
Manifold-Aligned Counterfactual Explanations for Neural Networks

Asterios Tsiourvas Wei Sun Georgia Perakis
MIT IBM Research MIT

Abstract

We study the problem of finding optimal
manifold-aligned counterfactual explanations
for neural networks. Existing approaches
that involve solving a complex mixed-integer
optimization (MIP) problem frequently suf-
fer from scalability issues, limiting their prac-
tical usefulness. Furthermore, the solutions
are not guaranteed to follow the data man-
ifold, resulting in unrealistic counterfactual
explanations. To address these challenges,
we first present a MIP formulation where we
explicitly enforce manifold alignment by re-
formulating the highly nonlinear Local Out-
lier Factor (LOF) metric as mixed-integer
constraints. To address the computational
challenge, we leverage the geometry of a
trained neural network and propose an ef-
ficient decomposition scheme that reduces
the initial large, hard-to-solve optimization
problem into a series of significantly smaller,
easier-to-solve problems by constraining the
search space to “live” polytopes, i.e., regions
that contain at least one actual data point.
Experiments on real-world datasets demon-
strate the efficacy of our approach in pro-
ducing both optimal and realistic counterfac-
tual explanations, and computational trace-
ability. Code available at https://github.
com/asterios-tsiourvas/relu_cfx.

1 Introduction

In recent years, there has been a growing demand
for interpretable AI [Doshi-Velez and Kim, 2017,
Murdoch et al., 2019], where machine learning models
can be understood by humans. Counterfactual expla-
nations have been used to explain model predictions

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

and provide actionable insights [Mothilal et al., 2020a,
Guidotti, 2022]. Specifically, for a data point, a coun-
terfactual explanation identifies the minimum change
that will lead to a different outcome under a given pre-
dictive model. A desirable property of counterfactual
explanations is being realistic. Take the example of
a loan application where an applicant got rejected by
a machine learning model, which takes into account
various features, such as the applicant’s income and
loan amount. A recommendation of reducing the loan
amount by 5% to gain loan approval is far more real-
istic to execute, hence a more desirable counterfactual
explanation, compared to an alternative suggestion of
doubling the income.

To measure the realism of counterfactual explana-
tions, one of the most well-known metrics is Lo-
cal Outlier Factor (LOF) [Breunig et al., 2000]. The
LOF score for a data point measures the local de-
viation in the density of a given sample, i.e., a low
LOF score signifies a stronger alignment of the re-
sulting counterfactual explanation with the data dis-
tribution, while a high LOF score indicates that a
data point is an outlier. The vast majority of the
literature has utilized LOF as an evaluation metric
[Guidotti, 2022, Dutta et al., 2022, Lucic et al., 2022].
To the best of our knowledge, no prior work has explic-
itly incorporated constraints that aimed at achieving
a desirable LOF value of counterfactual explanations
due to its nonlinearity and computational complexity.

Neural networks, especially with non-linear activations
such as ReLU, have gained immense popularity due to
their remarkable ability to model complex nonlinear
relationships in data, making them a ubiquitous tech-
nology across applications [LeCun et al., 2015]. How-
ever, due to their complex structure, obtaining high-
quality counterfactual explanations that are both opti-
mal (in terms of the minimum distance from the given
sample point) and realistic remains a challenging task.
This is the key question that we are attempting to ad-
dress in this paper. Our contributions are as follows:

• We show how to explicitly enforce manifold align-
ment constraints into the optimization problem

Manifold-Aligned Counterfactual Explanations for Neural Networks

by reformulating the LOF metric as a set of
mixed-integer constraints. This approach guar-
antees the adherence of the resulting optimal so-
lution to the underlying data distribution, i.e., a
more realistic counterfactual explanation. More
specifically, we show that with ℓ1 or ℓ∞ norms as
the distance measure, we obtain a set of mixed-
integer linear constraints. Meanwhile, with ℓ2
norm, it gives rise to a set of mixed-integer
quadratic constraints. We also want to point out
that in addition to neural networks, this result on
reformulating LOF such that the manifold align-
ment constraints can then be incorporated into
the counterfactual explanation problem is appli-
cable to any type of machine learning model that
can be expressed by mixed-integer constraints,
such as logistic regression, decision trees, tree en-
sembles, and more.

• Even in the absence of the manifold alignment
constraint, the initial MIP formulation that deter-
mines the optimal counterfactual explanation can
easily become intractable due to the large num-
ber of binary decision variables required to model
the complex neural network structure. Having the
LOF constraint exacerbates the existing compu-
tational challenge. We propose an efficient de-
composition scheme that utilizes the geometry
of ReLU networks and reduces the initial large,
hard-to-solve optimization problem into a series of
significantly smaller and easier-to-solve problems.
This is achieved by limiting the search space to
live polytopes, i.e. polytopes of the input space
generated by the network that contain at least one
data point in the desired outcome class. We fur-
ther enhance the proposed decomposition scheme
by strategically selecting a subset of live polytopes
as the search space. We show analytically that
with our strategy, the probability of missing the
live polytope that yields the optimal solution de-
creases exponentially as the subset size increases.

• We conduct experiments on multiple real-world
datasets and demonstrate that our proposed for-
mulation consistently produces more realistic and
closer counterfactual explanations to the factual
data compared to competing benchmarks. For
larger and more complex neural networks, our
proposed decomposition scheme achieves signifi-
cant gains in computational tractability. Besides
the speedup, experiments also reveal an added
benefit of leveraging the live polytopes which im-
plicitly encourages realistic counterfactual expla-
nations even without explicitly enforcing the man-
ifold alignment constraint.

2 Related Literature

In recent years, ReLU networks have gained sig-
nificant attention because of their inherent piece-
wise linear structure which promotes analytical
tractability [Montúfar et al., 2014, Lee et al., 2019].
This structure has been utilized for a variety
of applications, such as robustness verification
[Tjeng et al., 2018] and network compression
[Serra et al., 2020]. Additionally, multiple re-
searchers have focused on optimizing already trained
ReLU networks for downstream tasks, utilizing both
mixed-integer optimization [Fischetti and Jo, 2018,
Anderson et al., 2020, Palma et al., 2021] and ap-
proximate methods [Katz et al., 2017, Xu et al., 2020,
Perakis and Tsiourvas, 2022]. Recent stud-
ies have also studied ReLU networks’ expres-
sive power [Arora et al., 2018, Yarotsky, 2017]
as well as their connection with other
machine learning algorithms and settings
[Lee and Jaakkola, 2020, Sun and Tsiourvas, 2023].

To generate counterfactual explanations from
ReLU networks, people have mostly used
MIP [Mohammadi et al., 2021] or SMT solvers
[Karimi et al., 2020]. While both approaches offer op-
timality guarantees in terms of their proximity to the
factual sample when compared to model-agnostic ap-
proaches [Wexler et al., 2019, Mothilal et al., 2020b],
their extensive runtime severely hinders their practi-
cality. For instance, [Karimi et al., 2020] showed that
even for small ReLU networks (i.e., 1 hidden layer
with 20 neurons), SMT solvers fail to scale effectively.
While MIP-based optimization methods for counter-
factual explanations have found their successes for sim-
pler linear models [Ustun et al., 2019, Russell, 2019]
or tree-based models [Kanamori et al., 2020,
Carreira-Perpiñán and Hada, 2021], they are only
limited to moderate-sized neural networks due to their
computational challenge [Mohammadi et al., 2021].
To improve computation tractability, one of the
techniques we employ in our algorithm is to re-
strict the search space to live polytopes. The
concept of live regions was initially introduced in
[Carreira-Perpiñán and Hada, 2023] for finding coun-
terfactual explanations under random forests. We
extend this concept to ReLU networks. Moreover,
we propose an efficient heuristic with a prov-
able guarantee that tackles the issue of increased
computational cost when the number of live re-
gions expands, a problem initially discussed in
[Carreira-Perpiñán and Hada, 2023].

A crucial requirement for counterfactual expla-
nations is realism [Verma et al., 2020]. Numer-
ous research studies have employed various met-

Asterios Tsiourvas, Wei Sun, Georgia Perakis

rics to evaluate whether the resulting counterfac-
tual explanation conforms to the data distribu-
tion, with the most well-known metric being LOF
[Guidotti, 2022, Dutta et al., 2022, Lucic et al., 2022].
With the exception of [Kanamori et al., 2020], exist-
ing work merely utilizes LOF as an evaluation met-
ric. [Kanamori et al., 2020] propose an MIP approach
that utilizes a special case of LOF (nearest neighbor
equal to 1) as a regularization term in the objective.
While this approach encourages the generation of re-
alistic counterfactual explanations, it does not explic-
itly guarantee manifold alignment. Moreover, their
approach requires tuning the regularization hyperpa-
rameter and is only applicable to linear and tree-based
models. In our work, we explicitly impose a constraint
within the MIP that guarantees realistic counterfac-
tual explanations. Furthermore, we consider the gen-
eral case (number of nearest neighbors is k) and pro-
pose an efficient algorithm for highly nonlinear models
such as neural networks.

3 Methodology

3.1 Problem Definition

Let X ⊆ Rd denote the input space and let D = {xi ∈
X}ni=1 be a dataset consisting of n data points. We let
f : X → [0, 1] denote a machine learning model that
takes a d-dimensional sample as input, and outputs
a probability between 0 and 1. The final decision is
denoted by 1[f(x) ≥ 0.5], where 1[·] is the indicator
function. We say that all x ∈ D for which f(x) <
0.5 belong to the negative class D−, while all x ∈ X
for which f(x) ≥ 0.5 we say that they belong to the
positive class D+. As expected, D− ∩ D+ = ∅,D− ∪
D+ = D, while we also define that |D−| = n− and
|D+| = n+, with n = n− +n+. Finally, we define that
[n] := {1, . . . , n}.
Definition 3.1. (Counterfactual Explanation) Given
a factual data sample xF ∈ X such that f(xF) < 0.5,
its closest counterfactual with respect to f(·) in terms
of the ℓp norm, is a point xCF ∈ X that is the solution
to the following optimization problem

xCF := argmin
x∈X

||xF − x||p
s.t. f(x) ≥ 0.5.

