
Unified Transfer Learning in High-Dimensional Linear Regression

Shuo Shuo Liu
Columbia University

Abstract

Transfer learning plays a key role in mod-
ern data analysis when: (1) the target data
are scarce but the source data are sufficient;
(2) the distributions of the source and target
data are heterogeneous. This paper devel-
ops an interpretable unified transfer learning
model, termed as UTrans, which can detect
both transferable variables and source data.
More specifically, we establish the estimation
error bounds and prove that our bounds are
lower than those with target data only. Be-
sides, we propose a source detection algo-
rithm based on hypothesis testing to exclude
the nontransferable data. We evaluate and
compare UTrans to the existing algorithms
in multiple experiments. It is shown that
UTrans attains much lower estimation and
prediction errors than the existing methods,
while preserving interpretability. We finally
apply it to the US intergenerational mobility
data and compare our proposed algorithms
to the classical machine learning algorithms.

1 INTRODUCTION

Predictive models, which employ the training data to
make predictions, have been effectively used to guide
decision making in various applications. Modern data
extraction techniques further improve model perfor-
mance and statistical inference by utilizing a collec-
tion of massive and diverse data (Zhuang et al., 2020;
Tripuraneni et al., 2020; Liu and Lin, 2023). With
data collected from multiple sources, the superior pre-
dictive ability of these models relies on the hypothesis
that these multi-source data share a homogeneous or
similar distribution. When such hypothesis fails, most
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predictive models using the training data lose the pre-
diction power and require reconstruction by gathering
new data from the same distribution. However, the
cost of collecting new data or the privacy limit of inte-
grating multiple data may hinder the reconstruction.
To improve the predictive performance, one of the pos-
sible solutions is to transfer and integrate the useful
source data. In this scenario, transferring data knowl-
edge from one source (namely, source data) to another
(namely, target data) would be required, of which the
learning process is called transfer learning in the liter-
ature (Olivas et al., 2009). The three main themes for
researchers in transfer learning are: what to transfer,
when to transfer, and how to transfer?

Transfer learning has drawn extensive attention for
decades and been applied in many fields including
Web-document classification, Wifi data calibration,
medical diagnosis, and so on. See more examples in
the recent survey paper (Zhuang et al., 2020). Be-
yond these applications of transfer learning in the ma-
chine learning community, some methodological and
theoretical works are also developed. Yogatama and
Mann (2014) proposes a fast and effective algorithm
for automatic hyperparameter tuning that utilizes se-
quential model-based optimization (SMBO) to con-
struct a common response surface across datasets, en-
abling generalization. Wei et al. (2018) studies how
to automatically determine what and how to transfer
by leveraging previous transfer learning experiences.
Bellot and van der Schaar (2019) introduces a sur-
vival prediction model that enhances predictions in a
small data domain, like a local hospital, by leverag-
ing related data from other domains, constructing an
ensemble of weak survival predictors that iteratively
adapts marginal distributions to improve predictions
for target patients of interest. Tripuraneni et al. (2020)
studies a two-stage empirical risk minimization proce-
dure to transfer learning and provides generalization
bounds with general losses, tasks, and features. How-
ever, little attention has been paid to interpretable
transfer learning in the statistical framework, which
can generate interpretable results and study the corre-
sponding theoretical properties. In this paper, we aim
to fill this gap, develop new statistical transfer learn-
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ing models in the context of high-dimensional data,
and improve the predictive performances of the exist-
ing transfer learning models.

1.1 High-Dimensional Transfer Learning
Models

High-dimensional linear models based on one source
data with suitable regularizations have been developed
extensively over the past decade (Tibshirani, 1996;
Fan and Li, 2001) due to the high-dimensional nature
of real-world data. For example, in gene expression
data, it is common to encounter a few observations
but hundreds of thousands of genes. In financial data,
it is widely seen that the number of features is much
larger than the number of individual stocks. The high-
dimensional linear regression model, with single-source
data, takes the form y1 = X1β1+ϵ1, where y1 ∈ Rn1 ,
X1 ∈ Rn1×p, β1 ∈ Rp, and ϵ1 ∈ Rn1 . With the high-
dimensional data, we allow the dimension p ≫ n1 for
the unknown coefficient vector β1.

Transfer learning has been studied recently in statis-
tical models (Li et al., 2022; Tian and Feng, 2022;
Lin and Reimherr, 2022). For example, in the high-
dimensional linear regression model (Li et al., 2022),
the target model is y0i = x⊤

0iβ0 + ϵ0i, i = 1, · · · , n0

and the source model from the k-th source data,
k = 1, · · · ,K ′, is yki = x⊤

kiβk + ϵki, i = 1, · · · , nk,
where xki ∈ Rp and βk ∈ Rp, k = 0, 1, · · · ,K ′. Useful
source data are transferred to the target data only if
the transferring set Ah satisfies Ah = {1 ≤ k ≤ K ′ :
∥β0−βk∥q ≤ h} for a relatively small transferring level
h. This model, named Trans-Lasso, leverages the lin-
ear regression model to bridge the source and target
data and transfers source data to the target data when
k ∈ Ah. Trans-Lasso solves w from the source data
in the first step and then debiases the estimation from
the target data in the second step. Let nAh

denote the
sample size of the source data in Ah. More specifically,
the first step solves

ŵ = argmin
w∈Rp

{
1

2nAh

∑
k∈Ah

∥∥∥y(k) −X(k)w
∥∥∥2
2
+ λ∥w∥1

}

via integrating the diverse information from multiple
sources. Tian and Feng (2022) and Lin and Reimherr
(2022) extend the results of Li et al. (2022) to high-
dimensional generalized linear models (GLMs) and
functional linear models, respectively. Some consis-
tent estimators of Ah are required, such as the Q-
aggregation (Li et al., 2022) and data-splitting esti-
mator under some conditions (Tian and Feng, 2022).
Other nonparametric predictive models also exist in
the literature, such as the adaptive transfer learning
with minimax optimal rates of convergence based on

k-nearest neighbour (Cai and Wei, 2021; Reeve et al.,
2021). Noteworthy, multi-task learning is a closely re-
lated topic to transfer learning, but with different goals
and interests. Multi-task learning method integrates
multiple learning tasks simultaneously, while exploit-
ing a shared structure across all tasks. For example,
see the structure of Data Shared Lasso (Gross and
Tibshirani, 2016; Ollier and Viallon, 2017) for high-
dimensional multi-task learning. In contrast, the in-
terest of transfer learning is to learn the target data
only by transferring some shared knowledge from the
source data. Therefore, learning the source data is not
the focus of transfer learning.

In this paper, our contributions include

1. We propose a novel unified transfer learning
model by redefining the design matrix and the
response vector in the context of the high-
dimensional linear regression with a flexible
penalty function. When the transferring set is
known, the theoretical results show that it attains
tighter upper bounds of the ℓ1/ℓ2 estimation er-
rors than Lasso using the target data only. We
also compare our theoretical results to the exist-
ing methods.

