is the
same forM0 andM1. This is because the dynamics ofM0 andM1 are exactly the same before hitting s1. In
the same way, we can show that, for any i ∈ [1, |U|],

p
[
st′ = si|π,Mi−1, s0

]
= p

[
st′ = si|π,Mi, s0

]
. (48)

We prove the theorem by induction. We first prove the base step that V π
M0

(s0) ≤ V π′

M1
(s0) for any s0 ∈ S.

V π
Mπ

p̃
(s0) = V π

M0
(s0) (49)

≤ Qπ
M0

(s0, π
′(s0)) (50)

= Ea0∼π′(a0|s0),s1∼M0|s0,a0

[
r(s0,a0) + γV π

M0
(s1)

]
(51)

≤ Ea0∼π′(a0|s0),s1∼M0|s0,a0

[
r(s0,a0) + γQπ

M0
(s1, π

′(s1))
]

(52)

= Ea0,a1∼π′
[
r(s0,a0) + γr(s1,a1) + γ2V π

M0
(s2)

]
(53)

≤ . . . (54)

≤ Ea0,a1,...,at′∼π′




t′∑

t=0

γtr(st,at) + γt′+1V π
M0

(st′+1)


 (55)

(a)
=

∞∑

t′=0

p
[
st′+1 = s1|π′,M0, s0

]
Eπ′,M0




t′∑

t=0

γtr(st,at) + γt′+1V π
M0

(st′+1)|st′+1 = s1


 (56)

+ p
[
st ̸= s1 ∀ t ≥ 0|π′,M0, s0

]
Eπ′,M0

[ ∞∑

t=0

γtr(st,at)|st ̸= s1 ∀ t ≥ 0

]

(b)
=

∞∑

t′=0

p
[
st′+1 = s1|π′,M1, s0

]
Eπ′,M1




t′∑

t=0

γtr(st,at) + γt′+1V π
M0

(st′+1)|st′+1 = s1


 (57)

+ p
[
st ̸= s1 ∀ t ≥ 0|π′,M1, s0

]
Eπ′,M1

[ ∞∑

t=0

γtr(st,at)|st ̸= s1 ∀ t ≥ 0

]

(c)

≤
∞∑

t′=0

p
[
st′+1 = s1|π′,M1, s0

]
Eπ′,M1




t′∑

t=0

γtr(st,at) + γt′+1Qπ
M0

(s1, π′(s1))|st′+1 = s1


 (58)

+ p
[
st ̸= s1 ∀ t ≥ 0|π′,M1, s0

]
Eπ′,M1

[ ∞∑

t=0

γtr(st,at)|st ̸= s1 ∀ t ≥ 0

]

(d)

≤
∞∑

t′=0

p
[
st′+1 = s1|π′,M1, s0

]
Eπ′,M1




t′∑

t=0

γtr(st,at) + γt′+1Qπ
M1

(s1, π′(s1))|st′+1 = s1


 (59)



Chaoqi Wang, Ziyu Ye, Kevin Murphy, Yuxin Chen

+ p
[
st ̸= s1 ∀ t ≥ 0|π′,M1, s0

]
Eπ′,M1

[ ∞∑

t=0

γtr(st,at)|st ̸= s1 ∀ t ≥ 0

]

(e)

≤
∞∑

t′=0

p
[
st′+1 = s1|π′,M1, s0

]
Eπ′,M1




t′∑

t=0

γtr(st,at) + γt′+1Qπ′

M1
(s1, π′(s1))|st′+1 = s1


 (60)

+ p
[
st ̸= s1 ∀ t ≥ 0|π′,M1, s0

]
Eπ′,M1

[ ∞∑

t=0

γtr(st,at)|st ̸= s1 ∀ t ≥ 0

]

= V π′

M1
(s0). (61)

For (a), we simply divide the trajectories into two groups, the first part of equation corresponds to the trajectories
that contain state s1, and the second part of the equation corresponds to those trajectories that doesn’t contain
s1. The equality (b) holds because of equation 47. For (c), we use the assumption that Qπ

M0
(s, π′(s)) ≥ V π

M0
(s).

