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Abstract

It was recently observed that Elo ratings
fail at preserving transitive relations among
strategies and therefore cannot correctly ex-
tract the transitive component of a game. We
provide a characterization of transitive games
as a weak variant of ordinal potential games
and show that Elo ratings actually do preserve
transitivity when computed in the right space,
using suitable invertible mappings. Leverag-
ing this insight, we introduce a new game
decomposition of an arbitrary game into tran-
sitive and cyclic components that is learnt us-
ing a neural network-based architecture and
that prioritises capturing the sign pattern of
the game, namely transitive and cyclic rela-
tions among strategies. We link our approach
to the known concept of sign-rank, and evalu-
ate our methodology using both toy examples
and empirical data from real-world games.

1 INTRODUCTION

The Elo rating system, proposed in 1961 [Elo, 1961],
assigns ratings to players in competitive games. Orig-
inally developed for chess, it is also widely used
across other sports (Basketball, Pool), board games,
(Go, Backgammon), and e-sports (League of Legends,
StartCraft II). Within a given pool of players, a player
rating serves as a measure of the player’s relative skill
within the pool, with the probability estimate of one
player beating another given as the sigmoid function
applied to the difference in their Elo ratings.

As is common in the literature [Balduzzi et al., 2019,
Balduzzi et al., 2018, Bertrand et al., 2023], we for-
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malize this problem as that of assigning ratings to
the pure strategies of a two-player symmetric zero-
sum meta game, where each pure strategy of the meta
game corresponds to one of the players we would like
to rank [Balduzzi et al., 2019]. Such a game is called
transitive if for any pure strategies x, y, z, if x beats
y, and y beats z, then x beats z. By contrast, rock-
paper-scissors, where paper beats rock, scissors beats
paper, but scissors loses to rock, is cyclic.

Games can be transitive, cyclic, or hybrid. Real-world
games tend to be hybrid, with both transitive and cyclic
components. For example, [Czarnecki et al., 2020]
show that a wide range of real-world games are well
represented by a “spinning top”: the upright axis
represents transitive strength (i.e., the skill level of
players), and the radial axis represents the number
of cycles that exist at a particular skill level; there
are many cycles at medium skill levels, few cycles
for low skill levels, and fewer still for high skill levels.
Elo ratings are based on the assumption that the
game has a significant transitive component1. The
level of transitivity of a game has been found to
significantly impact which methods are effective for
training agents in these games. For example, it has
been observed that self-play struggles if the game
does not have a suitably strong transitive compo-
nent [Balduzzi et al., 2019, Czarnecki et al., 2020].
Consequently, research has focused on understanding
the transitive and cyclic components of hybrid
games, e.g., through game decompositions, and
the related problem of rating players in such
games [Balduzzi et al., 2019, Balduzzi et al., 2018,
Bertrand et al., 2023, Czarnecki et al., 2020].

[Balduzzi et al., 2018] proposed m-Elo (for multidimen-
sional Elo), which extends the Elo score and can ex-
press cyclic components; the same approach was in-
dependently taken by [Strang et al., 2022]. Using the
idea of Hodge decomposition from [Jiang et al., 2011,
Candogan et al., 2011]), this approach first imposes

1In a cyclic game, no meaningful distinct skill levels can
be assigned to the pure strategies.



Ordinal Potential-based Player Rating

a transitive component corresponding to Elo scores
and then applies the normal (Schur) decomposition
to the residual antisymmetric matrix after subtract-
ing the transitive component. In a more recent paper,
[Bertrand et al., 2023] also use normal decomposition,
but do not impose a transitive component. They show
that their decomposition has an intuitive interpreta-
tion: each component is a transitive or cyclic disc
game. Moreover, they show that their decomposition
will contain at most one transitive component (but
possibly many cyclic components). They use the de-
composition to create a “disc rating” system, where each
player gets not one but two scores: skill and consis-
tency. [Balduzzi et al., 2019] also use normal decompo-
sition, but applied to a different antisymmetric matrix
to [Bertrand et al., 2023] (in probability space rather
than logit space, respectively). [Bertrand et al., 2023]
explore empirically these different decomposition ap-
proaches as rating schemes, along with the original Elo
rating scheme.

Outline of the paper. Our starting point is a result
in [Bertrand et al., 2023] who observed that Elo rat-
ings do not preserve transitivity, namely that transitive
relations among strategies in the original game and its
associated Elo game can be different. We show how
Elo ratings can be made to preserve transitivity in a
simple way by computing these ratings in the right
space. We call this approach hyperbolic Elo rating : we
first transform the game using the invertible mapping
φβ(x) := 1

β tanh(βx), then compute the Elo ratings,
and then go back to the original space using φ−1

β . The
core idea of the paper is the use of suitable invertible
mappings such as 1

β tanh(βx), that we will call basis
functions and that we will learn with a neural network.
We observed that the approach we used for hyperbolic
Elo ratings can actually be extended in much more gen-
erality to compute game decompositions of arbitrary
games. For this, we transform the original game using
possibly multiple basis functions, then compute a game
decomposition of the transformed game, and eventu-
ally go back to the original space using basis function
inverses. The reason why we can do this is that apply-
ing basis functions to (entries of) the game does not
modify transitive and cyclic relations among strategies.
Hence, if one is interested in encoding as efficiently
as possible these cyclic and transitive relations, one is
free to search for the best basis functions to apply to
the game such that the transformed game is as easy
as possible to decompose. We show that this amounts
to computing the sign-rank of the game, i.e. the min-
imum rank achievable by a matrix having the same
sign pattern2. We show that transitive games have

2Sign-rank is important in the theoretical field of com-
munication complexity, where it is studied for arbitrary

sign-rank two, and the number of components needed
in our decomposition is essentially the sign-rank. We
define the sign-order of a game as the minimum num-
ber of basis functions needed to transform the game
into a matrix achieving its sign-rank. Elo games are
an example of transitive games of order one, and the
order can be seen as one measure of the complexity
of a hybrid game. The game components in existing
methods are in charge of explaining both the sign and
amplitude of the payoff. Our neural-network-based
approach decouples the learning of the two, which al-
lows us to get important results such as a transitive
game always being decomposed using one transitive
component that shares the same transitive relations as
the game; and a cyclic game being always decomposed
using only cyclic components that together share the
same cyclic relations as the game. This is not the case
in existing methods where for example, a transitive
game can be decomposed using only cyclic components.
We illustrate on a simple toy example in Figure 1 how
our method is able to learn a transitive game of or-
der two generated by two polynomials, where player
ratings Φi are evenly spaced.

Figure 1: Transitive game of order two of polynomial
type, n = 30. (left) Y -axis: ordinal potential player
scores Φi; X-axis: player index; (right) game P and its
learnt basis functions as a function of its disk decom-
position, cf. Section 3: X-axis: disk space D, Y -axis:
payoff space P . We are able to learn the two generating
polynomial functions and that the player scores Φi are
evenly spaced (details are provided in Appendix A.2).

Our contributions. Hyperbolic Elo rating. We
introduce a variant of the Elo rating that is guaranteed
to preserve transitivity of the original game. Char-
acterization of transitive games as potential games.
We provide a new characterization of a transitive
symmetric zero-sum game as a (weaker) variant of an
ordinal potential game with an additively separable
potential function. Decoupled learning approach. We
present a neural-network-based approach that learns
a game decomposition into one transitive component
and possibly many cyclic components. Contrary
to exisiting methods, it decouples the learning of

matrices [Alon et al., 2016, Razborov and Sherstov, 2010];
here we consider the case of antisymmetric matrices.
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the sign pattern from learning a secondary set of
sign-preserving invertible mappings (basis functions)
to reconstruct the amplitude of payoff entries. Our
decomposition satisfies that the transitive (resp. cyclic)
component of a cyclic (resp. transitive) game is zero.
Empirical evaluation. We provide a comprehensive
evaluation of our methodology using both toy examples
and empirical data taken from real-world games. We
compare our method to a range of prior approaches
[Elo, 1961, Sismanis, 2010, Balduzzi et al., 2018,
Bertrand et al., 2023, Balduzzi et al., 2019] both for
complete games and games with missing entries.

2 ORDINAL POTENTIAL-BASED
PLAYER RATING: FROM ELO
TO POTENTIAL GAMES

Notations. For any function φ : R → R and matrix
A, we write φ(A) for the matrix with entries φ(Aij).
AT is the transpose of A. σ(x) := (1 + e−x)−1 is the
sigmoid function, and its inverse is the logit function
logit(x) := ln( x

1−x ) = 2 arctanh(2x−1), so that 2σ(x)−
1 = tanh(x2 ). We write sign(A) for the matrix that
contains the elementwise sign of A, where "sign" can
be either ±1 or 0. 1 is the vector of all ones.

Setup and definitions. We define a game among n
players via a matrix P̃ of size n × n with entries in
[0, 1] and satisfying P̃ij = 1 − P̃ji ∀i, j. Following
[Bertrand et al., 2023], P̃ij can be interpreted as the
probability that player i wins against player j, i.e. that
"i beats j". We will sometimes write i → j. We say
that there is a tie between i and j when P̃ij =

1
2 . Let

Pij := 2P̃ij−1. The matrix P takes value in [−1, 1] and
is antisymmetric, namely P = −PT . Then "i beats j",
"j beats i" and "i ties with j" correspond to Pij > 0,
Pij < 0 and Pij = 0, respectively. P is called a (win-
loss) payoff matrix in [Czarnecki et al., 2020]. We will
refer to the game either by P̃ or P . In fact, the matrix
φ(P ) is antisymmetric for any odd function φ, so one
can equivalently see the game P̃ via φ(P ), provided
that φ is positive on (0,+∞), which preserves the sign
of P . Common choices [Bertrand et al., 2023] are the
"probability transform": φ = Id, and the "logit trans-
form": φ = 2arctanh, which yields φ(P ) = logit(P̃ ).
The matrix φ(P ) can be seen as a two-player n × n
symmetric zero-sum "meta game", where each pure
strategy of the meta game corresponds to one of the
original n players [Balduzzi et al., 2019] 3. We now
recall the definition of transitive and cyclic games.

