
Multi-Level Symbolic Regression: Function Structure Learning for
Multi-Level Data

Kei Sen Fong Mehul Motani
National University of Singapore National University of Singapore

Abstract

Symbolic Regression (SR) is an approach
which learns a closed-form function relating
the predictors to the outcome in a dataset.
Datasets are often multi-level (MuL), mean-
ing that certain features can be used to split
data into groups for analysis (we refer to
these features as levels). The advantage of
viewing datasets as MuL is that we can ex-
ploit the high similarity of data within a
group. SR is well-suited for MuL datasets,
in which the learnt function structure serves
as ‘shared information’ between the groups
while the learnt parameter values capture the
unique relationships within each group. In
this context, this paper makes three contri-
butions: (i) We design an algorithm, Multi-
level Symbolic Regression (MSR), which runs
multiple parallel SR processes for each group
and merges them to produce a single func-
tion structure. (ii) To tackle datasets that
are not explicitly MuL, we develop a metric
termed MLICC to select the best feature to
serve as a level. (iii) We also release MSR-
Bench, a database of MuL datasets (synthetic
and real-world) which we developed and col-
lated, that can be used to evaluate MSR.
Our results and ablation studies demonstrate
that MSR achieves a higher recovery rate
and lower error on MSRBench compared to
SOTA methods for SR and MuL datasets.

1 INTRODUCTION

Symbolic Regression (SR) is the task of learning a
closed-formed expression to learn the relationship be-
tween features of a dataset, most frequently used in

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

machine learning (ML) to learn the relationship be-
tween a set of input features to a single output vari-
able (Koza, 1992). Consider, a dataset with input fea-
tures, X, and output variable, y. SR algorithms aim
to find f∗ = argminf∈FL(f(X), y), where F and L
are the search space of closed-form functions and the
loss function respectively. More loosely, the practi-
cal task of SR is to find an f such f(X) ≈ y. The
obtained function tends to be more explainable than
the black-box models used in traditional ML, mak-
ing it a first-class algorithm in fields such as Physics
(Udrescu and Tegmark, 2020) and Material Sciences
(Wang et al., 2019; Sun et al., 2019). However, while
there has been ample research on SR for general tabu-
lar datasets (La Cava et al., 2021), little to no work has
been done to apply SR on multi-level (MuL) datasets.

Multi-level (MuL) datasets contain data in which
certain features (called levels), usually categorical,
are used to partition the dataset into smaller subsets
(or groups) of data for analysis. These datasets are
common in the real-world (Lee, 2022; Hamaker and
Muthén, 2020). As an example of MuL data, con-
sider a dataset of students’ exam scores along with
3 predictors: time spent in school (x1), number of
classes taken (x2) and school (x3). Traditional ML
approaches would treat all 3 predictors as input fea-
tures. This is a single-level approach in which the
only level present is the student-level. In contrast, a
MuL approach would partition the dataset into groups
based on the schools the students are enrolled in and
analyze the students in each group using the remain-
ing 2 features, x1 and x2. This is a 2-level approach,
in which we call the school-level the higher level and
the student-level the individual level. By analyzing
and modeling the dataset from a MuL perspective, we
acknowledge that data (e.g., a student’s examination
marks) within the same group (e.g., school) are more
likely to be similar to each other than to data of a dif-
ferent group. Models learnt under the MuL approach
allow for increased complexity of the model without re-
ducing explainability. In our work, we develop an ap-
proach that allows SR to be used with MuL datasets.

Multi-Level Symbolic Regression: Function Structure Learning for Multi-Level Data

Figure 1: In this example, the best solution picked by
traditional SR fits all the data without regard to the
level, failing to capture the true parabolic relation of
y with respect to x within each group.

Figure 2: In this example, the overlapping range of
x for the data from each group makes it difficult for
traditional SR algorithms to learn a function for the
whole set of datapoints.

Multi-Level Symbolic Regression – We take ad-
vantage of the synergy between MuL datasets and SR,
and propose an algorithm called Multi-Level Symbolic
Regression (MSR). Using the notation introduced ear-
lier, recall that the task in traditional SR is to obtain
f such f(X) ≈ y. If we separate the numerical pa-
rameters in f from the function structure, then we can
rewrite the task as obtaining fθ and θ such fθ(X;θ) =
f(X) ≈ y, where θ is the vector of numerical param-
eters found in f and fθ is the function structure of
f . For example, in the function f(X) = 3x1 + 4x2 ,
we can separate f into fθ(X;θ) = αx1 + βx2 , and
θ = [α, β] = [3, 4].

In a MuL dataset with a higher level that has G
groups, we can partition the dataset (X, y) as follows:
{(Xj , yj) | j ∈ G}, where G = {1, 2, · · · , G}. The task
of MSR is to obtain fθ and {θj | j ∈ G} such that
fθ(Xj ;θj) ≈ yj ,∀j ∈ G. Note that only a single func-
tion structure fθ is learnt while G vectors of numerical
parameters, {θ1,θ2, · · · ,θG} are learnt.

