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Abstract

Weight-sharing is ubiquitous in deep learn-
ing. Motivated by this, we propose a
“weight-sharing regularization” penalty on
the weights w ∈ Rd of a neural network, de-
fined as R(w) = 1

d−1

∑d
i>j |wi − wj |. We

study the proximal mapping ofR and provide
an intuitive interpretation of it in terms of a
physical system of interacting particles. We
also parallelize existing algorithms for proxR
(to run on GPU) and find that one of them is
fast in practice but slow (O(d)) for worst-case
inputs. Using the physical interpretation,
we design a novel parallel algorithm which
runs in O(log3 d) when sufficient processors
are available, thus guaranteeing fast training.
Our experiments reveal that weight-sharing
regularization enables fully connected net-
works to learn convolution-like filters even
when pixels have been shuffled while convo-
lutional neural networks fail in this setting.
Our code is available on github.

1 INTRODUCTION

All modern deep learning architectures, from Convo-
lutional Neural Networks (CNNs) (LeCun et al., 1989)
to transformers (Vaswani et al., 2017), use some form
of weight-sharing, e.g., CNNs apply the same weights
at different locations of the input image. More gener-
ally, requiring a linear function to be symmetric w.r.t.
a permutation group induces weight-sharing in its cor-
responding matrix form (Shawe-Taylor, 1989; Ravan-
bakhsh et al., 2017), e.g., symmetry w.r.t. the group
of cyclic permutations Cn produces a circulant matrix,
resulting in circular convolution.
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Figure 1: Depiction of the unregularized error func-
tion’s contour lines (in blue), together with the con-
straint area for R + ℓ1, where the optimal parameter
vector w is marked by w⋆. Notice that the weights are
set to be equal (shared) in the solution.

fully connected networks with no structure or weight-
sharing are prone to overfitting the dataset. A com-
mon technique used in machine learning to avoid
overfitting and improve generalization is regulariza-
tion (Hastie et al., 2001). Motivated by these facts,
we propose weight-sharing regularization. For a weight
vector w ∈ Rd, the weight-sharing regularization
penalty is defined as

R(w) = 1

d− 1

d∑
i>j

|wi − wj | . (1)

Our goal is to train deep neural networks regularized
with R (See Fig. 1). By analogy to ℓ1 regularization
where using a stochastic subgradient method (SGD)
performs poorly for compression as it does not yield
sufficiently small weights (Ziyin & Wang, 2023), we
propose to use instead (stochastic) proximal gradient
methods (Atchadé et al., 2017) which yield exactly tied
weights. The efficient computation of the proximal
update will be a central contribution of this paper.

Given a task-specific loss function L(w) we may con-

https://github.com/motahareh-sohrabi/weight-sharing-regularization
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struct a weight-sharing and ℓ1 regularized loss with
coefficients α and β as

l(w) = L(w) + αR(w) + βℓ1(w). (2)

The proximal gradient descent update for l with step-
size η is then given by

w(t+1) = proxη(αR+βℓ1)

(
w(t) − η∇L(w(t))

)
, (3)

where the proximal mapping is defined as

proxf (x) = argmin
u

(
f(u) +

1

2
∥u− x∥22

)
. (4)

It follows from Yu (2013, Corollary 4) that

proxαR+βℓ1(x) = proxβℓ1 (proxαR(x)) .1 (5)

Therefore, the main problem lies in computing proxR.

1.1 Contributions

In this work, we make the following contributions:

• We provide a new formulation of the proximal
mapping of R in terms of the solution to an Or-
dinary Differential Equation (ODE). We give an
intuitive interpretation of this ODE in terms of
a physical system of interacting particles. This
interpretation helps provide an intuitive under-
standing of algorithms for proxR.

• We analyze parallel versions of existing algorithms
for proxR and show that, in the worst case, they
provide no speedup compared to the best sequen-
tial algorithm. Based on our physical system anal-
ogy, we propose a novel parallel algorithm with a
depth of O(log3 d) that provides an exponential
speedup for worst-case inputs.

• In experiments, for the first time we are able
to effectively apply weight-sharing regularization
at scale in the context of deep neural networks
and recover convolution-like filters in Multi-Layer
Perceptrons (MLPs), even when pixels have been
shuffled.

1.2 Related Works

Clustered lasso. Regularization with R and ℓ1 has
been studied in a linear regression setting and is known
as clustered lasso (She, 2010). Clustered lasso is an in-
stance of generalized lasso (Tibshirani & Taylor, 2011),
where the regularization term is specified via a matrix

1See Appendix C.8 for an alternative proof.

D as ∥Dw∥1. In clustered lasso, D is a tall matrix with
d+

(
d
2

)
rows, where d rows form a diagonal matrix for

ℓ1, and each of the rest encodes the subtraction of a
unique pair of weights for R.

The proximal mapping of generalized lasso takes a sim-
ple form in the dual space and algorithms have been
developed to exploit this fact (Arnold & Tibshirani,
2016). However, the dimensionality of the dual space
is the same as the number of rows in D, which makes
dual methods infeasible for clustered lasso when d is
large. We avoid this problem in this work by staying
in the primal space.

Isotonic regression. Lin et al. (2019) show that the
proximal mapping of R can be obtained via the iso-
tonic regression problem

min
x∈Rd

∥y − x∥22 subject to x1 ≤ x2 ≤ ... ≤ xn. (6)

One can therefore use algorithms designed for isotonic
regression (Best & Chakravarti, 1990) to compute the
proximal mapping of clustered lasso in O(d log d) time.
Moreover, based on this connection, our proposed al-
gorithm can also be used as a fast parallel solver for
isotonic regression. In this work, however, there will be
no need to understand isotonic regression. Our physi-
cal interpretation provides a complete alternative spec-
ification of the problem that is much more intuitive.

Kearsley et al. (1996) propose a parallel algorithm for
isotonic regression which we show to be incorrect with
a simple counterexample, included in Appendix C.9.

Symmetry. Our work is also related to a body of
work in invariant and equivariant deep learning with
finite symmetry groups, as well as prior work on reg-
ularization techniques and network compression. In
particular, using (soft) weight-sharing for regulariza-
tion is motivated from two perspectives: symmetry,
and minimum description length.

As shown in Shawe-Taylor (1989); Ravanbakhsh et al.
(2017), requiring a linear function to respect a per-
mutation symmetry induces weight-sharing in its cor-
responding matrix form. The same idea can be ex-
pressed using a generalization of convolution to sym-
metry groups (Cohen & Welling, 2016). Identification
of weight-sharing patterns can be used for discovering
symmetries of the data or task. Zhou et al. (2020);
Yeh et al. (2022) pursue this goal in a meta-learning
setting and using bilevel optimization, respectively.

