
Understanding Progressive Training Through the Framework of
Randomized Coordinate Descent

Rafa l Szlendak Elnur Gasanov Peter Richtárik
AI Initiative

KAUST, Saudi Arabia
AI Initiative

KAUST, Saudi Arabia
AI Initiative

KAUST, Saudi Arabia

Abstract

We propose a Randomized Progressive Train-
ing algorithm (RPT) – a stochastic proxy for
the well-known Progressive Training method
(PT) (Karras et al., 2018). Originally de-
signed to train GANs (Goodfellow et al.,
2014), PT was proposed as a heuristic, with
no convergence analysis even for the simplest
objective functions. On the contrary, to the
best of our knowledge, RPT is the first PT-
type algorithm with rigorous and sound the-
oretical guarantees for general smooth ob-
jective functions. We cast our method into
the established framework of Randomized
Coordinate Descent (RCD) (Nesterov, 2012;
Richtárik and Takáč, 2014), for which (as a
by-product of our investigations) we also pro-
pose a novel, simple and general convergence
analysis encapsulating strongly-convex, con-
vex and nonconvex objectives. We then use
this framework to establish a convergence
theory for RPT. Finally, we validate the ef-
fectiveness of our method through extensive
computational experiments.

1 INTRODUCTION

The modern practice of supervised learning typically
relies on training huge-dimensional, overparametrized
models using first-order gradient methods. However,
in most cases, using the full gradient information in the
training procedure is computationally infeasible. The
gold-standard approach of bypassing this difficulty is
provided by the family of Stochastic Gradient Descent
(SGD) algorithms which use only a partial information

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

about the gradients for the reward of reduced compute
time. Progressive Training (PT) (Karras et al., 2018),
albeit a non-stochastic method, relies on a similar idea.
In its original form, it was developed as a method
for training generative adversarial networks (GANs)
(Goodfellow et al., 2014) by progressively growing the
neural network that we are training. Specifically, for
a fixed period of time we only train the first layer of
our GAN while keeping the weights corresponding to
the other layers intact; then, we perform updates with
respect to the first two layers, and so on.

Karras et al. (2018) justified two main advantages of
this approach: an increased stability of the training
(since the training procedure starts from a simpler,
reduced model), and reduced computation cost. The
method was proposed as a heuristic, with no conver-
gence guarantees even for the simplest objectives, such
as quadratics or convex functions.

Observe that in the PT procedure, the domain of the
parameters which we are trying to learn is partitioned
into blocks which correspond to the respective layers of
the neural network that PT aims to train. Motivated
by this, in this work we are going to be concerned with
minimizing the general objective functions f whose do-
main will be written as Rd1 × · · · ×RdB . For example,
Rdi might represent the parameters of the ith layer of
the neural network in question.

Algorithm 1 offers a formal description of the PT pro-
cedure applied to the general differentiable function
f : Rd1 × · · · × RdB → R. The training procedure
is divided into B epochs; in each epoch b ∈ [B] we
want to update the first b coordinate blocks. Let
Gbf(x) ∈ Rd1 × · · · × RdB denote the vector

(∇1f(x), . . . ,∇bf(x), 0, . . . , 0) ,

where ∇if is the gradient of f with respect to the
ith coordinate block. In each epoch b we make the
gradient update

x← x− γbGbf(x)

for Tb iterations, where γb > 0 is a suitably chosen

Understanding Progressive Training Through the Framework of Randomized Coordinate Descent

stepsize which is fixed for the entire epoch b.

Algorithm 1 Progressive Training

1: Input: initial iterate x ∈ Rd1×· · ·×RdB ; stepsizes
γ1, γ2, · · · , γn > 0; integers T1, T2, · · · , Tn ≥ 0

2: for b = 1, · · · , B do
3: for t = 0, . . . , Tb − 1 do
4: x← x− γbGbf(x)
5: end for
6: end for
7: Output: x

1.1 Existing literature

Wang et al. (2022) attempt to analyze the federated
version of PT called ProgFed. Unfortunately, as ar-
gued in Appendix A, their analysis is vacuous.

Recently, a novel and related research thread emerged
around the idea of independent subnet training (IST)
which relies on partitioning the neural network in ques-
tion into sparser subnets, training them in parallel
across the devices and periodically aggregating the
model. Yuan et al. (2022) introduce IST and provide
its analysis. However, the authors make rather strong
assumptions on the objective function, such as Lips-
chitz continuity of the objective function and certain
assumptions on the stochastic gradient error. Anal-
ogous technique is applied by Dun et al. (2022) for
training ResNet (He et al., 2016). It is important to
note that the IST framework differs from RPT in sev-
eral key components. Indeed, IST partitions the neu-
ral network in question into sparser submodels which
are then trained across the devices in parallel. The
model is then aggregated and this procedure repeats.
In contrast, RPT performs a single update at a time of
a random subnetwork chosen in a very particular way
(which simulates the deterministic PT). Moreover, IST
is a distributed method; in contrast, in our paper we
focus on the single-node setup.

Notably, none of the aforementioned papers contains
mathematically sound analysis for general smooth
functions.

1.2 Our contributions and organization of
the paper

As we have argued, there is still a considerable gap in
theoretical understanding of the PT mechanism. The
key objective of this paper is fixing this gap by propos-
ing a randomized proxy for PT which mimics its be-
havior and has simple and general analysis with mild
assumptions. The contributions of our work can be
summarized as follows:

• In Section 2 we develop a simple and general anal-
ysis of Randomized Coordinate Descent (RCD)
for strongly-convex, convex and nonconvex objec-
tives. Our analysis recovers previous convergence
rates of RCD and allows us to fully characterize its
iteration complexity in stronlgy-convex, convex
and nonconvex regimes via a single quantity LP.

• In Sections 3 and 4 we propose a method called
RPT which mimics the behavior of PT, and, as
we argue, is the first PT-type method with sound
theoretical guarantees for smooth objectives. In-
stead of progressively expanding the model which
we are trying to optimize, in each iteration RPT
makes a choice of the submodel according to a
carefully chosen randomness, and then makes a
gradient update of this model. We then view
RPT as a particular instance of RCD, which im-
mediately establishes its convergence. We finally
identify regimes in which RPT can be advanta-
geous over vanilla gradient descent (GD) through
a novel and general notion of total computation
complexity.

• In Section 5, we present a series of empirical ex-
periments that demonstrate the advantages of our
proposed method. These experiments are divided
into three sub-sections. The first sub-section em-
ploys synthetic data to demonstrate that, when
appropriately generated, our proposed Random-
ized Progressive Training (RPT) method can con-
verge at a faster rate than Gradient Descent while
also incurring less computation cost. In the sec-
ond and third sub-sections, we utilize real-world
datasets to evaluate the performance of the RPT
method, including testing on a ridge regression
problem across various datasets and on an im-
age classification task on the CIFAR10 dataset.
The results demonstrate that the RPT method
exhibits comparable or even superior performance
in comparison to other methods.

1.3 Assumptions

In this section we lay out the assumptions that we
are going to make throughout the whole work. In an
attempt to make the analysis as general as possible, in
this paper we focus on the problem of minimizing an
arbitrary differentiable function f : Rd → R, where Rd

is decomposed as Rd1×· · ·×RdB for some pre-specified
d1, . . . , dB .

We first recall the notion of matrix smoothness (Qu
et al., 2016; Safaryan et al., 2021) which generalizes
the standard L-smoothness assumption and allows one
to encapsulate more curvature information of the ob-
jective function.

Rafa l Szlendak, Elnur Gasanov, Peter Richtárik

Definition 1. Let f : Rd → R and L be a positive
semidefinite matrix. We say that f is L-smooth if

f(x)− f(y)− ⟨∇f(y), x− y⟩ ≤
∥x− y∥2L

2

for all x, y ∈ Rd, where ∥v∥L
def
=
√
v⊤Lv.

