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Abstract

This paper focuses on causal representation
learning (CRL) under a general nonparamet-
ric latent causal model and a general transfor-
mation model that maps the latent data to
the observational data. It establishes iden-
tifiability and achievability results using
two hard uncoupled interventions per node
in the latent causal graph. Notably, one does
not know which pair of intervention environ-
ments have the same node intervened (hence,
uncoupled). For identifiability, the paper es-
tablishes that perfect recovery of the latent
causal model and variables is guaranteed un-
der uncoupled interventions. For achievability,
an algorithm is designed that uses observa-
tional and interventional data and recovers
the latent causal model and variables with
provable guarantees. This algorithm leverages
score variations across different environments
to estimate the inverse of the transformer and,
subsequently, the latent variables. The anal-
ysis, additionally, recovers the identifiability
result for two hard coupled interventions,
that is when metadata about the pair of envi-
ronments that have the same node intervened
is known. This paper also shows that when ob-
servational data is available, additional faith-
fulness assumptions that are adopted by the
existing literature are unnecessary.

1 INTRODUCTION

Consider a causal graph G with n nodes generating
causal random variables Z ≜ [Z1, . . . , Zn]

⊤. These ran-
dom variables are transformed by a function g : Rn →
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Rd to generate the d-dimensional observed random
variables X ≜ [X1, . . . , Xd]

⊤ according to:

X = g(Z) , (1)

where im(g) ≜ X ⊆ Rd. Causal representation learning
(CRL) is the process of using the data X and recover-
ing (i) the causal structure G and (ii) the latent
causal variables Z. When interventions are viable,
the process is referred to as CRL from interventions.
Achieving these implicitly involves another objective
of recovering the unknown transformation g as well.
Addressing CRL consists of two central questions:

• Identifiability, which refers to determining the nec-
essary and sufficient conditions under which G and
Z can be recovered. Literature on CRL from inter-
ventions commonly assumes that interventional and
observational distributions are sufficiently different
and inherit faithfulness assumption from causal dis-
covery literature. Note that identifiability can be
non-constructive without specifying how to recover
G and Z.

• Achievability, which complements identifiability
and pertains to designing algorithms that can recover
G and Z while maintaining identifiability guarantees.
Achievability hinges on forming reliable estimates for
the transformation g.

This paper provides both identifiability and achievabil-
ity results for CRL under stochastic hard interventions
when (i) the transformation g can be any function
(linear or non-linear) that is a diffeomorphism (i.e.,
bijective such that both g and g−1 are continuously
differentiable) onto its image, and (ii) the causal rela-
tionships among elements of Z take any arbitrary form
(linear or non-linear). Specifically, our main contribu-
tions are:

• On identifiability, we show that two uncoupled hard
interventions per node suffice to guarantee perfect
nonparametric identifiability (up to permutation and
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Table 1: Comparison of the results to prior studies in different settings. Only the main results from the papers that aim
both DAG and latent recovery are listed. See Section 2 for exact definitions of perfect DAG and latent recovery. Additional
assumptions (∗:interventional discrepancy and ∗∗: faithfulness) are discussed in Section 3.

Work Transform Latent Model Obs. Data Interv. Env. (per node) DAG recovery Latent recovery
(Squires et al., 2023) Linear Lin. Gaussian Yes 1 Soft impossibility impossibility

Linear Lin. Gaussian Yes 1 Hard Yes Yes

(Ahuja et al., 2023) Polynomial General Yes 1 do Yes Yes
Polynomial Bounded RV Yes 1 Soft Yes Yes

(Varıcı et al., 2023) Linear Non-linear Yes 1 Soft Yes Mixing
Linear Non-linear Yes 1 Hard Yes Yes

(Buchholz et al., 2023) General Lin. Gaussian Yes 1 Hard Yes Yes
(Zhang et al., 2023) Polynomial Non-linear Yes 1 Soft Yes Yes

(von Kügelgen et al., 2023) General General No 2 coupled Hard∗ Yes∗∗ Yes
Theorem 1 General General Yes 2 uncoupled Hard∗ Yes Yes
Theorem 2 General General Yes 2 coupled Hard∗ Yes Yes
Theorem 3 General General No 2 coupled Hard∗ Yes∗∗ Yes

element-wise transforms). Specifically, we assume
the learner does not know which pair of environments
intervene on the same node, hence, uncoupled.

• On achievability, we design the first provably correct
algorithm that recovers G and Z under a general
transformation and a causal model. This algorithm
leverages the variations of the score functions under
interventions, and is referred to as Generalized Score-
based Causal Latent Estimation via Interventions
(GSCALE-I).

• While establishing identifiability results, we show
that faithfulness assumptions are not required when
observational data is available in contrast to recent
results in the literature that require faithfulness as-
sumptions.

1.1 Background

Learning latent representations from high-dimensional
observational data is an important task in machine
learning which can significantly improve the general-
ization and robustness of the models (Bengio et al.,
2013). To that end, disentangled representation learn-
ing aims to infer a latent representation such that each
latent variable corresponds to a meaningful component
and the latent variables are statistically independent,
similar to independent component analysis (ICA). In a
wide range of domains, however, the latent variables
are not independent and instead are related causally.

Causal representation learning aims to build realis-
tic models with a causal understanding of the world
(Schölkopf et al., 2021). In CRL, the generation of
each latent variable is governed by a causal mechanism,
i.e., a conditional probability kernel. Identifiability is
known to be impossible without additional supervision
or sufficient statistical diversity among the samples of
the observed data X. As shown in (Hyvärinen and Pa-

junen, 1999; Locatello et al., 2019), this is the case even
for the simpler settings in which the latent variables are
statistically independent (i.e., graph G has no edges).
Hence, identifiability guarantees critically hinge on the
additional information on the data generation process
and the observed data. A central problem in the liter-
ature is investigating the identifiability of CRL when
performed in conjunction with interventions (Schölkopf
et al., 2021). Specifically, leveraging the modularity
property of causal models (Pearl, 2009), upon an in-
tervention, only the manipulated causal mechanisms
related to intervention targets change. This creates
proper variations in the observed data, which facilitates
identifiability.

1.2 Related Work

In this paper, we address identifiability and achievabil-
ity in CRL given different interventional environments
in which the interventions act on the latent space. The
recent studies have been almost entirely focused on
the identifiability results. We provide an overview of
these existing results and discuss the closely related
literature that investigates CRL from interventional
data, with the main results summarized in Table 1. We
defer the discussion on other approaches to CRL with
stronger supervision signals, e.g., counterfactual image
pairs and temporal data, to Appendix A.

The recent studies most closely related to the scope
of this paper are (Varıcı et al., 2023) and (von Kügel-
gen et al., 2023). Varıcı et al. (2023) establish an
inherent connection between score functions and CRL
and leverages that connection to design a score-based
CRL framework. Specifically, using one intervention
per node under a non-linear causal model and a lin-
ear transformation, (Varıcı et al., 2023) provides both
identifiability and achievability results. We have three
major distinctions from (Varıcı et al., 2023) in settings
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by assuming nonparametric choices of transformations
g, a general latent causal model, and using two hard
interventions.

von Kügelgen et al. (2023) consider nonparametric mod-
els for g and the causal relationships and shows that two
coupled hard interventions per node suffice for identifia-
bility. We have two major differences. First, we assume
uncoupled interventional environments, whereas (von
Kügelgen et al., 2023) focuses on coupled environments.
Secondly, the approach in (von Kügelgen et al., 2023)
focuses mainly on identifiability (e.g., no algorithm for
recovery of the latent variables), whereas we address
both identifiability and achievability.

Other related studies that focus on the parametric set-
tings include (Squires et al., 2023; Ahuja et al., 2023;
Zhang et al., 2023; Buchholz et al., 2023). Specifically,
Squires et al. (2023) consider linear causal models and
proves identifiability under hard interventions and the
impossibility of identifiability under soft interventions.
Ahuja et al. (2023) consider a polynomial transform
and shows that it can be reduced to an affine transform
by an autoencoding process and proves identifiability
under do interventions or soft interventions on bounded
latent variables. Zhang et al. (2023) consider a poly-
nomial transform under non-linear causal models and
prove identifiability under soft interventions. Finally,
Buchholz et al. (2023) focus on linear Gaussian causal
models and extend the results in (Squires et al., 2023)
to prove identifiability for general transforms. For non-
parametric settings, Jiang and Aragam (2023) focus on
identifying the latent DAG without recovering latent
variables, and show that a restricted class of DAGs
can be recovered. Liang et al. (2023) assume that the
latent DAG is already known and recover the latent
variables under hard interventions.

2 PROBLEM SETTING

Notations. For a vector a ∈ Rm, the i-the entry is
denoted by ai. Matrices are denoted by bold upper-
case letters, e.g., A, where Ai denotes the i-th row
of A and Ai,j denotes the entry at row i and col-
umn j. We denote the indicator function by 1, and
for a matrix A ∈ Rm×n, we use the convention that
1{A} ∈ {0, 1}m×n, where the entries are specified by
[1{A}]i,j = 1{Ai,j ̸= 0}. For a positive integer n ∈ N,
we define [n] ≜ {1, . . . , n}. The permutation matrix
associated with any permutation π of [n] is denoted by
Pπ, i.e., [π1 π2 . . . πn]

⊤ = Pπ · [1 2 . . . n]⊤. The
n-dimensional identity matrix is denoted by In×n, and
the Hadamard product is denoted by ⊙. Given a func-
tion f : Rr → Rs that has first-order partial derivatives
on Rr, we denote the Jacobian of f at z ∈ Rs by Jf (z).
We use im(f) to denote the image of f .

Latent causal structure. Consider latent causal
random variables Z ≜ [Z1, . . . , Zn]

⊤. An unknown
transformation g : Rn → Rd generates the observable
random variables X ≜ [X1, . . . , Xd]

⊤ from the latent
variables Z according to:

X = g(Z) . (2)

We assume that d ≥ n, and transformation g is continu-
ously differentiable and a diffeomorphism onto its image
(otherwise, identifiability is ill-posed). We denote the
image of g by X ≜ im(g) ⊆ Rd. The probability density
functions (pdfs) of Z and X are denoted by p and pX ,
respectively. We assume that p is absolutely continuous
with respect to the n-dimensional Lebesgue measure.
Subsequently, pX , which is defined on the image man-
ifold im(g), is absolutely continuous with respect to
the n-dimensional Hausdorff measure rather than d-
dimensional Lebesgue measure. The distribution of
latent variables Z factorizes with respect to a DAG
that consists of n nodes and is denoted by G. Node
i ∈ [n] of G represents Zi and p factorizes according to:

p(z) =

n∏
i=1

pi(zi | zpa(i)) , (3)

where pa(i) denotes the set of parents of node i and
pi(zi | zpa(i)) is the conditional pdf of zi given the vari-
ables of its parents. We also define pa(i) ≜ pa(i) ∪ {i},
and use ch(i) to denote the children of node i. Based
on the modularity property, a change in the causal
mechanism of node i does not affect those of the other
nodes. We also assume that all conditional pdfs {pi(zi |
zpa(i)) : i ∈ [n]} are continuously differentiable with
respect to all z variables and p(z) ̸= 0 for all z ∈ Rn.