Definition 1. (transitivity, cyclicity
[Bertrand et al., 2023]) A game P is transi-

3Every finite two-player symmetric zero-sum game cor-
responds to an antisymmetric matrix.

tive if Pij > 0 and Pjk > 0 implies Pik > 0 ∀i, j, k. P
is cyclic if there exists a permutation γ of [1, n] such
that Pγ(i)γ(i+1) > 0 ∀i ∈ [1, n − 1] and Pγ(n)γ(1) > 0.
We call a game hybrid when it is neither cyclic nor
transitive.

If (i1, i2, ..., iR) is a set of indexes, we call i1 → i2 →
...→ iR → i1 a cycle of length R. A maximal cycle is
a cycle with length no less than that of any other cycle.
Hybrid games have maximal cycles of length strictly less
than n, cyclic games have a maximal cycle of length n.
Note that cyclic games are called "fully cyclic" in
[Bertrand et al., 2023], whereas [Balduzzi et al., 2019]
uses cyclic for a game with P1 = 0. Similarly, the
literature has introduced variants in the definition of
transitivity, for example [Jiang et al., 2011] allows non-
strict inequalities in their definition of "triangular tran-
sitivity". Transitive games are also called "monotonic"
in [Balduzzi et al., 2019, Czarnecki et al., 2020].

We say that two games P and Q have the same sign
pattern (in short, sign) and write P ∼ Q, if Pij > 0⇔
Qij > 0 ∀i, j. Note that for any game P , P ∼ Q implies
both Pij < 0 ⇔ Qij < 0 and Pij = 0 ⇔ Qij = 0 ∀i, j
because the matrices are antisymmetric4. P is said to
be regular if there are no ties, namely Pij ̸= 0 for i ̸= j.
We sometimes choose to work with regular games for
clarity of presentation. We comment on this technical
aspect in Remark 1 in Appendix B.

We now recall the definition of "Elo games", named as
such because they are generated by Elo ratings. Note
that every Elo game is transitive since players’ ability
to win is measured by a single score.
Definition 2. (Elo game) [Balduzzi et al., 2019,
Bertrand et al., 2023] We write Elo(P ) for the
game with entries Elo(P )ij := 2σ(εPi − εPj )− 1, where
εP := (εPi )i∈[1,n] is the Elo rating of P which solves
the minimization problem [Balduzzi et al., 2018]:

min
ε

∑
i,j

bce
(
P̃ij , σ(εi − εj)

)
,

bce(y, ŷ) := −y ln ŷ − (1− y) ln(1− ŷ).

(1)

A game Q is said to be Elo if there exists P such that
Q = Elo(P ).

[Balduzzi et al., 2019, Bertrand et al., 2023] have stud-
ied game decompositions in terms of "disk components"
in Definition 3, and their "normal decomposition" (2).
[Bertrand et al., 2023] finds the first K disks so as to
minimize a distance to P (or to 2 arctanh(P )), whereas
the m-Elo rating of [Balduzzi et al., 2018] does the
same after having subtracted the column averages from
the original game.

4To see why, assume that Pij = 0 and Qij < 0. Then,
Pji = 0 and Qji > 0, which is not possible.
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Definition 3. (Disk component)
[Balduzzi et al., 2019, Bertrand et al., 2023]
Given u and v two vectors of size n, we write
Disk(u, v) := uvT − vuT for the antisymmetric matrix
of size n× n.

Note that the rank of Disk(u, v) is zero if u = λv, and
two otherwise. If P is an antisymmetric matrix, its
normal decomposition states that [Greub, 1975]:

P =

K∑
k=1

Disk(uk, vk), (2)

where (uk, vk)k∈[1,K] is an orthogonal family and K ≤
⌊n2 ⌋. This is presented in [Balduzzi et al., 2018] as the
Schur decomposition of antisymmetric matrices. An-
tisymmetric matrices always have even rank as their
nonzero eigenvalues come in complex conjugate pairs.
In [Bertrand et al., 2023] it is shown that a disk is ei-
ther transitive or cyclic, and that a transitive disk can
always be written with one of the two vectors having
strictly positive entries. This implies that at most
one component can be transitive, due to vector or-
thogonality. One of their motivations to study such
decompositions is their observation that the Elo rating
fails at preserving transitive relations among players
(i, j, k). Namely, if P is transitive, then P and Elo(P )
may not necessarily have the same transitive relations
among players (i, j, k). We call that succinctly (not)
"preserving transitivity". In order to approximate a
transitive game, their idea is to consider the transitive
disk component, and they show that the latter is able
to correctly preserve transitive relations in some ex-
amples of transitive games. We show in Proposition 1
that, unfortunately, this is not the case in general, with
the proof via a counterexample, which can be found
in Appendix B.1. Moreover, we also provide in Ap-
pendix B.1 an example that shows that there are (rare)
cases when the normal decomposition of a transitive
game consists of cyclic components only. The essence
of these examples is that nothing forces the components
of the normal decomposition to preserve the sign of P ,
whereas transitive and cyclic relations among players
depend on the sign only.
Proposition 1. (The normal decomposition and
m-Elo do not preserve transitivity) Let P be a
transitive game, and let T := Disk(uT , vT ) be the
transitive component of the normal decomposition of P .
Then, we can have sign(T ) ̸= sign(P ). Similarly, the
transitive component of m-Elo does not preserve tran-
sitivity of P . Further, there exists a transitive game P
such that its normal decomposition consists exactly of
two cyclic components.

This motivates us to understand under which conditions
we can preserve transitivity. We observe that we do

not modify transitive and cyclic relations in a game by
applying to each entry an odd function that is positive
on (0,+∞), for example φβ(x) :=

1
β tanh(βx). We use

this idea in Theorem 1 to first transform the game, then
compute the Elo rating, then go back to the original
space. This shows that it is crucial to compute the
Elo rating in the right space if we want to preserve
transitivity of P .

Theorem 1. (Hyperbolic Elo rating preserves
transitivity) Let the game P be regular and transitive,
0 < α < 2

n(n−1) and xα be the unique positive root of
2 arctanh3 (x)− 3αx. Then P ∼ Elo(P ) provided:

Pmax <
xα

n− 1
and

Pmax

Pmin
<

n

n− 2 + n(n− 1)α
,

where Pmax := maxi,j Pij, Pmin := minPij>0 Pij. In
particular, let φβ(x) :=

1
β tanh(βx) and βα > 0 such

that:

tanh(βαPmax)

tanh(βαPmin)
≤ n

n− 2 + n(n− 1)α
,

for example βα = 1
Pmin

arctanh
(
n−2
n + (n− 1)α

)
5. Then P ∼ φβ(P ) ∼ Elo(φβ(P )) provided
β > max

(
n−1
xα

, βα

)
. That is, the rating system

P̂ := φ−1
β (Elo(φβ(P ))) preserves transitivity for high

enough β, namely P ∼ P̂ 6.

Theorem 1 essentially states that the Elo rating pre-
serves transitivity if the gap between Pmax and Pmin is
not too big. This yields a straightforward recipe to guar-
antee that transitivity is preserved, which we call Hyper-
bolic Elo rating: first compute φβ(P ) for high enough
β, then compute the Elo rating of φβ(P ), then go back
to the original space by applying φ−1

β . The main merit
of the formulas presented in Theorem 1 is that they
are explicit. In practice, it is possible to get tighter
bounds, which we discuss in Remark 2 in Appendix B,
together with the case where the game is not regular,
in which case we still get Pij > 0⇒ Elo(P )ij > 0.

It is known that an Elo game is transitive, but the
converse is false [Bertrand et al., 2023]. Therefore, a
suitable characterization of transitive games seems to
be lacking in the literature. It is of interest to ask what
is a transitive game? We provide two such character-
izations. The first one in Theorem 2 links transitive
games to potential games, a fundamental concept in
game theory. The second one in Corollary 2.1 reformu-
lates Theorem 2 using the concept of sign-rank.

5Due to 0 < α < 2
n(n−1)

.
6We have φ−1

β (x) = 1
β
arctanh(βx) and we use the con-

vention that φ−1
β (x) := 1 for x ≥ φβ(1), φ−1

β (x) := −1 for
x ≤ −φβ(1), so that P̂ takes value in [−1, 1].
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We recall from the seminal paper that introduced po-
tential games [Monderer and Shapley, 1996] that a two-
player symmetric zero-sum game defined via the an-
tisymmetric matrix P is an ordinal potential game if
there exists a matrix Φ̃ such that ∀i, j, k:

Pij − Pkj > 0⇔ Φ̃ij − Φ̃kj > 0⇔ Φ̃ji − Φ̃jk > 0. (3)

We call Φ̃ a potential function, or more succinctly
a potential. In general, a bimatrix game with play-
ers’ payoffs A and B is an ordinal potential game if
Aij − Akj > 0 ⇔ Φ̃ij − Φ̃kj > 0 and Bji − Bjk >

0 ⇔ Φ̃ji − Φ̃jk > 0. When the game is zero-sum and
symmetric, B = −A = AT , so the latter is equivalent
to (3). Note that Φ̃ need not be symmetric, for exam-
ple one could have Pij := Φi − Φj , and in that case
Φ̃ij := α(Φi) + β(Φj) is an ordinal potential for every
pair of strictly increasing functions α, β. This implies in
particular that ordinal potentials are not unique in gen-
eral, contrary to exact potentials (which are unique up
to an additive constant [Monderer and Shapley, 1996]).
We first define a weak variant of ordinal potential games
that is obtained by taking the special case j = k in the
definition of ordinal potential games (3).
Definition 4. (weak separable ordinal potential
game) A two-player symmetric zero-sum game P is a
weak ordinal potential game if (3) holds for all i and all
j = k 7. It is a separable ordinal potential game if Φ̃
in (3) is additively separable, namely Φ̃ij = αi + βj . It
is a weak separable ordinal potential game if it is both
of the above.