(1)

The complexity of the problem (1) depends heavily on
the structure of f(·). For example, for the well-known
norms where p ∈ {1, 2,∞}, if f(·) is a linear model,
problem (1) is either a linear or a quadratic mixed-
integer optimization problem, that can be solved ef-
ficiently using commercial solvers [Ustun et al., 2019].
In contrast, if f(·) is a highly nonlinear model such as

a neural network, problem (1) may become a nonlin-
ear, non-convex optimization problem which is signif-
icantly harder to solve [Mohammadi et al., 2021]. In
this work, we focus on the case where f(·) is a trained
ReLU neural network.

3.2 ReLU Neural Network Architecture

We consider the densely connected architecture
[Huang et al., 2017], wherein each neuron receives in-
puts from the neurons of the preceding layer. The final
output layer consists of a single neuron that outputs
the probability via a sigmoid function.

Formally, we define the network as a function f : X →
R. We denote the number of hidden layers as L and
the number of neurons at layer i as ni. We also de-
note the output of layer i as xi ∈ Rni . For notational
convenience we define x0 := x, n0 := d, nL+1 := 1.
The neurons are defined by the weight matrix W i ∈
Rni×ni−1 and the bias vector bi ∈ Rni . We define xi

as xi = max{W ixi−1 + bi, 0}, where max{·, 0} is the
ReLU activation function [Nair and Hinton, 2010]. Fi-
nally, the output of the network is defined as f(x) =
σ(WL+1xL + bL+1), where σ(·) is the sigmoid activa-
tion, i.e., σ(x) = (1 + e−x)−1.

When f(·) is a trained ReLU network, the con-
straint f(x) ≥ 0.5 of problem (1) can be ex-
pressed as a set of mixed-integer linear constraints
[Fischetti and Jo, 2018]. Specifically, for layer i, the
equality constraint xi = max{W ixi−1+bi, 0} is equiv-
alent to xi ∈ C(xi−1) where

C(xi−1) =

y

∣∣∣∣∣∣
y ≥W ixi−1 + bi,
y ≤W ixi−1 + bi − li ⊙ (1− zi),
y ≤ ui ⊙ zi, y ≥ 0

 .

In the previous definition of C(xi−1), zi ∈ {0, 1}ni

are binary variables with zij being equal to 1 if
neuron j of layer i is activated and 0 otherwise,
⊙ denotes the element-wise multiplication, ui is
the upper bound of xi and li is the lower bound.
The upper and lower bounds ui and li, are cal-
culated sequentially by solving the following prob-
lems ui = max

li−1≤xi−1≤ui−1
{W ixi−1 + bi} and li =

min
li−1≤xi−1≤ui−1

{W ixi−1+ bi} [Liu et al., 2020]. For x0,

we obtain the upper and lower bounds from X . There-
fore, we can rewrite problem (1) as the following MIP

min
x0∈X ,x1,...,xL,z1,...,zL

||xF − x0||p
s.t. xi ∈ C(xi−1), ∀i ∈ [L],

WL+1xL + bL+1 ≥ 0,

(2)

where the last constraint comes from the requirement
that f(x0) ≥ 0.5 =⇒ σ(WL+1xL + bL+1) ≥ 0.5 =⇒

Manifold-Aligned Counterfactual Explanations for Neural Networks

WL+1xL + bL+1 ≥ σ−1(0.5) = 0. The closest counter-
factual xCF in this case is the optimal x0.

Remark 3.1. The reformulation in problem (2) re-

quires
∑L

i=1 ni binary, and d +
∑L

i=1 ni continuous
variables.

As a result, the MIP problem is prone to scalabil-
ity issues, especially for large and complex networks
which are widely used due to their expressive model-
ing power.

3.3 Enforcing Manifold Alignment

Given its modeling flexibility, it is highly plausible that
a ReLU network produces counterfactuals that devi-
ate significantly from the data manifold, leading to
unrealistic explanations. A well-known metric in the
literature that quantifies whether a sample follows the
underlying data distribution is Local Outlier Factor
[Breunig et al., 2000].

Definition 3.2. (Local Outlier Factor (LOF)
[Breunig et al., 2000]) For x ∈ D, let Nk(x) to be
its k−Nearest Neighbors in D. The k−reachability
distance rdk of x with respect to x′ is defined by
rdk(x, x

′) = max{δ(x, x′), dk(x
′)}, where dk(x

′) is the
distance δ between x′ and its k−th nearest instance in
D. The k−local reachability density of x is defined by
lrdk(x) = |Nk(x)|(

∑
x′∈Nk(x)

rdk(x, x
′))−1. Then, the

k−LOF of x on D is defined as

LOFk,D(x) =
1

|Nk(x)|
∑

x′∈Nk(x)

lrdk(x
′)

lrdk(x)
.

For the distance metric δ : X ×X → R≥0, we consider
the ℓp norm with p ∈ {1, 2,∞}. By convention, a value
of LOFk,D(x) ≤ 1 indicates that x is an inlier that is
aligned with the data manifold, while LOFk,D(x) > 1
indicates that x is an outlier.

The vast majority of the literature [Guidotti, 2022,
Dutta et al., 2022, Lucic et al., 2022] has used LOF
as a post-process evaluation metric that measures
whether the learned closest counterfactual follows the
manifold. We take a proactive approach in this work –
we explicitly incorporate this metric into a constraint
which requires the resulting counterfactual explana-
tion to be close to the data manifold by solving the
following optimization problem

min
x∈X

||xF − x||p
s.t. f(x) ≥ 0.5,

LOFk,D(x) ≤ t,

(3)

where t is user-defined threshold.

At first glance, this constraint in terms of LOF ap-
pears highly nonlinear, exacerbating the known com-
putational challenge associated with optimizing ReLU

networks and making problem (3) unsolvable. As we
will show in Theorem 3.1, in fact, this constraint can
be rewritten as a set of well-behaved mixed-integer op-
timization constraints.

Theorem 3.1. The constraint LOFk,D(x) ≤ t for
x ∈ X , fixed k and p ∈ {1,∞} can be expressed as
a set of mixed-integer linear constraints. If p = 2, it
can be expressed as a set of mixed-integer quadratic
constraints.

The proof can be found in the Appendix. The key
step is to show that the k-reachability distance rdk
which uses the maximum operator can be linearized
via algebraic manipulations and the introduction of
additional binary variables.

Remark 3.2. Theorem 3.1 can be applied to any ma-
chine learning model that can be expressed via a set of
mixed-integer constraints. In other words, in addition
to ReLU networks, the manifold alignment constraint
can also be added to the counterfactual optimization
model when the underlying models are logistic regres-
sion, decision trees, and tree ensembles, etc.

Corollary 3.1. To formulate the constraint
LOFk,D(x) ≤ t we need in total n + n · k = n(k + 1)
new binary variables. For the special case of k = 1,
LOF1,D(x) requires the introduction of n new binary
variables.

Despite the expressiveness and optimality guarantees,
this MIP formulation does not scale well for large neu-
ral networks. Moreover, the integration of the LOF
constraints further increases the computational cost.
In what follows, we show how we can reduce the initial
large, hard-to-solve MIP in (2) or (3) into a sequence of
easier-to-solve optimization problems with much fewer
decision variables by exploiting the geometry of ReLU
networks.

4 An Efficient Decomposition
Algorithm

4.1 Geometry of ReLU Networks

It is known that once an activation pattern on the
hidden layers of a ReLU network is fixed (or equiv-
alently when the binary variables zi of problem (2)
are known), the network reduces into a linear model
[Huchette et al., 2023]. The feasible set of this linear
model is a polyhedron that is a subset of the input
space X [Serra et al., 2018, Lee et al., 2019]. Feasible
sets, coming from all feasible ReLU activation pat-
terns, partition X into a finite number of polyhedra
such that Pj ∩ Pj′ = ∅, ∀j ̸= j′, and ∪jPj = X .
We present a toy example in Figure 1 to illustrate the
partition scheme.

Asterios Tsiourvas, Wei Sun, Georgia Perakis

Figure 1: (Left) A one-layer ReLU neural network. (Middle) The partition of the input space X by the hidden
layer of the ReLU network into 4 polytopes. (Right) The final partition of the input space X by the output
neuron of the ReLU network, i.e. 1[f(x) ≥ 0.5], between positive and negative regions.

Example 1: Consider a setting with two features
x1, x2, where X = [0, 1]2 and a trained one-layer ReLU
network, as depicted in Figure 1 (Left). We have that
x1 = (max{x1−x2, 0},max{x1+x2−0.5, 0}). By enu-
merating all possible activation patterns for the hid-
den layer, we obtain four convex polyhedra, P1,P2,P3

and P4, that partition the input space X as shown in
Figure 1 (Middle). The partitions are

• P1 = {(x1, x2) ∈ X : x1 − x2 ≥ 0, x1 + x2 − 0.5 ≥ 0},

• P2 = {(x1, x2) ∈ X : x1 − x2 ≥ 0, x1 + x2 − 0.5 < 0},

• P3 = {(x1, x2) ∈ X : x1 − x2 < 0, x1 + x2 − 0.5 < 0},

• P4 = {(x1, x2) ∈ X : x1 − x2 < 0, x1 + x2 − 0.5 ≥ 0}.