2. Detecting the transferable data, including trans-
ferable source data and transferable variables, is a
major task in transfer learning. Our unified model
is able to automatically identify the transferable
variables after model estimation. To the best of
our knowledge, this is the first work for identify-
ing the transferable variables by the model’s na-
ture and the first work for detecting transferable
source data by hypothesis testing.

2 UNIFIED TRANSFER
LEARNING MODELS

Notations: We denote scalars with unbolded letters
(e.g., sample size n and dimensionality p), (random)
vectors with boldface lowercase letters (e.g., y and β),
and matrices with boldface capital letters (e.g., X).
Let {(Xk,yk) : Xk ∈ Rnk×p,yk ∈ Rnk}K′

k=1 denote
the multiple source data and let (X0,y0) be the target
data. We use ⊤ to represent the transpose of vectors or
matrices, such as x⊤ andX⊤. For a p-dimensional vec-
tor x = (x1, · · · , xp), the ℓ0 norm is the number of non-
zero elements. ∥x∥q and ∥x∥∞ are the ℓq norm and
maximum norm, respectively. |M| denotes the cardi-
nality of the setM. A set with superscript c denotes
its complement. We use letters C and c with different
subscriptions to denote the positive and absolute con-
stants. Let an = O(bn) denote |an/bn| ≤ c for some
constant c when n is large enough. Let an = OP (bn)
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and an ≲ bn denote P (|an/bn| ≤ c) → 1 for c < ∞.
Let an = oP (bn) denote P (|an/bn| > c)→ 0 for c > 0.
Finally, an ≍ bn means that an/bn converges to some
positive constant.

Throughout the following sections, we abbreviate Ah
by A for simplicity and use K to denote the number
of transferable source data. The first step (namely,
transferring step) of the transfer learning models for
high-dimensional linear regression in Li et al. (2022)
is essentially equivalent to stacking all source data,
assuming A is known:

ŵ = argmin
w∈Rp

{
1

2nA

∥∥y′ −X′w
∥∥2
2
+ λ∥w∥1

}
, (1)

where y′ = [y⊤
1 , · · · ,y⊤

K ]⊤, X′ = [X⊤
1 , · · · ,X

⊤
K ]⊤, and

nA is the total sample size of the source data. Tian and
Feng (2022) proposes to stack the source data and the
target data in the GLMs in the transferring step. We
call these methods as vertical stacking methods. The
assumption behind these methods is that the data (the
source data in A or the target and the source data in
A) share a similar coefficient w. Stacking the data
in the way of Eq. (1) may produce a better estima-
tion when different data are close, but might be in-
sufficient to identify the transferable variables in the
source data. For example, we are unable to identify
the transferable variables to the target data for the
k-th source data. Therefore, we consider a new ap-
proach, unified transfer learning models, for transfer
learning in the high-dimensional linear regression in
this section.

2.1 A-UTrans: Transfer Learning with
Known A

Instead of stacking the target data and the source data
in A vertically, we propose to stack them both verti-
cally and horizontally by

y1
...

yK
y0

 =


X1

0
...
0

 (β1 − β0) + · · ·+


X1

...
XK

X0

β0 + ϵ

where ϵ = [ϵ⊤1 , · · · , ϵ⊤K , ϵ⊤0 ]
⊤. The aforementioned

model can be written as y = Xβ + ϵ, where
y = [y⊤

1 , · · · ,y⊤
K ,y⊤

0 ]
⊤, β = [(β1 − β0)

⊤, (β2 −
β0)

⊤, · · · ,β⊤
0 ]

⊤ ∈ Rp∗ , and

X =


X1 0 · · · · · · 0 X1

0 X2 0 · · · 0 X2

...
...

...
...

...
...

0 · · · · · · · · · XK XK

0 · · · · · · · · · 0 X0

 ∈ R(nA+n0)×p∗

(2)

where p∗ = Kp+ p and A = {k : 1 ≤ k ≤ K}. In this
paper, we assume that K is fixed.

We consider a more general penalty function that in-
cludes the Lasso used in the current literature and
other nonconvex regularizers to deal with the high-
dimensional data. The loss function of the penalized
least square is

Ln(β) =
1

2 (nA + n0)
∥y −Xβ∥22 + Pλ(β) (3)

and we denote this unified transfer learning model as
A-UTrans. We solve β̂0 by the coordinate descent
algorithm for nonconvex penalized regression (Breheny

and Huang, 2011). Note that β̂0 equals the last p

elements of β̂.

The penalty function Pλ(β) =
∑p∗

j=1 pλ (|βj |) satisfies
the following conditions

• (i) Pλ(0) = 0 and Pλ(t) is symmetric around 0.

• (ii) Pλ(t) is differentiable for t ̸= 0 and
limt→0+ P ′

λ(t) = λL.

• (iii) Pλ(t) is a non-decreasing function for t ≥ 0.

• (iv) Pλ(t)/t is a non-increasing function for t > 0.

• (v) There exists τ > 0 such that Pλ(t) +
τ
2 t

2 is
convex.

Conditions (i)–(iii) are relatively mild and used in
Zhang and Zhang (2012). Condition (iv) makes sure

that the bound of error ∥β̂−β∥2 is vanishingly small.
These mild conditions on Pλ(β) are commonly satis-
fied by many regularizers including Lasso (Tibshirani,
1996), SCAD (Fan and Li, 2001), and MCP (Zhang,
2010). For more details, refer to Loh and Wainwright
(2015).

We argue two benefits of our A-UTrans models. First,
the unified transfer learning model explicitly writes the
contrasts βk − β0. The k-th source data are transfer-
able if βk − β0 = 0. This method, therefore, provides
an opportunity to detect transferable source by testing
βk−β0 = 0. In Section 3, we propose to use hypothe-
sis testing to detect transferable source data. Second,
other than detecting the transferable source data, our
method can also detect the transferable variables in
each source data. For example, we obtain the set con-
taining the transferable variables in the k-th source

data by Tk = {j : ( ̂βk − β0)j = 0, 1 ≤ j ≤ p}.

2.2 Theoretical Properties of A-UTrans

We define the parameter space ofA-UTrans by Θ(s, h),
which is

{β : maxk∈A ∥βk − β0∥1 ≤ h, ∥β0∥0 ≤ s, ∥βk − β0∥0 ≤ Cs}
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for some constant C and s = ∥β0∥0 is the sparsity
level. Note that this parameter space specifies the
sparsity of β0 and constraints the maximum ℓ1 dis-
tance between βk and β0 to h. We further impose the
following conditions to study the theories ofA-UTrans:

• C1. Each row of Xk, k ∈ A ∪ {0}, is independent
and identically distributed (i.i.d) normal random
vector with mean zero and covariance matrix Σk.

• C2. The random noises ϵki in the k-th source
data, i = 1, · · · , nk and k ∈ A∪{0}, are i.i.d sub-
Gaussian random variable with mean zero and pa-
rameter σ2

k.

