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Abstract

Black-box variational inference performance
is sometimes hindered by the use of gradi-
ent estimators with high variance. This vari-
ance comes from two sources of randomness:
Data subsampling and Monte Carlo sampling.
While existing control variates only address
Monte Carlo noise, and incremental gradient
methods typically only address data subsam-
pling, we propose a new "joint" control vari-
ate that jointly reduces variance from both
sources of noise. This significantly reduces
gradient variance, leading to faster optimiza-
tion in several applications.

1 INTRODUCTION

Black-box variational inference (BBVI) (Hoffman et al.,
2013; Titsias and Lázaro-Gredilla, 2014; Ranganath
et al., 2014; Kucukelbir et al., 2017; Blei et al., 2017)
is a popular alternative to Markov Chain Monte Carlo
(MCMC) methods. The idea is to posit a variational
family and optimize it to be close to the posterior, us-
ing only "black-box" evaluations of the target model
(either the density or gradient). This is typically done
by minimizing the KL-divergence using stochastic op-
timization methods with unbiased gradient estimates.
Often, this allows the use of data subsampling, which
greatly speeds-up optimization with large datasets.

The BBVI optimization problem is often called "doubly-
stochastic" (Titsias and Lázaro-Gredilla, 2014; Salim-
beni and Deisenroth, 2017), as the gradient estimation
has two sources of randomness: Monte Carlo sampling
from the variational distribution, and data subsampling
from the full dataset. Because of the doubly-stochastic
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nature, one common challenge for BBVI is the variance
of the gradient estimates: If this is high, it forces small
stepsizes, leading to slow optimization convergence (Ne-
mirovski et al., 2009; Bottou et al., 2018).

Numerous methods exist to reduce the "Monte Carlo"
noise that comes from drawing samples from the vari-
ational distribution (Miller et al., 2017; Roeder et al.,
2017; Geffner and Domke, 2018, 2020; Boustati et al.,
2020). These can typically be seen as creating an ap-
proximation of the objective for which the Monte Carlo
noise can be integrated exactly. This approximation
can then be used to define a control variate—a zero
mean random variable that is negatively correlated with
the original gradient estimator. These methods can
sometimes be used with data subsampling, essentially
by creating different approximations for each datum.
However, they are only able to reduce per-datum Monte
Carlo noise—they do not reduce subsampling noise it-
self. This is critical, as subsampling noise is often the
dominant source of gradient variance (Sec. 3).

For (non-BBVI) optimization problems with only sub-
sampling noise, there are numerous incremental gra-
dient methods, that "recycle" previous gradient eval-
uations to speed up convergence (Roux et al., 2012;
Shalev-Shwartz and Zhang, 2013; Johnson and Zhang,
2013; Defazio et al., 2014a,b). However, with few ex-
ceptions (Sec. 6) these methods do not address Monte
Carlo noise and, due to how they rely on efficiently
maintaining running averages, cannot be applied to
doubly-stochastic problems.

This paper presents a method that jointly controls
Monte Carlo and subsampling noise. The idea is to
create approximations of the target for each datum,
where the Monte Carlo noise can be integrated exactly.
The method maintains running averages of the ap-
proximate gradients, with noise integrated, overcoming
the challenge of applying incremental gradient ideas
to doubly-stochastic problems. The method addresses
both forms of noise and also interactions between them.
Experiments with variational inference on a range of
probabilistic models show that the method yields lower
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variance gradients and significantly faster convergence
than existing approaches.

2 BACKGROUND: BLACK-BOX
VARIATIONAL INFERENCE

Given a probabilistic model p(x, z) = p(z)
∏N
n=1 p(xn |

z) and observed data x1, . . . , xN , variational inference’s
goal is to find a tractable distribution qw(z) to approx-
imate the (often intractable) posterior p(z | x) over the
latent variable z ∈ Rd. BBVI achieves this by finding
the parameters w that minimize the KL-divergence
from qw(z) to p(z | x), equivalent to minimizing the
negative Evidence Lower Bound (ELBO)

f (w) = −E
n

E
qw(z)

[
N log p(xn | z) + log p(z)

]
−H(w),

(1)
where H(w) denotes the entropy of qw.

