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Abstract

In this paper, we deal with the evaluation
problem of “causes of effects” (CoE), which
focuses on the likelihood that one event was
the cause of another. To assess this likeli-
hood, three types of probabilities of causa-
tion have been utilized: probability of ne-
cessity, probability of sufficiency, and prob-
ability of necessity and sufficiency. However,
these usually cannot be estimated, even if “ef-
fects of causes” (EoC) is estimable from sta-
tistical data, regardless of how large the data
is. To solve this problem, we propose novel
identification conditions for CoE, using an in-
termediate variable together with covariate
information. Additionally, we also propose a
new method for estimating CoE that is appli-
cable whenever they are identifiable through
the proposed identification conditions.

1 INTRODUCTION

Statistical causal inference based on structural causal
models (Pearl, 2009), which started with path analysis
(Wright, 1923, 1934), has made significant progress in
recent years, from both theoretical and practical as-
pects, in elucidating the cause-effect relationships be-
hind statistical data. According to Holland (1986),
“one difficulty that arises in talking about causation
is the variety of questions that are subsumed under
the heading.” Such questions include the evaluation
problems of “effects of causes” (EoC) and “causes of
effects” (CoE). Roughly speaking, the focus of EoC
is on predicting what will happen if a cause occurs,
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whereas that of CoE is on explaining why the effect oc-
curred (Dammann, 2020), and the likelihood that one
event was the cause of another (Pearl, 2009). Since
experimental studies solve the evaluation problem of
EoC through causal risks, we are concerned with the
evaluation problem of the CoE from statistical data.

Probabilities of causation (PCs) have often been uti-
lized to evaluate CoE from statistical data. Here,
PCs are evaluated from three viewpoints, namely,
“necessity causation,” “sufficiency causation,” and
“necessity-and-sufficiency causation,” and they have
been utilized in various fields such as medical science
(Beyea and Greenland, 1999; Greenland, 1987; Robins
and Greenland, 1989), risk analysis (Cai and Kuroki,
2005; Cox, 1984), legal reasoning (Dawid et al., 2017),
social science (Dawid et al., 2022), statistical science
(Kuroki and Cai, 2011; VanderWeele, 2012), and ar-
tificial intelligence (Mueller et al., 2022; Pearl, 2009;
Tian and Pearl, 2000). Recently, in the field of
explainable artificial intelligence (XAI), it has been
pointed out that “necessity causation,” “sufficiency
causation,” and “necessity-and-sufficiency causation”
are the fundamental components of successful explana-
tion, and that PCs play an important role in evaluat-
ing these concepts for probabilistic aspects (Galhotra
et al., 2021; Kommiya Mothilal et al., 2021; Watson
et al., 2021).

Pearl (2009) and Tian and Pearl (2000) developed for-
mal semantics for PCs based on structural causal mod-
els. Additionally, they presented formal definitions of
the probability of necessity (PN), the probability of
sufficiency (PS), and the probability of necessity and
sufficiency (PNS). Furthermore, Lu et al. (2023) de-
fined the posterior total and direct causal effects for
the case with multiple causes that may affect each
other, which are equivalent to the probability of ne-
cessity and probability of causation when there is only
a single cause. These PCs are formulated based on the
joint probabilities of two potential outcome variables.
Since one usually cannot simultaneously observe the
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results of the same subjects treated and untreated in
reality, PCs are not estimable, even for successful ex-
perimental studies (Pearl, 2009). To solve this prob-
lem, Tian and Pearl (2000) showed how to bound PCs
from statistical data obtained in experimental and ob-
servational studies. Their bounds, called Tian-Pearl
bounds in this paper, are sharp in the sense that the
PCs must be within their bounds under a minimal set
of assumptions about the data generation process.

Kuroki and Cai (2011) used covariate information to
derive bounds for PCs that were narrower than the
Tian-Pearl bounds. Recently, Dawid et al. (2022),
Dawid and Musio (2022), Mueller et al. (2022), and
Murtas et al. (2017) showed that intermediate vari-
ables (also called mediators) are also useful for deriv-
ing narrower bounds for PCs in experimental studies.
However, note that these bounds are still too wide for
a practical evaluation of PCs.

Tian and Pearl (2000) also stated that PCs are iden-
tifiable if the monotonicity (e.g., the no-defiance) can
be assumed and the causal risks are also identifiable,
and Pearl (2009) showed that specific functional rela-
tionships between cause and effect lead to the identi-
fication of PCs. Additionally, referring to the effect
restoration method (Kuroki and Pearl, 2014), Shin-
gaki and Kuroki (2021) derived the identification con-
ditions for the joint probabilities of two potential out-
come variables, such as PCs, through the observation
of two proxy covariates for a single set of potential out-
come variables. Furthermore, in the context of natu-
ral direct and indirect effects (Pearl, 2001), and under
the assumption of no unmeasured confounding, Robins
and Richardson (2011) stated that the joint probabili-
ties of two potential outcome variables are identifiable
if (i) two potential outcome variables are independent
or (ii) one potential outcome variable can be deter-
ministically formulated as a function of another. These
existing researches have shown that the joint probabil-
ities of potential outcome variables play an important
role in solving various problems related to statistical
causal inference. However, although a great deal of
effort has been devoted to evaluating EoC over the
past three decades, less emphasis has been placed on
evaluating CoE, despite their critical importance in
practical sciences.

In this paper, we provide novel identification condi-
tions and a statistical estimation method for the joint
probabilities of potential outcome variables, using an
intermediate variable together with covariate informa-
tion. The identification conditions are applicable to
the identification conditions of PCs. Specifically, they
have the following properties:

(1) Shingaki and Kuroki (2021) requires to observe

two proxy covariates for a single set of two po-
tential outcome variables that are not associated
with each other in order to identify PCs, whereas
our method allows for two observed proxy covari-
ates that can be associated with each other.

(2) Shingaki and Kuroki (2021) requires that proxy
covariates take four values or more to identify
PCs. In contrast, we show that to identify PCs
it is enough to observe proxy covariates that take
two or three values.

Additionally, note that when PCs are identifiable
through our proposed identification conditions, the es-
timation problem for them is reduced to that of sin-
gular models. Thus, they cannot be evaluated by
standard statistical likelihood-based estimation meth-
ods. In contrast, our proposed identification condi-
tions show that we can derive consistent estimators of
the joint probabilities of potential outcome variables
via the method of moments, which leads to the asymp-
totic normality of the proposed estimators through
the delta method under regular conditions (Ferguson,
1996). In Supplementary Material B, we also propose
a new method for estimating PCs as well as Shingaki
and Kuroki (2023). Thus, the results of this paper ex-
tend the range of both solvable evaluation problems
in statistical causal inference and their application to
practical science.

2 PRELIMINARIES

In this section, we introduce the potential outcome
variables used to discuss our problems. For the graph-
theoretic terminology and the basic theory of struc-
tural causal models used in this paper, we refer readers
to Pearl (2009). Additionally, we assume that readers
are familiar with the basic theory of statistical causal
inference (Imbens and Rubin, 2015; Pearl, 2009).

Letting N denote the sample size, we assume that X
and Y represent the observed dichotomous treatment
variable and the observed dichotomous outcome vari-
able, respectively. For x ∈ {x0, x1} (where x1 is the
occurrence of an event [the “experimental treatment”],
x0 is the non-occurrence of an event [the “controlled
treatment”]) and y ∈ {y0, y1} (where y1 is the oc-
currence of an event [the “positive event”], y0 is the
non-occurrence of an event [the “negative event”]), let
p(X = x, Y = y) = p(x, y) be the joint probability
of (X,Y ) = (x, y), p(Y = y |X = x) = p(y |x) be
the conditional probability of Y = y given X = x,
and p(X = x) = p(x) be the marginal probability of
X = x. Similar notation is used for other probabili-
ties. Then, in principle, for x ∈ {x0, x1}, the i-th of
the N subjects has a potential outcome variable Yx(i)
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that would have resulted if X had been x for the i-th
subject. Here, Yx(i) = y denotes the counterfactual
sentence that “Y would be y had X been x for the
i-th subject.” The potential outcome variable Yx(i) is
observed only if X is x for the i-th subject, denoted as
X(i) = x. This property is referred to as consistency
(Pearl, 2009; Robins, 1989), and formulated as

X(i) = x =⇒ Yx(i) = Y (1)

for the i-th subject. Similarly, for x ∈ {x0, x1} and
s ∈ {s0, s1}, the i-th of the N subjects has a potential
outcome variable Yxs(i) that would have resulted if X
and S had been x and s for the i-th subject, respec-
tively.

In this paper, we assume the stable unit treatment
value assumption (Imbens and Rubin, 2015), which
can be summarized as follows: (i) the treatment status
of any subject does not affect the outcomes of the other
subjects (no interference), and (ii) the treatments of all
subjects are comparable (no variations in treatment).
Then, when N subjects in the study are considered
as a random sample from the population of interest,
Yx(i) is referred to as the value of a random variable,
Yx.

The causal risk of X = x on Y = y is defined as
p(Yx = y). According to Pearl (2009), this can be
represented as

p(Yx = y) =
∑
u

p(y |x,u)p(u) (2)

based on a set of background variables U . Here, sum-
mations (

∑
uuu) are replaced by integrals

(∫
uuu

)
whenever

the summed variables are continuous. Equation (2) is
identifiable and given by p(Yx = y) = p(y |x), if an
ideal randomized experiment with X is feasible. Here,
“identifiable” means that the causal quantities, such
as p(Yx = y), can be estimated consistently from a
joint probability of observed variables. In contrast,
when it is difficult to conduct an experimental study,
we can still evaluate the causal risks according to the
conditionally ignorable treatment assignment condi-
tion (Rosenbaum and Rubin, 1983) or, graphically, the
back-door criterion (Pearl, 2009). In other words, for
a treatment variable X, if there exists a set Z of ob-
served variables such that X is conditionally indepen-
dent of (Yx0

, Yx1
) given Z, then we say that treatment

assignment is conditionally ignorable given Z. In this
case, the causal risks are identifiable and given by

p(Yx = y) =
∑
z

p(y |x, z)p(z). (3)

Although there are other identification conditions that
can be used to evaluate causal risks (e.g., Pearl, 2009;

Tian and Pearl, 2002), we do not cover them in this
paper due to space constraints.

Following to Pearl (2009), we define three probabilities
of causation (PCs), namely, the probability of neces-
sity (PN), the probability of sufficiency (PS), and the
probability of necessity and sufficiency (PNS). PN is
defined as

PN = p(Yx0
= y0 |x1, y1), (4)

which stands for the probability that a negative event
would have occurred (Y = y0) in the presence of a
controlled treatment (X = x0), given that X = x1

and Y = y1 did in fact occur. PN has applications
in epidemiology, legal reasoning, and artificial intelli-
gence. Epidemiologists have long been concerned with
estimating the probability that a certain case of a dis-
ease is attributable to a particular exposure, which is
normally interpreted counterfactually as “the proba-
bility that the disease would not have occurred in the
absence of exposure, given that disease and exposure
did in fact occur.” Such a probability is evaluated by
PN.

PS is defined as

PS = p(Yx1 = y1 |x0, y0), (5)

which stands for the probability that a positive event
would have occurred (Y = y1) in the presence of an
experimental treatment (X = x1), given that X = x0

and Y = y0 did in fact occur. PS has applications in
policy analysis, artificial intelligence, and psychology.
Policy makers may well be interested in the dangers
that a certain exposure may present to the healthy
population (Khoury et al., 1989). Counterfactually,
this notion is expressed as the “probability that a
healthy unexposed subject would have gotten the dis-
ease had they been exposed.” In artificial intelligence,
PS plays a major role in the generation of explanations
(Pearl, 2009).

