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Abstract

Generalization performance is a key metric
in evaluating machine learning models when
applied to real-world applications. Good
generalization indicates the model can pre-
dict unseen data correctly when trained
under a limited number of data. Feder-
ated learning (FL), which has emerged as a
popular distributed learning framework, al-
lows multiple devices or clients to train a
shared model without violating privacy re-
quirements. While the existing literature has
studied extensively the generalization perfor-
mances of centralized machine learning algo-
rithms, similar analysis in the federated set-
tings is either absent or with very restric-
tive assumptions. In this paper, we aim to
analyze the generalization performances of
federated learning using algorithmic stabil-
ity, which measures the change of the output
model of an algorithm when perturbing one
data point. Three widely used algorithms are
studied, including FedAvg, SCAFFOLD, and
FedProx, under convex and non-convex loss
functions. Our analysis shows that the gen-
eralization performances of models trained
by these three algorithms are closely related
to the heterogeneity of clients’ datasets as
well as the convergence behaviors of the algo-
rithms. Particularly, in the i.i.d. setting, our
results recover the classical results of stochas-
tic gradient descent (SGD).
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1 INTRODUCTION

Federated learning (FL) has recently emerged as an
important paradigm for distributed learning in large-
scale networks [1]. Unlike the traditional central-
ized learning, where a model is trained under a large
dataset stored at the server [2–4], in federated learn-
ing the server hands over computation tasks to the
clients, which in turn perform learning algorithms on
their local data. After training locally, each client re-
ports its updated model back to the server for model
aggregation. The server then aggregates all clients’
models to generate a new one that serves as the ini-
tialization for the next round of clients’ local train-
ing. This process is repeated with periodic communi-
cation. This local-training framework ensures privacy-
preserving and communication-efficient characteristics
for federated learning in the sense that no data are
transmitted to the server [1].

FedAvg [5], the first proposed algorithm satisfying
the federated learning paradigm, implements stochas-
tic gradient descent (SGD) to update local models,
which is simple to implement. However, FedAvg suf-
fers from the slow speed of convergence when local
data are highly heterogeneous because the local train-
ing steps drive the local models away from the global
optimal model and towards the local optimal solu-
tion [5,6]. This is called client-drift. To mitigate client-
drift caused by data heterogeneity, two promising al-
gorithms are proposed. FedProx [7] uses a proximal
method such that the trained local model stays rela-
tively close to the global model. Nevertheless, each
client has to solve a proximal point optimization prob-
lem during each round which could be computation-
ally expensive. Alternatively, SCAFFOLD [8] tries to
correct for client-drift based on variance reduction. It
is proved that SCAFFOLD outperforms FedAvg when
the heterogeneity level of data is large and enjoys a
faster convergence speed [8]. Besides, there are sev-
eral other algorithms proposed later focusing on deal-
ing with client-drift while improving convergence per-
formances [9, 10].



Understanding Generalization of Federated Learning via Stability: Heterogeneity Matters

Most existing experimental and theoretical results of
FL emphasize convergence to empirical optimal solu-
tions based on training datasets [7,8,11,12] and often
ignore their generalization properties. Generalization
of FL is important, as it measures the performance of
trained models on unseen data by evaluating its testing
error. There are only a few existing works studying the
generalization properties. Generalization bounds are
provided for FL [13–15], which ignores the algorithm
choices. These works also require some restrictive as-
sumptions, e.g., binary loss [13, 14], Bernstein condi-
tion [15]. In [16, 17], generalization bounds for meta-
learning and federated learning are established respec-
tively, when losses are strongly convex and bounded.
However, in many practical scenarios, strong convexity
does not hold and the loss function may be unbounded.
We also note that bounds in [16, 17] are based on uni-
form stability, which uses a supremum over all single-
point perturbations. These tend to be overly conser-
vative compared to a practical alternative notion, on-
average stability, which takes expectation instead of
supremum. Moreover, for the above-mentioned works,
the connection between data heterogeneity and gener-
alization performances is not explicitly characterized.
Therefore, in this paper, we use on-average stability
analysis to obtain generalization bounds that clearly
illustrate the dependence of data heterogeneity as well
as algorithm convergence speed of three widely-used
algorithms: FedAvg, SCAFFOLD, and FedProx. Our
bounds are established under general convex and non-
convex losses, which can be unbounded.

1.1 Related work

Convergence of federated learning algorithms.
Many recent studies are devoted to federated learning
problems due to the increasing volume of data among
heterogeneous clients and concerns about privacy leak-
age and communication costs associated with trans-
mitting users’ data for central processing [5, 8]. Fe-
dAvg applies SGD for local updates of clients and suf-
fers from slow convergence performances when the lo-
cal datasets across clients are highly heterogeneous [6].
To deal with data heterogeneity and improve conver-
gence speed, FedProx adopts proximal methods for lo-
cal training [7] and has both convergence guarantees
and improved numerical results. SCAFFOLD [8] bor-
rows the idea from variance reduction methods [18]
and shows that convergence rates can be highly im-
proved, compared to FedAvg and FedProx. In [19],
the effects of heterogeneous objectives on solution bias
and convergence slowdown are systematically investi-
gated, and FedNova is proposed to preserve fast con-
vergence. FedPD [20] views federated learning from
the primal-dual perspective. In [21], FedLin is aimed
to deal with data heterogeneity and system heterogene-

ity of clients simultaneously. More related works are
given therein [22–25].

Generalization of centralized and federated
learning. Generalization of centralized learning has
gained attraction of researchers since several decades
ago. Uniform convergence is commonly considered to
bound the generalization error by means of VC dimen-
sion or Rademacher complexity [26–29]. However, uni-
form convergence sometimes renders the bound too
loose to be meaningful [30] and from technical perspec-
tives, a finite VC dimension or Rademacher complexity
is required to obtain a finite bound, which might be
avoided for modern neural-network models. The main
limitation of uniform convergence analysis is that it
only studies the properties of model classes but ignores
training algorithms that generate the models. Taking
training algorithms into consideration, the generaliza-
tion bounds might be tightened, since we can directly
ignore a large amount of models which can never be
the output of a specific algorithm. Algorithmic sta-
bility is a useful notion that specifically helps to in-
vestigate generalization errors by considering depen-
dency on particular algorithms [31], which in the mean-
time makes the analysis for extremely complex model
classes (e.g. neural networks) possible. Generalization
bounds are built for several stochastic gradient-based
methods via algorithmic stability tools [32]- [36]. Sev-
eral other works on the generalization of centralized
learning from theoretical and experimental aspects are
listed therein [37]- [39]. In terms of federated learn-
ing, [13] provides uniform convergence bound with rate
O(1/

√
n) for agnostic federated learning problems un-

der binary losses, and n is the number of samples col-
lected by all clients. The works [40, 41] capture the
heterogeneity effect on generalization with the same
rate, while they require a common feature extraction
function across clients and the asymptotic convergence
cannot be achieved, which means the bounds cannot
approach zero as n goes to infinity. This is problematic
since one should expect the generalization bound to
vanish if there are infinitely many samples. [15] studies
the case when some clients do not participate during
the training phase and establish bounds with the faster
rate O(1/n) under Bernstein condition and bounded
losses. It further requires that clients’ distributions
are sampled from a meta-distribution, which may be
impractical. [16,17] provide generalization bounds via
uniform stability, obtaining rates O(1/n). Further,
[16] requires there is only a one-step local update which
does not match the common practice of using multiple
local updates in a federated setting. Note these works
require bounded and strongly convex loss functions,
which are quite restrictive in practice. Some other
bounds of federated learning are information-theoretic-
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based. However, these bounds are limited by requiring
specific forms of loss functions and also fail to capture
heterogeneity effect [42, 43]. A comparison of our re-
sults to the existing ones is listed in Table 1.

1.2 Our contributions

We summarize our main contributions as follows: (1)
We propose a bound on generalization error by using
algorithm-dependent on-average stability in federated
settings (see Section 3); (2) Based on on-average sta-
bility, we provide generalization upper bounds for Fe-
dAvg, SCAFFOLD and FedProx respectively with un-
bounded, convex and non-convex loss functions, which
explicitly reveal the effects of data heterogeneity and
convergence performances of different algorithms (see
Sections 5.1 and 5.2); (3) In i.i.d. setting with con-
vex loss functions, our bounds match existing results
of SGD in the sense that FedAvg reduces to SGD
method (see Section 5.1); (4) Experimental results are
provided, demonstrating the trends in our theoretical
bounds (see Section 6).

2 PROBLEM FORMULATION

In this paper, we consider the general federated learn-
ing problem, where m clients collaboratively minimize
the following global population risk formed by

R(θ) :=

m∑
i=1

piEz∼Pi
[l(θ; z)], (1)

where θ ∈ Rd is the parametrized model and Pi is
the underlying distribution of the dataset maintained
by client i. We adopt the standard assumption that
samples taken from Pi and Pj are independent for any
i, j ∈ [m] such that i ̸= j, motivated by the observa-
tion that local data of clients are commonly unrelated
in practical scenarios. We define z as the sample gen-
erated by Pi, i.e., z ∼ Pi, l(·; z) as the loss function
evaluated at sample z, and pi as some constant scalar
that measures the contribution of client i’s data to the
global objective. We also define the local population
risk as Ri(θ) := Ez∼Pi [l(θ; z)].

However, in practice, we are unable to minimize the
global population risk directly due to the unknown dis-
tributions Pi. Thus, one alternative way to get an ap-
proximate model is by collecting some empirical sam-
ple dataset Si. More specifically, each local dataset is
defined by Si := {zi,j}ni

j=1, where zi,j is the j-th sam-
ple of client i and ni is the number of local samples.
Let S :=

⋃m
i=1 Si be the dataset with all samples and

n be the total amount of samples with n =
∑m

i=1 ni.
Moreover, we are interested in the balanced case, i.e.,
pi = ni/n, meaning the contribution of each client to

the global objective is proportional to the local sample
size ni. Thus, we turn to train a model by minimizing
the following global empirical risk:

R̂S(θ) :=

m∑
i=1

piR̂Si(θ) =
1

n

m∑
i=1

ni∑
j=1

l(θ; zi,j), (2)

where we use the fact that pi = ni/n and R̂Si
(θ) is

the local empirical risk R̂Si
(θ) := 1

ni

∑ni

j=1 l(θ; zi,j).
Here we use superscript notation R̂ to indicate the
empirical version of R and will use superscript in a
similar fashion for the rest of the paper. Based on
the above definitions, we further define the ground-
truth model θ∗ by minimizing the population risk (1),
that is, θ∗ ∈ argminθ R(θ) and correspondingly the
best empirically trained model is defined by θ̂S ∈
argminθ R̂S(θ).

Our ultimate goal is to obtain the ground-truth model
θ∗, which is impossible due to unknown distributions.
What we can do practically is to solve for θ̂S by im-
plementing appropriate optimization algorithms such
that (2) is minimized. Then, a natural question is how
we could expect the trained model θ̂S to be close to θ∗.
Alternatively, we want to test model θ̂S on any unseen
data such that the testing error is small enough, which
means the model θ̂S generalizes well on any testing set.

In general, even given good datasets, exactly obtain-
ing θ̂S is still a hard optimization problem. A more
reasonable approach is to implement some algorithm
A which outputs a model A(S), noting the model is a
function of the training set S.

3 GENERALIZATION &
STABILITY

As stated in the previous section, we now focus on
the generalization performance of the output of some
algorithm A(S), given a training dataset S. Mathe-
matically, the generalization error of a model A(S) is
defined by

ϵgen := ESEA[R(A(S))− R̂S(A(S))],

where the expectation is taken over S to model the ran-
dom sampling of data and over A to allow the usage
of randomized algorithms. For instance, if the stochas-
tic gradient is used in an algorithm then the expec-
tation over A is average over different samples used
to compute the stochastic gradients. A smaller ϵgen
implies the model A(S) has a better generalization
performance on testing datasets.

