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Abstract

We study the problem of online conditional
distribution estimation with unbounded la-
bel sets under local differential privacy. The
problem may be succinctly stated as follows.
Let F be a distribution-valued function class
with an unbounded label set. Our aim is
to estimate an unknown function f ∈ F in
an online fashion. More precisely, at time
t, given a sample xt, we generate an esti-
mate of f(xt) using only a privatized ver-
sion of the true labels sampled from f(xt).
The objective is to minimize the cumula-
tive KL-risk of a finite horizon T . We show
that under (ϵ, 0)-local differential privacy for
the labels, the KL-risk equals Θ̃( 1ϵ

√
KT ),

up to poly-logarithmic factors, where K =
|F|. This result significantly differs from
the Θ̃(

√
T logK) bound derived in Wu et al.

(2023a) for bounded label sets. As a side-
result, our approach recovers a nearly tight
upper bound for the hypothesis selection
problem of Gopi et al. (2020), which has only
been established for the batch setting.

1 INTRODUCTION

Online conditional distribution learning (a.k.a., se-
quential probability assignment) (Shtarkov, 1987; Xie
and Barron, 1997; Merhav and Feder, 1995; Cesa-
Bianchi and Lugosi, 2006; Bilodeau et al., 2021) is
a fundamental problem that arises in many differ-
ent application domains, including universal source
coding (Xie and Barron, 1997; Merhav and Feder,
1995; Drmota and Szpankowski, 2004; Szpankowski
and Weinberger, 2012), portfolio optimization (Cesa-
Bianchi and Lugosi, 2006), and more recently, interac-
tive decision making (Foster et al., 2021). Formally, let
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X be a set of contexts (or features), Y be a set of labels,
and D(Y) be the set of all probability distributions
over Y. For any distribution-valued class F ⊂ D(Y)X ,
the conditional distribution learning problem is formu-
lated as a game between Nature and a Learner that
uses the following protocol. At the start of the game,
Nature selects some f ∈ F ; then, at each time step
t, Nature selects a context xt and reveals it to the
Learner; the Learner predicts p̂t ∈ D(Y) for the distri-
bution of the next label; Nature subsequently gener-
ates pt = f(xt), samples yt ∼ pt and reveals the label
yt to the Learner. The goal is to minimize the cu-
mulative risk

∑T
t=1 D(f(xt), p̂t), for an appropriately

selected divergence function D.

It can be shown that for any finite class F , the cumula-
tive risk is upper bounded by log |F| if we take D to be
the KL-divergence. There are many other work that
extend this basic setup to account for different formu-
lations, including non-parametric infinite classes, miss-
specified setting, stochastic feature generation scenar-
ios and computational efficient methods (Rakhlin and
Sridharan, 2015; Bhatt and Kim, 2021; Bilodeau et al.,
2021, 2020; Wu et al., 2022; Bhatt et al., 2023).

Our work investigates a different angle for this funda-
mental problem in which data are revealed privately
to the Learner. We employ the concept of local dif-
ferential privacy (LDP) for privatizing the labels yts
shared with the learner. Formally, we consider the fol-
lowing game between three parties, Nature, Learner
and the Users: (i) at the start of the game, Nature
selects f ∈ F ; (ii) Nature at each time step t selects
xt and reveals it to the Learner; the Learner makes
a prediction p̂t ∈ D(Y); (iii) the User then samples
yt ∼ f(xt) but reveals a privatized version Ỹt to the
Learner. The main goal is to minimize the following
KL-risk,

∑T
t=1 KL(f(xt), p̂t), subject to local differen-

tial privacy constrains on the labels Ỹt.

1.1 Results and Techniques

Our main results of this paper establish nearly-
matching lower and upper bounds for the KL-risk of
our private online conditional distribution estimation
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problem for the case that the label set Y is unbounded.
That is, we aim to achieve a KL-risk that is indepen-
dent of the label size |Y|.
Theorem 1 (Lower Bound). For any K ≥ 2 and
label set Y with |Y| ≥ K, there exists a finite class
F ⊂ D(Y)X of size K such that for any (ϵ, 0)-local
differential private mechanism and any learning rule,
the KL-risk is lower bounded by Ω( 1ϵ

√
KT ).

A related setup was recently studied in Wu et al.
(2023a), where the authors demonstrated that the KL-
risk can be upper bounded by Õ(

√
T logK) via a ran-

domized response mechanism. However, when defin-
ing their noisy kernel in a differentially private man-
ner, the risk upper bound grows as Õ(Mϵ

√
T logK),

where M = |Y|. This provides only vacuous bounds
when M → ∞. In fact, our lower bound, based on a
new Hadamard-matrix technique, demonstrates that
an Ω( 1ϵ

√
KT ) minimax lower bound is necessary for

M ≥ K. Therefore, a logarithmic dependency of the
KL-risk on the size |F| as in Wu et al. (2023a) is not
achievable for unbounded label sets.

The next result shows that the Ω( 1ϵ
√
KT ) lower bound

is essentially tight for unbounded label sets (whenever
|Y| ≥ K), up to a poly-logarithmic factor.

Theorem 2 (Upper Bound). For any finite class
F ⊂ D(Y)X of size K with any |Y| < ∞, there ex-
ists a (ϵ, 0)-local differential private mechanism and
corresponding learning rule, such that with adversari-
ally generated features, the KL-risk is upper bounded

by O( 1ϵ

√
KT log5(KT )).

Our proof technique for establishing this upper bound
makes use of a modified version of the EXP3 algo-
rithm by appropriately defining the loss vector using
the log-likelihoods of distributions specified by F . Un-
like the conventional randomized response that per-
turbs the labels, we add noise directly to the log-
likelihood vectors at each time step. Note that the
main challenge here is that the log-likelihoods are gen-
erally unbounded. Moreover, we need to scale the
(Laplace) noise to the order of K/ϵ so as to achieve
(ϵ, 0)-differential privacy for a vector of dimension K.
To resolve the first issue, we employ a "clipping" tech-
nique, such as Gopi et al. (2020), for controlling the
log-likelihoods; still, the existing clipping approach re-
quires careful adaption that is suitable for bounding
our KL-risk. To resolve the second issue, we employ a
novel randomized approach that reveals only one com-
ponent of the log-likelihood vector at each time step,
since this reduces the noise from K/ϵ to O(1/ϵ). We
then apply an adaption of the regret analysis for the
EXP3 algorithm to derive our desired KL-risk bound.

Finally, by applying the online-to-batch conversion

technique and Pinsker’s inequality, we show that our
upper bound for the KL-risk also implies a nearly tight
upper bound for the batch setting of Gopi et al. (2020)
with non-interactive privatization mechanisms.

1.2 Related Works

Our problem is related to the local differentially pri-
vate hypothesis selection problem introduced in Gopi
et al. (2020). The referenced result may be seen as a
batch version of our setup with a class of constant func-
tions. It is crucial to point out that analyzing our on-
line mechanism poses substantial technical challenges.
This is primarily because the underlying distributions,
which we are attempting to learn, are changing at ev-
ery time step and are unknown a priori. Unlike the
local privacy studied in this paper, online learning with
central differential privacy was studied extensively in
the literature (see Dwork et al. (2014); Golowich and
Livni (2021); Kaplan et al. (2023); Asi et al. (2023)).
Learning with locally private labels for the batch case
and with different loss functions was also discussed
in Chaudhuri and Hsu (2011); Ghazi et al. (2021);
Wu et al. (2023b); Esfandiari et al. (2022). Our lower
bound proof is also related to some approaches used
in Edmonds et al. (2020).