PNS is defined as

PNS = p(Yx0
= y0, Yx1

= y1), (6)

which stands for the probability that X = x1 is a
necessary and sufficient cause for Y = y1. Therefore,
it measures both the sufficiency and the necessity of
X = x1 to produce Y = y1.

Since PN, PS, and PNS involve joint probabilities
of two potential outcome variables, they are not es-
timable from statistical data even under successful
experimental studies without any information (Pearl,
2009).
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Figure 1: Problem setting.

3 PROBLEM SETTING

Regarding the dichotomous variables X, Y , and S, let-
ting U be the set of all discrete and continuous vari-
ables that could affect X, Y and S, both observed and
unobserved, we consider the problem of evaluating the
joint probabilities of potential outcome variables based
on the directed acyclic graph shown in Figure 1. In-
tuitively, for example, a directed edge from S to Y
(S → Y ) indicates that S could have an effect on
Y not mediated by other variables in the graph. A
variable that is affected by X and has an effect on Y
(X → S → Y ) is called an intermediate variable, or a
mediator. Additionally, the directed path from X to
Y through S indicates that X could have an effect on
Y mediated by S. The absence of a directed edge from
X to Y (X → Y ) indicates that X cannot have an ef-
fect on Y without being mediated by other variables
in the graph. A directed edge from U to Y (U → Y )
indicates that some elements of U could have an ef-
fect on Y . Additionally, the absence of a directed edge
from Y to U (Y → U) indicates that Y cannot be a
cause of any element of U . Here, U represents the set
of all discrete and continuous variables, both observed
and unobserved, that are not affected by X or Y . A
variable that is not affected by X, such as the elements
of U , is called a covariate. Figure 1 also graphically
represents the data-generating process

Y = gy(S,U , ϵy), S = gs(X,U , ϵs), X = gx(U , ϵx),
(7)

where ϵx, ϵy, and ϵs are independent random distur-
bances that are also independent of U . When struc-
tural equation models, such as equation (7), are used
to represent the data-generating process, the corre-
sponding graph, such as that shown in Figure 1, is
called a causal diagram.

Note that since U can have an effect on both X and S
in Figure 1, the causal risks are not identifiable without
any additional information (Tian and Pearl, 2002). To
solve this problem, we introduce a univariate proxy
covariate for a set of two potential outcome variables,
such as Z in Figure 3a.

4 IDENTIFICATION

In the situation shown in Figure 2a, the impact of
U ∪ {ϵx, ϵy, ϵs} on Y remains restricted to the modi-
fication of the functional relationships between S and
Y , irrespective of its complexity. This yields four func-
tions for the two dichotomous variables S and Y ; thus,
the value taken by U ∪ {ϵx, ϵy, ϵs} selects one of these
four functions (Pearl, 2009). Considering this, when
S is formally considered as a treatment variable, the
states of U ∪ {ϵx, ϵy, ϵs} are divided into the following
four types:

u1 = (Ys0 = y0, Ys1 = y0) represents the “never-
taker” situation, in which the treatment received
is irrelevant because the negative event occurs
with the experimental or controlled treatment.

u2 = (Ys0 = y0, Ys1 = y1) represents the “complier”
situation, in which the negative event occurs if
and only if the subjects receive the controlled
treatment.

u3 = (Ys0 = y1, Ys1 = y0) represents the “defier” situ-
ation, in which the negative event occurs if and
only if the subjects receive the experimental treat-
ment.

u4 = (Ys0 = y1, Ys1 = y1) represents the “always-
taker” situation, in which the treatment received
is again irrelevant because the positive event
occurs, with the experimental or controlled
treatment.

The names of these four groups come from instrumen-
tal variable literature in the context of randomized ex-
periments with non-compliance (Angrist et al., 1996;
Kawakami et al., 2023). This nomenclature will be re-
purposed here for the joint probabilities of potential
outcome variables.

According to this partition of the states of U ∪
{ϵx, ϵy, ϵs}, we redefine this as U taking a value of u
(u ∈ {u1, u2, u3, u4}). Then, the corresponding prob-
abilities that we wish to evaluate are the joint proba-
bilities of potential outcome variables, namely, p(u1),
p(u2), p(u3), and p(u4).

For any x, y, z, and s, we assume that Figure 2a can be
redescribed as Figure 2b and that the corresponding
recursive factorization of the joint probabilities of X,
Y , and Z given S, p(x, y, z | s), is given by

p(x, y, z | s) =
4∑

i=1

p(y | s, ui)p(x | s, ui)p(z |ui)p(ui | s).

(8)
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Figure 2: A graphical representation of Theorem 1.

Letting

Pxyzs =

(
p(y | s) p(x, y | s)
p(y, z | s) p(x, y, z | s)

)
, (9)

regarding the joint probabilities of potential outcome
variables p(x, y, z, s, u), we derive the following theo-
rem:

Theorem 1. Letting Z be a variable taking three val-
ues, say, z ∈ {z1, z2, z3}, the joint probabilities of
potential outcome variables p(x, y, z, s, u) are identi-
fiable for x ∈ {x0, x1}, y ∈ {y0, y1}, s ∈ {s0, s1},
z ∈ {z1, z2, z3}, and u ∈ {u1, u2, u3, u4} if the follow-
ing conditions are satisfied:

Condition 1. The probabilities p(x, y, z | s) are avail-
able for x ∈ {x0, x1}, y ∈ {y0, y1}, s ∈ {s0, s1}, and
z ∈ {z1, z2, z3}.
Condition 2. For positive probabilities p(x, y, z, s, u),
p(z |x, s, u) = p(z |u) holds for x ∈ {x0, x1}, s ∈
{s0, s1}, and z ∈ {z1, z2, z3}.
Condition 3. For x ∈ {x0, x1}, s ∈ {s0, s1}, and
z ∈ {z1, z2, z3}, the 2×2 matrices Pxyzs are invertible,
and

det(Px0y0s1z)

det(Px0y0s1z′)
̸= det(Px0y0s0z)

det(Px0y0s0z′)
,

det(Px0y0s0z)

det(Px0y0s0z′)
̸= det(Px1y1s0z)

det(Px1y1s0z′)
,

det(Px0y0s1z)

det(Px0y0s1z′)
̸= det(Px0y1s0z)

det(Px0y1s0z′)
,

det(Px0y1s1z)

det(Px0y1s1z′)
̸= det(Px0y1s0z)

det(Px0y1s0z′)

(10)

hold for z ̸= z′(z, z′ ∈ {z1, z2, z3}), where det(·) de-
notes the determinant.

A proof of Theorem 1 is given in the Supplementary
Material A.1. Theorem 1 extends the result of Shin-
gaki and Kuroki (2021) from two proxy covariates tak-
ing four values or more to two proxy covariates taking
two values or more.

Next, similar to Theorem 1, when S is formally con-
sidered as an outcome variable, according to the func-

•
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•
X

•
Y

•
U

(a) Unmeasured confounders

•
W

•
S

•
X

•
Y

•
(Ys0 , Ys1)

•
(Sx0 , Sx1)

(b) Potential outcomes

Figure 3: A graphical representation of Theorem 2.

tional relationships between two dichotomous vari-
ables X and S, the states of U ∪ {ϵs, ϵx} are divided
into the following four types:

v1 = (Sx0
= s0, Sx1

= s0) represents the “never-
taker” situation, in which the treatment received
is irrelevant because the negative event occurs
with the experimental or controlled treatment.

v2 = (Sx0
= s0, Sx1

= s1) represents the “complier”
situation, in which the negative event occurs if
and only if the subjects receive the controlled
treatment.

v3 = (Sx0
= s1, Sx1

= s0) represents the “defier” sit-
uation, in which the negative event occurs if and
only if the subjects receive the experimental treat-
ment.

v4 = (Sx0
= s1, Sx1

= s1) represents the “always-
taker” situation, in which the treatment received
is again irrelevant because the positive event
occurs, with the experimental or controlled
treatment.

For x, w, u, and s, we assume that Figure 3a can be
redescribed as Figure 3b and that the corresponding
recursive factorization of the joint probabilities of W ,
S, and U given X, p(w, s, u |x), is given by

p(w, s, u |x) =
4∑

i=1

p(s |x, vi)p(w |x, vi)p(u | vi)p(vi |x).

(11)

Letting

Pwsux =

(
p(s |x) p(w, s |x)

p(s, u |x) p(w, s, u |x)

)
, (12)

regarding the joint probabilities of potential outcome
variables p(x,w, s, u, v), we derive the following theo-
rem:

Theorem 2. Letting W be a variable taking two val-
ues, say, w ∈ {w1, w2}, the joint probabilities of po-
tential outcome variables p(x,w, s, u, v) are identifi-
able for x ∈ {x0, x1}, w ∈ {w0, w1}, s ∈ {s0, s1},
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u ∈ {u1, u2, u3, u4}, and v ∈ {v1, v2, v3, v4} if the fol-
lowing conditions are satisfied:

Condition 4. The probabilities p(x, s, w, u) are avail-
able for x ∈ {x0, x1}, s ∈ {s0, s1}, w ∈ {w0, w1}, and
u ∈ {u1, u2, u3, u4}.
Condition 5. For positive probabilities p(x, s, w, u, v),
p(u |x,w, v) = p(u | v) holds for x ∈ {x0, x1},
w ∈ {w0, w1}, and u ∈ {u1, u2, u3, u4}, and v ∈
{v1, v2, v3, v4}.
Condition 6. For x ∈ {x0, x1}, s ∈ {s0, s1}, and u ∈
{u1, u2, u3, u4}, the 2×2 matrices Pwsux are invertible,
and

det(Pw0s0ux1)

det(Pw0s0u′x1
)
̸= det(Pw0s0ux0)

det(Pw0s0u′x0
)
,

det(Pw0s0ux0
)

det(Pw0s0u′x0)
̸= det(Pw1s1ux0

)

det(Pw1s1u′x0)
,

det(Pw0s0ux1
)

det(Pw0s0u′x1
)
̸= det(Pw0s1ux0

)

det(Pw0s1u′x0
)
,

det(Pw0s1ux1)

det(Pw0s1u′x1
)
̸= det(Pw0s1ux0)

det(Pw0s1u′x0
)

(13)

hold for u ̸= u′ (u, u′ ∈ {u1, u2, u3, u4}).

A proof of Theorem 2 is given in the Supplementary
Material A.2.

Theorems 1 and 2 enable us to identify PCs, as shown
in Algorithm 1. To emphasize the difference between
our results and those in Shingaki and Kuroki (2021),
consider the situations shown in Figure 4. Shingaki
and Kuroki (2021) requires that two proxy covari-
ates Z and W of (Yx0

, Yx1
) are not associated with

each other and W is not associated with Y to iden-
tify PCs, as shown in Figure 4a. Thus, to identify
PCs, even if W is associated with Z or Y , we use
the information for an intermediate variable S, as in
Figure 4b. The first step for identifying PCs is to
consider the graph obtained by conditioning on W in
graph G, as shown in Figure 4c. Here, the dashed, di-
rected edges in Figure 4c indicate that there is no path
through W (or such edges are removed) in Figure 4b
because of conditioning on W . Then, since Figure 4c
implies that p(x, y, z, s, u |w) is identifiable through
Theorem 1, p(x, y, z, s, w, u) = p(x, y, z, s, u |w)p(w)
is also identifiable. The second step is to consider
the graph obtained by marginalizing Y and Z in Fig-
ure 4d, as shown in Figure 4d. Since p(x, y, z, s, w, u)
is now available by Theorem 1, Theorem 2 shows
that p(x,w, s, u, v) is identifiable. Then, p(u, v) =∑

x,w,s p(x,w, s, u, v) is also identifiable.

