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Abstract

We show both adaptive and non-adaptive
minimax rates of convergence for a fam-
ily of weighted Laplacian-Eigenmap based
nonparametric regression methods, when the
true regression function belongs to a Sobolev
space and the sampling density is bounded
from above and below. The adaptation
methodology is based on extensions of Lep-
ski’s method and is over both the smoothness
parameter (s ∈ N+) and the norm parame-
ter (M > 0) determining the constraints on
the Sobolev space. Our results extend the
non-adaptive result in Green et al. (2023),
established for a specific normalized graph
Laplacian, to a wide class of weighted Lapla-
cian matrices used in practice, including the
unnormalized Laplacian and random walk
Laplacian.

1 INTRODUCTION

Consider the following regression model,

Yi = f(Xi) + εi, i = 1, . . . , n, (1)

where f : X → R is the true regression function,

Xi
i.i.d.∼ g, where g is a density on X ⊂ Rd, and

εi
i.i.d.∼ N(0, 1) is the noise (independent of the Xi’s).

The goal is to estimate the regression function f given
pairs of observations (X1, Y1), . . . , (Xn, Yn). Our main
contribution in this work is to develop non-adaptive
and adaptive estimators that achieve minimax opti-
mal estimation rates, when f lies in Sobolev spaces.

The estimators we study are based on performing
principal components regression using the estimated
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eigenfunctions of a family of weighted Graph Lapla-
cian operators. Various versions of Graph Laplacian
matrices have been considered in the literature. Re-
cently, Hoffmann et al. (2022) proposed a unifying
framework describing a family of Graph Laplacian ma-
trices, parametrized by w ∈ R3; see (2) and (3) for de-
tails. This captures Laplacian matrices used widely in
practice, including the normalized, unnormalized and
the random walk Laplacian.

Green et al. (2023) analyzed principal components re-
gression specifically using unnormalized graph Lapla-
cian matrices constructed over ϵ-graphs, and estab-
lished non-adaptive minimax rates when f lies in
Sobolev spaces. In this paper, we first extend this
result to the entire family of weighted Laplacian ma-
trices from (2) and (3); Theorem 3.1. These results are
established by assuming a sampling density bounded
from above and below and a true regression function
belonging to a Sobolev space.

Note that technically, the weighted Laplacian ma-
trices correspond to a family of weighted Sobolev
spaces which all become equivalent under the above-
mentioned boundedness assumption on the sampling
density. However, the parameters of the correspond-
ing Sobolev spaces, in particular the smoothness pa-
rameter (s ∈ N+) and the norm parameter M > 0 de-
termining the constraints on the Sobolev space, both
change on w.

While the minimax rate optimal non-adaptive estima-
tor depends on the knowledge of the smoothness and
norm parameters of the true regression function, these
parameters are unknown in practice. Tuning parame-
ters, such as ϵ, the graph radius (or the bandwidth
for the kernel) and K, the number of eigenvectors
considered, require knowledge of the smoothness and
the norm parameters. Hence, in order to apply the
Laplacian-based regression methodology in practice,
we develop an adaptive estimator, based on Lepski’s
method, and show in Theorem 3.2 that the developed
estimator achieves minimax rates (up to log factors)
without requiring the knowledge of either the smooth-
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ness or the norm parameters.

The main technical contributions we make in this work
towards establishing the aforementioned both adaptive
and non-adaptive results include the following:

• As a part of the proofs of our main results in The-
orem 3.1, we rigorously prove the idea roughly
outlined by Hoffmann et al. (2022) on showing the
convergence of the discrete weighted graph Lapla-
cian matrices to their continuum counterparts
(in appropriately well-defined sense) by leverag-
ing the concentration result established by Giné
and Guillou (2002) for kernel density estimators.

• We generalize the convergence property of the
eigenvalues of the Laplacian matrices in Calder
and Trillos (2022) to the weighted Laplacian ma-
trices by providing an analogous bound for the
eigenvalues combined with Weyl’s law.

• We formulate a simultaneous two-parameter Lep-
ski’s procedure and obtain the adaptive minimax
rate (see Theorem 3.2) through deriving a high-
order-moment-based concentration inequality of
the weighted Sobolev semi-norm.

Our contributions not only highlight the significance of
utilizing the weighted graph Laplacians for nonpara-
metric regression but also establish a solid statistical
foundation for this method, offering a robust frame-
work that underpins the reliability and effectiveness of
this approach.

1.1 Related Works

Graph Laplacians are widely used in many data sci-
ence problems for feature learning and spectral clus-
tering (Weiss, 1999, Shi and Malik, 2000, Ng et al.,
2001, von Luxburg, 2007), extracting heat kernel sig-
natures for shape analysis (Sun et al., 2009, An-
dreux et al., 2015, Dunson et al., 2021), reinforce-
ment learning (Mahadevan and Maggioni, 2007, Wu
et al., 2019) and dimensionality reduction (Belkin and
Niyogi, 2003, Coifman and Lafon, 2006), among other
applications. There is an ever-growing literature on
further applications of graph Laplacian in data science
topic, and we also refer to Belkin et al. (2006), Wang
et al. (2015), Chun et al. (2016) for more discussions.

As mentioned above, we consider the application of the
weighted graph Laplacian for achieving minimax opti-
mal rates in nonparametric regression. Other works fo-
cusing on this problem (including the semi-supervised
setting) include Green et al. (2021) and Green et al.
(2023) using unnormalized Laplacian based on the
Laplacian eigenmaps (see Belkin and Niyogi, 2003),

Bousquet et al. (2003) with Laplacian smoothing,
Rice (1984) adopting spectral series regression on the
Sobolev spaces, Trillos et al. (2022) applying the graph
Poly-Laplacians (see Remark 3.4 for specific compar-
ison to this method) and Hacquard et al. (2022) us-
ing topological data analysis. We also refer to Zhu
et al. (2003), Zhou and Srebro (2011), Lee and Izbicki
(2016), Dicker et al. (2017) and Garcia Trillos and
Murray (2020) for related analysis in the context of
regression problems.

In recent years, there has been a great deal of progress
on obtaining theoretical rates of convergence in the
context of Laplacian operator estimation and related
eigenvalue and/or eigenfunction estimation. Early
work on consistency of graph Laplacians focused on
pointwise consistency results for ϵ-graphs, see Belkin
and Niyogi (2005), Hein et al. (2005), Giné and
Koltchinskii (2006), Hein et al. (2007) and references
therein for more details. For fixed neighborhood size
ϵ, von Luxburg et al. (2008) and Rosasco et al. (2010)
considered spectral convergence of graph Laplacians.
Furthermore, Trillos and Slepčev (2018) established
conditions on connectivity for the above spectral con-
vergence with no specific error estimates. Later on,
the convergence of Laplacian matrices to Laplacian
operators has been considered, includes unnormalized,
random walk Laplacians and k-NN graph based Lapla-
cians in various work including Shi (2015), Calder and
Trillos (2022). There, rates of convergences of Lapla-
cian eigenvalues and eigenvectors to population coun-
terparts with explicit error estimates are derived. Fol-
lowing the above literature, Hoffmann et al. (2022)
developed a framework for extending the above con-
vergence results to a general Laplacian family, the
weighted Laplacians, and presented some heuristic
asymptotic analysis.

To the best of our knowledge, the only work that con-
siders adaptivity in the context of Laplacian estima-
tion is Chazal et al. (2016). They use Lepski’s method
for adaptive estimation of the unnormalized Laplace-
Beltrami operators, focusing on bandwidth parame-
ters. Also, they adopted a more flexible version of
Lepski’s method introduced in Lacour and Massart
(2016) that involves certain multiplicative coefficients
introduced in the variance and bias terms to develop
the method. Therefore, their proof technique is to
consider the trade-off between the bounds on the ap-
proximation error and the variance of Laplacian es-
timators. However, in this paper, we apply Lepski’s
method in the context of regression problem by using
weighted Laplacians instead of just the unnormalized
Laplacians (as in Chazal et al. (2016)). Additionally,
besides the bandwidth parameter, our method is also
adaptive to the smoothness parameter and the norm
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parameter of the Sobolev space under consideration,
i.e., in our work, we use Lepski’s method for simulta-
neous adaptation to the unknown parameters of the
function class under consideration.

2 PRELIMINARIES

In this section, we first describe the data-based
weighted graph Laplacian matrices, and the corre-
sponding nonparametric regression estimator. We
then introduce the associated limiting operators and
the weighted Sobolev spaces.

2.1 Weighted Graph Laplacian Matrices

Given i.i.d data X1, . . . , Xn from a distribution G
on X ⊆ Rd with the density g, consider a graph G
with vertex set {X1, . . . , Xn} and adjacency matrix
W̃ given by

w̃ϵi,j :=
1

nϵd
η

(
∥Xi −Xj∥

ϵ

)
, i, j = 1, . . . , n, (2)

where ∥·∥ denotes the standard Euclidean norm. Here
η ≥ 0 is a kernel function with support [0, 1], and
ε is the bandwidth parameter. In other words, G is
constructed by placing an edge Xi ∼ Xj , when ∥Xi −
Xj∥ ≤ ϵ, and this edge is given the weight w̃ϵi,j . The

term (nϵd)−1 is a convenient normalization factor. The
degree matrix is then given by a diagonal matrix D̃
with the i-th diagonal element as

d̃i :=

n∑
j=1

w̃ϵi,j , i = 1, . . . , n,

which can also be thought of as the kernel density es-
timator (KDE) of the density g at Xi.

The weighted graph Laplacian matrices are a family of
graph Laplacians consisting of various types of normal-
izations characterized by a parameter w = (p, q, r) ∈
R3 constructed as follows. First define a re-weighted
adjacency matrix W with (i, j)-th element as

wϵi,j :=
w̃ϵi,j

d̃
1− q

2
i d̃

1− q
2

j

, i, j = 1, . . . , n,

so that the corresponding diagonal degree matrix D as
entries

di :=

n∑
j=1

wϵi,j , i = 1, . . . , n.

Then, the weighted graph Laplacian after re-weighting
is defined in Hoffmann et al. (2022) as follows: for a

tuple w = (p, q, r) ∈ R3,

Lw,n,ϵ :=


1

ϵ2
D

1−p
q−1 (D −W )D− r

q−1 , if q ̸= 1,

1

ϵ2
(D −W ), if q = 1,

(3)
where 1/ϵ2 is also a normalization factor. For u ∈ Rn,
the i-th coordinate of the vector Lw,n,ϵu is given by

(Lw,n,ϵu)i =
1

ϵ2

n∑
j=1

d
1−p
q−1

i wϵi,j

(
d
− r
q−1

i ui − d
− r
q−1

j uj

)
.

(4)

The above weighted graph Laplacian (3) generalizes
many commonly used graph Laplacian. For (p, q, r) =
(1, 2, 0), it recovers the unnormalized graph Laplacian
Lu; if (p, q, r) = (3/2, 2, 1/2), it gives the normalized
graph Laplacian Ln; if (p, q, r) = (2, 2, 0), it corre-
sponds to a non-symmetric matrix but can be inter-
preted as a transition probability of a random walk on
a graph denoted by Lr:

Lu := D −W,

Ln := D−1/2(D −W )D1/2,

Lr := D−1(D −W ),

While the main focus is on ϵ-graphs, we highlight
that the above formulation also captures the limits of
graphs constructed based on the k-nearest neighbor
graphs. In particular, when (p, q, r) = (1, 1 − 2/d, 0),
one can call the related normalization as the near k-
NN normalization; see Calder and Trillos (2022) and
Hoffmann et al. (2022) for details.

Note that the weighted Laplacian matrix Lw,n,ϵ is ac-
tually not self-adjoint with respect to the Euclidean
inner product ⟨·, ·⟩ since it is in general not symmetric.
However, it is self-adjoint with respect to the following
weighted inner product ⟨·, ·⟩gp−r :

⟨·, ·⟩gp−r :=

{
⟨·, ·⟩

D
p−1−r
q−1

if q ̸= 1,

⟨·, ·⟩ if q = 1,

where for a given a symmetric matrix A ∈ Rn×n and
vectors u, v ∈ Rn, define

⟨u, v⟩A := uTAv.

We also define the normalized weighted inner product:
⟨·, ·⟩w,n := n−1⟨·, ·⟩gp−r and the normalized Euclidean
inner product: ⟨·, ·⟩n := n−1⟨·, ·⟩ and denote by ∥·∥w,n
and ∥ · ∥n their respective corresponding norms. Here,
our estimation results are measured in ∥ · ∥w,n and
under our assumptions in Section 3.1, it can be shown
to be equivalent to the classic norm ∥ · ∥n.
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2.2 Weighted Laplacian-Eigenmap Based
Nonparametric Regression

Following the ideas in Belkin and Niyogi (2003)
and Green et al. (2023), we propose the following prin-
cipal components regression with the weighted Lapla-
cian eigenmaps (PCR-WLE) algorithm:

(1) For a given parameter ϵ > 0 and a kernel function
η, construct the ϵ-graph according to Section 2.1.

(2) Construct the weighted Laplacian matrix given
by (3) and take its eigendecomposition Lw,n,ϵ =∑n
i=1 λiviv

T
i with respect to ⟨·, ·⟩w,n, where

(λi, vi) are the eigenpairs with eigenvalues 0 =
λ1 ≤ . . . ≤ λn in an ascending order and eigen-
vectors normalized to satisfy ∥vi∥w,n = 1.

