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Abstract

We consider offline policy optimization (OPO)
in contextual bandits, where one is given a
fixed dataset of logged interactions. While
pessimistic regularizers are typically used to
mitigate distribution shift, prior implementa-
tions thereof are either specialized or compu-
tationally inefficient. We present the first gen-
eral oracle-efficient algorithm for pessimistic
OPO: it reduces to supervised learning, lead-
ing to broad applicability. We obtain statis-
tical guarantees analogous to those for prior
pessimistic approaches. We instantiate our
approach for both discrete and continuous
actions and perform experiments in both set-
tings, showing advantage over unregularized
OPO across a wide range of configurations.

1 INTRODUCTION

Offline Policy Optimization (OPO) is a fundamental
variant of reinforcement learning (RL) where one op-
timizes a decision-making policy using previously col-
lected data. (It is also called Offline RL.) OPO is
particularly useful when new experimentation via on-
line RL is costly, dangerous, or would take too long. A
central challenge in OPO is distribution shift, when the
logging policy and the learned policy induce different
data distributions, possibly leading to high uncertainty
on the learned policy and poor overall performance.
This challenge is typically mitigated via pessimism:
optimizing a regularized objective that evaluates each
policy via a “pessimistic” confidence bound on its loss,
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thereby penalizing policies with high empirical variance.
While this approach is well-understood from statistical
perspective, computationally efficient implementations
remain elusive. In this paper, we address this issue for
contextual bandits, a practically important special case
of RL and a research area in its own right.

Thus, we study pessimistic OPO in contextual ban-
dits.1 We develop a new algorithm for this problem.
Our algorithm is oracle-efficient, making a single call
to an (arbitrary) computational oracle for supervised
learning. The algorithm efficiently forms an artificial
problem instance of supervised learning which incor-
porates pessimism and is passed to the oracle. This
reduction to supervised learning allows us to handle
any “oracle-supported” policy class (i.e., a policy class
that an oracle can optimize over), and offers flexibility
to employ various oracle implementations developed in
prior work. We obtain similar statistical guarantees as
prior (computationally inefficient) implementations of
pessimism. On a high level, we obtain the first compu-
tationally efficient algorithm with statistical guarantees
for an arbitrary oracle-supported policy class.

Our approach carries over to contextual bandits with
continuous actions, an important, well-studied scenario
motivated by optimizing prices and continuous sys-
tem parameters. Distribution shift and computational
tractability are particularly challenging in this scenario.
This is due to the complexity of the action space and
the large number of hyper-parameters, respectively.

We conduct an extensive empirical study for both dis-
crete and continuous actions. We instantiate our ap-
proach across a range of configurations, both for the
experimental environment and for the algorithm it-
self. We find that our approach is broadly superior to
the vanilla policy optimization, while it is much more
widely applicable—due to oracle efficiency—than the

1I.e., OPO with pessimism, as described above. Without
further mention, we focus on regularizers that penalize
empirical variance, rather than policy complexity. While the
latter regularizers may also be construed as “pessimistic”,
they target overfitting rather than distribution shift.
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implementations of pessimism using prior techniques.

Due to space limitations, all proofs and details of the
experiments are, resp., in Appendix A and Appendix B.

1.1 Related Work

OPO is extensively studied in contextual bandits (start-
ing from, e.g., Beygelzimer and Langford, 2009; Bottou
et al., 2013; Dud́ık et al., 2014; Athey and Imbens,
2016), and in RL more generally (Levine et al., 2020).

OPO methods typically build on estimators for offline
policy evaluation (Langford et al., 2008; Dud́ık et al.,
2014; Farajtabar et al., 2018), with inverse probabil-
ity weighting (IPW) estimator (Horvitz and Thomp-
son, 1952) as the canonical example. It is well known
that IPW can have large variance, and a number of
variations of this estimator, such as clipping (Strehl
et al., 2010; Wang et al., 2017; Su et al., 2019), self-
normalization (Swaminathan and Joachims, 2015b),
and shrinkage (Su et al., 2020), have been developed
to mitigate variance in exchange for introducing bias.
These estimators do not alleviate distribution shift and
are complementary to our approach. As such, we focus
on vanilla IPW for our theoretical treatment.

The oracle-efficiency framework has been prominent in
contextual bandits since Langford and Zhang (2007),
with much of this work focusing on supervised learn-
ing oracles (e.g., Langford and Zhang, 2007; Dudik
et al., 2011; Agarwal et al., 2014). It has been adopted
across a range of other problems including structured
prediction (Daumé et al., 2009; Ross et al., 2011), ac-
tive learning (Dasgupta et al., 2007), and online learn-
ing (Haghtalab et al., 2022; Block et al., 2022) and in
many cases has lead to highly practical algorithms.

Contextual bandits with continuous actions have been
studied since Lu et al. (2010); Slivkins (2014), amidst
many related papers on non-contextual bandits, usually
under Lipschitz assumptions (c.f., Slivkins, 2019, Ch
4.4). Our work builds on the “smoothing” approach
from Krishnamurthy et al. (2020), see also (Majzoubi
et al., 2020; Zhu and Mineiro, 2022; Zhu et al., 2021).
OPO with continuous actions has also been studied in
Kallus and Zhou (2018); Chernozhukov et al. (2019),
but focusing on issues other than pessimism.

Pessimistic OPO in contextual bandits was intro-
duced in (Swaminathan and Joachims, 2015a) via the
Empirical Bernstein (EB) regularizer. This approach
allows for arbitrary policy classes, but is computation-
ally inefficient, limiting applicability.

The vast follow-up work is either computationally inef-
ficient (e.g., Jin et al., 2022), or lacks statistical guaran-
tees (e.g., Fujimoto et al., 2019; Kumar et al., 2020; Yu

et al., 2020; Trabucco et al., 2021), or is substantially
restricted in scope. The latter work posits realizability
– a particular loss model, e.g., linear (e.g., Liu et al.,
2020; Li et al., 2022; Rashidinejad et al., 2022; Uehara
and Sun, 2022), or focuses on a “tabular” problem2

(e.g., Kidambi et al., 2020; Rashidinejad et al., 2021),
or only applies to specific policy classes (e.g., London
and Sandler, 2019; Nguyen-Tang et al., 2022; Sakhi
et al., 2023; Aouali et al., 2023).

In contrast to all this follow-up work, our method
is computationally efficient and general in scope, not
relying on realizability or small number of contexts and
handling any “oracle-supported” policy class. Further,
none of this follow-up work handles continuous actions.

In simultaneous work,3 Aouali et al. (2023) use a reg-
ularizer similar to ours, but with a specialized scope
(mixtures of linear mixed-logit policies) and a different
(PAC-Bayesian) perspective in the analysis.

2 PRELIMINARIES

Offline Policy Optimization (OPO). In contextual
bandits, an agent interacts with an environment with
a context space X and an action space A. In each
round i, the agent observes a context xi ∈ X , chooses
an action ai ∈ A, and observes a loss ℓi(ai) ∈ [0, 1]
(and nothing else). The pair (xi, ℓi), where ℓi is a loss
function A → [0, 1], is drawn independently from some
fixed (but unknown) distribution D .

As a form of inductive bias, a policy class Π is given,
where each policy π ∈ Π is a randomized mapping from
contexts to actions. π(· | x) specifies the distribution
over actions given context x. We define the risk for
policy π and the optimal policy π⋆, respectively, as

R (π) := E(x,ℓ)∼D, a∼π(· | x) [ℓ(a)] ,

π⋆ ∈ argmaxπ∈Π R(π).

In OPO, one seeks a policy π ∈ Π with low excess
risk R(π) − R(π⋆). The input is a dataset S =
{(xi, ai, ℓi(ai))}i∈[N ] collected over N rounds of contex-

tual bandits by a known logging policy µ : X → ∆(A).
Here, each action ai is drawn independently from dis-
tribution µ(· |xi) specified by the logging policy.

We posit access to a computational oracle: an algorithm
for some hard but well-studied problem. Indeed, OPO
tends to be NP-hard even with full feedback: given
datapoints (xi, ai, ℓi), i ∈ [N ], where ℓi : A → [0, 1]
is the entire loss function. However, this is precisely

2I.e., optimizes over the class of all policies, implicitly
assuming a small number of contexts.

3According to resp. publication dates on arxiv.org.
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cost-sensitive classification (CSC), a classical and well-
studied problem in supervised learning. Therefore,
we posit an oracle which exactly solves CSC for a
particular action set A and policy class Π.4 We allow
only a small number of oracle calls; such algorithms
are called oracle-efficient (and our algorithms only call
the oracle once). This is a standard approach in prior
work on contextual bandits and OPO (Dud́ık et al.,
2014; Swaminathan and Joachims, 2015a).

Naive Solution: IPW. The prevailing approach to
OPO from the statistical perspective is to construct an
estimator R̂ : Π → R+ for the policy risk R(·) based on

the dataset S and minimize R̂(π) over the policy class
Π. The standard estimator is the inverse probability
weighting (IPW) estimator. Define:

ℓ̂i(π) :=
π(ai | xi)

µ(ai | xi)
ℓi(ai), R̂IPW(π) :=

1

N

N∑
i=1

ℓ̂i(π),

and set π̂IPW ∈ argminπ∈Π R̂IPW(π). The IPW estima-
tor is unbiased and (for finitely many actions) asymp-
totically consistent whenever the support of the logging
policy µ is the entire action space (for any context).
To formalize this:

Assumption 2.1. µ (a |x) > 0 for any context x ∈ X
and action a ∈ A.

Further, the IPW-based approach is oracle-efficient:
optimizing R̂IPW(·) is equivalent to calling the oracle
with the loss vectors a 7→ ℓi(ai)/µ(ai | xi) · 1{a = ai}.

The variance of the IPW estimator, specifically V (π) :=

Var
[
ℓ̂i(π)

]
, will be crucial in what follows. We call

it the IPW-variance of policy π. Denote V (Π) :=
supπ∈Π V (π). Also important is the worst-case density
ratios, δsup(π, µ) := supx∈X ,a∈A π(a | x)/µ(a | x) for a
particular policy π and δsup(Π, µ) := supπ∈Π δsup(π, µ).

Known Issue: Distribution Shift. OPO with the
IPW estimator can have poor finite-sample behavior,
particularly when the support of the logging policy µ is
highly non-uniform across contexts (e.g., see Jin et al.
(2021) and references therein). Indeed, the standard
(and essentially best) bound for IPW is that for any
α ∈ (0, 1), with probability at least 1− α,

R(π̂IPW)−R(π⋆) ≲
√

V (Π) · 1
N · ln(|Π|/α)+

δsup(Π, µ) · 1
N · ln (|Π|/α) , (2.1)

where ≲ ignores constant factors. The undesirable
behavior of IPW manifests in the dependence on the

4Sometimes the oracle needs to handle losses that range
on R+, so we allow this without further mention. For
continuous actions, we use a standard CSC oracle that
handles a finite action space, see Section 5.

worst-case IPW-variance V (Π). In more detail, if π⋆

(or, more generally, any high-quality policy) has good
coverage under the logging policy µ, its IPW-variance
V (π⋆) would be small, and we would hope that the
excess risk of π̂IPW would be correspondingly small.
Unfortunately, this is not the case for IPW-based policy
optimization; a low quality policy with large variance
can significantly degrade the finite sample performance.

Known Fix: Pessimism. Pessimism mitigates the
effects of distribution shift in OPO. One now minimizes
an upper confidence bound (UCB) on policy risk, pe-
nalizing policies with high uncertainty. Formally, one
minimizes a pessimistic estimator R̂ : Π× [0, 1] → R+

which satisfies Pr
[
∀π ∈ Π : R̂(π, α) ≥ R(π)

]
≥ 1 − α,

where α ∈ (0, 1) is a parameter.5 This yields policy
π̂ ∈ Π which w.h.p. satisfies

R(π̂) ≤ R̂(π̂, α) ≤ min
π∈Π

R̂(π, α). (2.2)

Thus, R(π̂) is compared to the best policy risk guar-
anteed by the data, under this pessimistic estimator.
Here, we interpret R̂(π, α) as the “guaranteed policy
risk”, which tends to be smaller for policies of similar
risk but better coverage in the data. Guarantees of
this form are sometimes called best-effort guarantees
(e.g., Xie et al., 2021; Jin et al., 2021).

Remark 2.2. The key advantage of “pessimistic” guar-
antee (2.2) is that the estimator only needs to be “sharp”
on some good policy π, regardless of how well it can
estimate other policies. This suffices to guarantee that
the learned policy π̂ has low risk. In particular, if the
logging policy µ has good support for π⋆, the best policy,
then we can expect π̂ to perform well, even if other
policies are poorly supported.

