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Abstract

Ideal point based preference learning using
pairwise comparisons of type "Do you prefer
a or b?" has emerged as a powerful tool for
understanding how we make preferences. Ex-
isting preference learning approaches assume
homogeneity and focus on learning preference
on average over the population or require a
large number of queries per individual to local-
ize individual preferences. However, in practi-
cal scenarios with heterogeneous preferences
and limited availability of responses, these
approaches are impractical. Therefore, we
introduce the problem of learning the distri-
bution of preferences over a population via
pairwise comparisons using only one response
per individual. Due to binary answers from
comparison queries, we focus on learning the
mass of the underlying distribution in the
regions created by the intersection of bisect-
ing hyperplanes between queried item pairs.
We investigate this fundamental question in
both 1-D and higher dimensional settings with
noiseless response to comparison queries. We
show that the problem is identifiable in 1-D
setting and provide recovery guarantees. We
show that the problem is not identifiable for
higher dimensional settings in general and es-
tablish sufficient condition for identifiability.
We propose using a regularized recovery and
provide guarantees on the total variation dis-
tance between the true mass and the learned
distribution. We validate our findings through
simulations and experiments on real datasets.
We also introduce a new dataset for this task
collected on a real crowdsourcing platform.
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1 INTRODUCTION

Learning user preferences via pairwise comparison
queries of the type “Do you prefer item a or b?” (Fig-
ure 1(a)) is widely used in various applications, such
as political science, to model voters’ political prefer-
ences and predict their voting behavior, and in rec-
ommendation systems, to model users’ preferences for
products or services (Saaty and Vargas, 2012; Ficht-
ner, 1986; Abildtrup et al., 2006; Hopkins and Noel,
2022; Oishi et al., 2005). Let x ∈ X ⊆ Rd be the
known feature representation of concepts (items, ob-
jects, images, choices, etc.). Preference learning based
on ideal point model (Coombs, 1950; Jamieson and
Nowak, 2011; Ding, 2016; Singla et al., 2016; Xu and
Davenport, 2020; Canal et al., 2022) assumes that there
is an unknown ideal preference point u ∈ X that repre-
sents the reference point people use for their preference
judgments based on distances. When presented a pref-
erence query, “Do you prefer a or b?”, the ideal point
model (Coombs, 1950) assumes that a is preferred over
b if the individual’s preference point u is closer to
the representation of item a, xa than item b, xb (Fig-
ure 1(b)), i.e., ||xa − u||2 < ||xb − u||2. Preference
learning aims to use the responses to pairwise compari-
son queries from people and learn the preference point
u. Once we learn u, we can predict people’s choices
between new unseen pairs.

Many works on preference learning have focused on
a universal model, where the data from everyone is
pooled together to learn a single preference point on
average for the population (Green, 1975; Johnson, 1971;
Bhargava et al., 2016). However, different individuals
can have different preferences. While one can focus
on learning an individual’s preference separately, it
takes O(d log(d/ε)) queries in Rd to learn an individ-
ual’s preference point within an ε-ball (Massimino and
Davenport, 2021). This can be a prohibitively large
number of queries per individual due to cost, cognitive
overload or privacy concerns. Therefore, we introduce
the problem of learning the distribution of preferences
over a population via pairwise comparisons using only
one response per individual. In this scenario, learning
each individual’s preference is impossible. In many
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Figure 1: (a) Example of pairwise comparison query. (b) Ideal point model based response to a comparison query. The
colorless circles denote the known representation for items being compared and the human denotes the unknown user
preference point. (c) Example of the regions formed by the bisecting hyperplanes between pairs queried and mass of user
preferences in different regions.

applications, learning the distribution of user prefer-
ences (Figure 1(c)) can be useful for many downstream
tasks. E.g., if an ice cream company wants to come
up with new flavors, knowing which regions of flavor
profiles have more mass is beneficial in discovering new
ice cream flavors. The learned distribution can thus
be helpful in various tasks ranging from understanding
the polarization of preferences within a population and
testing differences between preferences of different pop-
ulations to using the distribution as a prior to efficiently
learn new user preferences.

We investigate the problem of learning the distribution
of user preferences using pairwise comparisons. Since
we are limited to binary answers to comparison queries
for pairs of items, we focus on learning the mass of
the underlying distribution in the regions (polytopes)
defined by the intersection of the bisecting hyperplanes
pairs of items (see Figure 1(c)). If we could have queried
Õ(d) per user, we can localize each user preference point
to one of the regions. So, if we sample a large number
of individuals from the population and query each of
them with a sufficiently large number of queries, we
can build a histogram of the underlying distribution
in these regions. However, querying a large number
of comparison pairs per individual can be prohibitive
due to privacy issues, limited interaction of individuals
with the platform, cognitive overload, and cost.

Goal: Develop a fundamental understanding of
what we can learn about the distribution of user
preferences with only one comparison query per
user.

Our contribution: We study the novel problem of
learning the distribution of user preferences over the
population via pairwise comparison queries with only
one response per individual in the ideal point model.
We investigate the fundamental questions of identifia-
bility and recovery guarantees leading to the following
contributions:

• We show that the problem is identifiable in 1D set-
ting and is not identifiable in a higher dimensional
setting in general. We provide sufficient condition
under which the problem is identifiable in higher
dimensions.

• For the 1D setting, we provide recovery guarantees
for the mass in the regions defined by the intersection
of hyperplanes at the mid-point of queried pairs.

• For the higher dimensional setting, we propose to
use regularized recovery and provide guarantees on
the total variation distance between the true mass in
each region and the estimated mass in terms of the
regularization parameter and the interplay between
the true mass and regularization.

• We provide experiments on synthetic and real
datasets that validate our results and observations.
We also introduce a new dataset for this task col-
lected on a real crowdsourcing platform 1.

In addition to the above contributions, our work leads
to several interesting open questions regarding learning
from diverse populations in preference learning.

2 PROBLEM SETUP

Let x ∈ X ⊆ Rd denote known feature representation
of items2. Under the ideal point model (Coombs, 1950),
each individual’s preference is also modeled as an un-
known point in the same space. Let P ⋆ denote the
unknown underlying distribution of user preferences.
Each individual l has an unknown preference ul ∈ Rd.
We assume that ul

i.i.d.∼ P ⋆. Let T denote the set
of pairs of items (i, j) that are queried. We consider
pairwise comparison queries of the form “do you prefer
item i or item j?". We assume that the answer to the
pairwise query (i, j) from an individual l is y

(l)
ij = 1

1Codes for our methods and datasets are
available at https://github.com/ramyakv/
Learning-Population-of-Preferences-AISTATS2024

2This is a reasonable assumption, especially with the
availability of large pre-trained foundation models.

https://github.com/ramyakv/Learning-Population-of-Preferences-AISTATS2024
https://github.com/ramyakv/Learning-Population-of-Preferences-AISTATS2024
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Figure 2: (a) Example of regions (polytopes) formed by the
intersection of three hyperplanes. (b) The corresponding
matrix H. (c) The corresponding graph where the regions
are the nodes.

if ||xi − ul||2 < ||xj − ul||2 and y
(l)
ij = −1 otherwise.

Note that each pair of items (i, j) with i < j in T is
associated with a hyperplane, denoted by hij , that is
perpendicular at the midpoint joining the two items xi

and xj . We will slightly abuse the notation and use T
to denote the set of hyperplanes as well as the pairs of
items. Note that there is a one-to-one correspondence
between each pair and the respective hyperplane. The
intersection of these hyperplanes carve out regions in
Rd that are polytopes. Let H(T ) denote the set of
partitions of Rd that is created by the set of all hy-
perplanes in T . Note that for |T | hyperplanes in Rd,
|H(T )| = O(|T |d) (Buck, 1943). Given answers to pair-
wise comparison queries, our goal is to understand what
we can learn about the underlying distribution of user
preferences P ⋆. Given a finite number of hyperplanes
and only binary answers to pairwise comparison queries,
we focus on the fundamental question of whether we
can learn the mass induced by P ⋆ on the regions H(T ),
denoted by p⋆

H(T ) which is a discrete probability mass
function of size |H(T )|.

For each pair of items (i, j) ∈ T , let q⋆ij denote the
mass of P ⋆ on the side of xi of the hyperplane hij and
q⋆ji = 1− q⋆ij is the mass on the other side of hij . Let
q⋆ ∈ R2|T | denote the vector that stacks qij ’s for the
ordered pairs (i, j) ∈ T , followed by the corresponding
qji’s. We note q⋆ denotes the fraction of people on
either side of the hyperplanes in T and can be written
as a linear combination of the mass p⋆

H(T ) in the regions
via the following linear system of equations,

H p⋆
H(T ) = q⋆, (1)

where H is a 2|T |×|H(T )| binary matrix where in each
row, the 1’s indicate the regions that contribute to the
side of the hyperplane. Each column of H corresponds
to a region (polytope) created by the intersection of the
hyperplanes. Note that p⋆

H(T ) identifiable if it is the
unique probability vector of size |H(T )| that gives rise
to q⋆. So, p⋆

H(T ) is not identifiable if there exist a valid
probability vector p ̸= p⋆

H(T ) such that Hp = Hp⋆
H(T ).

Figure 2 shows an example of partition of R2 with 3
hyperplanes h1,2, h3,4 and h5,6. With the enumeration

of the regions shown in the figure, we can construct
the binary matrix H, where the first 3 rows represent
regions corresponding to h1,2 towards the side of item
1, h3,4 towards the side of item 3 and h5,6 towards
the side of item 5 respectively. Similarly, the last 3
rows represent regions corresponding to the other side
of each of the hyperplanes. We also note that each
column gives positions of the corresponding region pi

in terms of hyperplanes h1,2, h3,4 and h5,6.

For each pair (i, j) ∈ T , we can estimate the mass
on either side of the hyperplane hij by querying the
pair to a random sample of people. Given these es-
timated masses on either side of the hyperplanes in
T , the question of interest is: Can we estimate p⋆

H(T ),
the probability mass in the regions of intersections of
hyperplanes in T induced by the underlying distribution
of preferences P ⋆?

3 RELATED WORKS
We briefly review some of the related works here, de-
ferring a more detailed discussion to the Appendix.

Preference learning based on ideal point
model (Coombs, 1950; Jamieson and Nowak, 2011;
Ding, 2016; Singla et al., 2016; Xu and Davenport,
2020; Massimino and Davenport, 2021; Canal et al.,
2022) has been studied by several works. A key
limitation of these works is that they either focus on
learning an individual preference by making many
queries per individual or assume homogeneity and
learn a single preference point using data from all the
users. A recent work by Tatli et al. (2022) considers a
distance query model, i.e. when a user is queried with
an item, the response is how far their preference point
is from the queried item, and studies the problem of
learning the distribution of preferences for the specific
case of discrete 1D discrete distributions. In contrast,
we consider the more realistic setting of response to
pairwise comparison between items and study 1D
and higher dimensional settings. The differences in
the query model lead to different insights in terms
of the nature of identifiability issues as well as the
properties of the linear systems that arise with pairwise
comparisons. We defer a more detailed discussion to
the appendix due to space constraints.

Another line of work in preference learning in-
volves ranking based models, e.g., Bradley-Terry-Luce
model (Bradley and Terry, 1952; Luce, 1959), Mallows
model (Mallows, 1957), stochastic transitivity mod-
els (Shah et al., 2016), that focus on finding a single
ranking of m items or finding top-k items by pair-
wise comparisons (Hunter, 2004; Kenyon-Mathieu and
Schudy, 2007; Braverman and Mossel, 2007; Negahban
et al., 2012; Eriksson, 2013; Rajkumar and Agarwal,
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2014; Shah and Wainwright, 2017). Ranking m items
in these settings requires O(m logm) queries. Note in
contrast, under the ideal point based models, the query
complexity for ranking reduces to O(d logm), where d
is the dimension of the domain of representations which
is usually much smaller than the number of items being
ranked (Jamieson and Nowak, 2011). This is due to
the fact that the geometry induces constraint on the
number of possible rankings from m! to O(md). Lu
and Boutilier (2014) consider a mixture of K-Mallows
model for the ranking setting and proposes an EM
algorithm that takes user preferences as input and out-
puts the estimated model parameters. However, there
are no guarantees provided for this algorithm. Other
works on ranking models (Awasthi et al., 2014; Mao and
Wu, 2022) have noted that even a two component mix-
ture of Mallows model is not identifiable with pairwise
comparisons and the focus has been on settings that
consider samples that are full or list-wise or group-wise
ranking data per user and tensor-based algorithms for
recovery. A recent work (Zhang et al., 2022) considers
a mixture of two BTL-models with pairwise compari-
son and shows that it is identifiable except for certain
sets of parameters and show similar results for list-
wise query setting, but it does not provide algorithmic
approaches to estimate them. Our work focuses on
preference learning based on ideal point model with
pairwise comparison queries and develops fundamental
understanding under a nonparametric setting.