Score functions. The score function associated with
a pdf is defined as the gradient of its logarithm. The
score function associated with p is denoted by

s(z) ≜ ∇z log p(z) . (4)

Noting the connection X = g(Z), the density of
X under E0, denoted by pX , is supported on an n-
dimensional manifold X embedded in Rd. Hence, spec-
ifying the score function of X requires notions from
differential geometry. For this purpose, we denote the
tangent space of manifold X at point x ∈ X by TxX .
Furthermore, given a function f : X → R, denote its
directional derivative at point x ∈ X along a tangent
vector v ∈ TxX by Dvf(x). The differential of f at
point x ∈ X , denoted by dfx, is the linear operator
mapping tangent vector v ∈ TxX to Dvf(x) (Simon,
2014, p. 57), i.e.,

dfx : TxX ∋ v 7→ Dvf(x) ∈ R . (5)

Let B ∈ Rd×n be a matrix for which the columns of
B form an orthonormal basis for TxX . Denote the
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directional derivative of f along the i-th column of B
by Dif for all i ∈ [n]. Then, the differential operator
can be expressed by the vector

Df(x) ≜ B ·
[
D1f(x) . . . Dnf(x)

]⊤ ∈ Rd , (6)

such that dfx(v) = v⊤ · Df(x) for all x ∈ X and
v ∈ TxX . Note that the differential operator df is a
generalization of the gradient. Hence, we can generalize
the definition of the score function using the differential
operator by setting f to the logarithm of pdf. Therefore,
the score function of X under E0 is specified as follows:

sX(x) ≜ D log pX(x) , ∀x ∈ X . (7)

Intervention models. For each node i ∈ [n], besides
the observational mechanism specified by pi(zi | zpa(i)),
we assume that there exist two hard interventional
mechanisms specified by qi(zi) and q̃i(zi). We assume
interventional discrepancy (Liang et al., 2023) among
the distributions.

Definition 1 (Interventional discrepancy)
Two mechanisms with pdfs p, q : R → R satisfy
interventional discrepancy if

∂

∂u

p(u)

q(u)
̸= 0 , ∀u ∈ R \ T , (8)

where T is a null set (i.e., has Lebesgue measure zero).

We note that (Liang et al., 2023) shows that for iden-
tifiability in the single atomic hard intervention per
node setting, even when the latent graph G is known, it
is necessary to have an interventional discrepancy be-
tween observational distribution pi and interventional
distribution qi, for all zpa(i) ∈ R|pa(i)|.

Interventional environments. We consider two
sets of atomic interventional environments denoted by
E ≜ {Em : m ∈ [n]} and Ẽ ≜ {Ẽm : m ∈ [n]}, for
which a single node is intervened in each environment.
We denote the node intervened in environment Em by
Im ∈ [n], and similarly denote the intervened node in
Ẽm by Ĩm. We assume that node-environment pairs
are unspecified, i.e., the ordered intervention sets I ≜
(I1, . . . , In) and Ĩ ≜ (Ĩ1, . . . , Ĩn) are two unknown
permutations of [n]. We also adopt the convention that
I0 = ∅, and define E0 as the observational environment.
Next, we define the notion of coupling between the
environment sets E and Ẽ .

Definition 2 (Coupled/Uncoupled environments)
The two environment sets E and Ẽ are said to be
coupled if for the unknown permutations I and Ĩ we
know that I = Ĩ, i.e., the same node is intervened in
environments E i and Ẽ i. The two environment sets are
said to be uncoupled if Ĩ is an unknown permutation
of I.

We denote the pdfs of Z under the hard interventions in
environments Em and Ẽm, by pm and p̃m, respectively,
which can be factorized as follows for all m ∈ [n].

Em : pm(z) = qℓ(zℓ)
∏
i ̸=ℓ

pi(zi | zpa(i)) , ℓ = Im , (9)

Ẽm : p̃m(z) = q̃ℓ(zℓ)
∏
i ̸=ℓ

pi(zi | zpa(i)) , ℓ = Im . (10)

Hence, the score functions associated with pm and p̃m

are specified as follows.

sm(z) ≜ ∇z log p
m(z) , and s̃m(z) ≜ ∇z log p̃

m(z) .
(11)

Statement of the objective. The objective of CRL
is to use observations X and estimate the true latent
variables Z and causal relations among them captured
by G. We denote a generic estimator of Z given X
by Ẑ(X) : Rd → Rn. We also consider a generic
estimate of G denoted by Ĝ. In order to assess the
fidelity of the estimates Ẑ(X) and Ĝ with respect to
the ground truth Z and G, we provide the following
identifiability measures. The result in (von Kügelgen
et al., 2023, Proposition 3.8) shows that these identi-
fiability measures are the best one can ensure based
on interventional data without more direct forms of
supervision, e.g., counterfactual data.

Definition 3 (Perfect Identifiability) To formal-
ize perfect identifiability in CRL we define:

1. Perfect DAG recovery: DAG recovery is said
to be perfect if Ĝ is isomorphic to G.

2. Perfect latent recovery: Given the estimator
Ẑ(X), latent recovery is said to be perfect if Ẑ(X)
is an element-wise diffeomorphism of a permuta-
tion of Z, i.e., there exists a permutation π of [n]
and a set of functions {ϕi : i ∈ [n]} such that
ϕi : R → R and we have

Ẑ(X) = Pπ · ϕ(Z) , ∀Z ∈ Rn , (12)

where ϕ(Z) ≜ (ϕ1(Z1), . . . , ϕn(Zn).

Recovering the latent causal variables hinges on finding
the inverse of g based on the observed data X, which
in turn facilitates recovering Z via Z = g−1(X), where
g−1 denotes the inverse of g. Throughout the rest of
this paper, we refer to g−1 as the true encoder. To
formalize the procedures of estimating g−1, we define H
as the set of all possible valid encoders, i.e., candidates
for g−1. A function h can be such a candidate if it is
invertible; that is, there exists an associated decoder
h−1 such that (h−1 ◦ h)(X) = X. Hence,

H ≜ {h : X → Rn : ∃h−1 : Rn → Rd (13)

such that ∀X ∈ X : (h−1 ◦ h)(X) = X} .
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Next, corresponding to any pair of observation X and
valid encoder h ∈ H, we define Ẑ(X;h) as an auxiliary
estimate of Z generated by applying the valid encoder
h on X, i.e., for all h ∈ H and X ∈ X

Ẑ(X;h) ≜ h(X) = (h ◦ g)(Z) . (14)

The estimate Ẑ(X;h) inherits its randomness from
X, and its statistical model is governed by that of X
and the choice of h. To emphasize the dependence on
h, we denote the score functions associated with the
pdfs of Ẑ(X;h) under environments E0, Em, and Ẽm,
respectively, by sẐ(·;h), smẐ (·;h), and s̃m

Ẑ
(·;h).

3 IDENTIFIABILITY AND
ACHIEVABILITY RESULTS

In this section, we provide the identifiability and achiev-
ability results under different sets of assumptions and
interpret them vis-á-vis the recent results in the liter-
ature. We provide constructive proof for the results
by designing CRL algorithms. The details of the CRL
algorithm are summarized in Algorithm 1, which is
presented in Section 4. Our main result is the follow-
ing theorem, which establishes perfect identifiability is
possible even when the environments corresponding to
the same node are not specified in pairs. That is, not
only is it unknown what node is intervened in an envi-
ronment, additionally the learner also does not know
which two environments intervene on the same node.

Theorem 1 (Uncoupled Environments) Using
observational data and interventional data from two un-
coupled environments for which each pair in {pi, qi, q̃i}
satisfies interventional discrepancy, suffices to

(i) Identifiability: perfectly recover the latent DAG;
(ii) Identifiability: perfectly recover the latent variables;
(iii) Achievability: achieve the above two guarantees

(via Algorithm 1).

Theorem 1 shows that using observational data enables
us to resolve any mismatch between the uncoupled en-
vironment sets and shows identifiability in the setting
of uncoupled environments. This generalizes the iden-
tifiability result of (von Kügelgen et al., 2023), which
requires coupled environments. Importantly, Theorem 1
does not require faithfulness whereas (von Kügelgen
et al., 2023) requires that the estimated latent distri-
bution is faithful to the associated candidate graph for
all h ∈ H. Even though a faithfulness assumption does
not compromise the identifiability result, it is a strong
requirement to verify and poses challenges to devising
recovery algorithms. In contrast, we only require obser-
vational data, which is generally accessible in practice.
Based on this, we design a score-based algorithm, which

is presented and discussed in Section 4. Next, if the en-
vironments are coupled, we prove identifiability under
weaker assumptions on the interventional discrepancy.

Theorem 2 (Coupled Environments) Using ob-
servational data and interventional data from two un-
coupled environments for which the pair (pi, qi) satisfies
interventional discrepancy for all i ∈ [n], suffices to

(i) Identifiability: perfectly recover the latent DAG;
(ii) Identifiability: perfectly recover the latent variables;
(iii) Achievability: achieve the above two guarantees (via

Algorithm 1).

In the proof of Theorem 2, we show that the advantage
of environment coupling is that it renders interven-
tional data sufficient for perfect latent recovery, and
the observational data is only used for recovering the
graph. We further tighten this result by showing that
for DAG recovery, the observational data becomes un-
necessary when we have additive noise models and a
weak faithfulness condition holds.

Theorem 3 (No Observational Data) Using in-
terventional data from two coupled environments for
which the pair (qi, q̃i) satisfies interventional discrep-
ancy for all i ∈ [n], suffices to

(i) Identifiability: perfectly recover the latent DAG if
the latent causal model has additive noise, p(Z) is
twice differentiable, and it satisfies the adjacency-
faithfulness 1;

(ii) Identifiability: perfectly recover the latent variables
(iii) Achievability: achieve the above two guarantees.

Finally, we remark that the main results in this sub-
section (i.e., Theorem 1 and 2) hold for any latent
causal model. The additive noise model assumption is
required only for the DAG recovery part of Theorem 3.

4 GSCALE-I ALGORITHM

This section serves a two-fold purpose. First, it pro-
vides the constructive proof steps for the identifiability
results specified in Theorems 1–2. Secondly, it pro-
vides achievability via designing an algorithm that has
provable guarantees for perfect recovery of the latent
variables and latent DAG for any general class of func-
tions (linear and non-linear). We refer to this algo-
rithm as the Generalized Score-based Causal Latent
Estimation via Interventions (GSCALE-I) algorithm.
Analysis of the steps involved are provided in Section 5.

1Adjacency-faithfulness is a weaker version of the faith-
fulness assumption (Ramsey et al., 2012). It requires that
if nodes i and j are adjacent in G, then Zi and Zj are
dependent conditional on any subset of

{
Zℓ : ℓ /∈ {i, j}

}
.
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A key idea of this score-based algorithm is that the
changes in the score functions of the latent variables
enable us to find reliable estimates for the inverse of
transformation g, which in turn facilitates estimating Z.
On the other hand, we do not have access to the latent
variables and can compute only the scores of the ob-
served variables X. To circumvent this issue, we estab-
lish a relationship between the score differences across
different pairs. For this purpose, we define sX , smX , and
s̃mX as the score function of the observed variable X
under E0, Em, and Ẽm, respectively. Given any valid
encoder h, based on (14), the estimated latent variable
Ẑ(X;h) and X are related through Ẑ(X;h) = h(X).
We use this relationship to characterize the connection
between score differences as follows, which is formalized
in Lemma 2 in Section 5.

between E0 and Em : (15)

sẐ(ẑ;h)− sm
Ẑ
(ẑ;h) = [Jh−1(ẑ)]⊤ · [sX(x)− smX(x)] ,

between E0 and Ẽm : (16)

sẐ(ẑ;h)− s̃m
Ẑ
(ẑ;h) = [Jh−1(ẑ)]⊤ · [sX(x)− s̃mX(x)] ,

between Em and Ẽm : (17)

sm
Ẑ
(ẑ;h)− s̃m

Ẑ
(ẑ;h) = [Jh−1(ẑ)]⊤ · [smX(x)− s̃mX(x)] .