• C3. The sample covariance matrix Σ̂k =
1
nk

X⊤
kXk, k ∈ A ∪ {0}, satisfies the restricted

strong convexity (RSC) condition

∆⊤
k Σ̂k∆k ≥ vk∥∆k∥22 − τk

√
log p

nk
∥∆k∥1

for any ∆k ∈ Rp and ∥∆k∥1 ≥ 1, where vk > 0
and τk ≥ 0.

In C1, the source data and the target data are as-
sumed to have Gaussian designs. The covariance ma-
trix Σk can be homogeneous or heterogeneous among
the source and the target data. Different from Li et al.
(2022) whose theories are established separately with
the homogeneous and heterogeneous covariance matri-
ces, our theories can incorporate both. This condition
is for theoretical convenience and can be relaxed to
sub-Gaussian random variable. Condition C2 assumes
the sub-Gaussian random noises for the source and
the target data, which are used for the convergence
rate analysis. Condition C3 assumes the RSC condi-
tion for each sample covariance matrix. This condi-
tion is widely used to study the non-asymptotic error
bounds in high-dimensional statistics. It is shown that
the RSC condition is met with high probability under
sub-Gaussian assumption (Agarwal et al., 2012; Loh
and Wainwright, 2015; Liu et al., 2022). We mention
that the RSC condition can be replaced by the re-
stricted eigenvalue (RE) condition (Bickel et al., 2009;
Van De Geer and Bühlmann, 2009). For simplicity,
denote n = nA + n0. We have the following RSC con-
dition on the sample covariance matrix of X.

Theorem 1 Let Σ̂ = X⊤X/n be the sample covari-
ance matrix of X. With the RSC conditions on each
Σ̂k, we have

∆̂
⊤
Σ̂∆̂ ≥ v′∥∆̂∥22−τ0

(√
nm log p

n2
+

√
n0 log p

n2

)
∥∆̂∥1

for ∆̂ = β̂ − β ∈ Rp∗ , where v′ = mink vknk/n > 0,
τ0 = maxk τk(K + 1) ≥ 0, and nm = maxk∈A nk,
k ∈ A.

Theorem 1 implies that the sample covariance matrix
Σ̂ in the unified model admits a similar RSC con-
dition as that from a single source data. The term√
nm log p/n2+

√
n0 log p/n2 ≲

√
log p/n in the lower

bound is essential for establishing the estimation er-
ror bound. Note that this term is upper bounded
by
√
log p/n0. Thus, a tighter error bound than the

model using target data only can be established. From
this theorem, we observe

∆̂
⊤
Σ̂∆̂ ≥ v′∥∆̂∥22 − 2τ0

√
log p

n
∥∆̂∥1,

which trivially holds for ∥∆̂∥1

∥∆̂∥2
2

≥ v′

2τ0

√
n

log p since the

left-hand side is nonnegative. Thus, we only enforce a
type of strong convexity condition over a cone of the
form {

∥∆̂∥1
∥∆̂∥22

≤ v′

2τ0

√
n

log p

}
.

Based on Theorem 1, we have the following ℓ1/ℓ2 es-
timation error bounds.

Theorem 2 (Convergence rates of A-UTrans)
With the conditions on the regularizer Pλ(β)

and conditions C1–C3, let λ = c1

√
log p
n for a

positive constant c1. Suppose A is known and
(s log p/n)1/2 + h1/2(log p/n)1/4 = o(1), then there
exists some positive constant c such that

∥β̂0 − β0∥2 ≲

(
s log p

n

)1/2

+

(
log p

n

)1/4

h1/2

and

∥β̂0 − β0∥1 ≲ s

(
log p

n

)1/2

+

(
log p

n

)1/4

(sh)
1/2

hold with probabilities at least 1 − cp−1, where h =
maxk∈A ∥βk − β0∥1.

Theorem 2 shows how the estimation errors of β0 are
affected by nA, n0, s, p, and h. The ℓ1 error can be
analyzed similarly to the ℓ2 error, so we only analyze
the ℓ2 error here. In transfer learning, we are more
interested in the scenario of a small n0 but diverging
nA since it is more realistic. First, with a fixed n0

and nA →∞, our result indicates that the estimation
error goes to 0. When the size of transferable source
data is large enough, the effect of h on estimation is
dominated by an extremely large nA. Indeed, as the
simulation study shows (see Figure 3 in Section 3 and
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also Figure 3 in Tian and Feng (2022)), the estima-
tion error is dominated by a large nA even with a rela-
tively large h. The scenarios of very large h necessitate
the source detection algorithm introduced in Section
3. Besides, h = 0 implies that the source data are com-
pletely transferable to the target data (βk = β0). In

this case, the ℓ2 error becomes OP (
√

s log p
n ), the con-

vergence rate of stacking all data vertically. Second,
without any available source data (nA = 0 and h = 0),

the ℓ2 upper bound becomes
√

s log p
n0

, the same rate as

Lasso on target data only. Third, Theorem 2 holds
with the condition s log p = o(nA) when n0 ≲ nA,
which is weaker than the condition s log p = o(n0) for
Lasso using the target data only. Fourth, the ℓ2 error
bound of A-Trans-GLM (Theorem 1 of Tian and Feng
(2022)) is (s log p/n)1/2 + [(log p/n0)

1/4h1/2] ∧ h. It
is not hard to see that ours is the same as A-Trans-
GLM when h ≲ (log p/n)1/2 and tighter than that
when h≫ (log p/n)1/2 and n0 ≪ nA.

Theorem 3 (Prediction error bound of A-UTrans)

Let Env = 1/nv∥Xv

(
β̂0 − β0

)
∥22 be the mean squared

prediction error based on testing data Xv. With the
same conditions in Theorem 2 and some positive
constant c,

Env
≲

s log p

nv
+

(
log p

nv

)3/4

(sh)
1/2

+ h

(
log p

nv

)1/2

holds with probability at least 1−cp−1, where Xv is the
testing data and nv is the corresponding testing data
size.

3 UTrans: TRANSFER LEARNING
WITH SOURCE DETECTION

The A-UTrans algorithm in Section 2 assumes that
the source data and the target data are similar to
some extent, which might be unrealistic for an arbi-
trary dataset since h can be small or large. In fact,
transferring nontransferable source data to the target
data may bring adverse effects and lead to worse per-
formance than the model with target data only (Pan
and Yang, 2009; Tian and Feng, 2022). Therefore,
a source detection algorithm is necessary in transfer
learning.

Recall that our unified model, with Xk and X0, ex-
plicitly writes out the contrast βk − β0 with

µ =

[
Xk Xk

0 X0

] [
βk − β0

β0

]
:= W(βk − β0) + Zβ0

where µ = E(Y |Z,W), W = (X⊤
k ,0)

⊤, and Z =
(X⊤

k ,X
⊤
0 )

⊤. Let β = [(βk − β0)
⊤,β⊤

0 ]
⊤ (note that

β is defined differently from that in Section 2). By
testing H0 : βk − β0 = 0 vs H1 : βk − β0 ̸= 0, we
detect if the source data Xk are transferable to X0.