4 ONE DIMENSIONAL SETTING

We first study the problem in the 1D setting and pro-
vide results on identifiability and recovery guarantees.

Identifiability: In 1D setting, |T | pairs creates |T |+1
intervals. Measuring the fraction of mass on either side
of each of the hyperplanes in T is equivalent to measur-
ing the cumulative distribution function (CDF) of the
distribution p⋆

H(T ). The linear system of equations (1)
has |T |+1 unknowns and |T |+1 equations. The corre-
sponding binary matrix H can be written as a concate-
nation of two triangular matrices where one is a lower
triangular and the other is an upper triangular matrix.
E.g., 2 pairs create 3 regions, and the corresponding
matrix H = [1, 0, 0; 1, 1, 0; 0, 1, 1; 0, 0, 1]. Any
such H is full column rank by construction. There-
fore, the linear system of equations q⋆ = H p has
a unique solution in terms of the true q⋆, given by
p⋆
H(T ) = (HTH)−1HTq⋆. This is summarized in the

following proposition.

Proposition 1. (Identifiability in 1D) In 1D setting,
the mass p⋆

H(T ) in the regions of the intersection of
hyperplanes in T induced by the underlying distribu-
tion of preferences can be uniquely determined by only

measuring the fraction of the population on either side
of each of the hyperplanes in T .

Recovery Guarantees: As we do not have access to
true q⋆, we have to learn p⋆

H(T ) from q̂ estimated by
querying pairs in T . We use the following constrained
optimization problem:

p̂H(T ) := arg minp≥0,1⊤p=1

1

2
||Hp− q̂||22.

The objective function is strongly convex and therefore
the above optimization problem is guaranteed to have
a unique solution. We provide the following recovery
guarantee for the 1D noiseless setting for the above
optimization.

Theorem 4.1. (Recovery in 1D) With probability at
least 1−δ, the total variation distance between p⋆

H(T )

and the recovered mass p̂H(T ) is bounded as follows,

TV
(
p⋆
H(T ), p̂H(T )

)
≤
√
|T |+ 1

2

√
log(4|T |/δ)

2np
,

where np is the number of users queried per pairwise
comparison query.

As the number of users increases, the total variation
distance between p⋆

H(T ) and p̂H(T ) goes to 0. Proof
details are available in the appendix.

5 HIGHER DIMENSIONAL
SETTINGS

In this section, we discuss the identifiability results and
recovery guarantees for Rd, with d ≥ 2. The details of
the proofs are deferred to the appendix.

Identifiability: Assuming items and users are sup-
ported on Rd, with d ≥ 2, we note that the number
of regions, |H(T )|, formed by the hyperplanes in T is
of O(|T |d). So, the linear system of equations (1) has
more unknowns than the number of equations. We
show the following with regard to identifiability.

Proposition 2. For d ≥ 2, the binary matrix H which
of size 2|T | × O(|T |d) has rank(H) = |T |+ 1 and the
solution to the linear system of equations (1) is not
unique and hence p⋆

H(T ) is not identifiable.

Sparsity: From Proposition 2, for d ≥ 2, we cannot
hope to recover p⋆

H(T ) in general. However, H is a fat
matrix, and a natural question that arises is what if
p⋆
H(T ) is sparse, i.e., if only k ≪ O(|T |d) entries of

p⋆
H(T ) are non-zero? We note that, since rank(H) =

|T |+ 1, for any k > |T |+1, there exists at least another
solution to the equation (1). This follows from noting
that the distribution of preferences on either side of each
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of the hyperplanes can, in fact, be re-written as a convex
combination of a set of vectors in R2|T | corresponding
to the columns of H, and then using the Carathéodory
theorem which guarantees that there always exists a
solution which can be expressed with at most |T |+ 1
columns (see appendix for a detailed discussion of this).
We further note that the results from sparse signal
recovery literature(Candes and Wakin, 2008; Baraniuk,
2007; Elad, 2010), in particular, from Theorem 2.13 by
Foucart and Rauhut (2013), any k-sparse solution of an
underdetermined linear system of equations is unique
if and only if every set of 2k columns of measurement
matrix is linearly independent. Given the structure of
our matrix H in equation (1), we show the following.

Proposition 3. For the problem setting in (1), we can
always find linearly dependent ℓ columns of H if ℓ ≥ 4.

As a consequence, even with a lot of sparsity, uniqueness
cannot be guaranteed for all k-sparse distributions for
k ≥ 2. For example, consider the partition in the Fig-
ure 2(a). Then, suppose that the solution is 2-sparse
and q⋆ = [0.5, 1, 0.5, 0.5, 0, 0.5]⊤. We note that
q = Hp holds for both p = [0.5, 0, 0.5, 0, 0, 0, 0]⊤

and p = [0, 0.5, 0, 0, 0, 0, 0.5]⊤. Sim-
ilarly, we suppose that the solution is 4-sparse
and p⋆ = [0.3, 0, 0, 0, 0.4, 0.1, 0.2]⊤.
Therefore, we have Hp⋆ = q, where q =
[0.4, 0.5, 0, 0.6, 0.5, 1]⊤. However, q = Hp holds
also for p = [0.2, 0, 0, 0, 0.3, 0.2, 0.3]⊤.

While not all k-sparse solutions are unique for k ≥
2, we characterize a sufficient condition under which
we can guarantee uniqueness for k-sparse solutions.
First, we recall that the convex hull of a set of affinely
independent points is called a simplex, and a face of a
convex set that is itself a simplex is called a simplicial
face. Noting that p is a probability vector, from the
equation 1, we see that q⋆ is a convex combination of
the columns of H. Therefore, the set of all possible
vectors q⋆ is a convex polytope. We show the following
sufficient condition for identifiability when k ≤ |T |+ 1.

Theorem 5.1. (Restricted identifiability under spar-
sity) If q⋆ belongs to the relative interior of a simpli-
cial face of conv(H), the system of linear equations
q⋆ = Hp has a unique solution p⋆, where conv(H)
refers to the convex hull of columns of H.

In Rd, we can have at most d+ 1 affinely independent
set of points. Therefore, the above theorem only applies
to k ≤ |T |+ 1. To illustrate the implication of Theo-
rem 5.1, we consider the example from the partition
in Figure 2(a) with 2-sparse cases. As we observed
before, p⋆ = [0.5, 0, 0.5, 0, 0, 0, 0]⊤ is not a unique
solution for q⋆ = [0.5, 1, 0.5, 0.5, 0, 0.5]⊤. Here, we

note that conv(H:,1,H:,3) does not form a simplicial
face of conv(H), where H:,j denotes j-th column of H.
On the other hand, any q⋆ that is formed by a convex
combination of H:,1 and H:,6 will have the unique solu-
tion p⋆ = [q⋆

2, 0, ..., 0, 1− q⋆
2]

⊤, since conv(H:,1,H:,6)
is a simplicial face of conv(H). We provide more ex-
amples and details of the proof for Theorem 5.1 in the
appendix.

Bounds on the mass in the regions: Given the
restricted identifiability of p⋆

H(T ) in higher dimensions,
we cannot always hope to recover it from binary answers
to pairwise comparison queries. Here, we show that
we can obtain lower and upper bounds for each entry
of p⋆

H(T ) from the estimated q̂ without requiring any
additional assumptions. To state these bounds, we
need some notations. Let Hi,: be the i-th row of H
(corresponding to the i-th hyperplane) and let (ai, bi)
denote the pair queried corresponding to this row. Let
q̂ai,bi denote the estimated mass on the side of ai of
the i-th hyperplane. Let Kj denote the position of
rows of H whose j-th column entry is 1 and Q̂j

0 :=
[mini∈K1

q̂aibi , . . .mini∈Kj−1
q̂aibi , 0, mini∈Kj+1

q̂aibi ,
. . .mini∈K|H(T )| q̂aibi ]

T .

Proposition 4. With probability at least 1− δ, each
entry of pH(T ) can be bounded below and above as
follows:

max {0, Lj} ≤ p⋆
H(T )j

≤ Uj , (2)

where Lj := maxi∈Kj q̂aibi −HT
i,:Q̂

j
0 − (|Hi,:|1 + 1)γ,

Uj := mini∈Kj
q̂aibi + γ, γ =

√
log (4|T |/δ)

2np
and np is

the number of people answering each pairwise query.

Proposition 4 provides most general tight bounds when
there is no side information about the setting. See the
appendix for examples and details of the proof.

Graph Regularization: In the face of non-
identifiability, additional structural assumptions are
needed for learning p⋆

H(T ). While p⋆
H(T ) is a O(|T |d)-

dimensional probability vector, the entries correspond-
ing to mass in regions have a geometry in the space
X ⊆ Rd (recall Figure 2(a)) that gives a notion of near-
by and far-away regions. We construct a connected
undirected graph with the polytopes as the nodes and
two nodes are connected by an edge if they share a
(d−1)-dimensional face between them (see Figure 2(c)).
We propose using a graph regularizer (normalized by
volume to account for differences in the sizes of the
regions) to recover p⋆

H(T ). Intuitively, this means that
we expect preferences to accumulate in spatially nearby
regions (Figure 1(c)). Several works in signal recovery
have used graph regularization to exploit local invari-
ance in data as side information and find a locally
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invariant representation of the data (Belkin and Niyogi,
2001; Cai et al., 2011; Hadsell et al., 2006).

We note that this proposed graph structure can be
constructed using the matrix H. Recall that the rows
of H correspond to hyperplanes and the columns cor-
respond to the regions (polytopes) in H(T ), providing
a binary encoding for them by construction. That is,
each entry of a given column of H determines which
side of a hyperplane the corresponding region is lo-
cated on. Therefore, there exists an edge between
nodes corresponding to the regions that have only two
different entries in their hyperplane coordinates, i.e.,
only if one pairwise comparison yields opposite results.
Accordingly, neighboring regions have common (d− 1)-
dimensional faces in between. We define the weight
matrix W for the graph regularization as follows,

Wi,j = ∥H:,i −H:,j∥−1
1 /(αiαj), (3)

where α = [α1, . . . , α|H(T )|]
T represent the volumes of

regions with corresponding mass p = [p1, . . . ,p|H(T )|]
T .

Each entry of W is the weighted inverse of the Ham-
ming distance between corresponding nodes i and j,
where H:,i is the i-th column of the matrix H. Further-
more, since the regions in H(T ) are not equal in size,
we normalize with the volumes of the regions. One
can similarly construct different weight matrices for
regularization as long as the entries are inversely pro-
portional to the distances between nodes. Heat kernel
weighting (Belkin and Niyogi, 2001), 0-1 weighting (Cai
et al., 2011) are some of the widely used ones in the
literature. We use W defined in equation (3) and form
following graph Laplacian regularizer:

1

2

|H(T )|∑
i=1

|H(T )|∑
j=1

|pi − pj |2Wi,j =: pTDp− pTWp

=: pTLp, (4)

where Di,i =
∑|H(T )|

j=1 Wi,j , Di,j = 0 when i ̸= j and
L = D −W. Using this regularizer, we propose the
following optimization problem for recovering p⋆

H(T ):

p̂H(T ) := arg minp≥0,1⊤p=1

1

2
||Hp− q̂||22 +

λ

2
pTLp

:= arg minp≥0,1⊤p=1

1

2
||Rp− b̂||22, (5)

where RTR = HTH+ λL by Cholesky decomposition
and b̂ = R−THT q̂. The regularizer in equation (4)
encourages the changes in nearby regions to be smooth,
which is similar to the local invariance property con-
sidered by Belkin and Niyogi (2001); Cai et al. (2011);
Hadsell et al. (2006). Weighted Laplacian regularizer
L imposes a penalty on p in such a way that potential
values correlated with eigenvectors of L are diminished.