(3) Project the response vector Y = (Y1, . . . , Yn)
T

onto the space spanned by the first K eigenvec-
tors, i.e., denote by VK ∈ Rn×K the matrix with
j-th column as VK,j = vj for j = 1, . . . ,K and
define

f̂ := VKV
T
K Y,

as the estimator.

The entries of the vector f̂ are the in-sample values
of the estimator of the regression function f . Green
et al. (2023) considered the special case of the above
approach for the case when (p, q, r) = (1, 2, 0) corre-
sponding to the unnormalized graph Laplacian. Here,
we consider the entire family of graph Laplacians for
various choices of the parameters (p, q, r), the general-
ization from Hoffmann et al. (2022).

2.3 Weighted Laplacians And Weighted
Sobolev Spaces

Hoffmann et al. (2022) showed a heuristic framework
for the convergence of the weighted graph Laplacian
Lw,n,ϵ defined in (3) to the following weighted Laplace-
Beltrami operators, in the large sample limit, in terms
of the eigenvalues and eigenvectors/eigenfunctions:

Lwu := − 1

2gp
div

(
gq∇

(
u

gr

))
, in X ,

gq
∂

∂n

(
u

gr

)
= 0, on ∂X .

(5)

Special cases of this convergence, including conver-
gences of Lu, Ln, have been studied in Calder and Tril-
los (2022), Trillos et al. (2020) as mentioned before in
Section 1.1. Although our focus is not directly on the
convergence of the weighted Laplacians but on the re-
gression problems, the proof arguments in our paper

can be applied to show the convergence of the weighted
Laplacians by rigorously proving the heuristic idea in
Hoffmann et al. (2022) via the concentration properties
of kernel density estimation in Giné and Guillou (2002)
when the domain is considered without boundary as
it is well-known that the convergence of the Laplacian
matrices to the Laplacian operators is problematic at
the boundary (Belkin et al., 2012).

The weighted Laplacian operators are a generalization
of the classical Laplacian operator with different val-
ues of w = (p, q, r). Similar to the fact that the Lapla-
cian operator is linked with the Sobolev space, the
weighted Laplacian operators in (5) share a close con-
nection with the following so-called weighted Sobolev
spaces; see Triebel (1983) for a general introduction.
Define the weighted L2 space for ℓ > 0 on X with a
density g as

L2(X , gℓ) :=
{
u :

∫
X
|u(x)|2g(x)ℓdx <∞

}
,

with inner product

⟨u, v⟩gℓ :=
∫
X
u(x)v(x)g(x)ℓdx.

Then, for w := (p, q, r) ∈ R3 and s ∈ N+, we define
the weighted Sobolev space as:

Hs(X , g) :=
{
u

gr
∈ L2(X , gp+r) : ∥u∥Hs(X ,g) <∞

}
,

where the weighted Sobolev norm ∥u∥Hs(X ,g) is

∥u∥2Hs(X ,g) :=
s∑
j=1

|u|2Hj(X ,g) +
∥∥∥∥ ugr

∥∥∥∥2
L2(X ,gp+r)

,

with the j-th order semi-norm | · |Hj(X ,g) defined as
|u|Hj(X ,g) :=

∑
|α|=j ∥Dα (ug−r)∥L2(X ,gp) and using

multi-index notation with x = (x(1), . . . , x(d)) ∈ Rd,
Dαf(x) := ∂|α|f/∂(x(1))α1 . . . ∂(x(d))αd and |α| =
α1 + . . . + αd. When g is uniform or r = 0 and
g is bounded from above and below, the weighted
Sobolev space Hs(X , g) becomes (or is equivalent to)
the classic Sobolev space Hs(X ). However, when f/gr

is s-times differentiable but f is not, the weighted
Sobolev space differs from the classic Sobolev space.
See Evans (2022) for more details regarding Sobolev
spaces. For M > 0, the class of all functions u
such that ∥u∥Hs(X ,g) ≤ M is a weighted Sobolev ball
Hs(X , g;M) of radius M.

Furthermore, we say a function u ∈ Hs(X , g) belongs
to the zero-trace weighted Sobolev space Hs

0(X , g) if
there exists a sequence u1g

−r, . . . , umg
−r of C∞

c (X )
functions such that

lim
m→∞

∥um − u∥Hs(X ,g) = 0,
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where C∞
c (X ) stands for the C∞ functions with com-

pact support contained in X .

Similar to the weighted Laplacian matrix Lw,n,ϵ, the
weighted Laplacian operators (5) are self-adjoint with
respect to the following weighted inner product (Hoff-
mann et al. (2022)):

⟨u, v⟩gp−r :=
∫
X
u(x)v(x)gp−r(x)dx.

Note the following connection between the weighted
norms and inner products:∥∥∥∥ ugr

∥∥∥∥2
L2(X ,gp+r)

= ∥u∥2L2(X ,gp−r) = ⟨u, u⟩gp−r .

A simple example showing the dependency of the
choice M on p, q, r is as follows. Consider u/gr is a
constant function and is assumed to be 1 for simplic-
ity and take s = 1. Then, we have

∥u∥2H1(X ,g) =

∫
X
g(x)p+rdx.

Clearly, the power p+r of the density function g deter-
mines the size of the weighted Sobolev ball, and thus
M . In other words, say for example, assuming g ≥ 1
for simplicity, larger configurations of p+ r will result
in large weighted Sobolev norm, thus requiring a large
norm parameter M . For generic u/gr, the situation is
more intricate and depends on the geomtry of u and g
and choices of p+ r.

3 MAIN RESULTS

We now present our main results on adaptive and non-
adaptive rates for estimating the regression function f
as in (1) under some smoothness assumptions. Before
that, we recall that the minimax estimation error over
Hs(X ;M), a standard Sobolev ball of radius M , is
given by

inf
f̂

sup
f∈Hs(X ;M)

∥f̂ − f∥2n ≍M2(M2n)−
2s

2s+d ,

with high probability (Györfi et al., 2002, Wasserman,
2006, Tsybakov, 2008). Moreover, there are other
methods that can achieve the above minimax rate such
as kernel smoothing, local polynomial regression, thin-
plate splines, etc. In this context, Green et al. (2023)
showed that PCR-WLE method with the unnormal-
ized Laplacian1 Lu achieves the minimax rate, pro-
vided that n−1/2 ≲ M ≲ ns/d under appropriate as-
sumptions, where for two real-valued quantities, A,B,
the notation A ≲ B means that there exists a constant
C > 0 not depending on f , M or n such that A ≤ CB
and A ≍ B stands for A ≲ B and B ≲ A.

1This procedure is refered to as PCR-LE in Green et al.
(2023).

3.1 Assumptions

We now list the major assumptions that are needed
for our theoretical results.

(A1) The distribution G is supported on X , which is an
open, connected, and bounded subset of Rd with
Lipschitz boundary.

(A2) The distribution G has a density g on X such that

0 < gmin ≤ g(x) ≤ gmax <∞, for all x ∈ X ,

for some gmin, gmax > 0. Additionally, g is Lips-
chitz on X with Lipschitz constant Lg > 0.

(A3) The kernel η is a non-negative, monotonically
non-decreasing function supported on the inter-
val [0, 1] and its restriction on [0, 1] is Lipschitz
and for convenience, we assume η(1/2) > 0 and
define

σ0 :=

∫
Rm

η(∥x∥)dx, σ1 :=
1

d

∫
Rm

∥y∥2η(∥y∥)dy.

Without loss of generality, we will assume σ0 = 1
from now on.

(A4) The kernel η satisfies a kernel VC-type condition
as follows. Let

K :=

{
y → η

(
x− y

ϵ

)
: ϵ > 0, x ∈ R

}
be the collection of kernel functions indexed by x
and ϵ. For a density ρ, let the L2(X , ρ)-covering
number N(ϵ,K, ∥ · ∥L2(X ,ρ)) of K be the small-
est number of L2(X , ρ)-balls of radius ϵ needed
to cover K. With that we say that η satisfies the
kernel VC-type condition if there exist constants
A, ν > 0 such that

sup
ρ

N(ζ,K , ∥ · ∥L2(X ,ρ)) ≤
(
A

ζ

)ν
, (6)

See Remark 3.2 for some examples.

Assumptions (A1) and (A2) are mild assumption on
the density function, which are also made in Green
et al. (2023). In particular (A2) is important for us,
as it gives us the norm equivalence between the vari-
ous families of weighted Sobolev spaces. Assumption
(A3) is a standard normalization condition made on
the smoothing kernel, also made in Green et al. (2023).
Assumption (A4) is not used in Green et al. (2023).
It is used here because the general family of weighted
Laplacian matrices that we work with involve kernel
density estimation normalization, with which the nor-
malization in (3) will not tend to either infinity or
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zero. Also note that in general condition (6) involves
the L2(X , ρ)-norm of an envelope function η0 for K,
i.e. of a function η0 ≤ h for all h ∈ K. Since, by our
assumptions, η is bounded, we can use the maximum
of η as an envelope, for which the L2(X , ρ)-norm obvi-
ously does not depend on ρ and can thus be absorbed
by the constant A.

3.2 Non-adaptive Rates

In the following, we present the non-adaptive mini-
max optimal rate of convergence of the PCR-WLE
estimator in Section 2.2 for s = 1 and s > 1 sepa-
rately. These rates are non-adaptive as the choice of
K and ϵ depends on unknown problem parameters, the
smoothness parameter s and the norm parameter M .
In the following, we make a remark here that the norm
∥·∥w,n of f is empirically evaluated at X1, . . . , Xn, i.e.,
we consider in-sample errors.

Theorem 3.1 (Non-adaptive minimax rate of
PCR-WLE algorithm). Assume (A1)-(A4).

(a) For s ∈ N+\{1}, assume f ∈ Hs
0(X , g;M), f ∈

H1(X , g;M) and g ∈ Cs−1(X ). Suppose there
exist constants c0, C0 > 0 such that

c0

((
log n

n

) 1
d

∨ (M2n)−
1

2(s−1)+d

)
≤ ϵ ≤ C0K

− 1
d ,

and √
| log ϵ|
nϵd

→ 0, (7)

where

K = min
{
⌊(M2n)

d
2s+d ⌋ ∨ 1, n

}
. (8)

Then, there exist constants c, C > 0 not depending
on f,M or n such that for n large enough and any
0 < δ < 1, we have:

∥f̂ − f∥2w,n ≤ C
{(
δ−1M2(M2n)−

2s
2s+d ∧ 1

)
∨ n−1

}
,

with probability at least 1− δ − Cne−cnϵ
d − e−K .

(b) For s = 1, assume f ∈ H1(X , g;M). Suppose
there exist constants c0, C0 > 0 such that

c0

(
log n

n

) 1
d

≤ ϵ ≤ C0K
− 1
d ,

and (7), where K is given in (8) for s = 1. Then,
the assertion in part (a) also holds for s = 1.

Remark 3.1. Notably, the above theorems do not re-
quire the assumption that s > d/2. As we mentioned
before in Section 2.2, this condition is commonly ap-
peared in the literature as in the sub-critical regime,

i.e., s ≤ d/2, the (weighted) Sobolev space Hs is not
a Reproducing Kernel Hilbert Space (RKHS) and can-
not be continuously embedded into the space of con-
tinuous functions C0(X ). Theorem 3.1 highlights the
point that PCR-WLE algorithm obtains the minimax
optimal rate when n−1/2 ≲M ≲ ns/d and the error is
measured by the weighted empirical norm ∥ · ∥w,n.
Remark 3.2. The kernel VC-type condition was first
proposed in Giné and Guillou (2002). A simple suffi-
cient condition for this condition to hold is that η is
of bounded variation; see Nolan and Pollard (1987) or
Giné and Nickl (2021). Clearly, many common kernels
are of this type, including Gaussian, Epanechnikov and
cosine kernels. Furthermore, Matérn family of ker-
nels is also of practical importance but is not consid-
ered a natural choice for kernels satisfying the required
bounded variation condition due to the oscillatory be-
havior of the Bessel function while the bounded vari-
ation condition is generally associated with functions
that do not oscillate too wildly. However, some special
cases of the family indeed satisfy the bounded variation
condition. For smoothness parameters ν = p + 1/2
of Matérn kernels with positive integer p, the Matérn
kernels can be expressed as a product of an exponential
and a polynomial whose derivative is absolutely inte-
grable, and thus they satisfy the condition. Moreover,
the Matérn kernel becomes the Gaussian (RBF) kernel
in the limit of ν → ∞, thereby satisfying the VC-type
condition.

Remark 3.3. For practical consideration, there are
two tuning parameters: the graph radius (the band-
width for the kernel η) ϵ and the number of eigen-
values K. The lower bound for ϵ makes sure that
with this smallest radius, the resulting weighted graph
will still be connected with high probability and the up-
per bound for ϵ ensures the eigenvalue of the weighted
graph Laplacian (3) to be of the same order as its con-
tinuum version, the eigenvalue of the weighted Lapla-
cian operator (5) (Weyl’s law). The asymptotic as-
sumption on ϵ is from the concentration of the KDE.
The condition on K is set to trade-off bias and vari-
ance. Both ϵ and K depend on the true smoothness
parameter s ∈ N+.