The expectation with respect to z in Equation (1) is typ-
ically intractable. Thus, BBVI methods rely on stochas-
tic optimization with unbiased gradient estimates, usu-
ally based on the score function method (Williams,
1992) or the reparameterization trick (Kingma and
Welling, 2014; Rezende et al., 2014; Titsias and Lázaro-
Gredilla, 2014). The latter is often the method of
choice due to the fact that it often yields estimators
with lower variance (Kucukelbir et al., 2017; Xu et al.,
2019). The idea is to define a fixed base distribution
s(ε) and a deterministic transformation Tw(ε) such that
for ε ∼ s, we have Tw(ε) ∼ qw. Then, the objective in
Equation (1) can be re-written as

f(w) = E
n
E
ε
f(w; n, ε), (2)

where

f(w;n, ε) = −N log p(xn | Tw(ε))− log p(Tw(ε))

−H(w). (3)

The "naive" gradient estimate is obtained by drawing
a random n and ε, and evaluating

gnaive(w;n, ε) = ∇f(w;n, ε). (4)

Since this only requires point-wise evaluations of log p
and its gradient, it can be applied to a diverse range
of models, including those with complex and non-
conjugate likelihoods. And by subsampling data, it
can be used with large datasets, which may be chal-
lenging for traditional methods like MCMC (Hoffman
et al., 2013; Kucukelbir et al., 2017). However, the
effectiveness of this strategy depends on the gradient
estimator’s variance; if it is too large, then very small
step sizes will be required, slowing convergence.

Task Vn,ε[∇f(w; n, ε)] Vn[∇f(w; n)] Vε[∇f(w; ε)]

Sonar 4.04× 104 2.02× 104 1.16× 104

Australian 9.16× 104 8.61× 104 2.07× 103

MNIST 4.21× 108 3.21× 108 1.75× 104

PPCA 1.69× 1010 1.68× 1010 3.73× 107

Tennis 9.96× 107 9.59× 107 8.56× 104

MovieLens 1.78× 109 1.69× 109 1.75× 106

Table 1: BBVI gradient variance decomposition across
tasks, computed at the optimization endpoint. With
a batch size of 5, step size of 5× 10−4 for Sonar and
Australian, a batch size of 100, step size of 1 × 10−2

for others. We generally observe subsampling noise
Vn[∇f(w; n)] dominates MC noise Vε[∇f(w; ε)].

3 GRADIENT VARIANCE IN BBVI

Let Vn,ε[∇f(w; n, ε)] denote the variance of the naive
estimator from Eq. (4).1 The two sources of variance
correspond to data subsampling (n) and Monte Carlo
noise (ε). It is natural to ask how much variance each
of these sources contributes.

Let f(w;n) = Eε f(w;n, ε) be the objective for a sin-
gle datum n with Monte Carlo noise integrated out.
Similarly, let f(w; ε) = En f(w; n, ε) be the objective
for a fixed ε evaluated on the full dataset. In Fig. 1
and Table. 1, we do a single run of BBVI using our
proposed gradient estimator (described below). Then,
for each iteration on that single optimization trace,
we estimate the variance of ∇f(w; n, ε), ∇f(w; ε), and
∇f(w; n). We do this for multiple tasks, described in
detail in Sec. 7. For later reference, we also include the
joint estimator developed below.

The amount of variance contributed by each source is
task-dependent. But in many tasks considered, sub-
sampling noise is larger than Monte Carlo noise. This
is problematic since computing f(w; ε) requires looping
over the full dataset, eliminating any benefit of subsam-
pling. These results also illustrate the limitations of
any approach that only handles a single source of noise:
No control variate applied to each datum can do bet-
ter than ∇f(w;n), while no incremental-gradient-type
method can do better than ∇f(w; ε).

4 VARIANCE REDUCTION FOR
STOCHASTIC OPTIMIZATION

This section introduces existing methods of variance
reduction for stochastic optimization problems with a
single source of gradient variance and their applicability
to doubly-stochastic settings.

1When z is a vector, we use V[z] = tr C[z].
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1. Create an approximation f̃(w;n, ε) of the true ob-
jective f(w;n, ε), designed so that the expectation
Eε∇f̃(w;n, ε) can easily be computed for any da-
tum n (Miller et al., 2017; Geffner and Domke,
2020). A common strategy for this is a Taylor-
expansion—replacing f with a low-order polynomial.
If the base distribution s(ε) is simple, the expecta-
tion Eε[∇f̃(w;n, ε)] may be available in closed-form.

2. Inspired by SAGA (Defazio et al., 2014a), maintain a
table W = {w1, . . . , wN} with wn ∈ RD that stores
the variational parameters at the last iteration each
of the data points x1, · · · , xN were accessed, along
with a running average of gradient estimates evalu-
ated at the stored parameters, denoted by G. Unlike
SAGA, however, this running average is for the gra-
dients of the approximation f̃ , with the Monte Carlo
noise ε integrated out, i.e. G = En Eε∇f̃(wn; n, ε).
In practice, we initialize W using a single epoch of
optimization with the naive estimator.