Therefore, eigenvectors corresponding to larger eigen-
values cause more penalty. Note that the eigenvectors
of L are mutually orthogonal by spectral theorem. So,
we conclude that orthogonal eigenvectors of nonzero
eigenvalues force the potential solution to be close to
the distribution α by diminishing possible directions
other than α, where α is the normalized α. We provide
the following recovery guarantee using the solution to
the proposed regularized optimization problem.

Theorem 5.2. The convex optimization problem in (5)
has a unique solution. Furthermore, with probability at
least 1− δ, the total variation distance between p⋆

H(T )

and the recovered mass p̂H(T ) is bounded as follows,

TV(p⋆
H(T ), p̂H(T ))≤

λ

2

√
|H(T )|∥R−1∥22∥L∥

∥∥∥p⋆
H(T )−α

∥∥∥
+
|T ||H(T )|√

2
∥R−1∥22

√
log(4|T |/δ)

2np
,

where np is the number of users queried per pairwise
comparison query.

The maximum singular value of L and the minimum
singular value of R play an important role in determin-
ing the first component of the bound. On the other
hand, the second component tends towards 0 as the
number of users increases.

L2 Regularization: Using L2 regularizer, we can
obtain the following optimization problem:

p̂H(T ) := arg minp≥0,1⊤p=1

1

2
||Hp− q̂||22 +

λ

2
pTp

:= arg minp≥0,1⊤p=1

1

2
||Rp− b̂||22, (6)

This can be cast as a specific version of graph regularizer
with a special Laplacian regularizer I, where RTR =
HTH+ λI and b̂ = R−THT q̂. Similarly, we can write
the following recovery guarantees.

TV(p⋆
H(T ), p̂H(T ))≤

λ

2

√
|H(T )|∥R−1∥22

∥∥∥p⋆
H(T )−α

∥∥∥
2

+
|T ||H(T )|√

2
∥R−1∥22

√
log(4|T |/δ)

2np
,

6 EXPERIMENTAL RESULTS
We evaluate the proposed approaches for both sim-
ulated and real datasets 3. We quantify the total

3Code for our methods and our datasets
are available at https://github.com/ramyakv/
Learning-Population-of-Preferences-AISTATS2024.
This repoistory contains a dataset we have developed for
preference learning, which is based on pairwise comparisons
and was curated through crowdsourcing.

https://github.com/ramyakv/Learning-Population-of-Preferences-AISTATS2024
https://github.com/ramyakv/Learning-Population-of-Preferences-AISTATS2024


Gokcan Tatli, Yi Chen, Ramya Korlakai Vinayak

variation distance (TV) and Wasserstein distance be-
tween p⋆

H(T ) and the recovered mass in partitionsH(T ).
For 1D setting, we use Wasserstein-1 distance; and for
higher dimensional settings, we use the graph Wasser-
stein distance with normalized cost matrix written as
follows,

WG(p
⋆
H(T ), p̂H(T )) := min

K∈M(K)

|H(T )|∑
i=1

|H(T )|∑
j=1

Ki,jCi,j ,

where Ci,j is the ratio of distance between nodes
i and j to the maximum length on the graph
induced by matrix H; and M(K) := {K :
K ≥ 0, K1 = p⋆

H(T ), KT1 = p̂H(T )}. Note that the
total variation distance does not differentiate between
whether the mass is moved between neighbor regions
or any faraway region. Whereas Wasserstein distances
take into account the geometry and hence distinguish
between these scenarios.

For simulations, we consider four true user distribu-
tions: uniform, Gaussian, a mixture of two Gaussians,
and a mixture of three Gaussians. We present simula-
tion results with a mixture of three Gaussians here
and defer the rest to the appendix. We also con-
sider two types of noises. (a) Bernoulli(pflip) that
flips a simulated user’s answer with probability pflip.
(b) flipping the answer of user u for pair xa,xb with
probability 1

1+e−cddiff
, where c is a scaling factor and

ddiff = −|(dist(xa,u)− dist(xb,u))|. Here, we provide
results only for pflip = 0.01 and c = 500, and defer
a more comprehensive analysis to the appendix. We
sample m = 5 items uniformly at random from [−1, 1]d.
For each pairwise comparison among the items, we
sample users from the underlying distribution, repeat-
ing 10 times. We use CVXPY (Diamond and Boyd,
2016; Agrawal et al., 2018), ECOS (Domahidi et al.,
2013), and Gurobi (Gurobi Optimization, LLC, 2023)
to solve optimization problems and run all simulations
on Python 3.11. Parallel computations are done using
GNU Parallel (Tange, 2018), CHTC (Center for High
Throughput Computing, 2006), and OSG Consortium
(Pordes et al., 2007; Sfiligoi et al., 2009; OSG, 2006).

1D Simulations: Figure 3 (a-b) show the relationship
between the number of people asked per query, np,
and the error, by varying np ∈ {102, 103, 104, 105}. As
shown in our analysis, the recovery gets better as the
number of users increases.

Colors dataset: Colors dataset (Palmer and Schloss,
2010; Palmer et al., 2013) consists of answers to pairwise
queries from 48 different users and 37 colors. Each
person was asked all

(
37
2

)
pairwise comparisons. Each

color is considered as a 3-dimensional vector in CIELAB
color space (lightness, red vs. green, blue vs. yellow).
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Figure 3: 1D setting: (a) TV(p⋆
H(T ), p̂H(T )) and (b)

W1(p
⋆
H(T ), p̂H(T )) for mixture of 3 Gaussians.

For our experiment, we use the 1D user embedding of
the colors dataset learned by Canal et al. (2022). We
then project the CIELAB color space onto the user
embedding space.
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no. people (N)

0.1
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0.4
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),

p
? H

(T
))

(a)

-65.35 -42.89 -22.81 0.44
x

0.00

0.01
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0.03

0.04

p(
x)

(b)

Population Density
Estimated Density

Figure 4: (a) TV(p⋆
H(T ), p̂H(T )) by varying number of

people (b) p⋆
H(T ) and p̂H(T ) for Colors dataset.

We consider a subset of m = 5 colors sampled from
this space and use all 10 pairs for comparison. Then,
we uniformly sample {102, 103, 104, 105} users from all
48 user preference points with replacement for each
pair to estimate p̂H(T ) and report TV(p⋆

H(T ), p̂H(T ))

in Figure 4 (a). Figure 4 (b) shows the true preference
distribution for the population (computed using multi-
ple queries per user on a separate set of users) and the
distribution recovered via our method.

Simulations for d ≥ 2: Figure 5 (a-b) shows the
relationship between the number of people asked per
query, np, and the error for d = 2. We use λ = 1 here
and defer results with varying regularization parameter
λ to the appendix.

We also provide simulation results using l1, l2-norm
regularization, and maximum likelihood estimate (KL)
as baselines in Figure 6. Additionally, to compare
the performance between our method and Mallows
model-based method, we implemented the EM algo-
rithm described by Lu and Boutilier (2014) that learns
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Figure 5: (a) TV(p⋆
H(T ), p̂H(T )), (b) WG(p

⋆
H(T ), p̂H(T ))

for mixture of 3 Gaussians in 2D (p̂H(T ) is recovered using
graph regularization).

a mixture of Mallows model. Details regarding the
EM algorithm are deferred to the appendix. Figure 6
includes the result with 2 mixtures.
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Least Square

Figure 6: WG(p
⋆
H(T ), p̂H(T )) for different objective func-

tions with varying np.

Bounds on the Mass: We generate the true under-
lying preferences from a mixture of 3 Gaussians in 2D.
We query for 5 pairs of items and 10, 000 users per pair.
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Figure 7: Lower and upper bounds with the true underlying
distribution, a mixture of 3 Gaussians.

Figure 7 shows the upper and lower bounds on the
mass in each of the regions in the intersection of the 5
hyperplanes using equations (2). We also show the true

mass induced by the underlying distribution in these
regions which highlights the efficacy of our bounds.

Zappos: UT Zappos50K (Yu and Grauman, 2014,
2017) is a large dataset with 50, 025 catalog images
of shoes in different categories, such as shoes, sandals,
slippers, and boots. We manually pick five shoes from
this dataset and collect responses from 6000 Amazon
Mechanical Turk (AMT) workers for each possible pair-
wise query. With a subset of workers’ answers to each
possible pair, we estimate p⋆

H(T ) and use the remaining
workers to answer pairwise comparison queries using
only one response per worker to estimate p̂. We also
use the method of Lu and Boutilier (2014) to estimate
p̂. Details of the setting are deferred to the appendix.
Figure 8 shows the results of our experiments on this
dataset.
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Figure 8: (a) True p⋆
H(T ) and p̂H(T ) recovered by our

method in comparison to that by Lu and Boutilier (2014)
for Zappos dataset. (b) Estimated upper and lower bounds
for p⋆

H(T ) in Zappos dataset.

Movies: We create a new dataset comprising 4, 266
movies from different countries, produced between 2013
and 2022, inclusive. Each movie is associated with its
plot and info scrapped from Wikipedia (2023). We uti-
lize text-embedding-ada-002 model from OpenAI (2023)
to generate an embedding for each movie. Then, we
train a regression neural network with these embedding
as input, and the target is each movie’s average IMDB
(2023) rating. We obtain the 100-dimensional output
from the penultimate layer and reduce it to 2D using
PaCMAP (Wang et al., 2021a). In the subsequent
experiment, we consider the 2D embedding as the coor-
dinates for the movies. We scrape the ratings of critics
and audiences from Tomatoes (2023) and use them to
create answers to pairwise comparison queries. We ran
our experiment on a set of 13 DC Comics superhero
movies. We consider 9 pairwise comparison questions
and assign each pair to 50 reviewers. Our results are
presented in Figure 9.
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Figure 9: (a) p̂H(T ) recovered by our method in comparison
to that by Lu and Boutilier (2014) for Movies dataset (b)
Estimated upper and lower bounds for p⋆

H(T ) in movies
dataset.

7 CONCLUSIONS AND FUTURE
WORK

We propose a novel problem of learning distribution
of user preferences from pairwise comparison queries.
We focus on fundamental questions regarding what
we can learn about the underlying distribution from
a single query per user. We show that the problem is
identifiable in 1D setting and provide recovery guaran-
tees under the total variation distance. We show that
this problem is not identifiable in dimensions d ≥ 2.
We provide upper and lower bounds on the masses
in the regions formed by the intersecting hyperplanes
corresponding to the queried pairs. We proposed using
graph regularization for recovery of the masses in these
regions and provide bound on the total variation dis-
tance between the true distribution and the estimated
distribution. We validate these fundamental results
on extensive numerical simulations. Furthermore, we
show the efficacy of the proposed methods on real
datasets. As a byproduct of this work, we introduce
two new datasets for learning distribution of user pref-
erences. In the future, we would like to mathematically
characterize how large the set of underlying preference
distribution that lead to the same answers to pairwise
queries in terms of the TV and Wasserstein distances.
We would also like to further explore what other struc-
tures on the underlying distributions make it amenable
to overcome non-identifiability and develop recovery
guarantees under the graph Wasserstein distance which
takes into account the geometry of the feature space.
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Learning Populations of Preferences via Pairwise Comparison Queries:
Supplementary Materials

A Related Works
Preference learning based on ideal point model (Coombs, 1950; Jamieson and Nowak, 2011; Ding, 2016; Singla
et al., 2016; Xu and Davenport, 2020; Massimino and Davenport, 2021; Canal et al., 2022) has been studied by
several works. Learning a user preference point up to ε-error with pairwise comparisons requires O(d/ log(d/ε))
queries under mild assumptions of coverage of query items on the space of preferences (Massimino and Davenport,
2021). A recent work by Xu and Davenport (2020) considered the problem of simultaneously learning an unknown
metric and a user preference point and proposed an alternating minimization algorithm. A key limitation of
these works is that they either focus on learning an individual preference by making many queries per individual
or assume homogeneity and learn a single preference point using data from all the users. Another recent work
by Canal et al. (2022) considers a setting with multiple users with different preference points, but the focus there
is to learn each individual preference point while also learning an unknown metric that is common across the users
and the pairwise queries per individual scales as Õ(d) which is needed to learn the individual preferences (where
Õ(.) hides log factors). However, querying multiple pairs per user is an hurdle in various situations, e.g. privacy
concerns due to tracking a user over time, cognitive overload, and cost in obtaining answers to multiple queries,
especially in larger dimensional spaces. When we have only one query per users these methods are not applicable
unless all users are homogeneous in which case one can pool in all the data to learn a single preference point.