Finally, in Figure 1 (Right) we observe the final parti-
tion of the input space X where all instances that be-
long to the blue polytopes are predicted to belong to
the negative class and all instances that belong to the
red polytopes are predicted to belong to the positive
class. For a given polytope Pj , the decision boundary
is retrieved by solving the linear equation f(x) = 0 for
x ∈ Pj .

Given a trained ReLU network, a key observation is
that problems such as (2) and (3) can be optimally
solved by enumerating all the feasible polytopes Pj

while solving an optimization problem over each Pj .
This is because obtaining a feasible polytope is equiva-
lent to setting the binary variables zi to its correspond-
ing activation pattern. Specifically, problem (2) only
requires solving a single LP (if p ∈ {1,∞}) or a sin-
gle CQP problem (if p = 2) for each feasible polytope
Pj . Similarly, for problem (3), a significantly smaller
MIP needs to be solved, as the binary variables zi are
already fixed. For the network presented in Example
1, to solve problems (2) and (3) we need to solve 4
smaller, hence, easier-to-solve optimization problems

and output as xCF the solution that gives the lowest
objective value out of the 4 problems.

This approach generalizes and requires solving N
smaller easier-to-solve optimization problems, where
N is the number of all feasible polytopes. Never-
theless, N can become very large, i.e., exponential
with respect to the parameters of the network, up
to

∑
(j1,...,jL)∈J

∏L
l=1

(
nl

jl

)
, where J = {(j1, . . . , jL) ∈

ZL : 0 ≤ jL ≤ min{n0, n1 − j1, . . . , nl−1 − jl−1},∀l =
1, . . . , L} [Serra et al., 2018], making this approach re-
main challenging for very large ReLU networks. In the
following section, we will discuss ways we can circum-
vent this computational hurdle.

4.2 Searching over Live Polytopes

Our key idea is to approximate the solution of the
initial MIP by solving a moderate number of smaller
and easier-to-solve optimization problems by searching
over live polytopes. We first provide a formal defini-
tion, followed by an example to illustrate the concept.

Definition 4.1. (Live Polytope) Given a trained
ReLU network f , a live polytope of f is a feasible poly-
tope generated by f that contains at least one actual
data point of D+.

Example 2: We continue with the neural network
described in Example 1. In Figure 2, the live polytopes
are the partitions of the input space X that contain
data points with red crosses (belong to the positive
class). Based on this example, our algorithm would
only solve 2 sub-problems, the ones that correspond to
polytopes P2 and P3, since P1 and P4 do not contain
positive data points. This reduces the complexity of
the problem from solving 4 sub-problems to 2 problems
instead.

When this method is applied to a general ReLU net-

Manifold-Aligned Counterfactual Explanations for Neural Networks

Figure 2: The final partition of the input space X
for the neural network of the previous example. The
red crosses correspond to positive data points and the
blue circles to negative data points. P2 and P3 are live
polytopes as they contain positive data points.

work, it reduces the complexity of solving N sub-
problems to solving at most n+, as the number of live
polytopes is upper-bounded by n+ < n. Consequently,
this method offers improved computational tractabil-
ity compared to the initial MIP formulation.

As the size of the network f and the dataset D+

increases, the number of live polytopes may also in-
crease, and as a result, the cost of the search will pri-
marily be determined by the exhaustive exploration of
all live polytopes. Meanwhile, it is expected that the
nearest counterfactual explanation is more likely to be
found within one of the closest live polytopes to xF ,
rather than within one of the more distant polytopes.

Taking this insight into account, we propose a simple
but efficient heuristic that only searches over a subset
of the closest live polytopes. It takes a user-defined
quantity m as an input, which specifies the maximum
number of live polytopes to search over. Then, the al-
gorithm calculates the distance between all points in
D+ and xF and retrieves the m live polytopes that
contain a point with minimum distance to xF . The
method is described in detail in Algorithm 1. In Theo-
rem 4.1, we analytically characterize the probability of
missing the polytope that contains the optimal coun-
terfactual explanation under this heuristic.

Theorem 4.1. The probability of not selecting the
live polytope that leads to the closest counterfactual
is of O(e−m), i.e. drops exponentially as m increases.

The proof is available in the Appendix.

Furthermore, assuming that the distance between a
data point, denoted as x ∈ D+, and the nearest point
to xF belonging to the same live polytope as x, fol-
lows a known distribution, one can establish an upper

Algorithm 1 Heuristic Live Polytope Search

1: Input: Training set D+, ReLU network f , fac-
tual observation xF , m number of live polytopes
to search over.

2: Initialize x̃CF = None, distCF = +∞ and heap
F = {}.

3: For all x ∈ D+

4: Calculate the distance d between x and xF .
5: Perform the feed-forward pass on x and

retrieve activation pattern z.
6: Insert the key-value pair (z, d) to F .
7: if |F| > m
8: Remove from F the key-pair value with

the highest distance d.
9: end if

10: end for
11: For all keys z ∈ F
12: Solve (2) or (3) with fixed activation pattern

z and retrieve the solution x, dist.
13: if dist < distCF

14: distCF ← dist, x̃CF ← x
15: end if
16: end for
17: Return x̃CF , distCF

threshold for the probability of not selecting the live
polytope that results in the closest counterfactual. By
solving for m one can obtain the value of m necessary
to achieve a probability of error less than or equal to
this threshold.

An interesting property of the proposed live poly-
tope search is that, even when employed without the
manifold-adhering constraints, it yields more realis-
tic counterfactual explanations than the original MIP
alone. Intuitively, when the input space X is Rd, the
data D usually reside in a manifold or subset of Rd.
As a result, to retrieve a realistic counterfactual ex-
planation, one may need to estimate the distribution
of the data and then solve problem (2) or (3) with re-
spect to the estimated distribution. The live polytope
search implicitly addresses this issue by performing a
nonparametric probability density estimate. This esti-
mate assigns positive mass to every live polytope and
zero mass to all other polytopes. As demonstrated in
the experimental results in the next section, this ap-
proach is capable of generating high-quality counter-
factual explanations that align with the data manifold
in many cases.

5 Experiments

We conduct experiments on three real-world
datasets to validate the performance of our

Asterios Tsiourvas, Wei Sun, Georgia Perakis

methods compared to various benchmarks. All
computational experiments were performed us-
ing Python 3.9 [Van Rossum and Drake, 2009],
PyTorch 1.13 [Paszke et al., 2019], Gurobi 10.0
[Gurobi Optimization, LLC, 2023] and Scikit-learn
[Buitinck et al., 2013]. All experiments were run on
an internal cluster with a 2.20GHz Intel(R) Xeon(R)
Gold 5120 CPU and 256 GB memory.

5.1 Setup

5.1.1 Datasets

We use the Adult income dataset (d = 73)
[Dua and Graff, 2017] where the goal is to predict
whether a person has an income of over $50, 000, the
FICO dataset (d = 34) [Holter et al., 2018] to predict
the chances of default, and lastly, the German credit
dataset (d = 27) [Dua and Graff, 2017] to classify the
credit of an individual as good or bad. For all three
datasets, we perform one-hot encoding to incorporate
categorical variables. We scale all continuous features
using the min-max scaler to ensure that their domain
falls within the range of [0, 1]. For the Adult dataset,
we use the already existing train-test split, while for
the remaining datasets we randomly split each dataset
into into train (70%) and test (30%) instances.

5.1.2 Methods

For the experiments, we consider a 6-layer, densely
connected ReLU network with either 50, 100, or 200
neurons per hidden layer respectively as the underlying
machine learning model that gives predictions. We
train each network with a learning rate of 0.001 and
a batch size of 128 for 20 epochs with early stopping
where the patience parameter is set to 3.

Several benchmarks are considered, including the fol-
lowing model-agnostic methods: Minimum Observable
(MO) [Wexler et al., 2019], that searches in the exist-
ing dataset for the closest sample that changes the
prediction from negative to positive. Diverse Counter-
factual Explanations (DiCE) [Mothilal et al., 2020b]
aims to discover a diverse set of counterfactual ex-
planations by solving an unconstrained optimization
problem through gradient descent. In our experi-
ments using DiCE, for each factual sample, we gener-
ate 10 diverse counterfactual explanations from which
we report the one with the lowest distance. Re-
LAX [Chen et al., 2022] formulates the problem of
generating counterfactual explanations as a sequen-
tial decision-making task and solving it via deep rein-
forcement learning. LORE [Guidotti et al., 2018] gen-
erates counterfactual explanations by deriving a set
of counterfactual rules, suggesting the changes in the
instance’s features that lead to a different outcome.

We also consider a gradient-based approach, PGD,
[Verma et al., 2020] in which we use projected gradi-
ent descent to minimize the objective min

x∈X
λ(f(x) −

1)2 + ||xF − x||22. We run PGD for 10, 000 itera-
tions (or until convergence), using the Adam optimizer
[Kingma and Ba, 2015] with an initial learning rate of
0.001 and we test as λ all values ranging from 10 to
1000 with step size 10. We report the counterfac-
tual explanation cCF that achieves the lower distance
||xF − xCF ||2.