To characterize the quality of best-effort guarantees, one
provides a data-independent upper bound for R̂(π, α)−
R(π), and therefore for R(π̂)−R(π).

Prior Implementations of Pessimism in OPO.
Swaminathan and Joachims (2015a) obtain an
upper confidence bound (UCB) on the policy
risk using the empirical Bernstein (EB) inequal-

ity (Maurer and Pontil, 2009). Letting V̂ (π) :=

1
N(N−1)

∑
1≤i<j≤N

(
ℓ̂i(π)− ℓ̂j(π)

)2
be the sample

variance, they minimize the UCB on the policy risk,

R̂IPW(π) +

√
V̂ (π) · 1

N · ln(|Π|/α). (2.3)

This is advantageous as per Remark 2.2. The following
data-independent guarantee holds: letting π̂IPW+EB be

5For implementation, it may be convenient to modify

R̂(π) so as to drop any additive “constants” that do not
depend on π (as this preserves the minimizer).
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the learned policy, ∀π ∈ Π,

R(π̂IPW+EB)−R(π) ≲
√
V (π) · 1

N · ln(|Π|/α)+

δsup(Π, µ) · 1
N−1 · ln(|Π|/α). (2.4)

It is also a best-effort guarantee (since it is obtained by
upper-bounding (2.3)). The technical advantage over
Eq. (2.1) is that the worst-case IPW-variance V (Π)
is replaced with policy-specific V (π). This method
outperforms the vanilla IPW approach in experiments.

However, this approach suffers from computational
inefficiency. Particularly, the EB-based objective in
Eq. (2.3): (a) does not decompose across data points
so it is not amenable to streaming or stochastic op-
timization methods,6 (b) yields a non-convex land-
scape with a differentiable policy class, and (c) does
not support non-differentiable policy classes except in
highly specialized cases (London et al., 2023). Note
that non-differentiable policy classes are employed by
a variety of methods, e.g., those that train a regres-
sion model f : X × A → R and induce the policy
πf : x 7→ argmina f(x, a).

3 PSEUDO-LOSS

We introduce a new regularizer, dubbed pseudo-loss
(PL), and show that it provides pessimism-style guar-
antees for OPO while admitting an oracle-efficient im-
plementation. We focus on discrete actions here, i.e.,
when |A| < ∞.7 Pseudo-loss is defined as follows:

Definition 3.1. Given a policy π, pseudo-loss P̂L(π)
and its expectation are

P̂L(π) :=
1

N

N∑
i=1

∑
a∈A

π(a |xi)

µ(a |xi)

PL(π) := E
[
P̂L(π)

]
= Ex∼D

[∑
a∈A

π(a |x)
µ(a |x)

]
.

This is well-defined by Assumption 2.1 (which we as-
sume throughout without further mention).

We optimize this objective, parameterized by β > 0:

π̂IPW+PL,β ∈ argmin
π∈Π

R̂IPW(π) + β · P̂L(π). (3.1)

Remark 3.2. Our regularizer is inspired by a technique
in the EXP3.P algorithm (Auer et al., 2002). This

6However, Swaminathan and Joachims (2015a) proposed
an approach to optimize this objective using stochastic
gradient descent by iteratively (across epochs) optimizing
an upper bound on the objective.

7Given context x, each policy π produces a probability
mass function (p.m.f.) π(· |x) over the actions. We call
such policies mass-based.

algorithm works in a very different scenario: high-
probability regret bounds in online adversarial bandits.
In particular, it is not concerned with contexts, offline
optimization, pessimism, or oracles. Our analysis is
technically different (because of the different scenario),
and, in some sense, stronger: e.g., we remove the
dependence on the range of β in Eq. (3.1).

3.1 PL Implements Pessimism

Consider the objective in Eq. (3.1) plus some term Ψβ

that does not depend on policy π (so the optimization
stays the same). We prove that the modified objective
is an upper confidence bound on the policy risk.

We need some notation to define Ψβ . Denote the
supremum and infimum of the probability mass func-
tion (p.m.f.) induced by policy π as, resp., δsup (π) :=
supπ(a |x) and δinf (π) := inf π(a |x), where both ex-
trema are over contexts x ∈ X and actions a ∈ A.
Write δsup (Π) = supπ∈Π δsup (π). Denote

∆(Π, µ) := max

(√
δsup(Π)/δinf(µ), δsup(Π, µ)

)
,

where δsup(Π, µ) was defined in Section 2. Thus:

Lemma 3.3. Fix α ∈ (0, 1). Let

Ψβ =
O(δsup(Π)/β +∆(Π, µ)) · ln(|Π|/α)

N
. (3.2)

With probability at least 1− α, the following holds for
all policies π ∈ Π and β > 0:

R(π) ≤ R̂IPW(π) + β · P̂L(π) + Ψβ . (3.3)

3.2 Oracle-Efficient Implementation

Proposition 3.4. The optimization in Eq. (3.1) can
be solved by a single call to any CSC oracle for policy
class Π, with modified loss vectors

a 7→ ℓi(ai)/µ(ai |xi) · 1{a = ai}+ β/µ(a |xi).

In practice, we treat β as a hyper-parameter, follow-
ing prior implementations of EB in Swaminathan and
Joachims (2015a),8 with the goal of selecting a near-
optimal value during a subsequent policy selection step.

3.3 Performance Guarantees

Lemma 3.3 immediately implies a best-effort guarantee
via (2.2). Further, we obtain best-effort guarantees

8There, the bound in Eq. (2.3) is not used directly,
because it may be too loose or the exact complexity of the
policy class Π may be unknown. Instead, a hyper-parameter
similar to β is introduced.
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that are data-independent.9 This is advantageous as
per Remark 2.2 and similar to EB.

Theorem 3.5. Fix α ∈ (0, 1). With probability at least
1− α, for any β > 0 we have

R(π̂IPW+PL,β) ≤ min
π∈Π

{R(π) +O(Φ)} , (3.4)

where Φ equals β · P̂L(π) plus Ψβ from Eq. (3.2).

Further, with probability at least 1−α, for some β⋆ > 0
Eq. (3.4) holds with β = β∗ and Φ given by√

δsup(Π) · PL(π) · ln |Π|
α

N
+

∆(Π, µ) · ln |Π|
α

N
. (3.5)

The key advantage over EB is the oracle-efficient imple-
mentation. However, our guarantee is worse than that
of EB, since each terms in Eq. (3.5) is lower-bounded
by the respective term in Eq. (2.4). (This is because
V (π) ≤ δsup(Π) ·PL(π) for any policy π, see Prop. A.2.)

4 EMPIRICAL EVALUATION

Scope. We compare pseudo-loss (PL) to other “gen-
eral” approaches for pessimistic OPO that accommo-
date an arbitrary oracle: Empirical Bernstein and “no
pessimism”. We consider two representative oracles,
based, resp., on policy gradient and linear regression.
The full scope of our experiments is explained below.

To keep our scope manageable, we do not compare
PL to the numerous “specialized” approaches for pes-
simistic OPO (see Related Work). While we believe
such comparisons are somewhat unfair to the general
method such as ours, we leave open the possibility that
some of these specialized approaches are superior for
their respective policy classes. Likewise, we did not
consider deep learning oracles.10

Experimental Setup. We simulate offline contextual
bandit instances from full-information classification
datasets.11 This semi-synthetic setup gives us the
ground-truth for evaluation and allows to precisely
vary experimental conditions. We use four datasets
from OpenML, with 1M datapoints, 14-36 real-valued
features, and 6-26 classes (see Table 6 in Appendix B).

9The guarantees in Theorem 3.5 are also “best-effort
guarantees”, as they are obtained by upper-bounding the
right-hand side in (3.3) and minimizing over all policies.

10Aside from implementation complexity, replicating our
experiments in a similarly systematic way would require
much more compute power than we had access to.

11This is a standard approach for contextual bandit exper-
iments, e.g., see Beygelzimer and Langford (2009); Dud́ık
et al. (2014); Wang et al. (2017); Su et al. (2019, 2020).

For the experimental environment, we vary the follow-
ing factors: dataset size, cost-type (binary- vs. real-
valued), number of actions, and logging policy (see
Table 1). We try all 2× 2× 2× 3 = 24 possible envi-
ronments. In particular, we use the technique of Foster
et al. (2018) to vary the cost-type and the number
of actions. We use 3 logging policies, denoted µgood,ϵ

(resp., µbad,ϵ), by training good (resp., bad) policies
and mixing with ϵ-probability uniform exploration.

For methods, we primarily compare three options for
pessimistic regularizer: pseudo-loss (PL), Empirical
Bernstein (EB), and “no regularizer” (None). Further,
there are two choices for the risk estimator: inverse
probability weighting (IPW) and a doubly robust esti-
mator (DR) (Dud́ık et al., 2014), which is also compati-
ble with CSC oracles. Finally, we consider two different
underlying optimizers for the CSC oracle: policy gra-
dient (PG) using a linear+softmax policy architecture
and a linear regression approach (LR) where we fit
a linear model to the loss for each action and define
the policy to be greedy with respect to the predicted
losses. (However, EB cannot accommodate the linear
regression approach since the policy architecture is not
differentiable and thus requires enumerating over all
policies.) See Table 2 for an overview. Thus, we have
4 possible (estimator, CSC oracle) configurations for
PL and None, and only 2 for EB.

We tune hyper-parameters for each method using a
policy selection rule based on the EB bound in Eq. (2.3)
using a 50/50 split of the data for policy optimization
and selection respectively.12 See Appendix B for hyper-
parameters for each method. All results are based on
50 replicates with mean and standard errors reported.

Results. Across a wide range of experimental condi-
tions, we find that using the PL regularizer consistently
outperforms vanilla OPO with no pessimism. These
results are visualized in Figure 1 (left), where we plot
the relative performance improvement (RelImp) of PL
over the baseline with no pessimism, averaged over all
runs. Specifically, each curve corresponds to a partic-
ular (CSC oracle, risk estimator) pair, and represents
the empirical CDF of RelImp across all 4×24 (dataset,
environment) pairs. The median RelImp is 11.7%. In
our experiments, PL was, essentially, never worse than
the no-pessimism baseline.13 We note that PL is es-
pecially helpful when the sample size is small relative
to the number of actions, which is consistent with the
theory that pessimism is particularly helpful in the

12Policy selection is another instance of OPO with a
enumerably-small policy class, with one policy for each
hyper-parameter setting of the OPO method. Since the
class is small, computational efficiency is less of a concern
and we can use the statistically tighter EB bound.

13More precisely, PL prevails on 99.5% of the conditions.
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Table 1: Experimental environment.

Item Options

dataset size {0.01, 0.1, 1}×1M
cost-type {real-valued, binary-valued}
#actions {#classes, 5 × #classes}
logging policy {µgood,ϵ=0.1, µgood,ϵ=0.01, µbad,ϵ=0.1}

Table 2: Options for the algorithms.

Item Options

regularizer {PL, EB, None}
estimator {IPW, DR}
CSC oracle {PG, LR}
EB oracle {PG}

Figure 1: Relative improvement (RelImp) for PL against the baseline with no pessimism: mean over all runs.
Left: 1 − CDF, the empirical cumulative density function of RelImp across all (dataset, environment) pairs.
Each curve corresponds to (CSC oracle, risk estimator) pair.
Right: RelImp (mean ± 2 standard errors) for a particular (dataset, environment) pair and the best-performing
(CSC oracle, risk estimator) pair. Each bar corresponds to a (dataset, dataset size) pair.
Details: 50 runs; 24 environments, as per Table 1; 4 datasets, as per Table 6.
The environment on the right is: real-valued cost, µgood,ϵ=0.1, and #actions = #classes.

non-asymptotic regime.

We also compare with Empirical Bernstein (EB) ap-
proach of Swaminathan and Joachims (2015a). We’d
expect that EB outperforms PL statistically (due to
Prop. A.2) and indeed it does: EB offers median RelImp
of 19.1% for the configurations where it is applicable.
However, EB cannot be instantiated with the linear
regression (LR) optimizer. LR, when coupled with
PL, sometimes yields the best overall performance, so
that when selecting the best algorithm configuration
for each regularizer PL beats EB on 26% of the settings.
We note that our implementation of the PG optimizer
for EB is an order of magnitude slower than PL.

We present detailed visualizations in Appendix B, iso-
lating each algorithm and environment configuration.
Representative visualizations are displayed in Figure 1
(right) and Table 3 (just for two datasets out of four).
We also report computation times.

Suggested guidance for practitioners:

Pessimism should always be employed for offline policy
optimization. If running time is not a concern and the

policy architecture supports it, use empirical Bernstein;
otherwise, use the PL estimator.