Generally speaking, it is hard to characterize the gen-
eralization error due to the implicit dependency of the
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Table 1: Generalization bounds for federated learning. C, SC, and NC denote convex, strongly convex, and
non-convex, respectively. The last column represents connections of bounds to data heterogeneity.

Reference Loss Function Complexity Data Heterogeneity
[13,40,41] Binary [13]; Common Feature Extraction [40,41] O(1/

√
n) Yes

[42,43] sub-Gaussian O(1/
√
n) No

[15] Bounded, Bernstein Con O(1/n) No
[16,17] Bounded, SC, Smooth O(1/n) No

Ours Unbounded, C, Smooth O(1/n) Yes
Ours Unbounded, NC, Smooth O(1/n) Yes

model and the training dataset. In this paper, we ap-
ply the notion of algorithmic stability to provide an
upper bound on the generalization error. In particu-
lar, we formally define the on-average stability in the
context of federated learning. To do this, we first in-
troduce the definition of neighboring datasets.
Definition 1. Given a global dataset S =

⋃m
l=1 Sl,

where Sl is the local dataset of the l-th client with
Sl = {zl,1, . . . , zl,nl

}, ∀l ∈ [m], another global dataset
is said to be neighboring to S for client i, de-
noted by S(i), if S(i) :=

⋃
l ̸=i Sl ∪ S ′

i, where S ′
i =

{zi,1, . . . , zi,j−1, z
′
i,j , zi,j+1, . . . , zi,ni

} with z′i,j ∼ Pi,
for some j ∈ [ni]. And we call z′i,j the perturbed sample
in S(i).

In other words, S and S(i) are neighboring datasets
if they only differ by one data point in Si and both
are sampled from the same local distribution. Then,
we have the following definition of on-average stability
for federated learning algorithms, which is established
based on on-average stability for centralized learning
[26].
Definition 2 (on-average stability for federated learn-
ing). A federated learning algorithm A is said to have
ϵ-on-average stability if given any two neighboring
datasets S and S(i), then for any i ∈ [m]

max
j∈[ni]

EA,S,z′
i,j
|l(A(S); z′i,j)− l(A(S(i)); z′i,j)| ≤ ϵ,

where z′i,j is the perturbed sample in S(i).

On-average stability basically means any perturbation
of samples across all clients cannot lead to a big change
in the model trained by the algorithm in expectation.
The next theorem shows that on-average stability can
be used to bound the generalization error of the model.
The proof is given in Appendix B.
Theorem 1. Suppose that a federated learning algo-
rithm A is ϵ-on-averagely stable. Then,

ϵgen ≤ EA,S

[∣∣∣R(A(S))− R̂S(A(S))
∣∣∣] ≤ ϵ.

Therefore, it suffices to characterize the on-average sta-
bility of a federated learning algorithm to bound the
generalization error of the model. Theorem 1 extends
the classical connection of on-average stability and gen-
eralization [26], where no heterogeneity characteristic
of datasets is considered. Based on Definition 2, we
show that when the perturbation of a sample for any
local agent has a small influence on algorithm output
(i.e., a small ϵ), the generalization error is also small
(i.e., ϵgen is small). This relationship always holds
given any clients’ local data distributions. Then, in
the following, we focus on analyzing the stability of
different federated learning algorithms and applying
their stability results to the measure of generalization.

4 SUMMARY OF FEDERATED
LEARNING ALGORITHMS

In this section, we briefly summarize three widely-
used federated learning algorithms: FedAvg, SCAF-
FOLD, and FedProx, based on which the generaliza-
tion bounds would be provided. To simplify the anal-
ysis, we assume that there is no partial participation
among the clients, but our analysis can be extended
to partial participation scenarios as well.

Any federated algorithms can be decomposed into two
stages: local updating and model aggregation. At the
beginning of each communication round (time index
t), the server maintains a global model θt, which is
sent to all clients serving as an initial model of lo-
cal updating. All clients update their local models
θit+1 based on their own datasets in parallel. Then,
a model aggregation for the start of the next round,
i.e., θt+1 =

∑m
i=1 piθ

i
t+1. The three methods only dif-

fer in their local updating procedures and the detailed
descriptions of algorithms can be found in Appendix
A.

For FedAvg and SCAFFOLD, in the t-th communica-
tion round, we assume that there are Ki local updates
and denote by θi,k and gi(·) the local model at local
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iteration k and the sampled gradient of agent i. For
FedProx, we let θit+1 be the model of client i after lo-
cal training at round t. Then, for client i, the local
updates at iteration k are described as follows.

• FedAvg: Let αi,k be the constant (or diminishing)
local stepsize, agent i’s local update is for any k =
0, . . . ,Ki − 1

θi,k+1 = θi,k − αi,kgi(θi,k). (3)

• SCAFFOLD: Let αi,k be the constant (or diminish-
ing) local stepsize, agent i’s local update is for any
k = 0, . . . ,Ki − 1

θi,k+1 = θi,k − αi,k(gi(θi,k)− gi(θt) + g(θt)), (4)

where g(θt) =
∑m

i=1 pigi(θt) is the aggregation of
all locally sampled gradients.

• FedProx: Let ηi be a constant parameter for the
proximal term, agent i’s local update is

θit+1 = argmin
θ

R̂Si(θ) +
1

2ηi
∥θ − θt∥2. (5)

5 MAIN RESULTS

In this section, we provide bounds on the general-
ization errors for FedAvg, SCAFFOLD, and FedProx
mentioned in the last section by studying the on-
average stability in Definition 2. We allow the loss
functions to be unbounded from above, which can be
convex or nonconvex. Intuitively, different local dis-
tributions affect the global population risk (1) and
hence may affect the model generalization as well. To
measure the heterogeneity of client i’s data, we use
Di to denote the total variation of Pi and P , i.e.,
Di := dTV (Pi, P ) with P =

∑m
i=1 piPi. Moreover,

we define Dm := maxi∈[m] Di to measure the furthest
distance between the global distribution and any local
distribution1. A larger value of Dm means greater het-
erogeneity among the clients. Throughout the analysis
we require the following assumptions.
Assumption 1. The loss function l(·, z) is L-
Lipschitz continous for any sample z, that is, |l(θ; z)−
l(θ′; z)| ≤ L∥θ − θ′∥, for any z, θ, θ′.
Assumption 2. There exists a constant σ > 0
such that for any θ, i ∈ [m], and zi ∼ Pi,
E
[
∥∇l(θ; zi)−∇Ri(θ)∥2

]
≤ σ2.

Assumption 3. The loss function l(·, z) is β-smooth
for any z, that is, ∥∇l(θ; z) − ∇l(θ′; z)∥ ≤ β∥θ − θ′∥,
for any z, θ, θ′.

1Our bounds can be derived under KL divergence as
well. However, bounds involving total variation are tighter.

Assumption 1 is standard in literature [32] to establish
the connection between model perturbation with sta-
bility 2. Assumptions 2 and 3 serve in our analysis to
capture the heterogeneity of different datasets as well
as the influence of convergence performances of differ-
ent algorithms. Detailed proofs of this section are in
Appendices C and D.

5.1 Convex loss functions

We first study the case when the loss function is convex
with respect to the model parameter.
Assumption 4. The loss function l(·, z) is convex for
any z.

For each of the three algorithms, FedAvg, SCAFFOLD
and FedProx with local updates (3), (4), (5), we ap-
ply the method to two neighboring training datasets,
i.e., only one data point of one agent is different. We
then analyze and bound the difference between the re-
sulting models by data heterogeneity and algorithm
performances.
Theorem 2. Under Assumptions 1-4, denote {θt}Tt=0

and {θ′t}Tt=0 as the trajectories of the server’s mod-
els induced by neighboring datasets S and S(i), respec-
tively. Furthermore, suppose the same initialization,
i.e., θ0 = θ′0. Then by denoting δt = E∥θt − θ′t∥, we
have the following bounds on resulting models.

For FedAvg,

δT ≤ 2

n

T−1∑
t=0

havg
t

(
2LDi + E∥∇R(θt)∥+ σ

)
.

For SCAFFOLD,

δT ≤ 2

n

T−1∑
t=0

hscfd
t

(
2LDiγ

1
t + γ2

t (E∥∇R(θt)∥+ σ)
)
.

For FedProx,

δT ≤ 2

n

T−1∑
t=0

hprox
t

(
2LDi + E∥∇R(θt)∥+ σ

)
,

where γ1
t := 2α̃i,t + α̂t and γ2

t := γ1
t + βα̃2

i,t with
α̃i,t :=

∑Ki−1
k=0 αi,k, α̂t :=

∑m
j=1 pjα̃j,t. We also de-

fine
∑T−1

l=T α̂l = 0, ∀α̂l. And havg
t = α̃i,t(1 + βα̃i,t),

hscfd
t = exp

(
2β
∑T−1

l=t+1 α̂l

)
, hprox

t = ηi(1 + βηi). The
expectations are taken with respect to S and S(i) jointly
as well as the randomness of algorithms.

2Note that we only need Assumption 1 holds along the
trajectories generated by the algorithms.
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Next we discuss the implications of Theorem 2. Firstly,
the model differences δT of the three algorithms all lin-
early increase in Di. Recall that Di is the total varia-
tion of data distribution of client i and the global dis-
tribution P , measuring the heterogeneity level of client
i’s data. This dependency is due to the fact that we
only perturb one data point of client i while keeping
the others the same and hence only client i’s distribu-
tion comes into the bound. As Di increases, perturb-
ing one data point at client i’s dataset corresponds to
a bigger change in the overall dataset and therefore
the distance between the two models increases.

Secondly, the sequence of global gradients evalu-
ated along the trajectories, i.e., {E∥∇R(θt)∥}T−1

t=0 ,
influences the bounds of model differences. Note
that this effect is essentially determined by the con-
vergence performances of algorithms, in the sense
that {E∥∇R(θt)∥}T−1

t=0 captures how fast {θt}T−1
t=0 ap-

proaches to the optimal solution θ∗. Faster converg-
ing methods correspond to smaller {E∥∇R(θt)∥}T−1

t=0

terms.

Thirdly, the bounds are also proportional to the sam-
pling variance σ2 of gradients. A small σ indicates
the sampled gradient is accurate and is close to the
true gradient ∇R(·). In particular, when σ = 0, each
client is able to compute ∇Ri(·) exactly, in which case
the bounds are only related to data heterogeneity and
algorithm convergence performances.

Finally, all three bounds depend on the stepsizes cho-
sen during the local training process. Different choices
of stepsizes result in different convergence rates of al-
gorithms. From the above results, larger stepsizes may
make algorithms less “stable”, i.e., ∥θT − θ′T ∥ becomes
bigger, as any difference caused by the perturbed data
is magnified by the stepsize.

As we discussed above, the summation of E∥∇R(θt)∥
is related to the convergence speed of the algorithm.
In the following theorem, we focus on characterizing
these terms as a function of the number of iterations.
Define D̃ :=

∑m
i=1 piD

2
i and ∆0 = E[R(θ0)−R(θ∗)].

Theorem 3. Under Assumptions 1-3, suppose Ki =
K and αi,k ≤ 1/(24βK) for any i = 1, . . . ,m. Then,
for FedAvg, we have
T−1∑
t=0

havg
t E∥∇R(θt)∥ = O

(( ∆0

Km

) 1
4T

3
4 +

(
∆2

0D̃
) 1

6T
2
3

+
√
∆0T

1
2

)
.

For SCAFFOLD, if we further set αi,k ≤ 1/[24βK(t+
1)], then
T−1∑
t=0

hscfd
t γ2

t E∥∇R(θt)∥ = O
(( ∆0

Km

) 1
4T

5
6 +

√
∆0T

7
12

)
.

For FedProx, we have

T−1∑
t=0

hprox
t E∥∇R(θt)∥ = O

((
∆0D̃

) 1
2T

3
4 +

√
∆0T

1
2

)
.