Intuitively, as optimization nears the solution, the pa-
rameters w tend to change slowly, meaning the entries
wn inW will tend to become close to the current iterate
w. So if f̃ is a good approximation of the true objective,
we may expect ∇f(w;n, ε) to be close to ∇f̃(wn;n, ε),
meaning the two will be strongly correlated. However,
thanks to the running average G, the full expectation
of ∇f̃(wn;n, ε) is available in closed-form. This leads
to our proposed gradient estimator

gjoint(w;n, ε) = ∇f(w;n, ε)

+ E
m
E
ξ
∇f̃(wm;m, ξ)−∇f̃(wn;n, ε)︸ ︷︷ ︸

zero mean control variate

. (15)

The running average G = En Eε∇f̃(wn; n, ε) can be
cheaply maintained through optimization, since a single
value wn changes per iteration and Eε∇f̃(w;n, ε) is
known in closed form. The variance of the proposed
gradient estimator is

V[gjoint] = V
ε,n

[∇f(w; n, ε)−∇f̃(wn; n, ε)]. (16)

This shows that the variance of gjoint can be arbitrarily
small, only limited by how close f̃ is to f and how close
the stored values wn are to the current parameters w.
This is in contrast with the variance achieved by typical
control variates or incremental gradient methods, which
are unable to reduce both sources of variance jointly. In
fact, as shown in Eq. (8) and Eq. (12), these methods,
even in ideal scenarios, are provably unable to produce
estimators with zero variance, as they can only handle
a single source of gradient noise.

Alg. 1 illustrates how the joint gradient estimator can
be used for black-box variational inference. The same

idea could also be applied more generally to doubly-
stochastic objectives in other domains. A generic ver-
sion of the algorithm and an example of how it can
be applied for generalized linear models with Gaussian
dropout on the feature is shown in Appendix. E.

Memory overhead Like SAGA, our method re-
quires Θ(ND) storage for the parameter tableW . How-
ever, it is easy to create analogous methods based on
other incremental gradient methods. In Appendix. B,
we develop an analogous method based on SVRG (John-
son and Zhang, 2013) which only requires Θ(D) storage.
Our empirical evaluation shows that its performance is
comparable to the SAGA version. However, it has an
extra hyperparameter that controls the frequency of re-
computing full dataset gradient and involves additional
gradient evaluations per iteration.

Advantages over existing estimators Compared
with cv and inc, joint can reach arbitrary small gra-
dient variance without lower bound (Eq. (16)), we
empirically verify the lower bounds on two small prob-
lems: Fig. 2 shows a detailed trace of gradient variance
for different estimators using the same optimization
trace acquired from joint, where the variance of cv
and inc both reach the theoretical lower bounds de-
rived in Eq. (8) and Eq. (12), whereas joint shows
much lower variance. A summarization of variance
lower bounds can be seen in Table 3. Moreover, unlike
inc, our proposed joint estimator controls subsam-
pling noise without the efficiency issue, as joint only
stores (approximate) gradients after integrating over
the Monte Carlo variable ε, which makes the needed
running average independent of ε.

6 RELATED WORK

Recently, Boustati et al. (2020) proposed to approxi-
mate the optimal per-datum control variate for BBVI
using a recognition network. This takes subsampling
into account. However, like ccv, this control variate
reduces the conditional variance of MC noise (condi-
tioned on n) but does not address subsampling noise.

Also, Bietti and Mairal (2017) proposed new incre-
mental gradient method called SMISO, designed for
doubly-stochastic problems, which we will compare
to below. Intuitively, this uses exponential averages
to approximately marginalize out ε, and then runs
MISO/Finito (Defazio et al., 2014b; Mairal, 2015) (a
method similar to SAGA) to reduce subsampling noise.
This is similar in spirit to running SGD with a kind
of joint control variate. However, it is not obvious
how to separate the control variate from the algorithm,
meaning we cannot use the SMISO idea as a control
variate to get a gradient estimator that can be used
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Algorithm 1 Black-box variational inference with the joint control variate.
Input step size λ, negative ELBO estimator f(w;n, ε), and approximation f̃(w;n, ε) with closed-form over ε.
Initialize parameters w and parameter table W = {w1, . . . , wN} using a single epoch with naive.
Initialize running mean. G ← Em Eξ∇f̃(w;m, ξ) . Sum over m, closed-form over ξ
Repeat until convergence:
Sample n and ε.
Compute base gradient. g ← ∇f(w;n, ε)

Compute control variate. c ← E
m
E
ξ
∇f̃(wm;m, ξ)−∇f̃(wn;n, ε) . Use E

m
E
ξ
∇f̃(wm;m, ξ) = G

Update the running mean. G ← G+ 1
N

E
ξ

(
∇f̃(w;n, ξ)−∇f̃(wn;n, ξ)

)
. Closed-form over ξ

Update the parameter table wn ← w

Update parameters. w ← w − λ(g + c) . Or use g + c in any stochastic optimization algorithm

Task N Dims Model class
Sonar 208 60 Logistic regression
Australian 690 14 Logistic regression
MNIST 60,000 7,840 Logistic regression
PPCA 60,000 12,544 Matrix factorization
Tennis 169,405 5,525 Bradley Terry model
MovieLens 100,000 85,050 Hierarchical model

Table 2: Dataset size (N), latent dimensionality (Dims)
and model class of tasks used in experiments

with other optimizers like Adam, we include a detailed
discussion on this issue in Appendix. A. Nevertheless,
we still include SMISO as one of our baselines.