Summary of contributions. Our main contribu-
tions can be summarized as follows: (i) we formulate
a novel online distribution learning problem with lo-
cal differential privacy constraints; (ii) we establish a
(surprising) lower bound for the KL-risk of the form
Ω(

√
KT ), in contrast to the Õ(

√
T logK) upper bound

known only for bounded label sets; (iii) we present an
novel privatization mechanism and learning rule based
on EXP3 that nearly matches the lower bound.

2 PROBLEM SETUP AND
PRELIMINARIES

We are concerned with the locally differentially private
setting where each entry yt ∈ Y, t ∈ [T ], is protected
by a message ỹt ∈ Ỹ, generated by some randomized
mapping At : Y → Ỹ that is (ϵ, δ)-differentially pri-
vate. Here, we do not impose any constraints on the
choices of Y and Ỹ. We will specify the sets Y and Ỹ
in the following section (Section 2.1).

Definition 1. A privatization scheme (A1, . . . , AT ),
where At : Y → Ỹ, t ∈ [T ], is (ϵ, δ)-locally differ-
entially private for some ϵ, δ > 0 if for any different
yt, y

′
t ∈ Y and St ⊆ Ỹ, t ∈ [T ],

Pr(At(yt) ∈ St) ≤ eϵPr(At(y
′
t) ∈ St) + δ. (1)

If δ = 0, the privatization scheme (A1, . . . , AT ) is
called purely ϵ-locally deferentially private.
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We consider only the case when the At components
are independent for different t ∈ [T ], i.e., each At uses
only private coins.

2.1 Problem Formulation

For some positive integer d, let X = Rd be the fea-
ture space and let Y = [M ] = {1, . . . ,M} be the label
space, again for some positive integer M . It is assumed
that M and d can take arbitrary values. Next, we use
D(Y) = {(u1, . . . , uM ) ∈ RM :

∑M
i=1 ui = 1, ui ≥

0, i ∈ [M ]} to denote the set of probability distribu-
tions over Y. Let F = {f1, . . . , fK} be a hypothesis
set where fj : X → D(Y), j ∈ [K] is a function that
maps a feature x ∈ X to a distribution fj(x) ∈ D(Y)
over the label space. For any y ∈ Y, j ∈ [K], and
x ∈ X , let fj(x)[y] be the probability mass of element
y for the distribution fj(x).

Consider an online game between Nature, Learner and
Users, where Nature arbitrarily picks a function f ∈ F
at time t = 0 and the Learner wishes to learn f over
a time period t ∈ [T ] using privatized data gener-
ated by the Users. At each time t ∈ [T ], Nature
arbitrarily picks a feature xt ∈ X and reveals xt to
the Learner. The Learner then makes an estimate
p̂t = Φt(x

t = (x1, . . . ,xt), Ỹ
t−1 = (Ỹ1, . . . , Ỹt−1)) of

f(xt) based on the feature history xt, privatized label
history Ỹt−1, and a function Φt : X t × Ỹt−1 → D(Y).
After the Learner makes the estimate p̂t, the User then
samples a label Yt independently according to the dis-
tribution f(xt), generates (independently for different
t ∈ [T ]) a privatized version Ỹt = Rt(Yt) ∈ RK of
Yt using a random mapping Rt : Y → RK , and re-
veals Ỹt to the Learner. The privatization scheme
RT = (R1, . . . ,RT ) is required to be (ϵ, δ)-locally dif-
ferentially private. Therefore, we must have

Pr(Ỹt ∈ S|Yt) ≤ eϵPr(Ỹt ∈ S|Y ′
t ) + δ, (2)

for any S ⊆ RK , Yt, Y
′
t ∈ Y, and t ∈ [T ]. Here,

we choose Ỹ = RK for convenience, as it makes our
construction of the privatization schemes more trans-
parent. In general, Ỹ can be arbitrary.

Our goal is to design an (ϵ, δ)-locally differentially
private scheme RT for the Users and a prediction
scheme ΦT for the Learner, given F , such that the
total estimation error, measured by the expected total
Kullback-Leibler (KL) distance

EỸT

[
T∑

t=1

KL(f(xt), p̂t = Φt(xt, Ỹ
t−1))

]
,

over the randomness of the privatization output ỸT =
(Ỹ1, . . . , ỸT ) = (R1(Y1), . . . ,RT (YT )), is minimized
under arbitrary choices for f ∈ F and xT by Nature.

The KL distance KL(p1, p2) is defined as

KL(p1, p2) =
∑
y∈Y

p1[y] log

(
p1[y]

p2[y]

)
for any two distributions p1, p2 ∈ D(Y) with the same
support. We refer to a minimized expected total KL
distance as the minimax KL-risk,

rKLT (F)

= inf
RT∈L(ϵ,δ),ΦT

sup
f∈F,xT∈XT

EỸT

[
T∑

t=1

KL(f(xt), p̂t)

]
,

where L(ϵ, δ) is the set of all (ϵ, δ)-locally differentially
private schemes RT satisfying (2).

In addition to minimizing the expected total KL-
distance, we are interested in designing a privatization
scheme RT ∈ L(ϵ, δ) and a prediction scheme ΦT , such
that the corresponding average total variation∑T

t=1 |f(xt)− p̂t|TV
T

,

under arbitrary choices of f ∈ F and xT ∈ X T

is minimized. Here, the total variation |p1 − p2|TV
between two distributions p1, p2 ∈ Y is defined as∑

y∈Y max{p1[y] − p2[y], 0}. More specifically, for
any privatization scheme RT ∈ L(ϵ, δ) and prediction
scheme ΦT , we let

r̄TVT (ΦT ,RT ,F) = sup
f∈F,xT

EỸT

[∑T
t=1 |f(xt)− p̂t|TV

T

]

stand for the worst-case average total variation asso-
ciated with ΦT and RT .

3 THE Ω(
√
KT ) LOWER BOUND

We demonstrate next an Ω( 1ϵ
√
KT ) lower bound by

constructing a hard hypothesis class F of size K with
|Y| ≤ K. This result will establish that an upper
bound of the form Õ(

√
T logK), such as the one de-

rived in Wu et al. (2023a), is not achievable for un-
bounded label sets Y. We then provide a nearly match-
ing (up to poly-logarithmic factors) upper bound for
any finite class F with adversarially generated features
xT . These results are relegated to Sections 4 and 5.

Before presenting our lower bound, we first demon-
strate how randomized response mechanisms, such as
the one in Wu et al. (2023a), fail to achieve tight KL-
risk bounds for unbounded label sets. Let |Y| = M ,
the randomized response mechanism, operate as fol-
lows. For any y ∈ Y, we set Ỹ = y w.p. 1 − η
and let Ỹ be uniform in Y\{y} w.p. η. In order to
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achieve (ϵ, 0)-differential privacy, one would have to set

η =
(

eϵ

M−1 + 1
)−1

. It was demonstrate in Wu et al.

(2023a) that the KL-risk grows as Õ( 1
cη

√
T logK),

where cη = 1− Mη
M−1 . This gives cη = eϵ−1

eϵ+M−1 ∼ ϵ
M , for

a small enough ϵ. Therefore, the upper bound grows
as Õ(Mϵ

√
T logK), which is vacuous for M → ∞.

We state next the main result of this section.