In terms of (d), this is because

Qπ
M1

(s1, π(s1)) = Ea∼π′|s1,s′∼M1|s1,a

[
r(s1,a) + γV π

M1
(s′)|s1

]
(62)

= Ea∼π′|s1,s′∼M1|s1,a

[
r(s1,a) + γV π

M0
(s′)|s1

]
(63)

≥ Ea∼π′|s1,s′∼M0|s1,a

[
r(s1,a) + γV π

M0
(s′)|s1

]
(64)

= Qπ
M0

(s1, π(s1)). (65)

Lastly, (e) can be obtained by the policy improvement lemma (see Lemma 1),

Qπ
M1

(s1, π(s1)) = Ea∼π′|s1,s′∼M1|s1,a

[
r(s1,a) + γV π

M0
(s′)|s1

]
(66)

≤ Ea∼π′|s1,s′∼M1|s1,a

[
r(s1,a) + γV π′

M0
(s′)|s1

]
(67)

= Ea∼π′|s1,s′∼M1|s1,a

[
r(s1,a) + γV π′

M1
(s′)|s1

]
(68)

= Qπ′

M1
(s1, π′(s1)) (69)

For the induction step, let’s suppose the following hold for m ≥ 1,

V π
Mp̃

(s0) ≤ V π′

Mm
(s0). (70)

Then, it remains to prove that the above statement holds for m+ 1. To show this, we follow the same proof as in
the base step.

V π
Mπ

p̃
(s0) = V π

M0
(s0) (71)

(f)

≤
∞∑

t′=0

p
[
st′+1 = sm+1|π′,Mm, s0

]
Eπ′,Mm




t′∑

t=0

γtr(st,at) + γt′+1Qπ
Mm

(sm+1, π′(sm+1))|st′+1 = sm+1


 (72)

+ p
[
st ̸= sm+1 ∀ t ≥ 0|π′,Mm, s0

]
Eπ′,Mm

[ ∞∑

t=0

γtr(st,at)|st ̸= sm+1 ∀ t ≥ 0

]

(g)

≤
∞∑

t′=0

p
[
st′+1 = sm+1|π′,Mm+1, s0

]
Eπ′,Mm+1




t′∑

t=0

γtr(st,at) + γt′+1Qπ
Mm+1

(sm+1, π′(sm+1))|st′+1 = sm+1




+ p
[
st ̸= sm+1 ∀ t ≥ 0|π′,Mm+1, s0

]
Eπ′,Mm+1

[ ∞∑

t=0

γtr(st,at)|st ̸= sm+1 ∀ t ≥ 0

]
(73)

(h)

≤
∞∑

t′=0

p
[
st′+1 = sm+1|π′,Mm+1, s0

]
Eπ′,Mm+1




t′∑

t=0

γtr(st,at) + γt′+1Qπ′

Mm+1
(sm+1, π′(sm+1))|st′+1 = sm+1




+ p
[
st ̸= sm+1 ∀ t ≥ 0|π′,Mm+1, s0

]
Eπ′,Mm+1

[ ∞∑

t=0

γtr(st,at)|st ̸= sm+1 ∀ t ≥ 0

]
(74)



Don’t Be Pessimistic Too Early: Look K Steps Ahead!

Figure 9: Visualization of considered tasks. (a) The grid world task is adapted from Eysenbach et al. [2022] with
increased difficulty. The agent starts where the baymax is located (top left. The reward for hitting the treasure is
+50, +1 for yellow-shaded grids, and +0.5 for other grids. The walls cannot be crossed. For (b), (c) and (d), the
tasks come from the D4RL benchmark [Fu et al., 2020].

= V π′

Mm+1
(s0). (75)

For the above derivations, step (f) holds by assumption of the induction step. For step (g), this is because

Qπ
Mm+1

(sm+1, π(sm+1)) ≥ Ea∼π′|sm+1,s′∼Mm|sm+1,a

[
r(sm+1,a) + γV π

Mm
(s′)|sm+1

]
(76)

= Qπ
Mm

(sm+1, π(sm+1)). (77)

The last step (h) holds because of the policy improvement lemma as well as the assumption that the hitting time
from the states in U to each other is infinite. Hence, the dynamics after state sm+1 is the same as inM0, which
concludes the proof.

□

Lemma 1 (Policy Improvement Lemma) For any MDPM, and any two policies π and π′ and define,

Qπ
M(s, π′(s)) := Ea∼π′(·|s) [Q

π
M(s,a)] . (78)

if Qπ
M(s, π′(s)) ≥ V π

M(s) for all s ∈ S, then V π′

M(s) ≥ V π
M(s) for all s ∈ S.