Both the parameter of interest βk − β0 and the
nuisance parameter β0 are p-dimensional. Meth-
ods on testing the high-dimensional vector with high-
dimensional nuisance parameter is very limited in the
literature. Recently, Chen et al. (2022) proposes a
U test statistic for the high-dimensional regression
models, which extends the results of testing the low-
dimensional parameter of interest in Goeman et al.
(2011) and Guo and Chen (2016). We propose an
asymptotic α-level test that rejects H0 if

|Ûnk
|/
√

2R̂nk
> z1−α/2

where z1−α/2 is the (1−α/2)-th quantile of a standard
normal distribution and

Ûnk
=

1

nk

nk∑
i ̸=i′

{
(yi − µ̂∅i) (yi′ − µ̂∅i′)x

⊤
kixki′

}

R̂nk
= 1

n2
k−nk

∑nk

i ̸=i′

{
(yi − µ̂∅i)

2
(yi′ − µ̂∅i′)

2 (
x⊤
kixki′

)2}
,

µ̂∅i = x⊤
kiβ̂0 where β̂0 is obtained by fitting µ =

z⊤β0 under the null hypothesis. Note that z is high-

dimensional, so we obtain β̂0 with the Lasso regres-
sion. Denote ΛϵW = tr[E{var(ϵ)xkx⊤

k }2] where ϵ =
yk − x⊤

k βk. Assume

• C4. UnderH0, there exist finite positive constants
c1 and C1 such that

c1 ≤ λmin

{
E(XkX

⊤
k )
}
≤ λmax

{
E(XkX

⊤
k )
}
≤ C1,

where λmin and λmax denote the smallest and
largest eigenvalues of E(XkX

⊤
k ), respectively.

Theorem 4 Assume the conditions C1–C2 and
C4 and s log p/n = o(1). Under H0, if
nks log p/(n

√
2ΛϵW ) = o(1), then

lim
nk→∞

sup
∥β0∥2=O(1)

P

 |Ûnk
|√

2R̂nk

> z1−α/2

 = α.

Theorem 4 shows the probability of making the type
I error (incorrectly excluding Xk when it is transfer-
able). Under some conditions, we find that the proba-
bility of making such error becomes small as nk →∞.

Algorithm UTrans utilizes the tool of hypothesis test-
ing to detect transferable source data. To the best of
our knowledge, this is the first work of using statisti-
cal inference for source detection in transfer learning.
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Algorithm 1: UTrans

Input: {(Xk,yk), 0 ≤ k ≤ K ′}.
1 for k ← 1 to K ′ do

2 (1) write W = (X⊤
k ,0)

⊤ and Z = (X⊤
k ,X

⊤
0 )

⊤.

3 (2) estimate β̂0 by fitting the model µ = z⊤β0.

4 (3) compute µ̂∅i = x⊤
kiβ̂0 and calculate the

test statistic tk = |Ûnk
|/
√
2R̂nk

.

5 end

6 Â =
{
k : tk ≤ z1−α/2/K′

}
.

7 A-UTrans: obtain β̂0 by minimizing (3); obtain

Tk = {j : ( ̂βk − β0)j = 0}.
Output: Â, β̂0, and Tk.

We point out the benefit of our source detection al-
gorithm. Compared to Trans-GLM (Tian and Feng,
2022) which depends on the unknown constant C0, our
algorithm has no extra unknown parameters. In fact,
C0 determines the threshold to select the transferable
source data. Without knowing the true value of C0, a
large value overestimates A and a small value under-
estimates A. Another round of cross validation can
be run to find C0, but increases computational cost.
Nevertheless, our algorithm estimates Â by directly
testing βk − β0 = 0, which is more computationally
efficient.

4 EXPERIMENTS

We illustrate the performances of our A-UTrans and
UTrans in various settings in terms of the averaged ℓ2-
estimation error and the mean squared prediction er-
ror. More specifically, we compare the following mod-
els: (1) A-Trans-GLM and Trans-GLM: a two-step
transferring model for linear regression without and
with source detection, respectively, proposed by Tian
and Feng (2022); (2) Trans-Lasso: a two-step transfer
learning model for linear regression with source detec-
tion, proposed by Li et al. (2022); (3) naive-Lasso: a
model that fits the target data only using Lasso regres-
sion (Tibshirani, 1996); (4) A-UTrans-Lasso and A-
UTrans-SCAD: the proposed unified transfer learning
models with Lasso and SCAD penalties. R packages
glmtrans and glmnet are used to implement Trans-
GLM and Lasso on the target data only, respectively
(R Core Team, 2024). Our UTrans is implemented by
the R package ncvreg.

We consider 10 different settings for the number of
source data, i.e., K (subsection 4.1) and K ′ (subsec-
tion 4.2) range from 1 to 10. With each K and K ′, ex-
periments are replicated 200 times. Note that methods
in Li et al. (2022) and Tian and Feng (2022) mainly

differ in the source detection algorithms, so we only
compare Trans-Lasso in subsection 4.2.

4.1 Simulation with Known A

This subsection is to show the theoretical proper-
ties in Theorem 2 and the advantages of our A-
UTrans algorithms in high-dimensional transfer learn-
ing with different dimensionalities p, target sizes n0,
and transferring levels h. We consider simulations
with n0 ∈ {50, 75, 100}, p ∈ {300, 500, 600, 900}, and
h ∈ {5, 10, 20, 40}. We let the sample size of the source
data nk = 100 for all k = 1, · · · ,K and fix the sparsity
level s = 5 in the target data.

For the target data, let β0 = (0.5s,0p−s), where 0.5s
means s repetitions of 0.5 and 0p−s means p − s rep-

etitions of 0. Each target sample x0i
iid∼ N (0p,Σ)

with element Σjj′ = 0.5|j−j
′| for i = 1, · · · , n0 and

1 ≤ j, j′ ≤ p. For the k-th source data, we let βk =
(0.5s + (h/p)Rs,0p−s), where Rs is a s-dimensional
independent Rademacher variable. Each sample is
generated from a p-dimensional N (0p,Σ + ϵϵ⊤) with
ϵ ∼ N (0p, 0.3

2Ip).

Figure 1 depicts the mean squared prediction errors
of all models with different simulation settings. More
specifically, row A shows the results under different di-
mensionalities p. We fix n0 = 100 and h = 5. First,
our proposed A-UTrans-Lasso and A-UTrans-SCAD
outperform all the others. Second, the naive-Lasso
model fluctuates with the highest error no matter how
K increases, since K controls the number of source
data and naive-Lasso fits the target data only. Row
B shows the MSPEs of all models with different tar-
get sizes n0. We fix p = 500 and h = 5. First, our
proposed A-UTrans algorithms have the best perfor-
mances even with small sample sizes. This evidence
shows the benefit of transfer learning when the size of
target data is small. Second, the MSPEs of all mod-
els decrease as n0 increases while A-UTrans-SCAD at-
tains the lowest error. Row C illustrates the MSPEs
of all models with various h. We fix n0 = 100 and
p = 500. As the level h increases, prediction errors of
all transfer learning models with small K increase but
they fluctuate as K increases.