We also consider the following model-specific bench-
marks: GRACE [Le et al., 2020] which is a generative-
based approach to explain neural network models’
predictions. The MIP method for ReLU networks
[Mohammadi et al., 2021] directly solves eq. (2).
Lastly, our proposed methods, i.e., the live polytope
search without the data-manifold adhering constraint
(MIP-Live) with m = 5 presented in Section 4.2, and
the live polytope search with the data-manifold adher-
ing constraint (MIP-Live-DM) with m = 5, k = 1 and
t = 1. For each MIP-based method, we set a time
limit of 60 seconds per factual data point. We chose
m = 5 in our experiments based on the sensitivity
study where we compare the quality of the obtained
solutions by varying the value of m. We observe that
the performance of our methods plateaus for m ≥ 5,
thereby empirically verifying Theorem 4.1. Details of
the sensitivity analysis can be found in the Appendix.
We do not consider any SMT-based solver due to their
known scalability issues (e.g., SMT solvers fail to solve
ReLU networks with more than 20 neurons per hidden
layer [Karimi et al., 2020]).

5.1.3 Evaluation Metrics

For evaluation, we randomly select 20 test instances
that are assigned by the network to the negative class,
and we seek their closest counterfactual explanations.
To compare the resulting closest counterfactuals from
each method, we report the average ℓ2 distance from
the factual data point (proximity), the percentage of
the closest counterfactuals that are considered to be
outliers by the LOF classifier (scikit-learn; default pa-
rameters), the average runtime per method, the opti-
mality gap per MIP-based method and dataset, and,
the number of features changed (sparsity). We include
sparsity as a sparse counterfactual explanation pro-
motes interpretability by reducing the complexity of
the final suggestion. In our framework, sparsity can
be imposed explicitly by incorporating the following
constraints, −M · bi ≤ xF,i−xCF,i ≤M · bi,

∑d
i=1 bi ≤

s, bi ∈ {0, 1}, where s is a user-defined constant speci-
fying the maximum number of allowed feature changes.
More specifically, we re-run our methods with sparsity
constraints with s = 2 to demonstrate that our meth-

Manifold-Aligned Counterfactual Explanations for Neural Networks

Table 1: Average proximity (ℓ2 distance), percentage of outliers, sparsity, and generation time for Adult, FICO,
and German.

50 100 200
Adult ℓ2 Outliers Sparsity Time ℓ2 Outliers Sparsity Time ℓ2 Outliers Sparsity Time

MO 0.50±0.14 30% 3.75±0.77 0.46 0.57±0.23 20% 4.05±0.74 0.50 0.61±0.27 15% 3.85±0.91 0.54
PGD 0.90±0.26 60% 4.50±0.59 0.56 0.83±0.23 80% 5.00±0.32 0.18 0.89±0.20 75% 5.00±0.00 0.99
DiCE 0.91±0.35 70% 5.00±1.00 0.14 0.85±0.37 50% 6.00±1.22 0.15 0.71±0.30 65% 6.30±0.84 0.50
ReLAX 0.49±0.17 45% 2.25±0.43 60.0 0.45±0.19 80% 2.40±0.49 60.0 0.51±0.25 75% 2.30±0.46 60.0
GRACE 0.45±0.21 60% 2.00±0.00 0.26 0.46±0.19 65% 2.00±0.00 0.25 0.56±0.30 65% 2.00±0.00 0.26
LORE 0.70±0.28 65% 2.75±1.51 8.95 0.59±0.28 55% 2.65±1.06 12.29 0.71±0.27 80% 2.50±1.53 12.25
MIP 1.90±0.24 40% 6.20±0.87 60.0 - - - 60.0 - - - 60.0
MIP-Live-m=5 0.36±0.18 35% 4.45±0.80 0.66 0.45±0.22 25% 2.35±0.48 5.69 0.48±0.12 20% 4.10±0.70 14.88
MIP-Live-m=5-s=2 0.45±0.25 30% 2.00±0.00 0.85 0.48±0.25 25% 2.00±0.00 5.97 0.53±0.28 25% 2.00±0.00 19.58
MIP-Live-DM-m=5 0.44±0.22 20% 4.30±0.84 0.75 0.51±0.23 10% 4.95±0.86 6.00 0.54±0.26 10% 4.45±0.50 20.24
MIP-Live-DM-m=5-s=2 0.50±0.22 20% 2.00±0.00 1.08 0.54±0.21 15% 2.00±0.00 5.14 0.56±0.28 15% 2.00±0.00 24.89

50 100 200
FICO ℓ2 Outliers Sparsity Time ℓ2 Outliers Sparsity Time ℓ2 Outliers Sparsity Time

MO 0.58±0.21 0% 16.60±1.80 0.33 0.61±0.27 0% 16.60±1.80 0.34 0.59±0.28 0% 16.05±1.83 0.36
PGD 0.58±0.22 10% 20.10±0.89 0.51 0.58±0.15 10% 20.20±0.60 0.72 0.60±0.16 10% 20.15±0.79 0.58
DiCE 0.95±0.34 15% 19.95±1.77 0.86 0.91±0.29 10% 20.10±1.64 0.49 0.98±0.25 5% 18.40±2.20 0.52
ReLAX 0.56±0.24 10% 2.50±0.50 60.0 0.60±0.28 10% 2.50±0.50 60.0 0.61±0.26 10% 2.50±0.50 60.0
GRACE 0.59±0.28 15% 2.45±0.67 0.05 0.61±0.42 15% 2.40±0.66 0.04 0.59±0.24 5% 2.50±0.59 0.05
LORE 0.70±0.29 20% 5.00±1.67 6.03 0.77±0.37 35% 4.95±0.38 8.01 0.94±0.42 40% 4.90±1.55 8.02
MIP 2.48±0.13 20% 22.50±0.50 60.0 - - - 60.0 - - - 60.0
MIP-Live-m=5 0.52±0.14 0% 16.50±3.49 0.48 0.58±0.27 0% 18.45±1.66 4.25 0.56±0.11 0% 18.60±1.20 18.86
MIP-Live-m=5-s=2 0.63±0.17 0% 2.00±0.00 1.62 0.69±0.27 0% 2.00±0.00 9.76 0.63±0.26 0% 2.00±0.00 24.11
MIP-Live-DM-m=5 0.55±0.12 0% 17.90±1.48 0.63 0.62±0.23 0% 17.85±1.06 8.10 0.67±0.21 0% 19.35±2.20 24.73
MIP-Live-DM-m=5-s=2 0.67±0.15 0% 2.00±0.00 1.88 0.74±0.11 0% 2.00±0.00 10.65 0.73±0.21 0% 2.00±0.00 26.16

50 100 200
German ℓ2 Outliers Sparsity Time ℓ2 Outliers Sparsity Time ℓ2 Outliers Sparsity Time

MO 1.35±0.32 0% 3.60±0.49 0.12 1.21±0.50 0% 3.35±0.73 0.09 1.18±0.57 0% 3.60±0.80 0.08
PGD 0.70±0.23 5% 2.65±0.48 0.88 1.14±0.50 5% 3.20±0.93 0.33 0.80±0.38 5% 2.85±0.57 0.39
DiCE 1.25±0.20 5% 5.80±1.25 0.08 1.23±0.22 5% 5.20±1.57 0.08 1.23±0.37 5% 5.65±1.35 0.10
ReLAX 0.62±0.17 10% 2.45±0.67 26.91 0.74±0.30 5% 2.20±0.40 29.06 0.73±0.38 0% 2.20±0.60 30.32
GRACE 0.66±0.24 5% 2.25±0.62 0.07 0.75±0.25 0% 2.85±0.36 0.16 0.71±0.28 0% 2.50±0.67 0.14
LORE 1.63±0.21 0% 3.10±0.3 5.54 1.45±0.44 5% 3.45±1.24 7.41 1.55±0.40 10% 3.40±1.20 9.90
MIP 2.44±0.52 10% 4.70±0.78 60.0 - - - 60.0 - - - 60.0
MIP-Live-m=5 0.59±0.18 0% 3.45±0.67 0.96 0.71±0.31 0% 3.45±1.24 10.10 0.70±0.29 0% 2.80±1.17 18.01
MIP-Live-m=5-s=2 0.64±0.22 0% 2.00±0.00 1.25 0.79±0.29 0% 2.00±0.00 12.25 0.80±0.32 0% 2.00±0.00 22.65
MIP-Live-DM-m=5 0.62±0.24 0% 5.00±1.10 1.12 0.77±0.28 0% 5.10±0.94 16.96 0.78±0.28 0% 5.05±1.83 24.90
MIP-Live-DM-m=5-s=2 0.72±0.27 0% 2.00±0.00 1.81 0.83±0.35 0% 2.00±0.00 17.81 0.84±0.35 0% 2.00±0.00 29.32

ods can generate high-quality and sparse counterfac-
tual explanations. Finally, we also report the validity,
i.e. the ratio of the counterfactuals that actually have
the desired class label to the total number of counter-
factuals generated.

5.2 Results

In Table 1, we present the experimental results includ-
ing the average ℓ2 distance, the percentage of outliers,
the sparsity measure, and the generation time achieved
by every counterfactual explanation generation algo-
rithm across datasets.

We observe that our MIP-based approaches achieve
lower average ℓ2 distances than the model-agnostic ap-
proaches. This is not surprising since the MIP-based
approaches are constructed to generate optimal coun-
terfactual explanations for ReLU networks. Among
the MIP-based approaches, we observe that when the
size of the ReLU network is moderate (50 neurons per
hidden layer), the original MIP method is able to re-

trieve a counterfactual explanation. As the size of
the ReLU network increases (100 and 200 neurons per
hidden layer), the MIP method is unable to converge
within the given time frame and produces sub-optimal
solutions. On the other hand, MIP-Live and MIP-
Live-DM, which incorporate the live polytope search,
circumvent the scalability issue and are able to pro-
duce high-quality counterfactual explanations across
datasets within the given time frame.