7 EXPERIMENTS

This section evaluates the proposed joint estimator for
BBVI on a range of linear and non-linear probabilistic
models, with 208 to 170K samples and latent dimen-
sionalities ranging from 14 to 85K. Aside from two toy
models (Sonar and Australian) these are large enough
that a single full-batch evaluation of log p takes 15-20
times longer than subsampled valuation, even when im-
plemented on GPU. We compare the proposed joint

estimator against the naive estimator which controls
for no variance, as well as estimators that control for
Monte Carlo or data subsampling separately. Our ex-
periments on GPUs show that the joint estimator’s
reduced variance leads to better solutions in fewer opti-
mization steps and lower wallclock time. The code can
be found at https://github.com/xidulu/JointCV.

7.1 Experiment setup

Tasks and datasets We evaluate our method by per-
forming BBVI on the following tasks (the complete
dataset size and latent dimensionality of each task are
provided in table. 2):

• Binary/Multi-class Bayesian logistic regres-
sion. We consider Bayesian logistic regression with
standard Gaussian prior for binary classification on
the Sonar and Australian datasets, and multi-class

classification on MNIST (LeCun et al., 1998).

• Probabilistic principal component analysis
(PPCA). Given a centered dataset x1, . . . ,xN ∈
RD, PPCA (Tipping and Bishop, 1999) seeks to
extract its principal axes W ∈ RD×K assuming

Wij ∼ N (0, 1), 1 ≤ i ≤ D, 1 ≤ j ≤ K,
xn ∼ N (0,WW> + diag(λ2)).

In our experiments, we use BBVI to approximate the
posterior over W. We test PPCA on the standardized
training set of MNIST with K = 16 and λ = 1.

• Bradley Terry model for tennis players rat-
ing. Given a set of N tennis match records among
M players. Each record has format (xn,1, xn,2, yn),
which denotes a match between players xn,1 and
xn,2 with result yn ∈ {0, 1}: yn = 1 denotes player
xn,1 winning the match and vice versa. The Bradley
Terry model (Bradley and Terry, 1952) assigns each
player a score θm ∈ R,m = 1, . . . ,M , and models
the match result via

θm ∼ N (0, 1),

yn ∼ Bernoulli(logit−1(θxn,1 − θxn,2)).

We subsample over matches and perform inference
over the score of each player. Following Giordano
et al. (2024), we evaluate the model on men’s tennis
matches log starting from 1960, which contains the
results of 169405 matches among 5525 players.

• MovieLens analysis with Bayesian hierarchi-
cal model. The dataset contains a set of N movie
review records fromM users, where each record from
userm has a feature vector of the movie xn ∈ {0, 1}18
and a user rating yn ∈ {1, . . . , 5}. Assigning each
user a weight matrix Zm ∈ R18×5,m = 1, . . . ,M , we
model the review through a hierarchical model

µij ∼ N (0, 1),σij ∼ N (0, 1), 1 ≤ i ≤ 18, 1 ≤ j ≤ 5

Zm ∼ N (µ, expσ),

yn ∼ Categorical
(
softmax(x>nZm)

)
.

We evaluate the model on MovieLens100K (Harper

https://github.com/xidulu/JointCV
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and Konstan, 2015), which has 100, 000 reviews from
943 users, and perform subsampling over the reviews.

Variational distribution. We focus on mean-field
Gaussian BBVI, where the variational distribution fol-
lows a factorized Gaussian qw(z) = N (µ,diag(σ2)),
parameterized by w = (µ, logσ). The mean parame-
ters µ is randomly initialized using a standard Gaussian
and and we initialize logσ as 0.

Choice of approximation function. For joint and
cv, we use a second-order Taylor expansion as the
approximation function f̃(w;n, ε) (Miller et al., 2017),
applied only for the mean parameters µ, as for mean-
field Gaussian BBVI the total gradient variance is often
dominated by variance from µ (Geffner and Domke,
2020). We provide further details in Appendix. F.