We make the following assumption throughout the
whole paper.

Assumption 1. f is L-smooth.

With Assumption 1 taken for granted, we analyse RPT
in each of the three standard settings:

Assumption 2. f is µ-strongly convex, that is, there
exists a positive constant µ such that

f(x)− f(y)− ⟨∇f(y), x− y⟩ ≥ µ ∥x− y∥2

2

for all x, y ∈ Rd.

Assumption 3. f is convex and has a global mini-
mizer x∗.

Assumption 4. f is nonconvex and lower-bounded
by f∗ ∈ R.

Under assumptions 2, 3 and 4 respectively we will be
interesting in minimizing the following quantities:

E
[∥∥xt − x∗∥∥2] , E [f(xt)− f(x∗)

]
, E
[∥∥∇f(xt)

∥∥2] .
2 NEW ANALYSIS OF

RANDOMIZED COORDINATE
DESCENT

2.1 SkGD

Randomized Coordinate Descent (RCD) is a cele-
brated technique of minimizing high-dimensional ob-
jective functions f : Rd → R, where updating all gradi-
ent coordinates is prohibitively expensive. In its orig-
inal form (Nesterov, 2012; Richtárik and Takáč, 2014)
RCD used a biased randomized estimator of the gradi-
ent; in each iteration it chooses a random sub-block of
coordinates and performs a gradient step with respect
to that sub-block alone.

Recently, Safaryan et al. (2021) developed an unbiased
version of RCD (called SkGD) which updates the it-
erates through unbiased sketches. Specifically, in each
iteration t, SkGD starts from choosing a random set
of coordinates St ⊂ [d]. Denote pj = Prob(j ∈ St)
and assume pj > 0. Then SkGD performs an update
of form

xt+1 = xt − γCt∇f(xt),

where

Ct = Diag(c1, . . . , cd), cj =

{
1/pj if j ∈ St

0 otherwise.

It is then readily verifiable that Ct∇f(xt) is an unbi-
ased gradient estimator, that is

E
[
Ct∇f(xt)

]
= ∇f(xt).

In the remainder of this paper we will always denote

P
def
= Diag(p1, . . . , pd).

2.2 Key quantity: LP

We now define the most important component of our
analysis. In the rest of the paper λmax (M) will denote
the largest eigenvalue of matrix M.

Definition 2. Let C be an unbiased sketch operator
and P its associated probability matrix. Denote the
smoothness matrix of the objective function f by L.
Then

LP
def
= λmax

(
P−1/2LP−1/2

)
.

It turns out that this quantity describes the conver-
gence of RCD in all of the regimes in question (as-
sumptions 2, 3, 4). Therefore, by estimating it for a
particular choice of sampling distribution P one ob-
tains a unified analysis of RCD in the aforementioned
regimes. Moreover, in the following lemma we provide
sharp estimates for LP.

Lemma 1. Let L be any positive semidefinite matrix,
C – any unbiased sketch operator, and P – its proba-
bility matrix. Then

λmax(E [CLC]) ≤ LP ≤ λmax(L)λmax(P
−1).

The first bound will be useful in proving the lemma on
the convergence of RCD for nonconvex function. The
second one quantifies how large can LP be in terms
of the smoothness constant of f and P. In practice,
however, LP can be much smaller.

2.3 Convergence results

We begin with a preliminary lemma:

Lemma 2. Let W = Diag(w1, . . . , wd), where
w1, . . . , wd are any positive entries and assume that
f : Rd → R is L-smooth. Then

∥∇f(x)∥2W ≤ 2A(f(x)− f(x∗)),

where A = λmax

(
W1/2LW1/2

)
.

The following estimate of a second moment of the gra-
dient estimator is then an easy corollary of Lemma 2.

Understanding Progressive Training Through the Framework of Randomized Coordinate Descent

Lemma 3. Let C : Rd → Rd be an unbiased sketch
operator. Let f : Rd → R be differentiable and denote
g(x) = C∇f(x). Then

E
[
∥g(x)∥2

]
= ∥∇f(x)∥P−1 ≤ 2LP(f(x)− f∗).

The convergence result for f satisfying Assumption 2
is now an immediate consequence of Corollary A.1 of
(Gorbunov et al., 2020), which provides a unified anal-
ysis of SGD under strong convexity.

Theorem 1. Let f : Rd → R be L-smooth and µ-
strongly convex. Let C be an unbiased sketch with as-
sociated probability matrix P. Then the iterates xt of
SkGD with stepsize 0 < γ ≤ 1/LP and update rule
xt+1 = xt − γC∇f(xt) satisfy

E
[∥∥xt − x∗∥∥2] ≤ (1− γµ)t

∥∥x0 − x∗∥∥2 .
Under assumptions 3 and 4 there also exist unified
analyses of SGD (respectively Khaled et al. (2023) and
Khaled and Richtárik (2023)) where Lemma 2 is appli-
cable. However, as we argue in Appendix D, applying
these generic results to our setting leads to subopti-
mal convergence rates. Nevertheless, in Mishchenko
et al. (2023), the analysis of the DIANA algorithm
with n = 1 and treating the compressor as a sketch
results in an asymptotic convergence rate for the non-
convex setting that coincides with the rate proposed
in our research. However, this analysis is based on the
assumption of constant smoothness, in contrast to the
matrix smoothness adopted in our study. We instead
develop a novel analysis of SkGD in convex and non-
convex regimes and present it as Theorems 2 and 3
respectively.

Theorem 2. Let f : Rd → R be L-smoooth, convex,
and lower-bounded. Furthermore, suppose that f at-
tains its minimum at x∗. Let (xt)∞t=0 be the iterates of
the SkGD with unbiased sketch C and stepsize

0 < γ ≤ 1

2LP
.

Denote x̄T = 1
T+1

∑T
t=0 x

t. Then

E
[
f(x̄T)− f(x∗)

]
≤
∥∥x0 − x∗

∥∥2
γ(T + 1)

.

In particular, for γ = 1/(2LP) and T + 1 ≥
2LP∥x0−x∗∥2

ε , we have that

E
[
f(x̄T)− f(x∗)

]
≤ ε.

Theorem 3. Let f : Rd → R be L-smoooth and lower
bounded by f∗. Let (xt)∞t=0 be the iterates of SkGD
with unbiased sketch C and stepsize

0 < γ ≤ 1

LP
.

Denote x̂T = argmint=0,...,T ∥∇f(xt)∥2. Then

E
[∥∥∇f(x̂T)

∥∥2] ≤ 2δ0

γ(T + 1)
,

where δ0 = f(x0) − f∗. In particular, for γ = 1/LP

and T + 1 ≥ 2LPδ0

ε , we have that

E
[∥∥∇f(x̂T)

∥∥2] ≤ ε.

3 RANDOMIZED PROGRESSIVE
TRAINING

3.1 Problem formulation

For the sake of consistency with the PT framework, we
shall decompose the domain of the objective function
f into B disjoint subblocks. Thus, we will view the
domain of f as Rd1 × · · · × RdB , where

∑B
i=1 di = d.

We will further assume that f is L-smooth, where L
is a symmetric, positive definite matrix of size d × d.
We let Li be the ith diagonal subblock of L of size

di× di. We put Li
def
= λmax(Li). We will be interested

in minimizing this function under assumptions 2, 3 or
4, i.e. finding

argmin
x∈Rd1×···×RdB

f(x).

3.2 Randomized Progressive Training

We now introduce the PT-sketch operator, the key
building block of the Randomized Progressive Training
(RPT) algorithm.