Compression. However, not all weight-sharing pat-
terns correspond to a symmetry transformation.2 Min-
imum Description Length (MDL) provides a more gen-

2In technical terms, a weight-sharing pattern corre-
sponds to equivariance with respect to a permutation
group, if and only if the parameters corresponding to the
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eral motivation. According to MDL, the best model is
the one that has the shortest description of the model
itself plus its prediction errors (Rissanen et al., 2007).
Assuming a prior over the weights so as to achieve the
best compression, MDL leads to regularization. In par-
ticular, the soft weight-sharing of Hinton & Van Camp
(1993) is derived from this perspective and motivates
follow-up works on network compression (Ullrich et al.,
2017). While these works assume a Gaussian mixture
prior for the weights, leading to ℓ2 regularization, we
use sparsity inducing ℓ1 regularization to encourage
exact weight-sharing. Indeed, assuming ℓ0 in Eq. (1),
the objective is similar to vector quantization for com-
pression; instead of using dc bits, where c is the num-
ber of bits-per-weight, using exact weight-sharing with
k distinct weights, one requires only kc + d log k bits,
leading to significant compression for small k. This ob-
servation motivates the regularization of Eq. (1) from
the MDL point of view.

1.3 Outline

The required background on optimization and parallel
computation for this paper is covered in Appendix A.
We begin in Section 2 by studying the subdifferential
of R. Next, in Section 3, we show that the proximal
mapping can be obtained by simulating a physical sys-
tem of interacting particles. In Section 4, we study and
analyze parallel algorithms for computing the proximal
mapping of R. We introduce a novel low-depth par-
allel algorithm while showing that previously existing
algorithms have high depth. In Section 5, we describe
a method for controlling the undesirable bias of ℓ1-
relaxation. In Section 6, we apply our algorithm to
training weight-sharing regularized deep neural net-
works with proximal gradient descent on GPU. We
discuss limitations and directions for future work in
Section 7 and conclude in Section 8.

2 SUBDIFFERENTIAL OF R

Obtaining the subdifferential of R will be essential to
deriving its proximal mapping. We will do this by
writingR as a point-wise maximum of linear functions.
We will refer to each element of the weight vector w
as a weight.

The function R is a convex and piece-wise linear func-
tion. It will be useful to keep in mind that an absolute
value can be written as a max, e.g., |x| = max(x,−x).
Each piece of R, when extended, forms a tangent hy-
perplane. Depending on the sign that we choose for
each absolute value term of R, we get the equation of

same orbit due to the action of the group on the rows and
columns of the matrix are tied together.

one of these hyperplanes. The correct signs are deter-
mined by the ordering of weights. More specifically,
there is a one-to-one correspondence between hyper-
planes and the ordering of the weights. It follows that
R has d! pieces.

For each assumed increasing ordering π ∈ Sd
3, the

corresponding hyperplane is given by

hπ(w) =
1

d− 1

d∑
i=1

(2i− d− 1)wπi
. (7)

The hyperplane equation is derived by noting that the
element wπi

appears with positive sign when compared
to the i − 1 smaller weights wπ1 , ..., wπi−1 and with
negative sign when compared to the d−i larger weights
wπi+1

, ..., wπd
. We thus have an equation for each piece

of R.

The convexity of R implies that the tangent hyper-
planes are below the graph of R. Hence, R is the
point-wise maximum of all hyperplanes. Writing R in
this alternate way gives the equation below.

R(w) = max
π∈Sd

hπ(w) (8)

Example 2.1. Consider d = 3. Then,

R(w) = 1

2
(|w1 − w2|+ |w2 − w3|+ |w1 − w3|) .

There are 3! = 6 possible orderings of the weights
which result in 6 possible sign combinations for the
terms inside the absolute values and 6 hyperplanes.
These are listed below.

Ordering Signs Hyperplane

w1 < w2 < w3 −−− w3 − w1

w1 < w3 < w2 −++ w2 − w3

w2 < w1 < w3 +−+ w1 − w2

w2 < w3 < w1 +−− w3 − w2

w3 < w1 < w2 −+− w2 − w1

w3 < w2 < w1 +++ w1 − w3

Note that some sign combinations are impossible,
e.g., + + −, which would imply w1 > w2, w2 > w3,
w3 > w1, which is impossible.

By taking the point-wise maximum of the hyper-
planes we can write R in the following equivalent

3Sd is the group of all permutations of d objects.
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form.

R(w) = max
{
w1 − w3, w1 − w2, w2 − w3,

w2 − w1, w3 − w2, w3 − w1

}
It is easy to see that the permutations that maximize
hπ(w) are the ones that sort w. When some weights
are equal (i.e., there is weight-sharing) there are mul-
tiple permutations that sort the weights. Let Πsort(w)
be the set of permutations that sort w, then, for all
π ∈ Πsort(w), we have R(w) = hπ(w). We refer to
these hπ as the active hyperplanes at w.

Using this new equation for R, we can write its subd-
ifferential as the convex hull of the gradient of active
hyperplanes at w; See Proposition A.3:

∂R(w) = conv
⋃

π∈Πsort(w)

∇hπ. (9)

An intuitive description of the subgradients of R is
that, for weights that are equal, you may assume any
ordering and calculate a gradient. You may also take
any convex combination of these gradients.

3 PROXIMAL MAPPING OF R

We describe a dynamical system for w, specifically, an
ODE, such that following it for one time unit produces
the proximal map of R at the initialization point of w,
i.e., w(0). We construct the ODE such that w fol-
lows the average of the negative gradient of the active
hyperplanes. The ODE is given by

ẇ(t) :=
dw

dt
(t) =

1

|Πsort(w(t))|
∑

π∈Πsort(w(t))

−∇hπ.

(10)

Note that −ẇ(t) is a subgradient of R at w(t).

Lemma 3.1 (Weight-sharing). The ODE preserves
weight-sharing. Formally, for all t,

wi(t) = wj(t) =⇒ ẇi(t) = ẇj(t).

Lemma 3.2 (Monotonic inclusion). The ODE sat-
isfies monotonic inclusion for the sets Πsort and ∂R.
Specifically, for all t2 > t1:

1. Πsort(w(t1)) ⊆ Πsort(w(t2))

2. ∂R(w(t1)) ⊆ ∂R(w(t2))

Theorem 3.3 (Proximal mapping of R). When w
follows the ODE,

w(1) = proxR(w(0)).

We will not be solving the ODE numerically. Instead,
we will exploit certain properties of the ODE to ob-
tain algorithms for exact computation of w(1). These
properties become clearer when we interpret (w, ẇ) as
the state of a physical system of particles.

Think of each weight as a sticky particle with unit mass
moving in a 1-dimensional space. Furthermore, this
system respects conservation of mass and momentum
and Newton’s laws of motion.

Proposition 3.4 (Conservation of Momentum).
Momentum is conserved in the ODE and is equal
to 0. More precisely,

d∑
i=1

ẇi = 0.

When two particles collide, they stick, due to
Lemma 3.1, and their masses and momenta are added.
There are no other forces involved. These laws allow
us to predict the future of the system, given the posi-
tions, masses, and velocities of all particles. They can
therefore act as an intuitive replacement for the ODE.