Baselines. We compare the joint estimator (gjoint,
Eq. (15)) with the naive estimator (gnaive, Eq. (4))
and the cv estimator (gcv, Eq. (7)). For Sonar and
Australian (small datasets) we include the inc estima-
tor (ginc, Eq. (11)) as an additional baseline, which
requires a full pass through the dataset at each itera-
tion. For larger-scale tasks, the inc estimator becomes
intractable, so we use SMISO instead.

Optimization details. For the larger-scale MNIST,
PPCA, Tennis, and MovieLens, we optimize using
Adam (Kingma and Ba, 2014). For the small-scale
Sonar and Australian datasets, we use SGD without
momentum for transparency. The optimizer for SMISO
is pre-determined by its algorithmic structure and can-
not be changed. For all estimators, we perform a
step-size search to ensure a fair comparison (see Ap-
pendix D), testing step sizes between 10−3 and 10−1

when using Adam and step sizes between 10−5 and
10−2 when using SGD.

Mini-batching. We use mini-batches B of data at
each iteration (reshuffling each epoch). For SMISO
and the inc and joint estimators, we update multiple
entries in the parameter table in each iteration and
adjust the running mean accordingly. For the Sonar
and Australian datasets, due to their small sizes, we
use |B| = 5. For all other datasets we use |B| = 100.

Evaluation metrics. We show optimization traces
for the best step size chosen retrospectively for each
iteration. All ELBO values reported are on the full
dataset, estimated with 5000 Monte Carlo samples. We
also show the final ELBO achieved after training vs.
the step size used to optimize. All results reported are
averages over multiple independent runs (10 runs for
Sonar and Australian datasets, and 5 for the larger
scale problems).

Experiment environment. We use JAX (Bradbury
et al., 2018) to implement BBVI, and NumPyro (Phan

et al., 2019) for the models. We conduct all experiments
on single GPU machines.

7.2 Results

On Sonar and Australian, while both the inc and
cv estimators display lower variance than the naive

estimator, our proposed joint estimator consistently
shows the lowest variance (Fig. 2). This enables the
use of larger step sizes, leading to faster convergence
(first row in Fig. 3). Notice that, on Austraian, the
subsampling noise dominates gradient variance. Thus,
inc shows performance on par with joint. Yet, it is
crucial to highlight that inc requires a full pass over the
entire dataset at each optimization step (only possible
with small datasets), while joint does not. Lastly, we
employ MCMC to obtain true posteriors for Sonar and
Australian, benefiting from their small scale. The true
posterior allows us to measure approximation error
by comparing qw(z)’s mean and variance to the true
posterior. Results in Fig. G (Appendix. G) confirm
that the accelerated convergence from joint also helps
reduce the (mean) approximation error at a faster rate.

The results for large-scale models, MNIST, PPCA, Ten-
nis, and MovieLens, are also presented in Fig. 3 (for
these datasets, the inc estimator is intractable, so we
use SMISO as a baseline instead). For MovieLens, as
the parameter table required by SAGA does not fit
into the GPU memory, we use the SVRG version of the
joint estimator with an update frequency equal to the
length of an epoch, introducing one additional gradient
call per iteration (amortized). Broadly, we observe
that joint leads to faster and improved optimization
convergence than naive and cv. cv shows little or no
improvement upon naive, which implies that most of
the improvement in the joint estimator comes from
reducing subsampling variance. SMISO, which does
not adopt momentum nor adaptive step sizes, suffers
from significantly slower convergence, as it requires the
use of a considerably smaller step size (to prevent di-
verging during optimization). We provide comparisons
of different estimators using SGD in Appendix. H.

7.3 Efficiency analysis

We now study the computational cost of different esti-
mators. In terms of the number of "oracle" evaluations
(i.e. evaluations of f(w;n, ε) and its gradient), naive is
the most efficient, requiring a single oracle evaluation
per iteration. The cv estimator requires one gradient
and one Hessian-vector product, and the joint esti-
mator requires one gradient and two Hessian-vector
products (one for the control variate and one for up-
dating the running mean G.)

Table. 3 shows measured measured runtimes on an
Nvidia 2080ti GPU. All numbers are for a single opti-
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joint estimator achieves a given performance using an
order of magnitude fewer iterations (Fig. 3), it leads to
significantly faster optimization than the baselines con-
sidered. This can be observed in Appendix. I, where we
show optimization results in terms of wall-clock time
instead of iterations (i.e. ELBO vs. wall-clock time).
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A SMISO

In this section, we will have a brief introduction to SMISO (Bietti and Mairal, 2017). Assume we have a loss
function of the form

E
n,ε
f(w; n, ε) (17)