Theorem 3 bounds the global gradients ∥∇R(θt)∥
along the trajectories of server’s outputs. This the-
orem holds for both convex and non-convex settings.
Under suitable selections of stepsizes, Theorem 3 im-
plies that the global gradient E∥∇R(θt)∥ converges to
zero. This is consistent with convergence results in
the optimization perspective [7, 8]. To see this, when
dividing the preceding bounds by T , the right-hand
side converges to zero in polynomial times, and hence
E∥∇R(θt)∥ must converge to zero. Moreover, these
bounds increase with ∆0, which measures the distance
of the initial model to the optimal one. Thus, starting
at a model closer to the optimal solution requires less
number of iterations to approximate accurately θ∗.

By combining Theorems 1-3, we establish the general-
ization bounds for three algorithms, respectively.
Corollary 1. Suppose Assumptions 1-4 hold and the
selection of stepsizes are the same as Theorem 3. Then,
we have the following generalization bounds: For Fe-
dAvg,

ϵgen ≤ O
(T
n
Dm

)
+O

(( ∆0

Km

) 1
4
T

3
4

n
+
(
∆2

0D̃
) 1

6
T

2
3

n

+
√
∆0

T
1
2

n

)
+O

(σT
n

)
.

For SCAFFOLD,

ϵgen ≤ Õ
(T 1

12

n
Dm

)
+O

(( ∆0

Km

) 1
4
T

5
6

n
+
√
∆0

T
7
12

n

)
+O

(T 1
12 (1 + log T )

n
σ
)
.

For FedProx,

ϵgen ≤ O
(T
n
Dm

)
+O

((
∆0D̃

) 1
2
T

3
4

n
+
√

∆0
T

1
2

n

)
+O

(T
n
σ
)
.

As indicated in Theorem 2, the generalization bound
for each algorithm can be separated into three terms
corresponding to the three O(·) terms: heterogeneity
level (first), convergence performance (second), sam-
pling variance (third). Note Dm in the first term mea-
sures data heterogeneity among all agents. A smaller
Dm indicates clients have more similar datasets, which
has a positive effect on the generalization of trained
models. Moreover, generalization bounds above scale
inversely with n, which is the total sample size. This
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implies increasing the number of samples gives a bet-
ter generalization performance. Note that fixing T , the
rate is with the order of O(1/n), which is the same as
results in the centralized setting [32,33,44].

Furthermore, when assuming all clients maintain i.i.d.
data and applying the Lipschitz continuity condition
to bound the gradient, i.e., ∥∇R(·)∥ ≤ L, we have the
following bounds under suitable choices of stepsizes.

Corollary 2. We suppose Assumptions 1-4 hold and
all clients have i.i.d. datasets, that is, Pi = Pj,
for any i, j ∈ [m]. Then for FedAvg and Fed-
Prox, if stepsizes are chosen to be constant, we have
ϵgen ≤ O(L(L+ σ)T/n). For SCAFFOLD, if step-
sizes are chosen with the order of O(c/(2βt)), we have
ϵgen ≤ O(L(L+ σ)T c log T/n).

From Corollary 2, we observe that the heterogeneity
term disappears because Dm = 0 in i.i.d. settings. If
σ is relatively small compared to L, for FedAvg, our
result is aligned with the bound for SGD [32]. The
reason is that for i.i.d. case Ri(·) = R(·) and thus
the server’s model essentially performs SGD (in ex-
pectation). For SCAFFOLD, the update reduces to
SAGA [18]. Therefore, the generalization bound for
SAGA is implied by Corollary 2.

If we set Dm = 0 and choose comparable stepsizes, the
bounds of Corollary 1 are tighter than those of Corol-
lary 2. The main reason is that using Lipschitz con-
stant L to bound the gradient is usually too loose and
the algorithm performances are highly ignored, which,
however, should be carefully considered in the analy-
sis. In particular, considering FedAvg with m = 1 and
K = 1, which is then equivalent to the classical SGD
method, our result is better than the result provided
in [32] when stepsizes are constants, where the order
of T reduces from O(T ) to O(T 3/4).

5.2 Non-convex losses

In many practical scenarios, the loss functions are non-
convex (e.g., neural networks). Therefore, we provide
generalization bounds for non-convex losses in this sub-
section.

Theorem 4. Under Assumptions 1-3, suppose Ki =
K and αi,k ≤ 1

24βK(t+1) for FedAvg and SCAFFOLD.
Then for FedAvg, we have

ϵgen ≤ Õ
(T 1

24

n
Dm

)
+O

(( ∆0

Km

) 1
4
T

5
6

n
+
(
∆2

0D̃
) 1

6
T

3
4

n

+
√
∆0

T
7
12

n

)
+ Õ

(T 1
24

n
σ
)
.

For SCAFFOLD,

ϵgen ≤ Õ
(T 1

8

n
Dm

)
+O

(( ∆0

Km

) 1
4 T

7
8

n
+
√
∆0

T
5
8

n

)
+O

(T 1
8 (log T + 1)

n
σ
)
.

For FedProx, if the eigenvalues of ∇2Ri(θ) are lower
bounded and ηi is chosen small enough and diminishing
with order O(c/t), then

ϵgen ≤ Õ
(T c

n
Dm

)
+O

((
∆0D̃

) 1
2
T

3
4+c

n
+
√
∆0

T
1
2+c

n

)
+ Õ

(
σ
T c

n

)
. (6)

In Theorem 4, the bounds are similar to those of con-
vex cases, i.e., data heterogeneity, algorithm conver-
gence, and sampled variance jointly affect the gen-
eralization error of the models. In addition, we re-
mark that in practice T is usually characterized by
a function of n and m. Then in this sense, the gen-
eralization bounds can be further simplified in terms
of the total sample size n and the number of clients
m. For example, considering (6) with one full pass
local training, i.e., T = O(n/m), we obtain ϵgen ≤
Õ(m−cn−(1−c)+m−3/4−cn−(1/4−c)), meaning the gen-
eralization error diminishes as the number of clients
participating in the learning process increases.

However, we remark that only upper bounds on gen-
eralization errors are provided, and some constants
are ignored in our O(·) notation. In reality, these ig-
nored constants (e.g. stepsizes) could largely affect
algorithms’ generalization performances. Thus, our
bounds might not be tight enough to explain accu-
rately the performances of algorithms. In addition,
for different algorithms, the selection of stepsizes is
usually a tricky task, meaning optimal stepsizes for dif-
ferent algorithms are chosen during the training pro-
cess. This implies, in general, it is hard to compare
generalization errors among different algorithms by di-
rectly analyzing our bounds. Instead, the main insight
shown by our results is that explicit dependency of
data heterogeneity to generalization is clearly charac-
terized through total variation among local distribu-
tions. This is a first step towards this direction, as
existing literature [15–17] fails to characterize the con-
nection of data heterogeneity to generalization bounds.

6 EXPERIMENTS

In this section, we numerically evaluate the generaliza-
tion errors of models trained by FedAvg, SCAFFOLD
and FedProx under non-convex loss functions, given
different heterogeneity levels of clients’ datasets.
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Experimental Setups. We investigate classification
problems using the MNIST dataset [45]. Each client
maintains a three-layer neural network comprising two
convolutional layers and a fully connected layer. We fo-
cus on a federated learning system involving 10 clients.
The training is based on Personalized Federated Plat-
form [46].

Next, we elaborate on how we construct different
clients’ datasets with different heterogeneity levels.
We introduce various levels of heterogeneity among the
clients’ local data distributions to examine the impact
of heterogeneity on the generalization performance. In
the case of extreme heterogeneity, labeled “fully non-
i.i.d.” scenario, each client has two specific labels out
of the ten available MNIST. In the “i.i.d.” scenario, the
local datasets are uniformly mixed with all ten labels.
We also consider the intermediate scenarios labeled “ρ
non-i.i.d.”, where a fraction ρ of data follows the “fully
non-i.i.d.” assignment, while the remaining fraction
1 − ρ adheres to the “i.i.d.” assignment. We call ρ
the heterogeneity level of local data distributions and
run the experiments for ρ = 0, 0.2, 0.5, 0.8, 1 cases (5
in total), where ρ = 0 and ρ = 1 are the “i.i.d.” and
“fully non-i.i.d.” cases, respectively.

In different settings, we start the algorithms from the
same initial value with the same training loss. As the
training goes on, the training losses decrease. We com-
pare trained models under different levels of training
losses. To quantify the generalization errors, we use
the absolute difference between the training and test-
ing losses, i.e., |R(A(S)) − R̂S(A(S))|. We terminate
the algorithms when either the training loss reaches a
desirable level or the number of training steps achieves
T = 1000.

Numerical Results. The generalization errors of Fe-
dAvg, SCAFFOLD, and FedProx are shown in Fig.
1. The x-axis shows the heterogeneity level of local
data distributions (ρ) and the y-axis shows the gener-
alization errors of the algorithms. We note that the
algorithms in some heterogeneous cases (ρ = 0.8 or
ρ = 1) did not achieve some levels of training losses
(e.g. 0.005) before they terminated. So there are less
than 5 points in the corresponding training loss curves.
The figure shows that the generalization error increases
as data heterogeneity increases, which is aligned with
our theoretical results. Moreover, vertically, the gener-
alization error also increases as the training loss level
decreases. Noting that a smaller training loss gen-
erally needs more iterations in the training process.
Hence these numerical results are also consistent with
our bounds, which implies the generalization errors in-
crease as T gets bigger. We provide additional exper-
iments under different approaches of generating non-
i.i.d. data in Appendix E, which also demonstrate our
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Figure 1: Generalization errors of FedAvg, SCAF-
FOLD, and FedProx

theoretical results.

7 CONCLUSION

In this paper, we provide generalization upper bounds
for FedAvg, SCAFFOLD, and FedProx by means of on-
average stability under both convex and non-convex
loss functions. Our bounds explicitly capture the ef-
fect of data heterogeneity and algorithm convergence
properties on the generalization performances of differ-
ent algorithms, which indicates that the heterogeneity
level of datasets is highly related to the generalization
of FL. In particular, under the i.i.d. case, FedAvg re-
duces to the SGD method and our results are shown
to be consistent with those of SGD methods. Our
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numerical simulations demonstrate the theoretical re-
sults. For future studies, how to evaluate model gen-
eralization to slowly time-vary data distributions or
some new distribution is a potential topic.
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Appendix of ”Understanding Generalization of Federated Learning
via Stability: Heterogeneity Matters”

A Federated learning algorithms

In this section, we summarize FedAvg, SCAFFOLD and FedProx in detail in Algorithms 1,2,3, respectively.

Algorithm 1 FedAvg
Input: θ0 as initialization of the server
1: for t = 0, 1, . . . , T − 1 do
2: θt+1

i,0 = θt, ∀i = 1, . . . ,m
3: for k = 0, 1, . . . ,Ki − 1 do (in parallel for all agents)
4: θt+1

i,k+1 = θt+1
i,k − αi,kgi(θ

t+1
i,k )

5: end for
6: θt+1 =

∑m
i=1 piθ

t+1
i,Ki

7: end for
Output: θT given by the server

Algorithm 2 SCAFFOLD
Input: θ0 as initialization of the server
1: for t = 0, 1, . . . , T − 1 do
2: Server broadcasts θt

3: Agent computes gi(θ
t) and send it to the server

4: Server computes g(θt) =
∑m

i=1 pigi(θ
t) and broadcasts it

5: Each agent i for i = 1, . . . ,m sets θt+1
i,0 = θt

6: for k = 0, 1, . . . ,Ki − 1 do (in parallel for all agents)
7: θt+1

i,k+1 = θt+1
i,k − αi,k

(
gi(θ

t+1
i,k )− gi(θ

t) + g(θt)
)

8: end for
9: θt+1 =

∑m
i=1 piθ

t+1
i,Ki

10: end for
Output: θT given by the server

Algorithm 3 FedProx
Input: θ0 as initialization of the server
1: for t = 0, 1, . . . , T − 1 do
2: θt+1

i = argminθ R̂Si
(θ) + 1

2ηi
∥θ − θt∥2 (in parallel for all agents)

3: θt+1 =
∑m

i=1 piθ
t+1
i

4: end for
Output: θT given by the server
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B Proof of Theorem 1

In this section, we provide the proof of Theorem 1.