MSR works well because the single function structure
learnt, fθ, serves as ‘shared information’ between the
groups while the numerical parameters learnt for each
group, θj , tailors to the unique relationship between
data of each group. This is in contrast to applying tra-
ditional SR to the dataset as a whole and ignoring lev-
els. Figures 1 & 2 gives examples of datasets in which
traditional SR significantly underperforms MSR.

Another alternative to MSR is to treat the groups
as multiple datasets and run traditional SR on each,
ignoring the interaction between groups. In this ap-
proach, there is no interaction between the models of
each group, thus the multiple individual models are
each not benefiting from the full set of data collected,
and may result in an over-fitted model per group. Also,
the different function structure per group greatly re-
duces explainability, which is critical in various appli-
cations such as clinical equations in medicine, where a
single fθ across all groups is greatly valued (Cockcroft
and Gault, 1976; Levey et al., 2009; Inker et al., 2021).

The application of MSR extends beyond MuL
datasets. Even for tabular datasets without a pre-
selected or given higher level, we can still utilize fea-
ture variables to partition the data into groups. We
can think of MuL datasets as explictly MuL datasets
and most other tabular datasets as implicitly MuL
datasets. In this paper, we propose a metric, termed
MLICC, to select a feature to serve as a level for
datasets that are not explicitly MuL.

Finally, we point out a scenario that benefits from a
MuL perspective with MSR. Many useful data in the
real world are heterogeneous and come from various
sources. If we isolate our analysis based on the data
source, then we fail to use ‘shared information’ be-
tween the datasets. At the same time, there are real-
world constraints preventing the merging of the data
from different sources. We illustrate this later in the
results section through an empirical example.

The main contributions of this paper are as follows:

1. We design an algorithm, MSR, which runs multiple
parallel SR processes for each group and merges
them to produce a single function structure.

2. To tackle datasets that are not explicitly MuL, we
develop a metric, Mean Local Intraclass Correlation
Coefficient (MLICC), to select the best feature to
serve as a level.

3. We also release MSRBench, a database of MuL
datasets (synthetic and real-world) which we de-
veloped and collated to evaluate MSR.

4. Our results and ablation studies demonstrate that
MSR achieves a higher recovery rate and lower error
on MSRBench compared to SOTA methods for SR
and MuL datasets.

Kei Sen Fong, Mehul Motani

2 RELATED WORK

2.1 DistilSR

Most SR algorithms utilize traditional genetic pro-
gramming to navigate through a large search space
of function structures, resulting in a high degree of
randomness in the algorithm (Orzechowski et al.,
2018). This means that that while the search space
of function structures is defined, the actual func-
tion structures that are evaluated during the run-
time of the algorithm are a random subset of the
full search space. In contrast, DistilSR (Fong and
Motani, 2023) is an SR algorithm that exhaustively
evaluates all function structures of a well-defined con-
strained space, Fθ. By utilizing gene expression pro-
gramming’s K-Expressions (Ferreira, 2002) of a fixed
pre-selected length, a set of function structures of
varying length can be obtained. This set forms Fθ,
which is exhaustively evaluated by DistilSR, produc-
ing the best parameters for each function structure.
We can say that {argminθ∈RnL(fθ(X;θ), y)|f̂θ ∈
Fθ} ← DistilSR(X, y). The benefit of having a
fixed Fθ which is exhaustively searched through is
that we can now compare the performance for each
fθ ∈ Fθ across different sets of data. Specifically,
in MSR, running DistilSR in parallel for each group,
{(Xj , yj) | j ∈ G}, is useful to find fθ and {θj | j ∈ G}
such that fθ(Xj ;θj) ≈ yj ,∀j ∈ G.

2.2 Other SR Algorithms

Other successful SR algorithms exist for traditional SR
tasks (Jin et al., 2019; Arnaldo et al., 2014), but they
are not intentionally designed to handle MuL data and
do not perform well on them. Though still not meant
for MuL data, PS-Tree (Zhang et al., 2022) is an SR
algorithm that divides the feature space into several
subregions as one of the steps. In this paper, we com-
pare our work to PS-Tree and demonstrate the unique-
ness of MSR in successfully handling MuL data.

2.3 Multi-Level Modeling

To handle MuL data, statistical models have been built
to capture the random effects of each group (Bryk and
Raudenbush, 1992). In particular, under their multi-
level modeling assumption of linearity, the random in-
tercepts and slopes model (RISM) has become a pop-
ular out-of-the-box solution, which we use as a MuL
benchmark method in this paper. In contrast to the
simple linear models, there can be more complex mod-
els, featuring non-linear functions (Lee, 2022). How-
ever, these require hand-picked functions which require
domain knowledge and expertise to build proper pri-
ors with respect to the dataset. In our paper, we pro-

pose MSR, which comes as an out-of-the-box solution
for MuL datasets that can learn non-linear function
structures without requiring a hand-picked function.