A recent work by Tatli et al. (2022) considers a distance query model, i.e. when a user is queried with an item,
the response is how far their preference point is from the queried item, and studies the problem of learning the
distribution of preferences for the specific case of discrete 1D discrete distributions. Under this setting, they
provide sufficient condition in terms of number of items in the query set and their locations on the 1D grid that
makes the problem identifiable – just one item in the query set is sufficient if it is at the edge and two items in
the query set are sufficient otherwise to identify the mass of preferences on all the locations on the 1D grid. They
also use a linear system formulation to represent their setting and provide guarantees on recovering the discrete
preference distribution on the 1D grid by solving constrained least square optimization. In contrast, in our setting
the responses are for pairwise comparison between items and we study both 1D and higher dimensional settings
and not restricted to discrete distributions for user preferences. Instead, we focus on learning p∗

H(T ), i.e., the
mass of user preferences induced in the regions created by the intersection of the hyperplanes that correspond to
pairwise comparisons. The differences in the query model and the geometry lead to different insights in terms
of the nature of identifiability issues as well as the properties of the linear systems that arise with pairwise
comparisons. For example, for the 1D case in our setting, depending on the number of pairs being compared, we
get different number of intervals. If we have just two items in the query set, we only have one pairwise comparison,
leading to two intervals and we could only hope to learn mass on either side of the midpoint between the two
items. Instead, if we have 3 items, we can have 3 possible pairwise comparisons and 4 intervals and we can learn
the mass in these 4 intervals and so on. So, with more pairs leading to more intervals, we can learn more refined
information about the underlying continuous distribution of preferences. In higher dimensional case, we show that
the problem of learning p⋆

H(T ) is not identifiable in our setting (Proposition 2). We further show that if the true
solution p⋆

H(T ) is sparse and satisfies certain geometric property, then the problem is identifiable (Theorem 5.1).

Another line of work in preference learning involves ranking based models, e.g., Bradley-Terry-Luce (BTL)
model (Bradley and Terry, 1952; Luce, 1959), Mallows model (Mallows, 1957), stochastic transitivity mod-
els (Shah et al., 2016), that focus on finding a single ranking of m items or finding top-k items by pairwise
comparisons (Hunter, 2004; Kenyon-Mathieu and Schudy, 2007; Braverman and Mossel, 2007; Negahban et al.,
2012; Eriksson, 2013; Rajkumar and Agarwal, 2014; Shah and Wainwright, 2017). Ranking m items in these
settings requires O(m logm) queries. Note in contrast, under the ideal point based models, the query complexity
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for ranking reduces to O(d logm), where d is the dimension of the domain of representations which is usually
much smaller than the number of items being ranked (Jamieson and Nowak, 2011). This is due to the fact that
the geometry induces constraint on the number of possible rankings from m! to O(m2d). Lu and Boutilier (2014)
consider a mixture of K-Mallows model for the ranking setting and propose an EM algorithm that takes user
preferences as input and outputs the estimated model parameters. However, there are no guarantees provided
for convergence of this algorithm. Other works on ranking models (Awasthi et al., 2014; Mao and Wu, 2022)
have noted that even a two component mixture of Mallows model is not identifiable with pairwise comparisons
and the focus has been on settings that consider samples that are full or list-wise or group-wise ranking data
per user and tensor-based algorithms for recovery. A recent work (Zhang et al., 2022) considers a mixture of
two BTL-models with pairwise comparison and shows that it is identifiable except for certain sets of parameters
and show similar results for list-wise query setting, but it does not provide algorithmic approaches to estimate
them. Our work focuses on preference learning based on ideal point model with pairwise comparison queries and
develops fundamental understanding under a nonparametric setting.

B Limitations

We study the novel problem of learning populations of preferences via pairwise comparison queries when we are
limited to making one query per individual. We show that the problem is identifiable in 1D setting and provide
recovery guarantees. Further, we show that the problem is not identifiable in dimensions d ≥ 2. Linear system of
equations in (1) is underdetermined in dimensions d ≥ 2. So, we cannot recover p⋆

H(T ) in dimensions d ≥ 2, unless
the true solution p⋆

H(T ) is sparse and satisfies certain geometric property. Therefore, we propose using graph
regularization for recovery of masses in H(T ) and provide recovery guarantees. Our recovery guarantees are
limited to the noiseless setting. For noisy settings, we show simulation results that are promising. Furthermore,
the suitability of the regularizer depends on the property of underlying distribution of preferences. We have
explored one such regularization technique in this work. Theoretical analysis of noisy setting and other regularizers
suited for different properties would be interesting to study in the future.

In this work, we focus on the case where we can only make one comparison query per individual. On the other
end, if we can make Õ(d) queries per individual, we can estimate individual preferences. We expect there is a
trade-off between these two regimes, that is, single query per individual to enough queries to learn individual
preference points, in terms of information gain regarding the underlying distribution of preferences, which is left
to future work for further investigation.

In our problem setup, we assume that item representations are known and learn the distribution of preferences.
In the era of large foundational models, we presume that we can learn feature representation of items as we did in
our experiments in the paper. On the other hand, euclidean distance in the item representation space might not
reflect the correct embeddings for the judgements of the population. So, one can try to learn the distance function
or tune the embeddings further to reflect human judgements. In our experiments, we use other regression or
classification tasks to refine the pre-trained embeddings to lower dimensional feature space. However, there is a
rich line of research about learning distance metric using triplet queries of type “Is a closer to b or c?”, and often
low-dimensional metrics seem to capture human preferences well (Shepard, 1962b,a, 1966; Kulis, 2012; Bellet
et al., 2015; Jain et al., 2017). Note that learning metric from triplet queries is essentially akin to contrastive
learning in the deep learning literature. Recent works by Xu and Davenport (2020); Canal et al. (2022) have
proposed learning metric and preferences simultaneously from pairwise comparison queries where both unknown
metric and unknown user preferences are learned simultaneously. So, these methods need learning user preferences
as well and therefore need at least Õ(d) queries per individual. We leave it as a future direction to explore the
problem of learning distribution of preferences for an unknown metric without learning user preferences exactly.

C Proofs

C.1 Proof of Theorem 4.1
We recall that p̂H(T ) is the solution to the constrained least square optimization problem with unit simplex
constraint in Section 4. Then, as discussed in pages 301-302 by Boyd and Vandenberghe (2004) and mentioned
by Condat (2017), and also observed in the proof of Theorem 2 by Tatli et al. (2022), we note that Hp̂H(T ) is the
projection of q̂ onto the closed convex set CH under ℓ2 distance, which we call PCH

(q̂), where

CH := conv(He1, . . . ,Hem).
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Therefore, we can write

||p∗
H(T ) − p̂H(T )||2 = ||H†(q⋆ − PCH

(q̂))||2
≤ ||H†||2||q⋆ − PCH

(q̂)||2
≤ ||H†||2||q⋆ − q̂||2
≤ ||H†||2||q⋆ − q̂||1, (7)

where the inequality (7) is due the property that the projection onto closed convex sets is contracting (Thm.
1.2.2. by Schneider (2013)). Then, we note that 2 TV(p⋆

H(T ), p̂H(T )) = ||p∗
H(T ) − p̂H(T )||1, and use l1 − l2 norm

inequality to obtain the following from (7),

TV(p⋆
H(T ), p̂H(T )) =

1

2
||p∗

H(T ) − p̂H(T )||1 ≤
1

2

√
|T |+ 1||p∗

H(T ) − p̂H(T )||2

≤ 1

2

√
|T |+ 1||H†||2||q̂− q⋆||1.

Recall from Section 4, H can be written as the concatenation of one lower triangular and one upper triangular
binary matrix, e.g., 3 pairs create 4 regions, and the corresponding matrix

H =


1 0 0 0
1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1
0 0 0 1


Each possible H matrix from Theorem 4.1 has a similar structure with |T | 1’s in each column with shifted
positions as we pass through columns. This very specific structure allows us to express a left inverse H† =
1

|T |1|T |+11
T
2|T | + S = (− 1

|T |1|T |+11
T
|T |+1 + I)S, where S is (|T |+ 1)× 2|T | with Si,j = −1 when j = i− 1 and

j = i+ |T |, and Si,j = 0 everywhere else. For the given example above,

H† =


1/3 1/3 1/3 −2/3 1/3 1/3
−2/3 1/3 1/3 1/3 −2/3 1/3
1/3 −2/3 1/3 1/3 1/3 −2/3
1/3 1/3 −2/3 1/3 1/3 1/3

 with S =


0 0 0 −1 0 0
−1 0 0 0 −1 0
0 −1 0 0 0 −1
0 0 −1 0 0 0

 .

Note that, by construction, S has only one non-zero entry in each column and 2 non-zero entries in each
row except first and second rows which have 1 nonzero entry. Therefore, SST is a diagonal matrix such that
S1,1 = S|T |+1,|T |+1 = 1 and the rest is 2. It easily follows that ∥S∥2 =

√
2, since ∥SST ∥2 = 2. We also note that

∥H†∥2 = ∥(− 1

|T |11
T + I)S∥2 ≤ ∥ −

1

|T |11
T + I∥2∥S∥2 = 1 ∗

√
2 =
√
2. (8)

Therefore, we can write

TV(p⋆
H(T ), p̂H(T )) ≤

√
|T |+ 1

2
∥q̂− q⋆∥1. (9)

Now, note that the term ||q̂−q⋆||1 is the sum of l1- distances between the empirical and the true fraction of people
on either side of hyperplanes in T . Therefore, any entry q̂i can be considered a summation of np binary random
variables with mean q⋆

i , i.e., E[q̂i] = q⋆
i , where np is the number of people queried per pairwise comparison query.

We, then, can apply Hoeffding’s inequality (Hoeffding, 1963) (which we have restated below) for each pair queried
(i.e., for each hyperplane) to obtain a bound for |q̂i − q⋆

i | and write that,

|q̂i − q⋆
i | ≤

√
log (2/δ′)

2np
(10)
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holds with probability at least 1− δ′. We then use union bound bound over all the |T | pairs to obtain the bound
on ∥q̂− q⋆∥1.

Hoeffding’s Inequality (Hoeffding, 1963): Let X1, X2 . . . , XN be independent random variables such that
ai ≤ Xi ≤ bi and let SN :=

∑N
i=1 Xi, then for all t > 0,

Pr(|SN − E(SN )| ≥ t) ≤ 2 exp

(
− 2t2∑N

i=1(bi − ai)2

)
. (11)

C.2 Proof of Proposition 2
We first note that the entry-wise product, i.e., Hadamard product, of the rows of H that correspond to the
columns with 1’s in the j-th position leads to a standard vector with 1 in the j-th entry. So, we can write the
following,

ej =

⊙∏
i∈Kj

Hi,:, j = 1, . . . , |H(T )|, (12)

where ej is the standard basis vector with j-th entry is 1, ⊙ represents Hadamard product operation and Kj

denotes the set of rows of H whose j-th entry is 1. Then, considering the structure of matrix H, we note that

2|T |∑
i=1

λiHi,: =

|T |∑
i=1

(λi − λ|T |+i)Hi,: +

 |T |∑
i=1

λ|T |+i

1.

If
∑|T |

i=1(λi − λ|T |+i)Hi,: +
(∑|T |

i=1 λ|T |+i

)
1 = 0 holds only when λi − λ|T |+i = 0 for all i = 1, . . . , |T | and∑|T |

i=1 λ|T |+i = 0, we can claim that 1 and Hi,:’s for i = 1, . . . , |T | are linearly independent. Therefore, we suppose
that

2|T |∑
i=1

λiHi,: =

|T |∑
i=1

(λi − λ|T |+i)Hi,: +

 |T |∑
i=1

λ|T |+i

1 = 0.