Similar to SAGA (Defazio et al., 2014a), SMISO maintains a parameter table W = {w1, . . . , wN} which stores
the parameter value the last time each data point was accessed. SMISO then maintains an average of the value in
the parameter table w̄k = En w

n
k where k denotes the kth iteration. w̄k will later be used as the point for gradient

evaluation. Given a randomly drawed sample n and ε, SMISO would first update the nth entity in W using
exponential average

wk+1
n = (1− α)wkn + α(w̄k − γ∇f(w̄k; ε, n)). (18)

Then, it updates w̄k using running average

w̄k+1 = w̄k +
1

N
wk+1
n − 1

N
wkn. (19)

If we expand the equation above, we get

w̄k+1 = w̄k +
1

N
wk+1
n − 1

N
wkn (20)

= w̄k +
1

N

[
(1− α)wkn + α(w̄k − γ∇f(w̄k; ε, n))− wkn

]
(21)

= w̄k −
α

N

[
γ∇f(w̄k; ε, n) + wkn − w̄k

]
(22)

= w̄k −
α

N

[
γ∇f(w̄k; ε, n)− (w̄k − wkn)

]
(23)

In this case, αγ/N is the effective step size. Notice that, if we are using a mini-batch of indices/samples, denoted
as B = {nb}, in which case multiple entities in the parameter table would be updated in an iteration, then we
would have

w̄k+1 = w̄k +
∑
nb∈B

[
1

N
wk+1
nb
− 1

N
wknb

]
(24)

= w̄k −
α|B|
N

[
γ E

nb
∇f(w̄k; ε, nb)− E

nb
(w̄k − wknb)

]
(25)

in which case the effective step size would become α|B|γ
N . Therefore, in order to compare SMISO with other

estimators using SGD under the same step size, we can first select a range of step sizes for SMISO {γ0, γ1, . . .}
and test SGD with step sizes of

{α|B|
N

γ0,
α|B|
N

γ1, . . .}. (26)

It is also worth mentioning that, it is not clear to us how to introduce momentum or adaptive step size into
SMISO, as we have to strictly follow the running mean update formula (Eq. (19)) to ensure En(w̄k − wkn ) = 0 for
unbiasedness. Adding additional terms (e.g. momentum) or changing the scale of the updates (e.g. normalizing the
update by its norm) without careful design could break the unbiasedness. However, studying such modifications
is beyond the scope of our paper therefore we only compare our methods with SMISO in its original form.
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The first term can be computed as

E
n
V
ε
gcv = E

n
V
ε

[∇f(w; n, ε) + E
ξ
∇f̃(w; n, ξ)−∇f̃(w; n, ε)] (29)

= E
n
V
ε

[∇f(w; n, ε)−∇f̃(w; n, ε)], (30)

which follows since Eξ∇f̃(w; n, ξ) is a constant with respect to ε and therefore does not affect the variance.

The second term can be computed as

V
n
E
ε
gcv = V

n
E
ε

[∇f(w; n, ε) + E
ξ
∇f̃(w; n, ξ)−∇f̃(w; n, ε)] (31)

= V
n

[
E
ε

[∇f(w; n, ε)] + E
ε

[E
ξ
∇f̃(w; n, ξ)]− E

ε
[∇f̃(w; n, ε)]

]
(32)

= V
n
E
ε

[∇f(w; n, ε) +∇f̃(w; n)−∇f̃(w; n)] (33)

= V
n
E
ε

[∇f(w; n, ε)] (34)

= V
n
[∇f(w; n)]. (35)

Then we can combine the two terms together to get

V[gcv] = E
n
V
ε

[∇f(w;n, ε)−∇f̃(w; n, ε)] + V
n
[∇f(w; n)] (36)

C.2 Variance of ginc

Here, we will derive the trace of the variance of the inc estimator defined as

ginc(w;n, ε) = ∇fn(w;n, ε) + E
m
∇f(wm;m, ε)−∇f(wn;n, ε)︸ ︷︷ ︸

cinc(w;n,ε)

. (37)

We can derive its variance by first applying the law of total variance

V[ginc] = E
ε
V
n
ginc + V

ε
E
n
ginc. (38)

The first term can be computed as

E
ε
V
n
ginc = E

ε
V
n
[∇fn(w; n, ε) + E

m
∇f(wm;m, ε)−∇f(wn; n, ε)] (39)

= E
ε
V
n
[∇f(w; n, ε)−∇f(wn; n, ε)], (40)

where the second line follows because Em∇f(wm;m, ε) is a constant with respect to n.