2.4 Intraclass Correlation Coefficient (ICC)

The ICC is a descriptive statistic that is commonly
used by researchers in multi-level modeling as an indi-
cator of the suitability of a multi-level model (Bliese,
1998; Shieh, 2012). An alternative to ICC is con-
cordance correlation (CCC), but CCC is limited to
partitions that allow only 2 groups (Liu et al., 2016),
thus we adopted the more versatile ICC metric since
it allows 2 or more groups. This includes assessing
the suitability of a feature to be used as a level. In
this paper, we use the notation ICC(y; l) to indicate
the ICC of the output variable, y, given that the in-
put feature l is used as a level. The ICC models the
output variable of the model as yij = µ + γj + εij ,
for i = {1, 2, · · · , Nj}, j = {1, 2, · · · , G}, where Nj

is the number of data in the j-th group and G is
the number of groups. γj and εij are independent
random variables which are distributed as follows:
γj ∼ N

(
0, σ2

γ

)
, and εij ∼ N

(
0, σ2

ε

)
. Here, σ2

γ is in-
terpreted as the between-group variance and σ2

ε the
within-group variance. Finally, the ICC, ρ, is defined
as ρ = σ2

γ/
(
σ2
γ + σ2

ε

)
. The ICC ranges from 0 to 1,

with 0 suggesting that the total variance is attributed
to the within-group variance and hence strongly not
supporting MuL analysis and 1 suggesting that the
total variance is attributed to the between-group vari-
ance and hence strongly supporting MuL analysis. In
this paper, to estimate ICC, we use the ‘ICC(1) formu-
lation’ (Shieh, 2012). We utilize ICC as a tool to select
a feature variable to act as level on datasets where a
level is not explicitly known. This enables us to extend
the application MSR beyond explicitly MuL datasets
to general tabular datasets (implicitly MuL datasets).
In this paper, we also propose a modification to ICC to
better identify non-linear within-group relationships.

3 METHODOLOGY

3.1 MSR Algorithm

In Algorithm 1, we introduce the pseudo code for MSR
on MuL datasets (a MuL dataset is represented as
{(Xj , yj) | j ∈ G}). DistilSR is first utilized to opti-
mize the parameters for all function structures in Fθ.
In our experiments, we select a K-Expression length
of 7 and a primitive set of {+,−, ∗, /, ∗∗}, represent-
ing addition, subtraction, multiplication, division and
power. These settings were chosen in the DistilSR pa-
per to achieve short concise equations which were ar-
gued to be explainable, making them suitable for real-

Multi-Level Symbolic Regression: Function Structure Learning for Multi-Level Data

Algorithm 1: MSR Pseudo Code

Input: {(Xj , yj) | j ∈ G} ,Fθ

/* Fθ is selected by DistilSR */

Output: fθ, {θ1,θ2, · · · ,θG}
1 do in parallel

2 {θj|f̂θ |f̂θ ∈ Fθ} ← DistilSR(Xj , yj),∀j ∈ G

3 end

4 for f̂θ ∈ Fθ do

5 Vf̂θ
← H

({
MSE

(
f̂θ(Xj ;θj|f̂), yj

)
|j ∈ G

})
/* H denotes harmonic mean */

6 end

7 f̂∗
θ ← argmin

f̂θ∈Fθ

(Vf̂θ
)

8 return f̂∗
θ , {θj|f̂∗

θ
|j ∈ G}

world application (Fong and Motani, 2023). In Steps
1 to 3 of Algorithm 1, note that DistilSR processes
can be run in parallel, which allows for faster com-
putation. In the context of SR, this is an important
feature since the limitation of most SR algorithms is its
relatively long runtime when compared against most
other ML algorithms. In Steps 4 to 6 of Algorithm
1, we use the optimized parameters for each function
structure to compute the mean-squared-error (MSE)
as the loss (other types of loss can be used). We then

assign a score, Vf̂θ
, to every function structure, f̂θ,

based on the harmonic mean of MSE computed using
the function structure (and its parameters optimized
by DistilSR) across all the G groups of data. The har-
monic mean is given by H (x1, x2, . . . , xn) =

n∑n
i=1

1
xi

.

Finally, in Steps 7 to 8 of Algorithm 1, the function
structure with the best score is selected. Though us-
ing arithmetic mean for the scores might seem more
natural, we realized that doing so heavily biases the
results to the noisiest group, leading to lower predic-
tion performances. We found the harmonic mean to
be more robust to noisy groups of data, which we elab-
orate more in the results and discussion section.

3.2 Mean Local Intraclass Correlation
Coefficient (MLICC)

To tackle datasets that do not have a pre-selected level,
we develop MLICC to select the best feature to serve as
a level. While ICC has been used in multi-level model-
ing to determine if a feature can serve as a level, it has
2 limitations. First, the ICC only takes into account
the distribution of the output variable, irrespective of
input features. Second, the ICC is primarily designed
for the case where the relationship of the input fea-
tures to output variable within the groups is linear.

Algorithm 2: MLICC Pseudo Code

Input: X, y, number of clusters: K,
chosen candidate feature to serve as a level: l
Output: MLICC(X, y,K; l)

1 {Xk | k ∈ {1, · · · ,K}} ← KMeansB(X,K)
/* KMeansB denotes balanced K-means */

2 for k ∈ {1, · · · ,K} do
3 yk ← FindCorrespondingY (Xk)
4 end
5 return Mean({ICC(yk; l)|k ∈ {1, · · · ,K}})

For a MuL dataset with an output variable that has
a non-linear within-group relationship with respect to
the input features, the within-group variance of the
output variable can be exceptionally high, resulting in
low values of ICC, contrary to expectations.