Figure 2 shows the averaged ℓ2 estimation errors of
the four methods. More specifically, our A-UTrans
algorithms obtain much lower errors than the others.
As K increases, the errors of A-UTrans-Lasso and A-
UTrans-SCAD drop dramatically. This further shows
that our algorithms have lower errors than the two-
step A-Trans-GLM. The condition for improving the
target model in Li et al. (2022) and Tian and Feng
(2022) allows h as large as

√
n0/ log p. In other words,

they make a better upper bound better than the naive
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Figure 1: Mean squared prediction errors (MSPEs)
of the proposed unified model and the existing trans-
fer learning models with different settings of p (row
A), n0 (row B), and h (row C) for each k =
1, · · · ,K. Shade areas are calculated by MSPE±0.1×
standard deviation (SD).

Figure 2: The averaged ℓ2 estimation errors of
naive-Lasso, A-Trans-GLM, A-UTrans-Lasso, and A-
UTrans-SCAD with different settings. Shade areas are
calculated by estimate± SD.

Lasso under this condition. With these three simu-
lation settings, this condition is satisfied in most set-
tings and therefore improvement or theoretical prop-
erty is granted. While, our A-UTrans still outper-
forms A-Trans-GLM. Overall, this simulation study
presents that our proposed A-UTrans maintains rela-
tively low prediction errors in all settings. Particularly,
A-UTrans-SCAD outperforms all the others with rel-
atively lower errors.

4.2 Simulation with Source Detection

In subsection 4.1, we consider the cases when the val-
ues of h are relatively small. Here, we consider the
cases with relatively large h and examine the effec-
tiveness of the source detection algorithms. We fix
p = 500, K ′ = 10, and the source data sizes nk = 200
for k ∈ A. The target data are simulated in the same
way as subsection 4.1. For the k-th source data, each
sample is generated from a t-distribution with degrees
of freedom 4 and the covariance Σjj′ = 0.5|j−j

′| for
i = 1, · · · , nk and 1 ≤ j ̸= j′ ≤ p. Note that we
violate the assumptions C1 and C2 to show the ro-
bustness of UTrans with different data distributions.
We let β0 = (−0.43,−0.53,0.64,0490), βk = β0 if the
k-th source data are transferable, and βk = β0 + hRp
otherwise.

Figure 3 and Figure 4 show the estimation and pre-
diction errors from naive-Lasso, Trans-GLM, Trans-
GLM*, Trans-Lasso, UTrans, and UTrans*, respec-
tively. An algorithm with * denotes its pooled version,
i.e., combining all the source data and target data.
The x-axis ka represents the number of transferable
source data. The first row of Figure 3 shows the es-
timation results with different target sizes and we fix
h = 0.25. The second row demonstrates the results
with different values of h and we fix n0 = 100. When
n0 = 75, our algorithm UTrans obtains much lower es-
timation errors than Trans-GLM, which demonstrates
the benefit of using transfer learning in the target
data with relatively small size. As h increases, our
UTrans keeps the lowest estimation errors among all
algorithms in all settings, which shows the effectiveness
of excluding nontransferable source data. Overall, this
study reveals that our proposed UTrans works better
than existing algorithms in small target data and noisy
source data. Similar patterns for the prediction errors
can be observed in Figure 4.

Figure 3: The averaged ℓ2 estimation errors of naive-
Lasso, Trans-Lasso, Trans-GLM, and UTrans with
different settings. Shade areas are calculated by
estimate± SD.
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Figure 4: Mean squared prediction errors of the pro-
posed unified model and the existing transfer learning
models with different settings of n0 and h. Shade ar-
eas are calculated by MSPE± 0.1× SD.

5 INTERGENERATIONAL
MOBILITY DATA

5.1 Data Description

We use the county-level data collected from the na-
tional census data, the Opportunity Atlas, and Data
Commons to illustrate our UTrans. Intergenerational
mobility is measured as the change in income per-
centile for the children of all parents at the 75th na-
tional income percentile when they are aged 26. Fur-
thermore, we subset states with the numbers of coun-
ties larger than 50 for analysis. Of which, states with
the numbers of counties between 50 and 75 are treated
as the target states while others larger than 75 are
treated as the source states. Besides, we add two-
way interactions of the county-level characteristics.
Overall, the processed data contain 1803 counties and
7875 predictors. The states of interest (target states)
include Alabama (AL-66), Arkansas (AR-64), Cali-
fornia (CA-52), Florida (FL-65), Louisiana (LA-58),
Minnesota (MN-69), New York (NY-61), Oklahoma
(OK-60), Pennsylvania (PA-64), and Wisconsin (WI-
68). The source states include Georgia (GA-127), Illi-
nois (IL-88), Indiana (IN-87), Iowa (IA-81), Kentucky
(KY-98), Michigan (MI-76), Missouri (MO-87), North
Carolina (NC-95), Ohio (OH-88), Tennessee (TN-86),
Texas (TX-150), and Virginia (VA-113). Number in
the brackets denotes sample size, i.e., the number of
counties.

5.2 Predictive Analysis

We compare our UTrans to the following algorithms:
Trans-GLM, Trans-GLM*, random forest (RF), RF*,
XGBoost, XGBoost*, support vector machine (SVM),
SVM*, UTrans, and UTrans*, where * denotes the
pooled version, i.e., stacking both the source data and
the target data. We repeat our experiment 200 times

and evaluate these algorithms by the mean squared
prediction error. When applying these algorithms, we
treat one state as the target data. To make predic-
tions, we randomly split 80% of the target data as
training data and the remaining 20% as testing data.

Table 1 shows the mean squared prediction errors for
each target state. For each target state, the algo-
rithm with the best performance is highlighted in bold.
Notably, UTrans performs the best in three states
(CA, MN, and WI). Compared to XGBoost and SVM
and their pooled versions, UTrans still maintains rel-
atively low prediction errors. Compared to RF and
RF*, which have the lowest errors in three states, our
UTrans is also more interpretable in terms of variable
importance. The coefficients in linear regression rep-
resent the strength and direction of the relationship.
RF is generally more difficult to interpret than lin-
ear regression since the individual trees can interact
in complex ways and the importance of each feature
may not be easily discernible from the output. Com-
pared to the transfer learning models Trans-Lasso and
Trans-GLM, UTrans performs better than them in all
the target states.

6 BROADER IMPACT

In this paper, we propose a novel, unified, and
interpretable transfer learning model with high-
dimensional data. To the best of our knowledge, this
unified model is the first work on transfer learning that
identifies both transferable variables and transferable
source data; It is also the first work that incorporates
the statistical inference tool into transfer learning for
source detection. Multiple researches can be directed
based on our framework. First, our unified model may
be extended to the nonlinear models with extra condi-
tions, such as logistic regression, survival models, etc.
Second, our model will shed a light on the statisti-
cal learning community since it explicitly writes the
contrasts. Developing more powerful tools for source
detection is very critical in transfer learning.
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Table 1: The mean squared prediction errors for each target state. Model names with stars are run on the pooled
data. The bold numbers indicate the lowest prediction errors.