Given S and S(i) which are neighboring datasets defined in Definition 1,

ES

[
R̂Si

(A(S))
]

= ES

 1

ni

ni∑
j=1

l(A(S); zi,j)


=

1

ni

ni∑
j=1

ES [l(A(S); zi,j)]

=
1

ni

ni∑
j=1

ES,z′
i,j

[
l(A(S(i)); z′i,j)

]
.

Moreover, we have

ES [Ri(A(S))] = 1

ni

ni∑
j=1

ES,z′
i,j

[
l(A(S); z′i,j)

]
,

since z′i,j and S are independent for any j. Thus,

EA,S

[
R(A(S))− R̂(A(S))

]
≤ EA,S

[
m∑
i=1

ni

n

(
Ri(A(S))− R̂Si

(A(S))
)]

=

m∑
i=1

ni

n
EA

 1

ni

ni∑
j=1

ES,z′
i,j

(
l(A(S); z′i,j)− l(A(S(i)); z′i,j)

)
≤ ϵ,

where the last inequality follows Definition 2. This completes the proof.

C Generalization bounds for convex losses

In this section, we drop index t when context is clear for simplicity. We first provide the bound involving data
heterogeneity by means of total variation between local distribution and global one.
Lemma 1. Under Assumption 1 and given i ∈ [m], for any θ we have

∥∇Ri(θ)−∇R(θ)∥ ≤ 2LDi,

where Di = dTV (Pi, P ) with P =
∑m

i=1 piPi.

Proof. Let Zi and Z be the supports of Pi and P , respectively.

∥∇Ri(θ)−∇R(θ)∥ = ∥∇θ

∫
Zi

l(θ; z)dPi(z)−∇θ

∫
Z
l(θ; z)dP (z)∥

= ∥
∫
Zi∪Z

(
∇θl(θ; z)dPi(z)−∇θl(θ; z)dP (z)

)
∥

≤
∫
Zi∪Z

∥∇θl(θ; z)dPi(z)−∇θl(θ; z)dP (z)∥

=

∫
Zi∪Z

∥∇l(θ; z)∥∥dPi(z)− dP (z)∥

≤
∫
Zi∪Z

L|dPi(z)− dP (z)|

= 2LdTV (Pi, P )
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by noting the definition of total variation of two distributions P and Q is

dTV (P,Q) =
1

2

∫
|dP − dQ|.

When the loss function is convex, the gradient descent operator has the non-expansiveness property stated by
the following lemma.
Lemma 2. Suppose f(x) is a β-Lipschitz smooth, convex function with respect to x. Consider gradient descent
operator Gα(x) := x− α∇f(x). Then, for α ≤ 1/β,

∥Gα(x)−Gα(y)∥ ≤ ∥x− y∥.

Proof. Since f is β-smooth and convex, we know that

⟨∇f(x)−∇f(y), x− y⟩ ≥ 1

β
∥∇f(x)−∇f(y)∥2.

Using this fact,

∥Gα(x)−Gα(y)∥2 = ∥x− y − α(∇f(x)−∇f(y))∥2

= ∥x− y∥2 + α2∥∇f(x)−∇f(y)∥2 − α⟨∇f(x)−∇f(y), x− y⟩
≤ ∥x− y∥2 + α(α− β−1)∥∇f(x)−∇f(y)∥2

≤ ∥x− y∥2

when α ≤ 1/β.

The proximal operator is also non-expansive, which is shown by the following lemma.
Lemma 3. Suppose f is convex. Define the proximal operator by

proxf (x) := argmin
y

f(y) +
1

2
∥y − x∥2.

Then, for any x1, x2, we have
∥proxf (x1)− proxf (x2)∥ ≤ ∥x1 − x2∥.

Proof. Let u1 = proxf (x1) and u2 = proxf (x2). According to the first-order optimality condition, we have

∇f(u1) + u1 − x1 = 0

∇f(u2) + u2 − x2 = 0

Since f is convex, we further have

0 ≤ ⟨∇f(u1)−∇f(u2), u1 − u2⟩
= ⟨x1 − u2 − (x2 − u2), u1 − u2⟩
= ⟨x1 − x2, u1 − u2⟩ − ∥u1 − u2∥2

and hence
∥u1 − u2∥2 ≤ ⟨x1 − x2, u1 − u2⟩ ≤ ∥x1 − x2∥∥u1 − u2∥

which completes the proof.
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C.1 Analysis for FedAvg under convex losses

Lemma 4. Suppose Assumptions 1-4 hold. Then for FedAvg with αi,k ≤ 1/β,

E∥θi,k − θt∥ ≤ α̃i,t

(
E∥∇R(θt)∥+ 2LDi + σ

)
, ∀k = 1, . . . ,Ki,

where α̃i,t =
∑Ki−1

k=0 αi,k.

Proof. Considering local update (3) of FedAvg

E∥θi,k+1 − θt∥ = E∥θi,k − αi,kgi(θi,k)− θt∥
≤ E∥θi,k − θt − αi,k(gi(θi,k)− gi(θt))∥+ αi,kE∥gi(θt)∥
(a)

≤ E∥θi,k − θt∥+ αi,kE∥gi(θt)∥
≤ E∥θi,k − θt∥+ αi,k(E∥gi(θt)−∇Ri(θt)∥+ E∥∇Ri(θt)∥)
(b)

≤ E∥θi,k − θt∥+ αi,k(E∥∇Ri(θt)∥+ σ),

where (a) follows Lemma 2; (b) follows Assumption 2. Unrolling the above and noting θi,0 = θt yields

E∥θi,k − θt∥ ≤ E∥θi,0 − θt∥+
k−1∑
l=0

αi,l

(
E∥∇Ri(θt)∥+ σ

)
≤

Ki−1∑
l=0

αi,l

(
E∥∇Ri(θt)∥+ σ

)
= α̃i

(
E∥∇Ri(θt)∥+ σ

)
≤ α̃i

(
E∥∇R(θt)∥+ 2LDi + σ

)
,

where the last inequality follows Lemma 1.

Lemma 5. Given Assumptions 1-4 and considering (3) of FedAvg, for αi,k ≤ 1/β we have

E∥gi(θi,k)∥ ≤ (1 + βα̃i,t)
(
E∥∇R(θt)∥+ 2LDi + σ

)
,

where gi(·) is the sampled gradient of client i, α̃i,t =
∑Ki−1

k=0 αi,k.

Proof. Using Lemmas 1 and 4, we obtain

E∥gi(θi,k)∥ ≤ E∥gi(θi,k)−∇Ri(θi,k)∥+ E∥∇Ri(θi,k)∥
≤ E∥∇Ri(θi,k)∥+ σ

≤ E∥∇Ri(θt)∥+ E∥∇Ri(θi,k)−∇Ri(θt)∥+ σ

≤ E∥∇R(θt)∥+ E∥∇Ri(θt)−∇R(θt)∥+ βE∥θi,k − θt∥+ σ

≤ (1 + βα̃i)
(
E∥∇R(θt)∥+ 2LDi + σ

)
.

Theorem 5 (FedAvg part of Theorem 2). Suppose Assumptions 1-4 hold and consider FedAvg (Algorithm 1).
Let {θt}Tt=0 and {θ′t}Tt=0 be two trajectories of the server induced by neighboring datasets S and S(i), respectively.
Suppose θ0 = θ′0. Then,

E∥θT − θ′T ∥ ≤ 2

n

T−1∑
t=0

α̃i,t(1 + βα̃i,t)
(
2LDi + E∥∇R(θt)∥+ σ

)
,

where α̃i,t =
∑Ki−1

k=0 αi,k and Di = dTV (Pi, P ).
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Proof. Note that in the phase of local update, each client runs stochastic gradient descent (SGD) using its own
local gradient gi(·) sampled uniformly from its dataset. Given time index t, for client j with j ̸= i, the local
datasets are identical since the perturbed data point only occurs at client i. Thus, when j ̸= i, we have for any
k = 0, . . . ,Kj − 1,

E∥θj,k+1 − θ′j,k+1∥ = E∥θj,k − θ′j,k − αj,k(gj(θj,k)− gj(θ
′
j,k))∥

≤ E∥θj,k − θ′j,k∥

where we use Lemma 2 in the last inequality. Here we drop t for simplicity. Unrolling it gives

E∥θj,Kj − θ′j,Kj
∥ ≤ E∥θt − θ′t∥, ∀j ̸= i. (7)

For client i, there are two cases to consider. In the first case, SGD selects the index of an sample at local step k
on which is identical in S and S(i). In this sense, we have

∥θi,k+1 − θ′i,k+1∥ ≤ ∥θi,k − θ′i,k∥

due to the non-expansiveness of gradient descent operator by Lemma 2. And this case happens with probability
1− 1/ni (since only one sample is perturbed for client i).

In the second case, SGD encounters the perturbed sample at local time step k, which happens with probability
1/ni. We denote the gradient of this perturbed sample as g′i(·). Then,

∥θi,k+1 − θ′i,k+1∥ = ∥θi,k − θ′i,k − αi,k(gi(θi,k)− g′i(θ
′
i,k))∥

≤ ∥θi,k − θ′i,k − αi,k(gi(θi,k)− gi(θ
′
i,k))∥+ αi,k∥gi(θ′i,k)− g′i(θ

′
i,k)∥

≤ ∥θi,k − θ′i,k∥+ αi,k∥gi(θ′i,k)− g′i(θ
′
i,k)∥.

Combining these two cases we have for client i

E∥θi,k+1 − θ′i,k+1∥ ≤ E∥θi,k − θ′i,k∥+
αi,k

ni
E∥gi(θ′i,k)− g′i(θ

′
i,k)∥

≤ E∥θi,k − θ′i,k∥+
2αi,k

ni
E∥gi(θi,k)∥,

where the last inequality follows that gi(·) and g′i(·) are sampled from the same distribution. Then unrolling it
we have

E∥θi,Ki − θ′i,Ki
∥ ≤ E∥θt − θ′t∥+

2

ni

Ki−1∑
k=0

αi,kE∥gi(θi,k)∥. (8)

Combining (7) and (8) gives

E∥θt+1 − θ′t+1∥ = E∥
m∑
j=1

pj(θj,Kj − θ′j,Kj
)∥

≤
m∑
j=1

pjE∥θj,Kj − θ′j,Kj
∥

≤ E∥θt − θ′t∥+
2pi
ni

Ki−1∑
k=0

αi,kE∥gi(θi,k)∥

≤ E∥θt − θ′t∥+
2

n
α̃i,t(1 + βα̃i,t)

(
E∥∇R(θt)∥+ 2LDi + σ

)
,

where we use Lemma 5 in the last step. Iterating the above over t and noting θ0 = θ′0, we conclude the proof.



Zhenyu Sun, Xiaochun Niu, Ermin Wei

C.2 Analysis for SCAFFOLD under convex losses

Lemma 6. Suppose Assumptions 1-4 hold. Running SCAFFOLD with αi,k ≤ 1/β, then for any i ∈ [m]

E∥θi,k − θt∥ ≤ α̃i,t(E∥R(θt)∥+ σ), ∀k = 1, . . . ,Ki

where α̃i,t =
∑Ki−1

k=0 αi,k.