Definition 3. Let 1 = p1 ≥ p2 ≥ · · · ≥ pB > 0. We
additionally put pB+1 = 0. Let σ = (σ1, . . . , σB) be
any permutation of set [B]. For each i ∈ [B] define the
matrix Ci ∈ Rd×d as follows:

Ci = Diag
(
(ξiσ1

)d1
, . . . , (ξiσB

)dB

)
,

where Diag(v) denotes the diagonal matrix with v as

its diagonal, (x)m
def
= (x, . . . , x) ∈ Rm, and

ξij =

{
1/pj if j ≤ i

0 otherwise.

We finally define a random matrix C which is equal to
Ci with probability pi − pi+1 and call it a PT-sketch.

Rafa l Szlendak, Elnur Gasanov, Peter Richtárik

With this definition, we are now ready to formulate
the RPT algorithm.

Algorithm 2 Randomized Progressive Training

1: Input: initial iterates x0 ∈ Rd1 × · · · ×RdB ; step-
size γ; integer T ≥ 0

2: for t = 1, . . . , T do
3: Draw the PT-sketch Ct

4: xt+1 = xt − γCt∇f(xt)
5: end for
6: Output: xT

RPT is an instance of SkGD with probability matrix

P = Diag
(
(pσ1)d1

, . . . , (pσB
)dB

)
.

Hence, theorems 1, 2, 3 immediately apply to it. Our
task is now to choose P in a way that minimizes the
total computation complexity.

Remark 1. There are two main differences between
RPT and classical approaches to progressive training
(Karras et al., 2018; Wang et al., 2022). Firstly, our
method chooses the sizes of coordinate updates in a
randomized fashion. PT, however, is a deterministic
method which grows the coordinate updates according
to a pre-set schedule.

Moreover, PT assumes a particular order of impor-
tance of the coordinate blocks – it always updates the
first coordinate block, then includes the second block,
and so on. However, we note that in general there is
no particular reason to prioritize the first coordinate
block, and RPT allows us to decide on the order of
importance by choosing the permutation σ in Defini-
tion 3.

Remark 2. The formulation of RPT is stemming from
the problem formulation described in Section 3.1,
which assumes a particular division of the domain el-
ements into B coordinate blocks. While our analysis
holds for any such division, we do not specify how to
decide on it, noting that it is often problem-specific
(for instance, a coordinate block might be a layer of
a neural network (Karras et al., 2018; Wang et al.,
2022)).

4 ANALYSIS OF RPT

4.1 Cost model

In this section we will define the computation cost
of optimizing the objective function from Section 3.1.
By construction, in the RPT procedure the variable
xt ∈ Rd1 × · · · × RdB is divided into B coordinate
blocks and updated with respect to a certain subset of
these blocks. In our discussion we will assume that by

carrying out an update with respect to block i the al-
gorithm suffers a penalty ci. Hence, if Ct = Ci, then
costt, the cost incurred in the iteration t is equal to∑i

j=1 cj . Moreover, without loss of generality we make
a simplifying normalizing assumption on the costs ci
for the sake of presentation.

Assumption 5.
∑B

i=1 ci = 1.

Now, recall that C = Ci with probability pi − pi+1.
Therefore, the expected cost of the entire optimization
procedure is

E [cost(T)]
def
= E

[
T∑

t=1

costt

]

= T

B∑
i=1

(pi − pi+1)

i∑
j=1

cσj

= T

B∑
i=1

picσi
.

Previous convergence results show that in order to
reach the ε-accurate solution in all regimes described
by assumptions 2, 3, and 4, one needs T to be propor-
tional to LP. Thus,

E [cost(T)] ∝ c(P)
def
= LP

B∑
i=1

picσi

regardless of the regime in question. Thus, choosing
the optimal RPT sketch is equivalent to solving the
minimization problem

min
σ

min
1=p1≥···≥pB>0

LP

B∑
i=1

picσi . (1)

4.2 Choosing the probabilities pi

Finding the global minimum of the quantity c(P) in
general is a challenging task when L is simply any
positive definite matrix; c(P) is a non-convex function
that can intricately depend on the structure of matrix
L. However, note that taking pi = 1 for all i ∈ [B]
recovers gradient descent, i.e. the optimal c(P) is at
most L. Thus, the solution of Problem (1) is not worse
than gradient descent. Furthermore, one can find a
closed-form minimizer for the tight upper bound for
LP. We first invoke Lemma 1 from Nesterov (2012).

Lemma 4. Consider an arbitrary positive semidef-
inite matrix M ∈ Rd×d with diagonal subblocks
M1,MB, where each Mi ∈ Rdi×di . Put Mi =
λmax(Mi) and M = λmax(M). Then

max
i

Mi ≤M ≤
B∑
i=1

Mi.

Understanding Progressive Training Through the Framework of Randomized Coordinate Descent

In Appendix C we argue that these bounds are tight.
We then have

c(P) ≤
B∑
i=1

Lσi

pi
·

B∑
i=1

picσi
.

The below lemma describes the global minimizer of
this upper bound.

Lemma 5.

B∑
i=1

Lσi

pi
·

B∑
i=1

picσi
≥

(
B∑
i=1

√
Lici

)2

.

Moreover, this bound is met by taking σ to be such that√
Lσ1

cσ1

≥ · · · ≥

√
LσB

cσB

,

and

pi =

√
Lσi

/cσi

maxj
√
Lj/cj

.

This choice of probabilities is similar to the one pro-
posed by Zhu et al. (2016) (which, contrary to our
paper, treats accelerated version of RCD) where the
probabilities pi are proportional to

√
Li. However,

Zhu et al. (2016) consider the setup of non-overlapping
blocks and analyse iteration complexity only. On the
contrary, our work, to the best of our knowledge, is
the first one to consider such choice of probabilities
in a non-accelerated setting and motivates this choice
through the total complexity analysis.

We summarize the discussion with the corollary:

Corollary 1. Let P be the optimal solution of Equa-
tion (1). Then,

c(P) ≤ min

L,

(
B∑
i=1

√
Lici

)2
 .

5 EXPERIMENTS

We conduct several experiments to evaluate the per-
formance of Randomized Progressive Training in com-
parison to other methods on various target functions
and datasets.

5.1 Quadratic functions on synthetic data

In the first experiment, we show how fast Random-
ized Progressive Training can be compared to vanilla
Gradient Descent. When running RPT with probabil-
ities proposed in Lemma 5, theory suggests that total

computation cost of

O


(∑B

i=1

√
Lici

)2
ε


is required to achieve ε-accuracy. At the same time,
standard theory for GD under Assumption 5 (mean-
ing that a cost of one GD iteration is one) suggests
O
(
L
ε

)
total cumulative cost. We vary block smooth-

ness constants Li and computation costs ci so that the
ratio (

∑B
i=1

√
Lici)

2/L is relatively large. In this vein,
we generate nine quadratic functions f(x) = 1

2x
⊤Ax

with varying dimensions and properties of the diagonal
matrix A. The number of blocks is three in all exper-
iments. We consider the computation cost ci of block
i to be proportional to its size. As shown on Figure 1,
when the size of the block with the smallest smooth-
ness constant is much larger than one of the largest,
RPT shows significant speedup over GD. Table 1 com-
pares speedups predicted by theory with actual ones.

Setup
Theory
speedup

Actual
speedup

dims 10 10 10
1.1 1.9

Ls 272 53.3 11
dims 10 50 250

3.4 19.8
Ls 270.5 55 11

dims 10 100 1000
5.7 26.9

Ls 256.7 54.8 11
dims 10 500 25000

12.7 36.6
Ls 274.8 55 11

dims 10 10 10
1.5 2.2

Ls 1066.5 108.4 11
dims 10 50 250

6.4 17.6
Ls 1080.4 109.6 11

dims 10 100 1000
12.3 64.9

Ls 1093.9 109.7 11
dims 10 500 25000

36.6 128.1
Ls 1066.7 110 11

dims 10 10 10
2.2 2.8

Ls 27414 547 11
dims 10 50 250

15.4 20
Ls 27166 550 11

dims 10 100 1000
40.1 62.4

Ls 26020 549 11
dims 10 500 25000

282.5 407.8
Ls 27363 550 11

Table 1: Comparison of theoretical and actual speedup
of Randomized Progressive Training versus Gradient
Descent with quadratic functions. In the ”Setup” sec-
tion, ”dims” refers to the dimension of a block and
”Ls” denotes the corresponding smoothness constant.