To address these limitations, we modify ICC to be sen-
sitive to non-linear relationships between the input fea-
tures and output variables within each group, as out-
lined in Algorithm 2. Based on the observation that
most relationships are locally linear (Miranda Filho
et al., 2020), we utilize a clustering algorithm to cre-
ate multiple ‘local regions’, via partitioning the dataset
based on their proximity in the input feature space as
shown in Step 1 of Algorithm 2. In Steps 2 to 4 of
Algorithm 2, each of the partitions of the input fea-
tures (‘local regions’) are then used to partition the
output variables of the dataset, y. We then apply
ICC to each partition of the output variable and com-
pute the mean across the partitions. In order to gen-
erate partitions of sufficient size, we utilize the bal-
anced k-means clustering algorithm, an special case
of constrained k-means which guarantees equal-sized
clusters (Malinen and Fränti, 2014). In our work, we
select K = ⌊datasize/15⌋, which we found to strike
a balance between creating sufficiently small ‘local re-
gions’, but yet possessing sufficient samples to provide
an informative coefficient value. Other values of K are
possible, but one should note that setting K too large
assigns too few points per cluster, while setting K too
small creates too few clusters. In cases where the small
‘local regions’ possess data from only one group (using
the candidate feature serving as a level), the ICC is
not well-defined but we consider the ICC value to be
1, the maximum possible value. This is because we
intend to use MLICC in the same way ICC is used,
ranging from 0 (strong opposition for MuL analysis)
to 1 (strong proposition for MuL analysis). If a ‘lo-
cal region’ possesses only data from one group, then
we strongly lean towards recommending MuL analysis
since this is evidence in support of intra-group differ-
ence. Finally, the feature selected to be used as a level
is found via argmaxl∈featuresMLICC(X, y,K; l).

Kei Sen Fong, Mehul Motani

Table 1: Synthetic Function Structures

Name Expression

S1 {x1/x2 − x
αj

3 |j ∈ G}
S2 {(x1 − x2)

(x3−αj)|j ∈ G}
S3 {(x1 + x2) ∗ (x3 − αj)|j ∈ G}
S4 {(x1 ∗ x2)/(x3 ∗ αj)|j ∈ G}
S5 {xx2

1 ∗ (x3 − αj)|j ∈ G}
S6 {(x1 + x2) ∗ x3 ∗ αj |j ∈ G}
S7 {(x1 + x2)− x3 ∗ αj |j ∈ G}
S8 {(xx2

1 ∗ αj)/x3|j ∈ G}
S9 {x1 ∗ x2 ∗ x

αj

3 |j ∈ G}
S10 {(x1/x2)

(x3/αj)|j ∈ G}
S11 {x1/αj − x

βj

2 |j ∈ G}
S12 {(x1 − αj)

(x2−βj)|j ∈ G}
S13 {(x1 + αj) ∗ (x2 − βj)|j ∈ G}
S14 {(x1 ∗ αj)/(x2 ∗ βj)|j ∈ G}
S15 {xαj

1 ∗ (x2 − βj)|j ∈ G}
S16 {(x1 + αj) ∗ x2 ∗ βj |j ∈ G}
S17 {(x1 + αj)− x2 ∗ βj |j ∈ G}
S18 {(xαj

1 ∗ βj)/x2|j ∈ G}
S19 {x1 ∗ αj ∗ x

βj

2 |j ∈ G}
S20 {(x1/αj)

(x2/βj)|j ∈ G}

3.3 MSRBench, A Benchmark for MSR

To evaluate MSR, we developed synthetic MuL
datasets and collated real-world datasets to form
MSRBench.

Synthetic Datasets – We first define a collection
of 20 function structure, from S1 to S20 as tabu-
lated in Table 1. Let U(a, b) denote uniform random
sampling from lower limit, a, to upper limit, b. All
variables, x1, x2, x3 and parameters α, β are sampled
from U(1, 3), with a specified random seed. We cre-
ate datasets from each function structure. The dataset
names follow the following convention ‘Dataset-{rows
of data for each group}-{function structure}-{random
seed number}’. For example, in the dataset named
‘Dataset-(25,125)-S1-8’, 25 and 125 rows of (x1, x2, x3)
are sampled (using random seed 8) for group 1 and
2 respectively, then we sample the parameters (using
random seed 8), α1 (for group 1), α2 (for group 2), and
substitute these parameters into S1. The substituted
S1 is then provided the input features, (x1, x2, x3), to
generate 25 + 125 = 150 output variables.

We create 6 experiment set-ups, each consisting of 100
datasets as follows (more details are provided in Ap-
pendix A.1):

(i) Synthetic-3Var-Default:
‘Dataset-(100,100,100)-{M}-{N}’,
∀M ∈ {S1, · · · ,S10}, N ∈ {1, · · · , 10}.

(ii) Synthetic-2Var-Default:
‘Dataset-(100,100,100)-{M}-{N}’,
∀M ∈ {S11, · · · ,S20}, N ∈ {1, · · · , 10}.