Proof. Considering local update (4) of SCAFFOLD

E∥θi,k+1 − θt∥ = E∥θi,k − αi,k(gi(θi,k)− gi(θt) + g(θt))− θt∥
≤ E∥θi,k − θt − αi,k(gi(θi,k)− gi(θt))∥+ αi,kE∥g(θt)∥
≤ E∥θi,k − θt∥+ αi,kE∥g(θt)∥
≤ E∥θi,k − θt∥+ αi,k(E∥R(θt)∥+ σ)

where we use the non-expansiveness property of gradient descent operator and Assumption 2. Therefore, for any
k = 1, . . . ,Ki − 1,

E∥θi,k − θt∥ ≤
k−1∑
l=0

αi,k(E∥R(θt)∥+ σ)

≤ α̃i,t(E∥R(θt)∥+ σ),

which completes the proof.

Lemma 7. Given Assumptions 1-4 and considering SCAFFOLD (Algorithm 2), with αi,k ≤ 1/β we have the
following inequalities

E∥gi(θi,k)∥ ≤ (1 + βα̃i,t)(E∥∇R(θt)∥+ σ) + 2LDi,

E∥gi(θt)∥ ≤ 2LDi + E∥∇R(θt)∥+ σ

for any i ∈ [m], k = 0, . . . ,Ki − 1 and t = 0, 1, . . . .

Proof. Note that based on Assumption 2,

E∥gi(θi,k)∥ ≤ E∥∇Ri(θi,k)∥+ σ

≤ E∥∇Ri(θi,k)−∇Ri(θt)∥+ E∥∇Ri(θt)∥+ σ

≤ βE∥θi,k − θt∥+ E∥∇Ri(θt)−∇R(θt)∥+ E∥∇R(θt)∥+ σ

≤ (1 + βα̃i,t)(E∥∇R(θt)∥+ σ) + 2LDi,

where we use Lemmas 1 and 6.

Similarly, using same techniques we have

E∥gi(θt)∥ ≤ E∥∇Ri(θt)∥+ σ

≤ E∥∇Ri(θt)−∇R(θt)∥+ E∥∇R(θt)∥+ σ

≤ 2LDi + E∥∇R(θt)∥+ σ.

Theorem 6 (SCAFFOLD part of Theorem 2). Suppose Assumptions 1-4 hold and consider SCAFFOLD (Algo-
rithm 2). Let {θt}Tt=0 and {θ′t}Tt=0 be two trajectories of the server induced by neighboring datasets S and S(i),
respectively. Suppose θ0 = θ′0. Then

E∥θT − θ′T ∥ ≤ 2

n

T−1∑
t=0

exp
(
2β

T−1∑
l=t+1

α̂l

)(
2LDiγ

1
t + γ2

t E∥∇R(θt)∥+ σγ2
t

)
where

γ1
t := 2α̃i,t + α̂t, γ2

t := γ1
t + βα̃2

i,t

with α̃i,t :=
∑Ki−1

k=0 αi,k, α̂t :=
∑m

j=1 pjα̃j,t, and
∑T−1

l=T α̂l = 0, ∀α̂l.
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Proof. Similar to the idea used in the proof of Theorem 5, given time index t and client j with j ̸= i, note
that the local gradients gj(·) are identical for client j in the sense that local datasets for client j are the same.
However, since SCAFFOLD uses the global sampled gradient g(·) during the local update, it is still possible to
encounter the perturbed sample. Thus, for j ̸= i, we distinguish two cases. In the first case, SCAFFOLD does
not sample the perturbed gradient of client i, i.e., g(·) = g′(·) at local step k. Then, with probability equal to
1− 1/ni

∥θj,k+1 − θ′j,k+1∥ ≤ ∥θj,k − θ′j,k − αj,k(gj(θj,k)− gj(θ
′
j,k))∥+ αj,k∥gj(θt)− gj(θ

′
t)∥

+αj,k∥g(θt)− g(θ′t)∥
≤ ∥θj,k − θ′j,k∥+ 2αj,kβ∥θt − θ′t∥

where the second inequality follows Lemma 2 and Assumption 3.

In the second case, the perturbed data point of client i is sampled to calculate the global gradient g′(·), meaning
g(·) − g′(·) = pi(gi(·) − g′i(·)), where we denote the gradient evaluated at the perturbed sample as g′i(·). This
happens with probability 1/ni and hence we have

∥θj,k+1 − θ′j,k+1∥ ≤ ∥θj,k − θ′j,k − αj,k(gj(θj,k)− gj(θ
′
j,k))∥+ αj,k∥gj(θt)− gj(θ

′
t)∥

+αj,k∥g(θt)− g′(θ′t)∥
≤ ∥θj,k − θ′j,k − αj,k(gj(θj,k)− gj(θ

′
j,k))∥+ αj,k∥gj(θt)− gj(θ

′
t)∥

+αj,k∥g(θt)− g(θ′t)∥+ αj,k∥g(θ′t)− g′(θ′t)∥
≤ ∥θj,k − θ′j,k∥+ 2βαj,k∥θt − θ′t∥+ αj,kpi∥gi(θ′t)− g′i(θ

′
t)∥.

Combining these two cases, we conclude that for client j with j ̸= i

E∥θj,k+1 − θ′j,k+1∥ ≤ E∥θj,k − θ′j,k∥+ 2βαj,kE∥θt − θ′t∥+
αj,kpi
ni

E∥gi(θ′t)− g′i(θ
′
t)∥

≤ E∥θj,k − θ′j,k∥+ 2βαj,kE∥θt − θ′t∥+
2αj,k

n
E∥gi(θt)∥,

≤ E∥θj,k − θ′j,k∥+ 2βαj,kE∥θt − θ′t∥+
2αj,k

n
(2LDi + E∥∇R(θt)∥+ σ)

where we use pi = ni/n and gi, g
′
i are drawn from the same distribution; we also use Lemma 7 in the last step.

Unrolling the above over k we obtain

E∥θj,Kj − θ′j,Kj
∥ ≤ (1 + βα̃j,t)E∥θt − θ′t∥+

2α̃j,t

n
(2LDi + E∥∇R(θt)∥+ σ), ∀j ̸= i. (9)

Next, we specifically consider client i. Similar to the above analysis, there are two cases as well. In the first
case, at local step k client i does not select the perturbed sample to compute the gradient. This happens with
probability 1− 1/ni. Then,

∥θi,k+1 − θ′i,k+1∥ ≤ ∥θi,k − θ′i,k − αi,k(gi(θi,k)− gi(θ
′
i,k))∥+ αi,k∥gi(θt)− gi(θ

′
t)∥

+αi,k∥g(θt)− g(θ′t)∥
≤ ∥θi,k − θ′i,k∥+ 2αi,kβ∥θt − θ′t∥.

In the second case, the perturbed sample is selected to calculate local gradient for client i, which has the
probability equal to 1/ni. Then,

∥θi,k+1 − θ′i,k+1∥ ≤ ∥θi,k − θ′i,k − αi,k(gi(θi,k)− g′i(θ
′
i,k))∥+ αi,k∥gi(θt)− g′i(θ

′
t)∥

+αi,k∥g(θt)− g′(θ′t)∥
≤ ∥θi,k − θ′i,k∥+ αi,k∥gi(θt)− gi(θ

′
t)∥+ αi,k∥g(θt)− g(θ′t)∥

+αi,k

(
∥gi(θ′i,k)− g′i(θ

′
i,k)∥+ (1 + pi)∥gi(θ′t)− g′i(θ

′
t)∥
)

≤ ∥θi,k − θ′i,k∥+ 2βαi,k∥θt − θ′t∥+ αi,k∥gi(θ′i,k)− g′i(θ
′
i,k)∥

+αi,k(1 + pi)∥gi(θ′t)− g′i(θ
′
t)∥
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where the non-expansiveness of gradient descent operator and Lipschitz smoothness are utilized.

Combining these two cases for client i and further leveraging Lemma 7, we obtain

E∥θi,k+1 − θ′i,k+1∥ ≤ E∥θi,k − θ′i,k∥+ 2βαi,kE∥θt − θ′t∥+
αi,k

ni
E∥gi(θ′i,k)− g′i(θ

′
i,k)∥

+
αi,k(1 + pi)

ni
E∥gi(θ′t)− g′i(θ

′
t)∥

≤ E∥θi,k − θ′i,k∥+ 2βαi,kE∥θt − θ′t∥+
2αi,k

ni
E∥gi(θi,k)∥

+
2αi,k(1 + pi)

ni
E∥gi(θt)∥

≤ E∥θi,k − θ′i,k∥+ 2βαi,kE∥θt − θ′t∥+
2αi,k

ni
(1 + βα̃i,t)(E∥∇R(θt)∥+ σ)

+
2αi,k(1 + pi)

ni
(2LDi + E∥∇R(θt)∥+ σ) +

2αi,k

ni
2LDi.

Unrolling it gives

E∥θi,Ki − θ′i,Ki
∥ ≤ (1 + βα̃i,t)E∥θt − θ′t∥+

2α̃i,t

ni

(
2LDi + (1 + βα̃i,t)(E∥∇R(θt)∥+ σ)

)
+
2α̃i,t(1 + pi)

ni
(2LDi + E∥∇R(θt)∥+ σ). (10)

By (9) and (10), we obtain

E∥θt+1 − θ′t+1∥ ≤
m∑
j=1

pjE∥θj,Kj
− θ′j,Kj

∥

≤ (1 + βα̂t)E∥θt − θ′t∥+
2γ1

t

n
2LDi +

2γ2
t

n
(E∥∇R(θt)∥+ σ),

and we further keep iterate it over t to obtain

E∥θT − θ′T ∥ ≤ 2

n

T−1∑
t=0

exp
(
2β

T−1∑
l=t+1

α̂l

)(
2LDiγ

1
t + γ2

t E∥∇R(θt)∥+ σγ2
t

)
where we use the fact 1 + x ≤ ex, ∀x.

C.3 Analysis for FedProx under convex losses

Lemma 8. Suppose Assumptions 1, 2 and 4 hold. Considering FedProx with local update (5), then for any
ηi > 0, we have for any i ∈ [m]

E∥θit+1 − θt∥ ≤ ηi(E∥∇R(θt)∥+ 2LDi + σ), ∀t = 0, 1, . . . .

Proof. Recalling the local update (5) of FedProx and according to the first-order optimality condition, we have

ηi∇R̂Si(θ
i
t+1) + θit+1 − θt = 0.

Moreover, since the function ηiR̂Si(θ) +
1
2∥θ − θt∥ is 1-strongly-convex when Assumption 4 holds, we have

∥θit+1 − θt∥ ≤ ∥ηi∇R̂Si
(θt) + θt − θt∥ = ηi∥∇R̂Si

(θt)∥

by combining the first-order optimality condition. Moreover, note that

E∥∇R̂Si
(θt)∥ ≤ E∥∇Ri(θt)∥+ σ

≤ E∥∇R(θt)∥+ E∥∇Ri(θt)−∇R(θt)∥+ σ

≤ E∥∇R(θt)∥+ 2LDi + σ,
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where we use Lemma 1 and note

E∥∇R̂Si
(θt)−∇Ri(θt)∥ ≤ 1

ni

ni∑
j=1

E∥∇l(θt; zi,j)−∇Ri(θt)∥ ≤ σ.

Thus, we have
E∥θit+1 − θt∥ ≤ ηi(E∥∇R(θt)∥+ 2LDi + σ),

which completes the proof.

Lemma 9. Suppose Assumptions 1-4 hold and consider FedProx with local update (5). Then, for any i ∈ [m]
and j ∈ [ni], we have

E∥∇l(θit+1; zi,j)∥ ≤ (1 + βηi)(2LDi + E∥∇R(θt)∥+ σ), ∀t = 0, 1, . . . .

Proof. For any i ∈ [m] and time t,

E∥∇l(θit+1; zi,j)∥ ≤ E∥∇l(θit+1; zi,j)−∇Ri(θ
i
t+1)∥+ E∥∇Ri(θ

i
t+1)∥

≤ E∥∇Ri(θ
i
t+1)∥+ σ

≤ E∥∇Ri(θt)∥+ E∥∇Ri(θ
i
t+1)−∇Ri(θt)∥+ σ

≤ βE∥θit+1 − θt∥+ E∥∇Ri(θt)−∇R(θt)∥+ E∥∇R(θt)∥+ σ

≤ (1 + βηi)(2LDi + E∥∇R(θt)∥+ σ),

where we use Lemma 1 and Lemma 8 in the last step.