Rafa l Szlendak, Elnur Gasanov, Peter Richtárik

computation cost

10 56

10 48

10 40

10 32

10 24

10 16

10 8

100

fu
nc

ti
on

al
 v

al
ue

s

blocks=[10, 10, 10], Ls=['274.27', '53.71', '10.77']

RPT
GD

computation cost

10 284

10 246

10 208

10 170

10 132

10 94

10 56

10 18

fu
nc

ti
on

al
 v

al
ue

s

blocks=[10, 50, 250], Ls=['274.68', '54.85', '11.00']

RPT
GD

computation cost

10 284

10 245

10 206

10 167

10 128

10 89

10 50

10 11

fu
nc

ti
on

al
 v

al
ue

s

blocks=[10, 100, 1000], Ls=['274.66', '54.95', '11.00']

RPT
GD

computation cost

10 284

10 245

10 206

10 167

10 128

10 89

10 50

10 11

fu
nc

ti
on

al
 v

al
ue

s

blocks=[10, 500, 25000], Ls=['274.83', '55.00', '11.00

RPT
GD

computation cost

10 16

10 13

10 10

10 7

10 4

10 1

102

fu
nc

ti
on

al
 v

al
ue

s

blocks=[10, 10, 10], Ls=['1053.46', '108.34', '10.86']

RPT
GD

computation cost

10 124

10 107

10 90

10 73

10 56

10 39

10 22

10 5

fu
nc

ti
on

al
 v

al
ue

s

blocks=[10, 50, 250], Ls=['1091.17', '109.19', '11.00']

RPT
GD

computation cost

10 285

10 246

10 207

10 168

10 129

10 90

10 51

10 12

fu
nc

ti
on

al
 v

al
ue

s

blocks=[10, 100, 1000], Ls=['1090.15', '109.84', '11.00']

RPT
GD

computation cost

10 284

10 245

10 206

10 167

10 128

10 89

10 50

10 11

fu
nc

ti
on

al
 v

al
ue

s

blocks=[10, 500, 25000], Ls=['1066.67', '110.00', '11.0

RPT
GD

0 200 400 600 800 1000
computation cost

101

102

103

104

105

fu
nc

ti
on

al
 v

al
ue

s

blocks=[10, 10, 10], Ls=['27413.57', '547.01', '10.87']

RPT
GD

0 200 400 600 800 1000
computation cost

10 2

100

102

104

fu
nc

ti
on

al
 v

al
ue

s

blocks=[10, 50, 250], Ls=['27165.55', '549.71', '10.99']

RPT
GD

0 200 400 600 800 1000
computation cost

10 17

10 14

10 11

10 8

10 5

10 2

101

104

fu
nc

ti
on

al
 v

al
ue

s

blocks=[10, 100, 1000], Ls=['26019.48', '548.59', '11.00']

RPT
GD

0 200 400 600 800 1000
computation cost

10 284

10 245

10 206

10 167

10 128

10 89

10 50

10 11

fu
nc

ti
on

al
 v

al
ue

s

blocks=[10, 500, 25000], Ls=['27363.11', '549.94', '11.0

RPT
GD

Figure 1: Comparison of Randomized Progressive Training (RPT) Gradient Descent (GD) on quadratic functions.
Target function is f(x) = 1

2x
⊤Ax, where the diagonal matrix A ∈ Rl×l and its dimension l differ in each plot.

For RPT, the iterate is separated into three blocks. ’blocks’ in the plot title indicates the block sizes, ’Ls’
indicates smoothness constants within the corresponding block. Numbers in ’blocks’ sum up to l. The block
computation cost ci is the size of block i divided by l, and the computation cost of a single GD iteration is one.
Probabilities for RPT are set as stated in Lemma 5.

5.2 Ridge regression on real datasets

In our second set of experiments, we assess the con-
vergence of Randomized Progressive Training, Gra-
dient Descent, and Cyclic Block Coordinate Descent
(CBCD) (Sun and Hong, 2015) on the ridge regression
problem

min f(x) =
1

n

n∑
i=1

(⟨ai, x⟩ − bi)
2 + λ∥x∥22,

where ai ∈ Rd, bi ∈ R and λ is a regularization param-
eter. We consider four regression datasets: California
housing (Kelley Pace and Barry, 1997), prostate can-
cer, Los Angeles ozone (Hastie et al., 2009), and white
wine quality (Cortez et al., 2009). Each dataset fea-
ture is normalized, and a bias vector is added. Then,
heuristically, features are permuted so that the diago-
nal of the Hessian matrix is sorted in descending order.
As in the previous experiment, we consider ci propor-
tional to the corresponding block size.

As can be seen from Figure 2, although the theoretical
speedup of RPT over GD, according to Table 2, is close

Dataset
Theory Actual
speedup speedup

california housing 1 1.3
prostate cancer 1 2.1
los angeles ozone 1 2.4
white wine quality 1.1 1.3

Table 2: Comparison of theoretical and actual speedup
of Randomized Progressive Training versus Gradient
Descent for ridge regression problems.

to 1, the actual speedup is still noteworthy. However,
both algorithms are slower than Cyclic Block Coordi-
nate Descent.

5.3 Image classification on CIFAR10

In our final computational experiment, we trained a
Deep Residual Neural Network (He et al., 2016) with
18 layers (ResNet18) for the task of image classification
on the CIFAR10 dataset (Krizhevsky, 2009).

Understanding Progressive Training Through the Framework of Randomized Coordinate Descent

0 100 200 300 400 500 600 700 800
computation cost

10 26

10 22

10 18

10 14

10 10

10 6

10 2

102

||
xk

x
||

2

california housing

RPT
GD
CBCD

0 50 100 150 200
computation cost

10 27

10 23

10 19

10 15

10 11

10 7

10 3

101

||
xk

x
||

2

prostate cancer

RPT
GD
CBCD

0 20 40 60 80 100 120 140
computation cost

10 25

10 21

10 17

10 13

10 9

10 5

10 1

103

||
xk

x
||

2

los angeles ozone

RPT
GD
CBCD

0 100 200 300 400 500 600 700
computation cost

10 25

10 21

10 17

10 13

10 9

10 5

10 1

103

||
xk

x
||

2

white wine quality

RPT
GD
CBCD

Figure 2: Comparison of Randomized Progressive Training (RPT) vs. Gradient Descent (GD) and Cyclic Block
Coordinate Descent (CBCD) on the ridge regression problem. The block computation cost ci is the size of block
i divided by the dimension of the problem, and the computation cost of one GD iteration is 1. Probabilities of
block sampling for RPT are set as stated in Lemma 5.

Implementation. The CIFAR10 dataset comprises
50’000 training samples and 10’000 test samples, which
are distributed evenly among 10 classes.. The sam-
ples are RGB images of size 32 × 32. To facilitate
hyperparameter tuning, we further divided the train-
ing dataset into training and validation datasets with
a ratio 9 : 1. During the training process, we ap-
plied a padding of 4, randomly cropped to size 32×32,
and randomly flipped images horizontally. We trained
the neural network with three algorithms: Stochastic
Gradient Descent, Progressive Training (Wang et al.,
2022), and our own method. The batch size remains
fixed at 128 for each method. We implemented all set-
tings using the Python packages JAX (Bradbury et al.,
2018), Flax (Heek et al., 2020), and Optax.