Noting the composition property

Sx(i) = s =⇒ Yx,s(i) = Yx(i) (14)

Algorithm 1 Identification of the joint distribution
of (Yx0

, Yx1
).

Input: Joint distribution p(x, y, z, s, w) according to
Figure 4b

Output: Joint distribution p(Yx0
= y, Yx1

= y′)
1: Identify p(x, y, z, s, u |w0) and p(x, y, z, s, u |w1)

applying Theorem 1 after conditioning W = w0

and W = w1, respectively.
2: Identify p(x, y, z, s, w0, u) as

p(x, y, z, s, u |w0)p(w0) and p(x, y, z, s, w1, u)
as p(x, y, z, s, u |w1)p(w1).

3: Identify p(x,w, s, u, v) applying Theorem 2 after
identifying p(x, s, w, u) =

∑
y,z p(x, y, z, s, w, u).

4: Identify p(Yx0
, Yx1

) from equation (16) after iden-
tifying p(u, v) =

∑
x,w,s p(x,w, s, u, v).

for the i-th subject (Pearl, 2009), we obtain

p(Yx0
= y, Yx1

= y′)

=
∑
s,s′

p(Yx0,Sx0
= y, Yx1,Sx1

= y′, Sx0
= s, Sx1

= s′)

=
∑
s,s′

p(Ys = y, Ys′ = y′, Sx0
= s, Sx1

= s′). (15)

Therefore, the joint probabilities of the potential out-
comes is identifiable from p(u, v) as follows:

p(Yx0
= y0, Yx1

= y0) = p(u1, v1) + p(u2, v1) + p(u1, v2)

+ p(u1, v3) + p(u1, v4) + p(u3, v4),

p(Yx0
= y0, Yx1

= y1) = p(u2, v2) + p(u3, v3),

p(Yx0
= y1, Yx1

= y0) = p(u3, v2) + p(u2, v3),

p(Yx0
= y1, Yx1

= y1) = p(u3, v1) + p(u4, v1) + p(u4, v2)

+ p(u4, v3) + p(u2, v4) + p(u4, v4).

(16)

The proposed identification conditions show that we
can derive consistent estimators of the joint probabil-
ities of potential outcome variables via the method of
moments. For further details of the estimation, see the
Supplementary Material B.

5 NUMERICAL EXPERIMENT

In this section, we present a numerical experiment
to examine the properties of our proposed estimation
method using the joint probabilities of the potential
outcomes p(Yx0

= y0, Yx1
= y0), p(Yx0

= y0, Yx1
=

y1), p(Yx0 = y1, Yx1 = y0), and p(Yx0 = y1, Yx1 = y1).
For simplicity, letting X, Y , Z, S, W , U , and V
be discrete variables, we consider the causal diagrams
shown in Figure 4b, where the joint probabilities of
(X,Y, Z,W,U) are given according to Table 1. Under
the situation where (X,Y, Z, S,W ) can be observed
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Table 1: Conditional probability tables in the simulation.

p(W |V ) p(X = 0 |W,V ) p(S = 0 |X,V ) p(U, V )

W = 0 W = 1 W = 0 W = 1 X = 0 X = 1 U = 1 U = 2 U = 3 U = 4

V = 1 1/2 1/2 1/2 1/2 1 1 10/80 6/80 3/80 1/80
V = 2 1/2 1/2 1/2 1/2 1 0 6/80 10/80 1/80 3/80
V = 3 1/2 1/2 1/2 1/2 0 1 3/80 1/80 10/80 6/80
V = 4 1/2 1/2 1/2 1/2 0 0 1/80 3/80 6/80 10/80

p(Y = 0 |S,U) p(Z = 1 |W,U) p(Z = 2 |W,U) p(Z = 3 |W,U)

S = 0 S = 1 W = 0 W = 1 W = 0 W = 1 W = 0 W = 1

U = 1 1 1 8/10 8/10 1/20 1/20 3/20 3/20
U = 2 1 0 3/20 3/10 8/10 8/20 1/20 1/20
U = 3 0 1 7/10 7/10 1/10 1/10 2/10 2/10
U = 4 0 0 2/10 2/10 7/10 7/10 1/10 1/10

•
W

•
X

•
Y

• (Yx0 , Yx1)

•
Z

(a) Shingaki and Kuroki (2021)

•
W

•
Z

•
S

•
X

•
Y

•
(Ys0 , Ys1)

•(Sx0 , Sx1)

(b) Proposed condition

•
W

•
Z

•
S

•
X

•
Y

• (Ys0 , Ys1)•
(Sx0

, Sx1
)

(c) Step 1

•
W

•
S

•
X

•
(Ys0 , Ys1)

•
(Sx0

, Sx1
)

Z

(d) Step 2

Figure 4: Difference between our results and those
from Shingaki and Kuroki (2021).

but U and V cannot, the properties of the proposed es-
timators p̂(Yx0

= y0, Yx1
= y0), p̂(Yx0

= y0, Yx1
= y1),

p̂(Yx0 = y1, Yx1 = y0), and p̂(Yx0 = y1, Yx1 = y1) of
p(Yx0 = y0, Yx1 = y0), p(Yx0 = y0, Yx1 = y1), p(Yx0 =
y1, Yx1

= y0), and p(Yx0
= y1, Yx1

= y1), respectively,
are verified in a numerical experiment using a setting
with sample sizes n = 500, 1000, 5000, and 10000.
In this situation, since p(Yx0 = y0, Yx1 = y0) = 0.4,
p(Yx0 = y0, Yx1 = y1) = 0.25, p(Yx0 = y1, Yx1 = y0) =
0.025, and p(Yx0

= y1, Yx1
= y1) = 0.325, the sample

means of p̂(Yx0
= y0, Yx1

= y0), p̂(Yx0
= y0, Yx1

= y1),
p̂(Yx0

= y1, Yx1
= y0), and p̂(Yx0

= y1, Yx1
= y1) are

expected to be close to 0.4, 0.25, 0.025, and 0.325, re-
spectively. Table 2 shows the basic statistics and the
box plots of p̂(Yx0 = y0, Yx1 = y0), p̂(Yx0 = y0, Yx1 =
y1), p̂(Yx0

= y1, Yx1
= y0), and p̂(Yx0

= y1, Yx1
= y1)

for 1000 replications with the given sample size n, re-
spectively.

From Table 2, the sample means of p̂(Yx0
= y0, Yx1

=
y0), p̂(Yx0

= y0, Yx1
= y1), p̂(Yx0

= y1, Yx1
= y0), and

p̂(Yx0
= y1, Yx1

= y1) tend to approach the true values,
and the sample standard errors decrease as the sam-
ple size increases. Thus, it seems that the proposed
estimation method provides the consistent estimators
of p(Yx0

= y0, Yx1
= y0) and p(Yx0

= y1, Yx1
= y1). In

contrast, the sample means of for p̂(Yx0
= y0, Yx1

=
y1) and p̂(Yx0 = y1, Yx1 = y0), whose true values
are relatively small, tend to approach true values very
slowly. The proposed estimation method requires cal-
culating small nonzero determinants of probability ma-
trices to estimate the joint probabilities of the poten-
tial outcomes. When the true joint probabilities of the
potential outcomes are small, it is difficult to calculate
the small nonzero determinants. This may be a reason
why p̂(Yx0

= y0, Yx1
= y1) and p̂(Yx0

= y1, Yx1
= y0)

is difficult to estimate.

6 DISCUSSION

In addressing the challenges associated with identi-
fying and estimating probabilities of causation, this
study introduced novel identification conditions and
a statistical estimation method. Our approach em-
ployed an intermediate variable in conjunction with
covariate information to tackle the identification and
estimation problems. By introducing the intermediate
variable, the proposed method expands the scope of
identifiable situations of Shingaki and Kuroki (2021),
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Table 2: Basic statistics in the numerical experiment.

(a) p̂(Yx0 = y0, Yx1 = y0) (b) p̂(Yx0 = y0, Yx1 = y1)

n = 500 n = 1000 n = 5000 n = 10000 n = 500 n = 1000 n = 5000 n = 10000

Minimum 0.162 0.089 0.185 0.202 0.000 0.000 0.000 0.000
1st Quantile 0.403 0.399 0.402 0.402 0.115 0.114 0.123 0.124

Median 0.489 0.480 0.469 0.460 0.198 0.200 0.189 0.200
Mean 0.523 0.514 0.504 0.484 0.208 0.204 0.201 0.203

3rd Quantile 0.601 0.587 0.560 0.536 0.286 0.288 0.276 0.275
Maximum 1.459 1.488 1.318 1.323 0.576 0.869 0.564 0.754

s.e. 0.187 0.178 0.158 0.135 0.122 0.123 0.108 0.108

(c) p̂(Yx0
= y1, Yx1

= y0) (d) p̂(Yx0
= y1, Yx1

= y1)

n = 500 n = 1000 n = 5000 n = 10000 n = 500 n = 1000 n = 5000 n = 10000

Minimum 0.000 0.000 0.000 0.000 0.010 0.045 0.070 0.031
1st Quantile 0.055 0.057 0.062 0.062 0.274 0.277 0.270 0.258

Median 0.104 0.102 0.105 0.106 0.359 0.342 0.326 0.322
Mean 0.118 0.115 0.115 0.112 0.379 0.371 0.343 0.327

3rd Quantile 0.158 0.157 0.151 0.150 0.447 0.423 0.395 0.377
Maximum 0.637 0.595 0.709 0.615 1.274 1.106 1.000 0.957

s.e. 0.089 0.083 0.083 0.071 0.155 0.150 0.120 0.107

as it no longer necessitates the conditional indepen-
dence W á Z | {X,U} between two proxy covariates
to identify probabilities of causation.

Our estimation method may have difficulty obtaining
reliable statistics of the recovered probabilities due
to numerical difficulties in computing small nonzero
determinants. To account for the standard errors of
the recovered probabilities, we use standard bootstrap
methods in Section 5. In practice, it is also impor-
tant to select appropriate proxy variables from several
candidate covariates that satisfy our proposed condi-
tions so as not to suffer from such numerical difficul-
ties. This is a problem that we are leaving for future
work.

In this study, we specifically concentrated on a sim-
ple scenario involving a single treatment variable X
and a single outcome variable Y . It is worth noting
that our findings can be readily extended to settings
featuring multiple treatment variables. However, such
extensions necessitate the observation of proxy vari-
ables with more than two or three categories. This re-
quirement stems from the increased complexity in the
probabilities of causation, contingent upon the number
of treatment variables of interest.