In terms of outliers, it is evident that MIP-Live-DM
consistently outperforms the other methods. This out-
come is expected, given that MIP-Live-DM explic-
itly incorporates the manifold alignment constraint.
Meanwhile, MIP-Live also yields manifold-adherent
counterfactual explanations in many cases, due to the
implicit density estimation procedure discussed in Sec-
tion 4.2.

For the sparsity measure, we observe that our meth-
ods with the sparsity constraints produce the coun-
terfactual explanations with the lowest sparsity, while

Asterios Tsiourvas, Wei Sun, Georgia Perakis

also maintaining a low ℓ2 distance. Among the re-
maining methods, we also observe that ReLAX and
GRACE tend to produce sparse solutions, albeit with
other metrics being worse off than ours.

Finally, it is worth mentioning the validity of the re-
sulting counterfactual explanations and the optimal-
ity gap of the MIP-based methods. In our experi-
ments, we observed that all benchmarks have a va-
lidity of 100% by design. In terms of the optimality
gap, we observe that the gap achieved by the origi-
nal MIP method is very high (≥ 100%) even in the
smallest ReLU network instance (50 neurons), while
for larger networks it is practically infinite. In con-
trast, our methods, MIP-Live and MIP-Live-DM, that
incorporate the live polytope search achieve a signifi-
cantly lower optimality gap (up to 2%) and thus, al-
ways produce near-optimal solutions, highlighting the
scalability of our approach.

6 Conclusion

Our work contributes to a growing body of research fo-
cused on generating counterfactual explanations from
trained machine learning models to provide inter-
pretability as well as actionable insights. We demon-
strate that manifold alignment constraints based on
the popular LOF metric can be directly incorporated
into the optimization problem. This is achieved by re-
formulating the LOF metric into a set of mixed-integer
constraints. This result can be applied to any machine
learning model that can be expressed as a set of mixed-
integer constraints. To circumvent the computational
challenges of the resulting MIP problem, we propose
an efficient decomposition scheme that leverages the
geometry of ReLU networks and significantly reduces
the search space into a moderately sized set of poly-
topes. Through experimental evaluation of real-world
datasets, in addition to demonstrating computational
tractability, we also validate the advantages of the pro-
posed methods in terms of generating optimal and re-
alistic counterfactual explanations.

References

[Anderson et al., 2020] Anderson, R., Huchette, J.,
Ma, W., Tjandraatmadja, C., and Vielma, J. P.
(2020). Strong mixed-integer programming formula-
tions for trained neural networks. Math. Program.,
183(1):3–39.

[Arora et al., 2018] Arora, R., Basu, A., Mianjy, P.,
and Mukherjee, A. (2018). Understanding deep neu-
ral networks with rectified linear units. In 6th Inter-
national Conference on Learning Representations,
ICLR 2018.

[Breunig et al., 2000] Breunig, M. M., Kriegel, H.,
Ng, R. T., and Sander, J. (2000). LOF: identi-
fying density-based local outliers. In Chen, W.,
Naughton, J. F., and Bernstein, P. A., editors, Pro-
ceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, pages 93–104.

[Buitinck et al., 2013] Buitinck, L., Louppe, G., Blon-
del, M., Pedregosa, F., Mueller, A., Grisel, O., Nic-
ulae, V., Prettenhofer, P., Gramfort, A., Grobler,
J., Layton, R., VanderPlas, J., Joly, A., Holt, B.,
and Varoquaux, G. (2013). API design for machine
learning software: experiences from the scikit-learn
project. CoRR, abs/1309.0238.

[Carreira-Perpiñán and Hada, 2021] Carreira-
Perpiñán, M. Á. and Hada, S. S. (2021). Coun-
terfactual explanations for oblique decision trees:
Exact, efficient algorithms. In Thirty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2021,
pages 6903–6911.

[Carreira-Perpiñán and Hada, 2023] Carreira-
Perpiñán, M. Á. and Hada, S. S. (2023). Very fast,
approximate counterfactual explanations for deci-
sion forests. In Williams, B., Chen, Y., and Neville,
J., editors, Thirty-Seventh AAAI Conference on
Artificial Intelligence, AAAI, pages 6935–6943.

[Chen et al., 2022] Chen, Z., Silvestri, F., Wang, J.,
Zhu, H., Ahn, H., and Tolomei, G. (2022). Relax:
Reinforcement learning agent explainer for arbitrary
predictive models. In Proceedings of the 31st ACM
International Conference on Information & Knowl-
edge Management, CIKM ’22, page 252–261, New
York, NY, USA. Association for Computing Ma-
chinery.

[Doshi-Velez and Kim, 2017] Doshi-Velez, F. and
Kim, B. (2017). Towards a rigorous science of
interpretable machine learning.

[Dua and Graff, 2017] Dua, D. and Graff, C. (2017).
UCI Machine Learning Repository.

[Dutta et al., 2022] Dutta, S., Long, J., Mishra, S.,
Tilli, C., and Magazzeni, D. (2022). Robust counter-
factual explanations for tree-based ensembles. In In-
ternational Conference on Machine Learning, pages
5742–5756. PMLR.

[Fischetti and Jo, 2018] Fischetti, M. and Jo, J.
(2018). Deep neural networks and mixed integer
linear optimization. Constraints, 23(3):296–309.

[Guidotti, 2022] Guidotti, R. (2022). Counterfactual
explanations and how to find them: literature re-
view and benchmarking. Data Mining and Knowl-
edge Discovery, pages 1–55.

Manifold-Aligned Counterfactual Explanations for Neural Networks

[Guidotti et al., 2018] Guidotti, R., Monreale, A.,
Ruggieri, S., Pedreschi, D., Turini, F., and Gian-
notti, F. (2018). Local rule-based explanations of
black box decision systems. CoRR, abs/1805.10820.

[Gurobi Optimization, LLC, 2023] Gurobi Optimiza-
tion, LLC (2023). Gurobi Optimizer Reference Man-
ual.

[Holter et al., 2018] Holter, S., Gomez, O., and
Bertini, E. (2018). FICO Explainable Machine
Learning Challenge.

[Huang et al., 2017] Huang, G., Liu, Z., van der
Maaten, L., and Weinberger, K. Q. (2017). Densely
connected convolutional networks. In Proceedings
of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

[Huchette et al., 2023] Huchette, J., Muñoz, G.,
Serra, T., and Tsay, C. (2023). When deep learning
meets polyhedral theory: A survey.

[Kanamori et al., 2020] Kanamori, K., Takagi, T.,
Kobayashi, K., and Arimura, H. (2020). Dace:
Distribution-aware counterfactual explanation by
mixed-integer linear optimization. In IJCAI, pages
2855–2862.

[Karimi et al., 2020] Karimi, A.-H., Barthe, G., Balle,
B., and Valera, I. (2020). Model-agnostic counter-
factual explanations for consequential decisions. In
International Conference on Artificial Intelligence
and Statistics, pages 895–905. PMLR.

[Katz et al., 2017] Katz, G., Barrett, C., Dill, D. L.,
Julian, K., and Kochenderfer, M. J. (2017). Relu-
plex: An efficient smt solver for verifying deep neu-
ral networks. In International conference on com-
puter aided verification, pages 97–117. Springer.

[Kingma and Ba, 2015] Kingma, D. P. and Ba, J.
(2015). Adam: A method for stochastic optimiza-
tion. In 3rd International Conference on Learning
Representations, ICLR 2015.

[Le et al., 2020] Le, T., Wang, S., and Lee, D. (2020).
Grace: Generating concise and informative con-
trastive sample to explain neural network model’s
prediction. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD ’20, page 238–248,
New York, NY, USA. Association for Computing
Machinery.

[LeCun et al., 2015] LeCun, Y., Bengio, Y., and
Hinton, G. (2015). Deep learning. nature,
521(7553):436–444.

[Lee et al., 2019] Lee, G.-H., Alvarez-Melis, D., and
Jaakkola, T. S. (2019). Towards robust, locally lin-
ear deep networks. In International Conference on
Learning Representations.

[Lee and Jaakkola, 2020] Lee, G.-H. and Jaakkola,
T. S. (2020). Oblique decision trees from deriva-
tives of relu networks. In International Conference
on Learning Representations.

[Liu et al., 2020] Liu, X., Han, X., Zhang, N., and Liu,
Q. (2020). Certified monotonic neural networks. Ad-
vances in Neural Information Processing Systems,
33:15427–15438.

[Lucic et al., 2022] Lucic, A., Oosterhuis, H., Haned,
H., and de Rijke, M. (2022). FOCUS: flexible opti-
mizable counterfactual explanations for tree ensem-
bles. In Thirty-Sixth AAAI Conference on Artificial
Intelligence, AAAI 2022, pages 5313–5322.

[Mohammadi et al., 2021] Mohammadi, K., Karimi,
A.-H., Barthe, G., and Valera, I. (2021). Scaling
guarantees for nearest counterfactual explanations.
In Proceedings of the 2021 AAAI/ACM Conference
on AI, Ethics, and Society, pages 177–187.

[Montúfar et al., 2014] Montúfar, G., Pascanu, R.,
Cho, K., and Bengio, Y. (2014). On the number of
linear regions of deep neural networks. In Advances
in Neural Information Processing Systems 27: An-
nual Conference on Neural Information Processing
Systems 2014, pages 2924–2932.

[Mothilal et al., 2020a] Mothilal, R. K., Sharma, A.,
and Tan, C. (2020a). Explaining machine learning
classifiers through diverse counterfactual explana-
tions. In Proceedings of the 2020 conference on fair-
ness, accountability, and transparency, pages 607–
617.

[Mothilal et al., 2020b] Mothilal, R. K., Sharma, A.,
and Tan, C. (2020b). Explaining machine learn-
ing classifiers through diverse counterfactual expla-
nations. In Proceedings of the 2020 Conference on
Fairness, Accountability, and Transparency, pages
607–617.