We will show that among all valid encoders h ∈ H,
the true encoder g−1 results in the minimum number
of variations between the score estimates sm

Ẑ
(ẑ;h) and

s̃m
Ẑ
(ẑ;h) (see Lemma 3). To formalize these, corre-

sponding to each valid encoder h ∈ H we define score
change matrices Dt(h), D(h), and D̃(h) as follows. For
all i,m ∈ [n]:

[Dt(h)]i,m ≜ E
[∣∣[sm

Ẑ
(Ẑ;h)− s̃m

Ẑ
(Ẑ;h)]i

∣∣] , (18)

[D(h)]i,m ≜ E
[∣∣[sẐ(Ẑ;h)− sm

Ẑ
(Ẑ;h)]i

∣∣] , (19)

[D̃(h)]i,m ≜ E
[∣∣[sẐ(Ẑ;h)− s̃m

Ẑ
(Ẑ;h)]i

∣∣] , (20)

where expectations are under the measures of latent
score functions induced by the probability measure of
observational data. The entry [Dt(h)]i,m will be strictly
positive only when there is a set of samples X with
a strictly positive measure that renders non-identical
scores sm

Ẑ
(ẑ;h) and s̃m

Ẑ
(ẑ;h). Similar properties hold

for the entries of D(h) and D̃(h) for the respective score
functions. The GSCALE-I algorithm is summarized in
Algorithm 1 and its key steps are described next.

Inputs: The inputs of GSCALE-I are the observed
data from the observational and interventional environ-
ments, whether environments are coupled/uncoupled,
and a set of valid encoders H.

Step 1 – Score differences: We start by computing
score differences (sX − smX), (sX − s̃mX), and (smX − s̃mX)
for all m ∈ [n].

Algorithm 1 Generalized Score-based Causal Latent
Estimation via Interventions (GSCALE-I)

Input: H, samples of X from environment E0 and
environment sets E and Ẽ , is_coupled.

Output: Latent variable estimate Ẑ and latent DAG
estimate Ĝ.

1: Step 1: Compute score differences: (sX −
smX), (sX − s̃mX), and (smX − s̃mX) for all m ∈ [n].

2: Step 2: Identify the encoder by minimizing score
variations:

3: if is_coupled then
4: Solve P1 in (21), select a solution h∗.
5: else ▷ search for the correct coupling
6: for all permutations π of [n] do
7: Temporarily relabel Ẽm to Ẽπm for all m ∈

[n], and solve P2 in (22)
8: If there is a solution, select a solution h∗

and break from the loop.
9: end for

10: end if
11: Step 3: Latent estimates: Ẑ = h∗(X).
12: Step 4: Latent DAG recovery: Construct latent

DAG Ĝ using (23).
13: return Ẑ and Ĝ.

Step 2 – Identifying the encoder: The key prop-
erty in this step is that the number of variations of the
estimated latent score differences is always no less than
the number of variations of the true latent score differ-
ences. We have two different approaches for coupled
and uncoupled settings.

Step 2 (a) – Coupled environments: We solve
the following optimization problem

P1 ≜

{
min
h∈H

∥Dt(h)∥0

s.t. Dt(h) is a diagonal matrix .
(21)

Constraining Dt(h) to be diagonal enforces that the
final estimate Ẑ and Z will be related by permutation
I (the intervention order). We select a solution of P1

in (21) as our encoder estimate and denote it by h∗.
Step 2 (b) – Uncoupled environments: In this

setting, additionally, we need to determine the cor-
rect coupling between the interventional environment
sets E and Ẽ . To this end, we iterate through permu-
tations π of [n], and temporarily relabel Ẽm to Ẽπm

for all m ∈ [n] within each iteration. Subsequently,
we solve the following optimization problem,

P2 ≜



min
h∈H

∥Dt(h)∥0

s.t. Dt(h) is a diagonal matrix

1{D(h)} = 1{D̃(h)}
1{D(h)} ⊙ 1{D⊤(h)} = In×n .

(22)
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The constraint 1{D(h)} = 1{D̃(h)} ensures that a
permutation of the correct encoder is a solution to
P2 if the coupling is correct, and the last constraint
ensures that D(h) does not contain 2-cycles. We
will show that P2 is always feasible and, more
specifically, admits a solution if and only if π is the
correct coupling (see Lemma 5), in which case, we
select a solution of P2 as our encoder estimate and
denote it by h∗.

Step 3 – Latent estimates: The latent causal vari-
ables are estimated using h∗ via Ẑ = h∗(X), where X
is the observational data.

Step 4 – Latent DAG recovery: We construct
DAG Ĝ from D(h∗) by assigning the non-zero coordi-
nates of the i-th column of D(h∗) as the parents of
node i in Ĝ, i.e.,

p̂a(i) ≜
{
j ̸= i : [D(h∗)]j,i ̸= 0

}
, ∀i ∈ [n] . (23)

Remark 1 For the nonparametric identifiability re-
sults, having an oracle that solves the functional op-
timization problems in (21) and (22), respectively, is
sufficient. Solving these two problems in their most
general form requires calculus of variations. These two
problems, however, for any desired parameterized fam-
ily of functions H (e.g., linear, polynomial, and neural
networks), reduce to parametric optimization problems.

5 PROPERTIES OF GSCALE-I

In this section, we analyze the properties and steps of
GSCALE-I algorithm. The proofs of the results in this
section are provided in Appendices B and C. We start
by presenting the key properties of score functions that
play pivotal roles throughout the analysis.

5.1 Properties of Score Functions

We investigate the variations of the latent score func-
tions that are caused by the atomic hard interventions.
The following lemma delineates the set of coordinates of
the score function that are affected under interventions
in all relevant cases.

Lemma 1 (Score Changes) Consider environ-
ments E0, Em, and Ẽm with unknown intervention
targets Im and Ĩm.

(i) Score functions s and sm (or s̃m) differ in their
i-th coordinate if and only if node i or one of its
children is intervened in Em (or Ẽm), i.e.,

E
[∣∣[s(Z)− sm(Z)]i

∣∣] ̸= 0 ⇐⇒ i ∈ pa(Im) , (24)

E
[∣∣[s(Z)]− s̃m(Z)]i

∣∣] ̸= 0 ⇐⇒ i ∈ pa(Ĩm) . (25)

(ii) Coupled environments Im = Ĩm: In the cou-
pled environment setting, sm and s̃m differ in their
i-th coordinate if and only if i is intervened, i.e.,

E
[∣∣[sm(Z)− s̃m(Z)]i

∣∣] ̸= 0 ⇐⇒ i = Im . (26)

(iii) Uncoupled environments Im ̸= Ĩm: Consider
two interventional environments Em and Ẽm with
different intervention targets Im ̸= Ĩm. Consider
additive noise models, in which

Zi = fi(Zpa(i)) +Ni , (27)

where functions {fi : i ∈ [n]} are general functions
and {Ni : i ∈ [n]} account for noise terms that
have pdfs with full support. Given that p is twice
differentiable, the score functions sm and s̃m

differ in their i-th coordinate if and only if node
i or one of its children is intervened,

E
[∣∣[sm(Z)− s̃m(Z)]i

∣∣] ̸= 0 ⇐⇒ i ∈ pa(Im, Ĩm) . (28)

In the next lemma, we establish a transformation be-
tween the score differences across different environ-
ments for any injective mapping f from latent to ob-
served space.

Lemma 2 (Score Difference Transformation)
Consider random vectors Y1, Y2 ∈ Rr and W1, W2 ∈ Rs

that are related through Y1 = f(W1) and Y2 = f(W2)
such that r ≥ s, probability measures of W1,W2 are
absolutely continuous with respect to the s-dimensional
Lebesgue measure, and f : Rs → Rr is an injective and
continuously differentiable function. The difference of
the score functions of Y1 and Y2, and that of W1 and
W2 are related as

sW1
(w)− sW2

(w) = [Jf (w)]
⊤ · [sY1

(y)− sY2
(y)] , (29)

where y = f(w) and Jf (w) ∈ Rs → Rr is the Jacobian
of f at point w ∈ Rs.

We customize Lemma 2 to two special cases. First,
we consider score differences of Ẑ(X;h) and X. By
setting f = h−1, Lemma 2 immediately specifies the
score differences of Ẑ(X;h) and X under different en-
vironment pairs in (15), (16), and (17). Next, we
consider score differences of Ẑ(X;h) and Z. Note that
Ẑ(X;h) = h(X) = (h ◦ g)(Z). Hence, by defining
ϕh = h ◦ g and setting f = ϕ−1

h , Lemma 2 yields

between E0 and Em : (30)

sẐ(ẑ;h)− sm
Ẑ
(ẑ;h) = [Jϕh

(z)]−⊤ · [s(z)− sm(z)] ,

between E0 and Ẽm : (31)

sẐ(ẑ;h)− s̃m
Ẑ
(ẑ;h) = [Jϕh

(z)]−⊤ · [s(z)− s̃m(z)] ,

between Em and Ẽm : (32)

sm
Ẑ
(ẑ;h)− s̃m

Ẑ
(ẑ;h) = [Jϕh

(z)]−⊤ · [sm(z)− s̃m(z)] .
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Equipped with these results, we analyze the main algo-
rithm steps.

5.2 Analysis of Algorithm Steps

The key idea for identifying the true encoder is that
the number of variances between the score estimates
sm
Ẑ
(ẑ;h) and s̃m

Ẑ
(ẑ;h) is minimized under the true en-

coder g−1. To show that, first, we define the true score
change matrix Dt with entries for all i,m ∈ [n],

[Dt]i,m ≜ E
[∣∣[sm(Z)− s̃m(Z)]i

∣∣] . (33)

We start by considering coupled environments. Since
the only varying causal mechanism across Em and Ẽm

is the intervened node Im = Ĩm, based on (25),

E
[∣∣[sm(Z)− s̃m(Z)]i

∣∣] ̸= 0 ⇐⇒ i = Im , (34)

which implies that 1{Dt} is a permutation matrix.
Specifically, 1{Dt} = P⊤

I . We show that the number
of variations between the score estimates sm

Ẑ
(ẑ;h) and

s̃m
Ẑ
(ẑ;h), i.e., ℓ0 norm of Dt(h), cannot be less than

the number of variations under the true encoder g−1,
that is n = ∥Dt∥0.

Lemma 3 (Score Change Matrix Density) For
every h ∈ H, the score change matrix Dt(h) is at least
as dense as the score change matrix Dt associated with
the true latent variables,

∥Dt(h)∥0 ≥ ∥Dt∥0 = n . (35)

The rest of the proof of Theorem 2 builds on Lemma 3
and shows that, for any solution h∗ to (21), we have
1{J−1

ϕh∗ (z)} = P⊤
I for all z ∈ Rn. Finally, using

Lemma 1(i) we show that DAG Ĝ constructed using
D(h∗) is isomorphic to the true latent DAG G. We
defer the complete proof to Appendix C.1.

Next, we consider the uncoupled environments. The
proof consists of showing two properties of the optimiza-
tion problem P2 specified in (22): (i) it does not have a
feasible solution if the coupling is incorrect, and (ii) it
has a feasible solution if the coupling is correct, which
are given by following Lemma 4 and 5, respectively.

Lemma 4 (Feasibility) If the coupling is incorrect,
i.e., π ≠ I, the optimization problem in P2 in (22)
does not have a feasible solution.

The main intuition in the proof of Lemma 4 is that
the constraints of P2 cannot be satisfied simultane-
ously under an incorrect coupling. We prove it by
contradiction. We assume that h∗ is a solution, hence,
Dt(h

∗) is diagonal and 1{D(h)} = 1{D̃(h)}. Then, by

scrutinizing the eldest mismatched node, we show that
D(h∗) · D⊤(h∗) cannot be a diagonal matrix, which
contradicts the premise that h∗ is a feasible solution.

Lemma 5 If the coupling is correct, i.e., π = I,
h = π−1 ◦ g−1 is a solution to P2 in (22), and yields
∥Dt(h)∥0 = n.

Lemmas 4 and 5 collectively prove Theorem 1 identifia-
bility as follows. We can search over the permutations
of [n] until P2 admits a solution h∗. By Lemma 4,
the existence of this solution means that coupling is
correct. Note that when the coupling is correct, the
constraint set of P1 is a subset of the constraints in P2.
Furthermore, the minimum value of ∥Dt(h)∥0 is lower
bounded by n (Lemma 3), which is achieved by the
solution h∗ (Lemma 5). Hence, h∗ is also a solution to
P1, and by Theorem 2, it satisfies perfect recovery of
the latent DAG and the latent variables.