Theorem 2 is the main result of this section as it char-
acterizes transitive games. The direction "⇐" is imme-
diate, the other direction is more challenging. It is in
fact a consequence of Theorem 1.
Theorem 2. (transitive ⇔ weak separable ordinal
potential) A regular game P is transitive if and only
if it is a weak separable ordinal potential game, namely
there exists a vector Φ such that:

Pij > 0⇔ Φi − Φj > 0 ∀i, j.

The potential Φ can be chosen as the Elo rating εφβ(P )

of φβ(P ), where φβ is as in Theorem 1.

The proofs of Theorems 1 and 2 were made with non-
regular games in mind, and we comment on this aspect
in Appendix B.2. The proof yields that if a game P
is transitive (but not necessarily regular), then it is
a weak separable generalized ordinal potential game,
namely:

Pij > 0⇒ Φi − Φj > 0 ∀i, j,
7As opposed to ∀i, j, k for ordinal potential games.

where the term "generalized ordinal potential" has
been introduced in [Monderer and Shapley, 1996] and
means that we only have "⇒" instead of the "⇔" that
we have for ordinal potential games.

The function φβ in Theorem 1 was chosen ad hoc.
This naturally brings the question of optimality of such
functions, in the sense that they allow one to better
reconstruct the game from the potential. This leads to
our definitions of basis functions and sign-order.
Definition 5. (Basis function) A function φ : R→
R is said to be a basis function if it is odd and strictly
increasing.

We build on our characterization of transitive games
to define the new concept of sign-order, which is the
minimum number of basis functions needed to move
between the payoff and the potential function (and vice
versa; basis functions are invertible by definition).

Let φ := (φm)m∈[1,M ] be a collection of basis functions.
For an antisymmetric matrix A, we writeMφ(A) for
the set of matrices for which each entry (i, j) is the
image of Aij under some basis function:

Mφ(A) := {B : ∀(i, j), ∃ m(i, j) ∈ [1,M ]

such that Bij = φm(i,j)(Aij)}.
(4)

Definition 6. (Sign-order) The sign-order (in short,
"order") of a game P is defined as the minimum
number τP of basis functions φ := (φm)m∈[1,τP ]

such that P ∈ Mφ(A) for some antisymmetric
A ∼ P such that rank(A) = min{rank(B) : B ∼
P, B antisymmetric}. In particular, if P is regular
and transitive, Theorem 2 yields that A can be chosen
to be of the form Aij := vTi vTj (Φi − Φj), where vT has
strictly positive entries.

The last claim in Definition 6 follows from the fol-
lowing: a non zero antisymmetric matrix has rank at
least 2. If P is regular and transitive, then in partic-
ular it is non zero. By Theorem 2, the sign of Pij is
that of Φi − Φj , which is also that of vTi vTj (Φi − Φj)

as vT has strictly positive entries. Finally, the en-
tries of any transitive antisymmetric matrix of rank 2
can be written in the form vTi vTj (Φi − Φj), as shown
in [Bertrand et al., 2023] (Proposition 2).

An Elo game is transitive of order one, with its ba-
sis function equal to the sigmoid function σ. There
are many other games that also are of order one, for
example "polynomial" games Pij := α sign(Φi − Φj) ·
|Φi − Φj |m, where α > 0 is a normalizing constant so
that Pij ∈ [−1, 1]. Transitive games of higher order
are thus in some sense further from being an Elo game,
and orders can be seen as providing a classification of
transitive games which can be used, for example, to
generate different classes of such games. Since we know
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that Pij > 0⇔ Φi − Φj > 0, we can always find basis
functions by defining, when Pij > 0, φij(x) :=

Φi−Φj

Pij
x,

so that φij(Pij) = Φi − Φj . Note that φji = φij , so
there are in the worst case n(n−1)

2 unique such func-
tions. Even when the game is transitive of order one,
the method we introduce in Section 3 allows us to
learn φ rather than postulating it as in existing work.
We illustrate in Appendix A and in Figure 1 examples
of transitive games of polynomial type, of sign-order
one and two. The concepts of potentials and sign-order
are also useful for arbitrary games.

Transitive (ordinal potential) component of an
arbitrary game. From Theorem 2, we define a
transitive component of the game P as a matrix
T = Disk(Φ ⊙ vT , vT ) such that TijPij ≥ 0, vT

has strictly positive entries and ⊙ is the elementwise
product, i.e. Tij = vTi vTj (Φi − Φj). For example
T = Disk(Φ,1). It is immediate that if 2 players
i, j are in the same cycle, then Φi = Φj . So, if the
game is cyclic, the potential component T = 0. In
the case of a hybrid game, every player is either in
some cycle, or in no cycle. In the former case, we
expect our method – described in the next section – to
learn the same rating for all players in a given cycle.
This is illustrated in Figure 2 in the case of AlphaStar
data with n = 20 8. We see that in this case, we first
have a set of 7 players such that i wins against i+ 1.
Then, we have a large cycle containing 12 players, and
finally we have a player who loses against everyone. We
see that we are able to learn correctly the ratings Φ
with the method presented in Section 3 (we considered
one basis function φ and provide in the appendix the
learnt game and components). This approach is similar
to the "layered" geometry in [Czarnecki et al., 2020]
where transitivity is viewed as the index of a cluster.
In our case we also learn scores to assign to each such
layer.

3 LEARNING TO DECOMPOSE AN
ARBITRARY GAME

In this section we describe the methodology that we
will use to learn ordinal potential-based ratings. We
will actually go further and learn cycles as well.

Sign-rank and the learning of cycles. The sign-
rank of a matrix P with entries ±1 is the minimum
rank achievable by a real matrix with entries that
have the same sign as those of P [Alon et al., 2016,
Razborov and Sherstov, 2010]. We will say that a ma-
trix Q achieves the sign-rank of P when Q has the same
sign as P and the rank of Q is equal to the sign-rank

8We provide more details on the learning algorithm and
data in Section 4 and in the appendix.

Figure 2: AlphaStar, n = 20. (Left) ordinal potential-
based ratings of the n players in decreasing order; (mid-
dle) sign of the game P ; (right) sign of the potential
component Φi − Φj . Red is positive, blue is negative,
white is zero. We are able to learn correctly the 9
rating "levels": first, 7 players each with their own
rating, then a large cycle where players share the same
rating, and finally a player who loses against everyone.

of P . One can see a matrix achieving the sign-rank
as the most efficient encoding of the sign of P . It is
trivial to extend the definition of sign-rank to the case
where entries of P can take arbitrary non-zero values,
since in that case one can consider sign(P ) to get back
to the canonical case. We further extend the definition
of sign-rank as follows: we allow entries to take the
value zero, so that the sign can take value ±1 or 0, and
we restrict ourselves to minimum ranks achievable by
antisymmetric matrices. This yields Definition 7.

Definition 7. (Sign-rank of an antisymmetric
matrix) The sign-rank of an antisymmetric matrix P
is the minimum rank achievable by an antisymmetric
matrix Q ∼ P .

We get in Corollary 2.1 a reformulation of Theorem 2
using the concept of sign-rank.

Corollary 2.1. A regular game P is transitive if and
only if there exists a disk Disk(uT ,1) achieving the
sign-rank, i.e. P ∼ Disk(uT ,1). In particular, any
regular transitive game has a sign-rank of two, and the
vector uT can be chosen as the Elo rating of φβ(P ).

There exists cyclic games of sign-rank two such as rock-
paper-scissors, however in this case neither u nor v can
be equal to 1. It turns out that cyclic games can be
decomposed using cyclic disks only.

Theorem 3. (Cyclic games can be decomposed
using cyclic disks only) A regular game P is
cyclic with a maximal cycle O if and only if P ∼∑K

k=1 Disk(uk, vk) for some K and some vectors uk,
vk, where each disk Disk(uk, vk) is cyclic and admits
O as a maximal cycle.

Consequently, the cyclic component in our decompo-
sition will consist of cyclic disks only. We provide in
the appendix an upper bound on the number of cyclic
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disks that one can expect in Theorem 3. Counting the
minimal number of cyclic disks required to capture the
sign of P is challenging due to the compensation effect
between these disks. It is tempting to believe that in
the case of a cyclic game, one can achieve the sign-rank
using only cyclic disks. This is what we are able to do
in Figure 4 where we learn the correct sign with three
disks, all cyclic as in Theorem 3. The normal decompo-
sition is not able to learn the correct sign with 3 disks,
and furthermore one of the learnt disks is transitive,
which is counterintuitive for a cyclic game. We provide
Conjecture 1 that we leave for future work.

Conjecture 1. A regular game is cyclic if and only if
its sign-rank is achievable by cyclic disks only.

Let T := Disk(uT , vT ) be the transitive component,
C :=

∑K
k=1 Disk(uk, vk) the cyclic component, and let

D := T + C be our decomposition. We call the latter
the disk space, which can be seen as a "latent space".
Definition 6 yields that the order is the minimum num-
ber of basis functions needed to move from the game P
to its disk representation D. We will require vT to have
strictly positive entries, so that T is by construction
transitive. We will also require uk, vk to be orthog-
onal to each other and to vT , so that C will consist
by construction of cyclic components (cf. discussion
below Definition 3). Orthogonality ensures, in short,
that there is no redundancy between components in
the "linear algebra" sense. In practice, we have seen
that it makes the learning faster.

The number of components in our decomposition aims
at correctly capturing the sign of P . Precisely, for
a budget of K components, we aim to minimize the
number of entries Lsign(D, P ) which have different
signs in D and P . Let SP (K) be that number, and
SP := min{K : SP (K) = 0}. SP (K) quantifies the
ability of K components to capture sign(P ). The nor-
mal decomposition ensures that there exists a K such
that SP (K) = 0, and the sign-rank of P is equal to
2SP + 2 or to 2SP 9.