[Murdoch et al., 2019] Murdoch, W. J., Singh, C.,
Kumbier, K., Abbasi-Asl, R., and Yu, B. (2019).
Definitions, methods, and applications in inter-
pretable machine learning. Proceedings of the Na-
tional Academy of Sciences, 116(44):22071–22080.

[Nair and Hinton, 2010] Nair, V. and Hinton, G. E.
(2010). Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th
International Conference on Machine Learning
(ICML-10), pages 807–814.

Asterios Tsiourvas, Wei Sun, Georgia Perakis

[Palma et al., 2021] Palma, A. D., Behl, H. S., Bunel,
R., Torr, P. H. S., and Kumar, M. P. (2021). Scal-
ing the convex barrier with active sets. In 9th Inter-
national Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net.

[Paszke et al., 2019] Paszke, A., Gross, S., Massa, F.,
Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A.,
Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani,
A., Chilamkurthy, S., Steiner, B., Fang, L., Bai,
J., and Chintala, S. (2019). Pytorch: An impera-
tive style, high-performance deep learning library.
In Advances in Neural Information Processing Sys-
tems 32, pages 8024–8035. Curran Associates, Inc.

[Perakis and Tsiourvas, 2022] Perakis, G. and Tsiour-
vas, A. (2022). Optimizing objective functions from
trained relu neural networks via sampling. CoRR,
abs/2205.14189.

[Russell, 2019] Russell, C. (2019). Efficient search for
diverse coherent explanations. In Proceedings of the
Conference on Fairness, Accountability, and Trans-
parency, pages 20–28.

[Serra et al., 2020] Serra, T., Kumar, A., and Rama-
lingam, S. (2020). Lossless compression of deep neu-
ral networks. In International Conference on In-
tegration of Constraint Programming, Artificial In-
telligence, and Operations Research, pages 417–430.
Springer.

[Serra et al., 2018] Serra, T., Tjandraatmadja, C.,
and Ramalingam, S. (2018). Bounding and count-
ing linear regions of deep neural networks. In In-
ternational Conference on Machine Learning, pages
4558–4566. PMLR.

[Sun and Tsiourvas, 2023] Sun, W. and Tsiourvas,
A. (2023). Learning prescriptive relu networks.
In International Conference on Machine Learning,
ICML, pages 33044–33060. PMLR.

[Tjeng et al., 2018] Tjeng, V., Xiao, K. Y., and
Tedrake, R. (2018). Evaluating robustness of neu-
ral networks with mixed integer programming. In
International Conference on Learning Representa-
tions.

[Ustun et al., 2019] Ustun, B., Spangher, A., and Liu,
Y. (2019). Actionable recourse in linear classifica-
tion. In Proceedings of the conference on fairness,
accountability, and transparency, pages 10–19.

[Van Rossum and Drake, 2009] Van Rossum, G. and
Drake, F. L. (2009). Python 3 Reference Manual.
CreateSpace, Scotts Valley, CA.

[Verma et al., 2020] Verma, S., Boonsanong, V.,
Hoang, M., Hines, K. E., Dickerson, J. P., and Shah,
C. (2020). Counterfactual explanations and algo-
rithmic recourses for machine learning: A review.
arXiv preprint arXiv:2010.10596.

[Wexler et al., 2019] Wexler, J., Pushkarna, M.,
Bolukbasi, T., Wattenberg, M., Viégas, F., and Wil-
son, J. (2019). The what-if tool: Interactive probing
of machine learning models. IEEE transactions on
visualization and computer graphics, 26(1):56–65.

[Xu et al., 2020] Xu, J., Li, Z., Du, B., Zhang, M.,
and Liu, J. (2020). Reluplex made more practical:
Leaky relu. In 2020 IEEE Symposium on Computers
and communications (ISCC), pages 1–7. IEEE.

[Yarotsky, 2017] Yarotsky, D. (2017). Error bounds
for approximations with deep relu networks. Neural
Networks, 94:103–114.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
Yes

(b) An analysis of the properties and complex-
ity (time, space, sample size) of any algo-
rithm. Yes. Specifically, for each algo-
rithm we report the average runtime
and the sample size. Furthermore, for
each MIP-based method, we report the
number of continuous and binary vari-
ables.

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. Yes

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. Yes

(b) Complete proofs of all theoretical results.
Yes

(c) Clear explanations of any assumptions. Yes

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). Yes

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). Yes

Manifold-Aligned Counterfactual Explanations for Neural Networks

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). Yes

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). Yes

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. Yes

(b) The license information of the assets, if ap-
plicable. Yes

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. Yes

(d) Information about consent from data
providers/curators. Not Applicable

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. Not Applicable

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. Not Applicable

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. Not Appli-
cable

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. Not Applicable

Manifold-Aligned Counterfactual Explanations for Neural Networks

Proof of Theorem 3.1

Theorem 3.1 The constraint LOFk,D(x) ≤ t for x ∈ X , fixed k and p ∈ {1,∞} can be expressed as a set of
mixed-integer linear constraints. If p = 2, it can be expressed as a set of mixed-integer quadratic constraints.

Proof. First, we can re-write

LOFk,D(x) ≤ t =⇒ 1

|Nk(x)| · lrdk(x)
∑

x′∈Nk(x)

lrdk(x
′) ≤ t =⇒ 1

k · lrdk(x)
∑

x′∈Nk(x)

lrdk(x
′) ≤ t =⇒

=⇒ 1

lrdk(x)
≤ kt∑

x′∈Nk(x)
lrdk(x′)

(1)

assuming that |Nk(x)| = k. Given that D is known, we can pre-compute for every x ∈ D its k-local reachability
density lrdk(x), and the distance dk with its k-th nearest instance in D. For instance xi ∈ D, we denote for
brevity the lrdk(xi) as δi.

Case 1: k = 1

Given that k = 1, we introduce a set of binary variables qi, i = 1, . . . , n, that are equal to 1 only if xi is the
nearest neighbor of x. This can be modeled as the following set of constraints:

n∑
i=1

qi = 1, (2)

δ(x, xj) ≥ δ(x, xi)−M(1− qi), ∀i, j ∈ [n], (3)

qi ∈ {0, 1}, ∀i ∈ [n], (4)

where δ(x, y) = ||x−y||p for p ∈ {1, 2,∞} andM is a large value. Furthermore, we have that
∑

x′∈N1(x)
lrd1(x

′) =∑n
i=1 qi

1
δi

and lrd1(x) =
1∑n

i=1 qi max{δ(x,xi),d1(xi)} . Therefore, the constraint becomes:

n∑
i=1

qi max{δ(x, xi), d1(xi)} ≤ t ·
n∑

i=1

qi
1

δi
, (5)

that is equivalent to

n∑
i=1

qiδ(x, xi) ≤ t ·
n∑

i=1

qi
1

δi
, (6)

n∑
i=1

qid1(xi) ≤ t ·
n∑

i=1

qi
1

δi
. (7)

Manifold-Aligned Counterfactual Explanations for Neural Networks

The only thing left to linearize is the first constraint. Given that δ(x, xi) ≥ 0, we introduce a new variable vi
and we linearize the constraint as follows:

n∑
i=1

vi ≤ t ·
n∑

i=1

qi
1

δi
, (8)

vi ≤ Mqi,∀i ∈ [n], (9)

vi ≥ 0,∀i, i′ ∈ [n], (10)

vi ≤ δ(x, xi),∀i, i′ ∈ [n], (11)

vi ≥ δ(x, xi)−M(1− qi),∀i ∈ [n]. (12)

Finally, the distance δ(x, xi) can be incorporated using standard techniques depending on the value of p. For
p = 2, which is the value of p that we use in the experiments, we obtain the following MIP.

min
x0∈X ,x1,...,xL,z1,...,zL,v1,...,vn,q1,...,qn

||xF − x0||2 +M ·
∑n

i=1 ||xi − x0||2
s.t. xi ≥ W ixi−1 + bi, ∀i ∈ [L],

xi ≥ 0, ∀i ∈ [L],
xi ≤ W ixi−1 + bi − li ⊙ (1− zi), ∀i ∈ [L],
xi ≤ ui ⊙ zi, ∀i ∈ [L],
WL+1xL + bL+1 ≥ 0,
vi ≤ Mqi,∀i ∈ [n],
vi ≥ 0,∀i, i′ ∈ [n],
vi ≤ ||xi − x0||2,∀i, i′ ∈ [n],
vi ≥ ||xi − x0||2 −M(1− qi),∀i ∈ [n],
||xj − x0||2 ≥ ||xi − x0||2 −M(1− qi), ∀i, j ∈ [n],∑n

i=1 qid1(xi) ≤ t ·
∑n

i=1 qi
1
δi
,∑n

i=1 vi ≤ t ·
∑n

i=1 qi
1
δi
,∑n

i=1 qi = 1,
qi ∈ {0, 1}, ∀i ∈ [n].

(13)

Case 2: General k.