Computation cost. The computation cost associ-
ated with a convolutional layer in ResNet18 is esti-
mated by calculating the ratio of the total number of
elements in the kernel to the total number of parame-
ters present in ResNet18. Similarly, the computation
cost attributed to the fully connected layer is deter-
mined by dividing the total number of weights within
that layer by the overall number of parameters. It is
noted for simplicity that the computation cost associ-
ated with the batch normalization layer is disregarded
and considered as zero. These computations reflect
the costs incurred for processing the entire batch.

Fine-tuning. Fine-tuning is a crucial step in the pro-
cess of training neural networks, as the lack of smooth-
ness and convexity properties inherent in these mod-
els often renders the application of theoretical results
ineffective (Szegedy et al., 2014). To address this, a
common approach for hyperparameter tuning is to uti-
lize a grid search method. In our case, for the Ran-
domized Progressive Training method, we fine-tuned
the learning rate and sampling probabilities. A grid
search was conducted for the learning rate over the
values [1, 0.5, 0.1, 0.05, 0.01, 0.001], and for sampling

probabilities, we evaluated two different strategies.
The first strategy used exponentially decaying prob-
abilities with rates [0.999, 0.995, 0.99, 0.95, 0.9, 0.85],
e.g., for a rate of 0.9, the probabilities were calcu-
lated as (p1, . . . , p22) = (1, 0.9, 0.92, . . . , 0.9921). The
second strategy used evenly spaced probabilities be-
tween p1 = 1 and p22, where p22 ran over the list
[0.7, 0.6, 0.5, 0.4, 0.3, 0.2]. The best results were ob-
tained with a learning rate of 1 and exponentially
decaying sampling probabilities with a rate of 0.9.
For Progressive Training (PT), we only fine-tuned the
learning rate and utilized the round sizes T1, . . . , T22

suggested in (Wang et al., 2022) as the best strat-
egy. Specifically, we set T1 = · · · = T21 = T

44 , and

T22 = 23T
44 , where T is the total number of steps.

The grid search for the learning rate was the same as
for RPT. Additionally, Stochastic Gradient Descent
parameters such as the learning rate, weight decay,
and momentum were set according to the guidelines
in (Moreau et al., 2022). The batch size in all three
settings was 128.

Results. The results of our image classification task
are summarized in Figure 3. While it may appear
that RPT converges more slowly and has a lower test
accuracy than SGD, based on Figures 3c and 3d, it
is important to note that this comparison is not en-
tirely fair as one RPT step can take significantly less
time than one SGD step. To more accurately compare
the performance of RPT to its competitors, we have
evaluated the performance versus computation cost, as
shown in Figures 3a and 3b. From these figures, it is
clear that RPT outperforms both competitors.

Remark 3. In our practical deployment of Algo-
rithms 1 and 2, at every iteration, we initially compute
the entire gradient, retaining only those elements as
dictated by the algorithm. This procedure accurately
emulates algorithms but proves to be impractical for
real-world application due to the necessity of comput-

Rafa l Szlendak, Elnur Gasanov, Peter Richtárik

0 10000 20000 30000 40000 50000 60000 70000
computation cost

0.0

0.5

1.0

1.5

2.0

2.5

tr
ai

ni
ng

 lo
ss

ResNet18, CIFAR10

RPT
SGD
PT

(a) Training loss versus computation cost

0 10000 20000 30000 40000 50000 60000 70000
computation cost

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

te
st

 a
cc

ur
ac

y

ResNet18, CIFAR10

RPT
SGD
PT

(b) Test accuracy versus computation cost

0 25 50 75 100 125 150 175 200
epoch

0.0

0.5

1.0

1.5

2.0

2.5

tr
ai

ni
ng

 lo
ss

ResNet18, CIFAR10

RPT
SGD
PT

(c) Training loss versus epoch

0 25 50 75 100 125 150 175 200
epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

te
st

 a
cc

ur
ac

y

ResNet18, CIFAR10

RPT
SGD
PT

(d) Test accuracy versus epoch

Figure 3: Comparison of Randomized Progressive Training (RPT), Stochastic Gradient Descent (SGD), and
Progressive Training (PT) on an image classification task using a ResNet18 model. The block computation
cost ci is proportional to the number of elements in the kernel for convolution layers, the number of weights
in the fully connected layer, and is disregarded (assigned a value of zero) for the batch normalization layer.
Normalization is implemented in such a manner that the cumulative computation cost across all blocks for a
single batch equals 1. Consequently, the computation cost for one iteration of Stochastic Gradient Descent over
a batch is also one.

ing the full gradient, effectively nullifying any theo-
retical advantages. Consequently, comparing the effi-
ciency of Randomized Progressive Training against a
robustly implemented Stochastic Gradient Descent, as
included in the standard Optax package, particularly
regarding time efficiency, proves to be an inequitable
evaluation.

6 Limitations

The primary constraint of this study resides in the
computational challenges associated with the determi-

nation of the constants denoted as Li within a real-
world context, which forms the foundation for the the-
oretical derivations presented. Furthermore, a critical
assumption underpinning this study pertains to the
smoothness of the objective function, a premise that
may not inherently hold true for neural networks.

Understanding Progressive Training Through the Framework of Randomized Coordinate Descent

References

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J.,
Leary, C., Maclaurin, D., Necula, G., Paszke, A.,
VanderPlas, J., Wanderman-Milne, S., and Zhang,
Q. (2018). JAX: composable transformations of
Python+NumPy programs.

Cortez, P., Cerdeira, A., Almeida, F., Matos, T., and
Reis, J. (2009). Modeling wine preferences by data
mining from physicochemical properties. Decision
Support Systems, 47(4):547–553. Smart Business
Networks: Concepts and Empirical Evidence.

Dun, C., Wolfe, C. R., Jermaine, C. M., and Kyril-
lidis, A. (2022). ResIST: layer-wise decomposition
of ResNets for distributed training. In Conference
on Uncertainty in Artificial Intelligence (UAI).

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative adversarial nets. In Con-
ference on Neural Information Processing Systems
(NeurIPS).

Gorbunov, E., Hanzely, F., and Richtarik, P. (2020).
A unified theory of SGD: variance reduction, sam-
pling, quantization and coordinate descent. In In-
ternational Conference on Artificial Intelligence and
Statistics (AISTATS).

Hastie, T., Tibshirani, R., and Friedman, J. (2009).
The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep
residual learning for image recognition. In IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR).

Heek, J., Levskaya, A., Oliver, A., Ritter, M., Ronde-
pierre, B., Steiner, A., and van Zee, M. (2020). Flax:
A neural network library and ecosystem for JAX.

Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2018).
Progressive growing of GANs for improved quality,
stability, and variation.

Kelley Pace, R. and Barry, R. (1997). Sparse spa-
tial autoregressions. Statistics & Probability Letters,
33(3):291–297.

Khaled, A. and Richtárik, P. (2023). Better theory
for SGD in the nonconvex world. Transactions on
Machine Learning Research.

Khaled, A., Sebbouh, O., Loizou, N., Gower, R. M.,
and Richtárik, P. (2023). Unified analysis of stochas-
tic gradient methods for composite convex and
smooth optimization. Journal of Optimization The-
ory and Applications.

Krizhevsky, A. (2009). Learning multiple layers of fea-
tures from tiny images. Technical report, Depart-
ment of Computer Science, University of Toronto.

Mishchenko, K., Gorbunov, E., Takáč, M., and
Richtárik, P. (2023). Distributed learning with com-
pressed gradient differences.

Moreau, T., Massias, M., Gramfort, A., Ablin, P.,
Bannier, P.-A., Charlier, B., Dagréou, M., Dupré la
Tour, T., Durif, G., F. Dantas, C., Klopfenstein,
Q., Larsson, J., Lai, E., Lefort, T., Malézieux, B.,
Moufad, B., T. Nguyen, B., Rakotomamonjy, A.,
Ramzi, Z., Salmon, J., and Vaiter, S. (2022). Ben-
chopt: Reproducible, efficient and collaborative op-
timization benchmarks. In Conference on Neural
Information Processing Systems (NeurIPS).