Given M basis functions φ := (φm)m∈[1,M ], and K disk
components, we try to minimize Lproba(A,P ) under
the constraint Lsign(D, P ) = SP (K), where A ranges
overMφ(D) and Lproba is a distance on the space of
matrices, for example the L2 distance or the binary
cross-entropy. In simple words, under the constraint
that we do as well as possible on the sign with K
components, we play on D and φ to reconstruct P as
well as possible. Basis functions do not change the sign
of a matrix and the order τP is equal to the minimum
M that yields Lproba(A,P ) = 0. We illustrate these

9The sign-rank of P is 2SP +2 if P is transitive (SP = 0)
or hybrid. If Conjecture 1 is true, the sign-rank of P is 2SP

if P is cyclic; if it is false it could be 2SP or 2SP + 2.

concepts in Figure 3 in the context of a cyclic game
of order M = 2 and sign-rank 2K = 2. The exact
definition of the game is provided in the appendix.

Figure 3: Cyclic game of sign-rank 2 and order M = 2.
(Top left) ours, 2 basis functions; (top right) ours, 1
basis function; (bottom) normal decomposition. Black
dots represent the true game P ; red crosses indicate
the true game when there is a mistake on the sign. All
methods learn K = 1 disk component. Contrary to the
baseline, our method is able to learn the sign of P , as
well as the two functions generating the game. X-axis:
disk space D, Y -axis: payoff space P .

Description of the network architecture. We pro-
vide in Figure 5 an overview of our architecture. We
first feed the n × n matrix P into the disk network
Rn → R2K+2 which outputs the 2(K + 1) entries uk,
vk, uT , vT of our disk decomposition D, for each player
i ∈ [1, n]. Then, we construct D, and guarantee orthog-
onality of the vectors by performing Gram-Schmidt
orthogonalization in the computational graph. Then,
the n2 × 1 disk-space decomposition D is fed into the
basis network, which outputs the quantities φm(Dij)
for m ∈ [1,M ] that we use to compute a reconstruction
P̂ij of Pij . At training time, for each matrix entry (i, j),
we pick the index m(i, j) that yields the reconstruc-
tion φm(i,j)(Dij) closest to Pij . At test time, given
a point in the disk-space Dij , we compute weights
ωm(Dij) from the point closest to Dij in the training
set, and use those weights to compute a prediction
P̂ij =

∑M
m=1 ωm(Dij)φm(Dij). The weight ωm rep-

resents the proportion of training points that were
associated to the basis function m at training time.
Notice that we suitably transform the functions φm to
make them basis functions, cf. φ and φ̃ in Figure 5.

Loss function. Our loss function L consists of four
terms.

L = Lproba + ωT
signLT

sign + ωC
signLC

sign + ωbasisLbasis.

(5)

The term Lproba is simply the reconstruction loss on P
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True Game Ours Normal Decomposition

Figure 4: Kuhn-poker, n = 25 (cyclic game). (Left)
true game; (mid) ours; (right) normal decomposition;
(top) sign of the game; (bottom) the game in disk
space (X-axis: disk space D, Y -axis: payoff space
P ). We are able to learn the sign of the game with 3
components, all cyclic as in Theorem 3. The normal
decomposition cannot learn the correct sign with 3
components, and further one component is transitive,
which is counterintuitive for a cyclic game. Red is
positive, blue is negative, white is zero.

discussed earlier; we take the standard mean-squared
loss but we could also consider the binary cross-entropy.
As previously discussed with SP (K), we put emphasis
on learning the sign of the game. Due to Theorem 2,
the sign of Pij should either be captured by Cij if i and
j are in the same cycle, otherwise by Tij . Therefore,
LT
sign ensures that T and P have the same sign in

a weak sense as discussed at the end of Section 2:
TijPij ≥ 0 and Pij = 0⇒ Tij = 0. This can always be
achieved whether i and j are in the same cycle (Tij = 0)
or not (Tij ̸= 0) and therefore we typically pick ωT

sign

very large. Similarly, LC
sign ensures that CijPij ≥ 0

and that Pij = 0 ⇒ Cij = 0. If i and j are in the
same cycle, we have Tij = 0, and CijPij > 0 cannot
always be achieved as this depends on the budget K,
so for this reason we typically pick ωC

sign < ωT
sign but

ωC
sign > 1 since we want to put emphasis on learning

the sign vs. the amplitude Lproba. Finally, Lbasis aims
at ensuring that the basis functions are increasing. We
do so by calling the basis network a second time with
permuted inputs and considering a loss that penalizes
(X−Xperm) ·(Y −Y perm) < 0. Typically ωbasis is very
large since we can always choose the basis functions to
be increasing. LT

sign, LC
sign, Lbasis are constructed in

the spirit of the Pearson correlation coefficient, and are
written explicitly in Appendix A.1, together with the
values of ωT

sign, ωC
sign, ωbasis; in particular we make sure

to suitably normalize them by the norms of T and D,
so that learnt coefficients are not pushed towards 0.

Disk Network

Win-loss scores of players  Disk Net input 

Disk decomposition

Gram-Schmidt orthonormalization

Basis Network Basis Net output

Disk Net output

Basis Net input

 basis functions, renormalized
to enforce odd and postitive on 

Figure 5: Neural Architecture to learn our game de-
composition.

4 EXPERIMENTS

We consider some of the game payoffs studied in
[Czarnecki et al., 2020, Bertrand et al., 2023] and take
the payoff matrices P from the open-sourcing of these
works. The baselines that we consider are those in
[Bertrand et al., 2023], that is the normal decomposi-
tion and m−Elo previously discussed. We see in Table 1
on a variety of games that our method yields better ac-
curacy on the sign of P . We report standard deviations
as well as other metrics of interest in the appendix.
The baselines perform well in general, and are faster
to compute than our neural approach. Both our ba-
sis and disk networks have 3 hidden layers and 200
neurons per layer. All activation functions are tanh,
except for the output of the disk network for which
the activation function is the identity. All methods
learn K = 3 components, but additionally we learn the
transitive (potential) component. If the game contains
a cycle of length n we disable the learning of the po-
tential component for simplicity, which is the case for
most of the games in Table 1 because we only looked
at a subset of players. We illustrated the efficacy of
our method for learning the potential component on
AlphaStar data in Figure 2. These results, together
with those in Figures 3 and 4 show that our method
learns more efficiently the sign of the game and hence
cyclic and transitive relations among strategies.

5 CONCLUSION AND FUTURE
RESEARCH

In this work we have characterized the essence of transi-
tivity in games by connecting it to important concepts
such as potential games and sign-rank. We have pro-
vided a neural network-based architecture to learn game
decompositions is a way that puts specific emphasis on
the sign of the game.
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Table 1: Average sign accuracy (%) over 3 seeds and
game sizes n = 50, 75, 100. K = 3 components.

Game Elo m-Elo Normal Ours

connect four 86 94 94 97
5,3-Blotto 71 99 99 99
tic tac toe 93 96 96 98

Kuhn-poker 81 91 92 96
AlphaStar 86 92 92 95

quoridor(size 4) 87 92 93 96
Blotto 77 94 95 95

go(size 4) 84 93 93 97
hex(size 3) 93 96 97 98

We believe that it would be interesting to resolve Con-
jecture 1, as well as improve the efficiency of the ar-
chitecture to have it work on larger game sizes. For
example, it would be interesting to consider a trans-
former architecture as in [Liu et al., 2024], as the at-
tention mechanism could be useful in learning complex
dependencies between the disk representation and the
original game.

Another aspect that would be interesting to study is the
online update of Hyperbolic Elo and Potential-based
ratings. We briefly comment on this aspect below.
Assume that at each stage t+1, two players are chosen
at random to play against each other. As discussed
in [Elo, 1978, Balduzzi et al., 2018] and assuming that
players i and j have been chosen, the online updates
of the Elo ratings ϵi, ϵj from stage t to t+ 1 are:

ϵt+1
i = ϵti + η(xt+1

ij − p̂tij),

ϵt+1
j = ϵtj + η(xt+1

ji − p̂tji),

where η is a learning rate (η = 16 or η = 32 in
[Elo, 1978]), p̂tij := σ(ϵti − ϵtj) is the Elo estimate of
P̃ij at stage t, xt+1

ij is the outcome of the game between
i and j (xt+1

ij is 1 if i wins, 0 if j wins, and 1
2 if i and

j draw), so that xt+1
ji = 1 − xt+1

ij and p̂tji = 1 − p̂tij .
Note that P̃ij = E[xt+1

ij ]. The Hyperbolic Elo rating
computes the Elo rating of φβ(P ), remembering that
P = 2P̃ − 1. Therefore, the Elo online update rule
should be modified as follows:

ϵt+1
i = ϵti + η(f t+1

ij (xt+1
ij )− p̂tij),

ϵt+1
j = ϵtj + η(f t+1

ji (xt+1
ji )− p̂tji),

where f t+1
ij (xt+1

ij ) is a random variable such that
E[f t+1

ij (xt+1
ij )] = 1

2 (1 + φβ(2P̃ij − 1)). Note that as
β → 0, φβ → Id and therefore E[f t+1

ij (xt+1
ij )] → P̃ij ,

so that one can take f t+1
ij = Id, i.e. one recovers the

Elo update rule. When β > 0, however, one needs to

keep track of the empirical average of game outcomes
P̃ t
ij :=

1
|T (i,j,t)|

∑
s∈T (i,j,t) x

s
ij , where T (i, j, t) is the set

of times s ∈ [1, t] where i played against j. Then, let:

f t+1
ij (x) :=

1

2
+ g(x) + δt+1

ij ,

δt+1
ij :=

1

2
φβ(2P̃

t+1
ij − 1)− g(P̃ t+1

ij ),

g(x) := φβ(1)(x−
1

2
).

By the strong law of large numbers, P̃ t
ij converges

to the constant P̃ij almost surely as t → +∞, and
therefore E[f t+1

ij (xt+1
ij )] will converge to the desired

1
2 (1 + φβ(2P̃ij − 1)). Rigorously, one should use a two-
timescale framework where P̃ t

ij is updated on the fast
timescale, and ϵti on the slow timescale so that the
former can be approximated by the constant P̃ij in the
update rule of ϵti, cf. [Borkar, 1997].