If we initialize particle positions with the elements of w
and velocities with the elements of−∇R(w) (assuming
all weights are distinct), then, the particle positions at
time t = 1 give us the proximal mapping of R at w,
due to Theorem 3.3. To calculate the positions at time
t = 1 we need to identify collisions from t = 0 to t = 1.

We will be using the particles interpretation in the
remainder of the paper. We denote the position, ve-
locity, and mass of all particles by vectors x, v ∈ Rd,
and m ∈ Nd, respectively. We index particles by their
ordering in space from left to right, i.e., xi ≤ xi+1.
The vector y := x+ v will be of use, so we assign it a
symbol. It denotes the particle destinations after one
time unit when no collisions occur. Lin et al. (2019)
prove that applying isotonic regression to y results in
the proximal mapping of R. In this paper, however,
no knowledge of isotonic regression will be required.

4 ALGORITHMS FOR proxR

All of the algorithms in this section expect w to have
been sorted and assigned to x as a pre-processing
step. Sorting has time complexity O(d log d) on a
sequential machine. In the context of parallel algo-
rithms, we assume access to a Parallel Random Ac-
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cess Machine (PRAM) with p processors and O(d)
memory. The parallel time complexity of sorting is
O(d log d

p + log d) (Ajtai et al., 1983; Cole, 1988). The
performance of sorting puts a ceiling on the perfor-
mance that we can expect from algorithms for proxR.

4.1 Imminent Collisions Algorithm

Matching the performance ceiling is easy on a sequen-
tial machine. In fact, apart from sorting, the rest of the
algorithm can be implemented in O(d) time. The key
idea is that the order of performing collisions does not
matter, i.e., the collision operation is associative. All
that matters is which collisions occur. Thus, one can
maintain a queue of all detected future collisions and
iteratively pop the queue, perform a collision, check
collisions for the new particle, and push newly detected
collisions into the queue. To perform collisions effi-
ciently, the vectors x, v,m must be stored in doubly
linked lists.

A collision is detected whenever (yi = xi + vi) ≥
(yi+1 = xi+1 + vi+1). We will refer to these collisions
as imminent collisions since they will occur regardless
of other collisions.4 This algorithm is known in the lit-
erature as the pool adjacent violators algorithm (Best
& Chakravarti, 1990).

The algorithm above can be parallelized to some ex-
tent. We can detect all imminent collisions and per-
form them in parallel. The process is repeated until
there are no more imminent collisions. We call this
algorithm, ImminentCollisions (pseudocode is pro-
vided in Appendix D).

ImminentCollisions is fast when the total number of
collisions is small but can be slow when a large cluster
of particles forms. For example, consider

y =

[
1, 1− 2

d− 1
, 1− 4

d− 1
, ..., 0, ϵ, 2ϵ, ..., ⌊d

2
⌋ϵ
]
,

for some 0 < ϵ ≪ 1. One can work out that all parti-
cles will eventually collide, but it will take d

2 imminent
collisions rounds for all particles in the right half to
collide since they are sorted. Therefore, in the worst
case, the number of rounds is O(d). Consequently,
ImminentCollisions has a worst-case parallel time
complexity of O(d) and might not benefit from paral-
lelization.

4.2 End Collisions Algorithm

We continue our study of algorithms by noting some
properties of the dynamical system. Let avg(u) denote

4Non-imminent collisions are harder to detect. For an
if and only if condition for the collision of neighbouring
particles, see Appendix C.6.

the average of the elements of the vector u, and let
ui:j for integers i ≤ j denote a vector of size j − i+ 1
constructed from elements i to j (inclusive) of u.

1. When particles collide, they stick, so they cannot
cross each other. Thus, the ordering of particles
always remains the same.

2. When particles i and i + 1 collide, it must have
been the case that vi > vi+1. Hence, after colli-
sion, the velocity of particle i increases in the neg-
ative direction, and the velocity of particle i + 1
increases in the positive direction. This also tells
us that imminent collisions definitely occur, re-
gardless of other collisions; A property that Im-
minentCollisions relies on.

3. Conservation of momentum implies that avg(yi:j)
represents the final center of mass of particles i to
j under the assumption that particles i to j form
a closed system, that is, particles i and i − 1 do
not collide and particles j and j+1 do not collide.

The proposition below tells us how many particles will
collide with the left-most particle.

Proposition 4.1 (Rightmost collision). The right-
most collision of particle 1 is with particle
argminj avg(y1:j). That is,

particles 1 and i collide ⇐⇒ i ≤ argmin
j

avg(y1:j).

Proposition 4.1 suggests another algorithm. We re-
peatedly find all the particles that collide on one end,
merge them, and then remove them, since they form
a closed system that has no effect on the rest of
the system. We call this algorithm, EndCollisions
(pseudocode is provided in Appendix D). The sequen-
tial version of this algorithm is known in the liter-
ature as the minimum lower sets algorithm (Best &
Chakravarti, 1990) and runs in O(d2) time.

If we let c be the final number of particle clusters, then
the parallel time complexity is O(dcp +c log d) for End-
Collisions. The reason is that there are c iterations,
each one taking parallel time O(dp +log d) due to com-
puting argminj avg(y1:j). This algorithm is, thus, very
fast when the number of collisions is very large and a
small number of particle clusters forms in the end. In
the worst case, however, there are no collisions, and the
algorithm takes O(d

2

p + d log d) parallel time, which is
slow. The algorithm can be made slightly faster by
only considering particles that participate in an im-
minent collision, but the overall worst-case complexity
remains the same.
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4.3 Search Collisions Algorithm

So far we have seen rather trivial parallelizations of
existing algorithms. We now describe a novel parallel
divide and conquer algorithm that is fast for all inputs
and has a depth of O(log3 d).

We split the d particles into two halves of size d
2 (sup-

pose d is even) and solve each half as a closed system in
parallel recursively. Next, we need to consider the in-
teractions between the two halves. There can only be
an imminent collision at (d2 ,

d
2+1). If there is no immi-

nent collision, then there is no interaction between the
halves and the solution has been found. Otherwise, d

2

and d
2 + 1 will collide, and the new particle may col-

lide with one of its neighbours, and so on. The chain
of collisions causes this cluster of particles to grow un-
til eventually it consumes some particles i⋆ ≤ d

2 to
j⋆ > d

2 . The goal will be to find the ends i⋆ and j⋆ of
the cluster so that we can perform the collisions and
obtain the final solution.

We show that if we pick an index i ≥ i⋆ from the left
half and calculate its rightmost collision

rmc(i) := argmink≥i avg(yi:k), (11)

then rmc(i) > d
2 . And if we pick an index i < i⋆, then

rmc(i) = i < d
2 . We can therefore use the condition

rmc(i) > d
2 to perform a binary search on i to find i⋆.

The other end j⋆ is then obtained from rmc(i⋆), due
to Proposition 4.1.