Nesterov, Y. (2012). Efficiency of coordinate de-
scent methods on huge-scale optimization problems.
SIAM Journal on Optimization, 22(2):341–362.

Qu, Z., Richtarik, P., Takac, M., and Fercoq, O.
(2016). SDNA: stochastic dual newton ascent for
empirical risk minimization. In International Con-
ference on Machine Learning (ICML).

Richtárik, P. and Takáč, M. (2014). Iteration complex-
ity of randomized block-coordinate descent methods
for minimizing a composite function. Mathematical
Programming, 144(1):1–38.

Safaryan, M., Hanzely, F., and Richtarik, P. (2021).
Smoothness matrices beat smoothness constants:
better communication compression techniques for
distributed optimization. In Conference on Neural
Information Processing Systems (NeurIPS).

Sun, R. and Hong, M. (2015). Improved iteration com-
plexity bounds of cyclic block coordinate descent for
convex problems. In Conference on Neural Informa-
tion Processing Systems (NeurIPS).

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J.,
Erhan, D., Goodfellow, I., and Fergus, R. (2014).
Intriguing properties of neural networks. In In-
ternational Conference on Learning Representations
(ICLR).

Wang, H.-P., Stich, S., He, Y., and Fritz, M. (2022).
ProgFed: effective, communication, and computa-
tion efficient federated learning by progressive train-
ing. In International Conference on Machine Learn-
ing (ICML).

Yuan, B., Wolfe, C. R., Dun, C., Tang, Y., Kyrillidis,
A., and Jermaine, C. (2022). Distributed learning of
fully connected neural networks using independent
subnet training. Proceedings of the VLDB Endow-
ment.

Zhu, Z. A., Qu, Z., Richtárik, P., and Yuan, Y. (2016).
Even faster accelerated coordinate descent using
non-uniform sampling. In International Conference
on Machine Learning (ICML).

Rafa l Szlendak, Elnur Gasanov, Peter Richtárik

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Not Applicable]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes]

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]

Understanding Progressive Training Through the Framework of Randomized Coordinate Descent

A ISSUES WITH THE THEORY FOR PROGFED

We will first briefly outline the notation that Wang et al. (2022) use in their paper.

We denote by M the neural network that we aim to train. Put Ms to be network M truncated to its first s
layers. Let L denote loss function of interest and put f and fs to be L ◦M and L ◦Ms respectively. Denote
xs to be the parameter vector ofMs. Finally, for s ≤ i ≤ S we put xi

|Es
and ∇f i(xi)|Es

to be the projections

of vectors xi and ∇f i(xi) onto the parameter space ofMs.

The first result by Wang et al. (2022) proves that

1

T

T−1∑
t=0

α2
t

∥∥∇fs(xs
t)|Es

∥∥ < ε

after O
(

σ2

ϵ2 + 1
ϵ

)
· LF0 iterations. Here xs

t is the tth iterate of ProgFed,

αt = min

{
1,

〈
∇f(xt)|Es

,∇fs(xs
t)|Es

〉
∥∇fs(xs

t)∥
2

}
,

L is the smoothness constant of f , and F0 is the function suboptimality. Thus, the numbers αt depend on the
iterates xt. No bounds on αt are provided. In particular, the theory does not exclude the possibility that α2

t are
extremely close to 0. This renders the result meaningles.

The second result that Wang et al. (2022) attempts to bound 1
T

∑T−1
t=0 ∥∇f (xt)∥2. Unfortunately, it suffers from

a similar issue. The authors claim that 1
T

∑T−1
t=0 ∥∇f (xt)∥2 after

O
(
q4σ2

ϵ2
+

q2

ϵ

)
· LF0,

where q := maxt∈[T]

(
qt :=

∥∇f(xt)∥
αt∥∇fs(xs

t)|Es
∥

)
. Wang et al. (2022) do not provide any bound on q, which does

not depend on the iterates. Thus, it is not possible to decide a priori how many iterations do we need in order
to reach the ε-accurate solution, because the theory is dependent on the iterates produced during the run of
the method. In other words, their second convergence result (in its current state) does not exclude an infinite
runtime, so in fact it does not show the convergence at all.

B PROOFS

B.1 Proof of Lemma 1

Lemma 1. Let L be any positive semidefinite matrix, C – any unbiased sketch operator, and P – its probability
matrix. Then

λmax(E [CLC]) ≤ LP ≤ λmax(L)λmax(P
−1).

Proof. We start from proving the first inequality. Let x ∈ Rd. Then

x⊤P1/2E [CLC]P1/2x = E
[∥∥∥L1/2CP1/2x

∥∥∥2]
≤ λmax(L)E

[∥∥∥CP1/2x
∥∥∥2]

= λmax(L)E

[
n∑

i=1

1

pi
x2
iχ{C=Ci}

]

= λmax(L)

n∑
i=1

x2
i

1

pi
pi

= λmax(L) ∥x∥2 .

Rafa l Szlendak, Elnur Gasanov, Peter Richtárik

Thus,
λmax(P

1/2E [CLC]P1/2) ≤ λmax(L),

i.e.
λmax(E [CLC]) ≤ λmax(P

−1/2LP−1/2).

For the second inequality, similarly,

x⊤P−1/2LP−1/2x =
∥∥∥L1/2P−1/2x

∥∥∥2
≤ λmax(L)

∥∥∥P−1/2x
∥∥∥2

≤ λmax(L)λmax(P
−1) ∥x∥2 .

Thus,
λmax(P

−1/2LP−1/2) ≤ λmax(L)λmax(P
−1).

B.2 Proof of Lemma 2

Lemma 2. Let W = Diag(w1, . . . , wd), where w1, . . . , wd are any positive entries and assume that f : Rd → R
is L-smooth. Then

∥∇f(x)∥2W ≤ 2A(f(x)− f(x∗)),

where A = λmax

(
W1/2LW1/2

)
.

Proof. Fix α ∈ R and x ∈ Rd. Since x⋆ is a minimizer of f and since f is L-smooth, we have

f (x⋆) ≤ f(x− αW∇f(x))

≤ f(x)− α⟨∇f(x),W∇f(x)⟩+ α2

2
∥W∇f(x)∥2L

= f(x)− α⟨∇f(x),W∇f(x)⟩+ α2

2
⟨∇f(x),WLW∇f(x)⟩

By definition of A, we have W1/2LW1/2 ⪯ AId, which implies that WLW ⪯ AW. Plugging this estimate into
the above inequality, we get

f (x⋆) ≤ f(x)− α∥∇f(x)∥2W +
α2A

2
∥∇f(x)∥2W

= f(x)−
(
α− α2A

2

)
∥∇f(x)∥2W

Since the above inequality holds for any α ∈ R, it also holds for α⋆ = 1
A ; this α maximizes the expression α− α2A

2 .
It only remains to plug α⋆ into the above expression and rearrange the inequality.

B.3 Proof of Lemma 3

Lemma 3. Let C : Rd → Rd be an unbiased sketch operator. Let f : Rd → R be differentiable and denote
g(x) = C∇f(x). Then

E
[
∥g(x)∥2

]
= ∥∇f(x)∥P−1 ≤ 2LP(f(x)− f∗).

Proof.

E
[
∥g(x)∥2

]
= E

[
∥C∇f(x)∥2

]
= E

[
∇f(x)⊤C2∇f(x)

]
= ∇f(x)⊤E

[
C2
]
∇f(x)

= ∇f(x)⊤P−1∇f(x)
= ∥∇f(x)∥P−1 .

Understanding Progressive Training Through the Framework of Randomized Coordinate Descent

The last inequality follows directly from Lemma 2.