5 CONTINUOUS ACTIONS

We extend our approach to continuous actions, namely
the one-dimensional action space A = [0, 1]. We posit
that each policy π ∈ Π produces a probability density
function (p.d.f.) π(· |x) over the action space A for
each context x. We call such policies density-based.

Definition 5.1. For a density-based policy π, pseudo-
loss P̂L(π) and its expectation are

P̂L(π) =
1

N

N∑
i=1

∫
a∈A

π(a |xi)

µ(a |xi)
da

PL(π) := E
[
P̂L
]
= Ex∼D

[∫
a∈A

π(a |x)
µ(a |x)

da

]
.

Much of our analysis seamlessly carries over to density-
based policies. Specifically, Lemma A.4 and Theo-
rem 3.5 (as well as Propositions A.2 and A.3 in the
appendix) all hold for density-based policies if δsup(π)
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Table 3: Performance of different OPO methods: mean
± two standard errors over 50 runs. Bold numbers
represent the best performance within each (CSC ora-
cle, estimator) pair. Boxed numbers represent the best
across all algorithmic configurations.
This experiment: real-valued cost, logging policy
µgood,ϵ=0.1, data size ×0.1, # actions = # classes.

Risk × 100 Letter PenDigits

PG+IPW+PL 31.6±0.1 22.0±0.3
PG+IPW+EB 32.4±0.1 20.4±0.4
PG+IPW 45.5±0.8 26.4±0.8

PG+DR+PL 31.5±0.1 18.5±0.3

PG+DR+EB 37.0±0.4 15.7±0.3

PG+DR 43.1±0.6 21.3±0.6

LR+IPW+PL 31.8±0.0 23.1±0.3
LR+IPW 42.5±0.4 28.4±0.7

LR+DR+PL 31.8±0.1 22.9±0.2
LR+DR 42.0±0.3 27.2±0.6

and δinf(π) denote the supremum and infimum of the
p.d.f induced by π. All these results are proved simi-
larly to the discrete-action case, except the sums over
A are replaced with integrals over [0, 1]. Consequently,
these proofs are omitted.

Next, we need to transform the learning problem. This
is because (a) CSC algorithms typically can only han-
dle finitely many actions, and (b) the variance of IPW
estimator might be infinite when we consider determin-
istic policies (Kallus and Zhou, 2018), making learning
impossible. Thus, inspired by prior work on contextual
bandits with continuous actions (Krishnamurthy et al.,
2020; Zhu and Mineiro, 2022), we transform the OPO
problem with the original (density-based) policy class
Π to a CSC problem with a mass-based policy class
(denoted Π̃K) such that each policy in Π is a smoothed

version of some policy in Π̃K .

Formalizing this requires some care. We start with a
class of mass-based policies over K actions, denoted
Π̃K , for each K ∈ N. We interpret these K actions as
surrogate actions:

ÃK := {ãi}i∈[K] =
{

2i−1
2K

}
i∈[K]

⊂ A.

Next, form density-based policies

ΠK,H := { SmoothH(π̃) : π̃ ∈ Π̃K },

where the smoothed policy SmoothH(π̃) selects an ac-
tion a given a context x through the following process:

ã ∼ π̃ (· |x) , then a ∼
Uniform ([max (0, ã−H/2) ,min (1, ã+H/2)]) .

We call H the bandwidth of smoothing.14

We can optimize the PL-based objective in Eq. (3.1)

over Π = ΠK,H by calling a CSC oracle over Π̃K .

Proposition 5.2. Fix K,H ∈ N. Consider the
density-based policy class Π = ΠK,H as constructed
above. Then the objective in Eq. (3.1) can be optimized
via a single call to a CSC oracle for the mass-based
policy class Π̃K , with suitably modified loss functions
(details in Appendix A).

We characterize generalization performance of pseudo-
loss and smoothed policy class Π = ΠK,H . Note that
δsup (π) ≤ 2/H for any policy π ∈ Π.

Corollary 5.3. Fix α ∈ (0, 1). With probability at
least 1−α, for any β > 0 we have Eq. (3.4) holds with

Φ = β · P̂L(π) + (1/β + 1/δinf(µ)) · ln (|Π|/α)
NH

.

Further, with probability at least 1−α, for some β⋆ > 0
Eq. (3.4) holds with β = β∗ and

Φ =

√
PL(π) · ln(|Π|/α)

NH
+

ln(|Π|/α)
NHδinf(µ)

.

We also discuss how to construct the range of hyper-
parameters H and K in Appendix A.7.

5.1 Empirical Evaluation

We conduct an empirical study in the continuous-action
setting, with the same scope as in Section 4.

Experimental Setup. We follow (Bietti et al., 2021;
Majzoubi et al., 2020; Zhu and Mineiro, 2022) to sim-
ulate continuous-action contextual bandit instances
from 5 OpenML regression datasets (Vanschoren et al.,
2013), with 160K-5M datapoints and 9-32 features (see
Table 32 in Appendix B for details). We convert a
regression example (x, y), y ∈ R to a contextual bandit
example by defining the loss as ℓ(a) = |a− y|.

For the experimental environment, we vary two fac-
tors: the dataset size and logging policy. The logging
policies µϵ are obtained by training a regression model
on the original dataset, smoothing the prediction with
bandwidth 0.1 and mixing with the uniform-at-random
policy with proportion ϵ ∈ {0.1, 0.01}.

The algorithmic configurations are the same as those for
the discrete-action setting (the 10 options in Table 2).
We optimize hyper-parameters as before, using the
EB bound for policy selection. In this setup, we also
consider hyper-parameters K ∈ {10, 20, 50, 100} and

14Such “smoothing” was introduced in the online setting
in Krishnamurthy et al. (2020).
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Figure 2: Same semantics as in Figure 1. Details: 10 runs, 6 environments (Table 4) and 5 datasets (Table 32.)
The environment on the right has logging policy µϵ=0.1.

Table 4: Experimental environment: continuous actions

Item Options

dataset size {0.01, 0.1, 1}×ActualSize
logging policy µϵ, ϵ ∈ {0.1, 0.01}

H ∈ {0.01, 0.02, 0.05, 0.1}. Due to the large number of
hyper-parameters and the computational overhead of
EB, we only run EB for the small dataset sizes (0.01
and 0.1 fraction of the original dataset).

Results Overview. Figure 2 (left) visualizes the
relative improvement (RelImp) over vanilla policy opti-
mization with no pessimism. As with discrete actions,
PL-based pessimism exhibits consistent significant im-
provement across environmental and algorithmic con-
figurations. The median RelImp is 12% and we see
improvement in 97.5% of the experimental conditions.
In comparison, on configurations when EB is applica-
ble, EB offers a median RelImp of 25.2%, while PL
offers a median RelImp of 15.8%.

We present detailed visualizations in Appendix B, iso-
lating each algorithm and environment like we did for
discrete actions. Representative visualizations are in
Figure 2 (right) and Table 5 (just for 2 datasets). We
also report computation times.

6 DISCUSSION

We develop a new pessimistic approach for offline pol-
icy optimization in contextual bandits based on the
pseudo-loss (PL) regularizer. The approach offers a
favorable balance between computational complexity
and statistical performance. It is oracle efficient and
thus supports a wide range of policy classes and under-

Table 5: Same semantics as in Table 3. This experi-
ment: logging policy µϵ=0.1, data size ×0.1, 10 runs.

Risk * 100 Wisconsin AutoPrice

PG+IPW+PL 22.7±0.8 16.9±1.4

PG+IPW+EB 21.5±0.1 14.7±0.3

PG+IPW 26.6±1.1 20.2±0.9

PG+DR+PL 21.8±0.1 15.3±0.2

PG+DR+EB 21.5±0.3 14.4±0.1

PG+DR 24.0±0.2 18.0±0.9

LR+IPW+PL 24.1±1.4 18.5±0.8
LR+IPW 27.7±0.6 21.1±0.8

LR+DR+PL 23.1±0.8 17.7±0.9
LR+DR 26.4±0.4 18.7±0.5

lying optimization methods while offering a best-effort
guarantee analogous to, but slightly worse than, prior
computationally inefficient approaches. We observe
this balance in our experiments, offering the guidance
that pessimism should always be used and that PL
should be used when computation is a concern or when
sharper approaches are not applicable.

Limitations. Our experimental study is semi-
synthetic, transforming fully-labeled classification and
regression datasets to contextual bandit instances. A
standard practice in most prior work on contextual
bandits, it gives us access to ground truth, but may
not accurately reflect the performance in production.

Our experiments demonstrate that OPO methods are
rather sensitive to a variety of factors, paralleling
similar observations in Offline RL (Swaminathan and
Joachims, 2015a; Joachims et al., 2018; Su et al., 2019;
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Wang et al., 2021). Some factors, notably the choice
of optimizer (PG vs LR), choice of estimator (IPW
vs DR), and dataset quality, appear in our experimen-
tal results. In our preliminary experiments, we found
that other factors may also be relevant, e.g., optimizer
hyper-parameters. We did not rigorously evaluate these
factors to keep the experiments at a manageable level
of complexity. However, understanding whether/how
our qualitative findings carry over to production envi-
ronments is an important next step.
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Appendix

The supplement consists the proofs in Appendix A and detailed empirical evaluation in Appendix B. The
evaluation for discrete actions is in Appendix B.1 on p. 18, and for continuous actions in Appendix B.2 on p. 30.

A Theoretical analysis

We invoke Bennett’s inequality in our analysis.

Lemma A.1 (Bennett (1962)). Let z, z1, . . . , zN be i.i.d. random variables with values in [0, 1], For any
α ∈ (0, 1), with probability at least 1− α, we have

E[z]− 1

N

N∑
i=1

zi ≤
√

2Var(z) ln(1/α)

N
+

ln(1/α)

3N
.

A.1 Confidence intervals

We upper-bound the IPW-variance of a given policy π in terms of PL(π), and characterize the difference between
the pseudo-loss and its expectation. Then, we characterize confidence intervals for the policy risk via pseudo-loss.

Proposition A.2. V (π) ≤ δsup(π) · PL(π) for any policy π.

Proof.

V (π) = E(x,ℓ)∼D,a∼µ(· | x)

[(
π(a |x)
µ(a |x)

ℓ(a)

)2
]
− E2

(x,ℓ)∼D,a∼µ(· | x)

[
π(a |x)
µ(a |x)

ℓ(a)

]

≤ E(x,ℓ)∼D,a∼µ(· | x)

[(
π(a |x)
µ(a |x)

ℓ(a)

)2
]

≤ Ex∼D

[∑
a∈A

π2(a |x)
µ(a |x)

]

≤ δsup(π)Ex∼D

[∑
a∈A

π(a |x)
µ(a |x)

]
= δsup(π)PL(π).

The second inequality holds since 0 ≤ ℓ2(a) ≤ 1. The third inequality holds because π(a |x) ≤ δsup(π).

Proposition A.3. For any policy π and any α ∈ (0, 1), with probability at least 1− α,

1
2 PL(π)−O

(
ln(1/α)

N · δinf(µ)

)
≤ P̂L(π) ≤ 3

2 PL(π) +O

(
ln(1/α)

N · δinf(µ)

)
.

Proof. We prove Proposition A.3 with exact constants, which states that for any policy π and any α ∈ (0, 1),
with probability at least 1− α,

1

2
PL(π)− 4 ln(2/α)

3Nδinf(µ)
≤ P̂L(π) ≤ 3

2
PL(π) +

4 ln(2/α)

3Nδinf(µ)
.

First, we bound the variance of
∑

a∈A π(a |x)/µ(a |x). For any x ∈ X ,∑
a∈A

π(a |x)
µ(a |x)

≤ 1

δinf(µ)

∑
a∈A

π(a |x) = 1

δinf(µ)
.

Therefore,

Var

(∑
a∈A

π(a |x)
µ(a |x)

)
≤ E

(∑
a∈A

π(a |x)
µ(a |x)

)2
 ≤ 1

δinf(µ)
E

[∑
a∈A

π(a |x)
µ(a |x)

]
=

PL(π)

δinf(µ)
. (A.1)
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Applying Lemma A.1 to i.i.d. random variables
{∑

a∈A
π(a | xi)
µ(a | xi)

}
i∈[N ]

(precisely by multiplying the random

variables by δinf(µ) so their range is [0, 1], and considering both tails via a union bound), we have that for any
α ∈ (0, 1), with probability 1− α, it holds that

∣∣∣PL(π)− P̂L(π)
∣∣∣ ≤

√√√√Var

(∑
a∈A

π(a |x)
µ(a |x)

)
ln(2/α)

2

N
+

ln(2/α)

3Nδinf(µ)

≤

√
2PL(π) ln(2/α)

δinf(µ)N
+

ln(2/α)

3Nδinf(µ)

≤ PL(π)

2
+

ln(2/α)

Nδinf(µ)
+

ln(2/α)

3Nδinf(µ)

=
PL(π)

2
+

4 ln(2/α)

3Nδinf(µ)
.