6 EMPIRICAL EVALUATIONS

We provide empirical assessments of the achievability
guarantees. Specifically, we empirically evaluate the
performance of the GSCALE-I algorithm for recovering
the latent variables Z and the latent DAG G under
coupled interventions on synthetic data by solving the
optimization problem P1 in (21). The evaluations pur-
sue a two-fold purpose: (i) evaluating the performance
of GSCALE-I, and (ii) showcasing settings for which
the existing literature does not have an achievability
result (i.e., a constructive algorithm) and provide only
identifiability results for them. Hence, the achievability
results in this section lack counterparts in the existing
literature. We focus on a non-polynomial transform g
and a non-linear latent causal model.

Data generation. To generate G we use the Erdős-
Rényi model with density 0.5 and n ∈ {5, 8} nodes.
For the observational causal mechanisms, we adopt an
additive noise model with

Zi =
√

Z⊤
pa(i) ·Ai · Zpa(i) +Ni , (36)

where {Ai : i ∈ [n]} are positive-definite matrices, and
the noise terms are zero-mean Gaussian variables with
variances σ2

i sampled randomly from Unif([0.5, 1.5]).
For the two hard interventions on node i, Zi is set
to Nq,i ∼ N (0, σ2

q,i) and Nq̃,i ∼ N (0, σ2
q̃,i). We set

σ2
q,i = σ2

i + 1 and σ2
q̃,i = σ2

i + 2. We consider target
dimension values d ∈ {5, 8, 25, 100}. For each (n, d)
pair, we generate 100 latent graphs and ns samples of
Z per graph, where we set ns = 100 for n = 5 and
ns = 300 for n = 8. As the transformation, we consider
a generalized linear model,

X = g(Z) = tanh(G · Z) , (37)
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Table 2: GSCALE-I for a quadratic causal model with
two coupled hard interventions.

perfect scores noisy scores
n d ℓ(Z, Ẑ) SHD(G, Ĝ) ℓ(Z, Ẑ) SHD(G, Ĝ)
5 5 0.03 0.12 1.19 5.1
5 25 0.03 0.04 1.09 4.4
5 100 0.04 0.02 0.86 5.0

8 8 0.16 1.56 0.81 11.9
8 25 0.20 1.55 0.69 10.5
8 100 0.24 1.50 0.77 11.85

in which tanh is applied element-wise, and parameter
G ∈ Rd×n is a randomly sampled full-rank matrix.

Score functions. GSCALE-I computes the score
differences (sX − smX), (sX − s̃mX), and (smX − s̃mX) for
all m ∈ [n] in Step 1. The design of GSCALE-I is
agnostic to how Step 1 is performed, i.e., any reliable
method for estimating these score differences can be
adopted. On the other hand, we note that the perfect
identifiability guarantees formalized in Theorem 2 rely
on having perfect score differences. In our experiments,
we mainly adopt a score oracle that computes the
score differences in Step 1 (see Appendix D for details).
Unlike identifiability, for achievability, we need score
estimates, which are inevitably noisy. For this purpose,
we also adopt a score estimator, sliced score matching
with variance reduction (SSM-VR) due to its efficiency
and accuracy for downstream tasks (Song et al., 2020).

Candidate encoder and loss function. Leveraging
(37), we parameterize valid encoders as

Ẑ = h(X) = H · arctanh(X) . (38)

To use gradient descent to learn parameters H of h, we
relax ℓ0 norm in (21) and instead minimize the element-
wise ℓ1,1 norm ∥Dt(h)∥1,1 computed with empirical
expectations. We also add proper regularization terms
to ensure that the estimated parameter H∗ will be
full-rank.

Evaluation metrics. GSCALE-I ensures perfect la-
tent and DAG recovery. For assessing the recovery
of the latent DAG, we report structural Hamming
distance (SHD) between Ĝ and G. For the recovery
of latent variables, we report the normalized ℓ2 loss,
ℓ(Z, Ẑ) ≜ ∥Z − Ẑ∥2/∥Z∥2.

Observations. Table 2 shows that by using true score
differences (sX−smX), (sX− s̃mX), and (smX− s̃mX), we can
almost perfectly recover the latent variables and the
latent DAG for n = 5 nodes. When we consider a larger
graph with n = 8 nodes, the normalized ℓ2 loss remains
less than 0.25. We note that G with n = 8 nodes and

density 0.5 has an expected number of 14 edges. Hence,
having an average SHD of approximately 1.5 edges
indicates that GSCALE-I yields a high performance at
recovering latent causal relationships even when the
transformation estimate is reasonable but not perfect.
We also observe that increasing dimension d of the
observational data does not degrade the performance,
confirming our analysis that GSCALE-I is agnostic to
the dimension of observations. Finally, Table 2 shows
that GSCALE-I’s performance degrades when using
noisy scores computed via SSM-VR. This degradation
is due to the errors introduced by imperfect score esti-
mates. This performance gap can be improved by the
advances in the approaches to score estimation.

7 CONCLUSION

In this paper, we have established identifiability results
for latent causal representations from two interven-
tional environments per latent node without restric-
tions on transformation between latent and observed
space, and the causal models. We addressed both un-
coupled and coupled settings. Importantly, the learner
does not which pair of environments share the same
intervened node in the former setting, which improved
upon the recent results in nonparametric CRL identi-
fiability. Furthermore, we have shown that the faith-
fulness assumption that is required in previous studies
in literature can be dispensed with given access to ob-
servational data. Finally, we provided an algorithm
owing to the constructive proof technique based on
variations in score functions under interventions and
demonstrated its success at identifying both the in-
verse transformation and latent DAG via simulations
on synthetic data.

One major direction for future work is relaxing the
requirement of two atomic hard interventions per node.
Partial identifiability guarantees for a non-exhaustive
set of interventions can also be useful for making infer-
ences from a reduced number of environments. Simi-
larly, investigating the sufficient conditions for which
a set of multi-target interventions guarantee identifia-
bility is a promising research direction. Finally, com-
paring the experiments with perfect and noisy score
estimates indicates that the practical bottleneck of our
score-based framework is access to an accurate score
difference estimator, which is an interesting future di-
rection itself.
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General Identifiability and Achievability for
Causal Representation Learning:

Supplementary Material

A Related Work

Identifiable representation learning. One of the primary goals of representation learning is to identify
the underlying latent factors responsible for generating observed data. However, as discussed in Section 1,
latent factors are not identifiable unless there is auxiliary information or additional structure that explains the
data generation process (Hyvärinen and Pajunen, 1999; Locatello et al., 2019). Various strategies have been
developed to address this issue when there is no inherent causal relationship among the latent factors. Some
notable approaches include incorporating posterior regularization (Kumar and Poole, 2020), leveraging knowledge
about the mechanisms governing system dynamics (Ahuja et al., 2022a), and using weak supervision along with
auxiliary information (Shu et al., 2020). Furthermore, non-linear independent component analysis (ICA) leverages
side information in the form of structured time series to exploit temporal information (Hyvärinen and Morioka,
2017; Hälvä and Hyvärinen, 2020), or knowledge of auxiliary variables that make latent variables conditionally
independent (Khemakhem et al., 2020a,b; Hyvärinen et al., 2019). In a related context, the identifiability of deep
generative models is studied without auxiliary information (Kivva et al., 2022).

Causal representation learning. In one approach to identifiability of CRL, several studies have investigated
the setting when pairs of observations are available – one before and one after a mechanism change (e.g., an
intervention) for the same underlying realization of exogenous variables involved (Ahuja et al., 2022b; Locatello
et al., 2020; von Kügelgen et al., 2021; Yang et al., 2021; Brehmer et al., 2022). A typical example of this setup is
considering images of an object from different angles (Brehmer et al., 2022). From a causal perspective, these
pairs can be regarded as counterfactual pairs. Alternatively, some studies use temporal sequences to identify
causal variables in the presence of interventions (Lachapelle et al., 2022; Yao et al., 2022; Lippe et al., 2023).
However, we note that this paper does not focus on time-series data. Our approach operates under a milder form
of supervision, where we can observe data under different interventional distributions in the latent space while
the counterfactual instances remain unobservable.

CRL from interventions. We repeat the related work discussed in Section 1 here. The recent studies most
closely related to the scope of this paper are (Varıcı et al., 2023) and (von Kügelgen et al., 2023). (Varıcı
et al., 2023) establishes an inherent connection between score functions and CRL, and based on that, designs
a score-based CRL framework. Specifically, using one intervention per node under a non-linear causal model
and a linear transformation, (Varıcı et al., 2023) provides both identifiability and achievability results. It shows
that finding the variations of the score functions across different intervention environments is sufficient to recover
linear g and G that have non-linear causal structures. We have three major distinctions from (Varıcı et al., 2023)
in settings by assuming nonparametric choices of transformations g, a general latent causal model, and using
two hard interventions. The study in (von Kügelgen et al., 2023) considers nonparametric models for g and the
causal relationships and shows that two coupled hard interventions per node suffice for identifiability. We have
two major differences with (von Kügelgen et al., 2023). First, we assume uncoupled interventional environments,
whereas (von Kügelgen et al., 2023) focuses on coupled environments. Secondly, the approach of (von Kügelgen
et al., 2023) focuses mainly on identifiability (e.g., no algorithm for recovery of the latent variables), whereas we
address both identifiability and achievability.

The studies that focus on the parametric settings include (Liu et al., 2022; Squires et al., 2023; Ahuja et al., 2023;
Zhang et al., 2023; Buchholz et al., 2023). (Liu et al., 2022) aims to learn latent causal graphs and identify latent
representations. However, its focus is on linear Gaussian latent models, and its extensions to even non-linear
Gaussian models are viable at the expense of restricting the graph structure. (Squires et al., 2023) considers
linear causal models and proves identifiability under hard interventions and the impossibility of identifiability
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under soft interventions. This setting complements that of (Varıcı et al., 2023), which considers non-linear latent
causal models and proves identifiability under hard and milder identifiability guarantees under soft interventions.
The study in (Ahuja et al., 2023) considers a polynomial transform and shows that it can be reduced to an affine
transform by an autoencoding process and proves identifiability under do interventions or soft interventions on
bounded latent variables. (Zhang et al., 2023) builds on the results of (Ahuja et al., 2023), considers polynomial
transforms under non-linear causal models, and proves identifiability under soft interventions. Finally, (Buchholz
et al., 2023) focuses on linear Gaussian causal models and extends the results of (Squires et al., 2023) to prove
identifiability for general transforms. Other studies on the nonparametric settings include (Jiang and Aragam,
2023; Liang et al., 2023). The study in (Jiang and Aragam, 2023) considers identifying the latent DAG without
recovering latent variables, where it is shown that a restricted class of DAGs can be recovered. The study
in (Liang et al., 2023) assumes that the latent DAG is already known and recovers the latent variables under
hard interventions.

Score functions in causality. The study in (Rolland et al., 2022) uses score-matching to recover non-linear
additive Gaussian noise models. The proposed method finds the topological order of causal variables but requires
additional pruning to recover the full graph. (Montagna et al., 2023) focuses on the same setting, recovers the
full graph from Jacobian scores, and dispenses with the computationally expensive pruning stage. (Sanchez
et al., 2023) uses score-matching to learn the topological order as well while significantly improving the training
procedure. All of these studies are limited to observed causal variables, whereas in our case, we have a causal
model in the latent space.

B Score Function Properties under Interventions

In this section, we provide the proofs relating to score functions. First, we provide the following facts that will be
used repeatedly in the proofs.