3.3 Adaptive Rates Via Lepski’s Method

Despite the minimax optimality of the PCR-WLE al-
gorithm shown in Section 3.2, the main practical dif-
ficulties are the choice of several tuning parameters
including the bandwidth parameter (or the graph ra-
dius) ϵ and the number of eigenvalues K, because op-
timal choices depend on the unknown true smooth-
ness parameter s of the regression function f in the
model 1. Moreover, K also relies on the bound of
the weighted Sobolev norm M . This naturally brings
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about the issue of adaptation, which we address us-
ing Lepski’s method. Note that, as we are concerned
with in-sample estimation error, other techniques like
cross-validation are not directly applicable to set the
tuning parameters.

Since its introduction in Lepskii (1991), Lepski’s
method has been widely used for adaptive estimation
and testing in various statistical contexts; e.g. see
Birgé (2001), Chichignoud et al. (2016), Bellec et al.
(2018), Balasubramanian et al. (2021), Lacour and
Massart (2016). In the following, we consider Lep-
ski’s method on the product space of the smoothness
parameter s ∈ N+ and the constraint on the weighted
Sobolev norm M ∈ R+.

Recall that s and M denote the true smoothness pa-
rameter and the norm parameter, respectively for the
weighted Sobolev norm of f . Here, we actually take
M as the minimum over all bounds of the weighted
Sobolev norm. We start by picking smin, smax ∈ N+;
here we can set smin = 1 under no availability of fur-
ther information2 regarding the knowledge of s. The
goal is that smax is large enough that s ∈ N+ satis-
fies s ∈ [smin, smax]. Similarly, we pick Mmin,Mmax

satisfying 0 < Mmin < Mmax < ∞, where Mmin

and Mmax are small and large enough respectively
such that M ∈ [Mmin,Mmax]. Next, define the grid
B ×D := {(sj ,Mj)}Nlj=1 given by:

B := [smin, smax] ∩ N+

= {smin =: s1 < s2 < . . . < sNl := smax},
(9)

and

D := [Mmin,Mmax]

= {Mmin =:M1 < M2 < . . . < MNl :=Mmax},

where Nl ≍ log n.

For any pair (s̃, M̃) in the above grid, let f̂s̃,M̃ be the
PCR-WLE estimator in Section 2.2 corresponding to
the parameters s̃ and M̃ . We define the Lepski’s esti-
mator as

f̂adapt := f̂ŝ,M̂ ,

where ŝ is given by

ŝ := max{s̃ ∈ B : ∥f̂s̃,M̃ − f̂s̃′,M̃ ′∥w,n

≤ c0M̃
′((M̃ ′2n/ log n)−

s̃′
2s̃′+d ,∀s̃′ ≤ s̃, s̃′ ∈ B},

and M̂ is the corresponding couple of ŝ in the grid,
where c0 > 0 is some finite constant. Here, we formu-

2If there is additional information, like s > 10, one can
pick smin = 10. Hence, we present out result with a generic
smin.

late the above simultaneous Lepski’s method by cou-
pling the smoothness parameter and the norm param-
eter and only maximize through the smoothness pa-
rameter instead of dealing with a joint maximization,
which is not needed for our purpose of showing the
adaptive minimax rate in the following result as our
focus is its convergence rate in n.

The following result presents a near minimax optimal
rate of convergence of the Lepski’s estimator f̂adapt up
to a logarithmic factor in n.

Theorem 3.2. Assume (A1)-(A4) and g ∈ Cs−1(X ).
Also, assume f ∈ H1(X , g;M) ∩ Hs

0(X , g;M) and
fg := f/gr is M -Lipschitz, i.e., ∥fg(x) − fg(x

′)∥ ≤
M∥x − x′∥ for any x, x′ ∈ X . Furthermore, assume
that (for large enough n) we have s ∈ [smin, smax] and
M ∈ [Mmin,Mmax]. Then, under the minimax optimal
setting in Theorem 3.1 forM , i.e., n−1/2 ≲M ≲ ns/d,
the estimator f̂adapt satisfies: For n large enough and
any δ ∈ (0, 1), there exists some constant C > 0 such
that

∥f̂adapt − f∥2w,n ≤ Cδ−1M2(M2n/ log n)−
2s

2s+d ,

with probability at least

1− δ log−2s/(2s+d) n− Cne−Cnϵ
d

log2 n

− 16Cc−4
0 n−1 log2−2smin/(2smin+d) n

− e−⌊M2
minn⌋

d/(2s+d)

log2 n.

Remark 3.4. Trillos et al. (2022) proposed a graph
poly-Laplacian regularization approach, where integer
powers of the Laplacian matrices are used as regular-
ization in a least-squares context. They showed that
the proposed method achieves rate of convergence of
order n−s/(d+4s). While the rate is not optimal, in
comparison to the Green et al. (2023) their estimator
does not require the knowledge of the norm parame-
ter M to achieve the derived rate (althogh they require
the knowledge of s). In comparison to both the above
works, our result in Theorem 3.2 achieves the optimal
rate, up to log factors, without requiring the knowledge
of either s or M .

Remark 3.5. As a part of our proof, a better con-
centration inequality for the non-adaptive PCR-WLE
estimator f̂ is required compared to Theorem 3.1, for
which the assumption that fg is Lipschitz is required.
As also discussed in Green et al. (2023, see below The-
orem 1), it remains open whether a weaker assumption
or even the weighted Sobolev condition ∥∇fg∥L2 < ∞
alone might be sufficient establish the required concen-
tration result for developing adaptive procedures.



Weighted Laplacian-Eigenmap based Nonparametric Regression

4 CONCLUSION

In this work, we provide adaptive and non-adaptive
rates of convergence, in Theorem 3.1 and 3.2 respec-
tively, for estimating a true regression function lying
belonging to the Sobolev space. Our estimators are
based on performing principal components regression
based on the eigenvectors of the weighted graph Lapla-
cian matrix, and using Lepski’s method for deriving
the adaptive results. Our contributions expand upon
the non-adaptive outcome outlined in Green et al.
(2023), which was originally established for a particu-
lar normalized graph Laplacian. This extension en-
compasses a broad spectrum of weighted Laplacian
matrices commonly employed in practical applications,
including the unnormalized Laplacian and the random
walk Laplacian among them.

Future works include (i) relaxing the assumption that
the density g is bounded from below, (ii) developing
confidence intervals for the estimators by establishing
asymptotic normality results and developing related
bootstrap procedures, and (iii) developing estimators
that are instance-optimal in the sense of Hoffman and
Lepski (2002), i.e., estimators that achieve the best
possible rate for a given combination of the true regres-
sion function f and the sampling density g by adap-
tively picking the parameters p, q and r in the weighted
graph Laplacian matrix.
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Tsybakov. Slope meets Lasso: Improved oracle
bounds and optimality. The Annals of Statistics,
46(6B):3603–3642, 2018. (Cited on page 7.)
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Adaptive and non-adaptive minimax rates for weighted
Laplacian-Eigenmap based nonparametric regression:

Supplementary Materials

5 PROOF

5.1 Proof Of Theorem 3.1

In this section, we will prove both Theorem 3.1 for s = 1 and s > 1 together. We first present and prove some
auxiliary lemmas. We will denote by Bx(r) a closed Euclidean ball with midpoint x and radius r ≥ 0.

Define the weighted Sobolev seminorm ⟨Lw,ϵf, f⟩gp−r given by the following non-local operator:

Lw,ϵf(x) :=
1

ϵd+2

∫
X
g(x)1−p

η
(∥x−z∥

ϵ

)
g(x)1−q/2g(z)1−q/2

(g(x)−rf(x)− g(z)−rf(z))g(z)dz,

where according to (4), Lw,ϵ can be viewed as a population counterpart of the discrete graph weighted Laplacian
Lw,n,ϵ. As in Green et al. (2023), we also call it a ‘non-local’ version. Note that the above non-local weighted
Sobolev seminorm and non-local operator generalize the definitions in Green et al. (2023) as the latter belong
to a special case when (p, q, r) = (1, 2, 0). The following Lemmas 5.1-5.6 therefore extend their counterparts in
Green et al. (2023) to the weighted Laplacians and the weighted Sobolev seminorm. Note that in our proofs,
we also highlight and fix several important typos and errors that appeared in Green et al. (2023). Despite the
errors, the final results in Green et al. (2023) remain true.

Lemma 5.1. For f ∈ H1(X , g;M), we have

⟨Lw,ϵf, f⟩gp−r ≲M2.

Proof of Lemma 5.1. Following the idea of Green et al. (2021, Proof of Lemma 1), take Ω as an arbitrary
bounded open set such that Bx(c0) ⊆ Ω for all x ∈ X for some c0 > 0 and we can assume that f ∈ H1(Ω, g)
and ∥f∥H1(Ω,g) ≲ ∥f∥H1(X ,g) without loss of generality due to the existence of an extension operator E :
H1(X , g) → H1(Ω, g) such that Ef satisfies these properties, see Theorem 1 in Chapter 5.4 in Evans (2022).
Also, since C∞(Ω) is dense in H1(Ω, g) and the integral in Lemma 5.1 is continuous in H1(Ω, g), we can assume
fg := f/gr ∈ C∞(Ω) so that

fg(x
′)− fg(x) =

∫ 1

0

∇fg(x+ t(x′ − x))T (x′ − x)dt.

Then, we have by symmetry in the first step:

2⟨Lw,ϵf, f⟩gp−r

=
1

ϵd+2

∫
X

∫
X

η
(

∥x−y∥
ϵ

)
g(x)1−q/2g(y)1−q/2

∣∣∣∣ f(x)g(x)r
− f(y)

g(y)r

∣∣∣∣2 g(x)g(y)dxdy
=

1

ϵd+2

∫
X

∫
X

η
(

∥x−y∥
ϵ

)
g(x)1−q/2g(y)1−q/2

(∫ 1

0

∇fg(y + t(x− y))T (x− y)dt

)2

g(x)g(y)dxdy

≤ 1

ϵd+2

∫
X

∫
X

∫ 1

0

η
(

∥x−y∥
ϵ

)
g(x)1−q/2g(y)1−q/2

(
∇fg(y + t(x− y))T (x− y)

)2
g(x)g(y)dtdxdy

≤
∫
X

∫
B0(1)

∫ 1

0

(
∇fg(y + ϵtz)T z

)2 η(∥z∥)
g(y + ϵz)1−q/2g(y)1−q/2

g(y + ϵz)g(y)dtdzdy,

with (x− y)/ϵ = z

≲
∫
X

∫
B0(1)

∫ 1

0

(
∇fg(y + ϵtz)T z

)2
η(∥z∥)g(y + ϵtz)qdtdzdy
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≤
∫
Ω

∫
B0(1)

∫ 1

0

(
∇fg(ỹ)T z

)2
η(∥z∥)g(ỹ)qdtdzdỹ, ỹ = y + ϵtz ∈ Ω. (10)

Since we have
(
∇fg(ỹ)T z

)2
=
(∑d

i=1(∇fg(ỹ))(i)z(i)
)2

and η(∥z∥) is invariant with respect to the rotation, it

yields that ∫
B0(1)

(
∇fg(ỹ)T z

)2
η(∥z∥)dz =

d∑
i,j=1

(∇fg(ỹ))(i)(∇fg(ỹ))(j)
∫
B0(1)

z(i)z(j)η(∥z∥)dz

=

d∑
i=1

(
(∇fg(ỹ))(i)

)2 ∫
B0(1)

(
z(i)
)2
η(∥z∥)dz

= σ1

∥∥∥∥∇( f(ỹ)

g(ỹ)r

)∥∥∥∥2 . (11)

Plugging (11) in (10), we conclude

2⟨Lw,ϵf, f⟩gp−r ≲ σ1M
2.

This finishes the proof.

Note that the proof of Lemma 5.1 also utilized the heuristic arguments given in Hoffmann et al. (2022) while we
provide a rigorous proof here.

Lemma 5.2. Suppose fg ∈ L2(U , gp+r;M) for a Borel set U ⊆ X . Then, there exists a constant C which does
not depend on f or M such that

∥Lw,ϵf∥L2(U,gp+r) ≤
C

ϵ2
∥fg∥L2(U,gp+r).

Proof. By Cauchy-Schwarz inequality, we have

|Lw,ϵf(x)|2 =
1

ϵ2(d+2)

∫
U
g(x)1−p

η
(

∥x−z∥
ϵ

)
g(x)1−q/2g(z)1−q/2

(g(x)−rf(x)− g(z)−rf(z))g(z)dz

2

≲
1

ϵ2(d+2)
g(x)2(1−p)

∫
U

η
(

∥x−z∥
ϵ

)
g(x)1−q/2g(z)1−q/2

(fg(x)− fg(z))
2dz ·

∫
X

η
(

∥x−z∥
ϵ

)
g(x)1−q/2g(z)1−q/2

dz

≲
2σ0
ϵ4+d

g(x)2(q−p)
∫
U
η

(
∥x− z∥

ϵ

)
(|fg(x)|2 + |fg(z)|2)dz.

Then, we have

∥Lw,ϵf∥2L2(U,gp+r) =

∫
U
gp−r(x)|Lw,ϵf(x)|2dx

≲
2

ϵ4+d

∫
U

∫
U
g(x)2(q−p)+p−r(x)η

(
∥x− z∥

ϵ

)
(|fg(x)|2 + |fg(z)|2)dzdx

≲
2

ϵ4+d

∫
U

∫
U
η

(
∥x− z∥

ϵ

)
(|fg(x)|2 + |fg(z)|2)dzdx

≲
4

ϵ4+d

∫
U

∫
U
η

(
∥x− z∥

ϵ

)
|fg(x)|2dzdx

≤ 4

ϵ4

∫
U
|g(x)p+r(x)fg(x)|2dx

≲
4

ϵ4
∥fg∥2L2(U,gp+r)
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Lemma 5.3. Suppose fg ∈ L2(U , gp+r;M) for a Borel set U ⊆ X . Then, there exists a constant C > 0 such
that

Ew,ϵ(f ;U) ≤
C

ϵ2
∥fg∥2L2(U,gp+r),

where we define the Dirichlet energy for the set U as

Ew,ϵ(f,U) :=
1

ϵd+2

∫
U

∫
U
(g(x)−rf(x)− g(z)−rf(z))2

η
(

∥x−z∥
ϵ

)
g(x)1−q/2g(z)1−q/2

g(x)g(z)dxdz.