We introduce the following set of binary variables, qi,j , i = 1, . . . , n and j = 1, . . . , k that are equal to 1 when i
is the j-th nearest neighbor of x. This is modeled by the following set of constraints:

n∑
i=1

qi,j = 1, ∀j ∈ [k], (14)

k∑
j=1

qi,j ≤ 1, ∀i ∈ [n], (15)

δ(x, xl) ≥ δ(x, xi)−M(1− qi,j)−M

1∑
j′=j−1

(1− ql,j′),∀i, l ∈ [n],∀j ∈ [k], (16)

where M is a large value. We also define the set of binary variables qi, i = 1, . . . , n that are equal to 1 if xi is a
nearest neighbor of x, i.e.,

qi =

k∑
j=1

qi,k, ∀i ∈ [n]. (17)

We have that
∑

x′∈Nk(x)
lrdk(x

′) =
∑n

i=1 qi ·
1
δi

and lrdk(x) = k · 1∑n
i=1 qi max{δ(x,xi),dk(xi)} . Therefore, the

constraint becomes:

1

k
·

n∑
i=1

qi max{δ(x, xi), dk(xi)} ≤ kt

n∑
i=1

qi
1

δi
. (18)

To linearize the maximum, we introduce the set of continuous variables yi, i = 1 . . . , n, and the set of binary
variables ui, i = 1 . . . , n, for which we have that

yi ≥ δ(x, xi), ∀i ∈ [n], (19)

yi ≥ dk(xi), ∀i ∈ [n], (20)

yi ≤ δ(x, xi) +Mui, ∀i ∈ [n], (21)

yi ≤ dk(xi) +M(1− ui). ∀i ∈ [n]. (22)

Furthermore, to linearize the product qiyi we introduce the set of continuous variables wi, i = 1, . . . , n such that

wi ≤ Mqi, ∀i ∈ [n], (23)

wi ≤ yi, ∀i ∈ [n], (24)

wi ≥ 0. ∀i ∈ [n]. (25)

Therefore, the constraint 1
k ·

∑n
i=1 qi max{δ(x, xi), dk(xi)} ≤ kt

∑n
i=1 qi

1
δi

can be re-written as

n∑
i=1

wi ≤ k2t

n∑
i=1

qi
1

δi
. (26)

Finally, the distance δ(x, xi) can be incorporated using standard techniques depending on the value of p. For
p = 2, which is the value of p that we use in the experiments, we obtain the following MIP.

min
x0∈X ,x1,...,xL,z1,...,zL,

q1,1,...,qn,k,q1,...,qn,
y1,...,yn,w1,...,wn

||xF − x0||2 +M ·
∑n

i=1 ||xi − x0||2

s.t. xi ≥ W ixi−1 + bi, ∀i ∈ [L],
xi ≥ 0, ∀i ∈ [L],
xi ≤ W ixi−1 + bi − li ⊙ (1− zi), ∀i ∈ [L],
xi ≤ ui ⊙ zi, ∀i ∈ [L],
WL+1xL + bL+1 ≥ 0,∑n

i=1 qi,j = 1, ∀j ∈ [k],∑k
j=1 qi,j ≤ 1, ∀i ∈ [n],

||xl − x0||2 ≥ ||xi − x0||2 −M(1− qi,j)−M
∑1

j′=j−1(1− ql,j′),∀i, l ∈ [n],∀j ∈ [k],

qi =
∑k

j=1 qi,k, ∀i ∈ [n],

yi ≥ ||xi − x0||2, ∀i ∈ [n],
yi ≥ dk(xi), ∀i ∈ [n],
yi ≤ ||xi − x0||2 +Mui, ∀i ∈ [n],
yi ≤ dk(xi) +M(1− ui). ∀i ∈ [n],
wi ≤ Mqi, ∀i ∈ [n],
wi ≤ yi, ∀i ∈ [n],
wi ≥ 0. ∀i ∈ [n],∑n

i=1 wi ≤ k2t
∑n

i=1 qi
1
δi
,

qi,j ∈ {0, 1}, ∀i ∈ [n], j ∈ [k],
qi ∈ {0, 1}, ∀i ∈ [n],

(27)

Remark A. In practice, the value M is an upper bound on the maximum possible distance δ(x, xi). If we assume
that X = [0, 1]d (after normalization), M = d for p ∈ {1, 2} and M = 1 for p = ∞.

Remark B. For the general case of a natural k, LOFk,D(x) requires the introduction of n + n · k new binary
variables and n+ n = 2n new continuous variables.

Remark C. For the special of k = 1, LOF1,D(x) requires the introduction of n new binary variables and n new
continuous variables.

Remark D. In practice, for p = 2, the linearization of the distance is conducted automatically by Gurobi.

Manifold-Aligned Counterfactual Explanations for Neural Networks

Proof of Theorem 4.1

Theorem 4.1 The probability of not selecting the live polytope that leads to the closest counterfactual is of
O(e−m), i.e. drops exponentially as m increases.

Proof. We search over m < N live polytopes that contain the closest to xF data points from D+. We denote
that the closest point to xF is x1 that belongs to the live polytope P1, the second closest point to xF is x2 that
belongs to the live polytope P2 and so on. From each live polytope, we select the closest point to xF . Formally,
we have

d(x1, xF) ≤ d(x2, xF) ≤ · · · ≤ d(xm, xF) ≤ d(xm+1, xF) ≤ · · · ≤ d(xN , xF). (28)

After solving the optimization problem over live polytope Pi, the optimal counterfactual explanation is x′
i. We

have that d(x′
i, xF) = d(xi, xF)−Xi where Xi is a random variable that represents the distance between xi and

x′
i. We assume that Xi ⊥⊥ Xj for every i ̸= j. The probability of not selecting the live polytope which leads to

the closest counterfactual explanation is:

P[error] = P[min
m+1≤i≤N

d(x′
i, xF) ≤ min

1≤i≤m
d(x′

i, xF)] =

= P[min
m+1≤i≤N

{d(xi, xF)−Xi} ≤ min
1≤i≤m

{d(xi, xF)−Xi}] =

=

m∏
i=1

P[min
m+1≤j≤N

{d(xj , xF)−Xj} ≤ d(xi, xF)−Xi] =

=

m∏
i=1

(1− P[min
m+1≤j≤N

{d(xj , xF)−Xj} ≥ d(xi, xF)−Xi]) =

=

m∏
i=1

(1−
N∏

j=m+1

P[d(xj , xF)−Xj ≥ d(xi, xF)−Xi]) =

=

m∏
i=1

(1−
N∏

j=m+1

P[Xj −Xi ≤ d(xj , xF)− d(xi, xF)]) =

=

m∏
i=1

(1−
N∏

j=m+1

Fj,i(d(xj , xF)− d(xi, xF))) ≤

≤
m∏
i=1

(1− FN−m(d(xm+1, xF)− d(xi, xF))) ≤

≤ (1− FN−m(d(xm+1, xF)− d(xm, xF))
m ≤

≤ e−mFN−m(d(xm+1,xF)−d(xm,xF)) (29)

where Fj,i(·) is the cdf of of Xj − Xi and F (·) is the cdf for which Fj,i(d(xm+1, xF) − d(xm, xF)) attains the
minimum value among all Fi,j . In the last inequality, we used that 1− x ≤ e−x for x ≥ 0.

Figure 1: A case (form = 1) of not selecting the live polytope that leads to the closest counterfactual explanation.
P1 and P2 are the live polytopes under consideration. Initially d(x1, xF) ≤ d(x2, xF) and thus we search only
over P1. However, we observe that the closest counterfactual explanation over P2, i.e. x′

2 is closer to xF than
the closest counterfactual explanation for P1, i.e. x′

1. In other words, d(x′
1, xF) ≥ d(x′

2, xF), and thus x′
2 is the

most preferable counterfactual explanation.

Remark E. It can be seen that P[error] drops exponentially with respect to m. For m = N , the upper bound (and
thus, P[error]) equals 0. This is because when m = N , we search through all live polytopes, and consequently,
the probability of not selecting the live polytope that results in the closest counterfactual explanation is 0.

Remark F. If we additionally assume that the Xi’s follow a known distribution (for instance, Xi ∼ U [0,∆],
where ∆ > 0 represents an upper bound on the diameter of live polytopes, as discussed in [Serra et al., 2018]),
it becomes possible to calculate the number of live polytopes required to achieve a probability of error lower than
a predefined threshold ϵ > 0. This can be accomplished by solving the following inequality for m:

m∏
i=1

(1−
N∏

j=m+1

Fi,j(d(xj , xF)− d(xi, xF))) ≤ ϵ. (30)

Manifold-Aligned Counterfactual Explanations for Neural Networks

On the Sensitivity of the Number of Live Polytopes m

In this section, we study empirically the sensitivity of our proposed methods, by varying the value of m and
comparing the quality of the obtained solutions across all datasets. We present the results in Table 1.

Table 1: Average proximity (ℓ2 distance), percentage of outliers, sparsity, and generation time for Adult, FICO
and German for different values of m.