(iii) Synthetic-3Var-VaryingNoise: Same as
Synthetic-3Var-Default, but output variables of
the 3 groups have different Gaussian noise with
variance of 10, 0.1 and 0.001 respectively.

(iv) Synthetic-2Var-VaryingNoise: Same as
Synthetic-2Var-Default, but output variables of
the 3 groups have different Gaussian noise with
variance of 10, 0.1 and 0.001 respectively.

(v) Synthetic-3Var-VaryingSize: ‘Dataset-
(25,125)-{M}-{N}’, ∀M ∈ {S1, · · · ,S10}, N ∈
{1, · · · , 10}.

(vi) Synthetic-2Var-VaryingSize: ‘Dataset-
(25,125)-{M}-{N}’, ∀M ∈ {S11, · · · ,S20}, N ∈
{1, · · · , 10}.

Real-World Datasets – We use 7 experiment set-
ups, with the three broad categories of MuL data
(with a provided level), non-MuL tabular data (no pre-
selected level, MLICC will be applied to determine a
level) and multi-sources data. The 7 experiement set-
ups are (more details are provided in Appendix A.2):

(i) Real-World-MuL1: MuL data from ‘pupil ed-
ucational attainment’ (Paterson, 1991).

(ii) Real-World-MuL2: MuL data from ‘ma-
lignant melanoma mortality’ (Langford et al.,
1998).

(iii) Real-World-Tabular1: Non-MuL data from
PMLB ‘1029 LEV’ (Romano et al., 2021).

(iv) Real-World-Tabular2: Non-MuL data from
PMLB ‘1030 ERA’ (Romano et al., 2021).

(v) Real-World-Tabular3: Non-MuL data from
PMLB ‘sleuth case2002’ (Romano et al., 2021).

(vi) Real-World-MultiSource1: Data from differ-
ent geographical sources: Chicago, Amsterdam
and Boston (Harrison and Rubinfeld, 1978).

(vii) Real-World-MultiSource2: Data for the US
Government bond yields sourced from different
time periods.

Datasets per set-up are made available in csv format in
the Supplementary Materials. The detailed process of
generating the synthetic data, and training and testing
processes for datasets are also found in the Supplemen-
tary Materials.

4 RESULTS AND DISCUSSION

4.1 Synthetic Data Experiments

The performance of MSR is measured in terms of re-
covery rate of function structure. For each dataset, the
top function structure selected by MSR must match
the ground-truth function structure used to generate

Multi-Level Symbolic Regression: Function Structure Learning for Multi-Level Data

Table 2: Recovery Rate of Function Structure (Higher rates are better)

MSR MSR-A MSR-U DSO-SR RISM DistilSR PS-Tree gplearn-SR
(Ours) (Ours) (Our)

Synthetic-3Var-Default 87% 79% 76% 0% 10% 0% 0% 0%
Synthetic-2Var-Default 80% 75% 65% 0% 10% 0% 0% 0%

Synthetic-3Var-VaryingNoise 76% 54% 16% 0% 10% 0% 0% 0%
Synthetic-2Var-VaryingNoise 73% 41% 10% 0% 10% 0% 0% 0%

Synthetic-3Var-VaryingSize 89% 78% 88% 0% 10% 0% 0% 0%
Synthetic-2Var-VaryingSize 80% 76% 66% 0% 10% 0% 0% 0%

the data (see Table 1) to qualify as a recovery. This
is implemented by using simplification from SymPy
followed by a manual check. To illustrate a recovery,
an example is in S11, where MSR recovers the exact
function for all j ∈ {1, 2, 3}, whereas another algo-
rithm, which failed to recover, produced x1/αj − x2

βj

for j ∈ {1, 2} and x1
αj − x2

βj for j ∈ {3}. In Table 2,
the performance of MSR is recorded, along with the
following 7 methods (resources and hyperparameters
for the methods are provided in Appendix B):

(i) MSR-Arithmetic (MSR-A), a variant of
MSR in which Step 5 of Algorithm 1 uses an
arithmetic mean instead.

(ii) MSR-Unconstrained (MSR-U), a variant of
MSR in which the function structure for each
group can be different, losing the ‘shared infor-
mation’ effect. Both MSR-A and MSR-U will be
used for ablation analysis.

(iii) Deep Symbolic Optimization Symbolic
Regression (DSO-SR), a state-of-the-art SR
algorithm that demonstrated the best perfor-
mance among other SR algorithms for recovery
of synthetic equations (Mundhenk et al., 2021;
Kim et al., 2021; Petersen et al., 2019).

(iv) RISM, introduced in related works, serves as
a benchmark to demonstrate the potential MuL
analysis despite using a simple linear model.

(v) DistilSR, introduced in related works, will be
used for ablation analysis since it is in essence,
MSR without the MuL component.

(vi) PS-Tree, introduced in related works, serves
as an SR algorithm designed for traditional SR
tasks but has some design elements that can be
useful for MuL data.

(vii) gplearn-SR, a widely-used vanilla SR algo-
rithm (Koza, 1992).