Proof. Note that

Ew,ϵ(f ;U) =
1

ϵd+2

∫
U

∫
U
(g(x)−rf(x)− g(z)−rf(z))2

η
(

∥x−z∥
ϵ

)
g(x)1−q/2g(z)1−q/2

g(x)g(z)dxdz

≤ 2

ϵd+2

∫
U

∫
U
(|g(x)−rf(x)|2 + |g(z)−rf(z)|2)

η
(

∥x−z∥
ϵ

)
g(x)1−q/2g(z)1−q/2

g(x)g(z)dxdz

=
4

ϵd+2

∫
U

∫
U
|g(x)−rf(x)|2η

(
∥x− z∥

ϵ

)
g(x)q/2g(z)q/2dxdz

≲
4

ϵd+2

∫
U

∫
U
|g(x)−rf(x)|2η

(
∥x− z∥

ϵ

)
g(x)p+rdxdz

≲
4

ϵ2

∫
U
|g(x)−rf(x)|2g(x)p+rdx.

We denote by Xtϵ a subset of X such that for any x ∈ Xtϵ, Bx(tϵ) ∈ X consisting of points sufficiently far away
from the boundary and ∂tϵX by its complement within X consisting of points close enough to the boundary.

Lemma 5.4. For f ∈ H1(X , g;M)∩Hs
0(X , g;M) with s ∈ N+ and g ∈ Cs−1(X ), there exist constants C1, C2 > 0

such that

(1) If s is odd, then we have with t = (s− 1)/2:

∥Ltw,ϵf − σt1Ltwf∥L2(Xtϵ,gp+r) ≤ C1Mϵ.

(2) If s is even, then we have with t = (s− 2)/2:

∥Ltw,ϵf − σt1Ltwf∥L2(Xtϵ,gp+r) ≤ C2Mϵ2.

Proof. Without loss of generality, we assume both g and f are C∞(X ) due to the fact that C∞(X ) is dense
in both Hs(X , g) and Cs−1(X ) and the norm in the statements is continuous with respect to ∥ · ∥Hs(X ,g) and
∥ · ∥Cs−1(X ).

Actually, we claim the following stronger result: for t < s/2 and every x ∈ Xtϵ,

Ltw,ϵf(x) = σt1Lwf(x) +
⌊(s−1)/2⌋−t∑

j=1

r2(j+t)(x)ϵ
2j + rs(x)ϵ

s−2t, (12)

for some functions rj such that

∥rj∥Hs−j(Xtϵ,g) ≤ C∥g∥tCs−1(X )M. (13)

Note that the dependence of the functions rj on t is suppressed in the notation.
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The key idea underlying the proof of (12) is to consider the following Taylor expansion. For an s-times differen-
tiable function F : X → R and x ∈ X , define the following operator dsx:

(dsxF )(z) :=
∑
|α|=s

DαF (x)zα.

Also, define dsF :=
∑

|α|=sD
αF . Then, for ϕ ∈ Cs(X ) and some h > 0, z ∈ Xh, x ∈ Bz(h), the Taylor expansion

at z is given as:

ϕ(x) = ϕ(z) +

s−1∑
j=1

1

j!
(djxϕ)(x− z) +Rs(x, z;ϕ).

Here, we note that (djxϕ)(z) is a polynomial of degree j and we have for any y ∈ R:

(djxϕ)(yz) = yj(djxϕ)(z).

The remainder term Rj(x, z;ϕ) is

Rj(x, z;ϕ) :=
1

(j − 1)!

∫ 1

0

(1− θ)j−1(djz+θ(x−z)ϕ)(x− z)dθ,

such that for any x∗ ∈ B0(1),

sup
x∈Xh

|Rj(x, x+ hx∗;ϕ)| ≤ Chj∥ϕ∥Cj(X ),

and ∫
Xh

|Rj(z + θhx, z;ϕ)|2dz ≤ h2j
∫
Xh

∫ 1

0

|(djz+θhxϕ)(z)|
2dθdz ≤ h2j∥djϕ∥2L2(X ).

Now, we apply the above Taylor expansion on the function fg(x) := f(x)/g(x)r up to order s and the function
gq/2(x) up to order S in Lw,ϵf(x), where S = 1 if s = 1 and otherwise S = s− 1 and obtain:

Lw,ϵf(x) =
1

ϵd+2

s−1∑
j1=1

S−1∑
j2=0

1

j1!j2!

∫
X
g(x)q/2−pη

(
∥x− z∥

ϵ

)
(dj1x fg)(x− z)(dj2x g

q/2)(z − x)dz

+
1

ϵd+2

s−1∑
j=1

1

j!

∫
X
g(x)q/2−pη

(
∥x− z∥

ϵ

)
(dj1x fg)(x− z)RS(x, z; g

q/2)dz

+
1

ϵd+2

∫
X
g(x)p/2−pη

(
∥x− z∥

ϵ

)
Rs(x, z; fg)g(z)

q/2dz.

Now, with the transformation y = (z − x)/ϵ, we have

Lw,ϵf(x) = − 1

ϵ2

s−1∑
j1=1

S−1∑
j2=0

ϵj1+j2

j1!j2!

∫
B0(1)

g(x)q/2−pη (∥y∥) (dj1x fg)(y)(dj2x gq/2)(y)dy

− 1

ϵ2

s−1∑
j=1

ϵj

j!

∫
B0(1)

g(x)q/2−pη (∥y∥) (dj1x fg)(y)RS(x, ϵy + x; gq/2)dy

+
1

ϵ2

∫
B0(1)

g(x)p/2−pη (∥y∥)Rs(x, ϵy + x; fg)g(ϵy + x)q/2dy

=: L1(x) + L2(x) + L3(x).

We will now prove (12) by induction on t, and throughout this proof, with a slight abuse of notation, the
functions rj in (12) may vary from line to line depending on t at the induction step but they will always satisfy
the condition (13) as we are only interested in the bounds.
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Firstly, we start with L1(x). If s = 1, we can see L1(x) = 0. Therefore, in the following, we only focus on s ≥ 2.
Now, we define

lj1,j2(x) :=

∫
B0(1)

g(x)q/2−pη(∥y∥)(dj1x fg)(y)(dj2x gq/2)(y)dy,

such that

L1(x) = − 1

ϵ2

s−1∑
j1=1

S−1∑
j2=0

ϵj1+j2

j1!j2!
lj1,j2(x).

Since (djxfg)(y) is a polynomial of degree j, lj1,j2 actually depends on the sum j1 + j2 and dj1x d
j2
x is an order

j1 + j2 multivariate monomial. Therefore, when j1 + j2 is odd, we have

lj1,j2(x) = 0.

Then, when s = 2, we have j1 + j2 = 1 and L1(x) = 0. As for s ≥ 3, we notice that the lowest order term of
L11(x) is from j1 + j2 = 2, which means either j1 = 1, j2 = 1 or j1 = 2, j2 = 0. We have

l1,1(x) =

∫
B0(1)

g(x)q/2−pη(∥y∥)(d1xfg)(y)(d1xgq/2)(y)dy

=

d∑
i1=1,i2=1

g(x)q/2−p(Dfg(x))
(i1)(Dgq/2(x))(i2)

∫
B0(1)

∥y∥2η(∥y∥)dy,

and

1

2
l2,0(x) =

1

2

∫
B0(1)

g(x)q/2−pη(∥y∥)(d2xfg)(y)(d2xgq/2)(y)dy

=
1

2

d∑
i=1

g(x)q/2−p((Dfg(x))
(i))2g(x)q/2

∫
B0(1)

∥y∥2η(∥y∥)dy.

Therefore, we have by definition:

Lwf(x) = − 1

2g(x)p

(
∇g(x)q · ∇

(
f(x)

g(x)r

)
+ g(x)q∆

(
f(x)

g(x)r

))
,

and

−(l1,1(x) +
1

2
l2,0(x)) = σ1Lwf(x).

This is exactly the leading term. We remark here that in Green et al. (2023, Section D.2), the negative sign is
missing, which does not actually give the Laplacian operator by the leading term. Now, it remains to bound the
higher order terms with j1 + j2 > 2. We will show that

L1(x) = σ1Lw +

⌊(s−1)/2⌋−1∑
j=1

r2(j+1)(x)ϵ
2j + rs(x)ϵ

s−2.

It suffices to show for j1 + j2 > 2, lj1,j2 satisfies (13) for j = min{j1 + j2 − 2, s − 2}. Through the multi-index
notation, we write that

lj1,j2(x) = g(x)q/2−p
∑

|α1|=j1,|α2|=j2

Dα1fg(x)D
α2gq/2(x)

∫
B0(1)

yα1yα2η(∥y∥)dy,

where |
∫
B0(1)

yα1yα2η(∥y∥)dy| <∞ for all α1, α2. Then, by Hölder’s inequality, we have for |α1| = j1, |α2| = j2,

∥g(x)q/2−pDα1fgD
α2gq/2∥Hs−(j+2)(X ,g) ≲ ∥Dα1fg∥Hs−(j+2)(X ,g)∥g(x)q/2−pDα2gq/2∥Cs−(j+2)(X )
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≲ ∥Dα1fg∥Hs−j1 (X ,g)∥Dα2gq/2∥Cs−(j2+1)(X )

≤M∥g∥Cs−1 .

Summing over all |α1| = j1 and |α2| = j2, we obtain that lj1,j2 satisfies (13).

Next, as for L2(x), note that if s = 1, L2(x) = 0. We want to show that for s ≥ 2,

∥L2∥L2(Xϵ,gp+r) ≤ Cϵs−2M∥g∥Cs−1(X ).

Clearly, if s = 1, L2(x) = 0. Now, for s ≥ 2, we have S = s− 1 and since |Rs−1(x, x+ ϵx∗)| ≤ Cϵs−1∥g∥Cs−1(X )

for any x∗ ∈ B0(1) and d
j
x(·) is a j-homogeneous function, we have

|L2(x)| ≤
s−1∑
j=1

ϵj−2

j!

∫
B0(1)

g(x)q/2−pη (∥y∥) |(dj1x fg)(y)| · |RS(x, ϵy + x; gq/2)|dy

≤ Cϵs−2∥g∥Cs−1(X )

s−1∑
j=1

1

j!

∫
B0(1)

g(x)q/2−pη (∥y∥) |(dj1x fg)(y)|dy.

Moreover, we have by Cauchy–Schwarz inequality,∫
Xϵ
g(x)p+r

(∫
B0(1)

g(x)q/2−pη (∥y∥) |(dj1x fg)(y)|dy

)2

dx

≤
∫
Xϵ
g(x)q−p+r

(∫
B0(1)

η (∥y∥) |(dj1x fg)(y)|2dy

)(∫
B0(1)

η(∥y∥)dy

)
dx

≤ σ0

∫
B0(1)

∫
Xϵ
g(x)q−p+rη(∥y∥)((djfg)(x))2dxdy

≲ σ2
0

∫
Xϵ
g(x)p+r((djfg)(x))

2dx

= σ2
0∥djfg∥2L2(Xϵ,gp+r),

where in the last step, we use the fact that |djxf(y)| ≤ |djf(x)| for all y ∈ B0(1). Therefore, it yields that∫
Xϵ
g(x)p+r|L2(x)|2dx

≤ C
(
ϵs−2∥g∥Cs−1(X )

)2 s−1∑
j=1

∫
Xϵ
g(x)p+r

(
1

j!

∫
B0(1)

g(x)q/2−pη (∥y∥) |(dj1x fg)(y)|dy

)2

dx

≤ C
(
ϵs−2∥g∥Cs−1(X )

)2 s−1∑
j=1

∥djfg∥2L2(Xϵ,gp+r).

We obtain the desired bound.

Finally, similar to L2(x), we obtain the same bound for L3(x). Combining the obtained bounds for L1(x)−L3(x),
we obtain (12) for t = 1.

Now, we perform the induction step. Assuming the bound (12) holds up to some t < s/2, we want to show it also
holds for t + 1, with t + 1 < s/2. For convenience, we introduce the following notation: for any 1 ≤ j ≤ l ≤ s,
denote by rj,l(x) = r(s−l)+j(x). Note again that the functions rj,l implicitly depend on t at the induction step

thus they may vary in the below arguments from line to line. For a function r ∈ H l(Xtϵ, g;C∥g∥tCs−1(X )M) for
some l ≤ s, if l ≤ 2, we have by the inductive hypothesis that for any x ∈ X(t+1)ϵ,

Lw,ϵr(x) = rll(x)ϵ
l−2.