Theorem 4.2. Suppose (k, k + 1) is the only im-
minent collision and particles i⋆ to j⋆ will collide.
Then, for any index i ≤ k:

1. i < i⋆ =⇒ rmc(i) = i

2. i ≥ i⋆ =⇒ rmc(i) > k

The binary search consists of O(log d) steps, each
with a depth of O(log d), due to computing
argmink avg(yi:k). Thus, merging the solution of sub-
problems has depth O(log2 d). There will be log d lev-
els of merging in the divide and conquer binary tree,
resulting in a total depth of O(log3 d). Each step of
binary search requires O(d) operations in total on all
subproblems. There are log2 d binary search steps
during the entire algorithm, giving a total work of
O(d log2 d). Altogether, we get a parallel time com-
plexity of O(d log2 d

p + log3 d). We call this algorithm,
SearchCollisions; See Algorithm 1.

With p ∈ Ω( d
log d ) processors, there is no asymptotic

slowdown of the algorithm from a lack of processors
and the running time is O(log3 d). If there are too few

Algorithm 1 Search Collisions Algorithm
function PerformCollisions(x, v,m, i, j)
m_total← sum(m[i : j])
x[i]← sum(x[i : j]⊙m[i : j])/m_total
v[i]← sum(v[i : j]⊙m[i : j])/m_total
m[i]← m_total
m[i+ 1 : j]← 0

end function

function RightmostCollision(x, v,m, i)
d← size(x)
y_cumsum← prefix_sum((x+ v)[i : d]⊙m[i : d])
avg ← y_cumsum/prefix_sum(m[i : d])
j ← i+ argmin(avg)− 1
return j

end function

function Merge(x, v,m)
d← size(x)
le← 1
ri← d

2
+ 1

for t = 1 to log2 d− 1 do
mid = ⌊(le+ ri− 1)/2⌋
j ← RightmostCollisions(x, v,m,mid)
if j ≥ d

2
+ 1 then

ri← mid+ 1
else
le← mid+ 1

end if
end for
j ← RightmostCollision(x, v,m, le)
if j > le then PerformCollisions(x, v,m, le, j)

end function

function SearchCollisions(x, v,m)
if size(x) = 1 then return
Concatenate zeros at the ends of x, v,m to make sizes

be powers of 2
d← size(x)
pardo

SearchCollisions(x[1 : d
2
], v[1 : d

2
],m[1 : d

2
])

SearchCollisions(x[ d
2
+ 1 :], v[ d

2
+ 1 :],m[ d

2
+ 1 :])

end
Merge(x, v,m)

end function

processors, p ∈ o(log2 d), then the work-inefficiency of
SearchCollisions makes it worse than Imminent-
Collisions. However, with modern GPUs, the num-
ber of processors does not become a bottleneck for
any realistic problem size. For example, considering
each of the 5,120 CUDA cores of NVIDIA V100 as
a processor and ignoring coefficients in the running
times, SearchCollisions has better worst-case per-
formance for d up to 2

√
p = 2

√
5120 ≈ 1021.

5 REWINDING

It is common in machine learning to use ℓ1 regulariza-
tion to obtain sparse solutions. But sparsity is essen-
tially an ℓ0 constraint and ℓ1 is employed as a convex
relaxation of ℓ0. The ℓ1 norm does more than just
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Table 1: Summary of the time-complexities of the par-
allel algorithms studied in this work.

Parallel Algorithm time complexity

Imminent collisions O(d)

End collisions O(d
2

p + d log d)

Search collisions O(d log2 d
p + log3 d)

sparsify the solution; It also makes all weights smaller.
To rectify this side-effect, we propose rewinding. The
amount of rewinding will be parameterized by ρ.

Rewinding for ℓ1 amounts to moving weights that were
not zeroed back towards where they started. When
ρ = 1, the weights completely return to where they
started and the side-effect is entirely removed. This is
equivalent to the proximal mapping of ℓ0, which results
in the iterative hard-thresholding algorithm (Blumen-
sath & Davies, 2008). If ρ = 0, there is no rewinding,
and we recover the proximal mapping of ℓ1.

Algorithm 2 proxαR+βℓ1 with rewinding ρ.

1: function Prox(w,α, β, ρ)
2: d← size(w)
3: x, sort_indices← sort(w)
4: v ← α

d−1
(d− 2 · range(d) + 1) ▷ This is −α∇R(x)

5: m← ones_array(d)
6: x, v,m← *Collisions(x, v,m)
7: zero_mask ← |x+ v| < β
8: v ← v − β · sign(x+ v)
9: x[zero_mask]← 0

10: v[zero_mask]← 0
11: x← x+ (1− ρ) · v
12: x← repeat_interleave(x,m)
13: w[sort_indices]← x
14: end function

The same concept can be applied to weight-sharing
regularization.

Algorithm 2 applies weight-sharing and sparsity reg-
ularization with rewinding. Before line 11, x satisfies
weight-sharing and sparsity and v contains the remain-
ing displacement of the proximal mapping, that is,
proxαR+βℓ1(w) = x+ v. However, adding v to x does
not induce any additional sparsity or weight-sharing.
We, thus, consider v as the side-effect of convexifying
sparsity and weight-sharing. To reduce the side-effect,
we scale v by 1− ρ for rewinding.

As an example, for sparsity regularization with ℓ1, af-
ter processing constraints we have x = w1[|w|>β] and
v = −β1[|w|>β]. The ρ-rewinded update is then given
by

x+ (1− ρ)v = (w − (1− ρ)β)1[|w|>β]. (12)

This is rather similar to β-LASSO (Neyshabur, 2020),

which uses a parameter β > 1 (different from our β)
to perform more aggressive thresholding. The analog
of their β in our method is 1

1−ρ . However, their pro-
posed method has a distinction from proximal meth-
ods in that the gradients of ℓ1 and the task-loss L are
computed at the same point.

6 EXPERIMENTS

6.1 MNIST on a Torus

We consider a translation-invariant version of the
MNIST dataset which we refer to as MNIST on a
torus. We investigate whether our regularization can
enhance the generalization of an MLP. While the an-
swer to this question is positive, an invariant CNN
model achieves higher accuracy compared to an MLP
model regularized with R(w). However, CNNs make
strong assumptions about the topology (i.e., pixel lo-
cality) and symmetry of data. When these assump-
tions are violated, they perform poorly, while the per-
formance of our method is unaffected. To showcase
this, we introduce a change in the dataset by per-
forming a permutation on the pixels that destroys the
translational symmetry of the images. In this setting,
our results indicate that an MLP with weight-sharing
regularization achieves the best accuracy, outperform-
ing CNN by a significant margin.

Figure 2: Sample digits from MNIST on a torus.

Dataset description. We consider a version of the
MNIST dataset (LeCun et al., 1989) in which the im-
ages lie on a torus. That is, pixels that cross the left
boundary of the image reappear at the right bound-
ary and vice versa. The same happens with the upper
and bottom boundaries; See Fig. 2. Each image in the
dataset is randomly translated. The task is, as usual,
to classify the digits. In this setting, the task is invari-
ant to the natural action of the group of 2D circular
translations Zk × Zk, where k is the width and height
of the input images.