Now, we take |T |-th power of the left-hand side with respect to Hadamard product and write it as follows:2|T |∑
i=1

λiHi,:

⊙|T |

= 0 (13)

Considering results of all products in given expression, we can write following Lemma.

Lemma 1. Given the binary matrix H ∈ {0, 1}2|T |×|H(T ))| in (1) and real coefficients λi’s, we can write following2|T |∑
i=1

λiHi,:

⊙|T |

=

2|T |∑
j=1

∑
i∈Kj

λi

|T |

ej ,

where Kj is the position of rows of H whose j-th entry is 1 and ej’s are standard basis vectors.

Lemma 2. Given the binary matrix H in Section 2, for any j ≤ |T |, we can find two columns H:,j1 and H:,j2

such that only j-th and (|T |+j)-th entries of H:,j1 and H:,j2 differ.

Proof: Each hyperplane has to form neighboring regions by construction. Therefore, there exists two columns
H:,j1 and H:,j2 such that only j-th and (|T |+j)-th entries differ. To understand it better, we can consider a
scenario where we delete j-th row of the matrix H and call Hj to this new matrix. Hj has to have a pair of same
columns. Otherwise, we would conclude that j-th hyperplane does not form new regions, which is not possible by
construction, when we consider adding one hyperplane at a time to end up with final partition. We can also refer
to the fact that each hyperplane has to divide at least one previous region into two, when that specific hyperplane
is added.
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Then, from Lemma 1, (13) yields that

2|T |∑
j=1

∑
i∈Kj

λi

|T |

ej = 0,

which happens only if ∑
i∈Kj

λi = 0, j = 1, . . . , |H(T )|,

since standard basis vectors are linearly independent. From Lemma 2, it follows that we can find two numbers j1
and j2 for all j = 1, . . . , |H(T )| such that ∑

i∈Kj1

λi =
∑

i∈Kj2

λi = 0,

where j ∈ Kj1 , |T | + j ∈ Kj2 and Kj1\{j} = Kj2\{|T | + j}. Therefore, we conclude that λj = λ|T |+j for all
j = 1, . . . , |H(T )|. Now, (13) implies

∑|T |
i=1 λ|T |+i = 0, which confirms the claim that rank(H) = |T |+ 1.

For the nonuniquness of the solution to the linear system of equations (1), we refer to the discussion below(Section
C.3), where we argue that the solution is not unique even for some sparse cases, and complete the proof of
Proposition 2.

C.3 Sparsity
We first recall that half of the rows among 2|T | rows of H reflect the mass on the other side of each hyperplane.
Basically, adding a row of all ones makes half of the rows redundant, since the rows representing the mass on
the other side of each hyperplane are just flipped versions of rows representing the mass on the first side, i.e.,
Hi+|T |,: = 1T −Hi,:. We call Hhalf to the simplified version of H. Then, we note that rank(Hhalf) = rank(H) =
|T |+ 1 from Proposition 2. Therefore, we cannot make further simplifications on H to get redundant rows.

Now, we consider the simplified version Hhalf and recall that any solution p⋆
H(T ) to the problem setting in (1) has

to be in the probability simplex. Therefore, all possible q̂half vectors belong to the convex hull of columns of
matrix Hhalf, which we call conv(Hhalf). Then, we apply Carathéodory’s Theorem and write following expression.
Each element in conv(Hhalf) can be written as a convex combination of at most |T |+ 1 columns of Hhalf. We can
easily observe that the same property also applies to conv(H) and q̂, as they share a one-to-one correspondence
with Hhalf and q̂half, respectively.

C.4 Proof of Proposition 3
Given any two neighboring regions in the partition H(T ), we suppose that H:,i1 and H:,i2 are corresponding
columns to those regions, where only j-th hyperplane differ in between. We observe that it is possible to find
another pair of columns, satisfying the same condition, separated solely by the j-th hyperplane as long as there
exists another hyperplane that intersects with j-th hyperplane. Therefore, we can find linearly dependent 4
columns except the trivial case when all hyperplanes are parallel to each other. The problem setting boils down to
the 1D setting, when all hyperplanes are parallel. The binary measurement matrix H becomes full rank and we
can uniquely recover underlying distribution of regions in the partition H(T ) separated by parallel hyperplanes.

Before going into the discussion of Theorem 5.1, we provide following remark based on the fact that M is a
column-regular matrix, i.e. each column of M has exactly the same number of 1’s.

Remark 1. Robust Null Space Property (RNSP) has been proposed as a sufficient condition for basis pursuit
approach (a popular recovery algorithm in compressed sensing literature) (Foucart and Rauhut, 2013; Foucart,
2014). Recently, Lotfi and Vidyasagar (2020) proposed sufficient conditions for a column-regular binary matrix
to achieve RNSP, which are the best sufficient conditions for column-regular binary matrices to the best of our
knowledge. According to Theorem 9 by Lotfi and Vidyasagar (2020), a column-regular binary matrix satisfies
RNSP when k< dL/ρ, where dL is the number of 1’s in each column and ρ is the maximum inner product among
columns. Our binary matrix M is column-regular binary matrix with |T | 1’s in each column. Since there are
neighboring regions, i.e., regions that has only one different coordinate, maximum inner product among columns
is |T | − 1. Therefore, RNSP is achieved when k = 1.
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Remark 1 shows that current results from compressed sensing literature for binary matrices can only guarantee
unique solution for trivial case where the solution is assumed to be 1-sparse.

C.5 Discussion of Theorem 5.1

We first start by recalling some definitions from convex geometry that will be useful in the proof of Theorem 5.1.

Affinely Independent Set: A set of vectors {v1,v2 . . .vn} is said to be affinely independent if {v2 − v1,v3 −
v1, . . .vn − v1} are linearly independent.

Simplex: Convex hull of affinely independent set of vectors is called simplex.

Face of a Convex Polytope: A face of a convex polytope is defined as the intersection of the convex set with
its supporting hyperplanes. Each face is also a polytope and contains a subset of vertices of the convex polytope.

Simplicial face: If the set of vertices contained in a face of a convex set are affinely independent, this face is
called a simplicial face.

Convex Polytope: There are 2 equivalent ways of describing a convex polytope P by the Farkas–Minkowski–Weyl
Theorem. We can define P as the convex hull of a finite set of vertices, i.e., P = conv(v1,v2 . . .vn), which is
known as V-representation of polytope P. We can also define P as the intersection of a finite set of half spaces,
i.e.,

P = {x ∈ Rd|⟨ai,x⟩ ≤ bi, i = 1, . . . , f},

which is also called H-representation of polytope P. Here, f is the number of facets, i.e., d − 1 dimensional
faces and ai’s are corresponding face normals. Each ⟨ai,x⟩ ≤ bi defines a supporting hyperplane with the
boundary condition ⟨ai,x⟩ = bi. Recall that faces of the polytope P are defined as the intersections of supporting
hyperplanes with P . For any point x belong to a face of convex polytope P , at least one of the f inequalities has
to satisfy as an equality. We recall the fact that a simplicial face is a face formed by affinely independent set of
vertices and provide the proof of Theorem 5.1.

Proof of Theorem 5.1: We suppose that q⋆ belongs to interior of a simplicial face FS of the polytope conv(H).
Then the uniquness of the solution p⋆ follows from Proposition 4.6 by Kueng and Tropp (2021), which is stated
below.

Proposition 5. (Proposition 4.6 by Kueng and Tropp (2021)): Given a compact convex set K and a point x ∈ K,
x has a unique proper convex combination of extreme points of K with participating extreme points if and only if
x belongs to a relative interior of a simplicial face of K, where proper convex combination refers to the convex
combination with nonzero convex coefficients.

For K = conv(H), we can conclude that q⋆ can be written as a unique convex combination of a subset of extreme
points of conv(H), i.e., there exists a unique probability vector p⋆ such that Hp⋆ = q⋆.

We consider another example from the partition in the Figure 2(a) with 3-sparse cases. First, we suppose
that q = [0.1, 0.7, 0.2, 0.9, 0.3, 0.8]. q = Hp holds for both p = [0.7, 0, 0.2, 0, 0, 0, 0.1] and p =
[0.5, 0.2, 0, 0, 0, 0, 0.3]. Here, we note that conv(H:,1,H:,3,H:,7) and conv(H:,1,H:,2,H:,7) are not even faces
of conv(H). They both belong to the face intersecting with the hyperplane defined as [e3, e6]

Tp = [1, 0]T . On
the other hand, we can easily observe that conv(H:,1,H:,2,H:,6) is a simplicial face of conv(H), since they are
affinely independent and conv(H:,1,H:,2,H:,6) is a face of conv(H) formed by the intersection of the boundary
of half space corresponding to [e1, e4]

Tx ≤ [1, 0]T . Then, any q that is formed by a convex combination of
H:,1,H:,2 and H:,6 will have a unique solution p⋆ = [q2 = q3, q3, 0, 0, 0, 1 − q2, 0]T , which confirms that
conv(H:,1,H:,2,H:,6) is a simplicial face of conv(H).

C.6 Proof of Proposition 4

Recall that Hi,: and (ai, bi) are the row and the item pair corresponding to i-th hyperplane. q⋆
ai,bi

denotes the
true mass on the side of ai of the i-th hyperplane and Kj is the position of rows of H whose j-th column entry
is 1. q⋆

ai,bi
has p⋆

H(T )j
, j-th entry of p⋆

H(T ), as a nonnegative summand when i ∈ Kj . Therefore, we can write
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following:

p⋆
H(T )j

≤ min
i∈Kj

q⋆
aibi , j = 1, . . . , |H(T )|. (14)

Using those upper bounds and nonnegativity of entries of matrix H, we can write following set of inequalities:

H



mini∈K1
q⋆
aibi

...
mini∈Kj−1

q⋆
aibi

p⋆
H(T )j

mini∈Kj+1
q⋆
aibi

...
mini∈Kl

q⋆
aibi


︸ ︷︷ ︸

Qj

≥ q⋆, j = 1, . . . , |H(T )|, (15)

which enables us to lower bound each entry p⋆
H(T )j

for j = 1, . . . , |H(T )|. Here, Qj represents the vector

constructed with minimum q⋆
aibi

’s over different sets and p⋆
H(T )j

. We also define Qj
0 as the vector that jth entry

of Qj is replaced with 0. Note that each inequality in (15) can be rewritten as follows

HT
k,:Q

j ≥ q⋆
akbk

, k = 1, . . . , |T |.

We can also write an alternative expression by using standard basis vectors, i.e., ej ’s,:

p⋆
H(T )j

HT
k,:ej ≥ q⋆

akbk
−HT

k,:Q
j
0, k = 1, . . . , |T |,

which provides us following bound

p⋆
H(T )j

≥ max{max
i∈Kj

q⋆
aibi −HT

i,:Q
j
0, 0}, j = 1, . . . , |H(T )|. (16)

Combining (14) and (16), we obtain following expression

max
i∈Kj

q⋆
aibi −HT

i,:Q
j
0 ≤ p⋆

H(T )j
≤ min

i∈Kj

q⋆
aibi . (17)

Below, we expand on estimation errors to replace q⋆
aibi

’s with corresponding estimates. For any q⋆
aibi

, we can say
that

|q̂aibi − q⋆
aibi | ≤

√
log (2/δ′)

2np
(18)

holds with probability at least 1 − δ′ by Hoeffding’s Inequality (see 11). Therefore, we want to bound the
probability that

|q̂aibi − q⋆
aibi | ≥

√
log (2/δ′)

2np

holds at least for one i, where np is the number of people answering each pairwise query. Therefore, we write
following expression

Pr

⋃
i

|q̂aibi − q⋆
aibi | ≥

√
log (2/δ′)

2ni


≤∑

i

Pr

|q̂aibi − q⋆
aibi | ≥

√
log (2/δ′)

2ni


 (19)

≤2|T |δ′, (20)
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where (19) is from union bound and (20) is due to (18). Picking δ = 2|T |δ′, we conclude that

|q̂− q⋆|1 =
∑
i

|q̂aibi − q⋆
aibi | ≤

√
log (4|T |/δ)

2np
(21)

holds with probability at least 1− δ. Inserting it to the result in 17, we complete the proof of Proposition 4.