On the other hand, if 2 < l ≤ s, then by the inductive hypothesis, it holds that for any x ∈ X(t+1)ϵ,

Lw,ϵr(x) = σ1Lwr(x) +
⌊(l−1)/2⌋−1∑

j=1

r2j+2,l(x)ϵ
2j + rl,l(x)ϵ

l−2. (14)
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Then, we have

Lt+1
w,ϵ f(x) = (Lw,ϵ ◦ Ltw,ϵf)(x)

= σt1Lw,ϵLtwf(x) +
⌊(s−1)/2⌋−k∑

j=1

Lw,ϵr2(j+t)(x)ϵ
2j + Lw,ϵrs(x)ϵ

s−2t. (15)

In the following, we will bound these terms on the right-hand side individually. First of all, since Ltwf ∈
Hs−2t(X , g;C∥g∥tCs−1(X )M), applying (14) yields

Lw,ϵLtwf(x) = σ1Lt+1
w f(x) +

⌊(s−2t−1)/2⌋−1∑
j=1

r2j+2,s−2t(x)ϵ
2j + rs−2t,s−2t(x)ϵ

s−2t−2

= σ1Lt+1
w f(x) +

⌊(s−1)/2⌋−(t+1)∑
j=1

r2(t+1+j)(x)ϵ
2j + rs(x)ϵ

s−2(t+1), (16)

where we apply the fact mentioned before that rj,l(x) = r(s−l)+j(x).

Next, suppose j < ⌊(s− 1)/2⌋ − t. We apply (14) and obtain

Lw,ϵr2(j+t)(x) = σ1Lwr2(j+t)(x) +
⌊(s−2j−2t−1)/2⌋−1∑

i=1

r2i+2,s−2(j+t)(x)ϵ
2i

+ rs−2(j+t),s−2(j+t)(x)ϵ
s−2(j+t)−2

= r2(j+t+1)(x) +

⌊(s−1)/2⌋−(j+t+1)∑
i=1

r2(i+j+t+1)(x)ϵ
2i + rs(x)ϵ

s−2(j+t+1),

where we use the fact that rj,l(x) = r(s−l)+j(x) and σ1Lwr2(j+t)(x) = r2,s−2(j+t)(x) = r2(j+t+1)(x). Therefore,
we have

Lw,ϵr2(j+t)(x)ϵ
2j = r2(j+t+1)(x)ϵ

2j +

⌊(s−1)/2⌋−(k+1)∑
m=1

r2(m+t+1)(x)ϵ
2m + rs(x)ϵ

s−2(k+1), (17)

where the last equality is by changing the variable m = i + j. Moreover, when j = ⌊(s − 1)/2⌋ − t, we have
2(j + t) = 2⌊(s− 1)/2⌋ and we simply calculate that

Lw,ϵr2(j+t)(x)ϵ
2j = r

s−2(j+t)
s−2(j+t)(x)ϵ

s−2(j+k)ϵ2j = rs(x)ϵ
s−2(k+1). (18)

Finally, according to (14), we have

Lw,ϵrs(x)ϵ
s−2t = rs(x)ϵ

s−2(t+1). (19)

Combining (16)-(19) with (15), we obtain the proof for t+ 1.

Recall that we write X = Xtϵ ⊔ ∂Xtϵ, where for any x ∈ Xtϵ, Bx(tϵ) ⊂ X and ∂tϵX as its complement within X
consisting of points ‘close’ to the boundary.

Lemma 5.5. For f ∈ Hs
0(X , g;M) and t > 0 such that 2t < s, there exists a constant c > 0 not depending on

M or f such that for all ϵ < c,

∥Ltw,ϵf∥2L2(∂tϵX ,gp+r) ≲ ϵ2(s−2t)M2.

Proof. Note that according to Lemma 5.2, we have

∥Ltw,ϵf∥2L2(∂tϵX ,gp+r) ≲
1

ϵ4
∥Lt−1

w,ϵ f∥2L2(∂tϵX ,gp+r) ≲ . . . ≲
1

ϵ4t
∥fg∥2L2(∂tϵX ,gp+r).
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Therefore, it suffices to show for all ϵ < c,

∥fg∥2L2(∂tϵX ,gp+r) ≲ ϵ2s∥f∥2Hs(X ,g). (20)

In order to deal with fg near the boundary, we will take a similar procedure used in Green et al. (2023, Proof
of Lemma 5) and Leoni (2017, Theorem 18.1) as follows. With loss of generality, we take t = 1 as one can view
ϵ < c/t for proving for the general case.

Step I: Local patch. We assume that for some c0 > 0 and a Lipschitz mapping ϕ : Rd−1 → [−c0, c0] and since
f ∈ Hs

0(X , g;M), without loss of generality, we can assume that fg ∈ C∞
c (Uψ(c0)) with

Uψ(c0) := {y ∈ Q(0, c0) : ψ(y
(−d)) ≤ y(d)},

where Q(0, c0) is the d-dimensional hypercube of side length c0 centered at 0. Now, following step 1 in Green
et al. (2023, Proof of Lemma 5) by replacing f as fg, we have

|fg(y)|2 ≲ ϵ2(s−1)

(∫ y(d)

ψ(y(−d))

|(Dsfg(y
(−d), z))(d)|dz

)2

≲ ϵ2s−1

∫ y(d)

ψ(y(−d))

|(Dsfg(y
(−d), z))(d)|2dz.

Then, we obtain:∫
Vψ(ϵ)

g(y)p+r|fg(y)|2dy ≲
∫
Qd−1(c0)

∫ ψ(y(−d))+ϵ

ψ(y(−d))

|fg(y(−d), y(d))|2dy(d)dy(−d)

≲ ϵ2s−1

∫
Qd−1(c0)

∫ ψ(y(−d))+ϵ

ψ(y(−d))

∫ y(d)

ψ(y(−d))

|(Dsfg(y
(−d), z))(d)|2dzdy(d)dy(−d), (21)

where Qd−1(0, c0) is the d-1 dimensional hypercube of side length c0 centered at 0. Also, by changing the
integration order, it yields that∫ ψ(y(−d))+ϵ

ψ(y(−d))

∫ y(d)

ψ(y(−d))

|(Dsfg(y
(−d), z))(d)|2dzdy(d) ≲ ϵ

∫ ψ(y(−d))+ϵ

ψ(y(−d))

|(Dsfg(y
(−d), z))(d)|2dz

≲ ϵ

∫ c0

ψ(y(−d))

|(Dsfg(y
(−d), z))(d)|2dz. (22)

Combining (21) and (22), we obtain:∫
Vψ(ϵ)

g(y)p+r|fg(y)|2dy ≲ ϵ2s
∫
Qd−1(c0)

∫ c0

ψ(y(−d))

g(y(−d), z)q|(Dsfg(y
(−d), z))(d)|2dzdy(−d)

≲ ϵ2s∥f∥2Hs(Uψ(c0),g).

Step 2: Rigid motion of local patch Now suppose at a point x0 ∈ ∂X , there exits a rigid motion T : Rd → Rd
such that T (x0) = 0, and a number C0 such that we have all C0ϵ ≤ c0,

T (QT (x0, c0) ∩ ∂ϵX ) ⊆ Vψ(C0ϵ) and T (QT (x0, c0) ∩ X ) = Uψ(c0), (23)

where QT (x0, c0) is a hypercube in Rd of side length c0 centered at x0 (not necessarily coordinate-axis-aligned).
Let vg(y) := fg(T

−1(y)) and v(y) := f(T−1(y)) for all y ∈ Uψ(c0). Then, if fg ∈ C∞
c (X ), we have vg ∈

C∞
c (Uψ(c0)) such that ∥vg∥2Hs(Uψ(c0)) = ∥fg∥2Hs(QT (x0,c0))∩X . Therefore, according to Step 1, we have∫

Vψ(C0ϵ)

g(x)p+r|vg(y)|2dy ≲ ϵ2s∥v∥2Hs(Uψ(c0)),g.
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Then, it yields that ∫
QT (x0,c0)∩∂ϵX

gp+r(x)|fg(x)|2dx

=

∫
T (QT (x0,c0)∩∂ϵX )

gp+r(y)|vg(y)|2dx

≲
∫
Vψ(C0ϵ)

g(x)p+r|vg(y)|2dy

≲ ϵ2s∥v∥2Hs(Uψ(c0),g)
≲ ϵ2s∥f∥2Hs(QT (x0,c0)∩∂ϵX ,g) ≲ ϵ2s∥f∥2Hs(X ,g).

Step 3: Lipschitz domain. Now we arrive at the last step where we shall deal with the case: X is assumed
to be an open, bounded subset of Rd with Lipschitz boundary. Again, following the procedure in Green et al.
(2023, Proof of Lemma 5). In this case, for every x0 ∈ ∂X , there exists a rigid motion Tx0

: Rd → Rd such
that Tx0

(x0) = 0, a number c0(x0), a Lipshitz mapping ψx0
: Rd−1 → [−c0(x0), c0(x0)] and a number C0(x0)

satisfying for all C0(x0)ϵ ≤ c0(x0), (23) holds for replacing c0, C0, T, ψ by c0(x0), C0(x0), Tx0
, ψx0

respectively.
Therefore, by Step 2, we have∫

QTx0
(x0,c0(x0))∩∂ϵX

gp+r(x)|fg(x)|2dx ≲x0
ϵ2s∥f∥2Hs(X ,g).

Although the constant in the last bound depends on x0, by compactness assumption, there exists a finite subset
(denoted by x0,1, . . . , x0,N ) of the collection of hypercubes {QTx0 (x0, c0(x0)/2) : x0 ∈ ∂X} which covers ∂X .
Then, by taking the minimum of all constants with respect to x0,1, . . . , x0,N , we can conclude that

∂ϵ(X ) ⊆
N⋃
i=1

QTx0,i (x0,i, c0(x0,i)).

Consequently, we have∫
∂X

gp+r(x)|fg(x)|2dx ≲
N∑
i=1

∫
QTx0,i

(x0,i,c0(x0,i))∩∂ϵX
gp+r(x)|fg(x)|2dx ≲ ϵ2s∥f∥2Hs(X ,g).

Therefore, we proved the desired result (20).

The following result presents a higher order version of Lemma 5.1 for s > 1 and the non-local weighted Sobolev
seminorm, ⟨Lsw,ϵf, f⟩gp−r .
Lemma 5.6. For f ∈ H1(X , g;M) ∩Hs

0(X , g;M) with s ∈ N+\{1}, we have

⟨Lsw,ϵf, f⟩gp−r ≲M2.

Proof of Lemma 5.6. Note here that we fix the assumption that f ∈ H1(X , g;M) besides f ∈ Hs
0(X , g;M),

which is missing in the statement of Green et al. (2023, Theorem 3). In general, it is not true for X ≠ Rd that
H1

0 (X , g;M) = H1(X , g;M). Based on Lemma 5.1, we will prove Lemma 5.6 in a recursive way for s > 1. Recall
that Lw,ϵ is self-adjoint with respect to the weighted inner product, meaning ⟨Lw,ϵf1, f2⟩gp−r = ⟨f1, Lw,ϵf2⟩gp−r
for any f1/g

r, f2/g
r ∈ L2(X , gp+r). Also recall the definition of the Dirichlet energy given in Lemma 5.3, which

can be stated as Ew,ϵ(f,X ) = 2⟨Lw,ϵf, f⟩gp−r .

Following the procedure in Green et al. (2023) 3, when s = 2t+ 1 for t ≥ 1, by using self-adjointness, we have

⟨Lsw,ϵf, f⟩gp−r = ⟨Lt+1
w,ϵ f, L

t
w,ϵf⟩gp−r =

1

2
Ew,ϵ(L

t
w,ϵf,X ).

3We remark here that the factor 2 is missing in (Green et al., 2023, Section D.4).
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We divide the Dirichlet energy into two parts:

Ew,ϵ(L
t
w,ϵf,X )

=
1

ϵd+2

∫
Xtϵ

∫
Xtϵ

(g(x)−rf(x)− g(z)−rf(z))2
η
(

∥x−z∥
ϵ

)
g(x)1−q/2g(z)1−q/2

g(x)g(z)dxdz

+
1

ϵd+2

∫
∂tϵX

∫
∂tϵX

(g(x)−rf(x)− g(z)−rf(z))2
η
(

∥x−z∥
ϵ

)
g(x)1−q/2g(z)1−q/2

g(x)g(z)dxdz

=: Ew,ϵ(L
t
w,ϵf,Xtϵ) + Ew,ϵ(L

t
w,ϵf, ∂tϵX ),

where Xtϵ and ∂Xtϵ have been introduced right before Lemma 5.4 (∂Xtϵ ⊂ X consists of points tϵ-close to the
boundary of X , and Xtϵ = X \ ∂Xtϵ).

By Jensen’s inequality, we have

Ew,ϵ(L
t
w,ϵf,Xtϵ) ≤ 3σ2t

1 Ew,ϵ
(
σt1L

t
wf,Xtϵ

)
+

6

ϵd+2

∫
Xtϵ

∫
Xtϵ

(
g(x)−rLtw,ϵf(x)− g(z)−rσt1L

t
wf(z)

)2
η
(

∥x−z∥
ϵ

)
g(x)1−q/2g(z)1−q/2

g(x)g(z)dxdz.