The second term can be computed as

V
ε
E
n
ginc = V

ε
E
n
[∇fn(w; n, ε) + E

m
∇f(wm;m, ε)−∇f(wn; n, ε)] (41)

= V
ε

[
E
n
∇fn(w; n, ε) + E

n
E
m
∇f(wm;m, ε)− E

n
∇f(wn; n, ε)

]
(42)

= V
ε

[
E
n
[∇fn(w; n, ε)] + E

m
∇f(wm;m, ε)− E

n
∇f(wn; n, ε)

]
(43)

= V
ε
E
n
[∇fn(w; n, ε)] (44)

= V
ε

[∇f(w; ε)], (45)

which then leads us to
V[ginc] = E

ε
V
n
[∇f(w; n, ε)−∇f(wn; n, ε)] + V

ε
[∇f(w; ε)]. (46)
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C.3 Variance of gens

In this section, we will derive the variance for the estimator gens defined as

gens(w;n, ε) = ∇f(w;n, ε) + βccv(w;n, ε) + (1− β)cinc(w;n, ε)︸ ︷︷ ︸
cens(w;n,ε)

, (47)

under the ideal assumption where we have f = f̃ and w = wn,∀n. The variance can be derived through

V[gens] = V
ε,n

[∇f(w; n, ε) + βccv(n, ε) + (1− β)cinc(n, ε)] (48)

= V
ε,n

[
∇f(w; n, ε) + β

(
E
ξ
∇f̃(w; n, ξ)−∇f̃(w; n, ε)

)
+ (49)

(1− β)
(
∇E

m
f(wm;m, ε)−∇f(wn; n, ε)

)]
Then we replace f̃ with f and wn with w based on our assumption,

V[gens] = V
ε,n

[
∇f(w; n, ε) + β

(
E
ξ
∇f(w; n, ξ)−∇f(w; n, ε)

)
+ (50)

(1− β)
(
∇E

m
f(w;m, ε)−∇f(w; n, ε)

)]
= V

ε,n

[
∇f(w; n, ε) + β (∇f(w; n)−∇f(w; n, ε)) + (1− β) (f(w; ε)− f(w; n, ε))

]
(51)

= V
ε,n

[
β∇f(w; n) + (1− β)∇f(w; ε)

]
(52)

= β2 V
n
[∇f(w; n)] + (1− β)2 V

ε
[∇f(w; ε)]. (53)

The last line follows because ∇f(w;n) is independent of ∇f(w; ε).

D Step-size search range

For Australian and Sonar, we experiment with learning rates of

{7.5× 10−3, 5× 10−3, 2.5× 10−3, 1× 10−3, 5× 10−4, 1× 10−4, 5× 10−5, 2.5× 10−5, 1× 10−5}

For MNIST, PPCA ,Tennis and MovieLens, we used

{1× 10−1, 5× 10−2, 1× 10−2, 5× 10−3, 1× 10−3}

for naive, cv and joint, where the optimizer is Adam.

When optimizing with SMISO, we set α = 0.9 and we perform grid search over the value of γ, for MNIST with
SMISO, we experiment with γ in

{5× 10−2, 2.5× 10−2, 1× 10−2, 5× 10−3, 2.5× 10−3, 1× 10−3, 5× 10−4, 1× 10−4, 5× 10−5, 1× 10−5}

For Tennis with SMISO, we experiment with γ in

{5× 10−2, 2.5× 10−2, 1× 10−2, 5× 10−3, 1× 10−3, 1× 10−4, 1× 10−5}

For PPCA with SMISO, we experiment with γ in

{1× 10−2, 5× 10−3, 1× 10−3, 1× 10−4, 1× 10−5, 1× 10−6, 1× 10−7}

For MovieLens with SMISO, we experiment with γ in

{2.5× 10−3, 1× 10−3, 5× 10−4, 1× 10−4}



Xi Wang, Tomas Geffner, Justin Domke

Algorithm 3 Joint control variate for generic doubly-stochastic optimization problem.
Input step size λ, doubly-stochastic objective f(w;n, ε), and approximation f̃(w;n, ε) with closed-form over ε.
Initialize parameters w and parameter table W = {w1, . . . , wN} using a single epoch with naive.
Initialize running mean. G ← Em Eξ∇f̃(w;m, ξ) . Sum over m, closed-form over ξ
Repeat until convergence:
Sample n and ε.
Compute base gradient. g ← ∇f(w;n, ε)

Compute control variate. c ← E
m
E
ξ
∇f̃(wm;m, ξ)−∇f̃(wn;n, ε) . Use E

m
E
ξ
∇f̃(wm;m, ξ) = G

Update the running mean. G ← G+ 1
N

E
ξ

(
∇f̃(w;n, ξ)−∇f̃(wn;n, ξ)

)
. Closed-form over ξ

Update the parameter table wn ← w

Update parameters. w ← w − λ(g + c) . Or use g + c in any stochastic optimization algorithm

E Generic optimization algorithm

In Alg. 1, we describe the end-to-end procedure of applying joint control variate in BBVI. The joint control
variate can also be applied in generic doubly-stochastic optimization problems as is shown in Alg. 3.