Additionally, below, we provide a simple example with two hyperplanes to highlight the tightness of the bounds
on mass in each region given in Proposition 4.

Figure 10: Example for bounds on mass in each region in 2D with 2 hyperplanes with two solutions that give rise to same
true q⋆ highlighting the tightness of the bounds on mass in each region provided in Proposition 4.

For the given value of q⋆ in Figure 10, Proposition 4 provides following bounds

max

{
0,max

i∈Kj

q⋆
aibi −HT

i,:Q
⋆
0
j

}
≤ p⋆

H(T )j
≤ min

i∈Kj

q⋆
aibi . (22)

Recall that Kj represents the set of all rows of H where the j-th column entry is 1. For this example,K1 = {2, 3},
K2 = {1, 2}, K3 = {1, 4} and K4 = {3, 4}. Applying the upper and lower bounds provided in the above equation,
we obtain the bounds shown Figure 10(iv). Furthermore, we note the p(a) and p(b) in Figure 10(v), are both
solutions to the set of linear equation q⋆ = Hp in this example and these two reach the bounds obtained in
Figure 10(iv) illustrating the general tightnes of these bounds.

C.7 Graph Regularization
In this section, we discuss about the graph regularization that we proposed using in Section 5. We provide a
standard graph regularizer without using volume weighting here to give a better intuition about graph regularizers
and why we used volume weighting in Section 5. We start by defining following weight matrix Wunif:

Wunif
i,j = ∥H:,i −H:,j∥−1

1 , (23)

which is the inverse of the Hamming distance between nodes i and j. Accordingly, we can write following graph
Laplacian regularizer:

R =
1

2

n∑
i=1

n∑
j=1

|pi − pj |2Wunif
i,j

=

n∑
i=1

pipiD
unif
i,i −

n∑
i=1

n∑
j=1

pipjW
unif
i,j = pTDunifp− pTWunifp = pTLunifp,

where Dunif
i,i =

∑n
j=1 W

unif
i,j , Dunif

i,j = 0 when i ̸= j and Lunif = Dunif −Wunif. Now, suppose that the spectral
decomposition of Lunif can be written as Lunif =

∑l
i=1 µiviv

T
i , where vi’s are eigenvectors and µi’s are the

corresponding eigenvalues. We now further elaborate on spectral properties of Laplacian matrices and use
following Lemma.

Lemma 3. Graph Laplacian matrices are positive semi-definite by the Gershgorin circle theorem. Furthermore,
the eigenvectors of the Laplacian matrix Lunif corresponding to zero eigenvalues are spanned by 1, which is referred
as constant vectors by Poignard et al. (2018).
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Then, we can rewrite Laplacian regularizer in (4) as

pTATLunifAp = pT
l∑

i=1

µiA
Tviv

T
i Ap =

l∑
i=1

µi(p
T (ATvi))

2,

where A is a diagonal matrix with the entries Ai,i =
1
αi

and
∑

i Ai,i = 1. Laplacian regularizer L = ATLunifA

penalizes p so that potential p values correlated to vectors ATvi’s are diminished. We can rephrase it as follows:
regularizer penalizes p so that potential A−1p values correlated to eigenvectors vi’s are diminished. Therefore,
vi’s corresponding to larger eigenvalues cause more penalty. From Lemma 3, it follows that Laplacian matrix L
corresponding to zero eigenvalues are spanned by A−11. Poignard et al. (2018) also point out that the multiplicity
of the eigenvalue is equal to the number of connected components in the graph, which is clearly 1 in our graph
structure induced by H, since the regions in H(T ) are connected. We note that the eigenvectors of Lunif are
mutually orthogonal by spectral theory. We observe that orthogonal eigenvectors of nonzero eigenvalues would
force the candidate of the solution p to be similar to uniform distribution by punishing possible directions other
than 1. However, we note that regions in H(Sm) are not similar to an equally spaced grid. Therefore, we use a
weighted version of the regularizer in (4) with respect to the volumes of the regions in H(T ) instead of Lunif and
punish possible directions other than A−11, i.e. α.

C.8 Proof of Theorem 5.2

We first show that the solution to the convex optimization problem in (5) is unique. Let f(p) be the objective
function 1

2 ||Hp− q̂||22 + λ
2p

TLp. If we can guarantee that

∂2f

∂p2
= 2HTH+ 2λL ≻ 0, (24)

we deduce that solution to the convex optimization problem in (5) is unique. Therefore, we first focus on matrix
L. From Lemma 3, null space of Lunif is spanned by 1. Since A is a full rank matrix, null space of L = ATLunifA
is spanned by A−11. All entries of A−11 are nonnegative since A−1 is a diagonal matrix with nonnegative entries.
Now, we have following

HTH ⪰ 0,

L ⪰ 0,

HTH+ λL ⪰ 0.

If ker(HTH) ̸= ker(L), we can guarantee that HTH+ λL ≻ 0. HTH is already positive semidefinite and A−11
cannot be an eigenvector for HTH, since all nonzero entries of HTH have same sign. Therefore, HTH+ λL is
always positive definite.

Now, we recall that RTR = HTH+ λL and note that multiplication of each element in the unit simplex with
matrix R defines following closed convex set,

CR := conv(Re1,Re2 . . . ,Re|H(T )|).

Then, the unique solution p̂H(T ) to the optimization setting in (5) can be expressed as

p̂H(T ) = R−1PCR
(b), (25)

where b = R−THTHp∗. Therefore,

Rp̂H(T ) = PCR
(R−THT q̂).
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We start with bounding ℓ2 norm error and write

∥p̂H(T ) − p∗
H(T )∥2 ≤ ∥R−1∥2∥Rp̂H(T ) −Rp∗

H(T )∥2
= ∥R−1∥2∥Rp∗

H(T ) − PCR
(R−THT q̂)∥2

≤ ∥R−1∥2∥Rp∗
H(T ) −R−THT q̂∥2 (26)

≤ ∥R−1∥2(∥Rp∗
H(T ) −R−THTHp∗

H(T ) +R−THTHp∗
H(T ) −R−THT q̂∥2)

≤ ∥R−1∥2(∥Rp∗
H(T ) −R−THTHp∗

H(T )∥2 + ∥R−THT (Hp∗
H(T ) − q̂)∥2)

≤ ∥R−1∥2(∥λR−TLp∗
H(T )∥2 + ∥R−THT (Hp∗

H(T ) − q̂)∥2) (27)

≤ ∥R−1∥22(λ∥L(p∗
H(T ) − α)∥2 + ∥HT ∥2∥q⋆ − q̂∥2) (28)

≤ ∥R−1∥22(λ∥L∥2
∥∥∥p⋆

H(T ) − α
∥∥∥
2
+ ∥HT ∥2∥q⋆ − q̂∥2), (29)

where (26) is due to contracting property of projection operator onto closed convex sets, (27) is because
HTH = RTR− λL, and (28) follows from Hp⋆

H(T ) = q⋆ and Lα = 0. Then, by using ℓ1 − ℓ2 norm inequality, we
can simply write following inequalities

TV(p⋆
H(T ), ∥p̂H(T )) =

1

2
||p∗

H(T ) − ∥p̂H(T )||1

≤
√
|H(T )|
2

||p∗
H(T ) − ∥p̂H(T )||2

≤
√
|H(T )|
2

∥R−1∥22(λ∥L∥2
∥∥∥p⋆

H(T ) − α
∥∥∥
2
+ ∥HT ∥2∥q⋆ − q̂∥2)

≤ λ

2

√
|H(T )|∥R−1∥22∥L∥2

∥∥∥p⋆
H(T ) − α

∥∥∥
2
+

√
|H(T )|
2

∥R−1∥22∥HT ∥2∥q⋆ − q̂∥2

≤ λ

2

√
|H(T )|∥R−1∥22∥L∥2

∥∥∥p⋆
H(T ) − α

∥∥∥
2
+

√
|H(T )|
2

∥R−1∥22∥HT ∥2∥q⋆ − q̂∥1

≤ λ

2

√
|H(T )|∥R−1∥22∥L∥2

∥∥∥p⋆
H(T ) − α

∥∥∥
2
+

1√
2
|T ||H(T )|∥R−1∥22∥q⋆ − q̂∥1.

Lastly, we use (21) to bound ∥q⋆ − q̂∥1 and complete the proof.

D Additional Simulations and Experimental Details
D.1 Simulations for d = 1

We provide simulation results for following group of user distributions: uniform, Gaussian, a mixture of 2
Gaussians, and a mixture of 3 Gaussians. We also present simulation results for varying amount of noises in 2
different noise models that we defined in Section 6.

Figure 11-14 show the relationship between the number of hyperplanes, nh, and the error in recovered mass in
the partition H(T ) while varying nh ∈ {1, . . . , 10}, as well as the relationship between the number of people
asked per query, np, and the error, while varying np ∈ {102, 103, 104, 105}, under the four user distributions and
different noise levels. Our analysis demonstrates that the recovery gets better as the number of users increases. It
is important to note that as the number of pairs, (equivalently, the number of hyperplanes) increases, the size of
p also increases, which leads to an expected increase in the total variation (TV).

D.2 Construction of H in dimensions d ≥ 2

Unlike 1D setting, the algorithmic construction of binary matrix H is not straightforward in dimensions d ≥ 2.
We need to figure out which polytopes, i.e., regions, are on the left side of a given hyperplane. We recall that these
polytopes are defined by the halfspaces induced by the bisecting hyperplanes of item pairs in T . Hence, our problem
can be formally described as follows: Given a set of halfspaces Hs = {a⊤

ijx+ bij < 0 : hij = a⊤
ijx+ bij = 0, i < j},

where hij is the bisecting hyperplanes of pair (xi,xj) ∈ T , we want to find all polytopes in H(T ) that are in the
halfspace hs, for each hs ∈ Hs. To simplify our analysis, we define a bounding box [−1, 1]d, so that we can only
look at the polytopes within this box and avoid unbounded polytopes. For simplicity, we use the vector [aij bij ]
to represent a halfspace.
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Figure 11: TV(p⋆
H(T ), p̂H(T )) and W1(p

⋆
H(T ), p̂H(T )) for uniform user distribution in 1D.
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Figure 12: TV(p⋆
H(T ), p̂H(T )) and W1(p

⋆
H(T ), p̂H(T )) for Gaussian user distribution in 1D.

Let Bs denote the set of halfspaces that defines the bounding box [−1, 1]d. Let Pt denote the set of polytopes that
we have discovered. Let Hu

s denote the set of halfspaces we have not explored yet. Our algorithm works as follows:
Pt ← {Bs}
for hs ∈ Hs \Ho

s do
for pt ∈ Pt do

if hs intersects with pt then
plt ← pt ∪ {hs}
prt ← pt ∪ {−hs}
Pt ← Pt \ pt
Pt ← Pt ∪ {plt, prt}

end if
end for

end for

To check if hs intersects with pt, we first assume that hs splits pt into two polytopes, namely, plt := pt ∪ {hs} and
prt := pt ∪ {−hs}. If plt or prt is degenerate, the assumption does not hold. Therefore hs does not intersect with pt.
To verify whether plt or prt is degenerate, we check whether they have a Chebyshev center, which can be found by
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Figure 13: TV(p⋆
H(T ), p̂H(T )) and W1(p

⋆
H(T ), p̂H(T )) for a mixture of 2 Gaussians user distribution in 1D.
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Figure 14: TV(p⋆
H(T ), p̂H(T )) and W1(p

⋆
H(T ), p̂H(T )) for a mixture of 3 Gaussians user distribution in 1D.

solving the following linear program twice:

max
y,r

r

subject to aT
i y + ||ai||r ≤ bi, ∀i ∈ [|pt|+ 1]

where [ai bi] is the ith halfspace in plt(or prt ) and y is the Chebyshev center (when solved). If the two linear
programs have (bounded) solutions and y is in pt, we can say that plt and prt have Chebyshev centers. Consequently,
hs intersects with pt. Otherwise, we can conclude that hs does not intersect with pt. To determine the position
of any polytope with respect to hyperlanes (halfspaces), we check whether the Chebyshev center of that polytope
is on the left or right of the hyperplane (is in the halfspace).