Finally, it is essential to recognize that the typical co-
variates present in a given observational study often
serve as reliable proxies for potential outcome vari-
ables. One of the foundational assumptions in our
proposed method is the presence of a proxy variable
Z, that remains independent of both the treatment

X and the outcome Y . Fortunately, identifying such a
proxy is not arduous, especially in studies like a GWAS
(genome-wide association study) where a vast array of
covariates can be observed. Furthermore, in studies of
this nature, variables that can satisfy the front-door
criterion in our causal diagram can serve as prime can-
didates for an intermediate variable in our proposed
methodology. Consequently, our approach is widely
applicable for identifying and estimating “causes of ef-
fects” (CoE) across a multitude of observational stud-
ies.
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A PROOFS OF THEOREMS

A.1 Proof of Theorem 1

From Conditions 1 and 2 in Theorem 1, and by the consistency property, we have

p(x, y0, z, s0) =

4∑
i=1

p(y0 |x, z, s0, ui)p(z | s0, x, ui)p(x, ui, s0)

=

4∑
i=1

p(y0 |x, z, s0, ui)p(z |ui)p(x | s0, ui)p(ui, s0) =
∑
i=1,2

p(x | s0, ui)p(z |ui)p(ui, s0), (A.1)

p(x, y1, z, s0) =

4∑
i=1

p(y1 |x, z, s0, ui)p(z |ui)p(x | s0, ui)p(ui, s0) =
∑
i=3,4

p(x | s0, ui)p(z |ui)p(ui, s0), (A.2)

p(x, y0, z, s1) =

4∑
i=1

p(y0 |x, z, s1, ui)p(z |ui)p(x | s1, ui)p(ui, s1) =
∑
i=1,3

p(x | s1, ui)p(z |ui)p(ui, s1), (A.3)

p(x, y1, z, s1) =

4∑
i=1

p(y1 |x, z, s1, ui)p(z |ui)p(x | s1, ui)p(ui, s1) =
∑
i=2,4

p(x | s1, ui)p(z |ui)p(ui, s1), (A.4)

for x ∈ {x0, x1} and z ∈ {z1, z2, z3}, since

p(y0 |x, z, s0, ui) = 1 for i = 1, 2, p(y0 |x, z, s0, ui) = 0 for i = 3, 4,

p(y1 |x, z, s0, ui) = 1 for i = 3, 4, p(y1 |x, z, s0, ui) = 0 for i = 1, 2,

p(y0 |x, z, s1, ui) = 1 for i = 1, 3, p(y0 |x, z, s1, ui) = 0 for i = 2, 4,

p(y1 |x, z, s1, ui) = 1 for i = 2, 4, p(y1 |x, z, s1, ui) = 0 for i = 1, 3

(A.5)

hold. Thus, letting

Pxyzs0 =

(
p(y, s0) p(x, y, s0)
p(y, z, s0) p(x, y, z, s0)

)
, (A.6)

Qy0zs0 =

(
1 p(z |u1)
1 p(z |u2)

)
, ∆y0s0 =

(
p(u1, s0) 0

0 p(u2, s0)

)
, Rxy0s0 =

(
1 p(x | s0, u1)
1 p(x | s0, u2)

)
, (A.7)

Qy1zs0 =

(
1 p(z |u3)
1 p(z |u4)

)
, ∆y1s0 =

(
p(u3, s0) 0

0 p(u4, s0)

)
, Rxy1s0 =

(
1 p(x | s0, u3)
1 p(x | s0, u4)

)
, (A.8)

since Pxyzs0 is invertible from Condition 3 in Theorem 1, from equations (A.1) and (A.2) we obtain

Pxyzs0 = Q⊤
yzs0∆ys0Rxys0 , (A.9)

where ⊤ indicates for a transposed vector/matrix. Thus, we have

P−1
xyzs0Q

⊤
yzs0 = R−1

xys0∆
−1
ys0 (A.10)
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for z ∈ {z1, z2, z3}, that is,
P−1
xyz1s0Q

⊤
yz1s0 = P−1

xyz2s0Q
⊤
yz2s0 , (A.11)

specifically,

1

det(Pxy0z1s0)

(
p(x, y0, z1, s0) −p(x, y0, s0)
−p(y0, z1, s0) p(y0, s0)

)(
1 1

p(z1 |u1) p(z1 |u2)

)
=

1

det(Pxy0z2s0)

(
p(x, y0, z2, s0) −p(x, y0, s0)
−p(y0, z2, s0) p(y0, s0)

)(
1 1

p(z2 |u1) p(z2 |u2)

)
, (A.12)

1

det(Pxy1z1s0)

(
p(x, y1, z1, s0) −p(x, y1, s0)
−p(y1, z1, s0) p(y1, s0)

)(
1 1

p(z1 |u3) p(z1 |u4)

)
=

1

det(Pxy1z2s0)

(
p(x, y1, z2, s0) −p(x, y1, s0)
−p(y1, z2, s0) p(y1, s0)

)(
1 1

p(z2 |u3) p(z2 |u4)

)
(A.13)

hold for x ∈ {x0, x1}. Thus, we derive

p(y0, s0)p(z1 |u1)− p(y0, z1, s0) =
det(Pxy0z1s0)

det(Pxy0z2s0)
(p(y0, s0)p(z2 |u1)− p(y0, z2, s0)), (A.14)

p(y0, s0)p(z1 |u2)− p(y0, z1, s0) =
det(Pxy0z1s0)

det(Pxy0z2s0)
(p(y0, s0)p(z2 |u2)− p(y0, z2, s0)), (A.15)

p(y1, s0)p(z1 |u3)− p(y1, z1, s0) =
det(Pxy1z1s0)

det(Pxy1z2s0)
(p(y1, s0)p(z2 |u3)− p(y1, z2, s0)), (A.16)

p(y1, s0)p(z1 |u4)− p(y1, z1, s0) =
det(Pxy1z1s0)

det(Pxy1z2s0)
(p(y1, s0)p(z2 |u4)− p(y1, z2, s0)). (A.17)

Similarly, letting

Pxyzs1 =

(
p(y, s1) p(x, y, s1)
p(y, z, s1) p(x, y, z, s1)

)
, (A.18)

Qy0zs1 =

(
1 p(z |u1)
1 p(z |u3)

)
, ∆y0s1 =

(
p(u1, s1) 0

0 p(u3, s1)

)
, Rxy0s1 =

(
1 p(x | s1, u1)
1 p(x | s1, u3)

)
, (A.19)

Qy1zs1 =

(
1 p(z |u2)
1 p(z |u4)

)
, ∆y1s1 =

(
p(u2, s1) 0

0 p(u4, s1)

)
, Rxy1s1 =

(
1 p(x | s1, u2)
1 p(x | s1, u4)

)
, (A.20)

since Pxyzs1 is invertible from Condition 3 in Theorem 1, from equations (A.3) and (A.4) we obtain

Pxyzs1 = Q⊤
yzs1∆ys1Rxys1 (A.21)

for x ∈ {x0, x1}, y ∈ {y0, y1} and z ∈ {z1, z2, z3}. Thus, we have

P−1
xyzs1Q

⊤
yzs1 = R−1

xys1∆
−1
ys1 (A.22)

for z ∈ {z1, z2, z3}, that is,
P−1
xyz1s1Q

⊤
yz1s1 = P−1

xyz2s1Q
⊤
yz2s1 , (A.23)

specifically,

1

det(Pxy0z1s1)

(
p(x, y0, z1, s1) −p(x, y0, s1)
−p(y0, z1, s1) p(y0, s1)

)(
1 1

p(z1 |u1) p(z1 |u3)

)
=

1

det(Pxy0z2s1)

(
p(x, y0, z2, s1) −p(x, y0, s1)
−p(y0, z2, s1) p(y0, s1)

)(
1 1

p(z2 |u1) p(z2 |u3)

)
, (A.24)

1

det(Pxy1z1s1)

(
p(x, y1, z1, s1) −p(x, y1, s1)
−p(y1, z1, s1) p(y1, s1)

)(
1 1

p(z1 |u2) p(z1 |u4)

)
=

1

det(Pxy1z2s1)

(
p(x, y1, z2, s1) −p(x, y1, s1)
−p(y1, z2, s1) p(y1, s1)

)(
1 1

p(z2 |u2) p(z2 |u4)

)
(A.25)
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hold for x ∈ {x0, x1}. Thus, we derive

p(y0, s1)p(z1 |u1)− p(y0, z1, s1) =
det(Pxy0z1s1)

det(Pxy0z2s1)
(p(y0, s1)p(z2 |u1)− p(y0, z2, s1)), (A.26)

p(y1, s1)p(z1 |u2)− p(y1, z1, s1) =
det(Pxy1z1s1)

det(Pxy1z2s1)
(p(y1, s1)p(z2 |u2)− p(y1, z2, s1)), (A.27)

p(y0, s1)p(z1 |u3)− p(y0, z1, s1) =
det(Pxy0z1s1)

det(Pxy0z2s1)
(p(y0, s1)p(z2 |u3)− p(y0, z2, s1)), (A.28)

p(y1, s1)p(z1 |u4)− p(y1, z1, s1) =
det(Pxy1z1s1)

det(Pxy1z2s1)
(p(y1, s1)p(z2 |u4)− p(y1, z2, s1)). (A.29)

From Condition 3 in Theorem 1, a system of eight linear equations (A.14)-(A.17) and (A.26)-(A.29) provides a
unique solution regarding p(z|u) for z ∈ {z1, z2}. Indeed, if Condition 3 in Theorem 1 holds, we have

(
p(z1 |u1)
p(z2 |u1)

)
=

 1 −det(Pxy0z1s0)

det(Pxy0z2s0)

1 −det(Pxy0z1s1)

det(Pxy0z2s1)


−1  p(z1 | y0, s0)−

det(Pxy0z1s0)

det(Pxy0z2s0)
p(z2 | y0, s0)

p(z1 | y0, s1)−
det(Pxy0z1s1)

det(Pxy0z2s1)
p(z2 | y0, s1)

 , (A.30)

(
p(z1 |u2)
p(z2 |u2)

)
=

 1 −det(Pxy0z1s0)

det(Pxy0z2s0)

1 −det(Pxy1z1s1)

det(Pxy1z2s1)


−1  p(z1 | y0, s0)−

det(Pxy0z1s0)

det(Pxy0z2s0)
p(z2 | y0, s0)

p(z1 | y1, s1)−
det(Pxy1z1s1)

det(Pxy1z2s1)
p(z2 | y1, s1)

 , (A.31)

(
p(z1 |u3)
p(z2 |u3)

)
=

 1 −det(Pxy1z1s0)

det(Pxy1z2s0)

1 −det(Pxy0z1s1)

det(Pxy0z2s1)


−1  p(z1 | y1, s0)−

det(Pxy1z1s0)

det(Pxy1z2s0)
p(z2 | y1, s0)

p(z1 | y0, s1)−
det(Pxy0z1s1)

det(Pxy0z2s1)
p(z2 | y0, s1)

 , (A.32)

(
p(z1 |u4)
p(z2 |u4)

)
=

 1 −det(Pxy1z1s0)

det(Pxy1z2s0)

1 −det(Pxy1z1s1)

det(Pxy1z2s1)


−1  p(z1 | y1, s0)−

det(Pxy1z1s0)

det(Pxy1z2s0)
p(z2 | y1, s0)

p(z1 | y1, s1)−
det(Pxy1z1s1)

det(Pxy1z2s1)
p(z2 | y1, s1)

 . (A.33)

Therefore, noting that Q⊤
yzs is identifiable and invertible, and that Pxyzs is available for x ∈ {x0, x1}, y ∈ {y0, y1},

s ∈ {s0, s1}, and z ∈ {z1, z2, z3}, we derive

Q−⊤
y0zs0Pxy0zs0 = ∆y0s0Rxy0s0 =

(
p(u1, s0) p(x, u1, s0)
p(u2, s0) p(x, u2, s0)

)
, (A.34)

Q−⊤
y1zs0Pxy1zs0 = ∆y1s0Rxy1s0 =

(
p(u3, s0) p(x, u3, s0)
p(u4, s0) p(x, u4, s0)