Why is MSR the only method that is able to
recover a significant number of function struc-
tures? While it would have been possible for DSO-
SR, DistilSR and gplearn-SR to recover the func-
tion structures, it is unrealistic in practice. In-

deed, the solutions could have evolved to be long
enough to capture the group level difference (i.e.
for S1 in Synthetic-3Var-Default, y = x1/x2 −
x

1j=1(j)α1+1j=2(j)α2+1j=3(j)α3

3). However, searching the
space of such long equations would increase the run-
time of the algorithm exponentially. PS-Tree does not
perform well as the splits do not occur on a sole fea-
ture and the groups are not designed to share the same
function structure. Finally, RISM is a form of MuL
analysis, but the linear assumption in RISM drasti-
cally restricts its complexity. The 10% value in RISM
for Synthetic-3Var is accounted for by the 10 datasets
generated using S7. Likewise, the 10% value in RISM
for Synthetic-2Var is accounted for by the 10 datasets
generated using S17.

Ablation: Why does MSR outperform MSR-
A? Even though MSR-A performs well relative to
the other methods, it is consistently outperformed by
MSR in all 6 experiment set-ups. The reason is that
for MSR-A, which uses an arithmetic mean in Step 5
of Algorithm 1, a high noise in any group will bias
the algorithm towards picking the best function struc-
ture that optimizes well for that group. This means
that the performance of the remaining groups (lower
noise) is barely consequential to the algorithm because
it is always overshadowed in magnitude by the ‘worst-
group performance’. In other words, MSR-A tends
to pick the function structure with the best ‘worst-
group performance’ and neglects the ‘best-group per-
formance’. This is supported by empirical results in
Table 2, in which the recovery rate decreases from 79%
and 75% to 54% and 41% respectively, when noise of
varying variance is added to the output variable. In
both set-ups with varying noise, the MSE of data in the
group with Gaussian noise of variance 10 dominated
in magnitude over the other 2 groups with Gaussian
noise of variance 0.1 and 0.001. The optimization pro-
cess of MSR-A in these 2 set-ups hence became reliant
on the function structure which fits the noisy group
the best, becoming a single-group analysis. This is
the reason why our main algorithm, MSR, chose to

Kei Sen Fong, Mehul Motani

Table 3: Rate of Obtaining the Best Prediction Performance Among 6 Methods (Higher rates are better)

MSR (Ours) DSO-SR RISM DistilSR PS-Tree gplearn-SR

Synthetic-3Var-Default 78% 6% 16% 0% 0% 0%
Synthetic-2Var-Default 81% 3% 16% 0% 0% 0%

Synthetic-3Var-VaryingNoise 79% 14% 7% 0% 0% 0%
Synthetic-2Var-VaryingNoise 82% 16% 2% 0% 0% 0%

Synthetic-3Var-VaryingSize 92% 6% 2% 0% 0% 0%
Synthetic-2Var-VaryingSize 94% 5% 1% 0% 0% 0%

use the harmonic mean. The harmonic mean has the
property that: min (x1, · · · , xn) ≤ H (x1, · · · , xn) and
H (x1, · · · , xn) ≤ nmin (x1, · · · , xn). The upper and
lower bound of the harmonic mean of MSE is depen-
dent on the minimum MSE achieved in all groups,
this helps to increase the reliance of the score given to
each function structure, Vf̂θ

, on the ‘best-group perfor-
mance’. Meanwhile, the score is still allowed to float
freely between the upper and lower bound, which is
dependent on the performance of the other groups,
including the ‘worst-group performance’. Thus, the
harmonic mean helps to strike a balance in which the
‘worst-group performance’ still affects the score of a
function structure, but the ‘best-group performance’ is
no longer neglected. When comparing MSR to MSR-
A results, it is also clear that the greatest difference
occurs in the set-ups with varying noise, confirming
the weakness of the arithmetic mean of MSE.

Ablation: Why does MSR outperform MSR-
U? When the groups do not share a common func-
tion structure, as in the case of MSR-U, the recovery
performance drops, as seen in Table 2. On inspection
of the MSR-U solution for each dataset, we notice that
MSR-U tends to overfit to the noise in the datasets
since it is now given the flexibility choose the func-
tion structure of each group regardless of the other
groups. This is verified by seeing the greatest differ-
ence in performance between MSR and MSR-U for the
datasets with varying noise. In the groups with more
noise, MSR-U overfits to the noise, obtaining a func-
tion structure for that group that is different from the
ground-truth function structure. In a sense, the shared
function structure in MSR doubles as a regularization
mechanism, in addition to its function as ‘shared infor-
mation’ and the practical advantages (i.e. a singular
function structure is preferred for explainability).

Ablation: What happens if we remove the MuL
aspect of MSR? MSR without enforcing the group-
ing is essentially DistilSR, which demonstrates much
poorer performance, with a 0% recovery in all experi-
ments as seen in Table 2.

Limitation: Why is MSR unable to recover
100% of the time? We found that in cases where
MSR fails to recover the function structure, some of
parameters for the groups, {θj | j ∈ G}, were stuck at
local optima points. This meant that the numerical
optimization used in DistilSR became a limiting factor
of the recovery rate. By swapping BFGS optimization
(Broyden, 1970) used in DistilSR to other numerical
optimization methods, we were unable to achieve con-
sistently better results even at the cost of a longer
runtime for some of these methods. This is consistent
with other SR work which also found BFGS to be most
effective in their work (Petersen et al., 2019).