Model AL AR CA FL LA MN NY OK PA WI
RF 4.6647 8.6112 0.4349 2.2448 1.1496 1.4110 0.4450 6.9399 0.5996 1.4255
RF* 6.1231 7.7380 0.9830 2.3068 5.3322 1.7444 0.5937 7.2940 1.1103 1.7436
XGBoost 6.2520 12.6309 0.6331 2.8952 1.5041 2.6424 0.6036 8.8445 0.8695 1.7809
XGBoost* 5.9989 21.6605 0.6137 3.3179 4.7088 1.5407 0.7315 7.7890 27.9124 24.7909
SVM 5.1180 7.5670 0.3473 2.4102 0.9202 1.1043 0.3923 6.3199 0.7585 1.2256
SVM* 5.0375 7.5015 0.3339 2.3980 0.8894 1.2443 0.3791 6.2356 0.7465 1.2017
Trans-Lasso 5.9565 9.6555 0.5729 2.4748 3.3234 1.4261 0.4930 7.0710 0.9106 1.4848
Trans-GLM 5.4706 8.2521 0.4202 2.6550 0.9783 1.0620 0.3943 6.4283 0.9253 1.2637
Trans-GLM* 5.5371 7.9981 0.4185 2.6622 0.9902 1.0621 1.0901 6.3438 0.8828 1.2772
UTrans 5.0616 7.5426 0.3308 2.4154 0.8924 1.0566 0.3810 6.2586 0.7548 1.2011
UTrans* 5.0572 7.5406 0.3328 2.4151 0.8924 1.0566 0.3811 6.2581 0.7549 1.2066
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Technical Proofs

Lemma 1 (Proposition 5.16 (Vershynin, 2010)) Let x1, · · · , xn be independent centered sub-exponential
random variables, and let M = maxi ∥xi∥ψ1 . Then, for every a = (a1, · · · , an)⊤ ∈ Rn and every t ≥ 0, we
have

P

(∥∥∥∥∥
n∑
i=1

aixi

∥∥∥∥∥ ≥ t

)
≤ 2 exp

[
−cmin

(
t2

M2∥a∥22
,

t

M∥a∥∞

)]
,

where c > 0 is an absolute constant.

Lemma 2 (Lemmas 4(b) and 5 of Loh and Wainwright (2015)) With the regularization function Pλ
satisfying the conditions (i)–(v),

1. For any w, we have λL∥w∥1 ≤ Pλ(w) + τ/2∥w∥22
2. Let I be the index set of the s∗ largest elements of v in magnitude. Suppose ξ > 0 is such that ξPλ(vI) −

Pλ(vIc) ≥ 0, then
ξPλ(vI)− Pλ(vIc) ≤ λL (ξ∥vI∥1 − ∥vIc∥1) .

Moreover, if β∗ is s∗-sparse, then for an vector β such that ξPλ(β
∗)− Pλ(β) > 0 and ξ ≥ 1, we have

ξPλ(β
∗)− Pλ(β) ≤ λL(ξ∥vI∥1 − ∥vIc∥1)

where v = β − β∗.

Proof of Theorem 1

Denote n = nA + n0. First, it is not hard to derive

Σ̂ =
1

n
X⊤X =

1

n


X⊤

1 0 · · · · · · 0 0

0 X⊤
2 0 · · · 0 0

...
...

...
...

...
...

0 · · · · · · · · · X⊤
K 0

X⊤
1 X⊤

2 · · · · · · X⊤
K X⊤

0




X1 0 · · · · · · 0 X1

0 X2 0 · · · 0 X2

...
...

...
...

...
...

0 · · · · · · · · · XK XK

0 · · · · · · · · · 0 X0



=
1

n


n1Σ̂1 0 · · · · · · 0 n1Σ̂1

0 n2Σ̂2 0 · · · 0 n2Σ̂2

...
...

...
...

...
...

0 · · · · · · · · · nKΣ̂K nKΣ̂K

n1Σ̂1 · · · · · · · · · nKΣ̂K

∑
k∈A∪{0} nkΣ̂k

 .

For any ∆ = (∆⊤
1 , · · · ,∆

⊤
K ,∆⊤

0 )
⊤, we have

∆⊤Σ̂∆ =


n1/n∆

⊤
1 Σ̂1 + n1/n∆

⊤
0 Σ̂1

...

nK/n∆⊤
KΣ̂K + nK/n∆⊤

0 Σ̂K∑
k∈A nk/n∆

⊤
k Σ̂k +

∑
k∈A∪{0} nk/n∆

⊤
0 Σ̂k


⊤ 

∆1

...
∆K

∆0


=
∑
k∈A

nk
n

{
∆⊤
k Σ̂k∆k + 2∆⊤

0 Σ̂k∆k +∆⊤
0 Σ̂k∆0

}
+

n0

n
∆⊤

0 Σ̂0∆0

=
∑
k∈A

1

n
∥Xk∆k +Xk∆0∥22 +

n0

n
∆⊤

0 Σ̂0∆0

=
∑
k∈A

nk
n

(∆0 +∆k)
⊤
Σ̂k (∆0 +∆k) +

n0

n
∆⊤

0 Σ̂0∆0

≥
∑
k∈A

(
v′′ ∥∆k +∆0∥22 − τk

√
nk log p

n2
∥∆k +∆0∥1

)
+ v′0∥∆0∥22 − τ0

√
n0 log p

n2
∥∆0∥1,
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where v′′ = mink vknk/n, v
′ = v′′/2, v′0 = (2K +1)v′, and the last inequality follows the RSC conditions on Σ̂k.

In the context of our model, we replace ∆ by ∆̂ = β̂ − β. We observe

v′∥∆̂∥22 = v′
∑
k∈A

∥∆̂k∥2 + v′∥β̂0 − β0∥2

= v′
∑
k∈A

∥∆̂k + ∆̂0 − ∆̂0∥2 + v′∥∆̂0∥2

≤ 2v′
∑
k∈A

(
∥∆̂k + ∆̂0∥2 + ∥∆̂0∥2

)
+ v′∥∆̂0∥2

= v′′
∑
k∈A

∥∆̂k + ∆̂0∥22 + v′0∥∆̂0∥22.