)
, (A.35)

Q−⊤
y0zs1Pxy0zs1 = ∆y0s1Rxy0s1 =

(
p(u1, s1) p(x, u1, s1)
p(u3, s1) p(x, u3, s1)

)
, (A.36)

Q−⊤
y1zs1Pxy1zs1 = ∆y1s1Rxy1s1 =

(
p(u2, s1) p(x, u2, s1)
p(u4, s1) p(x, u4, s1)

)
. (A.37)

Hence, since p(z |x, s, u) = p(z |u) by Condition 2 in Theorem 1,

p(x, y, z, s, u) = p(y |x, z, s, u)p(x, z, s, u)
= p(y |x, z, s, u)p(z |x, s, u)p(x, s, u)
= p(y |x, z, s, u)p(z |u)p(x, s, u)

are identifiable for x ∈ {x0, x1}, y ∈ {y0, y1}, s ∈ {s0, s1}, z ∈ {z1, z2, z3}, and u ∈ {u1, u2, u3, u4}. Equivalently,
by equations (A.5), we have

p(x, y0, z, s0, ui) =

{
p(z |ui)p(x, ui, s0) for i = 1, 2,

0 for i = 3, 4,
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p(x, y1, z, s0, ui) =

{
0 for i = 1, 2,

p(z |ui)p(x, ui, s0) for i = 3, 4,

p(x, y0, z, s1, ui) =

{
p(z |ui)p(x, ui, s1) for i = 1, 3,

0 for i = 2, 4,

p(x, y1, z, s1, ui) =

{
0 for i = 1, 3,

p(z |ui)p(x, ui, s1) for i = 2, 4

for x ∈ {x0, x1} and z ∈ {z1, z2, z3}.

A.2 Proof of Theorem 2

From Conditions 1 and 2 in Theorem 2, and by the consistency property, we have

p(w, s0, u, x0) =

4∑
i=1

p(s0 |w, u, x0, vi)p(u |x0, w, vi)p(x0 w, vi)

=

4∑
i=1

p(s0 |w, u, x0, vi)p(x0, w, vi)p(u | vi)

=

4∑
i=1

p(s0 |w, u, x0, vi)p(w |x0, vi)p(u | vi)p(vi, x0) =
∑
i=1,2

p(w |x0, vi)p(u | vi)p(vi, x0), (A.38)

p(w, s1, u, x0) =

4∑
i=1

p(s1|w, u, x0, vi)p(w |x0, vi)p(u | vi)p(vi, x0) =
∑
i=3,4

p(w |x0, vi)p(u | vi)p(vi, x0), (A.39)

p(w, s0, u, x1) =

4∑
i=1

p(s0|w, u, x1, vi)p(w |x1, vi)p(u | vi)p(vi, x1) =
∑
i=1,3

p(w |x1, vi)p(u | vi)p(vi, x1), (A.40)

p(w, s1, u, x1) =

4∑
i=1

p(s1 |w, u, x1, vi)p(w |x1, vi)p(u | vi)p(vi, x1) =
∑
i=2,4

p(w |x1, vi)p(u | vi)p(vi, x1) (A.41)

for w ∈ {w0, w1} and u ∈ {u1, u2, u3, u4}, since

p(s0 |w, u, x0, vi) = 1 for i = 1, 2, p(s0 |w, u, x0, vi) = 0 for i = 3, 4,

p(s1 |w, u, x0, vi) = 1 for i = 3, 4, p(s1 |w, u, x0, vi) = 0 for i = 1, 2,

p(s0 |w, u, x1, vi) = 1 for i = 1, 3, p(s0 |w, u, x1, vi) = 0 for i = 2, 4,

p(s1 |w, u, x1, vi) = 1 for i = 2, 4, p(s1 |w, u, x1, vi) = 0 for i = 1, 3

(A.42)

hold. Thus, letting

Pwsux0
=

(
p(s, x0) p(w, s, x0)

p(s, u, x0) p(w, s, u, x0)

)
, (A.43)

Qs0ux0 =

(
1 p(u | v1)
1 p(u | v2)

)
, ∆s0x0 =

(
p(v1, x0) 0

0 p(v2, x0)

)
, Rws0x0

=

(
1 p(w |x0, v1)
1 p(w |x0, v2)

)
, (A.44)

Qs1ux0 =

(
1 p(u | v3)
1 p(u | v4)

)
, ∆s1x0 =

(
p(v3, x0) 0

0 p(v4, x0)

)
, Rws1x0 =

(
1 p(w |x0, v3)
1 p(w |x0, v4)

)
, (A.45)

since Pws0ux is invertible from Condition 3 in Theorem 1, from equations (A.38) and (A.39) we obtain

Pwsux0
= Q⊤

sux0
∆sx0

Rwsx0
, (A.46)

Thus, we have

P−1
wsux0

Q⊤
yux0

= R−1
wsx0

∆−1
yx0

(A.47)
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for u ∈ {u1, u2, u3, u4}, that is,
P−1
wsux0

Q⊤
yux0

= P−1
wsu′x0

Q⊤
yu′x0

, (A.48)

specifically,

1

det(Pws0ux0
)

(
p(w, s0, u, x0) −p(w, s0, x0)
−p(s0, u, x0) p(s0, x0)

)(
1 1

p(u | v1) p(u | v2)

)
=

1

det(Pws0u′x0)

(
p(w, s0, u

′, x0) −p(w, s0, x0)
−p(s0, u

′, x0) p(s0, x0)

)(
1 1

p(u′ | v1) p(u′ | v2)

)
, (A.49)

1

det(Pws1ux0
)

(
p(w, s1, u, x0) −p(w, s1, x0)
−p(s1, u, x0) p(s1, x0)

)(
1 1

p(u | v3) p(u | v4)

)
=

1

det(Pws1u′x0
)

(
p(w, s1, u

′, x0) −p(w, s1, x0)
−p(s1, u

′, x0) p(s1, x0)

)(
1 1

p(u′ | v3) p(u′ | v4)

)
(A.50)

hold for u ̸= u′ (u, u′ ∈ {u1, u2, u3, u4}). Thus, we derive

p(s0, x0)p(u | v1)− p(s0, u, x0) =
det(Pws0ux0

)

det(Pws0u′x0
)
(p(s0, x0)p(u

′ | v1)− p(s0, u
′, x0)), (A.51)

p(s0, x0)p(u | v2)− p(s0, u, x0) =
det(Pws0ux0)

det(Pws0u′x0
)
(p(s1, x0)p(u

′ | v2)− p(s0, u
′, x0)), (A.52)

p(s1, x0)p(u | v3)− p(s1, u, x0) =
det(Pws1ux0

)

det(Pws1u′x0)
(p(s1, x0)p(u

′ | v3)− p(s1, u
′, x0)), (A.53)

p(s1, x0)p(u | v4)− p(s1, u, x0) =
det(Pws1ux0

)

det(Pws1u′x0
)
(p(s1, x0)p(u

′ | v4)− p(s1, u
′, x0)). (A.54)

Similarly, letting

Pwsux1 =

(
p(s, x1) p(w, s, x1)

p(s, u, x1) p(w, s, u, x1)

)
, (A.55)

Qs0ux1
=

(
1 p(u | v1)
1 p(u | v3)

)
, ∆s0x1

=

(
p(v1, x1) 0

0 p(v3, x1)

)
, Rws0x1

=

(
1 p(w |x1, v1)
1 p(w |x1, v3)

)
, (A.56)

Qs1ux1
=

(
1 p(u | v2)
1 p(u | v4)

)
, ∆s1x1

=

(
p(v2, x1) 0

0 p(v4, x1)

)
, Rws1x1

=

(
1 p(w |x1, v2)
1 p(w |x1, v4)

)
, (A.57)

since Pwsus is invertible from Condition 3 in Theorem 2, from equations (A.40) and (A.41) we obtain

Pwsux1 = Q⊤
sux1

∆sx1Rwsx1 . (A.58)

Thus, we have

P−1
wsux1

Q⊤
sux1

= R−1
wsx1

∆−1
sx1

(A.59)

for z ∈ {z1, z2, z3}, that is,
P−1
wsux1

Q⊤
sux1

= P−1
wsu′x1

Q⊤
su′x1

, (A.60)

specifically,

1

det(Pws0ux1
)

(
p(w, s0, u, x1) −p(w, s0, x1)
−p(s0, u, x1) p(s0, x1)

)(
1 1

p(u | v1) p(u | v3)

)
=

1

det(Pws0u′x1
)

(
p(w, s0, u

′, x1) −p(w, s0, x1)
−p(s0, u

′, x1) p(s0, x1)

)(
1 1

p(u′ | v1) p(u′ | v3)

)
, (A.61)

1

det(Pws1ux1)

(
p(w, s1, u, x1) −p(w, s1, x1)
−p(s1, u, x1) p(s1, x1)

)(
1 1

p(u | v2) p(u | v4)

)
=

1

det(Pws1u′x1
)

(
p(w, s1, u

′, x1) −p(w, s1, x1)
−p(s1, u

′, x1) p(s1, x1)

)(
1 1

p(u′ | v2) p(u′ | v4)

)
(A.62)
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hold for u ̸= u′ (u, u′ ∈ {u1, u2, u3, u4}). Thus, we derive

p(s0, x1)p(u | v1)− p(s0, u, x1) =
det(Pws0ux1

)

det(Pws0u′x1)
(p(s0, x1)p(u

′ | v1)− p(s0, u
′, x1)), (A.63)

p(s1, x1)p(u | v2)− p(s1, u, x1) =
det(Pws1ux1

)

det(Pws1u′x1
)
(p(s1, x1)p(u

′ | v2)− p(s1, u
′, x1)), (A.64)

p(s0, x1)p(u | v3)− p(s0, u, x1) =
det(Pws0ux1)

det(Pws0u′x1
)
(p(s0, x1)p(u

′ | v3)− p(s0, u
′, x1)), (A.65)

p(s1, x1)p(u | v4)− p(s1, u, x1) =
det(Pws1ux1

)

det(Pws1u′x1)
(p(s1, x1)p(u

′ | v4)− p(s1, u
′, x1)). (A.66)

From Condition 3 in Theorem 2, a system of eight linear equations (A.51)-(A.54) and (A.63)-(A.66) provides a
unique solution regarding p(u | v) for u, u′ ∈ {u1, u2, u3, u4} (u ̸= u′). Indeed, if Condition 3 in Theorem 2 holds,
we have

(
p(u | v1)
p(u′ | v1)

)
=

 1 − det(Pws0ux0
)

det(Pws0u′x0
)

1 − det(Pws0ux1)

det(Pws0u′x1
)


−1  p(u | s0, x0)−

det(Pws0ux0
)

det(Pws0u′x0
)
p(u′ | s0, x0)

p(u | s0, x1)−
det(Pws0ux1)

det(Pws0u′x1
)
p(u′ | s0, x1)

 , (A.67)

(
p(u | v2)
p(u′ | v2)

)
=

 1 − det(Pws0ux0
)

det(Pws0u′x0)

1 − det(Pws1ux1
)

det(Pws1u′x1
)


−1  p(u | s0, x0)−

det(Pws0ux0
)

det(Pws0u′x0)
p(u′ | s0, x0)

p(u | s1, x1)−
det(Pws1ux1

)

det(Pws1u′x1
)
p(u′ | s1, x1)

 , (A.68)

(
p(u | v3)
p(u′ | v3)