The second inequality is Eq. (A.1). The last inequality follows from the AM-GM inequality.

Lemma A.4. Fix any policy π and α ∈ (0, 1). With probability at least 1− α,

|R(π)− R̂IPW(π)| ≲
√

ln(1/α)
N δsup(π) · P̂L(π) + ln(1/α)

N ∆(π, µ). (A.2)

Proof. We prove a version of the lemma with exact constants: namely, Eq. (A.2) is spelled out as

|R(π)−R(π̂IPW)| ≤
√

3 ln(4/α)
N δsup(π) · P̂L(π) + ln(4/α)

N max

(
2

√
8δsup(π)

3δinf(µ)
,
2

3
δsup(π, µ)

)
.

Applying Bennett’s inequality (Lemma A.1) to i.i.d. random variables
{
ℓ̂i(π)

}
(precisely by dividing by

δsup(π, µ), and also applying a union bound to account for both tails), we have that with probability at least
1− α/2,

∣∣∣R(π)− R̂IPW(π)
∣∣∣ ≤√2V (π) ln(4/α)

N
+

ln(4/α)δsup(π, µ)

3N

≤
√

2δsup(π)PL(π) ln(4/α)

N
+

ln(4/α)δsup(π, µ)

3N
,

where the last inequality is from Proposition A.2.

From Proposition A.3, we know that with probability at least 1− α/2,∣∣∣PL(π)− P̂L(π)
∣∣∣ ≤ PL(π)

2
+

4 ln(4/α)

3Nδinf(µ)
.

Applying union bound to both, we have that with probability at least 1− α,

∣∣∣R(π)− R̂IPW(π)
∣∣∣ ≤√2δsup(π)PL(π) ln(4/α)

N
+

ln(4/α)δsup(π, µ)

3N

≤

√√√√2δsup(π)
(
3/2P̂L(π) + 4 ln(4/α)/(3Nδinf(µ))

)
ln(4/α)

N
+

ln(4/α)δsup(π, µ)

3N

≤

√
3δsup(π)P̂L(π) ln(4/α)

N
+

√
8δsup(π)

3δinf(µ)

ln(4/α)

N
+

ln(4/α)δsup(π, µ)

3N
,

where the last inequality holds since
√
B1 +B2 ≤

√
B1 +

√
B2 for any B1 ≥ 0 and B2 ≥ 0.
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A.2 Proof of Lemma 3.3

We prove a version of the lemma with exact constants: namely, Eq. (3.3) is spelled out as

R(π) ≤ R̂IPW(π) + βP̂L(π) +
3δsup(Π) ln(4|Π|/α)

4βN
+

√
8δsup(Π)

3δinf(µ)

ln(4|Π|/α)
N

+
ln(4|Π|/α)δsup(Π, µ)

3N
.

Applying the union bound to the inequality in Lemma A.4 for all policies π ∈ Π, we have that with probability at
least 1− α, for any π ∈ Π, β > 0,

∣∣∣R(π)− R̂IPW(π)
∣∣∣ ≤

√
3δsup(π)P̂L(π) ln(4|Π|/α)

N
+

√
8δsup(π)

3δinf(µ)

ln(4|Π|/α)
N

+
ln(4|Π|/α)δsup(π, µ)

3N

≤ βP̂L(π) +
3δsup(π) ln(4|Π|/α)

4βN
+

√
8δsup(π)

3δinf(µ)

ln(4|Π|/α)
N

+
ln(4|Π|/α)δsup(π, µ)

3N

≤ βP̂L(π) +
3δsup(Π) ln(4|Π|/α)

4βN
+

√
8δsup(Π)

3δinf(µ)

ln(4|Π|/α)
N

+
ln(4|Π|/α)δsup(Π, µ)

3N
,

where the second inequality is derived by applying the AM-GM inequality, and the last inequality is by the
definition of δsup(π, µ), δsup(Π, µ), δsup(π), and δsup(Π). This concludes the proof.

A.3 Proof of Proposition 3.4

Recall that the proposition states that the optimization in Eq. (3.1) can be solved by calling any CSC oracle for
policy class Π once, with modified loss vectors a 7→ ℓi(ai)/µ(ai | xi) · 1{a = ai}+ β/µ(a |xi).

The objective in Eq. (3.1) can be re-written as

R̂IPW(π) + βP̂L(π) =
1

N

N∑
i=1

π(ai |xi)

µ(ai |xi)
ℓi(ai) + β

1

N

N∑
i=1

∑
a∈A

π(a |xi)

µ(a |xi)

=
1

N

N∑
i=1

∑
a∈A

π(a |xi) (1 {a = ai} ℓi(ai)/µ(ai |xi) + β/µ(a |xi)) ,

which concludes the proof.

A.4 Proof of Theorem 3.5

We prove Theorem 3.5 with exact constants: the guarantees in the theorem statement are spelled out as, resp.,

R(π̂IPW+PL,β) ≤ min
π∈Π

{
R(π) + 2βP̂L(π) +

(
3
2δsup (Π) /β + 8∆(Π, µ)

)
· ln (4|Π|/α)

N

}
. (A.3)

R(π̂IPW+PL,β⋆) ≤ min
π∈Π

{
R(π) +

√
18δsup(Π) · PL(π) · ln(4|Π|/α)

N
+

12∆(Π, µ) · ln(4|Π|/α)
N

}
. (A.4)

From the proof of Lemma 3.3, we know that with probability at least 1− α, for any β > 0 and π ∈ Π,
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R(π̂IPW+PL,β) ≤ R̂IPW(π̂IPW+PL,β) + βP̂L(π̂IPW+PL,β)

+
3δsup(Π) ln(4|Π|/α)

4βN
+

√
8δsup(Π)

3δinf(µ)

ln(4|Π|/α)
N

+
ln(4|Π|/α)δsup(Π, µ)

3N

≤ R̂IPW(π) + βP̂L(π) +
3δsup(Π) ln(4|Π|/α)

4βN
+

√
8δsup(Π)

3δinf(µ)

ln(4|Π|/α)
N

+
ln(4|Π|/α)δsup(Π, µ)

3N

≤ R(π) + 2βP̂L(π) +
3δsup(Π) ln(4|Π|/α)

2βN
+

√
32δsup(Π)

3δinf(µ)

ln(4|Π|/α)
N

+
2 ln(4|Π|/α)δsup(Π, µ)

3N
,

where the first and third inequalities come from the proof of Lemma 3.3, and the second inequality is by the
definition of π̂IPW+PL,β . This concludes the proof for the first part of the theorem.

Since the above inequality holds for every policy π ∈ Π and β > 0, let βπ :=

√
3δsup(Π) ln(4|Π|/α)

4NP̂L(π)
, we know that

with probability at least 1− α, for any policy π ∈ Π,

R(π̂IPW+PL,βπ ) ≤ R(π) + 2

√
3δsup(Π) ln(4|Π|/α)P̂L(π)

N
+

√
32δsup(Π)

3δinf(µ)

ln(4|Π|/α)
N

+
2 ln(4|Π|/α)δsup(Π, µ)

3N
.

So with probability at least 1− α, there exists β⋆ ∈ argminβπ :π∈Π R(π̂IPW+PL,βπ
) such that

R(π̂IPW+PL,β⋆) ≤ min
π∈Π

R (π̂IPW+PL,βπ
)

≤ min
π∈Π

R(π) + 2

√
3δsup(Π) ln(4|Π|/α)P̂L(π)

N
+

√
32δsup(Π)

3δinf(µ)

ln(4|Π|/α)
N

+
2 ln(4|Π|/α)δsup(Π, µ)

3N

 .

And we know from Proposition A.3 that√
3δsup(Π) ln(4|Π|/α)P̂L(π)

N
≤
√

3δsup(Π) ln(4|Π|/α) (3/2PL(π) + 4 ln(4|Π|/α)/(3Nδinf(µ)))

N

≤
√

9/2δsup(Π) ln(4|Π|/α)PL(π)
N

+

√
4δsup(Π) ln2(4|Π|/α)

N2δinf(µ)
,

where the second inequality again uses the fact that
√
B1 +B2 ≤

√
B1 +

√
B2 for any B1 ≥ 0 and B2 ≥ 0. So we

can get

R(π̂IPW+PL,β⋆)

≤ min
π∈Π

{
R(π) +

√
18δsup(Π) ln(4|Π|/α)PL(π)

N
+ 6

√
δsup(Π)

δinf(µ)

ln(4|Π|/α)
N

+
2 ln(4|Π|/α)δsup(Π, µ)

3N

}
,

which concludes the proof.

A.5 Proof of Proposition 5.2

We prove the formal version of Proposition 5.2, stated as follows.

Proposition A.5. Fix K,H ∈ N. Consider the density-based policy class Π = ΠK,H as constructed above. Then

the objective in Eq. (3.1) can be optimized via a single call to a CSC oracle for the mass-based policy class Π̃K ,
with loss function:

ã 7→ ℓi(ai)

He (ã)µ(ai |xi)
1 {ã ∈ AK,H(ai)}+

β

He (ã)

∫ min(1,ã−H/2)

max(0,ã+H/2)

1

µ(a |xi)
da, (A.5)
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where ã ∈ ÃK , the latter being the surrogate-action-set, He(ã) := min (1, ã+H/2)−max (0, ã−H/2) is the effec-

tive bandwidth, and AK,H(a) :=
{
ã ∈ ÃK : ã ∈ [a− h/2, a+ h/2]

}
is the surrogate-action-set identity function.

With the above definitions, the objective of in Eq. (3.1) for a policy π ∈ ΠK,H is

R̂IPW(π) + βPL(π)

=
1

N

N∑
i=1

[
π(ai |xi)

µ(ai |xi)
ℓi(ai) + β

∫ 1

0

π(a |xi)

µ(a |xi)
da

]

=
1

N

N∑
i=1

 ℓi(ai)

µ(ai |xi)

∑
ã∈AK,H(ai)

π̃ (ã |xi)

He (ã)
+ β

∫ 1

0

∑
ã∈AK,H(ai)

π̃ (ã |xi)

He(ã)µ (a |xi)
da


=

1

N

N∑
i=1

 ∑
ã∈AK,H(ai)

π̃(ã |xi)
ℓi(ai)

He (ã)µ (ai |xi)
+ β

∑
ã∈ÃK

π̃ (ã |xi)

∫ min(1,ã−H/2)

max(0,ã+H/2)

1

He (ã)µ(a |xi)
da


=

1

N

N∑
i=1

 ∑
ã∈ÃK

π̃ (ã |xi)

(
ℓi(ai)

He (ã)µ(ai |xi)
1 {ã ∈ AK,H(ai)}+

β

He (ã)

∫ min(1,ã−H/2)

max(0,ã+H/2)

1

µ(a |xi)
da

) .

So minimizing the objective in Eq (3.1) over Π is equivalent to minimizing the CSC objective over Π̃K over the
modified loss vectors defined in Eq. (A.5).

A.6 Proof of Corollary 5.3

We prove Corollary 5.3 with exact constants: the guarantees are spelled out, resp., as

R(π̂IPW+PL,β) ≤ min
π∈Π

{
R(π) + 2βP̂L(π) +

(3/β + 16/δinf(µ)) · ln (|4Π|/α)
NH

}
.

R(π̂IPW+PL,β⋆) ≤ min
π∈Π

{
R(π) + 6

√
PL(π) · ln(4|Π|/α)

NH
+

24 ln(4|Π|/α)
NHδinf(µ)

}
.

This follows by setting δsup(Π) = 2/H and ∆(Π, µ) = 2/(Hδinf(µ)) in Theorem 3.5.

A.7 How to set hyper-parameters in the continuous-action setting

While our theory in Section 5 is presented for fixed hyper-parameters K,H, this appendix provides suggestions
for how to choose them in practice. To this end, we analyze how K and H affect the risk of the policies in ΠK,H

and the generalization performance of π̂IPW+PL,β⋆ , similar to (Krishnamurthy et al., 2020).