Theorem 3. For any K ≥ 2 and label set Y with
|Y| ≥ K, there exists a finite class F ⊂ D(Y)X of
size K, with |Y| ≤ K, such that for any (ϵ, 0)-locally
private online learning scheme RT and ΦT (depending
on F), the KL-risk rKLT (F) is lower bounded by

Ω

(√
KT

min{(eϵ − 1)2, 1}eϵ

)

for all T ≥ K
9min{(eϵ−1)2,1}eϵ . Moreover, the bound

grows as Ω( 1ϵ
√
KT ) for sufficiently small ϵ.

Sketch of Proof. At a high level, for any K, our goal
is to construct K pairs of distributions {pi,1, pi,2}
for i ∈ [K], such that: (i) for any i ∈ [K],
inf p̂ sup{KL(pi,1, p̂),KL(pi,2, p̂)} ≥ Ω(a) where a is of

the order of 1
ϵ

√
K
T ; (ii) pi,1−pi,2 = a

NHN
i , where each

HN
i corresponds to distinct columns of a Hadamard

matrix of dimension K + 1 ≤ N ≤ 2K (excluding the
all-ones column). Assume that such a construction ex-
ists (see Appendix A). Then, we construct the class F
of 2K constant functions pi,ℓ for i ∈ [K], ℓ ∈ {1, 2}.
Our key technical contribution is to show that for any
(ϵ, 0)-locally differentially private mechanism (possibly
depends on F), there exists an i∗ ∈ [K] such that
KL(p̃i∗,1, p̃i∗,2) ≤ O(a

2ϵ2

K ) ≤ c
T for some c < 1; here,

p̃i∗,ℓ stands for the distribution of the private outcomes
with input distribution pi∗,ℓ. This is accomplished by
relating the KL-divergence to the χ2 divergence and
carefully applying Parseval’s identity using the fact
that the HN

i s are orthogonal. However, by Pinsker’s
inequality, this implies that |p̃⊗T

i∗,1 − p̃⊗T
i∗,2|TV < 1.

Therefore, by Le Cam’s two point method, no Learner
can distinguish pi∗,1, pi∗,2 from its privatized samples
of length T . Therefore, no algorithm can achieve a
KL-risk of order o( 1ϵ

√
KT ) due to property (i) of our

construction of pi,ℓs (since any such Learner can be
used to distinguish pi∗,1, pi∗,2). This completes the
proof sketch; see Appendix A for full details.

Note that our proof of Theorem 3 can be extended to
the case when |Y| ≤ K as well, yielding a Ω( 1ϵ

√
MT )

KL-risk lower bound, where M = |Y|. Our proof is
also similar in spirit to that outlined in Edmonds et al.
(2020) (see also Gopi et al. (2020)), in terms of the use

of Parseval’s identity. However, a distinguishing fea-
ture of our construction is that our label set Y is of
size K, while Edmonds et al. (2020) requires a sup-
port size of 2K . Therefore, for small label set Y with
|Y| = K, our result yields a Ω( 1ϵ

√
KT ) lower bound,

while the lower bound in Edmonds et al. (2020) only
implies an Ω( 1ϵ

√
T logK) lower bound. Furthermore,

our proof is constructive and employs a methodology
that is suitable for bounding KL-risk instead of the to-
tal variation, which is a result of independent interest.

4 APPROXIMATE-DP VIA WMA

We present next an online learning scheme (Algorithm
1) that is (ϵ, δ)-locally differentially private and has

minimax KL-risk rKLT (F) = Õ
(

1
ϵ

√
TK log 1

δ

)
, where

Õ hides poly(log(KT )) factors. Our scheme makes use
of the Laplace mechanism for local differential privacy
and the weighted majority algorithm (WMA) for on-
line learning.

4.1 The Weighted Majority Algorithm

Before presenting our scheme, we first briefly review
the well-known weighted majority algorithm for the
following online game. Suppose there are K experts
[K], accessible by the Learner. At each time t ∈ [T ],
the Learner picks an expert it, it ∈ [K], and observes
a loss vector vt = (vt,1, . . . , vt,K) ∈ [0, 1]K , which rep-
resents the loss of choosing each of the experts. Then,
the Learner incurs a loss equal to vt,it . Given K and T ,
the weighted majority algorithm executes the follow-
ing steps. The following lemma gives an upper bound

Algorithm WMA

1: Initialize: Set w1 = (w1
1, . . . , w

1
K) = (1, . . . , 1)

and η =
√

2 logK
T ;

2: for t = 1, . . . , T do
3: The Learner samples it from [K] with distribu-

tion w̃t
j =

wt
j∑K

i=1 wt
i

for j ∈ [K];
4: A loss vector vt is revealed and the Learner in-

curs the loss vt,it ;
5: Update wt+1

j = wt
j ∗ e−ηvt,j for j ∈ [K];

6: end for

on the regret of WMA, defined as the expected loss
minus the minimum total loss of a single expert.
Lemma 1 (Shalev-Shwartz and Ben-David (2014)).
When vt ∈ [0, 1]K for t ∈ [T ], the regret of the WMA
satisfies

T∑
t=1

K∑
j=1

w̃t
jvt,j − min

i∈[K]

T∑
t=1

vt,i ≤
√

2T logK.
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4.2 Our Scheme

Our key idea of leveraging the WMA algorithm in
the context of minimizing the KL-risk is to appro-
priately define the loss vector vts. At a high level,
we will choose the vt[j]s to be the log-likelihoods
− log fj(xt)[Yt] for j ∈ [K], and then add Laplace noise
to the loss vectors. However, instead of sampling one
expert (or a distribution from a set of candidates as in
the online distribution learning setting) at a time, we
estimate the distribution using a weighted average.

We define next random functions for "clipping" the
log-likelihoods, which are crucial for applying the
Laplace privatization mechanism. The "clipping"
technique appeared in Gopi et al. (2020). However,
here we use a slightly different form of "clipping func-
tions" for the purpose of bounding the KL divergence.

Clipping of distributions. Let xT be any realiza-
tion of the features. For each t ∈ [T ], let

N ′
t =

∑
y∈Y

⌈M max
j∈[K]

fj(xt)[y]⌉. (3)

Let {Sy,t}y∈Y , Sy,t ⊂ [N ′
t ], be a partition of [N ′

t ] such
that |Sy,t| = ⌈M maxj∈[K] fj(xt)[y]⌉. Define the ran-
dom mapping h′

t : Y → [N ′
t ] such that h′

t(y) is uni-
formly distributed over Sy,t, i.e.,

Pr(h′
t(y) = y′|y) =

{
1

⌈M maxj∈[K] fj(xt)[y]⌉ , if y′ ∈ Sy,t

0, else.
(4)

Let h′
t ◦ fj(xt), j ∈ [K], t ∈ [T ] be the distribution of

h′
t(y) when y ∈ Y is sampled from distribution fj(xt).

Also, let ht(y) : Y → [N ′
t ] equal h′

t(y) with probability
1 − 1

T , and U(y) with probability 1
T ; here, U(y) is

uniformly distributed over [N ′
t ], so that

Pr(ht(y) = y′|y)

=

{
1− 1

T

⌈M maxj∈[K] fj(xt)[y]⌉ +
1

TN ′
t
, if y′ ∈ Sy,t,

1
TN ′

t
, else.