We made this specific choice for f t+1
ij because we

want the correction term δt+1
ij to be as small as pos-

sible, since the empirical average P̃ t+1
ij only appears

in δt+1
ij , not in g. If we could, we would choose g

such that δt+1
ij = 0 while preserving the constraint on

E[f t+1
ij (xt+1

ij )], but it is not possible to the best of our
knowledge. Another possible choice would have been
g(x) = x, which would also satisfy that E[f t+1

ij (xt+1
ij )]

converges to the desired 1
2 (1+φβ(2P̃ij−1)) as t→ +∞.

We have checked empirically on a few toy examples
that our choice of g yielded smoother and more sta-
ble trajectories for the ratings than g(x) = x, see
Figure 12 in the Appendix. The heuristic explana-
tion is as follows: a reasonable choice for f t+1

ij would
have been f t+1

ij (x) = 1
2 (1 + φβ(2x − 1)). However

E[φβ(2x
t+1
ij −1)] ̸= φβ(2E[xt+1

ij ]−1) = φβ(2P̃ij−1), so
we need to correct for the corresponding difference. We
get that E[ 12φβ(2x

t+1
ij −1)] = φβ(1)(P̃ij− 1

2 ) = g(P̃ij) if
the probability that i and j draw is zero. This justifies
the choice of this specific form for g, where x is scaled
by φβ(1).

We leave for future work the detailed analysis of such
an online update rule, as well as the question of the
optimality of our choice of f t+1

ij . Note that the update
rule that we presented is valid not only in the Hyper-
bolic Elo case where φβ(x) =

1
β tanh(βx), but also for

any basis function φ, in particular if it has been learnt
using the methods presented in this work.
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A EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS

A.1 Loss function

Let D = T + C our disk decomposition. Our loss function is:

L = Lproba + ωT
signLT

sign + ωC
signLC

sign + ωbasisLbasis. (6)

We take ωT
sign = ωbasis = 1000, ωC

sign = 10. Let us denote Jtrain the training set, J0
train the set of points (i, j)

in the training set such that Pij = 0. Let φm(D) the mth output of the basis network. For every (i, j), let
mij = argminm |φm(Dij)− Pij |.

Lproba =
1

4|Jtrain|
∑

(i,j)∈Jtrain

||Pij − φmij (Dij)||22. (7)

Let ρ a permutation, and P ρ
ij , D

ρ
ij the corresponding permuted quantities. We want the functions φm to be

nondecreasing, so we define:

Lbasis =
1

Nbasis

∑
(i,j)∈Jtrain

M∑
m=1

max
[
0,−(Dij −Dρ

ij)(φm(Dij)− φm(Dρ
ij))

]
, (8)

Nbasis =
1

4|Jtrain|
∑

(i,j)∈Jtrain

|Dij −Dρ
ij |

∑
(i,j)∈Jtrain

M∑
m=1

|φm(Dij)− φm(Dρ
ij))|. (9)

The latter can be viewed as similar to the Pearson correlation coefficient. Similarly we have:

LT
sign =

1

Nsign

 ∑
(i,j)∈Jtrain

max [0,−TijPij ] +
∑

(i,j)∈J0
train

T 2
ij

 , (10)

LC
sign =

1

Nsign

 ∑
(i,j)∈Jtrain

max [0,−CijPij ] +
∑

(i,j)∈J0
train

C2ij

 , (11)

Nsign =
1

|Jtrain|
∑

(i,j)∈Jtrain

|Dij |
∑

(i,j)∈Jtrain

|Pij |. (12)

The first term in the latter equations ensures that the sign of T and C is that of P , the second term make sure
that the ties are captured correctly (i.e. the points where Pij = 0).

A.2 Game of Figure 1 and additional examples of transitive games

We consider, for n = 30, a transitive game of order one of polynomial type, namely Pij = φ(Φi − Φj),
φ(x) := λ sign(x) · x2, Φn−i+1 := −1 + 2

n−1 (i − 1) for i ∈ [1, n] and λ = 0.25 is a normalization constant. We
present in Figure 6 the learnt game. We are able to recover the game perfectly, in particular the generating
function φ and the potential scores Φi, evenly spaced. The plot on the top left represents the learnt Φi, i ∈ [1, n].
The plot on the top right is similar to Figure 3 and represents the learnt function φ (in blue) as well as the points
of coordinate (Dij , Pij). If we learn the game perfectly, the latter points should be on the curve φ.

Then, we consider the same setting but now Pij = φij(Φi − Φj), φij(x) := λ sign(x) · |x|1.5 if i + j is even,
φij(x) := λ sign(x) · |x|0.3 if i+ j is odd and λ = 2.7. Therefore the game is transitive of order two. In Figures 1
and 7 we show that we are able to learn the game.

A.3 Game of Figure 2

To learn the ratings Φi, we employ the methodology detailed in Section 3, in particular the architecture in
Figure 5. Note that we do note force the 12 players that are part of the large cycle to have the same rating, it is
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the consequence of our loss function that requires the transitive component T to have the same sign as P , namely
TijPij ≥ 0. We display in Figure 8 the true and learnt payoff P (as well as its sign), together with the transitive
component T and cyclic component C. Here, we chose M = 1 basis function, K = 2 cyclic component, and a
transitive component T = Disk(Φ,1), i.e. vT = 1 and Tij = Φi − Φj .

A.4 Game of Figure 3

We consider the cyclic game given by:

Pij = λφij(uivj − viuj),

u = (0.16,−0.73, 0.53, 0.22, 0.26, 0.46, 0.35, 0.54,−0.53,−0.05),
v = (−0.39, 0.4,−0.43,−0.92, 0.31,−0.48,−0.12, 0.38, 0.6, 0.67),

where λ = 0.72 is a normalization constant and φij(x) = sign(x) ·
√
|x| if i+ j is odd, φij(x) = sign(x) · x2 if

i+ j is even. The sign of the game P is that of Disk(u, v), hence P is cyclic with sign-rank 2. We present in
Figure 10 the equivalent of Figure 3, but for the Elo method.

A.5 Stability of ratings

It was observed in [Balduzzi et al., 2018] that it is desirable for the rating mechanism to be invariant with respect
to the addition of redundant players. Consider the game in (13), to which we add a copy of player 4. With one
basis function, we learn potential ratings of (1, 0.35, 0.31, 0) (4 players) and (1, 0.31, 0.30, 0, 0) (5 players), so the
ratings are relatively stable. We show in Figure 9 the learnt basis functions in the two cases. In contrast, the
normal decomposition in [Bertrand et al., 2023] gives player strength of (1, 0.22, 0.48, 0) and (1, 0.2, 0.59, 0, 0); the
Elo ratings are (1, 0.15, 0.56, 0) and (1, 0.15, 0.66, 0, 0). Both these methods see the rating of player 3 vary quite
significantly. Note that in all cases, we apply a linear transformation to the ratings so that they lie in [0, 1]. We
believe that the stability of our ratings come from our ability to adjust the amplitude of the reconstructed P̂ with
the learnt basis function, whereas in the case of Elo and of the normal decomposition, the basis function is fixed
to the sigmoid. Mathematically, we can completely eliminate the impact of redundant players by considering
only the unique pairs (Dij , Pij) in the reconstruction loss (7), as well as the unique pairs (Tij , Pij), (Cij , Pij) in
(10)-(11).

A.6 Architecture, compute and game data

We implement our code in PyTorch. Both our basis and disk network have 3 hidden layers and 200 neurons
per layer. All activation functions are tanh, except for the output of the disk network for which the activation
function is the identity. We run our experiments on an AWS g3.8xlarge instance, for 60,000 training iterations,
with an Adam optimizer with learning rate 5 · 10−6 (10−4 for the first 2,000 iterations). The network weights are
initialised using the Xavier (uniform) method. In the computational graph of Figure 5, we perform Gram-Schmidt
orthogonalization to the output of the Disk network: we require vT to be orthogonal to uT and to all the uk’s
and vk’s. The uk’s and vk’s are also made orthogonal to each other. To make two vectors u and v orthogonal, we
perform:

v ← v − ⟨u, v⟩
max(⟨u, u⟩ , δ)

u, δ = 10−14.

The game data (i.e., matrices P ) is taken from the supplementary material of [Czarnecki et al., 2020] 10.

A.7 Baselines

The baselines Elo, m-Elo and the normal decomposition are taken from [Bertrand et al., 2023] 11 (see their
appendix A.2). Precisely, let C :=

∑K
k=1 Disk(uk, vk). The normal decomposition C is computed by minimizing∑

(i,j)∈Jtrain
bce(P̃ij , σ(Cij)) under the constraint that all the vectors uk and vk are orthogonal to each other, and

where we remind that bce(y, ŷ) := −y ln ŷ− (1− y) ln(1− ŷ). It has 2K parameters per player. Regarding m-Elo,
10https://proceedings.neurips.cc/paper/2020/hash/ca172e964907a97d5ebd876bfdd4adbd-Abstract.html
11https://github.com/QB3/discrating



Ordinal Potential-based Player Rating

let P̄ := P −Disk(uT ,1), where uT = 1
nP1 is the vector containing the column averages and Disk(uT ,1) is the

transitive component. Then, the cyclic component C of the m-Elo decomposition is computed by minimizing∑
(i,j)∈Jtrain

||P̄ij − Cij ||2, under the constraint that all the vectors uk and vk are orthogonal to each other. The
m-Elo decomposition is then given by Disk(uT ,1) + C. It has 2K + 1 parameters per player.

A.8 Experiments in Table 1

For each random seed and each game, a subset of n players is randomly selected from the full game matrix
(n = 50, 75, 100), so that P is of size n× n. Out of all the games presented, only 5, 3-Blotto (21) and Kuhn-poker
(64) have a full game matrix P of size less then 100, so for these two games the number of players selected is the
minimum between the full game size and n. The training set Jtrain is created by removing 10% of the off-diagonal
elements of the matrix P , as in [Bertrand et al., 2023]. We average our experiments over 3 random seeds.