By definition (5), we have Ltwf ∈ H1(X , g;C∥g∥tCs−1(X )M) for some constant C > 0, an application of Lemma

5.1 shows Ew,ϵ (σ
t
1L

t
wf,Xtϵ) ≲ M2. We then focus on the second term on the right-hand side of the above

inequality. According to Lemma 5.4, we obtain:

1

ϵd+2

∫
Xtϵ

∫
Xtϵ

(
g(x)−rLtw,ϵf(x)− g(z)−rσt1Ltwf(z)

)2 η
(

∥x−z∥
ϵ

)
g(x)1−q/2g(z)1−q/2

g(x)g(z)dxdz

≲
1

ϵd+2

∫
Xtϵ

∫
Xtϵ

g(x)p+r
(
g(x)−rLtw,ϵf(x)− g(x)−rσt1Ltwf(x)

)2
η

(
∥x− z∥

ϵ

)
dxdz

≲
1

ϵ2

∫
Xtϵ

g(x)p−r
(
Ltw,ϵf(x)− σt1Ltwf(x)

)2
dx

≲M2.

Furthermore, near the boundary, according to Lemma 5.3 and Lemma 5.5, it yields that

Ew,ϵ(L
t
w,ϵf, ∂tϵX ) ≲

1

ϵ2
∥Ltw,ϵf∥L2(∂tϵX ,gp+r) ≲M2.

Putting all pieces above together, we obtain the proof for the case when s is odd and t := (s − 1)/2. Similar
arguments can be applied to the case when s is even and t := (s−2)/2. Therefore, combining all above together,
we obtain for all integer s > 1:

⟨Lsw,ϵf, f⟩gp−r ≲M2.

We are now in the position to prove the main results of Section 3.2.

Proof of Theorem 3.1. By Cauchy-Schwarz inequality, we have: for all s ∈ N+:

∥f̂ − f∥2w,n ≤ 2(∥Ef̂ − f |2w,n + ∥f̂ − Ef̂∥2w,n).

Then, according to PCR-WLE algorithm in Section 2.2, we obtain

∥Ef̂ − f∥2w,n =

n∑
k=K+1

⟨vk, f⟩2w,n ≤
⟨Lsw,n,ϵf, f⟩w,n

λsK+1

, (24)
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and

∥f̂ − Ef̂∥2w,n =

K∑
k=1

⟨vk, ε⟩2w,n.

Since ⟨vk, ε⟩w,n is normally distributed with 0 mean and variance:

Var⟨vk, ε⟩w,n =
1

n2
vTkD

2(p−1−r)
q−1 vk, (25)

where ⟨vk, vk⟩w,n = 1
nv

T
kD

p−1−r
q−1 vk = 1. Note that ⟨vk/

√
n, vk/

√
n⟩gp−r = 1, then we have

min
vk/

√
n∈Rn

1

n
vTkD

p−1−r
q−1 D

p−1−r
q−1 vk (26)

is the smallest eigenvalue of the matrix D
p−1−r
q−1 with respect to the inner product ⟨·, ·⟩gp−r . As D is a diagonal

matrix with the (i, i)-element as di, according to Section 6.1, it is bounded from below, say by a constant C > 0,
almost surly for n large enough. Then, combining (25) and (26), we have:

∥f̂ − Ef̂∥2w,n =
1

n

K∑
k=1

(
√
n⟨vk, ϵ⟩w,n)2,

with
√
n⟨vk, ϵ⟩w,n being normal with mean 0 and variance

Var(
√
n⟨vk, ϵ⟩w,n) ≥ C > 0.

According to an exponential inequality for chi-square distributions from Laurent and Massart (2000), we obtain:

P

(
∥f̂ − Ef̂∥2w,n ≥ CK

n
+ 2

√
K

n

√
t+ 2

t

n

)
≤ e−t. (27)

With (24) and (27), it yields

∥f̂ − f∥2w,n ≤
⟨Lsw,n,ϵf, f⟩w,n

λsK+1

+
CK

n
, (28)

with probability at least 1 − e−K if 1 ≤ K ≤ n. Then, it remains to bound the empirical weighted Sobolev
seminorm ⟨Lsw,n,ϵf, f⟩w,n and the graph weighted Laplacian eigenvalue λsK+1.

We will first focus on ⟨Lsw,n,ϵf, f⟩w,n for s = 1. By definition (4), we have by symmetry:

E⟨Lw,n,ϵf, f⟩w,n =
1

2
E

 1

ϵd+2
|d−

r
q−1

i f(Xi)− d
− r
q−1

j f(Xj)|2d
1−p
q−1

i

η
(

∥Xi−Xj∥
ϵ

)
d̃
1−q/2
i d̃

1−q/2
j

 . (29)

We would like to point out here that the normalization factor ϵ−(d+2) is motivated by the fact that a factor of

ϵ−d is needed to scale η
(

∥Xi−Xj∥
ϵ

)
and the remaining factor, ϵ−2, stabilized the squared differences of d

− r
q−1

i

under the expectation.

According to Section 6.1 and by conditioning on Xi and the law of iterated expectation, we have for n large
enough,∣∣∣∣∣E

(
1

ϵd+2 |d
− r
q−1

i f(Xi)− d
− r
q−1

j f(Xj)|2d
1−p
q−1

i

η
( ∥Xi−Xj∥

ϵ

)
d̃
1−q/2
i d̃

1−q/2
j

)
− 2⟨Lw,ϵf, f⟩gp−r

∣∣∣∣∣ ≲ ∆(n, ϵ, η, g) + ϵ,

(30)
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where

∆(n, ϵ, η, g) :=
1

n
gmax +

η(0)

nϵd
+
n− 1

n

(√ | log ϵ|
nϵd

+ ϵ
)
→ 0 as n→ ∞.

Combining (29), (30) and Lemma 5.1, we obtain:

E⟨Lw,n,ϵf, f⟩w,n ≲M2 +∆(n, ϵ, η, g) + ϵ.

Consequently, by Markov’s inequality, we have: for any δ ∈ (0, 1),

⟨Lw,n,ϵf, f⟩w,n ≲
1

δ

(
M2 +∆(n, ϵ, η, g) + ϵ

)
, (31)

with probability at least 1−δ. Note that the above bound on the expected weighted Sobolev seminorm generalizes
the results in Green et al. (2023) to the weighted Laplacians by some properties of KDE.

Next, we proceed to the higher order case when s > 1 for ⟨Lsw,n,ϵf, f⟩w,n. We define the following difference
operator:

Djf(x) = (d
− r
q−1

· f(x)− d
− r
q−1

j f(Xj))d
1−p
q−1
· wϵ·,j ,

where d· and w
ϵ
·,j are defined by replacing Xi by x in both di and w

ϵ
i,j . Furthermore, let Djf(x) := (Dj1f ◦ . . . ◦

Djsf)(x), where j = (j1, . . . , js) ∈ [n]s := {1, . . . , n}s. Denote by (n)s the sub-collection of vectors in [n]s with
no repeated indices and let by ij := (i, j1, . . . , js).

Following the idea of Green et al. (2023, Proof of Lemma 3), we decompose the weighted Sobolev seminorm into
a U-statistic, which is an unbiased estimator of the non-local Sobolev seminorm ⟨Lsw,ϵf, f⟩gp−r , and a pure bias
term:

⟨Lsw,n,ϵf, f⟩w,n =
1

n

n∑
i=1

d
p−1−r
q−1

i Lsw,n,ϵf(Xi) · f(Xi)

=
1

nϵ2s

∑
ij∈(n)s+1

d
p−1−r
q−1

i Djf(Xi) · f(Xi)

+
1

nϵ2s

∑
ij∈[n]s+1\(n)s+1

d
p−1−r
q−1

i Djf(Xi) · f(Xi)

=: I1 + I2. (32)

Note that there are errors in Green et al. (2023, Proof of Lemma 3) when bounding both EI1 and EI2. Specifically,
in Green et al. (2023, Lemma D.3), there should not be a δ appearing in Equation D.4 by Markov’s inequality
and the power of ϵ should be 2s+d. Although their final result is correct, we will fix these errors in the following
proof. Now, determined by whether all ij are distinct, the empirical weighted Sobolev seminorm can be divided
into two parts, I1 and I2. The first one involves all distinct indices where we make approximation by the so-called
non-local weighted sobolev norm ⟨Lsw,ϵf, f⟩gp−r ; the second part focuses on the case where not all ij are distinct
and use the fact that it is related to a connected subgraph.

As for I1 from (32), we have

EI1 =
1

nϵ2s
n!

(n− s− 1)!
E
(
d
p−1−r
q−1

i Djf(Xi) · f(Xi)

)
=

1

nϵ2s
n!

(n− s− 1)!
E⟨Djf(Xi), f(Xi)⟩gp−r ,

where the operator Dj is iterated for s different times due to the fact that ij are all distinct. For each iteration,
say s = 1, we have

E⟨Djf(Xi), f(Xi)⟩gp−r
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=
ϵ2

2n
E

 1

ϵd+2
|d−

r
q−1

i f(Xi)− d
− r
q−1

j f(Xj)|2d
1−p
q−1

i

η
(

∥Xi−Xj∥
ϵ

)
d̃
1−q/2
i d̃

1−q/2
j

 . (33)

Then, plugging (30) in (33), we obtain∣∣∣∣E⟨Djf(Xi), f(Xi)⟩gp−r −
ϵ2

n
⟨Lw,ϵf, f⟩gp−r

∣∣∣∣ ≲ ϵ2

2n
(∆(n, ϵ, η, g) + ϵ).

After s times iteration, it yields that∣∣∣∣E⟨Djf(Xi), f(Xi)⟩gp−r −
ϵ2s

ns
⟨Lsw,ϵf, f⟩gp−r

∣∣∣∣ ≲ ϵ2s

2sns
(∆(n, ϵ, η, g) + ϵ).

Putting all above results back in EI1, we conclude that for n large enough,∣∣∣∣EI1 − n!

ns+1(n− s− 1)!
⟨Lsw,ϵf, f⟩gp−r

∣∣∣∣ ≲ n!

ns+1(n− s− 1)!
(∆(n, ϵ, η, g) + ϵ). (34)

The Stirling’s formula shows

lim
n→∞

n!

ns+1(n− s− 1)!
= 1.

Therefore, by (34), we have for n large enough,

EI1 ≲ ⟨Lsw,ϵf, f⟩gp−r + (∆(n, ϵ, η, g) + ϵ).

According to Lemma 5.6, it yields that

EI1 ≲M2 + (∆(n, ϵ, η, g) + ϵ). (35)

We next shift our attention to I2 in (32):

1

nϵ2s

∑
ij∈[n]s+1\(n)s+1

d
p−1−r
q−1

i Djf(Xi) · (f(Xi)− f(Xj1)).

For ij not all distinctive, if they contains a total of (k + 1) distinct indices for example for 1 ≤ k ≤ s − 1, we
have by symmetry:∑

ij∈[n]s+1\(n)s+1

d
p−1−r
q−1

i Djf(Xi) · f(Xi) =
1

2
·

∑
ij∈[n]s+1\(n)s+1

d
p−1−r
q−1

i Djf(Xi) · (f(Xi)− f(Xj1)).

Observe that in order for

d
p−1−r
q−1

i |Djf(Xi)| · |f(Xi)− f(Xj1)|

to be non-zero, it must be the case that the graph Gn,ϵ(Xij) which is the subgraph induced by the vertices
Xi, Xj1 , . . . , Xjs is complete. Since we have:

Dijf(x) = Di(Djf(x))

= Di

(
(d

− r
q−1

· f(x)− d
− r
q−1

j f(Xj))d
1−p
q−1
· wϵ·,j

)
= (d

− r
q−1

· Djf(x)− d
− r
q−1

i Djf(Xi))d
1−p
q−1
· wϵ·,i,

then

|Dj1j2f(Xi)| ≤
(
d
− r
q−1

i |Dj2f(Xi)|+ d
− r
q−1

j1
|Dj2f(Xj1)|

)
d

1−p
q−1

i wϵi,j1 .
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Repeating the above computation and by induction, it yields that for s ≥ 2,

|Djf(Xi)| ≤ (s− 1)d
− (s−1)r

q−1

max /mind
(s−1)(1−p)

q−1

max /min (wϵmax)
s−1

∑
j∈ij\{js}

|Djsf(Xj)|,

where dmax := max
i=1,...,n

di, dmin := min
i=1,...,n

di, wmax := max
i,j=1,...,n

wi,j and dmax /min means it is dmax if −(s −

1)r/(d− 1) (respectively (s− 1)(1− p)/(q − 1)) are positive and it is dmin otherwise.

According to Section 6.1, we have for n large enough, dmax is bounded from above and dmin is bounded from
below a.s. and

wmax ≲
1

nϵd
,

almost surely.

Consequently, it yields that

d
p−1−r
q−1

i |Djf(Xi)| · |f(Xi)− f(Xj1)|

= d
p−1−r
q−1

i |Djf(Xi)| · |f(Xi)− f(Xj1)| · 1{Gn,ϵ(Xij) is connected}

≲
1

(nϵd)s−1

∑
j∈ij\{js}

(
d
p−1−r
q−1

i |Djsf(Xj)| · |f(Xi)− f(Xj1)| · 1{Gn,ϵ(Xij) is connected}

)

=
ϵ2

nsϵd(s−1)

∑
j∈ij\{js}

(
1

ϵd+2
d
p−1−r
q−1

i |d−
r
q−1

j f(Xj)− d
− r
q−1

js
f(Xjs)|d

1−p
q−1

j

η
(

∥Xj−Xjs∥
ϵ

)
d̃
1−q/2
j d̃

1−q/2
js

|f(Xi)− f(Xj1)|1{Gn,ϵ(Xij) is connected}

)
, (36)

where we again assign ϵd+2 as a normalization factor into the expectation as (29).