50 100 200
Adult ℓ2 Outliers Sparsity Time ℓ2 Outliers Sparsity Time ℓ2 Outliers Sparsity Time

MIP-Live-m=2 0.37±0.17 35% 4.30±0.71 0.20 0.45±0.22 30% 2.15±0.36 0.68 0.53±0.16 20% 4.05±0.74 1.50
MIP-Live-m=5 0.36±0.18 35% 4.45±0.80 0.66 0.45±0.22 25% 2.35±0.48 5.69 0.48±0.12 20% 4.10±0.70 14.88
MIP-Live-m=10 0.36±0.18 35% 4.45±0.80 0.84 0.45±0.22 25% 2.35±0.48 8.03 0.48±0.12 20% 4.10±0.70 25.85
MIP-Live-m=20 0.36±0.18 35% 4.45±0.80 1.30 0.45±0.22 25% 2.35±0.48 11.02 0.48±0.12 20% 4.10±0.70 34.07
MIP-Live-m=2-s=2 0.45±0.25 30% 2.00±0.00 0.31 0.48±0.25 25% 2.00±0.00 1.01 0.56±0.26 25% 2.00±0.00 2.35
MIP-Live-m=5-s=2 0.45±0.25 30% 2.00±0.00 0.85 0.48±0.25 25% 2.00±0.00 5.97 0.53±0.28 25% 2.00±0.00 19.58
MIP-Live-m=10-s=2 0.45±0.25 30% 2.00±0.00 1.28 0.48±0.25 25% 2.00±0.00 10.68 0.50±0.23 25% 2.00±0.00 30.78
MIP-Live-m=20-s=2 0.45±0.25 30% 2.00±0.00 2.34 0.48±0.25 25% 2.00±0.00 16.94 0.50±0.23 25% 2.00±0.00 45.41
MIP-Live-DM-m=2 0.44±0.22 20% 4.30±0.84 0.16 0.51±0.23 10% 4.95±0.86 0.54 0.59±0.29 10% 4.55±0.67 1.24
MIP-Live-DM-m=5 0.44±0.22 20% 4.30±0.84 0.75 0.51±0.23 10% 4.95±0.86 6.00 0.54±0.26 10% 4.45±0.50 20.24
MIP-Live-DM-m=10 0.44±0.22 20% 4.30±0.84 0.88 0.51±0.23 10% 4.95±0.86 8.68 0.54±0.26 10% 4.45±0.50 32.49
MIP-Live-DM-m=20 0.44±0.22 20% 4.30±0.84 1.30 0.51±0.23 10% 4.95±0.86 11.46 0.54±0.26 10% 4.45±0.50 44.01
MIP-Live-DM-m=2-s=2 0.54±0.25 20% 2.00±0.00 0.26 0.54±0.21 15% 2.00±0.00 1.05 0.56±0.28 15% 2.00±0.00 10.24
MIP-Live-DM-m=5-s=2 0.50±0.22 20% 2.00±0.00 1.08 0.54±0.21 15% 2.00±0.00 5.14 0.56±0.28 15% 2.00±0.00 24.89
MIP-Live-DM-m=10-s=2 0.50±0.22 20% 2.00±0.00 1.42 0.54±0.21 15% 2.00±0.00 10.76 0.56±0.28 15% 2.00±0.00 33.06
MIP-Live-DM-m=20-s=2 0.50±0.22 20% 2.00±0.00 2.05 0.54±0.21 15% 2.00±0.00 17.62 0.56±0.28 15% 2.00±0.00 50.10

50 100 200
FICO ℓ2 Outliers Sparsity Time ℓ2 Outliers Sparsity Time ℓ2 Outliers Sparsity Time

MIP-Live-m=2 0.54±0.17 0% 17.75±2.43 0.26 0.60±0.28 0% 17.95±1.47 1.02 0.61±0.18 0% 18.95±1.32 5.81
MIP-Live-m=5 0.52±0.14 0% 16.50±3.49 0.48 0.58±0.27 0% 18.45±1.66 4.25 0.56±0.11 0% 18.60±1.20 18.86
MIP-Live-m=10 0.51±0.13 0% 16.45±3.75 0.58 0.58±0.27 0% 18.45±1.66 7.04 0.56±0.11 0% 18.60±1.20 24.63
MIP-Live-m=20 0.51±0.13 0% 16.45±3.75 0.93 0.58±0.27 0% 18.45±1.66 12.91 0.56±0.11 0% 18.60±1.20 30.00
MIP-Live-m=2-s=2 0.67±0.22 0% 2.00±0.00 1.20 0.70±0.25 0% 2.00±0.00 5.86 0.67±0.20 0% 2.00±0.00 14.14
MIP-Live-m=5-s=2 0.63±0.17 0% 2.00±0.00 1.62 0.69±0.27 0% 2.00±0.00 9.76 0.63±0.26 0% 2.00±0.00 24.11
MIP-Live-m=10-s=2 0.60±0.18 0% 2.00±0.00 2.32 0.65±0.13 0% 2.00±0.00 10.72 0.62±0.22 0% 2.00±0.00 37.54
MIP-Live-m=20-s=2 0.60±0.18 0% 2.00±0.00 3.47 0.64±0.11 0% 2.00±0.00 23.99 0.62±0.22 0% 2.00±0.00 46.87
MIP-Live-DM-m=2 0.58±0.17 0% 18.10±1.58 0.35 0.67±0.38 0% 18.10±0.99 1.93 0.70±0.18 0% 19.80±0.93 7.18
MIP-Live-DM-m=5 0.55±0.12 0% 17.90±1.48 0.63 0.62±0.23 0% 17.85±1.06 8.10 0.67±0.21 0% 19.35±2.20 24.73
MIP-Live-DM-m=10 0.54±0.12 0% 17.80±1.99 0.72 0.62±0.23 0% 17.85±1.06 8.65 0.67±0.21 0% 19.35±2.20 34.32
MIP-Live-DM-m=20 0.54±0.12 0% 17.80±1.99 1.33 0.62±0.23 0% 17.85±1.06 15.26 0.67±0.21 0% 19.35±2.20 51.32
MIP-Live-DM-m=2-s=2 0.71±0.18 0% 2.00±0.00 1.50 0.74±0.11 0% 2.00±0.00 6.37 0.75±0.13 0% 2.00±0.00 16.58
MIP-Live-DM-m=5-s=2 0.67±0.15 0% 2.00±0.00 1.88 0.74±0.11 0% 2.00±0.00 10.65 0.73±0.21 0% 2.00±0.00 26.16
MIP-Live-DM-m=10-s=2 0.65±0.13 0% 2.00±0.00 2.19 0.66±0.22 0% 2.00±0.00 14.91 0.70±0.18 0% 2.00±0.00 42.38
MIP-Live-DM-m=20-s=2 0.65±0.13 0% 2.00±0.00 3.37 0.66±0.22 0% 2.00±0.00 28.43 0.70±0.18 0% 2.00±0.00 54.20

50 100 200
German ℓ2 Outliers Sparsity Time ℓ2 Outliers Sparsity Time ℓ2 Outliers Sparsity Time

MIP-Live-m=2 0.62±0.22 0% 3.95±0.78 0.29 0.75±0.34 0% 3.10±0.83 1.57 0.73±0.31 0% 2.70±0.64 10.33
MIP-Live-m=5 0.59±0.18 0% 3.45±0.67 0.96 0.71±0.31 0% 3.45±1.24 10.10 0.70±0.29 0% 2.80±1.17 18.01
MIP-Live-m=10 0.59±0.18 0% 3.45±0.67 1.55 0.71±0.31 0% 3.45±1.24 19.55 0.70±0.29 0% 2.80±1.17 38.01
MIP-Live-m=20 0.59±0.18 0% 3.45±0.67 2.86 0.71±0.31 0% 3.45±1.24 24.11 0.70±0.29 0% 2.80±1.17 42.26
MIP-Live-m=2-s=2 0.67±0.24 0% 2.00±0.00 0.32 0.82±0.34 0% 2.00±0.00 2.20 0.85±0.37 0% 2.00±0.00 12.65
MIP-Live-m=5-s=2 0.64±0.22 0% 2.00±0.00 1.25 0.79±0.29 0% 2.00±0.00 12.25 0.80±0.32 0% 2.00±0.00 22.65
MIP-Live-m=10-s=2 0.63±0.20 0% 2.00±0.00 1.84 0.78±0.30 0% 2.00±0.00 20.29 0.79±0.31 0% 2.00±0.00 43.68
MIP-Live-m=20-s=2 0.63±0.20 0% 2.00±0.00 3.00 0.78±0.30 0% 2.00±0.00 26.43 0.79±0.31 0% 2.00±0.00 50.97
MIP-Live-DM-m=2 0.65±0.26 0% 5.90±0.70 0.47 0.80±0.29 0% 5.80±1.47 1.94 0.80±0.29 0% 5.35±0.73 14.55
MIP-Live-DM-m=5 0.62±0.24 0% 5.00±1.10 1.12 0.77±0.28 0% 5.10±0.94 16.96 0.78±0.28 0% 5.05±1.83 24.90
MIP-Live-DM-m=10 0.62±0.24 0% 5.00±1.10 2.59 0.77±0.28 0% 5.10±0.94 27.48 0.78±0.28 0% 5.05±1.83 46.90
MIP-Live-DM-m=20 0.62±0.24 0% 5.00±1.10 3.26 0.77±0.28 0% 5.10±0.94 35.99 0.78±0.28 0% 5.05±1.83 49.66
MIP-Live-DM-m=2-s=2 0.75±0.30 0% 2.00±0.00 0.48 0.88±0.39 0% 2.00±0.00 3.10 0.87±0.38 0% 2.00±0.00 17.29
MIP-Live-DM-m=5-s=2 0.72±0.27 0% 2.00±0.00 1.81 0.83±0.35 0% 2.00±0.00 17.81 0.84±0.35 0% 2.00±0.00 29.32
MIP-Live-DM-m=10-s=2 0.71±0.28 0% 2.00±0.00 3.10 0.81±0.34 0% 2.00±0.00 30.88 0.84±0.35 0% 2.00±0.00 50.70
MIP-Live-DM-m=20-s=2 0.71±0.28 0% 2.00±0.00 4.03 0.81±0.34 0% 2.00±0.00 41.58 0.84±0.35 0% 2.00±0.00 59.56

We observe that across all datasets the performance with respect to proximity (ℓ2 distance) of our methods
plateaus for m ≥ 5, thereby empirically verifying Theorem 4.1 and justifying our choice of using m = 5.

References

[Serra et al., 2018] Serra, T., Tjandraatmadja, C., and Ramalingam, S. (2018). Bounding and counting linear
regions of deep neural networks. In International Conference on Machine Learning, pages 4558–4566. PMLR.

	AISTATS24___ReLU_CFX-7
	AISTATS24___ReLU_CFX-8