In our experiments, we also consider two variants of
this dataset where pixels have been shuffled: (1) With
symmetry but no locality. (2) With neither symme-
try nor locality. Both of these variants are obtained
by applying a fixed permutation of pixels on each im-
age of the dataset. However, the order of this per-
mutation w.r.t. the 2D circular translation is impor-
tant. Performing the permutation before translation
destroys the locality of pixels while maintaining sym-
metry whereas performing the operations in the oppo-
site order removes symmetry as well as locality.
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Experiment configuration. To simulate data
scarcity, we train with 60% of the MNIST dataset.
As a baseline, we use an invariant CNN model and an
MLP that matches the architecture of the CNN, with
weight-sharing and sparsity removed.

Prediction asymmetry metric. We also provide a
metric to measure the symmetry of each model. We
define the prediction asymmetry of a model as the
percentage of test examples for which there exist two
translations of the input whose model predictions do
not agree. We see that weight-sharing regularization
has produced a more symmetric model w.r.t. this met-
ric compared to other baselines.

Results. As shown in Table 2, we observed that the
unregularized fully connected neural network overfits
the data. While it achieves 99.89% training accuracy,
test accuracy peaks at 92.40%. Our weight-sharing
regularization technique narrows the generalization
gap, achieving 95.04% accuracy. Weight-sharing regu-
larization also reduces the prediction asymmetry of an
MLP model significantly. However, an invariant CNN
is by design the best model for the MNIST on torus
dataset and achieves the highest accuracy.

Table 2: Results for the MNIST on torus experiment.

Model Test Acc. Pred. Asym.

CNN 98.82% 0.0%
CNN (-locality) 97.98% 0.0%
CNN (-symmetry) 71.32% 85.7%

MLP 92.40% 44.5%
MLP + ℓ1 93.57% 37.5%
MLP + R 95.04% 31.6%

We now consider the shuffled MNIST on torus
datasets. The training of MLP-based models is com-
pletely unaffected in these datasets, and all of them
achieve the exact same accuracy. As only the ordering
of the input has changed, the MLP-based models can
simply learn a permutation of the weights in the first
layer to achieve the same performance as before. From
Table 2 we observe that the absence of locality does
not seem to significantly affect CNNs; however, the ac-
curacy of this model drops by more than 25% in the
absence of symmetry. In this experiment, the advan-
tage of weight-sharing regularization becomes evident,
as it achieves the best accuracy among all models. Un-
like CNN with its hard-coded bias, weight-sharing reg-
ularization aids MLP in dynamically learning the right
weight-sharing pattern.

6.2 CIFAR10

We consider the task of training a shallow CNN
and its corresponding fully connected network on CI-
FAR10 (Krizhevsky et al., 2009) as suggested by
(Neyshabur, 2020). The author suggests a variant of
the ℓ1 regularizer, β-LASSO, to learn convolution-like
structures from scratch. Our experiments show that
adding weight-sharing regularization to the fully con-
nected neural network enables it to more effectively
learn convolution-like patterns, which are recognized
as optimal for vision data.

Table 3: Results for the CIFAR10 experiment.

Model Test Acc. Sparsity Weight Sh.

CNN 81.85% 99.99% 99.61%

MLP 69.20% 0.0% 91.05%
β-LASSO 71.37% 95.33% 41.96%
Our ℓ1 73.66% 99.58% 2.04%
R (Subgradient) 69.96% 0.0% 2.98%
R 73.50% 0.0% 99.96%
R + Our ℓ1 73.75% 99.71% 1.17%

Experiment configuration. We follow the setup
of (Neyshabur, 2020) and train a 3-layer fully con-
nected network on a heavily augmented version of
CIFAR10. The augmentations involve cropping and
small rotations of the images, therefore, when training
with weight-sharing regularization, we expect to see
similar filters that are translated and tilted. We train
the models for 400 epochs with a batch-size of 512 and
a learning-rate of 0.1. We performed a hyperparame-
ter sweep for α and β for each method and fixed ρ to
0.98.

Weight-sharing metric. Our measure of weight-
sharing in Table 3 is obtained by the formula
#non-zero distinct weights

#non-zero weights . We do not include zeroed
weights so that sparsity does not affect the measure.

Results. Table 3 shows that both our weight-sharing
regularization and our adaptation of ℓ1 regulariza-
tion improve test accuracy compared to MLP and β-
LASSO. We note that regularization with R achieves
a weight-sharing measure that is closely aligned with
that of the CNN network. As shown in the last row of
Table 3, we also observe that incorporating ℓ1 regular-
ization into weight-sharing is likely to drive the shared
weights towards zero.
Table 3 also highlights the importance of using the
proximal gradient descent algorithm compared to the
subgradient method, which fails to achieve weight-
sharing when trained with R.
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Figure 3: The emergence of learned convolution-like
filters in a fully connected network with weight-sharing
regularization on CIFAR10.

Figure 4: A random sample of learned filters from
the 256 filters with the highest number of non-zero
weights.

By visualizing the rows of the first layer’s weight
matrix, we notice some clusters of similar and
convolution-like patterns. Some of these similar pat-
terns are demonstrated in Fig. 3. While (Neyshabur,
2020) recreated sparsity of patterns, we also ob-
serve sparse weights with weight-sharing among them.
These local patterns are translated across the input
image to simulate convolution in the fully connected
neural network.

Practical remarks. By comparing the training times
of various algorithms, we observe that ImminentCol-
lisions is faster for weights encountered during train-
ing compared to SearchCollisions. We observed
that ImminentCollisions requires ∼500 rounds of
iterations for d ≈ 108 while in the worst case, it would
require d rounds. We, therefore, recommend using
SearchCollisions as a backup in case Imminent-
Collisions gets stuck on a difficult input. Such a
setup will guarantee fast training. Further details re-
garding runtimes can be found in Appendix E.3.

7 FUTURE WORK

Even though proxR greatly benefits from paralleliza-
tion, training with weight-sharing regularization is still
several times slower than training without. To bring
down the cost of training, it might be possible to reuse

computation from the previous training step. Is it pos-
sible to design an algorithm that starts with a candi-
date weight-sharing, and then edits it to obtain the
correct weight-sharing?

Weight-sharing regularization with rewinding intro-
duces new hyper-parameters α and ρ that have to be
tuned. The hyper-parameters can be fixed or they can
vary during training. There is, therefore, a large space
of possibilities to explore, and it is currently unclear
what kind of training scheme is best.