(5)

Similarly, define ht ◦ fj(xt), j ∈ [K], t ∈ [T ], to be the
distribution of ht(y), y ∈ Y, when y is drawn according
to distribution fj(xt). More formally,

ht ◦ fj(xt)[y
′] =

∑
y∈Y

Pr(ht(y) = y′|y)fj(xt)[y]. (6)

By definition of N ′
t (3), we have M ≤ N ′

t ≤ KM .
Therefore,

1

TKM
≤
(
ht ◦ fj(xt)

)
[y′] ≤ 1

M
, (7)

for any j ∈ [K] and y′ ∈ [N ′
t ]. The fact that ht ◦fj(xt)

is upper and lower bounded (7) implies that the log-
likelihood − log(ht ◦ fj(xt)

)
[y′]) has sensitivity1 equal

to log(KT ) and thus can be made (ϵ, 0)-differentially
private by adding Laplace noise with scale2 log(KT )

ϵ
(Dwork et al., 2014).

The privatization scheme. In order to preserve
the privacy for the loss vector defined in WMA, we
need to add Laplace noise to a vector instead of a
scalar value. The following lemma shows that, by
using advanced composition, one only needs to add
Laplace noise with a scale equal to the square-root of
the vector-dimension.
Lemma 2 (Steinke (2022)). Let A1, . . . , AK :
Y → R be K random algorithms that are
(ϵ′, 0)-differentially private. Then the composition
A(y) = (A1(y), . . . , AK(y)) : Y → RK , where
the algorithms A1, . . . , AK run independently, is(

K(ϵ′)2

2 +
√
2 ln( 1δ )K(ϵ′)2, δ

)
-differentially private for

any δ > 0.

We are now ready to present our privatization scheme.
Let xt and (a random) Yt be the feature and label at
time t, respectively, and p̄t,j = ht ◦ fj(xt), for j ∈ [K].
Let γ > 0 be a value to be determined later. We define
the privatized vector Ỹt = (Ỹt,1, · · · , Ỹt,K) as

Ỹt,j = −c(γ)(log
(
p̄t,j [ht(Yt)]

)
+ Laptj

+ logM − c′(γ)), (8)

where hts are the random functions as in (5) and Laptjs
are i.i.d. Laplace random variables whose distributions

have scale (2
√

2K ln 1
δ+

√
Kϵ) log(KT )

ϵ . Moreover, c(γ) =
1

log(KT )+2c′(γ) and c′(γ) equals

(2
√
2K ln 1

δ +
√
Kϵ) log(KT )(γ + logK + log T )

ϵ
.

(9)

Note that the loss vector Ỹt = (Ỹt,1, . . . , Ỹt,K), t ∈ [T ],
is a privatized version of the log-likelihood vector
(log p̄t,1[ht(Yt)], . . . , log p̄t,T [ht(Yt)]) and thus a priva-
tization of Yt. The following lemma shows that the
privatized data Ỹt satisfies the privacy constraints.
Lemma 3. The privatization Rt(Yt) = Ỹt, t ∈ [T ],
in Algorithm 1 is (ϵ, δ)-locally differentially private.

Proof. Note that from (7), the sensitivity of
log
(
p̄t,j [ht(Yt)]

)
is log(KT ) for j ∈ [K], t ∈ [T ].

1For a real-valued function s : Z → R, its sensitivity
∆1(s) is defined as maxz∈Z s(z)−minz∈Z s(z).

2A Laplace random variable with scale b has density
1
2b
e

−|x|
b for x ∈ R.
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Hence, from (8), Ỹt,j is (ϵ′ = ϵ

2
√

K ln( 1
δ )+

√
Kϵ

, 0)-

locally differentially private. Invoking Lemma 2, Ỹt =

(Ỹt,1, . . . , Ỹt,K) is (K(ϵ′)2

2 +
√
2 ln(1δ )K(ϵ′)2, δ) differ-

entially private, and thus is (ϵ, δ)-differentially private
since

K(ϵ′)2

2
+

√
2 ln(

1

δ
)K(ϵ′)2 ≤ ϵ.

Hence, RT is (ϵ, δ)-locally differentially private.

Distribution Learning Algorithm. We now in-
troduce our private learning approach, summarized in
Algorithm 1, which uses the above discussed privatiza-
tion scheme. Note that the prediction p̂t at time t may
be different from any of the expert opinions ht ◦fj(xt)
and the candidate distributions fj(xt), j ∈ [K].

Algorithm 1 Locally Privatized WMA
1: Input: The hypothesis set F , the time horizon T ,

a probability parameter γ.
2: Initialize: Set K = |F|, w1 = (w1

1, . . . , w
1
K) =

(1, . . . , 1), and η =
√

2 logK
T ;

3: for t = 1, . . . , T do
4: Fetch a feature xt;
5: Set p̄t =

∑K
j=1 w̃

t
j p̄t,j , where p̄t,j = ht ◦ fj(xt) is

defined in (6) and w̃t
j =

wt
j∑K

j=1 wt
j

;

6: Make a prediction p̂t[y] =
∑

y′∈Sy,t
p̄t[y

′] for all
y ∈ Y, where Sy,t is defined in (4);

7: Aquire the privatized data Ỹt =
(Ỹt,1, · · · , Ỹt,K), as defined in (8);

8: Update wt+1
j = wt

j ∗ e−ηỸt,j for j ∈ [K];
9: end for

We establish next an Õ(
√
TK) upper bound on the

KL-risk of Algorithm 1. The following lemma directly
follows from Lemma 1.

Lemma 4. In Algorithm 1, if Ỹt,j ∈ [0, 1] for j ∈ [K],
t ∈ [T ] and T > logK, then

T∑
t=1

K∑
j=1

w̃t
j Ỹt,j − min

i∈[K]

( T∑
t=1

Ỹt,i

)
≤
√
2T logK.

We now introduce the following key lemma, which es-
tablishes an upper bound for the KL-risk conditioned
on the event that the Laplace noise is bounded.

Lemma 5. For any f ∈ F and xT ∈ X T , with proba-
bility at least 1−e−γ wrt the randomness of Laptjs, and
for any γ > 0, the output p̂t of Algorithm 1 satisfies

EY ′T

[
T∑

t=1

KL(f(xt), p̂t)

]

≤ 1

c(γ)

√
2T logK + 3 log(KT )

+

T∑
t=1

K∑
j=1

EY ′T [w̃t
j ]Lap

t
j −

T∑
t=1

Laptj∗ , (10)

where c(γ) is given in (9) and Y ′
t ∼ ht ◦ f(xt).

Sketch of Proof. We only present high-level ideas and
refer to Appendix B for a detailed proof. Note that, in
order to apply Lemma 4, one must ensure that the loss
vector Ỹt is within [0, 1] for each coordinate. We show
that this holds true w.p. ≥ 1−e−γ by our definition of
Ỹt,js in (8) and through the use of concentration prop-
erty of Laplace distributions. Now, by conditioning on
such an event, we show by Lemma 4 and definition of
Ỹt that for any j∗ ∈ [K] we have

∑T
t=1 − log(p̄t[Y

′
t ])+

log(p̄j∗,t[Y
′
t ]) ≤ 1

c(γ)

√
2T logK + β, where β de-

pends only on the Laplace variable Laptj and Y ′
t =

ht(Yt). Assuming Yt ∼ fj∗(xt) and taking the ex-
pectation wrt the randomness of the Y ′

t s, we have
EY ′T

[∑T
t=1 KL(p̄j∗,t, p̄)

]
≤ 1

c(γ)

√
2T logK + β. Here,

we used the key observation that Ey∼p log(p[y]/q[y]) =
KL(p, q) and the law of total probability. The
lemma then follows by a careful analysis that relates
KL(fj∗(xt), p̂t) and KL(p̄j∗,t, p̄) by leveraging the cru-
cial properties of our "clipping functions".