B.4 Proof of Theorem 2

Theorem 2. Let f : Rd → R be L-smoooth, convex, and lower-bounded. Furthermore, suppose that f attains its
minimum at x∗. Let (xt)∞t=0 be the iterates of the SkGD with unbiased sketch C and stepsize

0 < γ ≤ 1

2LP
.

Denote x̄T = 1
T+1

∑T
t=0 x

t. Then

E
[
f(x̄T)− f(x∗)

]
≤
∥∥x0 − x∗

∥∥2
γ(T + 1)

.

In particular, for γ = 1/(2LP) and T + 1 ≥ 2LP∥x0−x∗∥2
ε , we have that

E
[
f(x̄T)− f(x∗)

]
≤ ε.

Proof. Taking conditional expectations and expanding the brackets yields

E
[∥∥xt+1 − x∗∥∥2 |xt

]
=
∥∥xt − x∗∥∥2 − 2γE

[〈
C∇f(xt), xt − x∗〉 |xt

]
+ γ2E

[∥∥C∇f(xt)
∥∥2 |xt

]
≤
∥∥xt − x∗∥∥2 − 2γ

〈
∇f(xt), xt − x∗〉+ 2γ2LP

(
f(xt)− f(x∗)

)
≤
∥∥xt − x∗∥∥2 − 2γ

(
f(xt)− f(x∗)

)
+ γ

(
f(xt)− f(x∗)

)
=
∥∥xt − x∗∥∥2 − γ

(
f(xt)− f(x∗)

)
,

where the first inequality follows from Lemma 3, and the second one from convexity of f and 0 < γ ≤ 1/(2LP).
Rearranging the above inequality, taking the expectation of both sides and using the tower property gives

γE
[
f(xt)− f(x∗)

]
≤ E

[∥∥xt − x∗∥∥2 − ∥∥xt+1 − x∗∥∥2] .
Thus, by convexity of f , we finally arrive at

E
[
f(x̄T)− f(x∗)

]
≤ 1

γ(T + 1)

T∑
t=0

(
f(xt)− f(x∗)

)
≤ 1

γ(T + 1)

(∥∥x0 − x∗∥∥2 − E
[∥∥xT+1 − x∗∥∥2])

≤
∥∥x0 − x∗

∥∥2
γ(T + 1)

.

B.5 Proof of Theorem 3

Theorem 3. Let f : Rd → R be L-smoooth and lower bounded by f∗. Let (xt)∞t=0 be the iterates of SkGD with
unbiased sketch C and stepsize

0 < γ ≤ 1

LP
.

Denote x̂T = argmint=0,...,T ∥∇f(xt)∥2. Then

E
[∥∥∇f(x̂T)

∥∥2] ≤ 2δ0

γ(T + 1)
,

where δ0 = f(x0)− f∗. In particular, for γ = 1/LP and T + 1 ≥ 2LPδ0

ε , we have that

E
[∥∥∇f(x̂T)

∥∥2] ≤ ε.

Rafa l Szlendak, Elnur Gasanov, Peter Richtárik

Before carrying out the proof of Theorem 3 we note that in this theorem, one can replace LP by

LM
def
= λmax(E [CLC])

which is at most LP by Lemma 1. However, the constant LM is difficult to interpret qualitatively. For the sake
of unified presentation of the RPT analysis in all regimes in question, we therefore chose to replace it by LP.

Proof. By L-smoothness we have

f(xt+1) ≤ f(xt) +
〈
∇f(xt), xt+1 − xt

〉
+

∥∥xt+1 − xt
∥∥2
L

2

= f(xt)− γ
〈
∇f(xt),C∇f(xt)

〉
+

γ2

2

∥∥C∇f(xt)
∥∥2
L

= f(xt)− γ
〈
∇f(xt),C∇f(xt)

〉
+

γ2

2

〈
∇f(xt),CLC∇f(xt)

〉
.

Thus, taking expectation conditional on xt yields

E
[
f(xt+1)|xt

]
≤ f(xt)− γ

∥∥∇f(xt)
∥∥2 + γ2

2
∇f(xt)⊤E [CLC]∇f(xt)

≤ f(xt)− γ
∥∥∇f(xt)

∥∥2 + γ2

2
LM

∥∥∇f(xt)
∥∥2

≤ f(xt)− γ
∥∥∇f(xt)

∥∥2 + γ2

2
LP

∥∥∇f(xt)
∥∥2 ,

i.e. (
γ − γ2LP

2

)∥∥∇f(xt)
∥∥2 ≤ f(xt)− E

[
f(xt+1)|xt

]
.

By taking expectations of both sides, using tower property and taking the average over t, we get

γ

2
min

t=0,...,T

∥∥∇f(xt)
∥∥2 ≤ γ

2(T + 1)

T∑
t=0

∥∥∇f(xt)
∥∥2

≤
(γ
2
+

γ

2
(1− γLP)

) 1

T + 1

T∑
t=0

∥∥∇f(xt)
∥∥2

=

(
γ − γ2LP

2

)
1

T + 1

T∑
i=0

∥∥∇f(xt)
∥∥2

≤ 1

T + 1
E
[
f
(
x0
)
− f

(
xT+1

)]
≤ 1

T + 1
δ0.

Rearranging gives

E
[∥∥∇f(x̂T)

∥∥2] ≤ 2δ0

γ(T + 1)
.

B.6 Proof of Lemma 4

Lemma 4. Consider an arbitrary positive semidefinite matrix M ∈ Rd×d with diagonal subblocks M1,MB,
where each Mi ∈ Rdi×di . Put Mi = λmax(Mi) and M = λmax(M). Then

max
i

Mi ≤M ≤
B∑
i=1

Mi.

Understanding Progressive Training Through the Framework of Randomized Coordinate Descent

Proof. The second inequality is just Lemma 1 from Nesterov (2012). Let us now prove the first inequality.
Without loss of generality we may assume that maxi Li = L1. Denote ei to be the ith standard unit vector of
Rd. Let S = Span(e1, . . . , ed1

). Now,

L1 = sup
x∈Rd1 ,
∥x∥=1

x⊤L1x

= sup
x∈S,
∥x∥=1

x⊤Lx

≤ sup
x∈Rd,
∥x∥=1

x⊤Lx.

This concludes the proof.

B.7 Proof of Lemma 5

Lemma 5.
B∑
i=1

Lσi

pi
·

B∑
i=1

picσi ≥

(
B∑
i=1

√
Lici

)2

.

Moreover, this bound is met by taking σ to be such that√
Lσ1

cσ1

≥ · · · ≥

√
LσB

cσB

,

and

pi =

√
Lσi

/cσi

maxj
√

Lj/cj
.

Proof. By Cauchy-Schwarz inequality,

B∑
i=1

Lσi

pi
·

B∑
i=1

picσi
≥

(
B∑
i=1

√
Lσi

/pi ·
√
picσi

)2

=

(
B∑
i=1

√
Lici

)2

.

Since we are free to choose permutation σ, we may clearly choose it in such a way that√
Lσ1/cσ1 ≥ · · · ≥

√
LσB

/cσB
.

Plugging in this choice of permutation σ and probablities p1, . . . , pB verifies that the lower bound from Lemma 5
is attainable.

Rafa l Szlendak, Elnur Gasanov, Peter Richtárik

C DISCUSSION ABOUT TIGHTNESS OF LEMMA 4

Here we consider the 2-block case argue that the maximum eigenvalue λmax(M) can be arbitrarily close to
λmax(M1) + λmax(M2). Extension of the below result to an arbitrary number of blocks is very straightforward.

Proposition 1. Let M1 ∈ Sd1
++,M2 ∈ Sd2

++, and C =
√
λmax(M1)(λmax(M2)− ε) · vu⊤, where ε ∈

(0, λmax(M2)), u ∈ Rd1 and v ∈ Rd2 are unit eigenvectors corresponding to maximum eigenvalues of matri-

ces M1 and M2, respectively. Then the matrix M =

[
M1 C⊤

C M2

]
is positive definite, and it holds that

λmax(M) ≥ λmax(M1) + λmax(M2)− ε.