A possible generalization of R is given by

RC(w) =
1

d− 1

∑
i<j

Ci,j∥wi − wj∥2, (13)

where C ∈ Rd×d
+ > 0 is a symmetric matrix and w ∈

Rd×k. We have studied C = 1, where all pairs of
weights are encouraged to be equal, and k = 1, where
each weight is a scalar. As an example, when

Ci,j =

{
1 |i− j| = 1

0 otherwise
,

we retrieve the fused lasso regularizer (Tibshirani
et al., 2005). Does there exist fast parallel algorithms
for proxRC

as well?

Lastly, we leave the study of rewinding and its prop-
erties for future work.

8 CONCLUSION

We have proposed “weight-sharing regularization” via
R and obtained its proximal mapping by formulating
it in terms of the solution to an ODE. By analogy to
a physical system of interacting particles, we devel-
oped a highly parallel algorithm suitable for modern
GPUs. Our experiments indicate that this method can
be applied to the training of weight-sharing regularized
deep neural networks using proximal gradient descent
to achieve better generalization in the low-data regime.
While our preliminary results are encouraging, there’s
room for further research and improvement in this do-
main.
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Yes. time complexity is provided for all algo-
rithms and space is always O(d).

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. Yes. Our code is available
on github.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. Yes.

(b) Complete proofs of all theoretical results.
Yes. All proofs are provided in Appendix C.

(c) Clear explanations of any assumptions. Yes.

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
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URL). Yes. We have released our source code
on github to facilitate the reproduction of all
experimental results.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). Yes.
Some training details are provided in the text
and the rest is provided in the appendix.

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). No. The measures that we
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ror bars.
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5. If you used crowdsourcing or conducted research
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(a) The full text of instructions given to partici-
pants and screenshots. Not Applicable.
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pant compensation. Not Applicable.
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A BACKGROUND

A.1 Optimization

Since R is not differentiable everywhere, we will be using concepts that generalize the gradient to non-
differentiable functions, namely, the subgradient and subdifferential.

Definition A.1 (Subgradient). g is a subgradient of a convex function f at x ∈ dom f if

f(y) ≥ f(x) + g · (y − x) ∀x ∈ dom f.

Definition A.2 (Subdifferential). The set of subgradients of f at the point x is called the subdifferential of f
at x, and is denoted ∂f(x).

∂f(x) :=
{
g | f(y) ≥ f(x) + g · (y − x), ∀y ∈ dom f

}
The subdifferential is a closed convex set. Each point y ∈ dom f puts a linear inequality constraint on g which
results in a closed convex set. The result follows from the fact that the intersection of any collection of closed
convex sets is closed and convex.

In the text, we rewrite R as a max and use the following proposition (Clarke, 1990, Proposition 2.3.12) to obtain
its subdifferential.

Proposition A.3 (Subdifferential of max). Let

f(x) = max {f1(x), ..., fk(x)},

where fi(x) are differentiable convex functions. A function fi is active at x if f(x) = fi(x). Let I(x) denote
the set of active functions at x. Then,

∂f(x) = conv
⋃

i∈I(x)

∇fi(x),

where conv denotes the convex hull.

Proximal optimization methods rely on the proximal mapping, defined below.

Definition A.4 (Proximal mapping). The proximal mapping of a closed convex function f is

proxf (x) := argmin
u

(
f(u) +

1

2
∥u− x∥22

)
.

Since u 7→ f(u) + 1
2∥u− x∥22 is closed and strongly convex, the proximal map exists and is unique.

The optimality condition for minimizing a non-differentiable convex function g is 0 ∈ ∂g(x⋆). Applying this fact
to the proximal mapping tells us that

u⋆ = proxf (x) ⇐⇒ x− u⋆ ∈ ∂f(u⋆). (14)

Intuitively, the result says that after taking a proximal step from x to u⋆, there exists a subgradient at u⋆ that
takes you back to x.

Gradient descent can be seen as repeated application of the proximal mapping to a local linearization of the
objective function. More explicitly, let fy denote the linearization of f at y:

fy(x) := f(y) + (x− y) · ∇f(y). (15)
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Then, a gradient descent step on f with step-size η can be written as

x(t+1) = x(t) − η∇f(x(t)) = proxηf
x(t)

(x(t)). (16)

Whenever the objective function is the sum of a differentiable component f and a non-differentiable component
h for which we can compute a proximal mapping, an optimization algorithm known as proximal gradient descent
can be used. Similar to gradient descent, it uses a linearization of f at each time-step, however, h is not linearized.
Specifically, the proximal mapping of fx+h is used. The algebraic manipulations below show that the algorithm
alternates between gradient descent steps on f and proximal mappings of h.

proxfx+h(x) = argmin
u

(
f(x) + (u− x) · ∇f(x) + h(u) +

1

2
∥u− x∥22

)
= argmin

u

(
h(u) +

1

2
∥u− (x−∇f(x))∥22

)
= proxh(x−∇f(x))

Therefore, proximal gradient descent is an efficient algorithm whenever proxh can be computed efficiently. Similar
to Eq. (16), a step-size can be included to get the update equation

x(t+1) = proxηh(x
(t) − η∇f(x(t))). (17)

Example A.5. As an example, let us obtain the proximal mapping of f(x) = |x| for x ∈ R. The subdifferential
of f is given by

∂f(x) =


{1} x > 0

[−1, 1] x = 0

{−1} x < 0

.

The optimality condition is 0 ∈ ∂f(u) + u− x, which gives us

0 ∈


{1 + u− x} u > 0

[−1, 1] + u− x u = 0

{−1}+ u− x u < 0

.

We then solve for u. The three cases can be solved independently.

u =


x− 1 x > 1

0 x ∈ [−1, 1]
x+ 1 x < −1

In Rd, element-wise application of the above mapping gives us the proximal mapping of the ℓ1 norm, also
commonly known as soft-thresholding.

A.2 Parallel Computation

In parallel computation, we assume access to a machine with multiple processors that is able to perform multiple
operations at the same time. With access to such a parallel machine with p processors, one could potentially
gain a p× speedup of any sequential algorithm. The actual performance improvement depends on the structure
of the algorithm and the inter-dependencies among the operations of the algorithm. For some problems, new
algorithms have to be designed to be able to leverage parallelism, such as what we do in this work.

The commonly used framework for analyzing parallel algorithms is the work-depth model. Let n denote the size of
the problem. The depth D(n) of an algorithm, also known as the span, is the greatest number of basic operations
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(with constant fan-in) that have to be performed sequentially by the algorithm due to data dependencies. Or,
in other words, the length of the critical path of the algorithm’s circuit (a.k.a., computation graph). The work
W (n) of an algorithm is defined as the total number of basic operations that the algorithm has to perform.

Since no more that p operations can be performed at any time, an algorithm will require at least W (n)/p rounds
of parallel operations. On the other hand, an algorithm requires at least D(n) rounds of parallel operations,
by definition. It turns out that the running time T (n) of a parallel algorithm is bounded by the sum of these
lower-bounds:

T (n) = O
(W (n)

p
+D(n)

)
. (18)

There are certain fundamental parallel operations that are commonly used in parallel computation. We describe
the ones that we use along with their parallel time complexities.