We now ready to state our main result of this section.
Theorem 4. For any class F of size K there
exist an (ϵ, δ)-local differential private mechanism
that achieves a KL-risk rKLT (F) upper bounded by

O

(
√
2T logK

(
log(KT ) +

(
√

K ln 1
δ+

√
Kϵ) log2(KT )

ϵ

))
.

Proof. Let E be the event that for all j, t, |Laptj | ≤
c′(γ), which happens w.p. ≥ 1− e−γ and implies that
Lemma 5 holds (see Appendix B). We have

rKLT (F) = EỸT

[
T∑

t=1

KL(fj∗(xt), p̂t)

]

= Pr(E)EỸT

[
T∑

t=1

KL(fj∗(xt), p̂t)|E

]

+ Pr(Ec)EỸT

[
T∑

t=1

KL(fj∗(xt), p̂t)|Ec

]
,

where j∗ ∈ [K] is the underlying truth. Denote by (A)
and (B) the two terms in the above expression that
correspond to E and Ec, respectively. By Lemma 5,
we know that (A) can be upper bounded by

EỸT

[
1

c(γ)

√
2T logK + 3 log(KT )
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+

T∑
t=1

K∑
j=1

w̃t
jLap

t
j −

T∑
t=1

Laptj∗ |E

]
. (11)

Also note that even when conditioning on E , the
Laplace random variables Laptjs remain i.i.d. and the
w̃t

js still sum up to 1, so that (11) vanishes when tak-
ing (conditional) expectation. Therefore, (A) is upper
bounded by 1

c(γ)

√
2T logK + 3 log(KT ).

To analyze the term (B), by (30) and (31) (Ap-
pendix B) we have that KL(fj∗(xt), p̂t) is upper
bounded by KL(p̄t,j∗ , p̄t) + O

(
log(KT )

T

)
. Noting that

p̄t,j∗ [y
′]

p̄t[y′] ≤ KT for all y′ ∈ [N ′
t ] (see (7)), we conclude

that KL(p̄t,j∗ , p̄t) ≤ log(KT ). Therefore, by summing
over t ∈ [T ], we see that the term (B) is upper bounded
by e−γ(T log(KT )+O(log(KT ))), since Pr[Ec] ≤ e−γ .
Putting everything together, the KL-risk rKLT (F) is up-
per bounded by

1

c(γ)

√
2T logK + 3 log(KT ) +O(e−γT log(KT )).

The theorem now follows by setting γ = log T and
from the definition of c(γ) in (9).

Observe that the KL-risk bound in Theorem 4 is in-
dependent of the label set size M and grows as

O

(
1

ϵ

√
TK log5(KT ) log

1

δ

)

for sufficiently small ϵ and δ.

5 PURE-DP VIA MODIFIED EXP3

While Algorithm 1 offers (ϵ, δ)-local differential pri-
vacy, it is worthwhile to investigate whether it is pos-
sible to attain the stronger, pure (ϵ, 0)-differential pri-
vacy while still achieving comparable KL-risk bounds.
We demonstrate in this section that the answer is af-
firmative, and that it is possible to achieve the same
Õ
(

1
ϵ

√
TK

)
KL-risk bound. By Theorem 3, we known

that this is essentially tight for pure-DP constrains.

Note that the reason why Theorem 4 has a depen-
dency on δ is due to the advanced composition lemma
(Lemma 2) that allows us to select the scale of the
Laplace distribution with order of

√
K, which is es-

sential for achieving a
√
KT -type bound. To resolve

this issue, we now introduce a new privatization mech-
anism by selecting a single random component in the
log-likelihood vectors and then revealing only the pri-
vatized version of such a component, as in Algorithm 2.
Note that this significantly reduces the scale of the
Laplace distribution from

√
K to O(1). However, since

we only return a single component of the loss vector,
the WMA algorithm cannot be used directly. To re-
solve this issue, we instead perform an analysis similar
to that for the EXP3 (Exponential-weight for Explo-
ration and Exploitation) algorithm designed for bandit
learning via an unbiased estimation of the loss vector.
Note that the main difference compared to the stan-
dard EXP3 algorithm is that we do not reveal the loss
of the expert selected by the Learner but instead reveal
the loss for a randomly selected expert. This is crucial
for making our privatization mechanism independent
of prior history, i.e., using only private coins.

We now describe our privatization scheme. Let xt and
Yt be the feature and label at time t, and p̄t,j = ht ◦
fj(xt) as in (6). Let γ > 0 be a value to be determined
later, and define the vector Zt,j = (Zt,j,1, · · · , Zt,j,K)
according to

Zt,j,i =


−cpdp(γ)(log

(
p̄t,j [ht(Yt)]

)
+

Laptj + logM − c′pdp(γ)), if i = j

0, else,
(12)

where Laptj are independent Laplace random variables
with scale log(KT )

ϵ , and where ht is the random func-
tion from (5). Moreover, cpdp(γ) = 1

log(KT )+2c′pdp(γ)

and

c′pdp(γ) =
log(KT )(γ + logK + log T )

ϵ
. (13)

Let Ỹt be a random vector that equals Zt,j with proba-
bility 1

K , for each j ∈ [K]. We use Ỹt as the privatized
version of Yt. The following lemma demonstrates that
our scheme is indeed (ϵ, 0)-locally differentially private.

Lemma 6. The privatization Rt(Yt) = Ỹt, t ∈ [T ] in
Algorithm 2 is (ϵ, 0)-locally differentially private.

Proof. Since for each t, only a single entry of Ỹt is non-
zero, and log(p̄t,j [ht(Yt)]) has sensitivity log(KT ), the
Laplace mechanism with scale log(KT )

ϵ ensures (ϵ, 0)-
differential privacy (Dwork et al., 2014).

We present our learning algorithm in Algorithm 2. The
following key lemma bounds the regret that extends
Lemma 4 for expected loss vectors.

Lemma 7. In Algorithm 2, if Zt,j ∈ [0, 1]K for all
t ∈ [T ], j ∈ [K] and T > logK, then

max
i∈[K]

E

 T∑
t=1

 K∑
j=1

w̃t
jZt,j,j − Zt,i,i

 ≤
√
2TK logK,

where the expectation is over the randomness of Jts.
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Algorithm 2 Locally Pure-DP Algorithm
1: Input: The hypothesis set F , the time horizon T ,

a probability parameter γ.
2: Initialize: Set K = |F|, w1 = (w1

1, . . . , w
1
K) =

(1, . . . , 1), and η =
√

2K logK
T ;

3: for t = 1, . . . , T do
4: Fetch a feature xt;
5: Set p̄t =

∑K
j=1 w̃

t
j p̄t,j , where w̃t

j =
wt

j∑K
j=1 wt

j

;

6: Make a prediction p̂t[y] =
∑

y′∈Sy,t
p̄t[y

′] for all
y ∈ Y, where Sy,t is defined as in (4);

7: Receive privatized data Ỹt, where Ỹt = Zt,Jt
as

in (12), where Jt is uniform over [K];
8: Update: wt+1

j = wt
j ∗ e−ηỸt,j for j ∈ [K];

9: end for

Proof. Let Ỹt = (Ỹt,1, · · · , Ỹt,K) be as in Algorithm 2.
We use a more general result of Lemma 1, which is
implied in the proof of Shalev-Shwartz and Ben-David
(2014, Thm 21.11), that is,

T∑
t=1

K∑
j=1

w̃t
j Ỹt,j − min

i∈[K]

( T∑
t=1

Ỹt,i

)

≤ logK

η
+

η

2

T∑
t=1

K∑
j=1

w̃t
j Ỹ

2
t,j .