All the methods presented have K = 3 components. As previously discussed, the normal decomposition has 2K
parameters per player i ∈ [1, n], a total of 2Kn parameters. m-Elo additionally adds a transitive component
obtained by averaging the columns of P , which yields 2K + 1 parameters per player, although it could be argued
that the transitive component is not really "learnt" but can simply be seen as a suitable "renormalization", so we
believe it is a fair comparison to the normal decomposition with 2K parameters. Similarly, we learn a transitive
(potential) component T := Disk(uT , vT ). However, for the games considered in Table 1, almost all of them are
cyclic, which yields T = 0. For this reason, we perform a quick check at the beginning of the learning phase and
if the game is cyclic, we set T = 0 and do not learn the transitive component. Since the latter happens almost all
of the time on these examples, we believe it is also a fair comparison to the other methods. Even when the game
is not cyclic, it contains a very large cycle, so the impact of T is minimal on these examples. For completeness we
list here the few cases where the game is not cyclic (14 cases out of the 81 combinations "seed × n × game"),
and therefore where we learn a transitive component: AlphaStar (seed 1: n = 50, 100, seed 2: n = 50, 75, seed 3:
n = 50, 75, 100); Connect Four (seed 2: n = 50, 75, 100, seed 3: n = 50, 75); Go (seed 2, n = 75, seed 3: n = 50).

In Table 1, we report the overall sign accuracy on the train and test sets associated to the nonzero entries of P ,
since all methods struggle to exactly predict a zero (and so the sign accuracy for the zero entries of P is always
zero). We present in Table 2 the same metrics but we put in brackets the split "(train, test)". In Table 3, we
present the standard deviation associated to Table 2 across the 9 seed × n combinations. In Tables 4, 5 we do
the same for the mean absolute error (MAE). Note that we learn m = 3 basis functions, which makes our MAE
lower than other methods.

Our algorithm is relatively scalable with larger values of K, for a fixed game size n. Indeed, the only thing
that changes when K increases is the size of the output of the disk network R2K+1. In practice, we found that
increasing K was not too harmful regarding running time. We provide in Figure 11 an additional experiment in
the case of AlphaStar, n = 100, K = 15 cyclic components, M = 10 basis functions.

B PROOFS AND TECHNICAL COMMENTS

Remark 1. (Regular games) We have chosen to introduce regular games mainly for clarity of presentation.
If ties are allowed, our results would require a slight strengthening of the definition of transitivity, namely that
the following additional condition holds: Pij > 0 and Pjk = 0 implies Pik ≥ 0. This is a natural condition that
states that if A wins against B, and B ties with C, C cannot win against A. Then, Theorem 1 would yield
that Pij > 0⇒ Elo(P )ij > 0 ∀i, j, namely that Elo preserves transitivity. We commented on this aspect in the
proof. Since P = −PT , we also get Pij < 0 ⇒ Elo(P )ij < 0. However due to ties, the converse is not true in
general, namely when Pij = 0, we could have either Elo(P )ij > 0 or Elo(P )ij ≤ 0. Another way to see it is that
P ∼ Elo(P ) only holds on the set I := {(i, j) : Pij ̸= 0}. Similarly, the ordinal potential relation in Theorem 2
would also hold only on I.
Remark 2. The main merit of the formulas presented in Theorem 1 is that they are explicit. In practice, it is
possible to get tighter bounds. Precisely, let:

P∗ := max
i

n∑
k=1

Pik, P∗∗ := −2n

3
arctanh(P∗)

3 + min
(i,j):Pij>0

n∑
k=1

Pik − Pjk.

Then P ∼ Elo(P ) provided P∗ < 1 and P∗∗ > 0. This follows from the proof of Theorem 1 and can be used in
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conjunction with a one-dimensional root solver to get a tighter lower bound for β in Theorem 1. There, one first
computes a lower bound βlow for β by solving P∗ = 1, then one finds β > βlow such that P∗∗ = 0.

B.1 Proof of Proposition 1

Consider the transitive game:

P =


0 0.88 0.2 0.46

−0.88 0 0.06 0.06
−0.2 −0.06 0 0.62
−0.46 −0.06 −0.62 0

 . (13)

The Elo ratings are (0.87,−0.42, 0.19,−0.64), and the players’ "strength" and "consistency" building the transitive
component of the normal decomposition of logit P̃ [Bertrand et al., 2023] 12 are (2.66,−1.05, 0.17,−2.04) and
(0.67, 0.94, 0.34, 0.38), yielding the respective approximations Elo(P ) and P̂NormD:

Elo(P ) =


0 0.57 0.33 0.64

−0.57 0 −0.3 0.11
−0.33 0.3 0 0.39
−0.64 −0.11 −0.39 0

 , P̂NormD =


0 0.82 0.27 0.54

−0.82 0 −0.19 0.18
−0.27 0.19 0 0.14
−0.54 −0.18 −0.14 0

 .

It is seen that both rating methods do not preserve transitivity of P due to the entries (2, 3) of both matrices
being negative. In contrast, the Hyperbolic Elo rating in Theorem 1 with β = 7 yields Elo ratings of φβ(P ) equal
to (0.21,−0.01,−0.02,−0.17), and preserves transitivity of P :

φ−1
β (Elo(φβ(P ))) =


0 0.148 0.155 1

−0.148 0 0.003 0.088
−0.155 −0.003 0 0.084
−1 −0.088 −0.084 0

 .

Similarly, the transitive component of the m-Elo method [Balduzzi et al., 2018] is given by Disk(uT ,1), where
uT is the vector containing the column averages uT = 1

nP1. It does not preserve transitivity of P and is given by:

Disk(
1

n
P1,1) =


0 0.57 0.29 0.67

−0.57 0 −0.28 0.1
−0.29 0.28 0 0.38
−0.67 −0.1 −0.38 0

 .

Regarding the claim that a transitive game can be decomposed using two cyclic components, let P the regular
transitive game:

P =


0 0.01 0.99 0.01 0.01

−0.01 0 0.01 0.01 0.99
−0.99 −0.01 0 0.43 0.01
−0.01 −0.01 −0.43 0 0.99
−0.01 −0.99 −0.01 −0.99 0

 .

12They also consider the normal decomposition of P instead of logit P̃ , but the finding is the same, transitivity is not
preserved.
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The normal (real Schur) decomposition of P yields P = P1 + P2 with:

P1 =


0 0.03 0.15 0.03 −0.34

−0.03 0 −0.35 0.02 0.84
−0.15 0.35 0 0.42 0.04
−0.03 −0.02 −0.42 0 0.994
0.34 −0.84 −0.04 −0.994 0

 ,

P2 =


0 −0.02 0.84 −0.02 0.35

0.02 −0 0.36 −0.01 0.15
−0.84 −0.36 0 0.01 −0.03
0.02 0.01 −0.01 0 −0.004
−0.35 −0.15 0.03 0.004 0

 .

It is easily checked that neither P1 nor P2 is transitive.

B.2 Proof of Theorem 1

We remind that P = 2P̃ − 1. By [Balduzzi et al., 2018] (Proposition 1), the Elo ratings (εPi )i∈[1,n] satisfy:

n∑
k=1

σ(εPi − εPk ) =

n∑
k=1

P̃ik ∀i ∈ [1, n]. (14)

The latter is obtained straightforwardly by setting the gradient (with respect to the variables εPi ) of the binary
cross-entropy loss between P̃ij and σ(εPi − εPj ) to zero. Fix a pair (i, j), without loss of generality we assume that
i beats j, i.e. Pij > 0. The goal is to show that εPi > εPj . Denote f(x) := 2σ(x)− 1 = tanh(x2 ). By (14) we get:

n∑
k=1

f(εPi − εPk )− f(εPj − εPk ) =

n∑
k=1

Pik − Pjk.

We have the inequality |f(x)− x
2 | ≤

1
24 |x|

3 ∀x, which yields:

n

2
(εPi − εPj ) ≥

n∑
k=1

(Pik − Pjk)−
n

12
ε3max,

where εmax := maxi,j |εPi − εPj |. Let us look carefully at the terms Pik − Pjk for k ̸= i, j. By the regularity
assumption, Pik and Pjk cannot be zero. By the transitivity assumption, remembering that Pij > 0, if Pjk > 0
then Pik > 0. So in that case, Pik − Pjk ≥ −(Pmax − Pmin). Same conclusion if Pjk < 0 and Pik < 0, or if
Pjk < 0 and Pik > 0. This means that in all cases, Pik −Pjk is lower bounded by −(Pmax −Pmin). Note that we
really need transitivity here to avoid the "bad" case where Pjk > 0 and Pik < 0, which would yield the "bad"
lower bound −2Pmax.

Since Pij > 0 by assumption, then Pij ≥ Pmin. Therefore, we have overall:

n∑
k=1

Pik − Pjk ≥ nPmin − (n− 2)Pmax.

Note that if we had allowed ties, namely Pjk and Pik can be zero, we would need the additional requirement that
if Pjk = 0, then Pik ≥ 0 so that Pik − Pjk ≥ 0. This is the only "bad" case to handle, since the other cases are
the same as above. Indeed, if Pjk > 0, we saw that Pik > 0 by transitivity, and if Pjk < 0, then the worst case is
that Pik < 0 too but even in that case Pik − Pjk is lower bounded by −(Pmax − Pmin).

Let δ := Pmax

Pmin
. Overall we get:

n

2Pmin
(εPi − εPj ) ≥ n− (n− 2)δ − n

12Pmin
ε3max.
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Let imax = argmaxi ε
P
i . Therefore εPimax

− εPk ≥ 0 ∀k, and equation (14) gives us:

σ(εmax)−
1

2
≤

n∑
k=1

(
σ(εPimax

− εPk )−
1

2

)
≤ n− 1

2
Pmax

⇒ εmax ≤ σ(−1)

(
1

2
+

n− 1

2
Pmax

)
= 2arctanh ((n− 1)Pmax) .