• map applies a given function to each element of the input list in parallel. The time complexity of map is
O(np + 1) as each processor can independently process one element of the input in constant time.

• reduce combines all elements of the input list using an associative operation in a hierarchical manner. We
can perform a binary reduction in O(np + log n) time. In each step, half of the processors perform the
associative operation with the result of their neighbouring processor, reducing the problem size by half.

• scan computes a running sum (or any other associative operation) of the input list. An algorithm, known
as Hillis-Steele scan, works by having each processor i compute the sum of the input element at i and all
preceding elements at distances of 2j for j = 0 to log(n)− 1, thus requiring log n steps to complete. There
exists a work-efficient algorithm for scan that runs in time O(np + log n).

B COMPUTING R

Proximal gradient descent does not require computing R, nonetheless, it’s interesting to analyze the complexity
of computing R and contrast it to that of proxR.

At first glance, computing R(w) seems to require quadratic time in the size of w, i.e., O(d2). However, if we
sort the weights, R can be rewritten in a form that is faster to compute. Note that R is permutation invariant.
Let x denote the sorted weight vector. Then,

R(w) = R(x) = 1

d− 1

∑
i

∑
j<i

xi − xj =
1

d− 1

∑
i

(
(i− 1)xi −

∑
j<i

xj

)
.

Let us define a new vector s containing the prefix sum of w, that is, si :=
∑

j<i xj . This vector can be computed
in time O(d). Next, R(w) can be computed with an additional O(d) time. Sorting is, thus, the bottleneck of the
algorithm, resulting in an O(d log d) time algorithm for R.

This algorithm can greatly benefit from parallelization. Calculating R(x) only requires two prefix sums, a vector
multiplication and subtraction, and a sum, which take O(dp + log d) parallel time in total. Additionally, sorting
can be performed in O(d log d

p + log d) parallel time, giving us an O(d log d
p + log d) parallel time algorithm for

computing R.

C PROOFS

C.1 Proof of Lemma 3.1

Proof. Let σ ∈ Sd be the permutation that only swaps indices i and j. When wi = wj , the set Πsort(w) is the
same as the set {σπ | π ∈ Πsort(w)}. Therefore,∑

π∈Πsort(w)

(∇hπ)i =
∑

π∈Πsort(w)

(∇hσπ)i =
∑

π∈Πsort(w)

(∇hπ)j .

Dividing by − |Πsort(w)| gives the desired result.
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C.2 Proof of Lemma 3.2

Proof. Let π be a permutation that sorts the weights. Assuming all weights wi ∈ R to be distinct, we have

wπ1
< wπ2

< ... < wπd−1
< wπd

. (19)

If some of these weights are equal, some < signs should be replaced with =.

The weights wi(t) change smoothly in time according to the ODE, and when two weights meet, they stay equal
forever, due to Lemma 3.1. Therefore, as time progresses, we may only have that, in Eq. (19), some < signs
turn to =. Clearly, previous sorting permutations are still valid while new ones are added to Πsort, hence, Πsort

satisfies monotonic inclusion. It immediately follows that ∂R also satisfies monotonic inclusion by Eq. (9).

C.3 Proof of Theorem 3.3

Proof. Note that ẇ only changes when new weights become equal. Now suppose w follows the negative direction
of subgradients g1, ..., gk for t1, ..., tk time units such that

∑k
i=1 ti = 1. Due to monotonic inclusion of the

subdifferential of R, we have
g1, ..., gk ∈ ∂R(w(1)).

The negative displacement of w (i.e., (w(0) − w(1)) is equal to
∑k

i=1 tigi, which is a convex combination of
subgradients at w(1). Therefore, the negative displacement is in the subdifferential of w(1), which implies that
w(1) is the result of the proximal mapping.

C.4 Proof of Proposition 3.4

Proof. Note that, for all tangent hyperplanes h of R,

d∑
i=1

(∇h)i =
1

d− 1

d∑
i=1

(2i− d− 1) = 0. (20)

Since any subgradient g of R is a convex combination of the gradient of tangent hyperplanes,
∑

i gi = 0. As −ẇ
is a subgradient, the same fact applies.

C.5 Proof of Proposition 4.1

Proof. ⇐: Let us focus on where particle 1 will end up. Let y′j denote the final position of particle j. Recall that
avg(y1:j) represents the final center of mass of particles 1 to j under the assumption that particles j and j + 1
do not collide. If they do collide, the velocity of particle j increases in the negative direction, and so, the final
center of mass will only be smaller.

Since particle 1 is always the left-most particle, we have y′1 ≤ avg(y1:j) for all j. Minimizing over j we get
y′1 ≤ minj avg(y1:j). On the other hand, y′1 is equal to the the final center of mass of some group of neighbouring
particles that all collide, therefore,

y′1 = min
j

avg(y1:j), (21)

and particle 1 collides with all particles up to argminj avg(y1:j).

⇒: Only these particles collide with particle 1 because otherwise particle 1 would end up at a different greater
position.

C.6 Neighbour Collision

The following corollary of Proposition 4.1 provides an if and only if condition for the collision of two neighbouring
particles.
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Corollary C.1 (Neighbour collision).

Particles i and i+ 1 collide ⇐⇒ max
j≤i

avg(yj:i) ≥ min
j≥i+1

avg(yi+1:j)

Proof. Considering particles 1 to i as a closed system then particle i is heading to maxj≤i avg(yj:i). Similarly,
considering particles i+ 1 to d as a closed system, particle i+ 1 is heading to minj≥i+1 avg(yi+1:j). A collision
occurs if and only if the destinations cross each other.

C.7 Proof of Theorem 4.2

Proof. 1. If i < i⋆, we know that particle i does not participate in any collisions, so its rightmost collision is
itself.

2. Recall that a chain of collisions starts from (k, k+1) and extends outwards. By Proposition 4.1, rmc(i) gives
us the rightmost collision of particle i when assuming it is the first particle. Therefore, we should assume that
particles less than i don’t exist. Without these particles, the final cluster of collided particles will still include
i but will end at some j′, where k + 1 ≤ j′ ≤ j⋆. The rightmost collision of i is, therefore, j′, which satisfies
j′ > k.

C.8 Combining Weight-Sharing and Sparsity

Proposition C.2 (Proximal mapping of R+ βℓ1).

proxR+βℓ1(x) = proxβℓ1(proxR(x))

Proof. We start with several definitions that will aid the readability of the proof.

x

x′

x′′

∆′
R := x− x′ ∈ ∂R(x′)

∆′′
βℓ1

:= x′ − x′′ ∈ ∂(βℓ1)(x
′′)

:= proxR(x)

:= proxβℓ1(proxR(x))

We must show that x − x′′ ∈ ∂(R + βℓ1)(x
′′), or equivalently, ∆′

R + ∆′′
βℓ1
∈ ∂R(x′′) + ∂(βℓ1)(x

′′). This
is true if ∆′

R ∈ ∂R(x′′). Since x′′ is the result of soft-thresholding x′, and since soft-thresholding preserves
order and weight-sharing, similar to Lemma 3.2, we get monotonic inclusion for ∂R, i.e., ∀x ∈ Rd : ∂R(x) ⊆
∂R(proxβℓ1(x)). Hence, ∆′

R ∈ ∂R(x′) ⊆ ∂R(x′′), which completes the proof.