We evaluate the generic version on generalized linear models with Gaussian dropout, with an objective function
defined as

f (w) = E
n
E
ε
f (w; n, ε), (54)

f (w;n, ε) := L (yn, φ(xn;w, ε)) (55)
φ(xn;w, ε) = w(ε� xn), (56)

where xn ∈ RD, yn ∈ RK , w ∈ RK×D and ε ∈ RD is a sample from N (1, σI), � stands for element-wise product
and L is a loss function such as mean-squared error.

We can find an approximation to Eq. (55) by applying second-order Taylor expansion around ε = 1, given by

f̃ (w;n, ε) = f (w;n, 1) + (ε− 1)>∇εf (w;n, 1) +
1

2
(ε− 1)>∇2

εf (w;n, 1)(ε− 1), (57)

whose expectation with respect to ε can be given in closed-form as

E
ε
f̃ (w;n, ε) = f (w;n, 1) +

σ2

2
tr
(
∇2
εf (w;n, 1)

)
. (58)

Results We compare the performance of gnaive, gcv, and gjoint on CIFAR-10 (Krizhevsky et al., 2009) classifi-
cation, where we apply dropout on features extracted from a LeNet (LeCun et al., 1998) pretrained on CIFAR-10
and then fine-tune the output layer using the cross-entropy loss with σ = 0.5. We use a batch size of 100, and
optimize using standard gradient descent without momentum for a wide range of learning rates. We present
the results in Figure 5 where we show the trace of objective evaluated on the full training set under different
learning rates and different numbers of iterations. We can see that gjoint always reaches objectives smaller than
the baseline estimators, displaying significantly better convergence for large learning rates.

F Approximation function for mean-field Gaussian BBVI

Recall that, given w = (µ, logσ), the objective function for mean-field Gaussian BBVI is written as

f(w) = E
n
E
ε
f(w; n, ε), (59)

where f(w;n, ε) = −N log p(xn | Tw(ε))− log p(Tw(ε))−H(w), Tw(ε) = µ+ ε� σ, (60)

where we use the ε notation here to also represent a vector. Inspired by previous work (Miller et al., 2017),
we get an approximation for f (w;n, ε) using a second order Taylor expansion for the negative total likelihood
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G Comparision with true posterior

On small problems, in particular, Sonar and Australian, we can acquire the true posterior using MCMC and
compute the approximation error of the variational posterior using the true posterior. To be more specific, we run
MCMC on these two problems using NUTS (Hoffman et al., 2014) with 4 chains, where we warm up for 5,000
steps and then collect 25,000 samples from each chain, giving a total of 100K samples that we use to estimate the
mean and variance of the true posterior, denoted as µmcmc and σ2

mcmc respectively. We then compute the L2
distance between the mean and variance of the variational posterior (a diagonal Gaussian) and that of the true
posterior as the approximation error. We additionally acquire a set of ground truth variational parameters using
full dataset and 200 Monte Carlo samples for gradient estimation, optimized for 10,000 iterations with a learning
rate of 1× 10−4. The approximation error based on the ground truth parameter serves as a reference value on
the smallest error each estimator can achieve.

The results are presented in Fig. 6, the observation aligns with the ELBO traces (Fig. 3), where joint is capable
of approaching the true posterior mean at a speed faster than with baseline estimators, eventually reach the
approximation error of the ground truth variational parameters.

H Results under SGD

In this section, we compare naive, cv, and joint with SMISO using SGD. The step sizes for SMISO are the
same as the values shown in Sec. D. The step sizes for other models under SGD are converted through Eq. (26)
correspondingly. Additionally, we compare their performance with the optimization results acquired using Adam.
The results are presented in Fig. 7 and Fig. 8. Overall, with SGD, joint still shows superior performance
compared with baseline estimators except for MovieLens, where all estimators fail to converge under the selected
step sizes (and using larger step sizes could cause divergence in optimization). In addition, all estimators show
performance worse than that of Adam when optimized with SGD except for joint on Tennis.

Note that, when experimenting with PPCA using joint and SGD, we perform updates with naive in the first
three epochs to avoid diverging, as the joint shows a high gradient norm in the first few epochs when SAGA is
still warming up. This modification is not required when using Adam, as Adam adaptively chooses the step size
based on the gradient norm.

I Wall clock time v.s convergence

In this section, we provide the wall clock time v.s. convergence results. The results are presented in Fig. 9. The
results are identical to the results in the second column in Fig. 3 with the x-axis for each estimator rescaled using
the values from Table. 3.
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