For α > 0, let xα the unique positive root of 2 arctanh3 (x)− 3αx, so that 8 arctanh3 (x) ≤ 12αx for 0 ≤ x ≤ xα.
For Pmax < xα

n−1 we have εPi − εPj > 0 provided:

n− δ (n− 2 + n(n− 1)α) > 0 ⇔ δ <
n

n− 2 + n(n− 1)α
.

Note that δ ≥ 1 by construction, which is the reason why we require 0 < α < 2
n(n−1) , so that n

n−2+n(n−1)α > 1.
The requirement Pmax < xα

n−1 ensures that ε3max ≤ 12α(n− 1)Pmax.

Finally, note that φβ(Pmax) ≤ β−1, and that Pij > 0⇔ φβ(Pij) > 0.
Proposition 2. A two-player symmetric zero-sum game P is a weak separable ordinal potential game if and only
if there exists a vector Φ such that:

Pij > 0⇔ Φi − Φj > 0 ∀i, j. (15)

Proof. The result follows immediately from the definition. Indeed, assume P is a weak separable ordinal potential
game. Then Φ̃ij − Φ̃jj = αi − αj and Φ̃ji − Φ̃jj = βi − βj . Also note that Pjj = 0 due to P being antisymmetric.
Hence Pij > 0⇔ Φi − Φj > 0 with Φ := α. Conversely, assume that Pij > 0⇔ Φi − Φj > 0. Define α := β := Φ

and Φ̃ij := αi + βj , then Φ̃ij − Φ̃jj = Φ̃ji − Φ̃jj = Φi − Φj > 0⇔ Pij > 0.

B.3 Proof of Theorem 2

Direction "⇐". By Proposition 2, assume that ∀i, j:

Pij > 0⇔ Φi − Φj > 0.

Assume Pij > 0 and Pjk > 0. We want to show Pik > 0. Pij > 0 and Pjk > 0 so Φi − Φj > 0 and Φj − Φk > 0.
Hence Φi − Φk = Φi − Φj +Φj − Φk > 0, hence Pik > 0 by assumption. Note that we have used both "if" and
"only if" directions in the ordinal potential assumption, first to move to the potential, then to move back to the
payoff.

Direction "⇒". This direction is the most challenging and is a consequence of Theorem 1. Indeed, by the latter,
take φβ(x) :=

1
β tanh(βx) for large enough β. Then, P ∼ Elo(φβ(P )), which means that the Elo rating εφβ(P ) of

the game φβ(P ) satisfies Pij > 0⇔ ε
φβ(P )
i − ε

φβ(P )
j > 0 ∀i, j and is therefore a weak ordinal separable potential

by Proposition 2.

B.4 Proof of Theorem 3

Without loss of generality (upon rearranging the player labels i) we assume that we have the maximal cycle
O := 1→ 2→ ...→ n→ 1, which corresponds to the permutation γ = Id in the definition of cyclicity. That is,
Pii+1 > 0 ∀i ∈ [1, n− 1] and Pn1 > 0.

The direction "⇐" is straightforward: if K disks all admit O as a cycle, then the entries (i, i + 1) and (n, 1)

have the same positive sign in all disks, in particular
∑K

k=1 Disk(uk, vk) has positive entries (n, 1) and (i, i+ 1)

∀i ∈ [1, n− 1]. But by assumption P is equal to
∑K

k=1 Disk(uk, vk), so Pii+1 > 0 and Pn1 > 0, i.e. P admits O
as a cycle. Since O is of length n, it is a maximal cycle.

Direction "⇒". For any two vectors u, v, we can consider the polar coordinate parametrization ui = ρi cos(θi),
vi = ρi sin(θi), which yields uivj − ujvi = ρiρj sin(θi − θj) [Bertrand et al., 2023]. Note that ρi =

√
u2
i + v2i ≥ 0,

θi ∈ [0, 2π) and uivj − ujvi is the (i, j) entry of Disk(u, v).
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First, we show that with 2 disks, we can a) capture the sign of all pairs (i, n) for i ∈ [1, n], b) each one of the 2
disks captures correctly the sign of adjacent pairs (i, i+ 1) i ∈ [1, n− 1] and (1, n).

b) is easy to achieve and ensures that each one of the two disks is cyclic due to 1 → 2 → ... → n → 1 by
assumption. Indeed, the sign of the pair (i, j) is determined by that of sin(θi − θj), so to ensure that adjacent
pairs have correct sign, we simply need to put the points i one after another on the trigonometric circle, starting
from θ1 = 0 and going clockwise, with a spacing between each pair θi − θi+1 no more than π, and with the last
point n in the upper-half of the trigonometric circle to ensure θn − θ1 > 0. This can always be achieved, for
example by taking θn = π

2 , and θi = − (i−1)π
n for i ∈ [1, n− 1].

For a), it is a bit more subtle. By the regularity assumption on the game, either Pin > 0 or Pin < 0. We split
the players i in 2 groups: those who lose against n (Pin < 0), and those who win against n (Pin > 0). Consider
2 disks with player parameters ρ

(k)
i , θ(k)i for k = 1, 2 and i ∈ [1, n]. The idea will be the following: we aim to

capture the sign of Pin for players i in the first group with the first disk, so ρ
(1)
i ≫ ρ

(2)
i , and we aim to capture

the sign of Pin for players i in the second group with the second disk, so ρ
(2)
i ≫ ρ

(1)
i . For the first group, we

have Pin < 0, so we take θ
(1)
1 = 0, θ(1)n = π

2 , and θ
(1)
i ∈ (−π

2 , 0) for i ∈ [2, n− 1], for example θ
(1)
i = − iπ

2n . Note
that this parametrization captures both b), together with the sign of Pin for players in the first group. Similarly,
for the second group, we have Pin > 0, so we take θ

(2)
1 = 0, θ(2)n = π

2 , and θ
(2)
i ∈ (−π,−π

2 ) for i ∈ [2, n− 1], for
example θ

(2)
i = −π

2 −
iπ
2n . Overall, we take ρ

(1)
n = ρ

(2)
n =: ρn and we capture the sign of Pin using:

[Disk(u(1), v(1)) +Disk(u(2), v(2))]in = ρn

(
ρ
(1)
i sin(θ

(1)
i − θ(1)n ) + ρ

(2)
i sin(θ

(2)
i − θ(2)n )

)
. (16)

For players i in the first group, take:

ρ
(1)
i > ρ

(2)
i

| sin(θ(2)i − θ
(2)
n )|

| sin(θ(1)i − θ
(1)
n )|

> ρ
(2)
i sin(

π

2n
). (17)

Similarly, for players i in the second group, take ρ
(2)
i > ρ

(1)
i sin( π

2n ). These choices makes the sign of (16) equal to
that of Pin for all i.

We have seen that we can explain the sign of all Pin using 2 cyclic disks. Note that ρn has been left unspecified.
Now that the signs of all interactions of player n have been captured, we are free to pick ρn as large as we want
for these 2 disks, and ρ

(k)
n as small as we want in any further disk k we may want to add to the decomposition, to

ensure - as we did in (17) - that we do not change the sign of Pin by adding further disks. However, we cannot
take ρ

(k)
n = 0 since we need all points on every disk to satisfy condition b) and guarantee cyclicity, so we cannot

"eliminate" player n from any disk.

Note that we have shown a way to explain the sign of all Pin using 2 cyclic disks. We can actually do better in
some cases, in the sense that we only need one cyclic disk. This is the case if there exists k∗ = k∗(n) ∈ [2, n− 1]
such that all players i ∈ [2, k∗) are in the same group, and all players i ∈ [k∗, n− 1] are in the same group. If
players i ∈ [2, k∗) are all in group 1 (Pin < 0) and all players i ∈ [k∗, n − 1] are all in group 2 (Pin > 0), take
θ1 = 0, θn = π

2 , θi = − iπ
2n for i ∈ [2, k∗), θi = −π

2 −
(i+2−k∗)π

2n for i ∈ [k∗, n − 1]. This satisfies both a) and b).
Similarly, if players i ∈ [2, k∗) are all in group 2 and all players i ∈ [k∗, n− 1] are all in group 1, take θn = π − π

2n
so that θn − θ2 = π − π

2n + π
n = π + π

2n ∈ (π, 2π), and θn − θk∗ ∈ (0, π).

To conclude the proof, we reiterate the procedure that we employed to explain the sign of Pin, but now we
apply it to explain the sign of Pin−1 for i ∈ [1, n− 2] (since Pnn−1 has already been explained). As mentioned
earlier, for all the subsequent disks that we will add, ρ(k)n > 0 will be chosen as small as desired so as not to
perturb the sign of the Pin’s, in other words we will use (17) only for the points i that we haven’t explained
yet, namely i ∈ [1, n− 2]. Precisely, we define γ1 as the permutation that pushes each player by 1 unit back, i.e.
γ1(i) = i− 1 and γ1(1) = n. Then, we can apply our previous analysis with the points γ1(i) in the role of the
points i, in particular n− 1 in the role of n, splitting into 2 groups those players who win and lose against n− 1.
Our construction implies that b) is satisfied, hence all these disks are cyclic; it also implies that we add, in the
worst case, 2 disks per iteration. We repeat this procedure, at each stage p, to explain the interactions of player
n− p with players i ∈ [1, n− p− 1], using the permutation γp that pushes each player by p units back. If ρ(k,p)i ,
θ
(k,p)
i are the parameters of players i for the two disks k at stage p, our construction is based on the observation
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that we are free to choose ρ
(k,p)
i as small as desired for i > n − p. Stage p = 0 correspond to player n, stage

p = 1 to player n− 1, etc. We stop at stage p = n− 3. This is because a single disk will always suffice (we have
P12 > 0 and P23 > 0 by assumption on the cycle so the only interaction to explain is P13). This can be viewed as
an "onion" method, always capturing the full cycle and going deeper each stage to explain more of the players
interactions inside the full cycle.

Overall, we have constructed, for each stage p, two disks that capture correctly the signs of interactions of player
n− p with all players i ∈ [1, n− p− 1]. These disks all contain the maximal cycle O.