Theorem 7 (FedProx part of Theorem 2). Suppose Assumptions 1-4 hold and consider FedProx (Algorithm 3).
Let {θt}Tt=0 and {θ′t}Tt=0 be two trajectories of the server induced by neighboring datasets S and S(i), respectively.
Suppose θ0 = θ′0. Then,

E∥θT − θ′T ∥ ≤ 2

n

T−1∑
t=0

ηi(1 + βηi)
(
2LDi + E∥∇R(θt)∥+ σ

)
.

Proof. Denoting proxf (x) := argminy f(y) +
1
2∥y − x∥2, we can rewrite the local update (5) as

θit+1 = proxηiR̂Si
(θt).

There are two different cases for local updates. For client j with j ̸= i, we note R̂Sj
(·) = R̂S′

j
(·) in the sense that

there is no perturbation for client j. In this case, using Lemma 3 we obtain

∥θit+1 − (θit+1)
′∥ = ∥proxηiR̂Si

(θt)− proxηiR̂Si
(θ′t)∥

≤ ∥θt − θ′t∥.

For client i, we note that R̂i(·)− R̂′
i(·) = 1

ni
(l(·; zi,j)− l(·; z′i,j)), where z′i,j is the perturbed data point. And we

also use R̂i and R̂′
i to represent R̂Si

and R̂S′
i

for simplicity. Then, we have

θit+1 = argmin
θ

ηiR̂i(θ) +
1

2
∥θ − θt∥2

(θit+1)
′ = argmin

θ
ηiR̂

′
i(θ) +

1

2
∥θ − θ′t∥2.

According to the first-order optimality condition, it yields

θit+1 − θt = −ηi∇R̂i(θ
i
t+1)

(θit+1)
′ − θ′t = −ηi∇R̂′

i((θ
i
t+1)

′)

= −ηi∇R̂i((θ
i
t+1)

′) +
ηi
ni

(
∇l((θit+1)

′; zi,j)−∇l((θit+1)
′; z′i,j)

)
.
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Moreover, by the monotone property of ∇R̂i(·) for convex losses i.e., Lemma 3,

∥(θit+1)
′ − θit+1∥2 ≤ ⟨θ′t − θt, (θ

i
t+1)

′ − θit+1⟩ − ηi⟨∇R̂i((θ
i
t+1)

′)−∇R̂i(θ
i
t+1), (θ

i
t+1)

′ − θit+1⟩

+
ηi
ni

⟨(θit+1)
′ − θit+1,∇l((θit+1)

′; zi,j)−∇l(θit+1; z
′
i,j)⟩

≤ ⟨θ′t − θt, (θ
i
t+1)

′ − θit+1⟩+
ηi
ni

⟨(θit+1)
′ − θit+1,∇l((θit+1)

′; zi,j)−∇l(θit+1; z
′
i,j)⟩

which further implies by symmetry of zi,j and z′i,j ,

∥(θit+1)
′ − θit+1∥ ≤ ∥θ′t − θt∥+

ηi
ni

∥∇l(θit+1; zi,j)−∇l(θit+1; z
′
i,j)∥.

Combining two cases gives

E∥θt+1 − θ′t+1∥ ≤
m∑
j=1

pjE∥θjt+1 − (θjt+1)
′∥

≤ E∥θt − θ′t∥+
ηi
n
E∥∇l(θit+1; zi,j)−∇l(θit+1; z

′
i,j)∥,

≤ E∥θt − θ′t∥+
2ηi
n

E∥∇l(θit+1; zi,j)∥

≤ E∥θt − θ′t∥+
2ηi
n

(1 + βηi)(2LDi + E∥∇R(θt)∥+ σ).

Unrolling it over t completes the proof.

C.4 Proof of Theorem 3

Our results are established based on the following convergence results of three algorithms, which are formaly
shown in Theorem 8. These results are based on the following assumptions.
Assumption 5. There exist constants G ≥ 0 and B ≥ 1 such that

m∑
i=1

pi∥∇Ri(θ)∥2 ≤ 2G2 +B2∥∇R(θ)∥2, ∀θ.

Assumption 6. There exist constants Gi ≥ 0 such that for any i ∈ [m],

∥∇Ri(θ)−∇R(θ)∥ ≤ Gi, ∀θ.

In fact, Assumption 6 is a stronger assumption compared to Assumption 5, which is shown by the following
proposition.
Proposition 1. Assumption 6 implies Assumption 5.

Proof. Note that given Assumption 6

∥∇Ri(θ)∥ ≤ ∥∇R(θ)∥+ ∥∇Ri(θ)−∇R(θ)∥ ≤ Gi + ∥∇R(θ)∥,

which implies
∥∇Ri(θ)∥2 ≤ 2G2

i + 2∥∇R(θ)∥2.

Taking the weighted sum of pi and we conclude G2 =
∑m

i=1 piG
2
i , B2 = 2.

In the next proposition, we characterize Gi defined in Assumption 6 by directly usting Lemma 1.
Proposition 2. Suppose Assumption 1 holds. Then, Gi = 2LdTV (Pi, P ) defined in Assumption 6.

Then, we state the existing convergence results for FedAvg, SCAFFOLD and FedProx in the following theorem.
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Theorem 8. [7,8] Suppose Assumption 2 holds and Ki = K, ∀i ∈ [m].

For FedAvg (Algorithm 1) with Assumptions 3,5 satisfied and αi,k ≤ 1
(1+B2)8βK , we have

1

T

T−1∑
t=0

E∥∇R(θt)∥2 ≤ O
( √

∆0√
TKm

+
(∆0G)2/3

T 2/3
+

B2∆0

T

)
. (11)

For SCAFFOLD (Algorithm 2) with Assumption 3 and αi,k ≤ 1
24βK , we have

1

T

T−1∑
t=0

E∥∇R(θt)∥2 ≤ O
( √

∆0√
TKm

+
∆0

T

)
. (12)

Suppose Assumption 6 hold. For FedProx (Algorithm 3) with eigenvalues of ∇2R(θ) lower bounded and ηi chosen
small enough, we have

1

T

T−1∑
t=0

E∥∇R(θt)∥2 ≤ O
(
∆0

∑m
i=1 piG

2
i√

T
+

∆0

T

)
, (13)

where ∆0 := E[R(θ0)−R(θ∗)].

Proof of FedAvg and FedProx parts of Theorem 3. It follows the fact that stepsizes αi,k and ηi are
upper bounded by some constant c and(

T−1∑
t=0

cE∥∇R(θt)∥

)2

≤ T

T−1∑
t=0

c2
(
E∥∇R(θt)∥

)2 ≤ T

T−1∑
t=0

c2E∥∇R(θt)∥2, (14)

where the second inequality follows Jensen’s inequality. Combining Propositions 1 and 2 with (11),(13) completes
the proof.

Proof of SCAFFOLD part of Theorem 3. To get the result for SCAFFOLD in Theorem 3, we further
note that γ2

t is upper bounded by some constant γ̄ and when αi,k ≤ 1/[24βK(t+ 1)]

T−1∑
t=0

exp

(
2β

T−1∑
l=t+1

α̂l

)
γ2
t E∥∇R(θt)∥ ≤

T−1∑
t=0

exp

(
1

12
log(T )

)
γ2
t E∥∇R(θt)∥

≤ T 1/12
T−1∑
t=0

γ̄E∥∇R(θt)∥. (15)

Combining (15) with (12) and (14) completes the proof.

C.5 Proofs of Corollaries 1 and 2

To obtain Corollary 1, we note that under Assumption 1,

EA,S,z′
i,j
|l(θT ; z′i,j)− l(θ′T ; z

′
i,j)| ≤ LE∥θT − θ′T ∥, ∀j ∈ [ni]

and then combining Theorems 1,2,3 provides the results.

To obtain Corollary 2, we start from Theorem 2. Note that given Assumption 1, we can bound E∥∇R(θt)∥
by Lipschitz constant L, i.e., E∥∇R(θt)∥ ≤ L. Moreover, under the i.i.d. case, meaning Di = 0, ∀i ∈ [m], we
conclude the proof by using the same techniques as those in (14) and (15).
Remark 1. Note that the bounds in Corollary 2 are also looser, compared to those in Corollary 1 even when
Dmax = 0 (which corresponds to the i.i.d. case). To see this, note that bounds in Corollary 2 are linear in T ,
while bounds in Corollary 1 are with O(T q) for some q < 1. Moreover, more information is captured in Corollary
1, e.g., number of clients m, distance of the initial point to the optimal one ∆0, etc.
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D Generalization bounds for non-convex losses

D.1 Analysis for FedAvg under non-convex losses

Lemma 10. Suppose Assumptions 1-3 hold. Then for FedAvg with αi,k ≤ c/β for some c > 0,

E∥θi,k − θt∥ ≤ (1 + c)Ki−1α̃i,t

(
E∥∇R(θt)∥+ 2LDi + σ

)
, ∀k = 1, . . . ,Ki,

where α̃i,t =
∑Ki−1

k=0 αi,k.

Proof. Considering local update (3) of FedAvg

E∥θi,k+1 − θt∥ = E∥θi,k − αi,kgi(θi,k)− θt∥
≤ E∥θi,k − θt − αi,k(gi(θi,k)− gi(θt))∥+ αi,kE∥gi(θt)∥
≤ (1 + βαi,k)E∥θi,k − θt∥+ αi,kE∥gi(θt)∥
≤ (1 + βαi,k)E∥θi,k − θt∥+ αi,k(E∥gi(θt)−∇Ri(θt)∥+ E∥∇Ri(θt)∥)
≤ (1 + βαi,k)E∥θi,k − θt∥+ αi,k(E∥∇Ri(θt)∥+ σ),

where we use Assumptions 2 and 3. Unrolling the above and noting θi,0 = θt yields

E∥θi,k − θt∥ ≤
k−1∑
l=0

αi,l

(
E∥∇Ri(θt)∥+ σ

)
(1 + c)k−1−l

≤
Ki−1∑
l=0

αi,l

(
E∥∇Ri(θt)∥+ σ

)
(1 + c)Ki−1

≤ (1 + c)Ki−1α̃i,t

(
E∥∇R(θt)∥+ 2LDi + σ

)
,

where the last inequality follows Lemma 1.

Lemma 11. Given Assumptions 1-3 and considering (3) of FedAvg, for αi,k ≤ c/β with some c > 0, we have

E∥gi(θi,k)∥ ≤ (1 + (1 + c)Ki−1βα̃i,t)
(
E∥∇R(θt)∥+ 2LDi + σ

)
,

where gi(·) is the sampled gradient of client i, α̃i,t =
∑Ki−1

k=0 αi,k.

Proof. Using Lemmas 1 and 10, we obtain

E∥gi(θi,k)∥ ≤ E∥gi(θi,k)−∇Ri(θi,k)∥+ E∥∇Ri(θi,k)∥
≤ E∥∇Ri(θi,k)∥+ σ

≤ E∥∇Ri(θt)∥+ E∥∇Ri(θi,k)−∇Ri(θt)∥+ σ

≤ E∥∇R(θt)∥+ E∥∇Ri(θt)−∇R(θt)∥+ βE∥θi,k − θt∥+ σ

≤ (1 + (1 + c)Ki−1βα̃i)
(
E∥∇R(θt)∥+ 2LDi + σ

)
.

Theorem 9 (FedAvg part of Theorem 4). Suppose Assumptions 1-3 hold and consider FedAvg (Algorithm 1).
Let Ki = K, ∀i ∈ [m] and αi,k ≤ 1

24βK(t+1) . Then,

ϵgen ≤ O
(T 1

24 log T

n
(Dmax + σ)

)
+O

(( ∆0

Km

) 1
4
T

5
6

n
+
(
∆2

0D̃
) 1

6
T

3
4

n
+
√
∆0

T
7
12

n

)
.