How to set K for a fixed H? Let us start with some set of density-based policies, denoted Π∞. Note that
δsup(Π∞) can be huge and the generalization guarantee in Theorem 3.5 becomes vacuous for general density-based
policies. So we are not providing excess risk guarantees for this policy class. Instead, we consider a policy class
smoothed from some mass-based policy class. For an integer K > 0, let Π̃K = {DiscretizeK(π) : π ∈ Π∞} be
the set of mass-based policies discretized from Π∞, where π̃ = DiscretizeK(π) is a mass-based policy such that

π̃(ã |x) =
∫ ã+1/(2K)

ã−1/(2K)
π(a |x) da for any x ∈ X and ã ∈ ÃK . Let ΠK,H =

{
SmoothH (π̃) : π̃ ∈ Π̃K

}
. We have

analyzed the generalization performance of π̂IPW+PL,β⋆ for ΠK,H for a particular K. We now want to see how
different K might affect the policy risks in ΠK,H . In particular, we consider Π∞,H = {SmoothH(π) : π ∈ Π∞}
be the set of density-based policies smoothed from Π∞, which represents the policy class when K approaches
infinity. We know that, for any π ∈ Π∞,

|R (SmoothH (DiscretizeK (π)))−R (SmoothH (π))| ≤ min

(
1,

1

HK

)
.
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To analyze how to set K, we consider the excess risk of π̂IPW+PL,β⋆ in Eq (A.4)

R(π̂IPW+PL,β⋆) ≲ min
π∈ΠK,H

{
R(π) +

√
PL(π) · ln(|ΠK,H |/α)

NH
+

ln(|ΠK,H |/α)
NHδinf(µ)

}

≤ min
π∈ΠK,H

{
R(π) +

√
ln(|ΠK,H |/α)
NHδinf(µ)

+
ln(|ΠK,H |/α)
NHδinf(µ)

}

≤ min
π∈Π∞,H

{
R(π) +

√
ln(|ΠK,H |/α)
NHδinf(µ)

+
ln(|ΠK,H |/α)
NHδinf(µ)

+
1

HK

}
,

where the second inequality holds since PL(π) ≤ 1/δinf(µ). Now, if |ΠK,H | scales exponentially with K, then we

should set K on the order of
(

Nδinf(µ)
H ln(1/α)

)1/3
to optimize the second and fourth terms. If we assume |ΠK,H | does

not depend on K, then we should set K to be sufficiently large so that the fourth term is lower order.

How to choose H? For the sake of intuition, consider a fixed K, and let ΠK,H and ΠK,H+γ be

density-based policy classes smoothed from the same mass-based policy class Π̃K with bandwidth H and H + γ
respectively. For any mass-based policy π̃ ∈ ΠK , we have

|R(SmoothH (π̃))−R(SmoothH+γ (π̃))| ≤ min

(
1,

2γ

H

)
.

This suggests that we might want to search over a space of H such that 1/H is equally spaced.
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B Detailed empirical evaluation

B.1 Experiments with discrete actions

Experimental setup. Following prior works (Beygelzimer and Langford, 2009; Dud́ık et al., 2014; Wang
et al., 2017; Su et al., 2019, 2020), we empirically examine the performance of policy optimization with the PL
regularizer on simulated bandit instances from full-information classification datasets. This allows us to evaluate
the performance of different policy optimization methods with ground-truth policy values and to control the
setting of the problem so that we can test the robustness of PL in a variety of experimental scenarios.

Datasets. We conduct experiments on 4 multi-class classification datasets with real-valued features and 1
million examples from OpenML (Vanschoren et al., 2013), see Table 6 for detailed statistics.

Table 6: Discrete action datasets

Dataset Letter PenDigits SatImage JPVowel

OpenML ID 247 261 1183 1214
# Data 1,000,000 1,000,000 1,000,000 1,000,000
# Features 16 16 36 14
# Classes 26 10 6 9

For each dataset, we hold out 1% of the data for training a logging policy and 30% of the data for testing. The
rest of the data are used for simulating the bandit feedback.

We test the performance of different policy optimization algorithms under various settings, which are summarized
in Table 1. First, we vary the data size by randomly selecting 1%, 10%, or 100% of the 69% of the data to
simulate bandit feedback data. To vary the number of actions and the type of cost, we follow Foster et al. (2018)
to transform the original multi-class classification dataset to a CSC dataset that can have either real-valued or
binary-valued cost and arbitrary number of classes. For each dataset with K classes, we construct a cost matrix
C ∈ RKcs×K where Kcs ∈ {K, 5K}. Each entry C(a, a⋆) is the cost of classifying an example with true class label
a⋆ as class a in the set of Kcs actions. The entries C(iK + a, a) for any integer i ≥ 0 such that iK + a ≤ Kcs and
a ∈ {1, 2, . . . ,K} are set to be 0. For the binary-valued-cost experiments, the rest of the entries are set to be 1.
For the real-valued-cost experiments, the rest of the entries are generated uniformly at random from the interval
[0, 1]. To simulate bandit feedback, for each example (x, c) in the CSC dataset, we take an action a following a
logging policy µ and observe the binary loss ℓ(a) ∼ Bernoulli(c(a)) where c(a) is the cost of action a for x.

Logging policies. We consider three different types of logging policies. For each dataset, we learn one “good”
and one “bad” deterministic multi-class classification models with the 1% held out data using the linear-regression
CSC oracle described below to predict the class with the smallest and largest cost, respectively. Then we construct
three stochastic logging policies µgood,ϵ=0.1, µgood,ϵ=0.01, and µbad,ϵ=0.1 by combining the deterministic policies
with the uniform-random policy where ϵ = 0.1 and ϵ = 0.01 are the probabilities of using the uniform-random
policy.

OPO methods. We compare the performance of using PL regularizer with that of no pessimism (None) and EB
under different estimators and oracles, which are summarized in Table 2. For all the regularizers, we consider
two types of estimators: IPW and the doubly robust estimator (DR) (Dud́ık et al., 2014). For PL and None,
we run experiments on two types of CSC oracles. The first one is policy gradient (PG) with a softmax-linear
parametrization, which selects actions proportional to exp(⟨θ, ϕ(x, a)⟩) where θ is the policy parameter and ϕ(x, a)
are the features. The policy parameters are fit by directly optimizing the CSC objective with ℓ2 regularization.
The second CSC oracle is based on linear regression with ℓ2 regularization and we denote it as LR. The policy
is derived by regressing the costs onto the features using (regularized) least squares regression and then taking
the action with the minimum predicted cost. As we have discussed, EB is not compatible with CSC oracles in
general. We follow prior works and parameterize the policy identically to the PG-based CSC oracle and directly
optimize the EB objective.

Policy selection. We split the bandit feedback data and use 50% of the data for policy optimization and 50% of
the data for policy selection. For policy selection, we adopt the strategy using the EB bound in Eq. (2.4) with
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α = 0.1, since it is tighter than the PL bound as shown in Eq. (2.3). We run each experiment 50 times and report
the mean and standard error of the results.

Hyper-parameter details. We shift the loss to the range [−1, 0], since this improves the performance on all the
methods in our exploratory experiments, which is also consistent with findings in many prior works (Swaminathan
and Joachims, 2015a; Joachims et al., 2018; Bietti et al., 2021).15 For policy optimization with the DR
estimator, we further split the data for policy optimization into 10% for training the cost regression model and
90% for policy optimization. The cost model of DR is trained using linear regression with ℓ2 regularization
on the 10% of bandit feedback data for policy optimization. For both PL and EB, we grid search β in
{0, 1e− 3, 3e− 3, 1e− 2, 3e− 2, 1e− 1, 3e− 1, 1}. For CSC oracles, we set the weight decay to be 1e− 6 and grid
search the learning rate in {1e− 3, 1e− 2, 1e− 1, 1, 10}. And we use stochastic gradient descent with batch size
100 and epoch 1 to optimize each model. For the PG oracle for EB, we optimize the model with LBFGS for 10
steps since Swaminathan and Joachims (2015a) found that LBFGS performs better than gradient descent in their
empirical evaluation. We note that this optimizer is around 20 times slower than the CSC oracles optimized via
batch stochastic gradient descent. We use the same weight decay and grid search the same learning rates as in
CSC oracles. We implement all the oracles in PyTorch (Paszke et al., 2019). And the experiments are run on a
shared cluster with different types of CPUs and thousands of CPU cores.

Results. We conduct experiments on all combinations of data sizes, cost types and logging policies with the
number of actions being the number of classes in Table 1. For the setting where the number of actions is 5
times the number of classes, we still do experiments on all combinations of data sizes, cost types, but only with
logging policy πgood,ϵ=0.1. The results are shown in Figures 3-10 and Tables 8-31. Their semantics mirror those
of Figure 1 (right) and Table 3, respectively. Relative improvement of a method against a baseline is defined as

RelImp :=
R (π̂baseline)−R (π̂method)

R (π̂baseline)
. (B.1)

The total training time on each dataset is summarized in Table 7.

Table 7: Computation time for the discrete-action experiments

Dataset Letter PenDigits SatImage JPVowel

total time (CPU core · hours) 730.8 424.2 417.9 397.0

15We note that our theoretical results continue to apply with the loss range. In particular, the proofs of Proposi-
tion A.2, A.3, Lemma A.4 and Theorem 3.5 still hold when −1 ≤ ℓ(a) ≤ 0.
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Figure 3: Relative improvement (RelImp, see Eq. (B.1))
for PL against the baseline with no pessimism, aver-
aged over all 50 runs (mean ± 2 standard errors).

Shown for a particular (dataset, environment) pair and
the best-performing (CSC oracle, risk estimator) pair.
Each bar corresponds to a (dataset, data-size) pair.

24 environments, see Table 1; 4 datasets, see Table 6.

Environment: real-valued cost, µgood,ϵ=0.1, and #ac-
tions = #classes.

Figure 4: Same semantics as in Figure 3.
Environment: real-valued cost, µgood,ϵ=0.01, and #
actions = # classes.

Figure 5: Same semantics as in Figure 3.
Environment: real-valued cost, µbad,ϵ=0.1, and # ac-
tions = # classes.

Figure 6: Same semantics as in Figure 3.
Environment: real-valued cost, µgood,ϵ=0.1, and # ac-
tions = 5 × # classes.
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Figure 7: Same semantics as in Figure 3.
Environment: real-valued cost, µgood,ϵ=0.1, and # ac-
tions = # classes.

Figure 8: Same semantics as in Figure 3.
Environment: binary-valued cost, µgood,ϵ=0.01, and #
actions = # classes.

Figure 9: Same semantics as in Figure 3.
Environment: binary-valued cost, µbad,ϵ=0.1, and #
actions = # classes.

Figure 10: Same semantics as in Figure 3.
Environment: binary-valued cost, µgood,ϵ=0.1, and #
actions = 5×# classes.
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Table 8: Performance of different OPO methods: mean ± two standard errors over 50 runs. Bold numbers
represent the best performance within each (CSC oracle, estimator) pair. Boxed numbers represent the best
across all algorithmic configurations.
This experiment: real-valued cost, logging policy µgood,ϵ=0.1, data size ×0.01, and # actions = # classes.

Risk * 100 Letter PenDigits SatImage JPVowel

PG+IPW+PL 31.6±0.1 23.8±0.2 17.6±0.9 12.0±0.1

PG+IPW+EB 34.0±0.9 23.4±0.2 18.1±0.8 13.4±0.3
PG+IPW 47.1±0.6 31.3±1.0 22.4±1.6 27.3±1.4

PG+DR+PL 31.6±0.1 23.6±0.3 13.4±0.5 12.1±0.1

PG+DR+EB 40.1±0.4 23.0±0.6 13.1±0.4 20.1±0.8

PG+DR 47.6±0.6 31.2±1.1 16.5±1.0 29.0±1.7

LR+IPW+PL 32.0±0.0 23.6±0.2 21.3±0.8 11.2±0.0

LR+IPW 46.2±0.5 32.5±0.8 26.7±1.2 30.4±1.0

LR+DR+PL 32.0±0.1 23.6±0.2 21.3±0.8 11.2±0.0

LR+DR 46.4±0.4 34.1±0.6 25.7±1.1 32.8±1.0

Table 9: Same semantics as in Table 8.
This experiment: real-valued cost, logging policy µgood,ϵ=0.1, data size ×0.1, and # actions = # classes.

Risk × 100 Letter PenDigits SatImage JPVowel

PG+IPW+PL 31.6±0.1 22.0±0.3 10.2±0.4 11.9±0.1
PG+IPW+EB 32.4±0.1 20.4±0.4 11.0±0.3 13.1±0.1
PG+IPW 45.5±0.8 26.4±0.8 11.9±0.7 19.0±0.8

PG+DR+PL 31.5±0.1 18.5±0.3 8.8±0.3 11.3±0.1

PG+DR+EB 37.0±0.4 15.7±0.3 8.8±0.2 11.7±0.2

PG+DR 43.1±0.6 21.3±0.6 10.1±0.4 14.2±0.4

LR+IPW+PL 31.8±0.0 23.1±0.3 18.1±0.4 11.1±0.0

LR+IPW 42.5±0.4 28.4±0.7 21.0±0.8 19.8±0.5

LR+DR+PL 31.8±0.1 22.9±0.2 17.8±0.5 11.1±0.0

LR+DR 42.0±0.3 27.2±0.6 19.5±0.7 18.5±0.5

Table 10: Same semantics as in Table 8.
This experiment: real-valued cost, logging policy µgood,ϵ=0.1, data size ×1, and # actions = # classes.