C.9 Counterexample for Kearsley et al. (1996)

Kearsley et al. (1996) propose a parallel algorithm for isotonic regression which we show to be incorrect with a
simple counterexample. Let

y = [0.7, 1, 0.9, 0.99]

in the isotonic regression problem of Eq. (6). Their algorithm proposes to average values 1, 0.9, 0.99 and arrives
at the solution

x = [0.7, 0.963̄, 0.963̄, 0.963̄],

while the correct solution only averages 1 and 0.9 to get

x⋆ = [0.7, 0.95, 0.95, 0.99].
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D PSEUDOCODES

The functions RightmostCollision and PerformCollisions are defined in Algorithm 1. We observed that
Algorithm 3 is the fastest in practice for training neural networks with weight-sharing regularization. It performs
an additional prefix_sum to detect successive imminent collisions, then performs them all at once in a single
round. The prefix_sum adds a factor of O(log d) to the depth, however, since we’ve empirically observed that
there aren’t too many rounds in practice, the overhead is negligible.

Algorithm 3 Imminent collisions algorithm (v2)

function CollisionsRound(x, v,m)
n← size(x)
c← zeros_array(n)
c[1 :]← (x+ v)[: −1] < (x+ v)[1 :]
i← prefix_sum(c)
x← scatter(x⊙m, i)
v ← scatter(v ⊙m, i)
m← scatter(m, i)
x← x/m
v ← v/m
return x, v,m

end function

function ImminentCollisions(x, v,m)
repeat
d← size(x)
x, v,m← CollisionsRound(x, v,m)

until d = size(x)
return x, v,m

end function

Algorithm 4 Imminent collisions algorithm (v1)

function CollisionsRound(x, v,m)
d← size(x)
for all odd indices i < d pardo

if (x+ v)[i] > (x+ v)[i+ 1] then
PerformCollisions(x, v,m, i, i+ 1)

end if
end for
return x[m > 0], v[m > 0],m[m > 0]

end function

function ImminentCollisions(x, v,m)
repeat
d← size(x)
x, v,m← CollisionsRound(x, v,m)
x, v,m← CollisionsRound(x[2 :], v[2 :],m[2 :])

until d = size(x)
return x, v,m

end function

Algorithm 5 End collisions algorithm

function EndCollisions(x, v,m)
d← size(x)
i← 1
while i < d do
j ← RightmostCollision(x, v,m, i)
PerformCollisions(x, v,m, i, j)
i← j + 1

end while
end function

E EXPERIMENTS

E.1 MNIST on Torus

The CNN baseline is designed to be invariant to circular 2D translations. The architecture consists of two circular
convolutional layers, outputting 32 and 64 channels, respectively, followed by global average pooling and a fully
connected layer. Note that circular convolution is equivariant to circular translations, while global pooling is
invariant, resulting in an invariant model.

The fully connected networks were obtained from the CNN baseline by replacing convolutional layers with linear
layers with matching input and output sizes. In order to see convolution-like behaviour in the first two layers of
the MLPs, we apply weight-sharing regularization to each of these layers separately.

We trained all the networks for 200 epochs using an initial learning-rate of 0.1 which is cosine annealed to 0. We
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also used a momentum of 0.9 to achieve near-zero training error for all models within 200 epochs. As a result,
all the models attained more than 99% training accuracy, except for our method when using dataset ratios of
0.8 and 1.0, where it achieved more than 98% training accuracy. To choose the weight-sharing parameter α for
each layer, we ran a sweep on values 0.01, 0.001, 0.0001, and 0.00001. The selected parameters were 0.001 for
the first layer and 0.0001 for the second layer. For the ℓ1 coefficient β, we selected 0.0001 after a hyperparameter
search. We don’t use rewinding in these experiments.

Additionally, we use a modification to the standard ℓ1 proximal update rule as proposed by Neyshabur (2020),
which is to multiply the learning-rate in v in line 11 of Algorithm 2, instead of multiplying it in the coefficients
α and β. This modification improves validation accuracy in practice.
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Figure 5: Test accuracy vs. dataset ratio on MNIST on torus for various models.

In Fig. 5, we investigate the effect of dataset size on test accuracy. We observe that the introduction of weight-
sharing regularization serves as a beneficial inductive bias for the network, effectively narrowing the generalization
gap, particularly when using a reduced dataset ratio.

Figure 6: The emergence of learned convolution-like filters in a fully connected network with weight-sharing
regularization in MNIST on torus.

Figure 7: A random sample of learned filters from the 256 filters with the highest number of non-zero weights in
MNIST on torus.

We visualize the learned filters in Figs. 6 and 7. We are able to find filters that look like translations of one
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another, similar to what one finds in a convolutional layer. These are illustrated in Fig. 6. We manually grouped
these filters by examining the top 256 filters with the highest number of non-zero weights. A random selection
of these filters for each method is shown in Fig. 7. The same process was carried out for the CIFAR10 task in
Figs. 3 and 4.

E.2 CIFAR10

This experiment is primarily designed based on the experiments in Neyshabur (2020). We train a shallow
convolutional neural network with one convolutional layer followed by two fully connected layers. The number
of output channels of the convolutional layer is 64. The fully connected network corresponding to this shallow
convolutional network has approximately 75M parameters. Batch normalization is applied after each of the first
two layers. A learning-rate of 0.1 and no momentum is used for all experiments, along with a cosine annealed
learning-rate schedule, similar to Neyshabur (2020).

For the β-LASSO baseline we use their reported optimal β = 50 and a corresponding ρ of 0.98 for our own
methods. We conducted a sweep for the regularization coefficient of β-LASSO (referred to as λ) which resulted
in 0.00001 being selected.

For our methods, a hyperparameter search resulted in the following values: for MLP + R, α = 0.001; for MLP
+ ℓ1, β = 0.001; and for MLP + R + ℓ1, α = 0.0002 and β = 0.001.

E.3 Runtime Comparison

Table 4: Approximate runtime of each algorithm per epoch on CIFAR10 experiments.

Algorithm Time (sec)

Sequential PAV 1800
Search Collisions 200
Imminent Collisions (v2) 50
No Regularization 10

E.4 Worst-case Runtime Comparison

We compare the actual runtime of our implementations of ImminentCollisions and SearchCollisions for
worst-case inputs on a NVIDIA V100 GPU. Fig. 8 shows the results. As expected, SearchCollisions is
exponentially faster when there are enough processors available.

Figure 8: Worst-case runtimes of SearchCollisions vs. ImminentCollisions. (left) linear scale (right) log
scale.
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