B Computational Cost

Suppose that we use n particles for approximating the (continuous) lookahead set, then the size of the (approxi-
mated) lookahead set will grow exponentially in the lookahead steps k. Although, in our experiments, we show
that a small lookahead step is sufficient to obtain significantly improved empirical results, we would like to extend
the discussion on the computational cost as well as potential algorithms for reducing the computational cost.

The naive implementation will incur a computational complexity of O(nk) for computing the LP-MDP for each
state. However, this cannot be improved as we need to check if all the states in the k-step lookahead set are certain
under the current policy. However, the number of queries of the value functions can be improved by adopting the
branch and bound algorithm, though the worst case computational complexity is still O(nk). In our experiments,
it takes roughly several hours for training using one TPU-V3-8 for both our method and MOReL-SAC.

C Experimental Details

In this section, we introduce the details about the experiments. Our implementation is based on JAX [Bradbury
et al., 2018] and Acme [Hoffman et al., 2020]. We train our models using TPU-V3-8. Our code will be released
after cleanup.

C.1 Gridworld Experiments

For the gridworld experiments, we adopt the original implementation of MnM [Eysenbach et al., 2022] in
https://github.com/ben-eysenbach/mnm/blob/main/experiments.ipynb.

https://github.com/ben-eysenbach/mnm/blob/main/experiments.ipynb


Chaoqi Wang, Ziyu Ye, Kevin Murphy, Yuxin Chen

To obtain the expert policy, we train the MnM for 1, 500 episodes where each each episode lasts for 200 steps.
This gives us a replay buffer ((st,at, rt, st+1)) of size 300, 000. Then, for our experiments, we randomly sample
20% of transitions from the replay buffer to serves as the offline training data. For training the dynamics model,
since the environment is discrete, we simply fit the transition probability on each state action pair by

p̂(st+1|st,at) =
n(st,at,st+1)

n(st,at)
, (79)

where n(st,at,st+1) and n(st,at) denotes the number of occurrence of (st,at, st+1) and (st,at) in the offline dataset.

To learn the policy, we fit the Q-value function by minimizing the TD loss for 2, 000 episodes using the fitted
dynamics model. The learning rate is set to be 1e − 2. Since the maximum reward is 50, we set the reward
penalty to be −50. We present the code for implementing the gridworld environment in the next.



Don’t Be Pessimistic Too Early: Look K Steps Ahead!

# Dynamics implementation

MAP = "ooooxxxooo \\" + \
"oooooxxooo \\" + \
"ooooooxooo \\" + \
"oooooxxooo \\" + \
"ooooxooooo \\" + \
"ooooooxooo \\" + \
"ooooxooooo \\" + \
"ooooxxxooo \\" + \
"oooooooooo \\" + \
"oooooooooo"

A_DELTA = np.array([
[-1, 0],
[0, 1],
[1, 0],
[0, -1]
])

WALLS = np.zeros((size , size))
p_s_given_sa = np.zeros([num_states , num_actions , num_states])

def ij_to_index(i, j):
return i * size + j

def index_to_ij(index):
return (index // size , index % size)

# Construct the map
def build_walls(data , grid_map , noise):

canvas = data.copy()
nrows , ncols = canvas.shape
symbols = grid_map.split(’\\’)
for r in range(nrows):

for c in range(ncols):
if symbols[r][c] == ’x’:

canvas[r][c] = 1
return canvas

# the deterministic dynamics.
WALLS = build_walls(WALLS , MAP)
def dynamics(index , a):

i, j = index_to_ij(index)
(i, j) = (i, j) + A_DELTA[a]
(i, j) = np.clip((i, j), 0, size - 1)
if WALLS[i, j]:

i, j = index_to_ij(index)
index2 = ij_to_index(i, j)
return index2

# compute the stochastic dynamics of the gridworld.
for index , a in itertools.product(range(num_states), range(num_actions)):

if index < num_states - 1:
index2 = dynamics(index , (a+2) % 4)
p_s_given_sa[index , a, index2] += noise
index2 = dynamics(index , a)
p_s_given_sa[index , a, index2] += (1 - noise)

else:
p_s_given_sa[index , a, index] = 1.0



Chaoqi Wang, Ziyu Ye, Kevin Murphy, Yuxin Chen

C.2 D4RL Experiments

For the D4RL experiments, we refer to the implementation of MOReL in https://github.com/aravindr93/

mjrl/tree/v2/projects/morel for implementing MOReL-SAC and our method. For SAC, we adopt the
implementation provided in Acme [Hoffman et al., 2020] and the default hyperparameters, except for the target
entropy terms. For the target entropy terms, we adopt −3 for both Halfcheetah and Walker2D, and −1 for
Hopper. We train the SAC for 1M steps.