Proof. First, let us check the matrix M =

[
M1 C⊤

C M2

]
is positive definite. Since M1 is positive definite, it suffices

to check that M2 −CM−1
1 C⊤ is positive definite. The second term can be rewritten as

CM−1
1 C⊤ = λmax(M1)(λmax(M2)− ε)v u⊤M−1

1 u︸ ︷︷ ︸
= 1

λmax(M1)

v⊤ = (λmax(M2)− ε)vv⊤.

Now, through eigenvalue decomposition of M2, we see that eigenvalues of M2 − CM−1
1 C⊤ are the same as

eigenvalues of M2 except for the maximum one, which is replaced by ε > 0. Thus, M2 −CM−1
1 C⊤ is positive

definite.

Let M1 = Λ1Σ1Λ
⊤
1 and M2 = Λ2Σ2Λ

⊤
2 be eigenvalue decompositions of the matrices, and with-

out the loss of generality assume that the eigenvalues are sorted in a descending order. We also set

a
def
=
√
λmax(M1)(λmax(M2)− ε). Then

M′ def
= Diag(Λ1,Λ2)

⊤MDiag(Λ1,Λ2) =

[
ΣA Diag(a, 0, . . . , 0)⊤

Diag(a, 0, . . . , 0) Σ2

]
has the same set of eigenvalues as M. We now have

λmax(M
′) = max

∥u′∥2+∥v′∥2=1
(u′, v′)⊤M′(u′, v′)

= max
∥u′∥2+∥v′∥2=1

u′⊤Σ1u
′ + v′⊤Σ2v

′ + 2u′⊤ Diag(a, 0, . . . , 0)⊤v′

≥ max
x2+y2=1

x2λmax(M1) + y2λmax(M2) + 2xy
√
λmax(M1)(λmax(M2)− ε)

≥ max
x2+y2=1

x2λmax(M1) + y2(λmax(M2)− ε) + 2xy
√
λmax(M1)(λmax(M2)− ε)

= max
x2+y2=1

(
x
√
λmax(M1) + y

√
λmax(M2)− ε

)2
≥
(
x
√
λmax(M1) + y

√
λmax(M2)− ε

)2 ∣∣∣
x=

√
λmax(M1)

λmax(M1)+λmax(M2)−ε
,y=

√
λmax(M2)−ε

λmax(M1)+λmax(M2)−ε

= λmax(M1) + λmax(M2)− ε.

It remains to note that λmax(M
′) = λmax(M), since the sets of eigenvalues coincide.

D DISCUSSION ABOUT THE UNIFIED ANALYSIS IN NONCONVEX AND
CONVEX SETTINGS

D.1 Nonconvex setting

Recent theoretical breakthrough of Khaled and Richtárik (2023) offers generic result on the convergence of
SGD under very mild assumptions. However, in this section we argue that the rates promised by this result is
suboptimal for the setting of our paper, which is why we derived a separate analysis of RCD in this regime.

Understanding Progressive Training Through the Framework of Randomized Coordinate Descent

Assumption 6 (Assumption 2, Khaled and Richtárik (2023)). Let g(x) be an unbiased estimator of ∇f(x) for
all x ∈ Rd. We say that g satisfies an ABC assumption if

E
[
∥g(x)∥2

]
≤ 2A

(
f(x)− f inf

)
+B ∥∇f(x)∥2 + C.

for all x ∈ Rd.

Theorem 4. Suppose that f is lower-bounded and L-smooth. Let g be an unbiased gradient estimator satisfying
Assumption 6 with B = C = 0. Let 0 < γ ≤ 1√

LAK
. Denote f(x0) − f inf by δ0. Then, the iterates xt of SGD

using the estimator g and stepsize γ satisfy

min
0≤t≤T−1

E
[∥∥∇f(xt)

∥∥2] ≤ 2(1 + Lγ2A)T δ0
γT

.

In particular, for

T ≥ 144δ20LA

ε2

we have min0≤t≤T−1 E
[
∥∇f(xt)∥2

]
≤ ε.

Notice that for nonconvex smooth problems, by Lemma 3, Assumption 6 is satisfied for A = LP and B = C = 0.
Moreover,

E
[
∥g(x)∥2

]
= ∥∇f(x)∥2P−1 ≤ λmax

(
P−1

)
∥∇f(x)∥2 ,

so Assumption 6 is also satisfied for B = λmax

(
P−1

)
and A = C = 0. There seem to be no other ways in which

the RPT estimator can satisfy Assumption 6.

Plugging in both of these cases into Theorem 4 yields suboptimal convergence rates.

Indeed, for A = LP and B = C = 0 he rate of RPT guaranteed by Theorem 4 is O
(
1/
√
T
)
, which is suboptimal

(we have proved that it is in fact O(1/T)).

For B = λmax

(
P−1

)
and A = C = 0 the rate is O(1/T) but it is proportional to

Lλmax

(
P−1

)
= λmax(L)λmax

(
P−1

)
≥ LP,

by Lemma 4.

We manage to obtain faster rate by exploiting L-smoothness and the fact that E
[
∥g(x)∥2L

]
can be expressed as

a suitable matrix norm.

D.2 Convex setting

Applying generic result of Khaled et al. (2023) yields somewhat good convergence guarantee (O(1/T) rate is
recovered); however, it still suffers from an unnecessary dependency on function suboptimality.

Theorem 5 (Adapted from Khaled et al. (2023)). Let f : Rd → R be convex, differentiable and lower bounded
with global minimizer x∗. Suppose that an unbiased gradient estimator g satisfies

E
[
∥g(x)∥2

]
≤ 2A(f(x)− f(x∗)).

Choose stepsize

γ ≤ min

{
1

4A
,
1

2L

}
.

Then the SGD procedure with gradient estimator g and stepsize γ satisfies

E
[
f
(
x̄T
)
− f (x∗)

]
≤

2γδ0 +
∥∥x0 − x∗

∥∥2
γT

,

where x̄T def
= 1

t

∑T−1
i=0 xi and δ0

def
= f(x0)− f(x∗).

Rafa l Szlendak, Elnur Gasanov, Peter Richtárik

As discussed previously, the assumption from Theorem 5 is satisfied for A = LP ≥ L. Thus, the optimal
theoretical stepsize is γ = 1/(4LP). Plugging in this stepsize yields the rate

O

(
δ0 + LP

∥∥x0 − x∗
∥∥2

T

)
,

whereas we obtained the rate of

O

(
LP

∥∥x0 − x∗
∥∥2

T

)
.

	INTRODUCTION
	Existing literature
	Our contributions and organization of the paper
	Assumptions

	NEW ANALYSIS OF RANDOMIZED COORDINATE DESCENT
	SkGD
	Key quantity: LP
	Convergence results

	RANDOMIZED PROGRESSIVE TRAINING
	Problem formulation
	Randomized Progressive Training

	ANALYSIS OF RPT
	Cost model
	Choosing the probabilities pi

	EXPERIMENTS
	Quadratic functions on synthetic data
	Ridge regression on real datasets
	Image classification on CIFAR10

	Limitations
	ISSUES WITH THE THEORY FOR PROGFED
	PROOFS
	Proof of lem:keyquantity
	Proof of lem:generalizedSmoothness
	Proof of lem:secondMoment
	Proof of thm:rcdConvex
	Proof of thm:rcdNonconvex
	Proof of lem:twoBounds
	Proof of lem:upperBound

	DISCUSSION ABOUT TIGHTNESS OF LEMMA 4
	DISCUSSION ABOUT THE UNIFIED ANALYSIS IN NONCONVEX AND CONVEX SETTINGS
	Nonconvex setting
	Convex setting