)
=

 1 − det(Pws1ux0
)

det(Pws1u′x0
)

1 − det(Pws0ux1)

det(Pws0u′x1
)


−1  p(u | s1, x0)−

det(Pws1ux0
)

det(Pws1u′x0
)
p(u′ | s1, x0)

p(u | s0, x1)−
det(Pws0ux1)

det(Pws0u′x1
)
p(u′ | s0, x1)

 , (A.69)

(
p(u | v4)
p(u′ | v4)

)
=

 1 − det(Pws1ux0
)

det(Pws1u′x0)

1 − det(Pws1ux1
)

det(Pws1u′x1)


−1  p(u | s1, x0)−

det(Pws1ux0)

det(Pws1u′x0)
p(u′ | s1, x0)

p(u | s1, x1)−
det(Pws1ux1

)

det(Pws1u′x1)
p(u′ | s1, x1)

 . (A.70)

Therefore, noting that Q⊤
sux is identifiable and invertible and Pwsux is available for x ∈ {x0, x1}, s ∈ {s0, s1},

s ∈ {x0, x1}, and u ∈ {u1, u2, u3, u4}, we derive

Q−⊤
s0ux0

Pws0ux0 = ∆s0x0Rws0x0 =

(
p(v1, x0) p(w, x0, v1)
p(v2, x0) p(w, x0, v2)

)
, (A.71)

Q−⊤
s1ux0

Pws1ux0
= ∆s1x0

Rws1x0
=

(
p(v3, x0) p(w, x0, v3)
p(v4, x0) p(w, x0, v4)

)
, (A.72)

Q−⊤
s0ux1

Pws0ux1
= ∆s0x1

Rws0x1
=

(
p(v1, x1) p(w, x1, v1)
p(v3, x1) p(w, x1, v3)

)
, (A.73)

Q−⊤
s1ux1

Pws1ux1 = ∆s1x1Rws1x1 =

(
p(v2, x1) p(w, x1, v2)
p(v4, x1) p(w, x1, v4)

)
. (A.74)

Hence, since p(u |w, x, v) = p(u | v) by Condition 2 in Theorem 2,

p(w, s, x, u, v) = p(s |w, u, x, v)p(w, u, x, v)
= p(s |w, u, x, v)p(u |w, x, v)p(w, x, v) = p(s |w, u, x, v)p(u | v)p(w, x, v) (A.75)

are identifiable for x ∈ {x0, x1}, s ∈ {s0, s1}, w ∈ {w1, w2}, u ∈ {v1, v2, v3, v4} and v ∈ {v1, v2, v3, v4}. Equiva-
lently, by equations (A.42), we have

p(w, s0, x0, u, vi) =

{
p(u | vi)p(w, x0, vi) for i = 1, 2,

0 for i = 3, 4,
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p(w, s1, x0, u, vi) =

{
0 for i = 1, 2,

p(u | vi)p(w, x0, vi) for i = 3, 4,

p(w, s0, x1, u, vi) =

{
p(u | vi)p(w, x1, vi) for i = 1, 3,

0 for i = 2, 4,

p(w, s1, x1, u, vi) =

{
0 for i = 1, 3,

p(u | vi)p(w, x1, vi) for i = 2, 4

for w ∈ {w0, w1} and u ∈ {u1, u2, u3, u4}.

B ESTIMATION

When PCs are identifiable through the proposed condition, as seen from the proofs of Theorems 1 and 2 above,
the estimation problem is reduced to that of singular models; thus, these probabilities cannot be evaluated by
standard statistical estimation methods, such as the maximum likelihood estimation method. To solve this
problem, we propose new estimators of PCs according to Algorithm 1.

Let

Pxyzs·w =

(
p(y, s |w) p(x, y, s |w)
p(y, z, s |w) p(x, y, z, s |w)

)
=

( ∑
x,z p(x, y, z, s, w)/p(w)

∑
z p(x, y, z, s, w)/p(w)∑

x p(x, y, z, s, w)/p(w) p(x, y, z, s, w)/p(w)

)
,

A1x·w =

 1 −det(Pxy0z1s0·w)

det(Pxy0z2s0·w)

1 −det(Pxy0z1s1·w)

det(Pxy0z2s1·w)

 , A2x·w =

 1 −det(Pxy0z1s0·w)

det(Pxy0z2s0·w)

1 −det(Pxy1z1s1·w)

det(Pxy1z2s1·w)

 ,

A3x·w =

 1 −det(Pxy1z1s0·w)

det(Pxy1z2s0·w)

1 −det(Pxy0z1s1·w)

det(Pxy0z2s1·w)

 , A4x·w =

 1 −det(Pxy1z1s0·w)

det(Pxy1z2s0·w)

1 −det(Pxy1z1s1·w)

det(Pxy1z2s1·w)

 ,

b1x·w =


p(y0, z1, s0 |w)
p(y0, s0 |w)

− det(Pxy0z1s0·w)

det(Pxy0z2s0·w)

p(y0, z2, s0 |w)
p(y0, s0 |w)

p(y0, z1, s1 |w)
p(y0, s1 |w)

− det(Pxy0z1s1·w)

det(Pxy0z2s1·w)

p(y0, z2, s1 |w)
p(y0, s1 |w)

 ,

b2x·w =


p(y0, z1, s0 |w)
p(y0, s0 |w)

− det(Pxy0z1s0·w)

det(Pxy0z2s0·w)

p(y0, z2, s0 |w)
p(y0, s0 |w)

p(y1, z1, s1 |w)
p(y1, s1 |w)

− det(Pxy1z1s1·w)

det(Pxy1z2s1·w)

p(y1, z2, s1 |w)
p(y1, s1 |w)

 ,

b3x·w =


p(y1, z1, s0 |w)
p(y1, s0 |w)

− det(Pxy1z1s0·w)

det(Pxy1z2s0·w)

p(y1, z2, s0 |w)
p(y1, s0 |w)

p(y0, z1, s1 |w)
p(y0, s1 |w)

− det(Pxy0z1s1·w)

det(Pxy0z2s1·w)

p(y0, z2, s1 |w)
p(y0, s1 |w)

 ,

b4x·w =


p(y1, z1, s0 |w)
p(y1, s0 |w)

− det(Pxy1z1s0·w)

det(Pxy1z2s0·w)

p(y1, z2, s0 |w)
p(y1, s0 |w)

p(y1, z1, s1 |w)
p(y1, s1 |w)

− det(Pxy1z1s1·w)

det(Pxy1z2s1·w)

p(y1, z2, s1 |w)
p(y1, s1 |w)


for x ∈ {x0, x1} and w ∈ {w0, w1}. Then, from equations (A.30)-(A.33) in Section A.1,(

p(z1 |u1, w)
p(z2 |u1, w)

)
= A−1

1x·wb1x·w,

(
p(z1 |u2, w)
p(z2 |u2, w)

)
= A−1

2x·wb2x·w,(
p(z1 |u3, w)
p(z2 |u3, w)

)
= A−1

3x·wb3x·w,

(
p(z1 |u4, w)
p(z2 |u4, w)

)
= A−1

4x·wb4x·w.

(B.76)
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Consider the matrices P̂xyzs·w that are derived by replacing p(y, s |w), p(x, y, s |w), p(y, z, s |w), and
p(x, y, z, s |w) of Pxyzs·w with the sample probabilities p̂(y, s |w), p̂(x, y, s |w), p̂(y, z, s |w) and p̂(x, y, z, s |w),
respectively, for x ∈ {x0, x1}, y ∈ {y0, y1}, z ∈ {z1, z2}, s ∈ {s0, s1}, and w ∈ {w0, w1}. Additionally, consider

Âix·w and b̂ix·w, which are derived by replacing Pxyzs·w, p(y, s |w), and p(y, z, s |w) of Aix·w and bix·w with

the sample probabilities P̂xyzs·w, p̂(y, s |w), and p̂(y, z, s |w), respectively, for i = 1, 2, 3, 4. To estimate the

probabilities p(z |u,w), it is natural to replace Aix·w and bix·w in (B.76) with Âix·w and b̂ix·w, respectively, for
w ∈ {w0, w1} and i = 1, 2, 3, 4. However, such estimates of p(z |u,w) might not lie between 0 and 1 due to
sampling error. Thus, using the solutions of the following optimization problems

θ̂z1u1w, θ̂z2u1w = argmin
θz1u1w,θz2u1w

∑
x∈{x0,x1}

∥∥∥∥∥∥∥Â1x·w


1

1 + exp(−θz1u1w)
1

1 + exp(−θz2u1w)

− b̂1x·w

∥∥∥∥∥∥∥
2

2

,

θ̂z1u2w, θ̂z2u2w = argmin
θz1u2w,θz2u2w

∑
x∈{x0,x1}

∥∥∥∥∥∥∥Â2x·w


1

1 + exp(−θz1u2w)
1

1 + exp(−θz2u2w)

− b̂2x·w

∥∥∥∥∥∥∥
2

2

,

θ̂z1u3w, θ̂z2u3w = argmin
θz1u3w,θz2u3w

∑
x∈{x0,x1}

∥∥∥∥∥∥∥Â3x·w


1

1 + exp(−θz1u3w)
1

1 + exp(−θz2u3w)

− b̂3x·w

∥∥∥∥∥∥∥
2

2

,

θ̂z1u4w, θ̂z2u4w = argmin
θz1u4w,θz2u4w

∑
x∈{x0,x1}

∥∥∥∥∥∥∥Â4x·w


1

1 + exp(−θz1u4w)
1

1 + exp(−θz2u4w)

− b̂4x·w

∥∥∥∥∥∥∥
2

2

,

we obtain consistent estimators p̂(z |u,w) = 1/
(
1 + exp(−θ̂zuw)

)
of the probabilities p(z |u,w) =

1/ (1 + exp(−θzuw)) for z ∈ {z1, z2}, u ∈ {u1, u2, u3, u4}, and w ∈ {w0, w1}.