Now, note that for j = i in the summand on the right-hand side of (36), we have according to Section 6.1:

E

(
1

ϵd+2
d
− r
q−1

i |d−
r
q−1

i f(Xi)− d
− r
q−1

js
f(Xjs)|

η
(

∥Xi−Xjs∥
ϵ

)
d̃
1−q/2
i d̃

1−q/2
js

|f(Xi)− f(Xj1)|

1{Gn,ϵ(Xij) is connected}

)

≲ E

 1

ϵd+2
|d−

r
q−1

i f(Xi)− d
− r
q−1

js
f(Xjs)|

η
(

∥Xi−Xjs∥
ϵ

)
d̃
1−q/2
i d̃

1−q/2
js

|d−
r
q−1

i f(Xi)− d
− r
q−1

j1
f(Xj1)|

+ (∆(n, ϵ, η, g) + ϵ)

)
1{Gn,ϵ(Xij) is connected}

)

≲ E

 1

ϵd+2
|d−

r
q−1

i f(Xi)− d
− r
q−1

js
f(Xjs)|2

η
(

∥Xi−Xjs∥
ϵ

)
d̃
1−q/2
i d̃

1−q/2
js

+ (∆(n, ϵ, η, g) + ϵ)


1{Gn,ϵ(Xij) is connected}

)
, (37)

where the last inequality is by Cauchy–Schwarz inequality and X1, . . . , Xn being i.i.d. data. Then, by integrating
out all indices in j not equal to i or js, it yields that

E

 1

ϵd+2
|d−

r
q−1

i f(Xi)− d
− r
q−1

js
f(Xjs)|2

η
(

∥Xi−Xjs∥
ϵ

)
d̃
1−q/2
i d̃

1−q/2
js

+ (∆(n, ϵ, η, g) + ϵ)


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1{Gn,ϵ(Xij) is connected}

)

≲
(
CϵdgmaxVd

)k−1 E

 1

ϵd+2
|d−

r
q−1

i f(Xi)− d
− r
q−1

js
f(Xjs)|2

η
(

∥Xi−Xjs∥
ϵ

)
d̃
1−q/2
i d̃

1−q/2
js

+ (∆(n, ϵ, η, g) + ϵ)

))
. (38)

Therefore, according to (37), (38), (30) and Lemma 5.1, we obtain

E

(
1

ϵd+2
d
− r
q−1

i |d−
r
q−1

i f(Xi)− d
− r
q−1

js
f(Xjs)|

η
(

∥Xi−Xjs∥
ϵ

)
d̃
1−q/2
i d̃

1−q/2
js

|f(Xi)− f(Xj1)|

1{Gn,ϵ(Xij) is connected}

)
≲ ϵd(k−1)

(
M2 +∆(n, ϵ, η, g) + ϵ

)
. (39)

Applying a similar approach to all j ̸= js and plugging (39) in (36) and (32), we have

EI2 ≲
1

nϵ2s
1

nsϵd(s−1)

s−1∑
k=1

ϵd(k−1)
(
M2 +∆(n, ϵ, η, g)

)
nk+1

≲
ϵ2

nϵ2s
(
M2 +∆(n, ϵ, η, g) + ϵ

) s−1∑
k=1

(nϵd)k

(nϵd)s
n.

Note that the above sum is bounded from above when k = s−1 by the assumption nϵd ≥ 1. Finally, we conclude
that

EI2 ≲
ϵ2

nϵ2s+d
(
M2 +∆(n, ϵ, η, g) + ϵ

)
. (40)

Finally, combining (32), (35) and (40), we obtain:

E⟨Lsw,n,ϵf, f⟩w,n ≲M2 + (∆(n, ϵ, η, g) + ϵ) +
ϵ2

nϵ2s+d
(
M2 +∆(n, ϵ, η, g) + ϵ

)
≲M2 + (∆(n, ϵ, η, g) + ϵ),

where the last step is by the assumption that ϵ ≳ n−1/(2(s−1)+d). By Markov’s inequality, we have for any
δ ∈ (0, 1),

⟨Lsw,n,ϵf, f⟩w,n ≲
1

δ

(
M2 + (∆(n, ϵ, η, g) + ϵ

)
, (41)

with probability at least 1− 2δ. This bound can be considered as a higher order variant of (31) for s > 1.

Now, recall the bound (28). We have bounded the empirical weighted Sobolev seminorm by (31) and (41). It
remains to bound the eigenvalues λK+1.

According to Lemma 6.1, we have:

λk = λk(Lw,n,ϵ) ≳ λk(Lw) ∧ ϵ2, for all 2 ≤ k ≤ n, (42)

with probability at least 1− Cne−cnϵ
d

for some constants C, c > 0.

For s = 1, combining (28), (31) and (42), we have with probability at least 1− δ −Cne−cnϵ
d − e−K and n large

enough:

∥f̂ − f∥2w,n ≲
M2

δ (λK+1(Lw) ∧ ϵ2)
+
K

n
.
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Furthermore, based on the assumption ϵ ≲ K−1/d and Proposition 6.6, the above inequality becomes:

∥f̂ − f∥2w,n ≲
M2

δ
(K + 1)−2/d +

K

n
. (43)

By balancing the two terms on the right-hand side, we pick K = ⌊M2n⌋d/(2+d). Then, it yields that

∥f̂ − f∥2w,n ≲
1

δ
M2(M2n)−2/(2+d). (44)

If M2 < n−1, we can take K = 1 and obtain from (43) that:

∥f̂ − f∥2w,n ≲
1

nδ
.

If M > n1/d, we take K = n and in this case, we actually have f̂(Xi) = Yi for i = 1, . . . , n and

∥f̂ − f∥2w,n =
1

n

n∑
i=1

ε2i ≲ C,

with probability at least 1− e−n for some constant C. Combining all above cases depending on choices of K, it
yields that bound in Theorem 3.1 .

For s > 1, the proof follows in a similar way by considering (41) instead of (31).

5.2 Proof Of Theorem 3.2

Proof of Theorem 3.2. Recall the construction of the estimator based on Lepski’s procedure: f̂adapt = f̂ŝ,M̂ with

ŝ, M̂ given in Section 3.3. Let the event Ej be that ŝ = sj and suppose s = si for the true smooth parameter.

First of all, it suffices to consider M ∈ D by realizing that if M ∈ (Mj−1,Mj), then f ∈ Hs(X , g;M) with
Hs(X , g;Mj−1) ⊂ Hs(X , g;M) ⊂ Hs(X , g;Mj). Now, we also suppose M = Mi correspondingly and consider
bounding the sum:

Nl∑
j=1

(
∥f̂sj − f∥2w,nM−2

i (M2
i n/ log n)

2si/(2si+d)1Ej

)
,

conditional on the event that the sample points X1, . . . , Xn satisfy (28) and (42) with K = ⌊M2
i n⌋d/(2si+d).

These two statements hold with probability at least 1 − Cne−Cnϵ
d − e−⌊M2

i n⌋
d/(2si+d)

. As we will see, the fact
that this sum does not explode, relies on the fact that the probabilities of the sets Ej get small as n→ ∞.

First, note that by Cauchy-Schwarz inequality, we have

Nl∑
j=i

(
∥f̂sj − f∥2w,nM−2

i (M2
i n/ log n)

2si/(2si+d)1Ej

)

≤
Nl∑
j=i

(
∥f̂sj − f̂si + f̂sj − f∥2w,nM−2

i (M2
i n/ log n)

2si/(2si+d)1Ej

)

≤
Nl∑
j=i

(
2c201Ej + 2

(
∥f̂si − f∥2w,nM−2

i (M2
i n/ log n)

2si/(2si+d)1Ej

))
≤ 2c20 + 2

(
∥f̂si − f∥2w,nM−2

i (M2
i n/ log n)

2si/(2si+d)
)
.

Therefore, according to Theorem 3.1, we have: for any δ ∈ (0, 1),

Nl∑
j=i

(
∥f̂sj − f∥2w,nM−2

i (M2
i n/ log n)

2si/(2si+d)1Ej

)
≲

1

δ
,
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with probability at least 1− δ log−2si/(2si+d) n− Cne−Cnϵ
d − e−⌊M2

i n⌋
d/(2si+d)

.

Next, we consider the other part when j < i:

i−1∑
j=1

(
∥f̂sj − f∥2w,nM−2

i (M2
i n/ log n)

2si/(2si+d)1Ej

)
. (45)

By the definition, on the event Ej , there exists s′ ∈ B with s′ < si such that ∥f̂si − f̂s′∥w,n >

c0M
′−2(M ′2n/ log n)−s

′/(2s′+d). This means ∥f̂si − f̂s′∥2w,nM ′−2(M ′2n/ log n)2s
′/(2s′+d) > c20. By trian-

gle inequality, this implies we have either ∥f̂si − f∥2w,nM ′−2(M ′2n/ log n)2s
′/(2s′+d) > c20/4 or ∥f̂s′ −

f∥2w,nM ′−2(M ′2n/ log n)2s
′/(2s′+d) > c20/4. Then, we have

P(Ej) ≤
i−1∑
l=1

(
P
(
∥f̂si − f∥2w,nM−2

l (M2
l n/ log n)

2sl/(2sl+d) > c20/4
)

+P
(
∥f̂sl − f∥2w,nM−2

l (M2
l n/ log n)

2sl/(2sl+d) > c20/4
))

. (46)

Since l < i, we have f ∈ Hsi(X , g;Ml) ⊂ Hsl(X , g;Ml) for all l < i. Therefore, it suffices to focus on the

concentration inequality of f̂sl to f , i.e., bounding

P
(
∥f̂sl − f∥2w,nM−2

l (M2
l n/ log n)

2sl/(2sl+d) > c20/4
)
. (47)

Note that the key problem here is the rate of convergence of ∥f̂sj − f∥2w,n in (45) does not match the rate

(n/ log n)2si/(2si+d) given there. However, this can be dealt with by controlling the probability of the event Ej .
The strategy here is we need a better concentration inequality than what has been proven previously as (41)
otherwise the probability of the event Ej will not decay to 0. Observe that the concentration (41): for n large
enough and with probability smaller than 1− 2δ,

⟨Lsw,n,ϵf, f⟩w,n ≲ δ−1M2,

is from the application of Markov’s inequality with

E⟨Lsw,n,ϵf, f⟩w,n ≲M2,

for n large enough. While bounding the first moment gives a concentration inequality with probability 1 − 2δ,
establishing a higher moment bound, e.g. the second moment, would result in a better concentration inequality
with higher probability similar to Green et al. (2021, Proposition 1), which fits in our proof technique.

Starting with s = 1 and similar to (30), we have: for n large enough,

Var⟨Lw,n,ϵf, f⟩w,n

≲ Var

1

2

1

n2ϵd+2

n∑
i,j=1

(g(Xi)
−rf(Xi)− g(Xj)

−rf(Xj))
2g(Xi)

1−p
η
(

∥Xi−Xj∥
ϵ

)
g(Xi)1−q/2g(Xj)1−q/2

 . (48)

For i, j ∈ 1, . . . , n, let

Vij := (g(Xi)
−rf(Xi)− g(Xj)

−rf(Xj))
2g(Xi)

1−p
η
(

∥Xi−Xj∥
ϵ

)
g(Xi)1−q/2g(Xj)1−q/2

.

We have:

Var

 n∑
i,j=1

(g(Xi)
−rf(Xi)− g(Xj)

−rf(Xj))
2g(Xi)

1−p
η
(

∥Xi−Xj∥
ϵ

)
g(Xi)1−q/2g(Xj)1−q/2


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=

n∑
i,j=1

n∑
l,m=1

Cov(Vij , Vlm).

Now, consider the following four scenarios depending on the cardinality of {i, j, l,m}.

• If |{i, j, l,m}| = 4, since Vij and Vlm are independent, we have Cov(Vij , Vlm) = 0.

• If |{i, j, l,m}| = 3, without loss of generality, say i = l, we have by Lipschitz condition,

Cov(Vij , Vim) ≤ E[VijVim]

≲ ϵ2d+4M4.

• If |{i, j, l,m}| = 2, without loss of generality, say i = l and j = m, similarly, we obtain

Cov(Vij , Vij) ≤ EV 2
ij

≲ ϵd+4M4.

• If |{i, j, l,m}| = 1, we have Vij = Vlm = 0.

Plugging the above results in (48), it yields that for n large enough,

Var⟨Lw,n,ϵf, f⟩w,n ≲
1

4n4ϵ2d+4

(
n3ϵ2d+4M4 + n2ϵd+4M4

)
≲ n−1M4,

where the last step follows by the assumption that nϵd ≥ 1. Then, by Markov’s inequality, we obtain: for any
δ ∈ (0, 1),

P
(
|⟨Lw,n,ϵf, f⟩w,n − E⟨Lw,n,ϵf, f⟩w,n| ≥

1

δ
M2

)
≲
δ2

n
. (49)

Combining (49) and (31), we conclude that for n large enough,

⟨Lw,n,ϵf, f⟩w,n ≲
1

δ
M2

holds with probability not less than 1 − δ
n2 . Furthermore, following a similar argument in Lemma 5.6, one can

show the above high-probability bound also holds for the case s > 1. Thus, under the additional Lipschitz
assumption that |fg(x) − fg(x

′)| ≤ M∥x − x′∥, we establish a better bound for the empirical weighted Sobolev
seminorm: for all s ∈ N+ and n large enough,

⟨Lsw,n,ϵf, f⟩w,n ≲
1

δ
M2,

with probability at least 1− C δ2

n .