Proposition 1 Consider two continuous functions f, g : Rn → R. Then, for any α > 0,

∃z ∈ Rn f(z) ̸= g(z) ⇐⇒ E
[∣∣f(Z)− g(Z)

∣∣α] ̸= 0 . (39)

Specifically, for α = 1, we have

∃z ∈ Rn f(z) ̸= g(z) ⇐⇒ E
[∣∣f(Z)− g(Z)

∣∣] ̸= 0 . (40)

Proof: If there exists z ∈ Rn such that f(z) ̸= g(z), then f(z) − g(z) is non-zero over a non-zero-measure set
due to continuity. Then, E[|f(Z)− g(Z)|α] ̸= 0 since p (pdf of Z) has full support. On the other direction, if
f(z) = g(z) for all z ∈ Rn, then E[|f(Z)− g(Z)|α] = 0. This means that E[|f(Z)− g(Z)|α] ̸= 0 implies that there
exists z ∈ Rn such that f(z) ̸= g(z).

B.1 Proof of Lemma 1

Case (i) The statement directly follows from Lemma 4 of (Varıcı et al., 2023).

Case (ii) Coupled environments. Suppose that Im = Ĩm = ℓ. Following (9) and (10), we have

sm(z) = ∇z log qℓ(zℓ) +
∑
i ̸=ℓ

∇z log pi(zi | zpa(i)) , (41)

and s̃m(z) = ∇z log q̃ℓ(zℓ) +
∑
i ̸=ℓ

∇z log pi(zi | zpa(i)) . (42)

Then, subtracting (42) from (41) and looking at i-th coordinate, we have[
sm(z)− s̃m(z)

]
i
=

∂ log qℓ(zℓ)

∂zi
− ∂ log q̃ℓ(zℓ)

∂zi
. (43)

If i ≠ ℓ, the right-hand side is zero and we have
[
sm(z)− s̃m(z)

]
i
= 0 for all z. On the other hand, if i = ℓ, since

qℓ(zℓ) and q̃ℓ(zℓ) are distinct, there exists z ∈ Rn such that qℓ(zℓ) ̸= q̃ℓ(zℓ). Subsequently, by Proposition 1, we
have E

[∣∣[sm(Z)− s̃m(Z)]i
∣∣] ̸= 0.
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Case (iii) Uncoupled environments. Suppose that Im = ℓ and Ĩm = j, and ℓ ̸= j. Following (9), we have

sm(z) = ∇z log qℓ(zℓ) +∇z log pj(zj | zpa(j)) +
∑

k∈[n]\{ℓ,j}

∇z log pk(zk | zpa(k) , (44)

and s̃m(z) = ∇z log qj(zj) +∇z log pℓ(zℓ | zpa(ℓ)) +
∑

k∈[n]\{ℓ,j}

∇z log pk(zk | zpa(k)) . (45)

Then, subtracting (45) from (44) we have

sm(z)− s̃m(z) = ∇z log qℓ(zℓ) +∇z log pj(zj | zpa(j))−∇z log qj(zj)−∇z log pℓ(zℓ | zpa(ℓ)) . (46)

Scrutinizing the i-th coordinate, we have[
sm(z)− s̃m(z)

]
i
=

∂ log qℓ(zℓ)

∂zi
+

∂ log pj(zj | zpa(j))
∂zi

− ∂ log qj(zj)

∂zi
−

∂ log pℓ(zℓ | zpa(ℓ))
∂zi

. (47)

Proof of E
[∣∣[sm(Z) − s̃m(Z)

]
i

∣∣] ≠ 0 =⇒ i ∈ pa(ℓ, j): Suppose that i /∈ pa(ℓ, j). Then, none of the terms
in the RHS of (47) is a function of zi. Therefore, all the terms in the RHS of (47) are zero, and we have[
sm(z)− s̃m(z)

]
i
= 0 for all z. By Proposition 1, E

[∣∣[sm(Z)− s̃m(Z)]i
∣∣] = 0. This, equivalently, means that if

E
[∣∣[sm(Z)− s̃m(Z)]i

∣∣] ̸= 0, then i ∈ pa(ℓ, j).

Proof of E
[∣∣[sm(Z)− s̃m(Z)]i

∣∣] ̸= 0 ⇐= i ∈ pa(ℓ, j): We prove it by contradiction. Assume that
[
sm(z)−

s̃m(z)
]
i
= 0 for all z. Without loss of generality, let ℓ /∈ pa(j).

If i = ℓ. In this case, (47) is simplified to

0 =
[
sm(z)− s̃m(z)

]
ℓ
=

∂ log qℓ(zℓ)

∂zℓ
−

∂ log pℓ(zℓ | zpa(ℓ))
∂zℓ

. (48)

If ℓ is a root node, i.e., pa(ℓ) = ∅, (48) implies that (log qℓ)
′(zℓ) = (log pℓ)

′(zℓ) for all zℓ. Integrating, we get
pℓ(zℓ) = αqℓ(zℓ) for some constant α. Since both pℓ and qℓ are pdfs, they both integrate to one, implying
α = 1 and pℓ(zℓ) = qℓ(zℓ), which contradicts the premise that observational and interventional mechanisms are
distinct. If ℓ is not a root node, consider some k ∈ pa(ℓ). Then, taking the derivative of (48) with respect to
zk, we have

0 =
∂2 log pℓ(zℓ | zpa(ℓ))

∂zℓ∂zk
. (49)

Recall the equation Zℓ = fℓ(Zpa(ℓ)) +Nℓ for additive noise models specified in (27). Denote the pdf of the
noise term Nℓ by pNℓ

. Then, the conditional pdf pℓ(zℓ | zpa(ℓ)) is given by pℓ(zℓ | zpa(ℓ)) = pN (zℓ − fℓ(zpa(ℓ))).
Denoting the score function of pNℓ

by rℓ,

rℓ(u) ≜
d

du
log pN (u) , (50)

we have

∂ log pℓ(zℓ | zpa(ℓ))
∂zℓ

=
∂ log pN (zℓ − fℓ(zpa(ℓ)))

∂zℓ
= rℓ(zℓ − fℓ(zpa(ℓ))) . (51)

Substituting this into (49), we obtain

0 =
∂rℓ

(
zℓ − fℓ(zpa(ℓ))

)
∂zk

= −
∂fℓ(zpa(ℓ))

∂zk
· r′ℓ

(
zℓ − fℓ(zpa(ℓ))

)
, ∀z ∈ Rn . (52)

Since k is a parent of ℓ, there exists a fixed Zpa(ℓ) = z∗pa(ℓ) realization for which ∂fℓ(z
∗
pa(ℓ))/∂zk is non-zero.

Otherwise, fℓ(zpa(ℓ)) would not be sensitive to zk which is contradictory to k being a parent of ℓ. Note that
Zℓ can vary freely after fixing Zpa(ℓ). Therefore, for (52) to hold, the derivative of rp,ℓ must always be zero.
However, the score function of a valid pdf with full support cannot be constant. Therefore,

[
sm(z)i − s̃m(z)

]
i

is not always zero, and we have E
[∣∣[sm(Z)− s̃m(Z)]i

∣∣] ̸= 0.
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If i ̸= ℓ . In this case, (47) is simplified to

0 =
[
sm(z)− s̃m(z)

]
i
=

∂ log pj(zj | zpa(j))
∂zi

− ∂ log qj(zj)

∂zi
−

∂ log pℓ(zℓ | zpa(ℓ))
∂zi

. (53)

We investigate case by case and reach a contradiction for each case. First, suppose that i /∈ pa(ℓ). Then, we
have i ∈ pa(j), and (53) becomes

0 =
[
sm(z)− [s̃m(z)

]
i
=

∂ log pj(zj | zpa(j))
∂zi

− ∂ log qj(zj)

∂zi
. (54)

If i = j, the impossibility of (54) directly follows from the impossibility of (48). The remaining case is i ∈ pa(j).
In this case, taking the derivative of the right-hand side of (54) with respect to zj , we obtain

0 =
∂2 log pj(zj | zpa(j))

∂zi∂zj
, (55)

which is a realization of (49) for i ∈ pa(j) and j in place of k ∈ pa(ℓ) and ℓ, which we proved to be impossible
in i = ℓ case. Therefore, i /∈ pa(ℓ) is not viable. Finally, suppose that i ∈ pa(ℓ). Then, taking the derivative of
the right-hand side of (53) with respect to zℓ, we obtain

0 =
∂2 log pℓ(zℓ | zpa(ℓ))

∂zi∂zℓ
, (56)

which is again a realization of (49) for k = i, which we proved to be impossible.

Hence, we showed that
[
sm(z) − s̃m(z)

]
i

cannot be zero for all z values. Then, by Proposition 1 we have
E
[∣∣[sm(Z)− s̃m(Z)]i

∣∣] ̸= 0, and the proof is concluded.

B.2 Proof of Lemma 2

Let us recall the setting. Consider random vectors Y1, Y2 ∈ Rr and W1, W2 ∈ Rs that are related through
Y1 = f(W1) and Y2 = f(W2) such that r ≥ s, probability measures of W1,W2 are absolutely continuous with
respect to the s-dimensional Lebesgue measure and f : Rs → Rr is an injective and continuously differentiable
function.

In this setting, the realizations of W1 and Y1, and that of W2 and Y2, are related through y = f(w). Since f is
injective and continuously differentiable, volume element dw in Rs gets mapped to

∣∣det([Jf (w)]⊤ · Jf (w)
)∣∣1/2 dw

on im(f). Since W1 has density pW1 absolutely continuous with respect to the s-dimensional Lebesgue measure,
using the area formula (Boothby, 2003), we can define a density for Y1, denoted by pY1 , supported only on
manifold M ≜ im(f) which is absolutely continuous with respect to the s-dimensional Hausdorff measure:

pY1(y) = pW1(w) ·
∣∣det([Jf (w)]⊤ · Jf (w)

)∣∣−1/2
, where y = f(w) . (57)

Densities pY2 and pW2 of Y2 and W2 are related similarly. Subsequently, score functions of {W1,W2} and {Y1, Y2}
are specified similarly to (4) and (7), respectively. Denote the Jacobian matrix of f at point w ∈ Rs by Jf (w),
which is an r × s matrix with entries given by

[
Jf (w)

]
i,j

=
∂
[
f(w)

]
i

∂wj
=

∂yi
∂wj

, ∀i ∈ [r] , j ∈ [s] . (58)

Next, consider a function ϕ : M → R. Since the domain of ϕ is a manifold, its differential, denoted by Dϕ, is
defined according to (6). By noting y = f(w), we can also differentiate ϕ with respect to w ∈ Rs as (Simon, 2014,
p. 57)

∇wϕ(y) = ∇w(ϕ ◦ f)(w) =
[
Jf (w)

]⊤ ·Dϕ(y) . (59)
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Next, given the identities in (57) and (59), we find the relationship between score functions of W1 and Y1 as
follows.

sW1
(w) = ∇w log pW1

(w) (60)
(57)
= ∇w log pY1

(y) +∇w log
∣∣det([Jf (w)]⊤ · Jg(w)

)∣∣1/2 (61)
(59)
=

[
Jf (w)

]⊤ ·D log pY1
(y) +∇w log

∣∣det([Jf (w)]⊤ · Jf (w)
)∣∣1/2 (62)

=
[
Jf (w)

]⊤ · sY1(y) +∇w log
∣∣det([Jf (w)]⊤ · Jf (w)

)∣∣1/2 . (63)

Following the similar steps that led to (63) for W2 and Y2, we obtain

sW2
(w) =

[
Jf (w)

]⊤ · sY2
(y) +∇w log

∣∣det([Jf (w)]⊤ · Jf (w)
)∣∣1/2 . (64)

Subtracting (64) from (63), we obtain the desired result

sW1(w)− sW2(w) =
[
Jf (w)

]⊤ ·
[
sY1(y)− sY2(y)

]
. (65)

Corollary 1 Under the same setting and the assumptions as Lemma 2, we have

sY1
(y)− sY2

(y) =
[[
Jf (w)

]†]⊤ ·
[
sW1

(w)− sW2
(w)

]
, where y = f(w) . (66)

Proof: Multiplying (65) from left with
[
[Jf (w)]

†]⊤, we obtain[[
Jf (w)

]†]⊤ ·
[
sW1(w)− sW2(w)

]
=

[[
Jf (w)

]†]⊤ ·
[
Jf (w)

]⊤ ·
[
sY1(y)− sY2(y)

]
. (67)

Note that [[
Jf (w)

]†]⊤ ·
[
Jf (w)

]⊤
= Jf (w) ·

[
Jf (w)

]†
. (68)

Note that, by properties of the Moore-Penrose inverse, for any matrix A, we have A ·A† ·A = A. This means
that A ·A† acts as a left identity for vectors in the column space of A. By definition, sY1

and sY2
have values

in Tw im(f), the tangent space of the image manifold f at point w. This space is equal to the column space of
matrix Jf (w). Therefore, Jf (w) · [Jf (w)]† acts as a left identity for sY1

(y) and sY2
(y), and we have

Jf (w) ·
[
Jf (w)

]† · [sY1
(y)− sY2

(y)
]
= sY1

(y)− sY2
(y) . (69)

Substituting (68) and (69) into (67) completes the proof.