(4)

Let τk = τ for k ∈ A and τ0 = τ(K + 1). Then, we can also derive

τ
∑
k∈A

√
nk log p

n2
∥∆̂k + ∆̂0∥1 ≤ τ

∑
k∈A

√
nm log p

n2

(
∥∆̂k∥1 + ∥∆̂0∥1

)
=τ

√
nm log p

n2
∥∆̂∥1 + τ

√
nm log p

n2
(K − 1)∥∆̂0∥1

≤τ
√

nm log p

n2
∥∆̂∥1 + τK

√
nm log p

n2
∥∆̂∥1 = τ0

√
nm log p

n2
∥∆̂∥1

(5)

τ

√
n0 log p

n2
∥∆̂0∥1 ≤ τ0

√
n0 log p

n2
∥∆̂∥1. (6)

Finally, combining inequalities (4), (5), and (6), we have

∆̂
⊤
Σ̂∆̂ ≥ v′∥∆̂∥22 − τ0

(√
nm log p

n2
+

√
n0 log p

n2

)
∥∆̂∥1 for ∆̂ ∈ Rp

∗
and ∥∆̂∥1 ≥ 1.

According to Lemma 10 of Liu et al. (2022), the aforementioned inequality with ∥∆∥1 ≥ 1 actually implies

∆̂
⊤
Σ̂∆̂ ≥ v′∥∆̂∥22 − τ0

(√
nm log p

n2
+

√
n0 log p

n2

)
∥∆̂∥1 for ∆̂ ∈ Rp

∗

for a constant τ0 ≥ 0 and v′ > 0.

Proof of Theorem 2

First, minimizing the regularized loss function is equivalent to minimizing

1

2
β⊤Σ̂β − 1

n
y⊤Xβ + Pλ(β).

Let ∆̂ = β̂ − β. The first-order condition implies that for any solution β̂ in the interior of the constraint set,
Σ̂β̂ − 1

nX
⊤y +∇Pλ(β̂) = 0 and therefore

∆̂
⊤
Σ̂β̂ + ⟨∇Pλ(β̂)−

1

n
X⊤y, ∆̂⟩ = 0. (7)

For simplicity, we use τ for τ0. The RSC condition on each Σ̂k from Theorem 1 implies

∆̂
⊤
Σ̂∆̂ ≥ v′∥∆̂∥22 − τ

(√
nm log p

n2
+

√
n0 log p

n2

)
∥∆̂∥1. (8)
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Subtracting (7) from (8), we have

−∆̂
⊤
Σ̂β − ⟨∇Pλ(β̂)−

1

n
X⊤y, ∆̂⟩ ≥ v′∥∆̂∥22 − τ

(√
nm log p

n2
+

√
n0 log p

n2

)
∥∆̂∥1. (9)

Since the function Pτ,λ(w) = Pλ(w) + τ
2∥w∥

2
2 is convex (Loh and Wainwright, 2015; Liu et al., 2022),

−⟨∇Pλ(β̂), ∆̂⟩ ≤ Pλ(β)− Pλ(β̂) +
τ

2
∥∆̂∥22. (10)

Combining (9) and (10), we have

v′∥∆̂∥22 − τ

(√
nm log p

n2
+

√
n0 log p

n2

)
∥∆̂∥1

≤− ∆̂
⊤
Σ̂β +

1

n
X⊤y∆̂+ Pλ(β)− Pλ(β̂) + τ/2∥∆̂∥22

v′∥∆̂∥22 − τ/2∥∆̂∥22 ≤ Pλ(β)− Pλ(β̂) +

(∥∥∥∥Σ̂β − 1

n
X⊤y

∥∥∥∥
∞

)
∥∆̂∥1

+ τ

(√
nm log p

n2
+

√
n0 log p

n2

)
∥∆̂∥1

v′∥∆̂∥22 − τ/2∥∆̂∥22

≤Pλ(β)− Pλ(β̂) +

{∥∥∥∥Σ̂β − 1

n
X⊤y

∥∥∥∥
∞

+ τ

(√
nm log p

n2
+

√
n0 log p

n2

)}
∥∆̂∥1

Next, we only need to bound ∥Σ̂β − 1
nX

⊤y∥∞. Note that∥∥∥∥Σ̂β − 1

n
X⊤y

∥∥∥∥
∞

=

∥∥∥∥ 1nX⊤ϵ

∥∥∥∥
∞

≤

∥∥∥∥∥ 2n ∑
k∈A

X⊤
k ϵk

∥∥∥∥∥
∞

+

∥∥∥∥ 1nX⊤
0 ϵ0

∥∥∥∥
∞

≤c1

√
nA log p

n2
+ c2

√
n0 log p

n2

for some constants c1 and c2 with probability at least 1 − 4p−1. The last inequality follows the fact that
the product of sub-Gaussian random variables is a sub-exponential random variable. Therefore, xijϵi is sub-
exponential according to condition C2. Using Lemma 1 with a = [1, · · · , 1]⊤, we have

P

(
2

n

∥∥∥∥∥∑
k∈A

X⊤
k ϵk

∥∥∥∥∥
∞

> t

)
≤ 2p max

j≤p,k∈A
exp

{
−cmin

(
n2t2

4M2
knA

,
nt

2Mk

)}
,

where Mk = max1≤i≤nk
∥xki∥ψ1

. With log p = o(nA) and t = c1
√
nA log p/n2, we have

P

(
2

n

∥∥∥∥∥∑
k∈A

X⊤
k ϵk

∥∥∥∥∥
∞

≤ c1

√
nA log p

n2

)
≥ 1− 2p−1

for some constant c1. Similarly, we have

P

(
1

n

∥∥∥X⊤
0 ϵ0

∥∥∥
∞
≤ c2

√
n0 log p

n2

)
≥ 1− 2p−1
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for some constant c2. The last inequality follows by combining the aforementioned two inequalities such that∥∥∥∥Σ̂β − 1

n
X⊤y

∥∥∥∥
∞
≤ c1

√
nA log p

n2
+ c2

√
n0 log p

n2
≍
√

log p

n

with probability at least 1− 4p−1. Then∥∥∥∥Σ̂β − 1

n
X⊤y

∥∥∥∥
∞

+ τ

(√
nm log p

n2
+

√
n0 log p

n2

)
≤ c1

√
log p

n
,

for large enough c1.

Let λ = 2c1

√
log p
n , we have

v′∥∆̂∥22 − τ/2∥∆̂∥22 ≤ Pλ(β)− Pλ(β̂) + λ/2∥∆̂∥1
≤ Pλ(β)− Pλ(β̂) + 1/2Pλ(∆̂) + τ/4∥∆̂∥22
≤ Pλ(β)− Pλ(β̂) + 1/2Pλ(β) + 1/2Pλ(β̂) + τ/4∥∆̂∥22,

where the second inequality follows Lemma 2. With the second inequality in Lemma 2, we finally have

2v′∥∆̂∥22 − 3τ/2∥∆̂∥22 ≤ 3λL∥∆̂I∥1 − λL∥∆̂Ic∥1.