In Table 3, the rate of obtaining the best prediction
performance (in terms of MSE) among MSR, DSO-SR,
RISM, DistilSR, PS-Tree and gplearn-SR is tabulated.
The sum of percentages of each row in Table 3 is 100%.

Why is MSR most frequently the best per-
former? Since MSR had a high function structure
recovery rate, we expect it to be the best performer
especially since the other models were unable to re-
cover most function structures, if any at all.

Why does MSR relative performance get even
better under varying noise and size? All the
other methods weight the error of each group equally.
In the case of varying noise, the other methods tend to
pick the best model that overfits to the noisiest group
of data. The explanation for this is provided in the
ablation discussion above. In the case of varying size,
the other methods tend to pick the best model that
overfits to the smallest-sized group. The explanation
for this is that it is hard to learn a model that gen-
eralizes well from the smallest group of data, leading
to high errors on data from the smallest-sized group.
These high errors tend to dominate in magnitude over
the errors from other groups of data, leading to overfit-
ting on the smallest-sized groups. On the other hand,
with the use of a harmonic mean of MSE for MSR, a
better metric that balances of the performance on the
groups is achieved.

Multi-Level Symbolic Regression: Function Structure Learning for Multi-Level Data

Table 4: Average prediction performance (MSE) rank (SD in brackets) of MSR using various dataset features as
levels. For both datasets, the prediction performance ranks correlate better with MLICC than ICC. MLICC is
a better selector of a suitable level than ICC since the feature with best MLICC is more often the best choice
to be used as a level for implict MSR. (Note: Results beyond the 3rd highest omitted)

Synthetic Datasets Real-World Datasets

MLICC ICC MLICC ICC

Highest Coefficient Feature 1.09 (0.29) 1.36 (0.32) 1.50 (0.52) 1.95 (0.43)

2nd Highest Coefficient Feature 2.55 (0.45) 2.81 (0.67) 2.09 (0.53) 2.55 (0.59)

3rd Highest Coefficient Feature 3.64 (0.44) 3.45 (0.57) 2.91 (0.53) 3.36 (0.65)

Figure 3: Spaghetti plot of MLICC & ICC values
against permutation noise across multiple datasets,
with varying level of permutation on the feature vari-
able selected as a level. The ideal coefficient is above
the threshold at 0% permutation noise and goes below
the threshold as permutation noise increases. MLICC
demonstrates this property better than ICC.

Outlier: For Synthetic-3Var-Default, why is
MSR’s rate in Table 3 (78%) lower than the re-
covery rate in Table 2 (87%)? In Synthetic-3Var-
Default set-up, 10 of the 100 datasets were generated
from the function structure, S7, provided in Table 1.
The function structure in S7 can be fitted perfectly
by RISM. When MSR recovers the function structure
for these 10 datasets, it occasionally loses to RISM in
terms of numerical optimization of parameters.

4.2 MLICC Experiments

Can MLICC identify features to be used as lev-
els better than ICC? We compute MLICC and
ICC on the synthetic and real-world datasets by using
different features as levels. Then, we run the MSR
algorithm by using each of these features as levels
and measure the prediction performance (in terms of

MSE). For MLICC and ICC to be a good identifier,
they should be higher for a feature if using the feature
as a level allows MSR to obtain a lower MSE (com-
pared to other candidate features). In other words,
MLICC and ICC should correlate well with the rank
of the prediction performance. In Table 4, we demon-
strate that MLICC shows a good correlation, and most
importantly, the top feature selected by MLICC is
more often the feature that leads to the lowest MSE,
as compared to ICC. Thus, in the context of MSR,
MLICC is a more effective identifier.

Is the absolute value of MLICC more use-
ful than ICC? Although not used in the context
of multi-level datasets, 2 other works have provided
guidelines of thresholds for ICC: Poor:< 0.4 (Cicchetti,
1994) and Poor: < 0.5 (Koo and Li, 2016). We ran ex-
periments across all synthetic datasets, and applied a
partial random permutation on the feature that serves
as a level (we call this permutation noise), ranging
from 0% to 100%. We then calculated the ICC and
MLICC of each of these datasets and plot the rela-
tionship of the coefficient values with the permuta-
tion noise in the spaghetti plot in Figure 3. Since
ICC ranges from a value of 0 to 1, the mean of ICCs,
MLICC, also ranges from 0 to 1. From Figure 3, it can
be seen that even when synthetic MuL data is used,
the ICC value is extremely low in most cases, close
to 0. MLICC, on the other hand, accurately reports
a sufficiently high value when there is 0 permutation
noise. As more permutation noise is added, MLICC is
also lowered, and is in fact below both thresholds. In
accordance to the thresholds of ICC in other applica-
tions, the absolute value of MLICC provides a better
indication of whether a feature serves as a level.