Proof. The proof is similar to that of Theorem 5. Given time index t and for client j with j ̸= i, we have

E∥θj,k+1 − θ′j,k+1∥ = E∥θj,k − θ′j,k − αj,k(gj(θj,k)− gj(θ
′
j,k))∥

≤ (1 + βαj,k)E∥θj,k − θ′j,k∥.
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And unrolling it gives

E∥θj,Kj − θ′j,Kj
∥ ≤

Kj−1∏
k=0

(1 + βαj,k)E∥θt − θ′t∥

≤ eβα̃j,tE∥θt − θ′t∥, ∀j ̸= i, (16)

where we use 1 + x ≤ ex, ∀x.

For client i, there are two cases to consider. In the first case, SGD selects non-perturbed samples in S and S(i),
which happens with probability 1− 1/ni. Then, we have

∥θi,k+1 − θ′i,k+1∥ ≤ (1 + βαi,k)∥θi,k − θ′i,k∥.

In the second case, SGD encounters the perturbed sample at time step k, which happens with probability 1/ni.
Then, we have

∥θi,k+1 − θ′i,k+1∥ = ∥θi,k − θ′i,k − αi,k(gi(θi,k)− g′i(θ
′
i,k))∥

≤ ∥θi,k − θ′i,k − αi,k(gi(θi,k)− gi(θ
′
i,k))∥+ αi,k∥gi(θ′i,k)− g′i(θ

′
i,k)∥

≤ (1 + βαi,k)∥θi,k − θ′i,k∥+ αi,k∥gi(θ′i,k)− g′i(θ
′
i,k)∥.

Combining these two cases for client i we have

E∥θi,k+1 − θ′i,k+1∥ ≤ (1 + βαi,k)E∥θi,k − θ′i,k∥+
αi,k

ni
E∥gi(θ′i,k)− g′i(θ

′
i,k)∥

≤ (1 + βαi,k)E∥θi,k − θ′i,k∥+
αi,k

ni
E∥gi(θi,k)∥,

≤ (1 + βαi,k)E∥θi,k − θ′i,k∥+
2αi,k

ni
(1 + (1 + c)Ki−1βα̃i,t)

(
σ

+E∥∇R(θt)∥+ 2LDi

)
≤ (1 + βαi,k)E∥θi,k − θ′i,k∥+

2αi,k c̃

ni
(E∥∇R(θt)∥+ 2LDi + σ)

where we use Lemma 11 and we let c̃ be an upper bound of 1 + (1 + c)Ki−1βα̃i,t since α̃i,t is bounded above.
Then unrolling it gives

E∥θi,Ki
− θ′i,Ki

∥ ≤
Ki−1∏
k=0

(1 + βαi,k)E∥θt − θ′t∥+
(

2

ni

Ki−1∑
k=0

αi,k c̃

Ki−1∏
l=k+1

(1 + βαi,l)

·(E∥∇R(θt)∥+ 2LDi + σ)

)
≤ eβα̃i,tE∥θt − θ′t∥+

2

ni
c̃α̃i,te

βα̃i,t(E∥∇R(θt)∥+ 2LDi + σ). (17)

By (16) and (17) we have

E∥θt+1 − θ′t+1∥ ≤
m∑
i=1

piE∥θi,Ki − θ′i,Ki
∥

≤ eβα̃i,tE∥θt − θ′t∥+
2

n
c̃α̃i,te

βα̃i,t(E∥∇R(θt)∥+ 2LDi + σ)

where we also use pi = ni/n in the last step. Further, unrolling the above over t and noting θ0 = θ′0, we obtain

E∥θT − θ′T ∥ ≤ 2c̃

n

T−1∑
t=0

exp

(
β

T−1∑
l=t+1

α̃i,t

)
α̃i,te

βα̃i,t(E∥∇R(θt)∥+ 2LDi + σ)

When the diminishing stepsizes are chosen in the statement of the theorem, we further combine Theorem 1 and
the same techniques used in Theorem 3, we conclude the proof.
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D.2 Analysis for SCAFFOLD under non-convex losses

Lemma 12. Suppose Assumptions 1-3 hold. Running SCAFFOLD with αi,k ≤ c/β for some c > 0, then for
any i ∈ [m]

E∥θi,k − θt∥ ≤ (1 + c)Ki−1α̃i,t(E∥R(θt)∥+ σ), ∀k = 1, . . . ,Ki

where α̃i,t =
∑Ki−1

k=0 αi,k.

Proof. Considering local update (4) of SCAFFOLD

E∥θi,k+1 − θt∥ = E∥θi,k − αi,k(gi(θi,k)− gi(θt) + g(θt))− θt∥
≤ E∥θi,k − θt − αi,k(gi(θi,k)− gi(θt))∥+ αi,kE∥g(θt)∥
≤ (1 + βαi,k)E∥θi,k − θt∥+ αi,kE∥g(θt)∥
≤ (1 + βαi,k)E∥θi,k − θt∥+ αi,k(E∥R(θt)∥+ σ)

where we use Assumptions 2 and 3. Therefore, for any k = 1, . . . ,Ki − 1,

E∥θi,k − θt∥ ≤
Ki−1∑
k=0

αi,k(E∥R(θt)∥+ σ)(1 + c)Ki−1

= α̃i,t(1 + c)Ki−1(E∥R(θt)∥+ σ)

which completes the proof.

Lemma 13. Given Assumptions 1-3 and considering SCAFFOLD (Algorithm 2), with αi,k ≤ c/β for some c > 0
we have the following inequalities

E∥gi(θi,k)∥ ≤ (1 + βα̃i,t(1 + c)Ki−1)(E∥∇R(θt)∥+ σ) + 2LDi,

E∥gi(θt)∥ ≤ 2LDi + E∥∇R(θt)∥+ σ

for any i ∈ [m], k = 0, . . . ,Ki − 1 and t = 0, 1, . . . .

Proof. Note that based on Assumption 2,

E∥gi(θi,k)∥ ≤ E∥∇Ri(θi,k)∥+ σ

≤ E∥∇Ri(θi,k)−∇Ri(θt)∥+ E∥∇Ri(θt)∥+ σ

≤ βE∥θi,k − θt∥+ E∥∇Ri(θt)−∇R(θt)∥+ E∥∇R(θt)∥+ σ

≤ (1 + βα̃i,t(1 + c)Ki−1)(E∥∇R(θt)∥+ σ) + 2LDi,

where we use Lemmas 1 and 12.

Similarly, using same techniques we have

E∥gi(θt)∥ ≤ E∥∇Ri(θt)∥+ σ

≤ E∥∇Ri(θt)−∇R(θt)∥+ E∥∇R(θt)∥+ σ

≤ 2LDi + E∥∇R(θt)∥+ σ.

Theorem 10 (SCAFFOLD part of Theorem 4). Suppose Assumptions 1-3 hold and consider SCAFFOLD
(Algorithm 2). Let Ki = K and αi,k ≤ 1

24βK(t+1) , ∀i ∈ [m]

ϵgen ≤ O
(T 1

8 log T

n
Dmax

)
+O

(( ∆0

Km

) 1
4 T

7
8

n
+
√

∆0
T

5
8

n

)
+O

(T 1
8 (log T + 1)

n
σ
)
,

where ∆0 = E[R(θ0)−R(θ∗)].
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Proof. Similar to the proof of Theorem 6, considering client j with j ̸= i, there are two cases. In the first case,
SCAFFOLD does not select the perturbed sample from client i’s dataset at local step k. Then, with probability
equal to 1− 1/ni,

∥θj,k+1 − θ′j,k+1∥ ≤ ∥θj,k − θ′j,k − αj,k(gj(θj,k)− gj(θ
′
j,k))∥+ αj,k∥gj(θt)− gj(θ

′
t)∥

+αj,k∥g(θt)− g(θ′t)∥
≤ (1 + βαj,k)∥θj,k − θ′j,k∥+ 2αj,kβ∥θt − θ′t∥

where the second inequality follows Assumption 3.

In the second case, there is with probability 1/ni that the perturbed sample is selected during the local update
of step k. Then,

∥θj,k+1 − θ′j,k+1∥ ≤ ∥θj,k − θ′j,k − αj,k(gj(θj,k)− gj(θ
′
j,k))∥+ αj,k∥gj(θt)− gj(θ

′
t)∥

+αj,k∥g(θt)− g′(θ′t)∥
≤ ∥θj,k − θ′j,k − αj,k(gj(θj,k)− gj(θ

′
j,k))∥+ αj,k∥gj(θt)− gj(θ

′
t)∥

+αj,k∥g(θt)− g(θ′t)∥+ αj,k∥g(θ′t)− g′(θ′t)∥
≤ (1 + βαi,k)∥θj,k − θ′j,k∥+ 2βαj,k∥θt − θ′t∥+ αj,kpi∥gi(θ′t)− g′i(θ

′
t)∥.

We again use Assumption 3 in the last step. Combining two cases, we have for client j with j ̸= i

E∥θj,k+1 − θ′j,k+1∥ ≤ (1 + βαj,k)E∥θj,k − θ′j,k∥+ 2βαj,kE∥θt − θ′t∥+
2αj,k

n
E∥gi(θt)∥.

Unrolling it over k we obtain

E∥θj,Kj
− θ′j,Kj

∥ ≤
Kj−1∏
k=0

(1 + βαj,k)E∥θt − θ′t∥+
(Kj−1∑

k=0

( Kj−1∏
l=k+1

(1 + βαj,l)
)

·(2βαj,kE∥θt − θ′t∥+
2αj,k

n
E∥gi(θt)∥)

)
≤ (1 + βα̃j,t)e

βα̃j,tE∥θt − θ′t∥+
2α̃j,t

n
eβα̃j,tE∥gi(θt)∥ (18)

where we use the fact 1 + x ≤ ex and Lemma 13 in the last step.

For client i, there are two cases as well. In the first case, the perturbed sample is not selected at step k, which
happens with probability 1− 1/ni. Then,

∥θi,k+1 − θ′i,k+1∥ ≤ ∥θi,k − θ′i,k − αi,k(gi(θi,k)− gi(θ
′
i,k))∥+ αi,k∥gi(θt)− gi(θ

′
t)∥

+αi,k∥g(θt)− g(θ′t)∥
≤ (1 + βαi,k)∥θi,k − θ′i,k∥+ 2αi,kβ∥θt − θ′t∥.

In the second case, the perturbed sample is selected at local step k with probability 1/ni. Then,

∥θi,k+1 − θ′i,k+1∥ ≤ ∥θi,k − θ′i,k − αi,k(gi(θi,k)− g′i(θ
′
i,k))∥+ αi,k∥gi(θt)− g′i(θ

′
t)∥

+αi,k∥g(θt)− g′(θ′t)∥
≤ (1 + βαi,k)∥θi,k − θ′i,k∥+ αi,k∥gi(θt)− gi(θ

′
t)∥+ αi,k∥g(θt)− g(θ′t)∥

+αi,k

(
∥gi(θ′i,k)− g′i(θ

′
i,k)∥+ (1 + pi)∥gi(θ′t)− g′i(θ

′
t)∥
)

≤ (1 + βαi,k)∥θi,k − θ′i,k∥+ 2βαi,k∥θt − θ′t∥+ αi,k∥gi(θ′i,k)− g′i(θ
′
i,k)∥

+αi,k(1 + pi)∥gi(θ′t)− g′i(θ
′
t)∥.