C Proofs of Identifiability Results

In this section, we first prove identifiability in the coupled environments along with the observational environment
case (Theorem 2). Then, we show that the result can be extended to coupled environments without observational
environment (Theorem 3) and uncoupled environments (Theorem 1).

For convenience, we recall the following equations from the main paper. For each h ∈ H we define ϕh ≜ h ◦ g.
Then, Ẑ(X;h) and Z are related as

Ẑ(X;h) = h(X) = (h ◦ g)(Z) = ϕh(Z) . (70)

Then, by setting f = ϕ−1
h , Lemma 2 yields

between E0 and Em : sẐ(ẑ;h)− sm
Ẑ
(ẑ;h) =

[
Jϕh

(z)
]−⊤ ·

[
s(z)− sm(z)

]
, (71)

between E0 and Ẽm : sẐ(ẑ;h)− s̃m
Ẑ
(ẑ;h) =

[
Jϕh

(z)
]−⊤ ·

[
s(z)− s̃m(z)

]
, (72)

between Em and Ẽm : sm
Ẑ
(ẑ;h)− s̃m

Ẑ
(ẑ;h) =

[
Jϕh

(z)
]−⊤ ·

[
sm(z)− s̃m(z)

]
. (73)
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C.1 Proof of Theorem 2

First, we investigate the perfect recovery of latent variables.

Recovering the latent variables. We recover the latent variables using only the coupled interventional
environments {(Em, Ẽm) : m ∈ [n]}. Let ρ be the permutation that maps {1, . . . , n} to I, i.e., Iρi = i for all
i ∈ [n] and Pρ to denote the permutation matrix that corresponds to ρ, i.e.,

[Pρ]i,m =

{
1 , m = ρi ,

0 , else .
(74)

Since we consider coupled atomic interventions, the only varying causal mechanism between Eρi and Ẽρi is that
of the intervened node in Iρi = Ĩρi = i. Then, by Lemma 1(ii), we have

E
[∣∣∣[sm(Z)− s̃m(Z)

]
k

∣∣∣] ̸= 0 ⇐⇒ k = i . (75)

We recall the definition of true score change matrix Dt in (33) with entries for all i,m ∈ [n],

[
Dt

]
i,m

≜ E
[∣∣∣[sm(Z)− s̃m(Z)

]
i

∣∣∣] . (76)

Then, using (75), we have
1{Dt} = Pρ = P⊤

I . (77)

Next, we show that the number of variations between the score estimates sm
Ẑ
(ẑ;h) and s̃m

Ẑ
(ẑ;h) cannot be less

than the number of variations under the true encoder g−1, that is n = ∥Dt∥0. First, we provide the following
linear algebraic property.

Proposition 2 If A ∈ Rn×n is a full-rank matrix, then there exists a permutation matrix P such that the
diagonal elements of P ·A are non-zero.

Proof See Appendix C.6.

Lemma 3 (Score Change Matrix Density) For every h ∈ H, the score change matrix Dt(h) is at least as
dense as the score change matrix Dt associated with the true latent variables,

∥Dt(h)∥0 ≥ ∥Dt∥0 = n . (78)

Proof: Recall the definition of score change matrix Dt(h) in (18). Using (73), we can write entries of Dt(h)
equivalently as

[
Dt(h)

]
i,m

= E
[∣∣∣[J−⊤

ϕh
(Z)

]
i
·
[
sm(Z)− s̃m(Z)

]∣∣∣] , ∀ i,m ∈ [n] . (79)

Since ϕh = h ◦ g is a diffeomorphism,
[
J−⊤
ϕh

(z)
]

is full-rank for all (h, z) ∈ H × Rn. Using Proposition 2, for all
(h, z), there exists a permutation π(h, z) of [n] with permutation matrix P1(h, z) such that[

P1(h, z) · J−⊤
ϕh

(z)
]
i,i

̸= 0 , ∀i ∈ [n] , where P1(h, z) ≜ Pπ(h,z) . (80)

Next, recall that interventional discrepancy means that, for each i ∈ [n], there exists a null set Ti ⊂ R such that
[sρi(z)]i ̸= [s̃ρi(z)]i for all zi ∈
mcK \ Ti (regardless of the value of other coordinates of z). Then, there exists a null set T ⊂ Rn such that
[sρi(z)]i ̸= [s̃ρi(z)]i for all i ∈ [n] for all z ∈ Rn \ T . We denote this set Rn \ T by Z as follows:

Z ≜ {z ∈ Rn :
[
sρi(z)

]
i
̸=

[
s̃ρi(z)

]
i
, ∀i ∈ [n]} . (81)
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Then, for all z ∈ Z, h ∈ H, and i ∈ [n], we have

[
Dt(h)

]
πi(h,z),ρi

= E
[∣∣∣[J−⊤

ϕh
(Z)

]
πi(h,z)

·
[
sρi(Z)− s̃ρi(Z)

]∣∣∣] (82)

= E
[∣∣∣[J−⊤

ϕh
(Z)]πi(h,z),i ·

[
sρi(Z)i − s̃ρi(Z)

]
i

∣∣∣] , (83)

in which πi(h, z) denotes the i-th element of the permutation π(h, z). By the definition of π(h, z), for any z ∈ Z,
we know that

[
J−⊤
ϕh

(z)
]
πi(h,z),i

≠ 0. Furthermore, by the definition of Z, we have
[
sρi(z)− s̃ρi(z)

]
i
̸= 0 for z ∈ Z.

Then, we have
[
Dt(h)

]
πi(h,z),ρi

̸= 0, which implies

1
{
Dt(h)

}
≽ P⊤

1 (h, z) ·Pρ , ∀h ∈ H, ∀z ∈ Z . (84)

Therefore, ∥Dt(h)∥0 ≥ ∥Pρ∥0 = n for any h ∈ H, and the proof is concluded since we have 1{Dt} = Pρ.

The lower bound for ℓ0 norm is achieved if and only if 1{Dt(h)} = Pρ, which is an unknown permutation matrix.
Since the only diagonal permutation matrix is In×n, the solution set of the constrained optimization problem in
(21) is given by

H1 ≜
{
h ∈ H : 1{Dt(h)} = In×n

}
. (85)

Next, consider some fixed solution h∗ ∈ H1. Due to (84), we have

1{Dt(h
∗)} = In×n ≽ P⊤

1 (h
∗, z) ·Pρ , (86)

which implies that we must have P1(h
∗, z) = Pρ for all z ∈ Z. Then, πi(h

∗, z) = ρi for all i ∈ [n]. We will show
that for all i ̸= j, we have [

J−1
ϕh∗ (z)

]
j,ρi

= 0 , ∀z ∈ Rn (87)

To show (87), first consider i ̸= j, which implies [Dt(h
∗)]ρi,ρj

= 0 since 1{Dt(h
∗)} = In×n. Then, using (79),

1{Dt(h
∗)} = In×n and Lemma 1(ii), we have

[
Dt(h

∗)
]
ρi,ρj

= E
[∣∣∣[J−⊤

ϕh∗ (Z)
]
ρi

·
[
sρj (Z)− s̃ρj (Z)

]∣∣∣] (88)

= E
[∣∣∣[J−1

ϕh∗ (Z)
]
j,ρi

·
[
sρj (Z)− s̃ρj (Z)

]
j

∣∣∣] (89)

= 0 . (90)

Note that [sρj (z) − s̃ρj (z)]j ̸= 0 for all z ∈ Z. Hence, if [J−1
ϕh∗ (z)]j,ρi is non-zero over a non-zero-measure set

within Z, then [Dt(h
∗)]ρi,ρj would not be zero. Therefore,

[
J−1
ϕh∗ (z)

]
j,ρi

= 0 on a set of measure 1. Since J−1
ϕh∗ is

a continuous function, this implies that [
J−1
ϕh∗ (z)

]
j,ρi

= 0 , z ∈ Rn . (91)

To see this, suppose that [J−1
ϕh∗ (z

∗)]j,ρi
> 0 for some z∗ ∈ Z. Due to continuity, there exists an open set including

z∗ for which [J−1
ϕh∗ (z

∗)]j,ρi
> 0, and since open sets have non-zero measure, we reach a contradiction. Therefore,

if i ̸= j, [J−1
ϕh∗ (z)]j,ρi

= 0 for all z ∈ Rn. Since J−1
ϕh∗ (z) must be full-rank for all z ∈ Rn, we have

[J−1
ϕh∗ (z)]i,ρi ̸= 0 , ∀z ∈ Rn ,∀i ∈ [n] . (92)

Then, for any h∗ ∈ H1, [Ẑ(X;h∗)]ρi = [ϕh∗(Z)]ρi is a function of only Zi, and we have

[Ẑ(X;h∗)]ρi
= ϕh∗(Zi) , ∀i ∈ [n] , (93)

which concludes the proof.
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Recovering the latent graph Consider the selected solution h∗ ∈ H1. We construct the graph Ĝ as follows.
We create n nodes and assign the non-zero coordinates of ρj-th column of D(h∗) as the parents of node ρj in Ĝ,
i.e.,

p̂a(ρj) ≜
{
ρi ̸= ρj : [D(h∗)]ρi,ρj

̸= 0
}
, ∀j ∈ [n] . (94)

Using (19) and (71), we have

p̂a(ρj)
(19)
=

{
ρi ̸= ρj : E

[∣∣∣[sẐ(Ẑ;h∗)− s
ρj

Ẑ
(Ẑ;h∗)

]
ρi

∣∣∣] ̸= 0

}
(95)

(71)
=

{
ρi ̸= ρj : E

[∣∣∣[J−⊤
ϕh∗ (Z)

]
ρi

·
[
s(Z)− s̃ρj (Z)

]∣∣∣] ̸= 0

}
(96)

=

{
ρi ̸= ρj : E

[∣∣∣[J−⊤
ϕh∗ (Z)

]
ρi,i

·
[
s(Z)− s̃ρj (Z)

]
i

∣∣∣] ̸= 0

}
. (97)

Since [J−⊤
ϕh∗ (z)]ρi,i ̸= 0 for all z ∈ Rn, we have

p̂a(ρj) =

{
ρi ̸= ρj : E

[∣∣∣[s(Z)− s̃ρj (Z)
]
i

∣∣∣] ̸= 0

}
. (98)

By Lemma 1(i), E
[∣∣[s(Z)− s̃ρj (Z)]i

∣∣] ̸= 0 if and only if i ∈ pa(j). Therefore, (94) implies that ρi ∈ p̂a(ρj) if and
only if i ∈ pa(j), which shows that G and Ĝ are related through a graph isomorphism by permutation ρ, which
was defined as I−1.