Then, let

Q̂y0z1s0·w =

(
1 p̂(z1 |u1, w)
1 p̂(z1 |u2, w)

)
, Q̂y1z1s0·w =

(
1 p̂(z1 |u3, w)
1 p̂(z1 |u4, w)

)
,

Q̂y0z1s1·w =

(
1 p̂(z1 |u1, w)
1 p̂(z1 |u3, w)

)
, Q̂y1z1s1·w =

(
1 p̂(z1 |u2, w)
1 p̂(z1 |u4, w)

)
,

P̂xy0z1s0·w =

(
p̂(y0, s0 |w) p̂(x, y0, s0 |w)

p̂(y0, z1, s0 |w) p̂(x, y0, z1, s0 |w)

)
, P̂xy1z1s0·w =

(
p̂(y1, s0 |w) p̂(x, y1, s0 |w)

p̂(y1, z1, s0 |w) p̂(x, y1, z1, s0 |w)

)
,

P̂xy0z1s1·w =

(
p̂(y0, s1 |w) p̂(x, y0, s1 |w)

p̂(y0, z1, s1 |w) p̂(x, y0, z1, s1 |w)

)
, P̂xy1z1s1·w =

(
p̂(y1, s1 |w) p̂(x, y1, s1 |w)

p̂(y1, z1, s1 |w) p̂(x, y1, z1, s1 |w)

)
for w ∈ {w0, w1}. Using the solutions of the following optimization problems

θ̂xs0u1·w, θ̂xs0u2·w = argmin
θxs0u1·w,θxs0u2·w

∑
z∈{z1,z2}

∥∥∥∥∥∥∥Q̂⊤
y0zs0·w


1

1 + exp(−θxs0u1·w)
1

1 + exp(−θxs0u2·w)

− P̂xy0zs0·we2

∥∥∥∥∥∥∥
2

2

,

θ̂xs0u3·w, θ̂xs0u4·w = argmin
θxs0u3·w,θxs0u4·w

∑
z∈{z1,z2}

∥∥∥∥∥∥∥Q̂⊤
y1zs0·w


1

1 + exp(−θxs0u3·w)
1

1 + exp(−θxs0u4·w)

− P̂xy1zs0·we2

∥∥∥∥∥∥∥
2

2

,

θ̂xs1u1·w, θ̂xs1u3·w = argmin
θxs1u1·w,θxs1u3·w

∑
z∈{z1,z2}

∥∥∥∥∥∥∥Q̂⊤
y0zs1·w


1

1 + exp(−θxs1u1·w)
1

1 + exp(−θxs1u3·w)

− P̂xy0zs1·we2

∥∥∥∥∥∥∥
2

2

,
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θ̂xs1u2·w, θ̂xs1u4·w = argmin
θxs1u2·w,θxs1u4·w

∑
z∈{z1,z2}

∥∥∥∥∥∥∥Q̂⊤
y1zs1·w


1

1 + exp(−θxs1u2·w)
1

1 + exp(−θxs1u4·w)

− P̂xy1zs1·we2

∥∥∥∥∥∥∥
2

2

,

we obtain consistent estimators p̂(x, s, u |w) = 1/
(
1 + exp(−θ̂xsu·w)

)
of the probabilities p(x, s, u |w) =

1/ (1 + exp(−θxsu·w)) for x ∈ {x0, x1}, s ∈ {s0, s1}, u ∈ {u1, u2, u3, u4}, and w ∈ {w0, w1}.

Next, consider the matrices P̂wsux that are derived by replacing p(s, x) and p(w, s, x) of Pwsux with the sample
probabilities p̂(s, x) and p̂(w, s, x), and p(x, s, u) =

∑
w p(x, s, u |w)p(w) and p(x, s, u, w) = p(x, s, u |w)p(w) of

Pwsux with p̂(x, s, u) =
∑

w p̂(x, s, u |w)p̂(w) and p̂(x, s, u, w) = p̂(x, s, u |w)p̂(w) for w ∈ {w0, w1}, s ∈ {s0, s1},
u ∈ {u1, u2, u3, u4}, and x ∈ {x0, x1}. Let

Pwsux =

(
p(s, x) p(w, s, x)

p(s, u, x) p(w, s, u, x)

)
=

( ∑
y,z,u,w p(x, y, z, s, u |w)p(w)

∑
y,z,u p(x, y, z, s, u |w)p(w)∑

y,z,w p(x, y, z, s, u |w)p(w)
∑

y,z p(x, y, z, s, u |w)p(w)

)
,

A11w =

 1 −det(Pws0u1x0
)

det(Pws0u2x0)

1 −det(Pws0u1x1
)

det(Pws0u2x1
)

 , A12w =

 1 −det(Pws0u3x0
)

det(Pws0u4x0)

1 −det(Pws0u3x1
)

det(Pws0u4x1
)

 ,

A21w =

 1 −det(Pws0u1x0
)

det(Pws0u2x0
)

1 −det(Pws1u1x1)

det(Pws1u2x1
)

 , A22w =

 1 −det(Pws0u3x0
)

det(Pws0u4x0
)

1 −det(Pws1u3x1)

det(Pws1u4x1
)

 ,

A31w =

 1 −det(Pws1u1x0)

det(Pws1u2x0
)

1 −det(Pws0u1x1
)

det(Pws0u2x1
)

 , A32w =

 1 −det(Pws1u3x0
)

det(Pws1u4x0
)

1 −det(Pws0u3x1
)

det(Pws0u4x1
)

 ,

A41w =

 1 −det(Pws1u1x0)

det(Pws1u2x0
)

1 −det(Pws1u1x1
)

det(Pws1u2x1)

 , A42w =

 1 −det(Pws1u3x0)

det(Pws1u4x0
)

1 −det(Pws1u3x1
)

det(Pws1u4x1)

 ,

b11w =


p(s0, u1, x0)

p(s0, x0)
− det(Pws0u1x0

)

det(Pws0u2x0)

p(s0, u2, x0)

p(s0, x0)
p(s0, u1, x1)

p(s0, x1)
− det(Pws0u1x1

)

det(Pws0u2x1)

p(s0, u2, x1)

p(s0, x1)

 , b12w =


p(s0, u3, x0)

p(s0, x0)
− det(Pws0u3x0

)

det(Pws0u4x0)

p(s0, u4, x0)

p(s0, x0)
p(s0, u3, x1)

p(s0, x1)
− det(Pws0u3x1

)

det(Pws0u4x1)

p(s0, u4, x1)

p(s0, x1)

 ,

b21w =


p(s0, u1, x0)

p(s0, x0)
− det(Pws0u1x0

)

det(Pws0u2x0)

p(s0, u2, x0)

p(s0, x0)
p(s1, u1, x1)

p(s1, x1)
− det(Pws1u1x1

)

det(Pws1u2x1
)

p(s1, u2, x1)

p(s1, x1)

 , b22w =


p(s0, u3, x0)

p(s0, x0)
− det(Pws0u3x0

)

det(Pws0u4x0)

p(s0, u4, x0)

p(s0, x0)
p(s1, u3, x1)

p(s1, x1)
− det(Pws1u3x1

)

det(Pws1u4x1
)

p(s1, u4, x1)

p(s1, x1)

 ,

b31w =


p(s1, u1, x0)

p(s1, x0)
− det(Pws1u1x0

)

det(Pws1u2x0
)

p(s1, u2, x0)

p(s1, x0)
p(s0, u1, x1)

p(s0, x1)
− det(Pws0u1x1)

det(Pws0u2x1
)

p(s0, u2, x1)

p(s0, x1)

 , b32w =


p(s1, u3, x0)

p(s1, x0)
− det(Pws1u3x0

)

det(Pws1u4x0
)

p(s1, u4, x0)

p(s1, x0)
p(s0, u3, x1)

p(s0, x1)
− det(Pws0u3x1)

det(Pws0u4x1
)

p(s0, u4, x1)

p(s0, x1)

 ,

b41w =


p(s1, u1, x0)

p(s1, x0)
− det(Pws1u1x0

)

det(Pws1u2x0
)

p(s1, u2, x0)

p(s1, x0)
p(s1, u1, x1)

p(s1, x1)
− det(Pws1u1x1)

det(Pws1u2x1
)

p(s1, u2, x1)

p(s1, x1)

 , b42w =


p(s1, u3, x0)

p(s1, x0)
− det(Pws1u3x0

)

det(Pws1u4x0
)

p(s1, u4, x0)

p(s1, x0)
p(s1, u3, x1)

p(s1, x1)
− det(Pws1u3x1)

det(Pws1u4x1
)

p(s1, u4, x1)

p(s1, x1)

 .

Then, from the discussion of Section A.2,(
p(u1 | v1)
p(u2 | v1)

)
= A−1

11wb11w,

(
p(u3 | v1)
p(u4 | v1)

)
= A−1

12wb12w,

(
p(u1 | v2)
p(u2 | v2)

)
= A−1

21wb21w,

(
p(u3 | v2)
p(u4 | v2)

)
= A−1

22wb22w,(
p(u1 | v3)
p(u2 | v3)

)
= A−1

31wb31w,

(
p(u3 | v3)
p(u4 | v3)

)
= A−1

32wb32w,

(
p(u1 | v4)
p(u2 | v4)

)
= A−1

41wb41w,

(
p(u3 | v4)
p(u4 | v4)

)
= A−1

42wb42w.
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To estimate p(u | v), consider Âijw and b̂ijw, which are derived by replacing Pwsux, p(w, s, x), and p(w, s, u, x)

of Aijw and bijw with the sample probabilities P̂wsux, p̂(y, s |w), and p̂(y, z, s |w), respectively, for i = 1, 2, 3, 4
and j = 1, 2.

From equations (A.67)-(A.70) in Supplementary Material A.2, using the solutions of the following optimization
problems

θ̂u1v1 , θ̂u2v1 = argmin
θu1v1

,θu2v1

∑
w∈{w0,w1}

∥∥∥∥∥∥∥Â11w


1

1 + exp(−θu1v1)
1

1 + exp(−θu2v1)

− b̂11w

∥∥∥∥∥∥∥
2

2

,

θ̂u3v1 , θ̂u4v1 = argmin
θu3v1

,θu4v1

∑
w∈{w0,w1}

∥∥∥∥∥∥∥Â12w


1

1 + exp(−θu3v1)
1

1 + exp(−θu4v1)

− b̂12w

∥∥∥∥∥∥∥
2

2

,

θ̂u1v2 , θ̂u2v2 = argmin
θu1v2

,θu2v2

∑
w∈{w0,w1}

∥∥∥∥∥∥∥Â21w


1

1 + exp(−θu1v2)
1

1 + exp(−θu2v2)

− b̂21w

∥∥∥∥∥∥∥
2

2

,

θ̂u3v2 , θ̂u4v2 = argmin
θu3v2

,θu4v2

∑
w∈{w0,w1}

∥∥∥∥∥∥∥Â22w


1

1 + exp(−θu3v2)
1

1 + exp(−θu4v2)

− b̂22w

∥∥∥∥∥∥∥
2

2

,

θ̂u1v3 , θ̂u2v3 = argmin
θu1v3 ,θu2v3

∑
w∈{w0,w1}

∥∥∥∥∥∥∥Â31w


1

1 + exp(−θu1v3)
1

1 + exp(−θu2v3)

− b̂31w

∥∥∥∥∥∥∥
2

2

,

θ̂u3v3 , θ̂u4v3 = argmin
θu3v3 ,θu4v3

∑
w∈{w0,w1}

∥∥∥∥∥∥∥Â32w


1

1 + exp(−θu3v3)
1

1 + exp(−θu4v3)

− b̂32w

∥∥∥∥∥∥∥
2

2

,

θ̂u1v4 , θ̂u2v4 = argmin
θu1v4 ,θu2v4

∑
w∈{w0,w1}

∥∥∥∥∥∥∥Â41w


1

1 + exp(−θu1v4)
1

1 + exp(−θu2v4)

− b̂41w

∥∥∥∥∥∥∥
2

2

,

θ̂u3v4 , θ̂u4v4 = argmin
θu3v4 ,θu4v4

∑
w∈{w0,w1}

∥∥∥∥∥∥∥Â42w


1

1 + exp(−θu3v4)
1

1 + exp(−θu4v4)

− b̂42w

∥∥∥∥∥∥∥
2

2

,

we have consistent estimators p̂(u | v) = 1/
(
1 + exp(−θ̂uv)

)
of the probabilities p(u | v) = 1/ (1 + exp(−θuv)) for

u ∈ {u1, u2, u3, u4} and v ∈ {v1, v2, v3, v4}.