Combining these two case renders

E∥θi,k+1 − θ′i,k+1∥ ≤ (1 + βαi,k)E∥θi,k − θ′i,k∥+ 2βαi,kE∥θt − θ′t∥+
2

αi,k
niE∥gi(θi,k)∥

+
2αi,k(1 + pi)

ni
E∥gi(θt)∥



Zhenyu Sun, Xiaochun Niu, Ermin Wei

and unrolling it and using Lemma 13 gives

E∥θi,Ki
− θ′i,Ki

∥ ≤ (1 + 2βα̃i,t)e
βα̃i,tE∥θt − θ′t∥+

2(1 + pi)

ni
α̃i,te

βα̃i,tE∥gi(θt)∥

+
2α̃i,t

ni
eβα̃i,t

(
c̃(E∥∇R(θt)∥+ σ) + 2LDi

)
(19)

where c̃ is an upper bound of 1 + βα̃i,t(1 + c)Ki+1, which is a constant and we use Lemma 13.

Combining (18) and (19) we have

E∥θt+1 − θ′t+1∥ ≤
m∑
i=1

pi(1 + 2βα̃i,t)e
βα̃i,tE∥θt − θ′t∥+

2

n

m∑
i=1

piβα̃i,te
βα̃i,tEt

+
2

n
α̃i,te

βα̃i,tEt +
2

n
α̃i,te

βα̃i,t
(
c̃(E∥∇R(θt)∥+ σ) + 2LDi

)
. (20)

Finally, under the choice of stepsize stated in the theorem, unrolling (20) over t and further using Theorem 1
together with the same techniques in the proof of Theorem 3, we complete the proof.

D.3 Analysis for FedProx under non-convex losses

Lemma 14. Suppose Assumptions 1,2 hold and assume that ∇2
θl(θ; z) ≻ −µI with µ > 0. Considering FedProx

with local update (5), then for any ηi ≤ 1
µ , we have for any i ∈ [m]

E∥θit+1 − θt∥ ≤ ηi
1− ηiµ

(E∥∇R(θt)∥+ 2LDi + σ), ∀t = 0, 1, . . . .

Proof. Recalling the local update (5) of FedProx and according to the first-order optimality condition, we have

ηi∇R̂Si
(θit+1) + θit+1 − θt = 0.

Moreover, since the function ηiR̂Si
(θ) + 1

2∥θ − θt∥ is 1− ηiµ-strongly-convex, we have

∥θit+1 − θt∥ ≤ ηi
1− ηiµ

∥∇R̂Si
(θt)∥

by combining the first-order optimality condition. Moreover, note that

E∥∇R̂Si(θt)∥ ≤ E∥∇Ri(θt)∥+ σ

≤ E∥∇R(θt)∥+ E∥∇Ri(θt)−∇R(θt)∥+ σ

≤ E∥∇R(θt)∥+ 2LDi + σ,

where we use Lemma 1 and note

E∥∇R̂Si(θt)−∇Ri(θt)∥ ≤ 1

ni

ni∑
j=1

E∥∇l(θt; zi,j)−∇Ri(θt)∥ ≤ σ.

Thus, we have
E∥θit+1 − θt∥ ≤ ηi

1− ηiµ
(E∥∇R(θt)∥+ 2LDi + σ),

which completes the proof.

Lemma 15. Suppose the assumptions stated in Lemma 14 hold and consider FedProx with local update (5).
Then, for any i ∈ [m] and j ∈ [ni], we have

E∥∇l(θit+1; zi,j)∥ ≤ (1 +
βηi

1− ηiµ
)(2LDi + E∥∇R(θt)∥+ σ), ∀t = 0, 1, . . . .
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Proof. For any i ∈ [m] and time t,

E∥∇l(θit+1; zi,j)∥ ≤ E∥∇l(θit+1; zi,j)−∇Ri(θ
i
t+1)∥+ E∥∇Ri(θ

i
t+1)∥

≤ E∥∇Ri(θ
i
t+1)∥+ σ

≤ E∥∇Ri(θt)∥+ E∥∇Ri(θ
i
t+1)−∇Ri(θt)∥+ σ

≤ βE∥θit+1 − θt∥+ E∥∇Ri(θt)−∇R(θt)∥+ E∥∇R(θt)∥+ σ

≤ (1 +
βηi

1− ηiµ
)(2LDi + E∥∇R(θt)∥+ σ),

where we use Lemma 1 and Lemma 14 in the last step.

Lemma 16. Suppose f is non-convex, whose eigenvalues of its Hessian ∇2f are lower bounded by −µ with
0 < µ < 1, i.e., ∇2f(x) ⪰ −µI, ∀x. Define the proximal operator by

proxf (x) := argmin
y

f(y) +
1

2
∥y − x∥2.

Then, for any x1, x2, we have

∥proxf (x1)− proxf (x2)∥ ≤ 1

1− µ
∥x1 − x2∥.

Proof. Let u1 = proxf (x1) and u2 = proxf (x2). According to the first-order optimality condition, we have

∇f(u1) + u1 − x1 = 0

∇f(u2) + u2 − x2 = 0

Since ∇2f has eigenvalues greater than −µ, we further have

−µ∥u1 − u2∥2 ≤ ⟨∇f(u1)−∇f(u2), u1 − u2⟩
= ⟨x1 − u2 − (x2 − u2), u1 − u2⟩
= ⟨x1 − x2, u1 − u2⟩ − ∥u1 − u2∥2

and hence
(1− µ)∥u1 − u2∥2 ≤ ⟨x1 − x2, u1 − u2⟩ ≤ ∥x1 − x2∥∥u1 − u2∥

which means
∥u1 − u2∥ ≤ 1

1− µ
∥x1 − x2∥.

Theorem 11 (FedProx part of Theorem 4). Suppose Assumptions 1-3 hold and consider FedProx (Algorithm
3). Assume that all eigenvalues of the Hessian of l(·; z) are strictly greater than −µ with µ > 0 for any z. With
ηi ≤ δt

µ for 0 < δ < 1 being diminishing at the order of O(c/t) (where c > 0). Then,

ϵgen ≤ Õ
(T c

n
Dmax

)
+O

((
∆0D̃

) 1
2
T

3
4+c

n
+
√
∆0

T
1
2+c

n

)
+ Õ

(T c

n
σ
)
,

where ∆0 := E[R(θ0)−R(θ∗)].

Proof. Denoting proxf (x) := argminy f(y) +
1
2∥y − x∥2, we can rewrite the local update (5) as

θit+1 = proxηiR̂Si
(θt).

There are two different cases for local updates. For client j with j ̸= i, we note R̂Sj
(·) = R̂S′

j
(·) in the sense that

there is no perturbation for client j. In this case, using Lemma 16 we obtain

∥θit+1 − (θit+1)
′∥ = ∥proxηiR̂Si

(θt)− proxηiR̂Si
(θ′t)∥

≤ 1

1− ηiµ
∥θt − θ′t∥

≤ 1

1− δ
∥θt − θ′t∥
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For client i, we note that R̂i(·)− R̂′
i(·) = 1

ni
(l(·; zi,j)− l(·; z′i,j)), where z′i,j is the perturbed data point. And we

also use R̂i and R̂′
i to represent R̂Si and R̂S′

i
for simplicity. Then, we have

θit+1 = argmin
θ

ηiR̂i(θ) +
1

2
∥θ − θt∥2

(θit+1)
′ = argmin

θ
ηiR̂

′
i(θ) +

1

2
∥θ − θ′t∥2.

According to the first-order optimality condition, it yields

θit+1 − θt = −ηi∇R̂i(θ
i
t+1)

(θit+1)
′ − θ′t = −ηi∇R̂′

i((θ
i
t+1)

′)

= −ηi∇R̂i((θ
i
t+1)

′) +
ηi
ni

(
∇l((θit+1)

′; zi,j)−∇l((θit+1)
′; z′i,j)

)
.

Moreover, by the techniques used in Lemma 16,

∥(θit+1)
′ − θit+1∥2 ≤ ⟨θ′t − θt, (θ

i
t+1)

′ − θit+1⟩ − ηi⟨∇R̂i((θ
i
t+1)

′)−∇R̂i(θ
i
t+1), (θ

i
t+1)

′ − θit+1⟩

+
ηi
ni

⟨(θit+1)
′ − θit+1,∇l((θit+1)

′; zi,j)−∇l(θit+1; z
′
i,j)⟩

≤ ⟨θ′t − θt, (θ
i
t+1)

′ − θit+1⟩+
ηi
ni

⟨(θit+1)
′ − θit+1,∇l((θit+1)

′; zi,j)−∇l(θit+1; z
′
i,j)⟩

+ηiµ∥(θit+1)
′ − θit+1∥ (21)

which further implies by symmetry of zi,j and z′i,j ,

∥(θit+1)
′ − θit+1∥ ≤ 1

1− ηiµ
∥θ′t − θt∥+

ηi
ni

∥∇l(θit+1; zi,j)−∇l(θit+1; z
′
i,j)∥

≤ 1

1− δ
∥θ′t − θt∥+

ηi
ni

∥∇l(θit+1; zi,j)−∇l(θit+1; z
′
i,j)∥

where we also use Cauchy-Schwatz inequality.

Combining two cases gives

E∥θt+1 − θ′t+1∥ ≤
m∑
j=1

pjE∥θjt+1 − (θjt+1)
′∥

≤ 1

1− δ
E∥θt − θ′t∥+

ηi
n
E∥∇l(θit+1; zi,j)−∇l(θit+1; z

′
i,j)∥,

≤ 1

1− δ
E∥θt − θ′t∥+

2ηi
n

E∥∇l(θit+1; zi,j)∥

≤ 1

1− δ
E∥θt − θ′t∥+

2ηi
n

(1 +
βδ

(1− δ)µ
)(2LDi + E∥∇R(θt)∥+ σ),

where we use Lemma 15 in the last step. Define τ := δ
1−δ . Then, unrolling it over t we obtain

E∥θT − θ′T ∥ ≤ T c 2

n

T−1∑
t=0

ηi(1 + βτ/µ)(2LDi + E∥∇R(θt)∥+ σ). (22)

Finally, based on (22), combining Theorem 1 and using the proof techniques in Theorem 3, we complete the
proof.
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E Additional experiments

The implementation of the experiments in this section and Section 6 are based on [46] and can be found through
the following link: https://github.com/fedcodexx/Generalization-of-Federated-Learning.

In addition to the experimental setup outlined in Section 6, we explore an alternative approach for distributing
the MNIST dataset to clients, exhibiting varying levels of data heterogeneity. As explained in [40], we generate
disjoint heterogeneous training data for clients by leveraging the Dirichlet distribution. The value of α in the
Dirichlet distribution controls the level of data heterogeneity. A smaller value of α means a higher probability of
clients possessing examples from a single randomly selected class. In particular, setting α = 100 mimics identical
local data distributions. We compare heterogeneity levels with α = 100, 10, 1, 0.1, 0.01. Figure 2 presents the
generated number of samples per class assigned to each client across varying values of α. This depiction highlights
different levels of data heterogeneity among the clients. In each setting, we implement the algorithms using the
same way outlined in Section 6. Figure 3 presents the obtained results. These results align closely with those in
Section 6. We highlight that the results in Figure 3 visually verify the theoretical findings from Section 5. In
particular, increasing data heterogeneity leads to larger generalization errors.

Moreover, we run additional experiments to show how other parameters like stepsizes affect generalization errors.
We implement the three algorithms using the experimental setup in Section 6 with ρ = 0.8. Figure 4 presents the
obtained results. These results show that larger stepsizes lead to larger generalization errors for each algorithm,
which verifies our theoretical findings in Section 5.
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(b) α = 10
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(c) α = 1
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(d) α = 0.1
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(e) α = 0.01

Figure 2: Number of samples per class assigned to each client (indicated by dot sizes), for different Dirichlet
distribution α values with larger α corresponding to higher heterogeneity.

https://github.com/fedcodexx/Generalization-of-Federated-Learning
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(a) FedAvg
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(b) SCAFFOLD
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(c) FedProx

Figure 3: Generalization errors of FedAvg, SCAFFOLD, and FedProx (local datasets by Dirichlet distribution).
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(a) FedAvg
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(b) SCAFFOLD
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(c) FedProx

Figure 4: Generalization errors of FedAvg, SCAFFOLD, and FedProx for different stepsizes.
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