Taking expectations over Jts, we have

max
i∈[K]

E

 T∑
t=1

 K∑
j=1

w̃t
j Ỹt,j − Ỹt,i


≤ logK

η
+ E

η
2

T∑
t=1

K∑
j=1

w̃t
j Ỹ

2
t,j


(a)

≤ logK

η
+

η

2

T∑
t=1

1

K
=

logK

η
+

η

2

T

K
, (14)

where (a) follows from EJt [Ỹ
2
t,j ] =

Z2
t,j,j

K ≤ 1
K and

the fact that the w̃t
js are independent of Jt. Setting

η =
√

2K logK
T and noticing that EJt

[Ỹt,j ] =
Zt,j,j

K , the
result follows.

The following lemma is analogous to Lemma 5, and
we defer its proof to Appendix C.

Lemma 8. For any f ∈ F and xT ∈ X T , with prob-
ability at least 1 − e−γ wrt the randomness of Laptjs,
the output p̂t of Algorithm 2 satisfies

EY ′T ,JT

[
T∑

t=1

KL(f(xt), p̂t)

]

≤ 1

cpdp(γ)

√
2TK logK + 3 log(KT )

+

T∑
t=1

K∑
j=1

EY ′T ,JT [w̃t
j ]Lap

t
j −

T∑
t=1

Laptj∗ , (15)

where cpdp(γ) is given in (13), Y ′
t ∼ ht ◦ f(xt), and

the Jts are random indices as in Algorithm 2.

We are now ready to state the main result of this sec-
tion. The proof essentially follows the same steps as
the proof of Theorem 4 and is therefore omitted due
to space constraints.

Theorem 5. For any class F of size K, there exists
a (ϵ, 0)-locally differentially private mechanism that
achieves a KL-risk rKLT upper bounded by

O

(√
2TK logK

(
log(KT ) +

log2(KT )

ϵ

))
.

6 BOUNDING THE AVERAGED
TV-RISK

We conclude our exposition by showing how the KL-
risk upper bound for our (ϵ, 0)-local differential private
algorithm (Theorem 5) can be used to obtain bounds
for the averaged TV-risk introduced in Section 2.1.

The next result follows directly from Pinsker’s inequal-
ity (Polyanskiy and Wu, 2022).

Theorem 6. For any class F of size K, there exists a
(ϵ, 0)-local differential private mechanism that achieves
the averaged TV-risk r̄TVT upper bounded by

Õ

√1

ϵ

√
K

T

 ,

provided that ϵ is sufficiently small.

Proof. Let p̂T be the Learners that achieve the KL-
risk bound of Theorem 5. For any xT and f ∈ F ,
we have by Pinsker’s inequality (Polyanskiy and Wu,
2022) that |f(xt) − p̂t|TV ≤

√
KL(f(xt), p̂t)/2 for all

t ∈ [T ]. Therefore, we have

1

T

T∑
t=1

|f(xt)− p̂t|TV ≤ 1

T

T∑
t=1

√
1

2
KL(f(xt), p̂t)

≤ 1

T

√√√√T

2

T∑
t=1

KL(f(xt), p̂t)

≤ Õ

√1

ϵ

√
K

T

 ,
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where the second inequality follows from the Cauchy-
Schwartz inequality, while the last inequality follows
from Theorem 5.

Finally, we determine Tα that makes the TV-risk
bounded by some given α. Let Q = {p1, · · · , pK} be K
distributions. We construct a class F of K constant
functions with values in Q. Denote by p̂T the lears
that achieve the upper bound of Theorem 6, and write
p̂ = 1

T

∑T
t=1 p̂t. By convexity of the TV-distance and

Jensen’s inequality, we have that for any ground truth

distribution p∗ ∈ Q, |p∗ − p̂|TV ≤ Õ

(√
1
ϵ

√
K
T

)
. Tak-

ing Tα = Õ
(

K
ϵ2α4

)
one can make the TV-risk upper

bounded by α. This can be boosted to high probabil-
ity via a median trick (Wu et al., 2023a), and therefore
recovers the nearly tight upper bound in Gopi et al.
(2020, Thm 3) with non-interactive mechanisms.
Remark 1. We conjecture that the averaged TV-risk
bound in Theorem 6 may not be tight. We leave it as
an open problem to determine if such an upper bound
can be improved to Õ( 1ϵ

√
K
T ). Note that it was demon-

strated in Gopi et al. (2020) (via suitable comparison
schemes) that the sample complexity of the batch set-
ting is upper bounded by Õ

(
K

ϵ2α2

)
when using interac-

tive private mechanisms. It is therefore also interest-
ing to investigate if such comparison-based arguments
can be extended to our online case.
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Let N = 2n for some positive integer n such that N
2 ≤ K ≤ N − 1. Let

HN =

[
1 1
1 −1

]⊗n

be a Hadamard matrix and let HN
i be the ith column of HN . Let Y = [N ] and consider the following 2K

distributions:

pi,1[y] =

{
0, if HN

i+1,y = 1,
2
N , if HN

i+1,y = −1

pi,2[y] =pi,1[y] +
HN

i+1,ya

N
, a =

√
K

9T min{(eϵ − 1)2, 1}eϵ
(16)

for i ∈ [K], y ∈ [N ]. Consider learning a hypothesis set F = {f1,1, f1,2, f2,1, . . . , fK,1, fK,2}, where fi,ℓ(x) = pi,ℓ
for all x ∈ X , i ∈ [K], and ℓ ∈ [2]. The samples Y T are i.i.d. random variables generated according to some
distribution p ∈ {pi,ℓ}i∈[K],ℓ∈[2]. The goal is to give an estimate of p̂ based on locally privatized data ỸT , where
Ỹt = Rt(Yt), such that the KL distance KL(p, p̂) is minimized. Note that one can use a private online learning
learner ΦT to make the estimate p̂ as follows: set p̂ = 1

T

∑T
t=1 p̂t where p̂t = Φt(x

t, Ỹt−1). Let fj∗,ℓ∗ be the
ground truth function. Then

EỸT [KL(p, p̂)] ≤
EỸT [

∑T
t=1 KL(fj∗,ℓ∗ [xt], p̂t)]

T

=
rKLT (F)

T
. (17)

In the following, we show, via the Le Cam’s two point method (Polyanskiy and Wu, 2022), that

EỸT [KL(p, p̂(Ỹ
T ))] ≥ a

33 ∗ 4
=

a

132
(18)

for any estimator p̂ : ỸT → D([N ]), which proves the theorem.