D.3 Simulations for d ≥ 2

We first present the results with varying regularization parameter λ. Figure 15 and 16 present the behavior of
TV and WG under the four user distributions while we vary λ when np = 10, 000, m = 5, nh = 10, and d = 2. No
noise model is introduced in this set of simulation. Four different colored lines in Figures refer to the four different
objectives we used. Least Square + Graph means that the objective is least square with graph regularization;
Least Square + L1 means that the objective is least square with ℓ1 regularization, Least Square + L2 means that
the objective is least square with ℓ2 regularization, and KL means that the objective is the KL divergence of q̂
from Hp, DKL(q̂,Hp), where the solution is maximum likelihood estimate.
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Figure 15: TV(p⋆
H(T ), p̂H(T )) for (a) uniform (b) Gaussian (c) mixture of 2 Gaussians (d) mixture of 3 Gaussians user

distribution while varying the regularization parameter λ.
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Figure 16: WG(p
⋆
H(T ), p̂H(T )) for (a) uniform (b) Gaussian (c) mixture of 2 Gaussians (d) mixture of 3 Gaussians user

distribution while varying the regularization parameter λ.

We also present the behavior of TV and WG when we use a different formulation of the optimization problem, where
the regularization term in the original optimization is the sole objective, and ||Hp− q̂||22 ≤ ε (DKL(q̂,Hp) ≤ ε)
is an additional constraint. We set ε = 10−5 in simulations. Figure 17 and 18 present the results with the new
formulation of the optimization problem under the same setting as above.
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Figure 17: TV(p⋆
H(T ), p̂H(T )) for (a) uniform (b) Gaussian (c) mixture of 2 Gaussians (d) mixture of 3 Gaussians user

distribution while varying the regularization parameter λ.

In the subsequent simulation, we fix λ = 1. We now provide simulation results for following group of users
distributions: uniform, Gaussian, a mixture of 2 Gaussians, and a mixture of 3 Gaussians. We also present
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Figure 18: WG(p
⋆
H(T ), p̂H(T )) for (a) uniform (b) Gaussian (c) mixture of 2 Gaussians (d) mixture of 3 Gaussians user

distribution while varying the regularization parameter λ.

simulations results for varying amount of noises in both noise models. Figure 19-22 show the relationship between
the number of hyperplanes, nh, and the error in recovered mass in the partition H(T ), as well as the relationship
between the number of people asked per query, np, and the error for d = 2, with the four user distributions and
different noise models.

101 102 103 104

no. people per pair (np)

0.0

0.2

0.4

TV
(p̂
H

(T
),

p
? H

(T
))

(a)

101 102 103 104

no. people per pair (np)

10−2

10−1

W
G(

p̂
H

(T
),

p
? H

(T
))

(b)

1 2 3 4 5 6 7 8 9 10
no. hyperplanes (nh)

0.0

0.2

0.4

TV
(p̂
H

(T
),

p
? H

(T
))

(c)

1 2 3 4 5 6 7 8 9 10
no. hyperplanes (nh)

10−2

10−1

W
G(

p̂
H

(T
),

p
? H

(T
))

(d)

Noiseless Bern(0.01) Bern(0.02) Bern(0.05) Sigmoid(c = 300) Sigmoid(c = 500)

Figure 19: TV(p⋆
H(T ), p̂H(T )) and WG(p

⋆
H(T ), p̂H(T )) for uniform user distribution in 2D.

101 102 103 104

no. people per pair (np)

0.0

0.2

0.4

TV
(p̂
H

(T
),

p
? H

(T
))

(a)

101 102 103 104

no. people per pair (np)

10−2

10−1

W
G(

p̂
H

(T
),

p
? H

(T
))

(b)

1 2 3 4 5 6 7 8 9 10
no. hyperplanes (nh)

0.0

0.2

0.4

TV
(p̂
H

(T
),

p
? H

(T
))

(c)

1 2 3 4 5 6 7 8 9 10
no. hyperplanes (nh)

10−2

10−1

W
G(

p̂
H

(T
),

p
? H

(T
))

(d)

Noiseless Bern(0.01) Bern(0.02) Bern(0.05) Sigmoid(c = 300) Sigmoid(c = 500)

Figure 20: TV(p⋆
H(T ), p̂H(T )) and WG(p

⋆
H(T ), p̂H(T )) for Gaussian user distribution in 2D.
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Figure 21: TV(p⋆
H(T ), p̂H(T )) and WG(p

⋆
H(T ), p̂H(T )) for a mixture of 2 Gaussian user distribution in 2D.
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Figure 22: TV(p⋆
H(T ), p̂H(T )) and WG(p

⋆
H(T ), p̂H(T )) for a mixture of 3 Gaussian user distribution in 2D.

Additionally, Figure 23- 26 show the relationship between the feature dimension d and the error in recovered
mass in the partition H(T ).
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Figure 23: TV(p⋆
H(T ), p̂H(T )) and WG(p

⋆
H(T ), p̂H(T )) for uniform user distribution in 2D with varying d.



Gokcan Tatli, Yi Chen, Ramya Korlakai Vinayak

2 3 4 5 6
no. dimensions (d)

0.0

0.1

0.2

0.3

0.4

0.5
TV

(p̂
H

(T
),

p
? H

(T
))

(a)

2 3 4 5 6
no. dimensions (d)

10−2

10−1

W
G(

p̂
H

(T
),

p
? H

(T
))

(b)

Noiseless Bern(0.01) Bern(0.02) Bern(0.05) Sigmoid(c = 300) Sigmoid(c = 500)

Figure 24: TV(p⋆
H(T ), p̂H(T )) and WG(p

⋆
H(T ), p̂H(T )) for Gaussian user distribution in 2D with varying d.

2 3 4 5 6
no. dimensions (d)

0.0

0.1

0.2

0.3

0.4

0.5

TV
(p̂
H

(T
),

p
? H

(T
))

(a)

2 3 4 5 6
no. dimensions (d)

10−1

6× 10−2

2× 10−1

W
G(

p̂
H

(T
),

p
? H

(T
))

(b)

Noiseless Bern(0.01) Bern(0.02) Bern(0.05) Sigmoid(c = 300) Sigmoid(c = 500)

Figure 25: TV(p⋆
H(T ), p̂H(T )) and WG(p

⋆
H(T ), p̂H(T )) for a mixture of 2 Gaussian user distribution in 2D with varying d.
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Figure 26: TV(p⋆
H(T ), p̂H(T )) and WG(p

⋆
H(T ), p̂H(T )) for a mixture of 3 Gaussian user distribution in 2D with varying d.

Figure 27- 30 provide simulation results in terms of WG using all optimization methods while varying the number
of people per pair, np, under the four user distributions with d = 2 and nh = 5, and no noise model introduced.
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Figure 27: WG(p
⋆
H(T ), p̂H(T )) for uniform user distribution in 2D with varying np using all optimization methods.
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Figure 28: WG(p
⋆
H(T ), p̂H(T )) for Gaussian user distribution in 2D with varying np using all optimization methods.
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Figure 29: WG(p
⋆
H(T ), p̂H(T )) for a mixture of 2 Gaussian user distribution in 2D with varying np using all optimization

methods.
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Figure 30: WG(p
⋆
H(T ), p̂H(T )) for a mixture of 3 Gaussian user distribution in 2D with varying np using all optimization

methods.

Lastly, Figure 31- 34 illustrate simulation results in terms of WG using ordinary least square, least square with
graph, ℓ1, and ℓ2 regularizations, and EM algorithm (see below for implementation details) by Lu and Boutilier
(2014) with K ∈ {2, 3, 4, 5, 6}. We vary the number of people per pair, np, under the four user distributions with
d = 2 and nh = 5, and no noise model introduced.
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EM algorithm described by Lu and Boutilier (2014): We implemented the EM algorithm described by Lu
and Boutilier (2014), that learns a mixture of Mallows model, to compare the performance of our method and
Mallows model-based method. They model the mixture of Mallows model as

p(r) =

K∑
k=1

πk
1

Z
ϕ
d(r,σk)
k

where K is the number of components, πk is the weight parameter for the k-th component, ϕk is the dispersion
parameter of the k-th component, r is the consensus ranking parameter of the k-th component, and Z is a
normalization constant.

In the E-step, the algorithm samples ranking from the mixture according to users’ preferences and the parameters
for each component. Then, in the M-step, the algorithm updates the parameters accordingly. Specifically, it updates
the dispersion parameter using gradient ascent. Therefore, the algorithm takes the following hyperparameters:
the number of components K, the number of ranking samples generated for each user in the E-step, the learning
rate and the number of steps for the gradient ascent. In all of our experiments, we vary K from 2 to 6 and fix the
number of ranking samples per user to be 10, the learning rate for gradient ascent to be 10−8, and the number
of steps for gradient ascent to be 10. We end the EM when the consensus ranking for each component at the
current step is equal to the one from the previous step.

We begin by generating all rankings that are possible under the ideal point model to determine the mass on
polytope regions via the mixture of Mallows model. For each of the region, we assume there exists a user
preference point. We find the ranking induced by that point according to the ideal point model. Then, we
compare rankings we found for each region with the consensus rankings in the mixture of Mallows model. If the
consensus ranking for the j-th component matches the ranking induced by the preference point in the i-th region,
the probability mass for the i-th region is assigned to be the weight for the j-th component in the mixture of
Mallows. It is possible that none of the rankings induced by the preference points in these regions matches the
consensus rankings in the mixture of Mallows model. In such a case, we assign the weight for the j-th component
as the probability mass of the region whose ranking is closest to the consensus ranking of the j-th component,
measured by Kendall’s tau distance.

101 102 103 104

no. people per pair (np)

10−1

100

W
G(

p̂
H

(T
),

p
? H

(T
))

KL
Least Square
Least Square + Graph
Least Square + L1
Least Square + L2
Lu and Boutilier (K = 2)
Lu and Boutilier (K = 3)
Lu and Boutilier (K = 4)
Lu and Boutilier (K = 5)
Lu and Boutilier (K = 6)

Figure 31: WG(p
⋆
H(T ), p̂H(T )) for uniform user distribution in 2D with varying np using least square with out regularization,

least square with graph, ℓ1, and ℓ2 regularization, and EM algorithm of Liu and Moitra (2018) with K ∈ {2, 3, 4, 5, 6}.
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Figure 32: WG(p
⋆
H(T ), p̂H(T )) for Gaussian user distribution in 2D with varying np using least square with out regularization,

least square with graph, ℓ1, and ℓ2 regularization, and EM algorithm of Liu and Moitra (2018) with K ∈ {2, 3, 4, 5, 6}.
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Figure 33: WG(p
⋆
H(T ), p̂H(T )) for a mixture of 2 Gaussian user distribution in 2D with varying np using least square with

out regularization, least square with graph, ℓ1, and ℓ2 regularization, and EM algorithm of Liu and Moitra (2018) with
K ∈ {2, 3, 4, 5, 6}.
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Figure 34: WG(p
⋆
H(T ), p̂H(T )) for a mixture of 3 Gaussian user distribution in 2D with varying np using least square with

out regularization, least square with graph, ℓ1, and ℓ2 regularization, and EM algorithm of Liu and Moitra (2018) with
K ∈ {2, 3, 4, 5, 6}.

Computation runtime: We conduct experiments to demonstrate how the optimization runtime varies while
we change the dimension of our dataset. It can be seen that the convex optimization solver is able to compute
the solution well under 1 second for the number of dimensions ranging from 2 to 5.

dimension time (in seconds)
2 0.1472 ± 0.1284
3 0.2084 ± 0.3547
4 0.2034 ± 0.3984
5 0.1150 ± 0.2596

Table 1: Average CVX runtime ± standard deviation for each dimension. The simulations are conducted on
AWS EC2 c5.metal instance, with 96 vCPU, 192 GiB or memory. The solver used with CVXPY is ECOS. The
underlying user distribution is mixture of 3 Gaussians. We vary d from 2 to 5. For the same d, we use 10 different
initialization of users and 10 different initialization of items. We randomly selected 5 out of the 10 possible
hyperplanes, where each is queried with 10,000 users.