Let

Q̂s0ux0
=

(
1 p̂(u | v1)
1 p̂(u | v2)

)
, Q̂s1ux0

=

(
1 p̂(u | v3)
1 p̂(u | v4)

)
,

Q̂s0ux1 =

(
1 p̂(u | v1)
1 p̂(u | v3)

)
, Q̂s1ux1 =

(
1 p̂(u | v2)
1 p̂(u | v4)

)
,

P̂ws0ux0
=

(
p̂(s0, x0) p̂(w, s0, x0)

p̂(s0, u, x0) p̂(w, s0, u, x0)

)
, P̂ws1ux0

=

(
p̂(s1, x0) p̂(w, s1, x0)

p̂(s1, u, x0) p̂(w, s1, u, x0)

)
,

P̂ws0ux1
=

(
p̂(s0, x1) p̂(w, s0, x1)

p̂(s0, u, x1) p̂(w, s0, u, x1)

)
, P̂ws1ux1

=

(
p̂(s1, x1) p̂(w, s1, x1)

p̂(s1, u, x1) p̂(w, s1, u, x1)

)
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for u ∈ {u1, u2, u3, u4}. Using the solutions of the following optimization problems

θ̂x0v1 , θ̂x0v2 = argmin
θx0v1

,θx0v2

∑
w∈{w0,w1}

∑
u∈{u1,u2,u3,u4}

∥∥∥∥∥∥∥Q̂⊤
s0ux0


1

1 + exp(−θx0v1)
1

1 + exp(−θx0v2)

− P̂ws0ux0e1

∥∥∥∥∥∥∥
2

2

,

θ̂x0v3 , θ̂x0v4 = argmin
θx0v3

,θx0v4

∑
w∈{w0,w1}

∑
u∈{u1,u2,u3,u4}

∥∥∥∥∥∥∥Q̂⊤
s1ux0


1

1 + exp(−θx0v3)
1

1 + exp(−θx0v4)

− P̂ws1ux0e1

∥∥∥∥∥∥∥
2

2

,

θ̂x1v1 , θ̂x1v3 = argmin
θx1v1

,θx1v3

∑
w∈{w0,w1}

∑
u∈{u1,u2,u3,u4}

∥∥∥∥∥∥∥Q̂⊤
s0ux1


1

1 + exp(−θx1v1)
1

1 + exp(−θx1v3)

− P̂ws0ux1e1

∥∥∥∥∥∥∥
2

2

,

θ̂x1v2 , θ̂x1v4 = argmin
θx1v2

,θx1v4

∑
w∈{w0,w1}

∑
u∈{u1,u2,u3,u4}

∥∥∥∥∥∥∥Q̂⊤
s1ux1


1

1 + exp(−θx1v2)
1

1 + exp(−θx1v4)

− P̂ws1ux1
e1

∥∥∥∥∥∥∥
2

2

,

we have consistent estimators p̂(x, v) = 1/
(
1 + exp(−θ̂xv)

)
of the probabilities p(x, v) = 1/ (1 + exp(−θxv))

for x ∈ {x0, x1} and v ∈ {v1, v2, v3, v4}, and consistent estimators p̂(u, v) = p̂(u | v)
∑

x∈{x0,x1} p̂(x, v) of the

probabilities p(u | v) for u ∈ {u1, u2, u3, u4} and v ∈ {v1, v2, v3, v4}.

Since

p(Yx0 = y0, Yx1 = y0) =
∑

s,s′∈{s0,s1}

p(Yx0,Sx0
= y0, Yx1,Sx1

= y0, Sx0 = s, Sx1 = s′)

=
∑

s,s′∈{s0,s1}

p(Ys = y0, Ys′ = y0, Sx0 = s, Sx1 = s′)

= p(Ys0 = y0, Ys0 = y0, Sx0
= s0, Sx1

= s0) + p(Ys0 = y0, Ys1 = y0, Sx0
= s0, Sx1

= s1)

+ p(Ys1 = y0, Ys0 = y0, Sx0
= s1, Sx1

= s0) + p(Ys1 = y0, Ys1 = y0, Sx0
= s1, Sx1

= s1)

= p(U ∈ {u1, u2}, V = v1) + p(U = u1, V = v2) + p(U = u1, V = v3) + p(U ∈ {u1, u3}, V = v4)

= p(u1, v1) + p(u2, v1) + p(u1, v2) + p(u1, v3) + p(u1, v4) + p(u3, v4),

p(Yx0 = y0, Yx1 = y1) =
∑

s,s′∈{s0,s1}

p(Yx0,Sx0
= y0, Yx1,Sx1

= y1, Sx0 = s, Sx1 = s′)

=
∑

s,s′∈{s0,s1}

p(Ys = y0, Ys′ = y1, Sx0 = s, Sx1 = s′)

= p(Ys0 = y0, Ys0 = y1, Sx0
= s0, Sx1

= s0) + p(Ys0 = y0, Ys1 = y1, Sx0
= s0, Sx1

= s1)

+ p(Ys1 = y0, Ys0 = y1, Sx0
= s1, Sx1

= s0) + p(Ys1 = y0, Ys1 = y1, Sx0
= s1, Sx1

= s1)

= p(U = u2, V = v2) + p(U = u3, V = v3)

= p(u2, v2) + p(u3, v3),

p(Yx0 = y1, Yx1 = y0) =
∑

s,s′∈{s0,s1}

p(Yx0,Sx0
= y1, Yx1,Sx1

= y0, Sx0 = s, Sx1 = s′)

=
∑

s,s′∈{s0,s1}

p(Ys = y1, Ys′ = y0, Sx0 = s, Sx1 = s′)

= p(Ys0 = y1, Ys0 = y0, Sx0
= s0, Sx1

= s0) + p(Ys0 = y1, Ys1 = y0, Sx0
= s0, Sx1

= s1)

+ p(Ys1 = y1, Ys0 = y0, Sx0
= s1, Sx1

= s0) + p(Ys1 = y1, Ys1 = y0, Sx0
= s1, Sx1

= s1)

= p(U = u3, V = v2) + p(U = u2, V = v3)

= p(u3, v2) + p(u2, v3),
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p(Yx0 = y1, Yx1 = y1) =
∑

s,s′∈{s0,s1}

p(Yx0,Sx0
= y1, Yx1,Sx1

= y1, Sx0 = s, Sx1 = s′)

=
∑

s,s′∈{s0,s1}

p(Ys = y1, Ys′ = y1, Sx0 = s, Sx1 = s′)

= p(Ys0 = y1, Ys0 = y1, Sx0
= s0, Sx1

= s0) + p(Ys0 = y1, Ys1 = y1, Sx0
= s0, Sx1

= s1)

+ p(Ys1 = y1, Ys0 = y1, Sx0
= s1, Sx1

= s0) + p(Ys1 = y1, Ys1 = y1, Sx0
= s1, Sx1

= s1)

= p(U ∈ {u3, u4}, V = v1) + p(U = u4, V = v2) + p(U = u4, V = v3) + p(U ∈ {u2, u4}, V = v4)

= p(u3, v1) + p(u4, v1) + p(u4, v2) + p(u4, v3) + p(u2, v4) + p(u4, v4),

we can obtain the consistent estimators

p̂(Yx0
= y0, Yx1

= y0) = p̂(u1, v1) + p̂(u2, v1) + p̂(u1, v2) + p̂(u1, v3) + p̂(u1, v4) + p̂(u3, v4),

p̂(Yx0
= y0, Yx1

= y1) = p̂(u2, v2) + p̂(u3, v3),

p̂(Yx0
= y1, Yx1

= y0) = p̂(u3, v2) + p̂(u2, v3),

p̂(Yx0
= y1, Yx1

= y1) = p̂(u3, v1) + p̂(u4, v1) + p̂(u4, v2) + p̂(u4, v3) + p̂(u2, v4) + p̂(u4, v4).

C CASE STUDY

We illustrate our results through the data set reported by LaLonde (1986) and re-analyzed by Dehejia and
Wahba (1999). The aim of this study was to evaluate the effect on trainee earnings of the National Supported
Work (NSW) demonstration, a job training program, in the field experiment. According to LaLonde (1986), in
this study, individuals were randomly assigned to treatment (attendance) and control (non-attendance) groups
with the estimates that would have been produced by an econometrician. However it seems that the random
assignment was not successful. The data set used in this section is available from Dehejia’s homepage (https://
users.nber.org/~rdehejia/nswdata2.html). The sample size given in the homepage is 445, and the variables
that we are interested in are:

X: an indicator of whether the individual attended the job training program (x1: “attended”; x0: “did not
attend”),

Y : an indicator of whether the individual’s earning increment increased between 1975 and 1978 (y1: “increased”;
y0: “did not increase”),

S: a mediator for whether the individual’s earnings was zero in 1975 (y1: “non-zero”; y0: “zero”),

Z: a joint indicator of marriage status and high school degree (z3: “no degree” and “marriage”; z2: “no degree”
and “no marriage”; z1: otherwise),

W : an indicator of age in years (w0: age < 27; w1: age ≥ 27).

We assume that the data generating process of this study is encoded in Figure 4b. Then, under the assumption
that Condition 5 of Theorem 2 holds, together with Conditions 4 and 6, PNS p(Yx0 = y0, Yx1 = y1) and the causal
risk difference p(Yx0 = y0, Yx1 = y1) − p(Yx0 = y1, Yx1 = y0) are evaluated by p̂(Yx0 = y0, Yx1 = y1) = 0.092
and p̂(Yx0

= y0, Yx1
= y1)− p̂(Yx0

= y1, Yx1
= y0) = 0.092, respectively, as shown in Table C.1. Here, the 2.5th

and 97.5th percentiles of 1000 bootstrap replications of the estimates were used to derive the 95% confidential
intervals1. According to Table C.1, it may be reasonable to assume monotonicity, i.e., p(Yx0

= y1, Yx1
= y0) = 0,

to evaluate the causal effects since there is a little difference between the estimates of PNS and causal risk.
Additionally, Table C.2 and Figure C.1 show summary statistics and boxplots for 1000 bootstrap replications
of the estimates (p̂(Yx0

= y0, Yx1
= y0), p̂(Yx0

= y0, Yx1
= y1), p̂(Yx0

= y1, Yx1
= y0), p̂(Yx0

= y1, Yx1
= y1))

based on the proposed method, respectively. It seems that p̂(Yx0
= y0, Yx1

= y1) and p̂(Yx0
= y1, Yx1

= y0) are
relatively stable from Table C.2 and Figure C.1.

1Strictly speaking, only the 761 replications that yielded invertible matrices P̂xyzs·w were used.
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Table C.1: Estimates of PNS and the causal risk difference in the NSW dataset.

Estimate (95%CI)

PNS 0.092 (0.000, 0.372)
Causal risk difference 0.092 (−0.141, 0.29)

Table C.2: Basic statistics for 1000 bootstrap replications of estimates (p̂(Yx0
= y0, Yx1

= y0), p̂(Yx0
= y0, Yx1

=
y1), p̂(Yx0 = y1, Yx1 = y0), p̂(Yx0 = y1, Yx1 = y1)) based on our proposed method in the NSW dataset.

p̂(Yx0
= y0, Yx1

= y0) p̂(Yx0
= y0, Yx1

= y1) p̂(Yx0
= y1, Yx1

= y0) p̂(Yx0
= y1, Yx1

= y1)

Minimum 0.011 0.000 0.000 0.066
1st Quantile 0.244 0.044 0.023 0.420
Median 0.316 0.102 0.068 0.501
Mean 0.334 0.121 0.084 0.500
3rd Quantile 0.408 0.176 0.123 0.575
Maximum 0.984 0.800 0.640 1.052
s.e. 0.138 0.102 0.079 0.133

Figure C.1: Boxplots of estimates (p̂(Yx0
= y0, Yx1

= y0), p̂(Yx0
= y0, Yx1

= y1), p̂(Yx0
= y1, Yx1

= y0), p̂(Yx0
=

y1, Yx1 = y1)) based on our proposed method in the NSW dataset.