C.2 Proof of Theorem 3

In the proof of Theorem 2, we showed that coupled hard interventions (without using observational environment)
are sufficient for recovering the latent variables. Then, in this proof, we just focus on recovering the latent graph.
Specifically, we will show that if p (pdf of Z) is adjacency-faithful to G and the latent causal model is an additive
noise model, then we can recover G without having access to observational environment E0. By Lemma 1(iii), true
latent score changes across {Eρi , Ẽρj} gives us pa(i, j) for i ≠ j. First, we use the perfect latent recovery result to
show that Lemma 1(iii) also applies to estimated latent score changes. Specifically, using (73) and 1{J−1

ϕh∗ } = Pρ,
we have [

sρi

Ẑ
(ẑ;h∗)− s̃

ρj

Ẑ
(ẑ;h∗)

]
ρk

=
[
J−⊤
ϕh∗ (z)

]
ρk

·
[
sρi(z)− s̃ρj (z)

]
(99)

=
[
J−⊤
ϕh∗ (z)

]
ρk,k

·
[
sρi(z)− s̃ρj (z)

]
k
. (100)

Recall that we have found
[
J−⊤
ϕh∗ (z)

]
ρk,k

̸= 0 for all z ∈ Rn in (92). Then, we have

E
[∣∣∣[sρi

Ẑ
(Ẑ;h∗)− s̃

ρj

Ẑ
(Ẑ;h∗)

]
ρk

∣∣∣] ̸= 0 ⇐⇒ E
[∣∣∣[sρi(Z)− s̃ρj (Z)

]
k

∣∣∣] ̸= 0 . (101)

Hence, by Lemma 1(iii),

E
[∣∣∣[sρi

Ẑ
(Ẑ;h∗)− s̃

ρj

Ẑ
(Ẑ;h∗)

]
ρk

∣∣∣] ̸= 0 ⇐⇒ k ∈ pa(i, j) . (102)

Let us denote the graph Gρ that is related to G by permutation ρ, i.e., i ∈ pa(j) if and only if ρi ∈ paρ(ρj) for
which paρ(ρj) denotes the parents of node ρj in Gρ. Using (102), we have

E
[∣∣∣[sρi

Ẑ
(Ẑ;h∗)− s̃

ρj

Ẑ
(Ẑ;h∗)

]
ρk

∣∣∣] ̸= 0 ⇐⇒ ρk ∈ paρ(ρi, ρj) . (103)

In the rest of the proof, we will show how to obtain {paρ(i) : i ∈ [n]} using {paρ(i, j) : i, j ∈ [n], i ̸= j}. Since Gρ is
a graph isomorphism of G, this problem is equivalent to obtaining {pa(i) : i ∈ [n]} using {pa(i, j) : i, j ∈ [n], i ≠ j}.
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Note that Ẑi (which corresponds to node i in Gρ) is intervened in environments E i and Ẽ i. We denote the set of
root nodes by

K ≜ {i ∈ [n] : pa(i) = ∅} , (104)

and also define
Bi ≜

⋂
j ̸=i

pa(i, j) , ∀i ∈ [n] , and B ≜ {i : |Bi| = 1} . (105)

Note that pa(i) ⊆ Bi. Hence, |Bi| = 1 implies that i is a root node. We investigate the graph recovery in three
cases.

1. |B| ≥ 3: For any node i ∈ [n], we have

pa(i) ⊆ Bi ⊆
⋂

j∈K\{i}

pa(i, j) = pa(i) ∪
{ ⋂

j∈K\{i}

{j}
}
= pa(i) . (106)

Note that, the last equality is due to ∩j∈K\{i}{j} = ∅ since there are at least two root nodes excluding i. Then,
Bi = pa(i) for all i ∈ [n] and we are done.

2. |B| = 2: The two nodes in B are root nodes. If there were at least three root nodes, we would have at least
three nodes in B. Hence, the two nodes in B are the only root nodes. Subsequently, every i /∈ B is also not in
K and we have

pa(i) ⊆ Bi ⊆
⋂
j∈K

pa(i, j) = pa(i) ∪
{ ⋂

j∈K
{j}

}
= pa(i) . (107)

Hence, Bi = pa(i) for every non-root node i and we already have the two root nodes in B, which completes the
graph recovery.

3. |B| ≤ 1: First, consider all (i, j) pairs such that |pa(i, j)| = 2. For such an (i, j) pair, at least one of the nodes
is a root node, otherwise pa(i, j) would contain a third node. Using these pairs, we identify all root nodes
as follows. Note that a hard intervention on node i makes Zi independent of all of its non-descendants, and
all conditional independence relations are preserved under element-wise diffeomorphisms such as ϕh∗ . Then,
using the adjacency-faithfulness assumption, we infer that

• if Ẑi ⊥⊥ Ẑj in E i and Ẑi ⊥⊥ Ẑj in Ẽj , then both i and j are root nodes.

• if Ẑi ̸⊥⊥ Ẑj in E i, then i → j and i is a root node.

• if Ẑi ̸⊥⊥ Ẑj in Ẽj , then j → i and j is a root node.

This implies that by using at most two independence tests, we can determine whether i and j nodes are root
nodes. Hence, by at most n independence tests, we identify all root nodes. We also know that there are at
most two root nodes. If we have two root nodes, then Bi = pa(i) for all non-root nodes, and the graph is
recovered. If we have only one root node i, then for any j ̸= i we have

pa(j) ⊆ Bj ⊆ pa(i, j) = pa(j) ∪ {i} . (108)

Finally, if Ẑj ⊥⊥ Ẑi | {Ẑℓ : ℓ ∈ Bj \ {i}} in Ẽj , we have i /∈ pa(j) due to adjacency-faithfulness. Otherwise, we
conclude that i ∈ pa(j). Hence, an additional (n− 1) conditional independence tests ensure the recovery of all
pa(j) sets, and the graph recovery is complete.

C.3 Proof of Lemma 4

We will prove it by contradiction. Suppose that h∗ is a solution to the optimization problem P2 specified in
(22). Using the fact that [J−⊤

ϕh∗ (z)] is full-rank for all z ∈ Rn, and the score difference vector [sρi(z)− s̃ρi(z)] is
not identically zero, (79) and Proposition 1 imply that Dt(h

∗) does not have any zero columns. Subsequently,
∥Dt(h

∗)∥0 ≥ n, and since Dt(h
∗) is diagonal, we have 1{Dt(h

∗)} = In×n. We use J∗ ≜ J−⊤
ϕh∗ as shorthand. If
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ρi = ρ̃i for some i ∈ [n], using Dt(h
∗) = In×n and Lemma 1(ii), for j ̸= i, we have

0 =
[
Dt(h

∗)
]
ρj ,ρi

(109)

= E
[∣∣∣[J∗(Z)]ρj

·
[
sρi(Z)− s̃ρi(Z)

]∣∣∣] (110)

= E
[∣∣∣[J∗(Z)]ρj ,i ·

[
sρi(Z)− s̃ρi(Z)

]
i

∣∣∣] . (111)

Recall that, by interventional discrepancy, [sρi(z)− s̃ρi(z)]i ̸= 0 except for a null set. Then, (109) implies that we
have [J∗(z)]ρj ,i = 0 except for a null set. Since J∗ is continuous, this implies that [J∗(z)]ρj ,i = 0 for all z ∈ Rn.
Furthermore, since J∗(z) is invertible for all z, none of its columns can be a zero vector. Hence, for all z ∈ Rn,
[J∗(z)]ρi,i = 0. To summarize, if ρi = ρ̃i, we have

∀z ∈ Rn
[
J∗(z)

]
j,i

̸= 0 ⇐⇒ j = ρi . (112)

Now, consider the set of mismatched nodes

A ≜ {i ∈ [n] : ρi ̸= ρ̃i} . (113)

Let a ∈ A be a non-descendant of all the other nodes in A. There exist nodes b, c ∈ A, not necessarily distinct,
such that

ρa = ρ̃b , and ρc = ρ̃a . (114)

In four steps, we will show that D(h∗)ρa,ρc ̸= 0 and D(h∗)ρc,ρa ̸= 0, which violates the constraint 1{D(h)} ⊙
1{D⊤(h)} = In×n and will conclude the proof by contradiction. Before giving the steps, we provide the following
argument which we repeatedly use in the rest of the proof. For any continuous function f : Rn → R, we have

E
[∣∣f(Z)

∣∣] ̸= 0 ⇐⇒ E
[∣∣∣f(Z) ·

[
s(Z)− sρa(Z)

]
a

∣∣∣] ̸= 0 , (115)

and E
[∣∣f(Z)

∣∣] ̸= 0 ⇐⇒ E
[∣∣∣f(Z) ·

[
s(Z)− s̃ρc(Z)

]
a

∣∣∣] ̸= 0 . (116)

First, suppose that E
[
|f(Z)|

]
̸= 0. Then, there exists an open set Ψ ⊆ Rn for which f(z) ̸= 0 for all z ∈ Ψ. Due

to interventional discrepancy between the pdfs pa(za) and qa(za), there exists an open set within Ψ for which
[sρa(Z)− s(Z)]a ̸= 0. This implies that

E
[∣∣∣f(Z) ·

[
s(Z)− sρa(Z)

]
a

∣∣∣] ̸= 0 . (117)

For the other direction, suppose that E
[∣∣f(Z) · [sρa(Z)− s(Z)]a

∣∣] ̸= 0, which implies that there exists an open set
Ψ for which both f(z) and [sρa(z)− s(z)]a are non-zero. Then, E

[
|f(Z)|

]
̸= 0, and we have (115). Similarly, due

to ρc = ρ̃a and interventional discrepancy between pa and q̃a, we obtain (116).

Step 1: Show that E
[∣∣[J∗(Z)]ρa,a

∣∣] ̸= 0. First, using (79) and Lemma 1(i), we have

[
D(h∗)

]
ρa,ρa

= E
[∣∣∣[J∗(Z)

]
ρa

·
[
s(Z)− sρa(Z)

]∣∣∣] (118)

= E
[∣∣∣ ∑

j∈pa(a)

[
J∗(Z)

]
ρa,j

·
[
s(Z)− sρa(Z)

]
j

∣∣∣] . (119)

Note that pa(a) ∩ A = {a} since a is non-descendant of the other nodes in A. Consider j ∈ pa(a), which implies
that j /∈ A and ρj = ρ̃j . By (112), we have [J∗(Z)]ρa,j = 0. Then, (119) becomes[

D(h∗)
]
ρa,ρa

= E
[∣∣∣[J∗(Z)

]
ρa,a

·
[
s(Z)− sρa(Z)

]
a

∣∣∣] ̸= 0 , (120)

since diagonal entries of D(h∗) are non-zero due to the last constraint in (22). Then, (115) implies that
E
[∣∣[J∗(Z)]ρa,a

∣∣] ̸= 0.
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Step 2: Show that
[
D̃(h∗)

]
ρa,ρc

̸= 0. Next, we use ρc = ρ̃a and Lemma 1(i) to obtain

[
D̃(h∗)

]
ρa,ρc

= E
[∣∣∣[J∗(Z)

]
ρa

·
[
s(Z)− s̃ρc(Z)

]∣∣∣] (121)

= E
[∣∣∣ ∑

j∈pa(a)

[
J∗(Z)

]
ρa,j

·
[
s(Z)− s̃ρc(Z)

]
j

∣∣∣] (122)

= E
[∣∣∣[J∗(Z)

]
ρa,a

·
[
s(Z)− s̃ρc(Z)

]
a

∣∣∣] . (123)

Using (116) and Step 1 result, we have
[
D̃(h∗)

]
ρa,ρc

̸= 0.

Step 3: Show that E
[∣∣[J∗(Z)]ρc,a

∣∣] ̸= 0. Using (79) and Lemma 1(i), we have

[
D̃(h∗)

]
ρc,ρc

= E
[∣∣∣[J∗(Z)

]
ρc

·
[
s(Z)− s̃ρc(Z)

]∣∣∣] (124)

= E
[∣∣∣ ∑

j∈pa(a)

[
J∗(Z)

]
ρc,j

·
[
s(Z)− s̃ρc(Z)

]
j

∣∣∣] (125)

= E
[∣∣∣[J∗(Z)]ρc,a ·

[
s(Z)− s̃ρc(Z)

]
a

∣∣∣] . (126)

Since 1{D(h∗)} = 1{D̃(h∗)}, the diagonal entry
[
D̃(h∗)

]
ρc,ρc

is non-zero. Then, using (116) we have
E
[
|[J∗(Z)]ρc,a|

]
̸= 0.