Note that for any p̂ ∈ D([N ]),

max{KL(pi,1, p̂),KL(pi,2, p̂)}
(a)

≥
KL(pi,1,

pi,1+pi,2

2 )

2
=

log( 2
2− a

2
)

2

(b)

≥ a

16
, (19)

where (a) follows by Wu et al. (2023a, Lemma C.1) and (b) follows since 0 ≤ a ≤ 1 and log(1 + x) ≥ x
2 when

x ≤ 1. In the following we show that there exists i∗ ∈ [K] such that

|p̃⊗T
i∗,1 − p̃⊗T

i∗,2|TV ≤ 1

3
,

where p̃i,ℓ is the distribution of Rt(Yt) when Yt ∼ pi,ℓ for i ∈ [K] and ℓ ∈ {1, 2}.

Let Rt be described by conditional distribution qt(ỹ|y) for y ∈ [N ] and ỹ ∈ Ỹ, where Ỹ is the output space of
Rt. For each ỹ ∈ Ỹ, let q(ỹ) = (q(ỹ|1), . . . , q(ỹ|N)) be a vector and let

q(ỹ) =

N∑
y=1

b(ỹ)yH
N
y (20)

where b(ỹ)y are the coefficients associated with the orthogonal base {HN
y }y∈Y . We have

p̃i,ℓ(ỹ) =

N∑
y=1

qt(ỹ|y)pi,ℓ(y). (21)
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From (16), (20), and (21), we know that

p̃i,1(ỹ) =
2
∑

y:HN
i+1,y=−1 qt(ỹ|y)

N
, and

p̃i,2(ỹ) =
2
∑

y:HN
i+1,y=−1 qt(ỹ|y)

N
+ ab(ỹ)i+1,

for i ∈ [K]. The KL distance

KL(p̃i,1, p̃i,2) =

∫
Ỹ
−p̃i,1(ỹ) log

( p̃i,2(ỹ)
p̃i,1(ỹ)

)
dỹ

(a)

≤
∫
Ỹ
−p̃i,1(ỹ)

(
p̃i,2(ỹ)− p̃i,1(ỹ)

p̃i,1(ỹ)
−
( p̃i,2(ỹ)− p̃i,1(ỹ)

p̃i,1(ỹ)

)2)
dỹ

=

∫
Ỹ

(p̃i,2(ỹ)− p̃i,1(ỹ))
2

p̃i,1(ỹ)
dỹ

≤
∫
Ỹ

a2b(ỹ)2i+1(
miny qt(ỹ|y)

)dỹ, (22)

where (a) follows from the fact that x− x2 ≤ log(1 + x) for x ≥ 0.

One the other hand, we have that

∑
y∈[N−1]

b(ỹ)2y+1 =
∑

y∈[N−1]

(∑
i∈[N ] qt(ỹ|i)HN

y+1,i

N

)2
(a)
=

∑
i∈[N ] qt(ỹ|i)2

N
−
(∑

i∈[N ] qt(ỹ|i)
N

)2
(b)

≤

∑
i∈[N ]

(∑
j∈[K](qt(ỹ|i)− qt(ỹ|j))2

)
2N2

(c)

≤
min{(eϵ − 1)2, 1}

∑
i∈[N ] qt(ỹ|i)2

2N

≤
min{(eϵ − 1)2, 1}eϵ

∑
i∈[N ] miny qt(ỹ|y)qt(ỹ|i)
2N

, (23)

where (a) follows from the Parseval’s identity and the fact that {HN
y+1}y∈[N−1] form orthogonal base with

the all-ones vector HN
1 being excluded, (b) follows from the elementary identity N

∑N
i=1 a

2
n − (

∑N
i=1 an)

2 =
1
2

∑
i,j≤N (ai − aj)

2, and (c) follows from property of (ϵ, 0)-differential privacy. Now, (22) and (23) imply

∑
i∈[K]

KL(p̃i,1, p̃i,2) ≤
∫
Ỹ

∑
i+1∈[N ] a

2b(ỹ)2i+1

miny qt(ỹ|y)
dỹ

≤ a2
∫
Ỹ

min{(eϵ − 1)2, 1}eϵ
∑

i∈[N ] qt(ỹ|i)
2N

dỹ

≤ a2

2
min{(eϵ − 1)2, 1}eϵ.

Therefore, there exists i∗ ∈ [K] such that

KL(p̃i∗,1, p̃i∗,2) ≤
a2 min{(eϵ − 1)2, 1}eϵ

2K
,

which implies that

|p̃⊗T
i∗,1 − p̃⊗T

i∗,2|TV ≤
√

2KL(p̃⊗T
i∗,1, p̃

⊗T
i∗,2)
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≤
√

2TKL(p̃i∗,1, p̃i∗,2)

<
1

3
. (24)

The rest of the argument is standard. Let p be one of pi,1 and pi,2 and let ϕ : ỸT → {pi,1, pi,2} be a classification
function deciding if p is pi,1 or pi,2 based on the privatized data ỸT . From (24) and Le Cam’s two point lemma,
the classification error

Pr(ϕ(ỸT ) ̸= pi,ℓ∗) ≥
1− |p̃⊗T

i∗,1 − p̃⊗T
i∗,2|TV

2
≥ 1

3
, (25)

where p = pi,ℓ∗ .

On the other hand, suppose there exists a private hypothesis testing estimator p̂ satisfying KL(pi,ℓ∗ , p̂(Ỹ
T )) ≤ a

33

with probability at least 3
4 . Then, from (19) we conclude that a minimum KL distance classifier ϕ(ỸT ) =

argminp∗∈{pi∗,1,pi∗,2}KL(p
∗, p̂(ỸT )) is correct with probability at least 3

4 , contradicting (25). Therefore, we have
(18), and thus the theorem.

B PROOF OF LEMMA 5

Let E denote the event that there exists j ∈ [K], t ∈ [T ] such that

|Laptj | ≥ c′(γ), (26)

where c′(γ) is given in (9). Note that for each t ∈ [T ] and j ∈ [K], (26) occurs with probability e−γ−logK−log T ,
t ∈ [T ], j ∈ [K]. Hence, by the union bound, the probability of E is at most e−γ .

In the following, we show that Lemma 5 holds when E does not occur, which has probability at least 1− e−γ .

Note that from (7), we have log(p̄t,j [ht(Yt)]) ∈ [log( 1
TKM ), log( 1

M )]. Hence,

log
(
p̄t,j [ht(Yt)]

)
+ Laptj + logM − c′(γ) ∈ [− log(KT )− 2c′(γ), 0],

and thus that Ỹt,j ∈ [0, 1]. According to Lemma 4, we have

T∑
t=1

K∑
j=1

w̃t
j

(
− log

(
p̄t,j [ht(Yt)]

)
− Laptj

)
− min

i∈[K]

(
T∑

t=1

(
− log

(
p̄t,i[ht(Yt)]

)
− Lapti

))
≤ 1

c(γ)

√
2T logK.

Let j∗ ∈ [K] be any index, and assume that Yt ∼ fj∗(xt). Taking expectation over the distribution of Y ′
t ∼ ht(Yt)

we find that

EY ′T

 T∑
t=1

K∑
j=1

w̃t
jKL(p̄t,j∗ , p̄t,j)

 ≤ 1

c(γ)

√
2T logK +

T∑
t=1

K∑
j=1

EY ′T [w̃t
j ]Lap

t
j −

T∑
t=1

Laptj∗ , (27)

where we used the fact that Y ′
t distributed as p̄t,j∗ = ht ◦ fj∗(xt) and EY∼p log

(
p[Y ]
q[Y ]

)
= KL(p, q). Moreover, we

have by Jensen’s inequality and convexity of − log(x) that

T∑
t=1

(
− log

( K∑
j=1

w̃t
j p̄t,j [ht(Yt)]

))
−

T∑
t=1

(
− log

(
p̄t,j∗ [ht(Yt)]

))

≤
T∑

t=1

K∑
j=1

w̃t
j

(
− log

(
p̄t,j [ht(Yt)]

))
−

T∑
t=1

(
− log

(
p̄t,j∗ [ht(Yt)]

))
.