Risk * 100 Letter PenDigits SatImage JPVowel

PG+IPW+PL 31.0±0.1 15.8±0.3 7.4±0.1 10.5±0.2
PG+IPW+EB 31.7±0.2 13.2±0.2 7.7±0.1 9.9±0.2
PG+IPW 35.1±0.4 16.9±0.5 8.3±0.4 11.7±0.3

PG+DR+PL 30.7±0.2 14.2±0.3 6.9±0.1 9.3±0.2

PG+DR+EB 29.9±0.1 10.2±0.1 6.3±0.0 8.0±0.1

PG+DR 33.0±0.4 15.1±0.4 7.2±0.1 9.8±0.3

LR+IPW+PL 31.5±0.1 20.8±0.2 12.8±0.3 11.1±0.0
LR+IPW 36.2±0.3 21.9±0.4 15.0±0.7 12.5±0.2

LR+DR+PL 31.5±0.1 20.4±0.2 11.1±0.2 11.0±0.0
LR+DR 35.7±0.2 21.2±0.3 12.1±0.5 11.8±0.1
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Table 11: Same semantics as in Table 8.
This experiment: real-valued cost, logging policy µgood,ϵ=0.01, data size ×0.01, and # actions = # classes.

Risk * 100 Letter PenDigits SatImage JPVowel

PG+IPW+PL 34.2±0.1 21.5±0.2 24.3±0.5 16.1±0.1

PG+IPW+EB 33.7±0.3 22.0±0.2 25.6±0.4 16.0±0.0

PG+IPW 46.8±0.9 39.8±1.7 39.7±2.7 41.6±1.5

PG+DR+PL 34.3±0.1 21.6±0.1 24.2±0.5 16.1±0.1

PG+DR+EB 36.8±0.4 24.8±0.8 18.8±0.4 22.0±0.9

PG+DR 47.3±0.8 42.9±1.4 42.9±2.4 43.5±1.4

LR+IPW+PL 33.8±0.1 21.0±0.1 25.6±0.6 16.6±0.1

LR+IPW 46.1±0.6 40.7±1.3 44.4±1.7 41.3±1.2

LR+DR+PL 33.9±0.1 21.0±0.1 25.8±0.4 16.7±0.1

LR+DR 46.8±0.5 43.5±1.1 48.0±1.7 44.1±0.9

Table 12: Same semantics as in Table 8.
This experiment: real-valued cost, logging policy µgood,ϵ=0.01, data size ×0.1, and # actions = # classes.

Risk * 100 Letter PenDigits SatImage JPVowel

PG+IPW+PL 33.7±0.1 21.5±0.2 23.0±0.6 15.9±0.0

PG+IPW+EB 36.0±0.8 22.5±0.4 24.4±0.6 16.2±0.1
PG+IPW 45.1±0.7 33.8±1.2 31.0±2.0 33.1±1.2

PG+DR+PL 33.6±0.1 21.3±0.2 21.6±0.6 15.9±0.0

PG+DR+EB 36.6±0.6 22.8±0.7 18.1±0.4 21.1±1.0

PG+DR 45.1±0.5 33.0±1.1 26.2±1.7 33.9±1.5

LR+IPW+PL 34.0±0.1 21.0±0.1 25.1±0.4 16.4±0.0
LR+IPW 45.0±0.6 35.2±0.9 36.8±1.5 35.6±1.0

LR+DR+PL 34.0±0.1 20.9±0.1 25.3±0.3 16.4±0.1

LR+DR 45.2±0.5 38.0±0.8 37.2±1.2 37.3±1.0

Table 13: Same semantics as in Table 8.
This experiment: real-valued cost, logging policy µgood,ϵ=0.01, data size ×1, and # actions = # classes.

Risk * 100 Letter PenDigits SatImage JPVowel

PG+IPW+PL 33.6±0.1 20.8±0.3 19.3±0.4 15.9±0.1

PG+IPW+EB 36.0±0.6 20.3±0.4 19.1±0.4 15.9±0.1
PG+IPW 43.7±0.7 25.5±0.9 20.4±0.7 24.8±0.8

PG+DR+PL 33.6±0.1 19.8±0.3 18.2±0.4 15.3±0.1

PG+DR+EB 35.8±0.4 16.7±0.3 15.9±0.3 15.3±0.3

PG+DR 42.9±0.6 21.8±0.8 18.8±0.6 19.6±0.6

LR+IPW+PL 33.7±0.1 20.5±0.1 24.9±0.4 16.3±0.0
LR+IPW 41.6±0.4 28.5±0.7 34.6±1.6 25.8±0.7

LR+DR+PL 33.9±0.1 20.7±0.1 24.6±0.4 16.2±0.1
LR+DR 41.1±0.3 28.1±0.7 34.3±1.7 25.1±0.6
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Table 14: Same semantics as in Table 8.
This experiment: real-valued cost, logging policy µbad,ϵ=0.1, data size ×0.01, and # actions = # classes.

Risk * 100 Letter PenDigits SatImage JPVowel

PG+IPW+PL 44.1±0.5 31.1±1.1 16.7±1.2 27.4±0.7
PG+IPW+EB 43.8±0.4 31.0±0.8 17.9±1.0 28.6±0.9
PG+IPW 45.3±0.6 34.4±1.5 20.5±1.7 29.2±0.9

PG+DR+PL 43.9±0.6 29.8±1.1 13.0±0.7 27.1±0.8

PG+DR+EB 43.0±0.4 28.0±0.8 15.1±0.6 25.0±0.8

PG+DR 45.6±0.9 33.1±1.1 15.4±0.9 29.5±1.0

LR+IPW+PL 43.9±0.4 34.2±0.8 21.9±0.9 29.5±0.7
LR+IPW 44.6±0.5 35.9±0.9 25.4±1.5 31.0±0.9

LR+DR+PL 43.7±0.5 34.7±0.7 21.1±0.7 29.8±0.7
LR+DR 44.2±0.5 35.7±0.8 23.5±1.1 32.0±1.0

Table 15: Same semantics as in Table 8.
This experiment: real-valued cost, logging policy µbad,ϵ=0.1, data size ×0.1, and # actions = # classes.

Risk * 100 Letter PenDigits SatImage JPVowel

PG+IPW+PL 42.2±0.5 23.6±0.6 10.1±0.3 21.7±0.6
PG+IPW+EB 40.2±0.3 20.0±0.5 11.8±0.3 19.1±0.4
PG+IPW 43.7±0.6 26.3±1.0 11.4±0.5 24.0±0.9

PG+DR+PL 41.1±0.5 21.3±0.8 9.2±0.2 18.1±0.4

PG+DR+EB 38.9±0.3 17.8±0.5 10.1±0.3 17.2±0.4

PG+DR 43.0±0.8 23.8±0.8 10.0±0.4 19.2±0.6

LR+IPW+PL 40.2±0.4 27.1±0.6 17.0±0.4 22.5±0.5
LR+IPW 40.9±0.4 28.3±0.8 18.8±0.7 24.0±0.7

LR+DR+PL 39.6±0.3 25.7±0.7 16.6±0.6 20.3±0.4
LR+DR 40.1±0.3 26.8±0.8 18.5±0.8 21.1±0.5

Table 16: Same semantics as in Table 8.
This experiment: real-valued cost, logging policy µbad,ϵ=0.1, data size ×1, and # actions = # classes.

Risk * 100 Letter PenDigits SatImage JPVowel

PG+IPW+PL 35.3±0.4 12.8±0.4 7.9±0.2 13.6±0.2
PG+IPW+EB 32.6±0.2 12.0±0.2 7.6±0.1 13.0±0.2
PG+IPW 36.1±0.5 14.2±0.7 8.4±0.2 14.3±0.3

PG+DR+PL 33.0±0.4 11.9±0.3 6.8±0.2 12.9±0.2

PG+DR+EB 30.5±0.1 10.9±0.1 6.5±0.1 11.0±0.1

PG+DR 33.6±0.4 12.9±0.4 7.4±0.3 13.5±0.3

LR+IPW+PL 35.4±0.2 19.6±0.4 11.7±0.4 15.9±0.2
LR+IPW 35.5±0.2 20.9±0.6 13.4±0.7 16.3±0.2

LR+DR+PL 35.0±0.2 19.0±0.3 10.5±0.2 15.0±0.2
LR+DR 35.2±0.2 20.3±0.4 11.6±0.3 15.3±0.2
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Table 17: Same semantics as in Table 8.
This experiment: real-valued cost, logging policy µgood,ϵ=0.1, data size ×0.01, and # actions = 5× # classes.

Risk * 100 Letter PenDigits SatImage JPVowel

PG+IPW+PL 33.3±0.2 11.1±0.2 8.1±0.3 11.8±0.2

PG+IPW+EB 40.4±1.0 16.9±1.6 9.8±0.9 17.1±1.9
PG+IPW 47.2±0.7 35.2±1.6 28.2±2.1 37.1±1.3

PG+DR+PL 33.4±0.2 11.1±0.1 8.1±0.3 11.9±0.2

PG+DR+EB 36.0±0.4 15.8±0.6 9.9±0.5 15.0±0.5
PG+DR 47.4±0.9 38.2±1.6 31.3±2.3 39.6±1.1

LR+IPW+PL 35.0±0.2 11.9±0.1 7.4±0.1 11.7±0.1

LR+IPW 45.4±0.5 32.7±1.1 28.2±1.4 33.0±1.0

LR+DR+PL 33.5±0.1 12.2±0.2 7.6±0.1 11.5±0.1

LR+DR 47.2±0.5 39.6±1.1 35.5±1.3 39.7±0.8

Table 18: Same semantics as in Table 8.
This experiment: real-valued cost, logging policy µgood,ϵ=0.1, data size ×0.1, and # actions = 5× # classes.

Risk * 100 Letter PenDigits SatImage JPVowel

PG+IPW+PL 33.5±0.1 11.4±0.1 7.3±0.1 11.1±0.1
PG+IPW+EB 41.7±0.6 17.8±1.4 8.4±0.2 15.0±1.6
PG+IPW 45.5±1.0 30.4±1.5 18.5±1.3 32.0±1.5

PG+DR+PL 33.3±0.1 11.3±0.1 7.0±0.2 10.9±0.1

PG+DR+EB 40.1±0.3 14.6±0.6 8.4±0.2 14.2±0.6
PG+DR 45.6±0.8 27.0±1.4 15.2±1.2 29.2±1.6

LR+IPW+PL 33.1±0.1 11.1±0.0 7.6±0.1 11.6±0.0

LR+IPW 43.7±0.3 25.2±0.7 20.3±0.7 24.2±0.6

LR+DR+PL 33.0±0.0 11.1±0.0 7.7±0.1 11.6±0.0

LR+DR 45.0±0.3 26.7±0.6 23.3±1.1 26.3±0.5

Table 19: Same semantics as in Table 8.
This experiment: real-valued cost, logging policy µgood,ϵ=0.1, data size ×1, and # actions = 5× # classes.

Risk * 100 Letter PenDigits SatImage JPVowel

PG+IPW+PL 33.3±0.1 10.9±0.2 6.8±0.2 10.9±0.1
PG+IPW+EB 34.9±0.2 12.6±0.1 7.9±0.1 11.0±0.0
PG+IPW 40.6±0.7 16.6±0.8 12.3±0.8 18.0±0.7

PG+DR+PL 32.7±0.2 10.2±0.2 5.8±0.2 10.7±0.1

PG+DR+EB 32.4±0.3 9.6±0.1 5.6±0.1 9.9±0.1

PG+DR 37.5±0.7 12.3±0.4 8.4±0.4 14.3±0.6

LR+IPW+PL 32.7±0.1 11.0±0.1 7.5±0.1 11.4±0.1
LR+IPW 38.6±0.3 18.9±0.3 13.4±0.3 18.1±0.3

LR+DR+PL 32.2±0.1 10.9±0.1 7.9±0.1 11.4±0.0

LR+DR 37.5±0.3 20.9±0.6 13.6±0.3 18.9±0.4
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Table 20: Same semantics as in Table 8.
This experiment: binary-valued cost, logging policy µgood,ϵ=0.1, data size ×0.01, and # actions = # classes.