Figure 35: CVX runtime for each dimension (complementary to the Table 1).
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Major Category Minor Category

Boots Ankle, Knee High, Mid-Calf, Over the Knee, Pre-
walker Boots

Sandals Athletic, Flat, Heel

Shoes
Boat Shoes, Clogs and Mules, Crib Shoes, Firstwalker,
Flats, Heels, Loafers, Oxfords, Prewalker, Sneakers
and Atheletic Shoes

Slippers Boot, Slipper Flats, Slipper Heels

Table 2: Major and minor categories in the Zappos dataset.

D.4 Zappos
The Zappos dataset (UT Zappos50K) (Yu and Grauman, 2014, 2017) comprises 4 major categories of shoes:
Boots, Sandals, Shoes, and Slippers. Each major category includes several minor categories. For instance, within
the Boots category, you can find Ankle, Knee High, Mid-Calf, Over the Knee, and Prewalker Boots. Table 2
shows the major and minor categories in the Zappos dataset.

Data Preprocessing: We consider minor category, that has a cardinality of 21, as the label space. To ensure
that all the images have the same dimension, we use the Zappos image square dataset. Then, we resize them to
135× 135. Lastly, we convert the images into grey scale.

We train a modified VGG11 convolutional neural network (Simonyan and Zisserman, 2014) on the Zappos dataset.
VGG11 is intended to be trained on ImageNet (Deng et al., 2009), which has 1000 classes. We modify the last
layer of the network so that it works with 21 classes. We insert a new layer as the penultimate layer of the
network. This is because the original penultimate layer has an output of dimension 4096, which is too large. By
reducing it to 512, we can employ the output of this penultimate layer as the embedding for the Zappos dataset.

Training: We use 80% of the dataset as the training set and the rest as the test set, both with a batch size of
64. We use SGD optimizer with learning rate 0.01, momentum 0.9, and weight decay 0.0005. After 12 epochs, we
achieve a training accuracy of 94.05% and a test accuracy of 86.81%. To generate an embedding for the Zappos
dataset, we feed the entire dataset into the trained network and extract the output from the penultimate layer,
resulting in a matrix of dimensions 50066× 512. We use PaCMAP (Wang et al., 2021b) with default parameters
to obtain the 2D embedding of shoes as shown in Figure 37.

Data Collection via Crowdsourcing: We pick 5 shoes as our query item set (Figure 36).

Figure 36: The 5 shoes we pick for pairwise comparison task on Amazon Mechanical Turk.

We posted this task on Amazon Mechanical Turk (AMT). Each task has 15 pairwise comparison queries (10 pairs
and 5 repeats). The median time taken per query is around 2.58s and for the task (15 pair comparisons) is ∼ 47s.
Each worker is paid 15 cents per task. This is roughly ∼ $7 per hour. We did not restrict the task to the master
workers. The task was open to all those who had at least 500 HITs approved and 95% approval rate.
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Figure 37: 2D embedding of the 5 shoes obtained using penultimate layer of modified VGG11 and PaCMAP.
Each color represents a minor category. 5 shoes we used for experiments are also located.

Figure 38 shows the instructions provided and the interface for answering pairwise comparison queries.

We first bootstrap 10%, 20%, 30%, 40%, 50% of all workers, repeating the process 100 times for each percentage.
Then, we use answers to all possible queries from these workers to estimate the true mass with nh = 5 and
nh = 10. We create a global bin (initialized to 0) whose size equals to the number of regions formed by the
hyperplanes. Each worker has its own local bin (initialized to 0) that has the same size as the global bin. For
each pairwise comparison query, a worker can only be on one side of the corresponding hyperplane. Consider all
polytopes on the side of the hyperplane related to worker’s answer. We increase the corresponding entries of
these polytopes in the bin by 1. After we examine all queries, a set of entries has the maximum value among all
entries in the bin. Ideally, this set has a cardinality of 1. However, due to noises and worker’s inconsistency, it is
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Figure 38: Amazon Mechanical Turk Task interface

possible for the cardinality to be greater than 1. We increase the corresponding entries of this set in the global
bin by 1

cardinality of the set . After we examine all workers we bootstrapped, we normalize the global bin and obtain
a probability vector, which is our estimate of the p⋆.

Figure 39 and 40 illustrate the p⋆ we estimated via bootstrapping. It can be seen that the true distribution p⋆

that we estimated is stable across different bootstrap settings.
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Figure 39: p⋆ obtained via bootstrap (a) 10% (b) 20% (c) 30% (d) 40% (e) 50% of all crowdworkers when nh = 5.

We also present p̂ that we obtain via our method. We first use 20% of crowdworkers to estimate p⋆. Then, use
the remaining 80% of crowdworkers to answer the pairwise comparisons and estimate p̂ using our method. We
shuffle the remaining 80% of crowdworkers 100 times to obtain 100 different q̂ and hence 100 different p̂. We
repeat the above process 5 times (each time with different 20% of crowdworkers to estimate p⋆) for both nh = 5
and nh = 10. The results are presented in Figure 41 and 42. The bounds for p⋆ are presented in Figure 43 and
44 for nh = 5 and nh = 10, respectively.
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Figure 40: p⋆ obtained via bootstrap (a) 10% (b) 20% (c) 30% (d) 40% (e) 50% of all crowdworkers when nh = 10.
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Figure 41: p⋆ obtained using 20% of crowdworkers and p̂ obtained using the remaining 80% of the crowdworkers 100
times. Each of the (a)-(e) uses different set of 20% of all crowdworkers to obtain p⋆, when nh = 5.
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Figure 42: p⋆ obtained using 20% of crowdworkers and p̂ obtained using the remaining 80% of the crowdworkers 100
times. Each of the (a)-(e) uses different set of 20% of all crowdworkers to obtain p⋆, when nh = 10.
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Figure 43: Upper and lower bound for p⋆ when nh = 5.
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Figure 44: Upper and lower bound for p⋆ when nh = 10.

Figure 45 shows the TV and WG between p⋆ and p̂ while we vary nh from 1 to 10.
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Figure 45: TV and WG when we vary nh.

Figure 46 illustrates the probability mass recovered by our algorithm and Lu and Boutilier, with K ∈ {2, 3, 4, 5, 6}.
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Figure 46: (a)-(e) Our p̂ and the probability mass recovered by Lu and Boutilier, with K = {2, 3, 4, 5, 6}, respectively. (f)
Upper and lower bound for p⋆

Lastly, Figure 47-56 illustrate the polytopes formed by the hyperplanes as well as p⋆ and p̂ while we vary nh

from 1 to 10.
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Figure 47: (a) p⋆ and p̂ recovered by our algorithm when nh = 1. (b) regions formed by 1 hyperplane. The numbers in
each region corresponds to the region ID.

Figure 48: (a) p⋆ and p̂ recovered by our algorithm when nh = 2. (b) regions formed by the 2 hyperplanes. The numbers
in each region corresponds to the region ID.



Gokcan Tatli, Yi Chen, Ramya Korlakai Vinayak

Figure 49: (a) p⋆ and p̂ recovered by our algorithm when nh = 3. (b) regions formed by the 3 hyperplanes. The numbers
in each region corresponds to the region ID.

Figure 50: (a) p⋆ and p̂ recovered by our algorithm when nh = 4. (b) regions formed by the 4 hyperplanes. The numbers
in each region corresponds to the region ID.
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Figure 51: (a) p⋆ and p̂ recovered by our algorithm when nh = 5. (b) regions formed by the 5 hyperplanes. The numbers
in each region corresponds to the region ID.

Figure 52: (a) p⋆ and p̂ recovered by our algorithm when nh = 6. (b) regions formed by the 6 hyperplanes. The numbers
in each region corresponds to the region ID.
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Figure 53: (a) p⋆ and p̂ recovered by our algorithm when nh = 7. (b) regions formed by the 7 hyperplanes. The numbers
in each region corresponds to the region ID.

Figure 54: (a) p⋆ and p̂ recovered by our algorithm when nh = 8. (b) regions formed by the 8 hyperplanes. The numbers
in each region corresponds to the region ID.



Learning Populations of Preferences via Pairwise Comparison Queries

Figure 55: (a) p⋆ and p̂ recovered by our algorithm when nh = 9. (b) regions formed by the 9 hyperplanes. The numbers
in each region corresponds to the region ID.

Figure 56: (a) p⋆ and p̂ recovered by our algorithm when nh = 10. (b) regions formed by the 10 hyperplanes. The
numbers in each region corresponds to the region ID.

D.4.1 Movies
We create a new dataset of 4266 movies. We use OpenAI’s text-embedding-ada-002 model to generate an 1536
dimensional embedding for each movie. Then, we train a regression neural network, where the target is each
movie’s average IMDB rating. For this, we use 80% of the movies as the training set and the rest as the test set,
where batch size 4. We use SGD optimization with learning rate 0.0001, momentum 0.9, Huber loss. After 250
epochs, we reach a mean average error of 0.63 on the test set.

For pairwise comparisons task, we pick the following 2 sets of movies in a way that most of the movies in those 2
sets have unbalanced opinion in terms of critics by general audience:

• DCEU superheroes (12 DC superhero movies)

• Movie2 (7 movies from US, China, and South Korea)
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We scrap critics and audience ratings for selected movies from Rotten Tomatoes. Then, we construct a set of
users for each movie from its reviewers. We look for intersections of user sets for each pair of movies. If the size
of intersection is small, we discard the corresponding pair. Since movies in DCEU have the similar type and are
from the same franchise, it is more likely that we encounter common reviewers. Hence, the definition of small size
of intersection is different for the 2 sets. For DCEU, we discard pairs whose size of intersection is less than 200.
For Movie2, we discard pairs whose size of intersection is less than 50. This process leaves us with 9 pairs of
movies for DCEU and 3 pairs of movies for Movie 2.

For a given pairwise comparison query based on movie pairs, a randomly selected reviewer picks the one that has
a higher rating (rated by the same reviewer). If both movies in a pair have the same rating, we pick the movie
on the left of the pair. After a reviewer answered one query, we are done with this reviewer. We perform 100
repetitions of calculating p̂H(T ) by reshuffling users each time, where np = 50 for DCEU and np = 25 for Movie2.
Since we do not query any user more than once, we do not have enough information to estimate p⋆

H(T ), unlike
our experimental work on the Zappos dataset.

Figure 57 (a) (b) show the p̂ recovered using our method and the bounds for p⋆ for the DCEU movie set.
Figure 57 (c) (d) show the p̂ recovered using our method and the bounds for p⋆ for the Movie2 movie set.
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Figure 57: (a) p̂ recovered for the DCEU movie set (b) Bounds for p⋆ for the DCEU movie set (c) p̂ recovered
for the Movie2 movie set (d) Bounds for p⋆ for the Movie2 movie set.

Figure 58 and 59 illustrates the probability mass recovered by our algorithm and EM algorithm of Lu and Boutilier
(2014), with K ∈ {2, 3, 4, 5, 6}, respectively.
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Figure 58: (a)-(e) Our p̂ and the probability mass recovered by Lu and Boutilier, with K = {2, 3, 4, 5, 6}, respectively. (f)
Upper and lower bound for p⋆
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Figure 59: (a)-(e) Our p̂ and the probability mass recovered by Lu and Boutilier, with K = {2, 3, 4, 5, 6}, respectively. (f)
Upper and lower bound for p⋆

Figure 60 and 61 show the regions formed by the hyperplanes and the movies’ location in the embedding space
for DCEU and Movie2 movie set, respectively.

Figure 60: Regions formed by the hyperplanes from DCEU movie set. The numbers in each region represent the
region ID as well as the probability mass recovered by our method in that region. Movies in the DCEU movie set
are also labeled using their corresponding embedding.
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Figure 61: Regions formed by the hyperplanes from Movie2 movie set. The numbers in each region represent the
region ID as well as the probability mass recovered by our method in that region. Movies in the Movie2 movie set
are also labeled using their corresponding embedding.
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