Besides,

∥∆̂Ic∥1 =
∑
k∈A

∥∥∥[ ̂βk − β0 − (βk − β0)
]
Ic

∥∥∥
1
+
∥∥∥(β̂0 − β0)Ic

∥∥∥
1

≥
∑
k∈A

∥∥∥( ̂βk − β0)Ic

∥∥∥
1
−
∑
k∈A

∥(βk − β0)Ic∥1 +
∥∥∥(β̂0 − β0)Ic

∥∥∥
1

≥
∑
k∈A

∥∥∥( ̂βk − β0)Ic

∥∥∥
1
−Kh+

∥∥∥(β̂0 − β0)Ic

∥∥∥
1
,

(11)

which implies

−λL∥∆̂Ic∥1 ≤ −λL
∑
k∈A

∥∥∥( ̂βk − β0)Ic

∥∥∥
1
+ λLKh− λL

∥∥∥(β̂0 − β0)Ic

∥∥∥
1
. (12)

With Theorem 1, Eq. (11), and Eq. (12), we obtain

2v′∥∆̂∥22 − 3τ/2∥∆̂∥22 ≤ 3λL∥∆̂I∥1 − λL∥∆̂Ic∥1
≤3λL∥∆̂I∥1 + λLKh

≲3λ
√
s∥∆̂∥2 + λh.

Let a = 2v′ − 3τ/2 for simplicity. We have

a∥∆̂∥22 ≲ 3λ
√
s∥∆̂∥2 + λh.

Let x = ∥∆̂∥2, then we solve the quadratic inequality ax2 − 3λ
√
sx− λh ≲ 0 and we have

∥∆̂∥2 ≲ λ
√
s+
√
λh.

Plugging in the choice of λ, we have

∥∆̂∥2 ≲

√
s log p

n
+

(
log p

n

)1/4√
h.

Since β̂0 − β0 is a subset of ∆̂, this result also holds for ∥β̂0 − β0∥2, i.e.,

∥β̂0 − β0∥2 ≲

√
s log p

n
+

(
log p

n

)1/4√
h.
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Immediately from the ℓ2 error of ∥β̂0 − β0∥2, we have

∥β̂0 − β0∥1 ≲ s

√
log p

n
+

(
log p

n

)1/4√
sh.

Proof of Theorem 3

For simplicity, we drop the subscript v in the testing data (Xv,yv). Let Ln(β) = 1
2n∥y−Xβ∥22 and ∆̂0 = β̂0−β0,

then the prediction error is

⟨∇Ln(β̂0)−∇Ln(β0), ∆̂0⟩ =
1

n

∥∥∥X(β̂0 − β0)
∥∥∥2
2
= (β̂0 − β0)

⊤Σ̂(β̂0 − β0) = ∆̂
⊤
0 Σ̂∆̂0.

Assume the RSC condition on the test data such that ∆⊤Σ̂∆ ≥ v∥∆∥22 − τ
√
log p/n∥∆∥1 for any ∆ ∈ Rp.

Similar to the proof of Theorem 2, we have

−⟨∇Pλ(β̂0), ∆̂0⟩ ≤ Pλ(β0)− Pλ(β̂0) + τ/2∥∆̂0∥22.

The first-order condition implies
⟨∇Ln(β̂0) +∇Pλ(β̂0),−∆̂0⟩ ≥ 0.

Therefore, the prediction error

⟨∇Ln(β̂0)−∇Ln(β0), ∆̂0⟩ ≤ ⟨−∇Ln(β0)−∇Pλ(β̂0), ∆̂0⟩

≤Pλ(β0)− Pλ(β̂0) + τ/2∥∆̂0∥22 + ∥∇Ln(β0)∥∞∥∆̂0∥1.

LetM be the support set of β, i.e.,M = {j : βj ̸= 0}. Next, we bound Pλ(β0)− Pλ(β̂0) by

Pλ(β0)− Pλ(β̂0) = Pλ(β0)− Pλ(β̂0M)− Pλ(β̂0Mc)

≤Pλ(∆̂0M)− Pλ(β̂0Mc)

=Pλ(∆̂0M)− Pλ(∆̂0Mc)

≤λL(∥∆̂0M∥1 − ∥∆̂0Mc∥1)

≤λL∥∆̂0∥1.

Together with the result ∥∇Ln(β0)∥∞ ≲ λ (from the proof of Theorem 1 or Loh and Wainwright (2015)), we
have

⟨∇Ln(β̂0)−∇Ln(β0), ∆̂0⟩

≲λL∥∆̂0∥1 +
τ

2
∥∆̂0∥22 + λ∥∆̂0∥1

≲λ
√
s∥∆̂0∥2 + ∥∆̂0∥22.

The result follows by plugging in the ℓ2 error bound in Theorem 2 such that

1

n

∥∥∥X(β̂0 − β0)
∥∥∥2
2
≲

s log p

n
+

(
log p

n

)3/4√
sh+ h

√
log p

n
.

6.1 Proof of Theorem 4

We decompose Ûnk
by

Ûnk
=

1

nk

nk∑
i̸=i′

{
(yi − µi) (yi′ − µi′)x

⊤
kixki′

}
︸ ︷︷ ︸

IÛnk

+
1

nk

nk∑
i ̸=i′

{
(µi − µ̂∅i) (µi′ − µ̂∅i′)x

⊤
kixki′

}
︸ ︷︷ ︸

IIÛnk

+
2

nk

nk∑
i̸=i′

{
(yi − µi) (yi′ − µ̂∅i′)x

⊤
kixki′

}
︸ ︷︷ ︸

IIIÛnk

.
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Note that the size is proved under H0, We first exam IIÛnk
: note that

IIÛnk

nk
= (β̂0 − β0)

⊤

[
1

nk

nk∑
i=1

ziw
⊤
i

][
1

nk

nk∑
i=1

ziw
⊤
i

]
(β̂0 − β0)︸ ︷︷ ︸

II1

− 1

n2
k

nk∑
i=1

(µi − µ̂∅i)
2w⊤

i wi︸ ︷︷ ︸
II2

.

For II1, let Σ̂ = 1
nk

∑nk

i=1 ziw
⊤
i = 1

nk

∑nk

i=1 xkix
⊤
ki and Σ = E(xkix

⊤
ki). Then, it can be shown that

∥Σ̂−Σ∥∞ = τ = Op

(√
log p

nk

)
.

Similar to A2 in Chen et al. (2022), we see that |II1| = Op(∥β̂0 − β0∥22) = Op

(
s log p
n

)
, where n = n0 + nk.

For II2, nkII2 ≤ ∥µ− µ̂∅∥2∞ 1
nk

∑nk

i=1 x
⊤
kixki = op(

√
2ΛϵW ) .

Finally,
IIÛnk

= nkII1 + nkII2 = Op(nks log p/n) + op(
√
2ΛϵW ) = op(

√
2ΛϵW )

when nks log p/n/
√
2ΛϵW = o(1).

We next exam IIIÛnk
: Similar to Chen et al. (2022), we obtain |III1| = Op[

1√
nnk

√
s log p(2ΛϵW )1/4] and nkIII2 =

op(
√
2ΛϵW ). Finally,

IIIÛnk
= nkIII1 + nkIII2 = Op

[√
nks log p

n
(2ΛϵW )1/4

]
+ op

(√
2ΛϵW

)
= op

(√
2ΛϵW

)
when nks log p/n/

√
2ΛϵW = o(1). Remaining steps are the same as Chen et al. (2022).