Risk * 100 Letter PenDigits SatImage JPVowel

PG+IPW+PL 83.5±0.1 43.0±1.0 25.2±0.8 36.8±0.5

PG+IPW+EB 76.9±0.6 31.8±0.8 22.9±0.4 30.7±0.4

PG+IPW 91.2±0.6 49.1±2.1 27.0±0.8 43.0±2.0

PG+DR+PL 84.2±0.3 44.5±0.5 26.4±1.0 38.0±0.7

PG+DR+EB 83.6±0.8 31.2±1.2 21.4±0.5 29.8±0.7

PG+DR 94.0±0.4 66.2±2.3 33.2±2.3 71.1±1.5

LR+IPW+PL 84.6±0.2 44.5±0.7 34.8±1.1 38.7±0.3
LR+IPW 91.8±0.4 59.5±1.8 40.4±1.4 57.3±1.7

LR+DR+PL 85.1±0.5 46.3±0.3 37.0±1.1 40.2±0.3
LR+DR 92.9±0.4 77.7±1.2 52.3±2.8 77.0±1.2

Table 21: Same semantics as in Table 8.
This experiment: binary-valued cost, logging policy µgood,ϵ=0.1, data size ×0.1, and # actions = # classes.

Risk * 100 Letter PenDigits SatImage JPVowel

PG+IPW+PL 82.7±0.1 26.4±0.4 19.8±0.1 29.6±0.5

PG+IPW+EB 74.7±1.4 24.8±0.7 19.5±0.1 26.2±0.5

PG+IPW 85.5±0.6 28.7±0.9 20.1±0.2 30.5±0.5

PG+DR+PL 82.7±0.1 29.1±0.9 19.7±0.1 31.3±0.5

PG+DR+EB 69.5±0.9 23.8±0.5 18.8±0.2 26.7±0.4

PG+DR 87.8±0.5 34.7±1.6 20.9±0.6 33.4±0.8

LR+IPW+PL 82.1±0.5 32.0±0.5 26.5±0.4 31.8±0.4
LR+IPW 85.2±0.4 34.4±0.9 30.0±1.1 32.9±0.5

LR+DR+PL 83.6±0.3 41.9±0.6 31.8±0.6 37.4±0.3
LR+DR 87.1±0.4 53.1±1.6 38.1±1.9 49.3±1.0

Table 22: Same semantics as in Table 8.
This experiment: binary-valued cost, logging policy µgood,ϵ=0.1, data size ×1, and # actions = # classes.

Risk * 100 Letter PenDigits SatImage JPVowel

PG+IPW+PL 76.5±0.5 22.3±0.2 18.7±0.1 23.5±0.1

PG+IPW+EB 66.4±2.5 20.3±0.1 16.8±0.1 21.9±0.1

PG+IPW 76.9±0.6 23.0±0.5 18.9±0.1 23.8±0.2

PG+DR+PL 77.1±0.5 22.3±0.1 18.5±0.1 23.3±0.1

PG+DR+EB 64.4±1.6 20.4±0.1 16.6±0.0 21.9±0.0

PG+DR 77.5±0.5 23.8±0.6 18.7±0.1 23.8±0.3

LR+IPW+PL 78.2±0.4 27.0±0.2 24.2±0.3 28.9±0.2
LR+IPW 81.0±0.5 27.2±0.2 25.3±0.3 29.0±0.3

LR+DR+PL 80.0±0.4 29.1±0.2 23.9±0.4 31.0±0.2
LR+DR 83.2±0.5 29.7±0.3 25.4±0.4 31.4±0.2
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Table 23: Same semantics as in Table 8.
This experiment: binary-valued cost, logging policy µgood,ϵ=0.01, data size ×0.01, and # actions = # classes.

Risk * 100 Letter PenDigits SatImage JPVowel

PG+IPW+PL 78.1±0.5 48.6±1.1 31.9±1.0 38.8±0.5

PG+IPW+EB 69.3±1.1 38.4±0.6 28.3±0.4 33.9±1.3

PG+IPW 85.4±2.2 53.4±4.2 35.8±2.8 48.1±4.8

PG+DR+PL 83.6±1.7 53.7±1.8 33.6±0.6 45.3±3.2

PG+DR+EB 77.7±1.1 38.5±2.9 25.5±1.2 31.7±1.5

PG+DR 95.3±0.3 84.0±1.7 61.2±3.9 85.0±1.1

LR+IPW+PL 81.3±0.1 53.2±1.0 41.0±1.2 46.5±1.4
LR+IPW 91.7±0.7 69.5±3.5 55.8±3.1 66.5±4.0

LR+DR+PL 86.4±1.5 57.2±2.3 40.7±1.4 52.6±2.6
LR+DR 95.3±0.3 83.8±1.4 72.4±2.5 84.2±1.1

Table 24: Same semantics as in Table 8.
This experiment: binary-valued cost, logging policy µgood,ϵ=0.01, data size ×0.1, and # actions = # classes.

Risk * 100 Letter PenDigits SatImage JPVowel

PG+IPW+PL 76.4±0.3 49.3±0.3 27.4±1.1 38.9±0.2

PG+IPW+EB 69.9±0.5 32.4±1.2 24.5±0.5 31.3±0.8

PG+IPW 87.3±1.7 51.0±1.8 27.6±0.9 47.5±1.9

PG+DR+PL 77.0±0.3 49.4±0.5 27.8±1.0 39.1±0.2

PG+DR+EB 77.7±1.6 26.9±1.6 19.2±0.5 26.1±0.5

PG+DR 94.2±0.4 64.3±1.8 31.3±1.9 67.3±1.9

LR+IPW+PL 80.9±0.1 51.2±0.8 33.2±1.1 44.4±0.6
LR+IPW 91.1±1.0 61.8±1.9 39.1±1.4 56.0±2.2

LR+DR+PL 81.9±0.5 52.6±0.4 36.2±0.9 47.3±0.6
LR+DR 93.5±0.3 74.2±1.4 47.1±1.7 76.1±1.4

Table 25: Same semantics as in Table 8.
This experiment: binary-valued cost, logging policy µgood,ϵ=0.01, data size ×1, and # actions = # classes.

Risk * 100 Letter PenDigits SatImage JPVowel

PG+IPW+PL 75.7±0.2 28.6±0.8 20.4±0.3 29.4±0.4

PG+IPW+EB 66.4±1.3 24.6±0.7 19.7±0.1 25.6±0.3

PG+IPW 84.6±0.7 28.6±0.7 20.6±0.4 29.4±0.4

PG+DR+PL 76.0±0.2 35.4±1.2 20.5±0.6 31.6±0.6

PG+DR+EB 66.0±0.9 24.1±0.5 18.4±0.2 26.2±0.4

PG+DR 90.0±0.7 37.2±1.7 21.0±0.7 35.5±1.1

LR+IPW+PL 80.5±0.3 34.9±1.0 27.9±0.6 34.0±0.6
LR+IPW 84.7±0.6 35.0±1.0 29.4±0.8 33.9±0.6

LR+DR+PL 80.9±0.2 45.7±1.0 31.2±0.8 42.1±0.5
LR+DR 89.0±0.4 52.3±1.5 41.5±2.1 51.4±1.2
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Table 26: Same semantics as in Table 8.
This experiment: binary-valued cost, logging policy µbad,ϵ=0.1, data size ×0.01, and # actions = # classes.

Risk * 100 Letter PenDigits SatImage JPVowel

PG+IPW+PL 92.1±0.3 60.7±1.6 31.7±1.0 62.2±1.1

PG+IPW+EB 90.1±0.5 46.3±1.4 27.6±0.9 49.5±1.3

PG+IPW 92.5±0.4 63.8±1.7 35.8±2.0 64.4±1.3

PG+DR+PL 92.4±0.3 61.9±1.5 31.6±1.1 63.1±1.5

PG+DR+EB 90.6±0.5 46.4±1.6 26.6±0.9 49.4±1.1

PG+DR 93.0±0.4 64.4±1.7 34.4±1.9 66.0±1.6

LR+IPW+PL 90.3±0.5 67.2±1.3 40.9±1.2 67.2±1.2
LR+IPW 90.7±0.5 69.8±1.6 45.6±2.0 69.6±1.6

LR+DR+PL 90.3±0.5 66.5±1.5 43.1±1.5 66.2±1.4
LR+DR 90.8±0.5 69.9±1.9 48.7±1.9 70.6±1.6

Table 27: Same semantics as in Table 8.
This experiment: binary-valued cost, logging policy µbad,ϵ=0.1, data size ×0.1, and # actions = # classes.

Risk * 100 Letter PenDigits SatImage JPVowel

PG+IPW+PL 88.1±0.4 34.9±1.1 21.4±0.6 34.4±0.5
PG+IPW+EB 83.8±1.7 30.3±1.0 21.0±0.2 31.9±0.9
PG+IPW 88.3±0.5 37.8±1.4 22.3±0.7 36.3±0.7

PG+DR+PL 88.2±0.4 34.3±0.9 21.3±0.5 35.2±0.7

PG+DR+EB 83.0±1.5 28.4±0.7 20.3±0.2 31.6±1.1

PG+DR 88.4±0.5 38.8±1.5 22.4±0.7 36.1±0.9

LR+IPW+PL 85.7±0.4 41.1±1.0 31.4±0.7 40.6±0.7
LR+IPW 85.9±0.4 42.5±1.2 34.5±1.6 41.9±0.8

LR+DR+PL 86.0±0.4 41.1±1.0 30.5±0.7 41.4±0.7
LR+DR 86.1±0.4 42.5±1.3 35.0±1.6 42.6±0.9

Table 28: Same semantics as in Table 8.
This experiment: binary-valued cost, logging policy µbad,ϵ=0.1, data size ×1, and # actions = # classes.

Risk * 100 Letter PenDigits SatImage JPVowel

PG+IPW+PL 77.7±0.6 23.0±0.2 18.6±0.1 25.0±0.2

PG+IPW+EB 63.5±1.9 21.1±0.1 17.0±0.0 22.5±0.1

PG+IPW 77.9±0.6 24.5±0.6 19.0±0.1 25.6±0.4

PG+DR+PL 78.8±0.5 23.2±0.3 18.7±0.1 25.1±0.2

PG+DR+EB 66.7±2.5 21.2±0.1 16.9±0.1 22.5±0.1

PG+DR 79.3±0.6 24.6±0.5 19.0±0.1 26.1±0.4

LR+IPW+PL 81.5±0.5 28.3±0.3 25.2±0.3 30.1±0.2
LR+IPW 81.6±0.5 28.9±0.4 25.5±0.3 30.3±0.3

LR+DR+PL 82.4±0.5 28.7±0.3 25.1±0.3 29.8±0.3
LR+DR 82.6±0.5 29.0±0.4 25.5±0.3 30.1±0.4
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Table 29: Same semantics as in Table 8.
This experiment: binary-valued cost, logging policy µgood,ϵ=0.1, data size ×0.01, and # actions = 5× # classes.

Risk * 100 Letter PenDigits SatImage JPVowel

PG+IPW+PL 86.3±0.4 39.3±2.4 29.9±1.1 40.8±1.9

PG+IPW+EB 80.2±2.4 31.5±1.7 24.5±0.8 32.0±1.1

PG+IPW 92.4±0.4 68.5±1.9 43.2±2.3 69.9±1.9

PG+DR+PL 89.3±0.9 43.4±3.9 31.0±1.8 42.6±3.3
PG+DR+EB 90.2±1.4 44.3±3.2 26.8±1.3 49.9±2.8
PG+DR 93.8±0.4 81.5±2.0 57.0±3.4 82.7±1.5

LR+IPW+PL 87.9±0.5 39.1±1.1 29.1±0.9 43.2±1.1
LR+IPW 91.5±0.5 57.2±1.7 47.6±2.6 58.6±1.2

LR+DR+PL 88.0±0.7 45.1±3.6 29.4±0.9 44.9±2.0
LR+DR 92.4±0.4 79.0±1.4 68.0±2.6 78.9±1.1

Table 30: Same semantics as in Table 8.
This experiment: binary-valued cost, logging policy µgood,ϵ=0.1, data size ×0.1, and # actions = 5× # classes.

Risk * 100 Letter PenDigits SatImage JPVowel

PG+IPW+PL 87.0±0.4 30.4±0.6 26.8±0.5 34.0±0.4

PG+IPW+EB 73.1±1.2 28.5±0.8 21.9±0.5 30.9±0.5

PG+IPW 90.5±0.6 56.0±1.5 28.4±1.1 55.2±1.3

PG+DR+PL 86.9±0.4 30.4±0.6 26.5±0.5 34.2±0.5

PG+DR+EB 84.5±2.2 27.7±0.7 21.3±0.5 31.7±0.7

PG+DR 92.2±0.4 69.6±2.2 29.4±1.1 66.9±2.1

LR+IPW+PL 85.0±0.3 34.4±0.5 28.5±0.7 39.3±0.4
LR+IPW 87.6±0.5 42.6±0.9 28.9±0.8 43.1±0.7

LR+DR+PL 85.4±0.3 34.8±0.3 29.2±0.5 40.2±0.6
LR+DR 88.0±0.5 61.3±1.3 41.2±1.7 57.5±1.0

Table 31: Same semantics as in Table 8.
This experiment: binary-valued cost, logging policy µgood,ϵ=0.1, data size ×1, and # actions = 5× # classes.