For dynamics models, we implement it in the following way,

class DeterministicMLP(hk.Module):
""" MLP with DeterministicMLP outputs."""

def __init__(
self ,
output_size: int ,
hidden_sizes: Sequence[int],
*,
activation=jax.nn.swish ,
name: Optional[str] = None ,

):
super().__init__(name=name)
self.output_size = output_size
w_init = hk.initializers.VarianceScaling(1.0, ’fan_in ’, ’truncated_normal ’)
self.mlp = hk.nets.MLP(

hidden_sizes , w_init=w_init , activation=activation , activate_final=True)
self.mean = hk.Linear(

self.output_size , w_init=w_init , name=’mean’)

def __call__(self , x):
h = self.mlp(x)
mean = self.mean(h)
return mean

We determine the hyperparameters by tuning the performance of MOReL-SAC such that it can achieve a
reasonable performance. Then, we adopt the same hyperparameters and only add the lookahead mechanism to
the MOReL-SAC for implementing our method, which ensures that the comparison is fair.

The configurations on tasks for MOReL-SAC are summarized in the following tables. To be noted, most hyper-
parameters are the same across different tasks, and the only differences are in the pessimism coefficient and
learning rates. For training the dynamics models, we stop the training once the loss doesn’t improve for 20 epochs.

For the pessimism coefficient, we use it in the same way as suggested by MOReL [Kidambi et al., 2020]. Specifically,
we compute the largest discrepancy measure on the training data (i.e., offline data) as our base unit, i.e.,

max
(s,a)∈Doffline,i̸=j

∥fθi(s,a)− fθj (s,a)∥2. (80)

Suppose that the pessimism coefficient is c, then the threshold of the “uncertainess” of a state action pair (s,a) (i.e.,
the cutoff for determining if the state action pair is in U or not) is computed by

c · max
(s,a)∈Doffline,i̸=j

∥fθi
(s,a)− fθj

(s,a)∥2. (81)

https://github.com/aravindr93/mjrl/tree/v2/projects/morel
https://github.com/aravindr93/mjrl/tree/v2/projects/morel


Don’t Be Pessimistic Too Early: Look K Steps Ahead!

Parameter Hopper

random medium medium-replay medium-expert
Model learning rate 1e-3 1e-3 1e-3 1e-3
Optimizer Adam Adam Adam Adam
Hidden dim. 512 512 512 512
Number of Layers 4 4 4 4
Activation Swish Swish Swish Swish
Batch size 256 256 256 256
Pessimism coefficient 1.0 1.5 1.5 1.0
Reward penalty 0 0 0 0
Model horizon 700 700 700 700
Size of ensemble 4 4 4 4

Table 2: The configurations for the Hopper task.

Parameter Halfcheetah

random medium medium-replay medium-expert
Model learning rate 5e-4 1e-3 5e-4 5e-4
Optimizer Adam Adam Adam Adam
Hidden dim. 1024 1024 1024 1024
Number of Layers 4 4 4 4
Activation Swish Swish Swish Swish
Batch size 256 256 256 256
Pessimism coefficient 1.5 1.5 1.5 1.5
Reward penalty -500 -500 -500 -500
Model horizon 1000 1000 1000 1000
Size of ensemble 10 10 10 10

Table 3: The configurations for the Halfcheetah task.

Parameter Walker2D

random medium medium-replay medium-expert
Model learning rate 5e-4 1e-3 1e-3 1e-3
Optimizer Adam Adam Adam Adam
Hidden dim. 1024 1024 1024 1024
Number of Layers 4 4 4 4
Activation Swish Swish Swish Swish
Batch size 256 256 256 256
Pessimism coefficient 2.0 1.0 1.0 1.5
Reward penalty 0 0 0 0
Model horizon 700 700 700 700
Size of ensemble 4 4 4 4

Table 4: The configurations for the Walker2D task.


	Introduction
	Backgrounds and Preliminaries
	The Lookahead Pessimistic MDP
	Theoretical Analysis
	Practical Implementation

	Experiments
	Grid Environment
	D4RL

	Related Works
	Conclusion
	Appendix
	Limitations
	Extended Related Works
	Definitions
	Proof of Theorems
	Additional Theorems

	Computational Cost
	Experimental Details
	Gridworld Experiments
	D4RL Experiments