Conditional on the event that the sample points X1, . . . , Xn satisfy (28) and (42) with K = ⌊M2n⌋d/(2s+d),
following the proof of Theorem 3.1 to obtain (44) by using the better concentration inequality we derived above
instead, we have for n large enough,

∥f̂ − f∥2w,n ≲
1

δ
M2(M2n)−2s/(2s+d),

with probability at least 1− Cδ2n−1 − Cne−Cnϵ
d − e−⌊M2n⌋d/(2s+d) under the minimax optimal setting for M .

Now, returning to our mission (47), by setting δ−1 = c20/4 · log
2sl/(2sl+d) n, we have:

P
(
∥f̂sl − f∥2w,nM−2

l (M2
l n/ log n)

2sl/(2sl+d) > c20/4
)

≤ 16Cc−4
0 n−1 log−2sl/(2sl+d) n+ Cne−Cnϵ

d

+ e−⌊M2
minn⌋

d/(2s+d)

.
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With (46), we obtain:

P(Ej) ≤ 16Cc−4
0 n−1 log1−2smin/(2smin+d) n+ Cne−Cnϵ

d

log n+ e−⌊M2
minn⌋

d/(2s+d)

log n.

Combining the above result with (45) and noting that on Ecj , 1Ej = 0, it yields that

i−1∑
j=1

(
∥f̂sj − f∥2w,nM−2

i (M2
i n/ log n)

2si/(2si+d)1Ej

)
≲

1

δ
,

with probability at least

1− δ log−2si/(2si+d) n− 16Cc−4
0 n−1 log2−2smin/(2smin+d) n− Cne−Cnϵ

d

log2 n− e−⌊M2
minn⌋

d/(2s+d)

log2 n.

6 AUXILIARY RESULTS

In the subsequent two sections, we introduce some important properties of KDE and eigenvalues of the weighted
Laplacian matrices Lw,n,ϵ and the weighted Laplacian operators Lw used in the previous proof respectively.

6.1 Property Of Kernel Density Estimation

Consider a Kernel density estimator (KDE) on X :

gn(x) :=
1

nϵd

n∑
j=1

η

(
∥x−Xj∥

ϵ

)
,

where η is a kernel function.

In Giné and Guillou (2002), it has been proven that the above KDE satisfies the following almost sure convergence:

∥gn(x)− Egn(x)∥∞ = Oa.s.

(√
| log ϵ|
nϵd

)
,

given the assumption that the kernel η satisfies the kernel VC-type condition (A4) and see Remark 3.2 for more
details.

As for the bias, it is well-known that there exists a boundary effect on KDE due to the fact that (with probability
1) all the samples lie in the support of the density. However, when we are far enough away from the boundary
such that Bx(ϵ) ⊂ X , we have

|Egn(x)− g(x)| =
∣∣∣∣∫

X

1

ϵd
η

(
∥x− y∥

ϵ

)
g(y)dy − g(x)

∣∣∣∣
≤
∫
∥z∥≤1

η(∥z∥)|g(x+ ϵz)− g(x)|dz

≲ ϵ

∫
Rd

∥z∥η(∥z∥)dz ≲ ϵ,

where the last step is by the assumption that g is Lipschitz. As a result, for such values of x,

∥gn(x)− g(x)∥∞ = Oa.s.

(√
| log ϵ|
nϵd

+ ϵ

)
.

When x is near the boundary, i.e., Bx(ϵ) ̸⊂ X , we have Xi ∈ Bx(ϵ) with probability less than Cϵ for some
constant C > 0. Then:

Egn(x) ≤ gmax

∫
∥z∥≤1

η(∥z∥)dz <∞,
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and

Egn(x) =
∫
{∥z∥≤1}∩{x+ϵz∈X}

η(∥z∥)g(x+ ϵz)dz ≥ gmin

∫
{∥z∥≤1}∩{x+ϵz∈X}

η(∥z∥)dz > 0,

under the assumption (A1) on X . Therefore, we have for all x ∈ X , gn(x) is bounded from above and below a.s.
for n large enough.

By conditioning on Xi and the law of total probability, we have for all i ∈ [n] and Bϵ(Xi) ∈ X ,

∆−(n, ϵ, η, g) ≤ gn(Xi)− g(Xi) ≤ ∆+(n, ϵ, η, g),

almost surely with

∆−(n, ϵ, η, g) := − 1

n
gmax +

η(0)

nϵd
− n− 1

n
∆(n, ϵ),

∆+(n, ϵ, η, g) := − 1

n
gmin +

η(0)

nϵd
+
n− 1

n
∆(n, ϵ),

and

∆(n, ϵ) :=

√
| log ϵ|
nϵd

+ ϵ.

Since we are seeking a high-probability bound in Theorems 3.1, it is not necessarily required to have an exact
estimation near the boundary, which happens with probability of the order ϵ. However, various approaches in-
cluding data reflection, transformations, boundary kernels and local likelihood, have been proposed for boundary
correction.

6.2 Property Of Eigenvalues

In this section, we focus on introducing some results on the eigenvalues of the weighted Laplacian Ln,w,ϵ and the
weighted Laplacian operator Lw based on analysis in Calder and Trillos (2022), Green et al. (2021).

6.2.1 Transportation Distance Between Measures

For a probability measure G defined on X and a map T : X → X , denote by T♯G the push-forward of G by T ,
i.e., the measure such that for any Borel subset U ⊆ X , it holds that

T♯G(U) := G(T−1(U)).

When T♯G is taken as the empirical measure of G denoted by Gn, T is called the transportation map between G
and Gn and we define the ∞-transportation distance between G and Gn as

d∞(G,Gn) := inf
T :T♯G=Gn

∥T − Id∥L∞(G), (50)

where Id is the identity mapping. We denote by T̃ the optimal ∞-optimal transport map (∞-OT map) between
G and Gn, i.e,, the map that achieves the infimum (50).

Now, following Green et al. (2021), let

δ̃ := max{n−1/d, Cϵ},

where C > 0 is some constant not depending on n and we also let θ > 0 be some constant not depending on n.
We present the following result from Green et al. (2021).

Proposition 6.1 (cf. Proposition 3 of Green et al. (2021)). Under the assumptions (A1) and (A2), with

probability greater than 1− Cne−Cnθ
2δ̃d , there exists a probability measure G̃n with density g̃n such that

d∞(Gn, G̃n) ≤ Cδ̃,

and such that

∥g − g̃n∥∞ ≤ C(θ + δ̃),

where C > 0 is some constant not depending on n.
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6.2.2 Discretization And Interpolation Maps

The key procedure adopted in Calder and Trillos (2022) is to construct two maps: a discretization map P̃ :
L2(G) → L2(G̃n) and an interpolation map Ĩ : L2(G̃n) → L2(G), that are ”almost” isometries.

For Xi, i = 1, . . . , n, define

Ũi := T̃−1({Xi}).

Then, we define the contractive discretization map P̃ : L2(G) → L2(G̃n) by

(P̃f)(Xi) := n ·
∫
Ũi

f(x)g̃n(x)dx.

Moreover, the interpolation map Ĩ : L2(G̃n) → L2(G) is given by

Ĩu := Λϵ−2δ̃(P̃
∗u).

Here, P̃∗ = u ◦ T̃ is the adjoint of P̃n, i.e.,

(P̃∗u)(x) =

n∑
j=1

u(xi)1x∈Ui ,

and Λϵ−2δ̃ is a kernel smoothing operator with respect to a kernel K (defined below) with the bandwidth ϵ− 2δ̃.
The kernel K is defined by

K(x, y) :=
1

ϵd
ζ

(
∥x− y∥

ϵ

)
,

where

ζ(t) :=
1

σ1

∫ ∞

t

η(s)sds.

Then, define the operator Λh, for h > 0, by

Λhf(x) :=
1

τ(x)

∫
X
K(x, y)f(y)g(y)dy,

where τ(x) :=
∫
X K(x, y)g(y)dy is a normalization factor.

Furthermore, we define the Dirichlet energies:

bw,ϵ(u) := ⟨Lw,n,ϵu, u⟩gp−r ,

and

Dw(f) :=


∫
X
∥∇fg(x)∥2g(x)qdx if f ∈ H1(X , g),

∞ o.w.

Clearly, when w = (p, q, r) = (1, 2, 0), the above Dirichlet energies become the ones associated with the unnor-
malized Laplacian, i.e., w = (p, q, r) = (1, 2, 0):

bϵ(u) := ⟨(D̃ − W̃ )u, u⟩,

and

D2(f) :=


∫
X
∥∇f(x)∥2g(x)2dx if f ∈ H1(X ),

∞ o.w.

The following two propositions from Green et al. (2021), whose proof is based on Proposition 6.1, shows the fact
that discretization map P̃ and interpolation map Ĩ are almost isometries.
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Proposition 6.2 (cf. Proposition 4 of Green et al. (2021)). With probability at least 1− Cne−Cnθ
2δ̃d , we have

for any f ∈ L2(X ),

bϵ(P̃f) ≤ C(1 + C(θ + δ̃))

(
1 + C

δ̃

ϵ

)
σ1 ·D2(f),

and for any u ∈ L2(Gn),

σ1D2(Ĩu) ≤ C(1 + C(θ + δ̃))

(
1 + C

δ̃

ϵ

)
· bϵ(u).

Proposition 6.3 (cf. Proposition 5 of Green et al. (2021)). With probability at least 1− Cne−Cnθ
2δ̃d , we have

for any f ∈ L2(X ), ∣∣∣∣∥f∥2L2(G) − ∥P̃f∥2L2(Gn)

∣∣∣∣ ≤ Cδ̃∥f∥L2(G)

√
D2(f) + C(θ + δ̃)∥f∥2L2(G),

and for any u ∈ L2(Gn),∣∣∣∣∥u∥2L2(Gn)
− ∥Ĩu∥2L2(G)

∣∣∣∣ ≤ Cϵ∥u∥L2(Gn)

√
bϵ(u) + C(θ + δ̃)∥u∥2L2(Gn)

.

Now, as we consider the Dirichlet energies bw,ϵ(u) and Dw(f) for the weighted Laplacian. Note that by the
boundedness assumption of the density g, we have there exist constants C > 0 and C ′ > 0 such that

C ′
∫
X
∥∇fg(x)∥2g(x)qdx ≤

∫
X
∥∇fg(x)∥2g(x)2dx ≤ C

∫
X
∥∇fg(x)∥2g(x)qdx.

Also, with transformation v := D−r/(q−1)u for q ̸= 1, we have

⟨Lw,n,ϵu, u⟩gp−r = ⟨(D −W )v, v⟩.

This also holds for q = 1 by definition (3). According to Section 6.1, we obtain that there exist constants C > 0
and C ′ > 0 such that for large n, almost surely,

C ′bw,ϵ(u) ≤ bϵ(u) ≤ Cbw,ϵ(u).

Consequently, following the proof in Green et al. (2021), we present the following propositions parallelling
Proposition 6.2 and 6.3 associated with the weighted case.

Proposition 6.4. With probability at least 1− Cne−Cnθ
2δ̃d , we have for any f ∈ L2(X , gp−r),

bϵ(P̃f) ≤ C(1 + C(θ + δ̃))

(
1 + C

δ̃

ϵ

)
σ1 ·D2(f),

and for any u ∈ L2(Gn),

σ1D2(Ĩu) ≤ C(1 + C(θ + δ̃))

(
1 + C

δ̃

ϵ

)
· bϵ(u),

where C > 0 is some constant not depending on n or f .

Proposition 6.5. With probability at least 1− Cne−Cnθ
2δ̃d , we have for any f ∈ L2(X , gp−r),∣∣∣∣∥f∥2L2(X ,gp−r) − ∥P̃f∥2w,n

∣∣∣∣ ≤ Cδ̃∥f∥L2(X ,gp−r)
√
Dw(f) + C(θ + δ̃)∥f∥2L2(X ,gp−r) +∆(n, ϵ, η, g) + ϵ,



Weighted Laplacian-Eigenmap based Nonparametric Regression

and for any u ∈ L2(Gn),∣∣∣∣∥u∥2w,n − ∥Ĩu∥2L2(X ,gp−r)

∣∣∣∣ ≤ Cϵ∥u∥w,n
√
bw,ϵ(u) + C(θ + δ̃)∥u∥2w,n +∆(n, ϵ, η, g) + ϵ,

where C > 0 is some constant not depending on n or f and

∆(n, ϵ, η, g) =
1

n
gmax +

η(0)

nϵd
+
n− 1

n
∆(n, ϵ),

∆(n, ϵ) :=

√
| log ϵ|
nϵd

+ ϵ.

Also, we state the following Weyl’s law whose proof follows Dunlop et al. (2020, Lemma 7.10).

Proposition 6.6 (Weyl’s law). There exist constants C,C ′ > 0 such that

C ′l2/d ≤ λl(Lw) ≤ Cl2/d,

for all l ≥ 2.

Therefore, by following Green et al. (2021, Proof of Lemma 2) except that we replace Propositions 6.2 and 6.3
by Propositions 6.4 and 6.5, we obtain the following bound for the eigenvalues.

Lemma 6.1. Under the assumptions (A1) and (A2), there exist constant C,C ′ > 0 and N > 0 such that for

n ≥ N and C(log n/n)1/d ≤ ϵ ≤ C, with probability larger than 1− Cne−Cnϵ
d

, it holds that

C ′ min{l2/d, ϵ−2} ≤ λl(Lw,n,ϵ) ≤ Cmin{l2/d, ϵ−2},

for all 2 ≤ l ≤ n.
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