Risk * 100 Letter PenDigits SatImage JPVowel

PG+IPW+PL 85.3±0.4 25.9±0.5 19.7±0.2 31.3±0.4
PG+IPW+EB 70.1±3.0 26.9±0.7 20.6±0.4 30.3±0.5
PG+IPW 87.9±0.6 27.2±0.7 20.2±0.5 33.2±0.7

PG+DR+PL 85.5±0.4 25.8±0.4 19.2±0.1 31.3±0.4

PG+DR+EB 67.0±2.5 24.6±0.5 19.3±0.2 27.5±0.6

PG+DR 88.8±0.5 29.7±1.0 20.4±0.7 33.2±0.5

LR+IPW+PL 75.7±0.6 29.8±0.4 25.9±0.2 32.9±0.5
LR+IPW 76.6±0.5 31.5±0.7 26.0±0.2 33.8±0.5

LR+DR+PL 76.4±0.5 33.0±0.2 26.5±0.2 37.2±0.3
LR+DR 77.5±0.5 47.0±1.1 26.9±0.2 44.2±0.6
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B.2 Experiments with continuous actions

Datasets. For the continuous-action setting, we follow prior works (Bietti et al., 2021; Majzoubi et al., 2020;
Zhu and Mineiro, 2022) to simulate bandit instances using 5 regression datasets from OpenML (Vanschoren et al.,
2013), see Table 32 for details.

Table 32: Continuous action datasets

Dataset Wisconsin AutoPrice CpuAct Zurich BlackFriday

OpenML ID 1187 1189 1190 40753 44057
# Data 1,000,000 1,000,000 1,000,000 5,465,575 166,821
# Features 32 15 21 14 9

We use one-hot representations for categorical features and map the regression targets to [0, 1]. We adopt the same
split of the datasets as in the discrete-action experiments for training logging policies, simulating bandit feedback,
and testing performance. And we still consider three data sizes the same as the discrete-action experiments.

To simulate bandit feedback, for each example (x, y) from the regression dataset, where y is the regression target,
we take an action a following a logging policy µ, and observe the loss ℓ(a) = |a− y|.

Logging policies. We consider logging policies that are combinations of a policy smoothed from a deterministic
policy and a policy that selects actions uniformly at random. To learn a deterministic policy, we train a linear
regression model with ℓ2 regularization to predict the regression target on the 1% for held out data, and regard
the regression estimate clipped into [0, 1] as the taken action. Then we construct stochastic logging policies
µϵ=0.1 and µϵ=0.01 by smoothing the deterministic policy with bandwidth 0.1, and combing it with a uniformly at
random policy where ϵ = 0.1 and ϵ = 0.01 represent the probabilities of using the uniformly-at-random policy. To
summarize, for environment setting, we have data size in {X0.01, X0.1, X1} logging policy in {µϵ=0.1, µϵ=0.01}.

Methods. All the regularizers, oracles, and estimators are the same as those of the discrete-action experiments
as shown in Table 2. Since EB takes much longer time to run due to its reliance on going through the whole
dataset multiple times, we only run experiments for EB on data sizes ×0.01 and ×0.1.

Hyper-parameter details. For the continuous-action experiments, we run each experiment for 10 times. We
grid search K in [10, 20, 50, 100], and H in [1e− 2, 2e− 2, 5e− 2, 1e− 1]. For the continuous-action experiments,
we grid search in a smaller set of learning rates [1e− 4, 1e− 3, 1e− 2, 1e− 1]. All the other hyper-parameters are
the same as those of the discrete-action experiments.

Results. We conduct experiments on all combinations of data sizes and logging policies. The experiment results
are illustrated in Figures 11-12 and Tables 34-39, with semantics mirroring those of of Figure 1 (right) and
Table 3, respectively.

Table 33: Computation time for the continuous-action experiments

Dataset Wisconsin AutoPrice CpuAct Zurich BlackFriday

total time (core · hours) 93.7 88.8 92.5 499.9 19.3
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Figure 11: Relative improvement (RelImp, see (B.1))
for PL against the baseline with no pessimism, averaged
over all 10 runs (mean ± 2 standard errors).

Shown for a particular (dataset, environment) pair and
the best-performing (CSC oracle, risk estimator) pair.
Each bar corresponds to a (dataset, data-size) pair.

6 environments, see Table 4; 5 datasets, see Table 32.

Environment: logging policy µϵ=0.1.

Figure 12: Same semantics as in Figure 11.
Environment: logging policy µϵ=0.01.

Table 34: Performance of different OPO methods: mean ± two standard errors over 10 runs. Bold numbers
represent the best performance within each (CSC oracle, estimator) pair. Boxed numbers represent the best
across all algorithmic configurations.
This experiment: logging policy µϵ=0.1, and data size ×0.01.

Risk * 100 Wisconsin AutoPrice CPUAct Zurich BlackFriday

PG+IPW+PL 26.2±2.1 18.8±1.6 20.4±1.8 24.6±0.3 29.8±1.5

PG+IPW+EB 22.4±1.4 15.1±1.2 16.4±1.7 25.1±1.1 22.7±0.6

PG+IPW 30.3±1.0 23.5±2.1 21.4±1.1 27.7±1.1 33.0±1.4

PG+DR+PL 30.5±3.6 21.5±2.3 19.6±1.1 24.4±0.1 31.2±2.4

PG+DR+EB 21.4±0.1 14.5±0.2 14.8±0.3 24.3±0.0 24.9±2.0

PG+DR 33.0±1.9 24.6±1.4 23.0±1.7 26.0±0.4 33.6±0.7

LR+IPW+PL 25.5±2.4 19.4±1.5 20.1±1.2 25.8±1.9 30.2±2.6
LR+IPW 30.6±1.0 25.4±2.0 24.0±1.5 30.6±1.3 32.4±1.0

LR+DR+PL 32.6±2.9 22.5±3.6 25.8±2.7 24.3±0.0 33.0±2.7

LR+DR 34.1±1.2 24.6±1.8 26.3±1.4 29.1±1.0 33.5±1.5
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Table 35: Same semantics as in Table 34.
This experiment: logging policy µϵ=0.1, and data size ×0.1.

Risk * 100 Wisconsin AutoPrice CPUAct Zurich BlackFriday

PG+IPW+PL 22.7±0.8 16.9±1.4 17.8±1.6 24.4±0.1 25.0±1.8

PG+IPW+EB 21.5±0.1 14.7±0.3 14.6±0.2 24.4±0.1 22.9±1.1

PG+IPW 26.6±1.1 20.2±0.9 19.9±1.1 26.3±0.7 30.0±1.2

PG+DR+PL 21.8±0.1 15.3±0.2 15.8±0.6 24.3±0.0 24.8±2.2

PG+DR+EB 21.5±0.3 14.4±0.1 14.5±0.1 24.4±0.1 22.5±0.4

PG+DR 24.0±0.2 18.0±0.9 17.3±0.3 24.6±0.1 30.9±2.2

LR+IPW+PL 24.1±1.4 18.5±0.8 18.9±1.2 24.4±0.0 24.7±0.8
LR+IPW 27.7±0.6 21.1±0.8 20.2±1.1 26.9±0.4 31.8±1.3

LR+DR+PL 23.1±0.8 17.7±0.9 19.5±1.6 24.4±0.0 27.1±3.1
LR+DR 26.4±0.4 18.7±0.5 19.3±0.7 25.2±0.2 33.0±2.5

Table 36: Same semantics as in Table 34.
This experiment: logging policy µϵ=0.1, and data size ×1.

Risk * 100 Wisconsin AutoPrice CPUAct Zurich BlackFriday

PG+IPW+PL 21.9±0.2 15.3±0.5 15.5±0.3 24.4±0.1 22.8±0.3
PG+IPW 24.3±0.3 18.2±0.4 17.7±0.4 24.6±0.1 26.5±0.8

PG+DR+PL 21.5±0.0 14.7±0.1 14.8±0.1 24.3±0.1 22.6±0.3

PG+DR 22.5±0.1 15.6±0.2 15.2±0.3 24.3±0.1 23.2±0.5

LR+IPW+PL 22.8±0.2 16.9±0.4 17.3±0.5 24.4±0.0 24.7±0.8
LR+IPW 24.3±0.2 17.8±0.6 17.2±0.6 25.1±0.4 26.3±0.6

LR+DR+PL 22.2±0.1 15.3±0.2 15.4±0.3 24.3±0.0 23.0±0.4

LR+DR 22.7±0.3 15.6±0.2 15.7±0.3 24.5±0.0 23.9±0.3

Table 37: Same semantics as in Table 34.
This experiment: logging policy µϵ=0.01, and data size ×0.01.

Risk * 100 Wisconsin AutoPrice CPUAct Zurich BlackFriday

PG+IPW+PL 22.6±0.3 16.1±0.2 18.8±2.3 24.4±0.0 24.2±0.2

PG+IPW+EB 21.3±0.0 14.6±0.2 14.5±0.1 24.4±0.0 22.6±0.1

PG+IPW 29.9±2.7 25.8±3.5 25.7±1.5 30.8±1.8 33.6±1.2

PG+DR+PL 30.9±2.6 20.9±3.0 23.9±4.9 28.8±4.1 26.0±1.6
PG+DR+EB 25.5±2.2 18.1±1.6 18.5±1.4 25.5±2.1 25.9±1.5
PG+DR 32.3±1.7 27.2±3.0 29.6±5.7 34.3±2.2 34.7±1.4

LR+IPW+PL 23.1±0.3 17.2±0.5 19.0±1.5 24.4±0.1 24.1±0.2

LR+IPW 31.7±2.4 27.6±3.3 26.5±1.7 33.1±1.3 31.8±1.3

LR+DR+PL 30.8±3.2 24.6±3.1 26.0±3.7 31.4±3.2 27.4±2.5
LR+DR 33.5±2.2 26.8±1.7 33.5±3.1 34.8±1.3 34.8±1.4
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Table 38: Same semantics as in Table 34.
This experiment: logging policy µϵ=0.01, and data size ×0.1.

Risk * 100 Wisconsin AutoPrice CPUAct Zurich BlackFriday

PG+IPW+PL 22.4±0.9 16.6±1.6 18.1±1.8 25.1±0.9 23.0±0.1

PG+IPW+EB 21.3±0.0 14.4±0.0 14.3±0.1 24.4±0.0 22.5±0.1

PG+IPW 29.6±1.9 24.4±1.4 22.8±1.7 28.4±1.1 31.6±1.7

PG+DR+PL 27.4±2.9 23.5±4.0 19.8±1.8 24.5±0.4 27.6±4.2
PG+DR+EB 22.7±1.8 16.8±2.2 18.3±2.4 24.9±0.7 25.8±2.8
PG+DR 34.5±2.2 25.3±2.3 24.2±2.8 26.4±0.6 35.7±1.8

LR+IPW+PL 23.5±1.4 20.5±1.7 20.3±1.6 24.8±0.4 24.8±0.8
LR+IPW 31.0±0.9 23.9±1.3 23.3±2.3 30.3±1.2 32.6±1.1

LR+DR+PL 33.2±2.2 25.6±3.3 25.2±4.6 24.5±0.1 31.6±4.0
LR+DR 33.6±1.4 25.7±1.5 26.6±2.3 29.3±1.1 36.5±2.5

Table 39: Same semantics as in Table 34.
This experiment: logging policy µϵ=0.01, and data size ×1.

Risk * 100 Wisconsin AutoPrice CPUAct Zurich BlackFriday

PG+IPW+PL 23.1±1.6 16.3±1.5 15.4±0.7 24.4±0.1 24.8±2.4

PG+IPW 27.5±1.3 21.1±1.6 20.0±1.3 25.9±0.5 29.7±2.1

PG+DR+PL 21.7±0.1 14.8±0.2 14.6±0.1 24.4±0.0 22.9±0.3

PG+DR 24.0±0.4 17.8±0.6 17.7±0.5 24.7±0.3 33.2±2.2

LR+IPW+PL 22.9±0.4 18.8±0.9 18.7±0.3 24.9±0.8 26.0±1.7
LR+IPW 27.5±0.8 21.2±0.8 20.2±1.1 26.9±0.6 29.9±0.8

LR+DR+PL 22.7±0.4 18.0±1.0 18.9±0.8 24.5±0.0 27.7±2.5
LR+DR 27.0±1.1 18.6±0.5 19.8±1.0 25.5±0.2 33.0±2.5
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