Our proof shows that we have 1 + 2(n− 3) cyclic disks at most when n ≥ 5. This is a worst case scenario and in
practice, we will need fewer disks. If n ≥ 5, when we get at stage p = n− 4 to explain the interactions of player 4
with 1, 2 and 3, in general we will need two disks because the interactions (1, 4) and (2, 4) can be arbitrary, and
so we cannot always, with one disk, capture correctly these 2 interactions correctly together with the cycle O.
Precisely, in a given disk, if P42 > 0, we must also have P41 > 0 if we want to respect O. If n = 4 however, the
interaction (1, 4) cannot be arbitrary as it is constrained by O: P41 > 0, so in that case we will always need one
disk only.

Corollary 3.1. (Number of cyclic components capturing a cyclic game) Under the setting of Theorem 3,
if n ≤ 4, we have K = 1. If n ≥ 5, we have K ≤ 2(n− 3) + 1. Assume without loss of generality that a maximal
cycle is O := 1→ 2→ ...→ n→ 1. For a given player i, let Ji the set of players excluding the adjacent players
i− 1 and i+ 1 (modulo n). Let n∗ the number of players i such that there exists a k∗(i) such that all players in
Ji whose index is less than k∗(i) win against i, and all players in Ji whose index is greater than k∗(i) lose against
i (or vice versa). Then, K ≤ 2(n− 3)− n∗ + 1.

Proof. The proof follows from the argument developed in the proof of Theorem 3. There, it is seen that if n = 4,
we have K = 1. If n ≥ 5, we have K ≤ 2(n− 3) + 1 since we add at most 2 disks per stage. Under the existence
of k∗, we add only one disk, hence the result.
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Figure 6: Transitive game of order one of polynomial type, n = 30. (top left) ordinal potential player scores
Φi; (top right) game P and its learnt basis function as a function of its disk space representation as in Figure 3;
(bottom) learnt and true payoff P . We are able to learn that the game is generated by a polynomial function and
that the player scores Φi are evenly spaced.
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Figure 7: Transitive game of order two of polynomial type, n = 30. (top left) ordinal potential player scores Φi;
(top right) game P and its learnt basis functions as a function of its disk space representation as in Figure 3;
(bottom) learnt and true payoff P . We are able to learn that the game is generated by two polynomial functions
and that the player scores Φi are evenly spaced.
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Figure 8: Game of Figure 2: AlphaStar, n = 20. K = 2 cyclic components, M = 1 basis function. Learnt and
true Payoff P , cyclic component C, transitive (potential) component T .
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Figure 9: Transitive game of Proposition 1. Our potential-based rating is stable under the addition of a redundant
player. (Top left) Four players; (top right) Five players; (bottom) four players, two basis functions (the game is
transitive of order two). Black dots represent the true game P , the blue and orange curves are the learnt basis
function.

Figure 10: Elo method Elo(P ) for the game in Figure 3. As expected, it cannot learn accurately the sign of a
cyclic game.
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Figure 11: AlphaStar, n = 100, M = 10, K = 15. (top) game payoff; (bottom) game payoff sign; (left) true game;
(right) learnt game. Red is positive, blue is negative, white is zero. We train on the full game (no hidden entries),
and obtain a sign accuracy of 100%.
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Figure 12: Online updates of player ratings ϵti over time in a transitive game with n = 10 players sorted by
decreasing strength, i.e. Pij > 0 when i < j. The ratings are averaged over 1000 simulations of 3000 timesteps
each. For each timestep of each simulation, a pair of players is chosen at random to play each other, and the
outcome of the game is sampled at random according to the probabilities P̃ . In the Hyperbolic Elo case, the
empirical averages P̃ t

ij for a given simulation are computed using data from that simulation only. (Top) Elo update
rule; (Middle) Hyperbolic Elo update rule, g(x) = x; (Bottom) Hyperbolic Elo update rule, g(x) = φβ(1)(x− 1

2 ).
x-axis: time t. y-axis: player ratings. Note that contrary to the Elo case, Hyperbolic Elo (β = 5) correctly ranks
the players (players 1, 2, 9, 10 are incorrectly ranked in the Elo case). We check that the player ratings - in
both Elo and Hyperbolic Elo cases - converge with good accuracy to the ratings found by minimizing the binary
cross-entropy loss in Definition 2. In accordance with the theory of Stochastic Approximation, we take in all
cases a learning rate ηt =

32
t0.8 , so that it satisfies the Robbins-Monro conditions. The first 150 timesteps out of

3000 have been removed to make the figure more readable.
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Table 2: Average sign accuracy in % over 3 seeds and game sizes n = 50, 75, 100. Results are presented as: "overall
(train, test)".

Game Elo m-Elo NormalD Ours

connect four 86 (87, 86) 94 (94, 89) 94 (95, 89) 97 (99, 85)
5,3-Blotto 71 (73, 54) 99 (100, 94) 99 (100, 88) 99 (100, 94)
tic tac toe 93 (93, 92) 96 (96, 91) 96 (97, 92) 98 (100, 85)
Kuhn-poker 81 (81, 80) 91 (91, 90) 92 (92, 91) 96 (98, 84)
AlphaStar 86 (87, 85) 92 (93, 87) 92 (92, 88) 95 (96, 85)
quoridor(board size 4) 87 (87, 83) 92 (93, 84) 93 (94, 86) 96 (98, 80)
Blotto 77 (77, 75) 94 (95, 91) 95 (95, 91) 95 (97, 85)
go(board size 4) 84 (84, 80) 93 (94, 85) 93 (94, 86) 97 (99, 79)
hex(board size 3) 93 (93, 93) 96 (97, 89) 97 (98, 91) 98 (99, 85)

Table 3: StDev of sign accuracy in % over 3 seeds and game sizes n = 50, 75, 100 related to Table 2. Results are
presented as: "overall (train, test)".

Game Elo m-Elo NormalD Ours

connect four 1.4 (1.3, 4.3) 0.9 (0.9, 3.4) 0.8 (0.8, 5.2) 0.8 (1, 3.2)
5,3-Blotto 1.1 (2.7, 11) 0.8 (0, 8) 0.4 (0, 3.1) 1.2 (0, 8.8)
tic tac toe 0.9 (0.8, 2.7) 0.6 (0.7, 2.2) 0.7 (0.7, 1.4) 0.5 (0.3, 3.7)
Kuhn-poker 0.1 (0.4, 3.2) 0.6 (0.8, 2.6) 0.6 (0.7, 1.8) 1.2 (1.1, 3.5)
AlphaStar 1.8 (1.7, 3.2) 1.1 (1.2, 2.1) 0.9 (0.9, 1.9) 1.1 (1.3, 2.2)
quoridor(board size 4) 1.7 (1.7, 2) 0.8 (1, 2.9) 1 (1.2, 1.6) 0.8 (1, 6.4)
Blotto 1.1 (1.2, 2.2) 0.9 (1, 1.9) 0.9 (0.9, 2.6) 1.5 (1.6, 4.9)
go(board size 4) 2 (2.1, 1.5) 1.7 (1.8, 3.2) 2 (2.2, 3.4) 0.8 (1, 4.3)
hex(board size 3) 1.1 (1.1, 1.7) 0.8 (0.9, 4.7) 1 (0.9, 4.2) 0.8 (0.8, 5)

Table 4: Average MAE (×100) over 3 seeds and game sizes n = 50, 75, 100. Results are presented as: "overall
(train, test)".

Game Elo m-Elo NormalD Ours

connect four 22 (22, 23) 16 (15, 20) 17 (17, 21) 5 (2, 27)
5,3-Blotto 24 (24, 31) 7 (6, 20) 9 (8, 22) 2 (0, 19)
tic tac toe 18 (17, 19) 14 (14, 19) 15 (14, 19) 4 (1, 25)
Kuhn-poker 7 (7, 7) 3 (3, 4) 3 (3, 4) 3 (2, 8)
AlphaStar 14 (14, 14) 9 (9, 11) 10 (10, 12) 6 (4, 18)
quoridor(board size 4) 14 (14, 14) 11 (11, 15) 11 (11, 15) 4 (2, 21)
Blotto 12 (12, 13) 7 (7, 9) 7 (7, 9) 5 (4, 14)
go(board size 4) 18 (18, 20) 15 (14, 19) 16 (15, 20) 4 (2, 26)
hex(board size 3) 20 (20, 21) 16 (16, 21) 16 (16, 21) 4 (1, 27)
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Table 5: StDev of MAE (×100) over 3 seeds and game sizes n = 50, 75, 100 associated to Table 4. Results are
presented as: "overall (train, test)".

Game Elo m-Elo NormalD Ours

connect four 0.6 (0.5, 2.2) 1.7 (1.8, 2.3) 1.2 (1.3, 2.8) 1.2 (1.3 1.9)
5,3-Blotto 0.1 (0.4, 4.3) 0.8 (0.4,4.1) 0.4 (0.3, 3) 0.5 (0.1, 5.2)
tic tac toe 0.7 (0.8, 1.1) 1 (1.1, 1.1) 0.8 (0.8,1.4) 0.4 (0.4, 1.7)
Kuhn-poker 0 (0, 0.3) 0.1 (0.1, 0.2) 0.1 (0.1, 0.2) 0.5 (0.4, 1)
AlphaStar 1.3 (1.3, 1.1) 0.9 (0.9, 0.6) 0.7 (0.8, 0.7) 0.5 (0.5, 1.1)
quoridor(board size 4) 0.5 (0.5, 0.7) 0.8 (0.8, 1.3) 0.6 (0.7, 1) 0.5 (0.7, 2.2)
Blotto 0.2 (0.2, 0.3) 0.4 (0.4, 0.3) 0.4 (0.4, 0.3) 0.8 (1, 2)
go(board size 4) 1 (1.1, 1) 1.3 (1.4, 1.2) 1 (1.1, 1.3) 0.6 (0.7, 1.5)
hex(board size 3) 0.5 (0.4, 1.3) 0.7 (0.9, 1.5) 0.7 (0.7, 1.4) 0.6 (0.7, 1.3)
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