Step 4: Show that
[
D(h∗)

]
ρc,ρa

̸= 0. Next, we use ρc = ρ̃a and Lemma 1(i) to obtain

[
D̃(h∗)

]
ρc,ρa

= E
[∣∣∣[J∗(Z)

]
ρc

·
[
s(Z)− sρa(Z)

]∣∣∣] (127)

= E
[∣∣∣ ∑

j∈pa(a)

[
J∗(Z)

]
ρc,j

·
[
s(Z)− sρa(Z)

]
j

∣∣∣] (128)

= E
[∣∣∣[J∗(Z)

]
ρc,a

·
[
s(Z)− sρa(Z)

]
a

∣∣∣] . (129)

Using (115) and Step 3 result, we have [D(h∗)]ρc,ρa
̸= 0.

However, using the constraint 1{D(h∗)} = 1{D̃(h∗)}, we have [D(h∗)]ρa,ρc ̸= 0. Then, [D(h∗)⊙D⊤(h∗)]ρa,ρc ̸= 0,
which violates the last constraint in (22). Therefore, if the coupling is incorrect, optimization problem P2 has no
feasible solution.

C.4 Proof of Lemma 5

We consider the true encoder g−1 under the permutation ρ−1, that is h = ρ−1 ◦ g−1, and show that it is a solution
to P2 specified in (22). First, note that ϕh = ρ−1 ◦ g−1 ◦ g = ρ−1, which is just a permutation. Hence, J−⊤

ϕh

becomes the permutation matrix P⊤
ρ . Then, for all i,m ∈ [n] we have

[
Dt(h)

]
ρi,m

= E
[∣∣∣[P⊤

ρ

]
ρi

·
[
sm(Z)− s̃m(Z)

]∣∣∣] = E
[∣∣∣[sm(Z)− s̃m(Z)

]
i

∣∣∣] . (130)

Then, by Lemma 1(ii), we have [Dt(h)]ρi,m ≠ 0 if and only if i = Im, which means m = ρi and Dt(h) is a diagonal
matrix. Hence, h satisfies the first constraint. Next, consider D(h). For all i, j ∈ [n], we have

[
Dt(h)

]
ρi,ρj

= E
[∣∣∣[P⊤

ρ

]
ρi

·
[
s(Z)− sρj (Z)

]∣∣∣] = E
[∣∣∣[sρj (Z)− s̃ρj (Z)

]
i

∣∣∣] . (131)
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By Lemma 1(i), we have [D(h)]ρi,ρj ̸= 0 if and only if i = pa(j). Since ρ = ρ̃, similarly, we have [D̃(hρ)]ρi,ρj ̸= 0

if and only if i ∈ pa(j). Therefore, we have 1{D(h)} = 1{D̃(h)}, D(h) has full diagonal and it does not have
non-zero values in symmetric entries. Hence, h satisfies the second and third constraints. Therefore, h is a
solution to P2 since it satisfies all constraints and the diagonal matrix Dt(h) has ∥Dt(h)∥0 = n, which is the
lower bound established.

C.5 Proof of Theorem 1

Recall that Ĩ = {Ĩ1, . . . , Ĩn} is the permutation of intervened nodes in Ẽ , so coupling π considered in (22) is just
equal to Ĩ. Similarly to the definition of ρ for I in the proof of Theorem 2, let ρ̃ be the permutation that maps
{1, . . . , n} to Ĩ, i.e., I ρ̃i = i for all i ∈ [n]. Then, Pρ̃ denotes the permutation matrix for the intervention order of
the environments {Ẽ1, . . . , Ẽn}, i.e.,

[
Pρ̃

]
i,j

=

{
1 , j = ρ̃i ,

0 , else .
(132)

Lemma 4 shows that if the coupling is incorrect, i.e., π ̸= I or equivalently ρ ̸= ρ̃, the optimization problem in
(22) does not have a feasible solution. Next, Lemma 5 shows that if the coupling is correct, i.e., ρ = ρ̃, there
exists a solution to P2. Lemmas 4 and 5 collectively prove identifiability as follows. We can search over the
permutations of [n] until P2 admits a solution h∗. By Lemma 4, the existence of this solution means that coupling
is correct. Note that when the coupling is correct, the constraint set of P1 is a subset of the constraints in P2.
Furthermore, the minimum value of ∥Dt(h)∥0 is lower bounded by n (Lemma 3), which is achieved by the solution
h∗ (Lemma 5). Hence, h∗ is also a solution to P1, and by Theorem 2, it satisfies perfect recovery of the latent
DAG and the latent variables.

C.6 Proof of Proposition 2

Denote the set of all permutations of [n] by Sn. From Leibniz formula for matrix determinants, for a matrix
A ∈ Rn×n we have

det(A) =
∑
π∈Sn

sgn(π) ·
n∏

i=1

Ai,πi
(133)

where sgn(π) for a permutation π of [n] is +1 and −1 for even and odd permutations, respectively. A is invertible
if and only if det(A) ̸= 0, which implies that

∃π ∈ Sn : sgn(π) ·
n∏

i=1

Ai,πi ̸= 0 . (134)

By the definition of Pπ, we have [Pπ ·A]i,i = Ai,πi
. Then,

∃π ∈ Sn : sgn(π) ·
n∏

i=1

[Pπ ·A]i,i ̸= 0 , (135)

which holds if and only if [Pπ ·A]i,i ̸= 0 for all i ∈ [n].

D Details of Simulations

We perform experiments for the coupled environments setting and using a regularized, ℓ1-relaxed version of the
optimization problem (21). Specifically, in Step 2 of GSCALE-I, we solve the following optimization problem:

min
h∈H

∥Dt(h)∥1,1 + λ1E∥h−1(h(X))−X∥22 + λ2E∥h(X)∥22 . (136)

In this section, we describe data generation, computation of the ground truth score differences for X, justification
of the optimization problem in (136) and other implementation details.
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Data generation details. To generate G we use the Erdős-Rényi model with n ∈ {5, 8} nodes and density 0.5.
For the observational causal mechanisms, we adopt an additive noise model with

Zi =
√

Z⊤
pa(i) ·Ai · Zpa(i) +Ni , (137)

where {Ai : i ∈ [n]} are positive-definite matrices, and the noise terms are zero-mean Gaussian variables with
variances σ2

i sampled randomly from Unif([0.5, 1.5]). We construct the positive-definite matrix Ai by generating
a matrix Bi ∈ R|pa(i)|×|pa(i)| by sampling its entries from Unif([0, 1]) and setting Ai = B⊤

i Bi.

For two hard interventions on node i, Zi is set to Nq,i ∼ N (0, σ2
q,i) and Nq̃,i ∼ N (0, σ2

q̃,i). We set σ2
q,i = σ2

i + 1

and σ2
q̃,i = σ2

i + 2. We consider target dimension values d ∈ {5, 25, 40} for n = 5 and d ∈ {8, 25, 40} for n = 8.
For each (n, d) pair, we generate 100 latent graphs, and ns samples per environment per graph, where we set
ns = 100 for n = 5 and ns = 300 for n = 8. As the transformation, we consider a generalized linear model,

X = g(Z) = tanh(G · Z) , (138)

in which tanh is applied element-wise, and the parameter G ∈ Rd×n is a randomly sampled full-rank matrix.

Score function of the quadratic model. Following (9), score functions sm and s̃m are decomposed as follows.

sm(z) = ∇z log qℓ(zℓ) +
∑
i ̸=ℓ

∇z log pi(zi | zpa(i)) , (139)

and s̃m(z) = ∇z log q̃ℓ(zℓ) +
∑
i ̸=ℓ

∇z log pi(zi | zpa(i)) . (140)

For additive noise models, the terms in (139) and (140) have closed-form expressions. Specifically, using (51) and
denoting the score functions of the noise terms {Ni : i ∈ [n]} by {ri : i ∈ [n]}, we have

[s(z)]i = ri(ni)−
∑

j∈ch(i)

∂fi(zpa(j))

∂zi
· rj(nj) . (141)

In the quadratic latent model we consider in (36), we have

fi(zpa(i)) =
√
z⊤pa(i) ·Ai · zpa(i) , and Ni ∼ N (0, σ2

i ) , (142)

which implies

∂fj(zpa(j))

∂zi
=

[Aj ]i · zpa(j)√
z⊤pa(j) ·Aj · zpa(j)

, and ri(ni) = − ni

σ2
i

, ∀i ∈ [n] . (143)

Components of the score functions sm and s̃m can be computed similarly. Subsequently, using Corollary 1 of
Lemma 2, we can compute the score differences of observed variables as follows.

sX(x)− smX(x) =
[[
Jg(z)

]†]⊤ ·
[
s(z)− sm(z)

]
, (144)

sX(x)− s̃mX(x) =
[[
Jg(z)

]†]⊤ ·
[
s(z)− s̃m(z)

]
, (145)

smX(x)− s̃mX(x) =
[[
Jg(z)

]†]⊤ ·
[
sm(z)− s̃m(z)

]
. (146)

Implementation and evaluation steps. Leveraging (37), we parameterize valid encoders h with parameter
H ∈ Rn×d.

Ẑ(X;h) = h(X) = H · arctanh(X) , (147)

X̂ = h−1(Ẑ(X;h)) = tanh
(
H† · Ẑ(X;h)

)
, (148)
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Note that given this parameterization, the function ϕh(z) = (h ◦ g)(z) is given by

Ẑ = ϕh(Z) = H ·G · Z . (149)

Subsequently, the only element-wise diffeomorphism between Z and Ẑ is an element-wise scaling. Hence, we can
evaluate the estimated latent variables against the scaling consistency metric. To this end, we use normalized ℓ2
loss specified in Section 6.

We use ns samples from the observational environment to compute empirical expectations. Since encoder h is
parameterized by H, we use gradient descent to learn this matrix. To do so, we relax ℓ0 norm in (21) and instead
minimize element-wise ℓ1,1 norm ∥Dt(h)∥1,1. Note that, scaling up Ẑ(h) by a constant factor scales down the
score differences by the same factor. Hence, to prevent the vanishing of the score difference loss trivially, we add
the following regularization term to the optimization objective.

E
[∥∥Ẑ(h)∥22

]
= E

[∥∥h(X)
∥∥2
2

]
. (150)

We also add the following reconstruction loss to ensure that h is an invertible transform.

E
[∥∥h−1(h(X))−X

∥∥2
2

]
. (151)

In the end, we minimize the objective function

∥Dt(h)∥1,1 + λ1E
[∥∥h−1(h(X))−X

∥∥2
2

]
+ λ2E

[∥∥h(X)
∥∥2
2

]
. (152)

We denote the final parameter estimate by H∗ and the encoder parameterized by H∗ by h∗. Note that we do not
enforce the diagonality constraint upon Dt(h). Since we learn the latent variables up to permutation, we change
this constraint to a post-processing step. Specifically, we permute the rows of H∗ to make Dt(h

∗) as close to as
diagonal, i.e., ∥diag(Dt(h

∗)⊙ In)∥1 is maximized.

In the simulation results reported in Section 6, we set λ1 = 10−4 and λ2 = 1, and minimize (152) using RMSprop
optimizer with learning rate 10−3 for 3× 104 steps for n = 5 and 4× 104 steps for n = 8. Recall that the latent
graph estimate Ĝ is constructed using 1{D(h∗)}. We use a threshold λG to obtain the graph from the upper
triangular part of D(h∗) as follows.

p̂a(i) = {j : j < i and [D(h∗)]j,i ≥ λG} , ∀i ∈ [n] . (153)

We set λG = 0.1 for n = 5 and λG = 0.2 for n = 8.
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