Hence, by taking expectation over the distribution of Y ′
t ∼ ht(Yt)

EY ′T

[
T∑

t=1

KL(p̄t,j∗ , p̄t)

]
≤ EY ′T

 T∑
t=1

K∑
j=1

w̃t
jKL(p̄t,j∗ , p̄t,j)

 . (28)
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Combining (27) and (28), we arrive at

EY ′T

[
T∑

t=1

KL(p̄t,j∗ , p̄t)

]
≤ 1

c(γ)

√
2T logK +

T∑
t=1

K∑
j=1

EY ′T [w̃t
j ]Lap

t
j −

T∑
t=1

Laptj∗ . (29)

On the other hand,

KL(fj∗(xt), p̂t) =
∑
y∈Y

fj∗(xt)[y] log

(
fj∗(xt)[y]

p̂t[y]

)
(a)
=
∑
y∈Y

 ∑
y′∈Sy,t

h′
t ◦ fj∗(xt)[y

′]

 · log

 ∑
y′∈Sy,t

h′
t ◦ fj∗(xt)[y

′]∑
y′∈Sy,t

(∑
j∈[K] w̃

t
jht ◦ fj(xt)[y′]

)


(b)
=
∑
y∈Y

∑
y′∈Sy,t

(
h′
t ◦ fj∗(xt)[y

′] · log

(
h′
t ◦ fj∗(xt)[y

′]∑
j∈[K] w̃

t
jht ◦ fj(xt)[y′]

))
= KL(h′

t ◦ fj∗(xt), p̄t), (30)

where (a) follows from the definition of h′
t and the fact that p̂t[y] =

∑
y′∈Sy

p̄t[y] where p̄t =
∑

j∈[K] w̃
t
jht ◦fj(xt)

(see Algorithm 1), and (b) follows from the fact that h′
t ◦ fj∗(xt)[y

′] and ht ◦ fj∗(xt)[y
′] are constants for all

y′ ∈ Sy,t. Moreover,

KL(h′
t ◦ fj∗(xt), p̄t)

=
∑

y′∈[N ′
t]

h′
t ◦ fj∗(xt)[y

′] log
(
h′
t ◦ fj∗(xt)[y

′]
)
−

∑
y′∈[N ′

t]

h′
t ◦ fj∗(xt)[y

′] log
(
p̄t[y

′]
)

=
∑

y′∈[N ′
t]

h′
t ◦ fj∗(xt)[y

′] log

((
1− 1

T

)
h′
t ◦ fj∗(xt)[y

′]

)
−

∑
y′∈[N ′

t]

h′
t ◦ fj∗(xt)[y

′] log
(
p̄t[y

′]
)
− log

(
1− 1

T

)

≤
∑

y′∈[N ′
t]

h′
t ◦ fj∗(xt)[y

′] · log

((
1− 1

T

)
h′
t ◦ fj∗(xt)[y

′] +
1

TN ′
t

)
−

∑
y′∈[N ′

t]

h′
t ◦ fj∗(xt)[y

′] log p̄t[y
′]− log

(
1− 1

T

)

=
∑

y′∈[N ′
t]

((
1− 1

T

)
h′
t ◦ fj∗(xt)[y

′] +
1

TN ′
t

)
· log

((
1− 1

T

)
h′
t ◦ fj∗(xt)[y

′] + 1
TN ′

t

p̄t[y′]

)

+
∑

y′∈[N ′
t]

(
1

T
h′
t ◦ fj∗(xt)[y

′]− 1

TN ′
t

)
· log

((
1− 1

T

)
h′
t ◦ fj∗(xt)[y

′] + 1
TN ′

t

p̄t[y′]

)
− log

(
1− 1

T

)

= KL(p̄t,j∗ , p̄t) +
∑

y′∈[N ′
t]

(
1

T
h′
t ◦ fj∗(xt)[y

′]− 1

TN ′
t

)
· log

(
p̄j∗ [y

′]

p̄t[y′]

)
− log

(
1− 1

T

)
(a)

≤ KL(p̄t,j∗ , p̄t) +
log(KT )

T
+

log(KT )

KTM
− log

(
1− 1

T

)
(31)

where (a) follows because of (7) and the fact that p̄t is a linear combination of p̄j , j ∈ [K]. Combining (29),
(30), and (31), we have

EY ′T

[
T∑

t=1

KL(fj∗(xt), p̂t)

]
= EY ′T

[
T∑

t=1

KL(h′
t ◦ fj∗(xt), p̄t)

]

≤ EY ′T

[
T∑

t=1

KL(p̄t,j∗ , p̄t)− T log(1− 1

T
) + 2 log(KT )

]

≤ 1

c(γ)

√
2T logK + 3 log(KT ) +

T∑
t=1

K∑
j=1

EY ′T [w̃t
j ]Lap

t
j −

T∑
t=1

Laptj∗ .

This completes the proof.
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C PROOF OF LEMMA 8

The proof follows the footsteps of the proof of Lemma 5 by using Lemma 7. Let E denote the event that there
exists j ∈ [K], t ∈ [T ] such that

|Laptj | ≥ c′pdp(γ). (32)

Then, the probability of E is at most e−γ . We show that Lemma 8 holds when E does not occur. Note that from
(7), we have log(p̄t,j [ht(Yt)]) ∈ [log( 1

TKM ), log( 1
M )]. Therefore,

log
(
p̄t,j [ht(Yt)]

)
+ Laptj + logM − c′(γ) ∈ [− log(KT )− 2c′(γ), 0],

and thus that Zt,j ∈ [0, 1]K for all t ∈ [T ] and j ∈ [K].

Invoking Lemma 7, we have

max
i∈[K]

EJT

 T∑
t=1

 K∑
j=1

w̃t
jZt,j,j −

T∑
t=1

Zt,i,i

 = max
i∈[K]

EJT

[
T∑

t=1

( K∑
j=1

w̃t
j(−cpdp(γ)(log

(
p̄t,j [ht(Yt)]

)
+ Laptj))

− cpdp(γ)(log
(
p̄t,j [ht(Yt)]

)
+ Laptj)

)]
≤
√

2TK logK. (33)

Let j∗ ∈ [K] be any index and assume Yt ∼ fj∗(xt). Taking expectations over the distributions of Y ′
t ∼ ht◦fj∗(xt)

for t ∈ [T ], we find (similar to (27))

EY ′T ,JT

 T∑
t=1

K∑
j=1

w̃t
jKL(p̄t,j∗ , p̄t,j)

 ≤ 1

cpdp(γ)

√
2TK logK +

T∑
t=1

K∑
j=1

EY ′T ,JT

[
w̃t

j

]
Laptj −

T∑
t=1

Laptj∗ . (34)

Combining (28), (30), (31), and (34), we conclude

EY ′T ,JT

[
T∑

t=1

KL(fj∗(xt), p̂t)

]
≤ 1

cpdp(γ)

√
2TK logK + 3 log(KT ) +

T∑
t=1

K∑
j=1

EY ′T ,JT

[
w̃t

j

]
Laptj −

T∑
t=1

Laptj∗ .

This completes the proof.
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