4.3 Real-World Data Experiments

Does MSR perform well on real-world datasets
as well? To evaluate MSR’s performance, we
measure the normalized root-mean-squared-error

Kei Sen Fong, Mehul Motani

Table 5: Average NRMSE of MSR and 5 other methods on 6 real-world experiment set-ups (SD in brackets).
MSR demonstrates the best performance (lowest NRMSE) in each set-up. (Lower NRMSE is better)

MSR (Ours) DSO-SR RISM DistilSR PS-Tree gplearn-SR

RealWorld-MuL1 0.642 (0.171) 1.07 (0.19) 0.775 (0.19) 0.995 (0.18) 0.849 (0.12) 1.18 (0.56)
RealWorld-MuL2 0.672 (0.014) 1.00 (0.018) 0.700 (0.0093) 1.00 (0.031) 0.700 (0.091) 0.731 (0.022)

RealWorld-Tabular1 0.651 (0.042) 0.708 (0.063) 0.681 (0.051) 0.82 (0.036) 0.674 (0.044) 0.812 (0.070)
RealWorld-Tabular2 0.736 (0.022) 0.828 (0.055) 0.807 (0.23) 0.851 (0.022) 0.787 (0.021) 0.833 (0.041)
RealWorld-Tabular3 0.754 (0.069) 1.03 (0.098) 0.804 (0.16) 1.04 (0.095) 0.869 (0.075) 0.801 (0.12)

RealWorld-MultiSource1 0.501 (0.061) N.A. 0.668 (0.055) N.A. N.A. N.A.
RealWorld-MultiSource2 0.207 (0.049) 0.904 (0.026) 0.447 (0.11) 0.894 (0.019) 0.288 (0.057) 0.771 (0.22)

(NRMSE) performance against DSO-SR, RISM, Dis-
tilSR, PS-Tree and gplearn-SR through the real-world
experiments. We use the formulation NRMSE =
RMSE

σy
, given in SOTA SR work (Petersen et al., 2019).

We tabulate our results in Table 5, which shows that
MSR outperforms all other methods, regardless of
whether the datasets are (i) explicitly MuL, (ii) generic
tabular (no pre-selected level) in which MLICC is used
to select a level (implictly MuL), or (iii) multi-source
in which we use the source as a level.

Why is the value associated with RealWorld-
MultiSource1 missing for 3 other methods? In
RealWorld-MultiSource1, we use housing price data
from 3 sources: Chicago, Amsterdam and Boston.
Since the 3 datasets do not share a common currency,
it is not realistic to combine the dataset for analy-
sis. Selecting a fixed exchange rate for each currency
does not accurately represent the currency as exchange
rates fluctuate with time. On the other hand, by faith-
fully using the time-varying market exchange rate, a
value that was once stationary in the original currency
will now fluctuate. Both methods distort the data. By
treating the source of the data as a level, and hence
the multiple datasets as an MuL problem, MSR is able
to avoid such complications by fitting to each dataset
separately, yet benefit from the ‘shared information’
via the common function structure.

How does MSR’s discovered function struc-
ture compare to hand-crafted function struc-
tures? In RealWorld-MultiSource2, US Government
bond yields data is used. This real-world prob-
lem has been successfully modeled with an equa-
tion and has a well-known function structure that
is used widely, with the parameters published on
a daily basis (Gürkaynak et al., 2007). The func-
tion structure can be represented as fθ(X;θ) =
β0 + β1 exp (−x1/τ1) + β2 (x1/τ1) exp (−x1/τ1) +
β3 (x1/τ2) exp (−x1/τ2), where β, τ are parameters

and x1 (the only feature of X) is the maturity in
years. This achieves an NRMSE of 0.381 on the entire
dataset. From MSR in Table 5, we obtained a much
lower NRMSE of 0.207, in which we found the function
structure, fθ(X;θ) = (x1

2+β0x1+β1)/(β2x1
2+β3x1+

β4). Interestingly, this is equivalent to a Padé approx-
imant of order [2,2], which to our best knowledge, has
been studied to be a possible alternative in model-
ing bond yields (Fowe, 2007). Though the well-known
function structure by Gürkaynak et al. (2007) is still
here to stay for legacy and domain-specific reasons,
MSR’s discovered function structure requires one less
parameter and yet achieves a better NRMSE, serving
as a testimony to MSR’s ability to discover competi-
tive function structures.

5 CONCLUSION

In this paper, we introduce the MuL approach to SR,
and propose MSR, a parallelizable algorithm which
learns a common function structure across groups
(partitioned on a level) which serves as both ‘shared
information’ and regularization. At the same time,
the learnt parameter values for each group capture the
unique within-group relationships. To tackle general
tabular datasets without a pre-selected level, we pro-
pose a new metric, MLICC, to select the best feature
to serve as a level. We then demonstrate the increased
effectiveness of MLICC over ICC on empirical exper-
iments. Then, we release MSRBench, a database of
MuL datasets which we developed and collated. Fi-
nally, through the rigorous testing of MSR on both
synthetic and real-world datasets in MSRBench, we
consistently demonstrate that MSR achieves a higher
recovery rate and lower error on MSRBench compared
to SOTA methods for SR and MuL datasets. We be-
lieve that MSR can serve as an important automated
tool in various fields, such as medicine and finance,
where the MuL nature of many clinical equations and
financial models makes MSR a perfect fit.

Multi-Level Symbolic Regression: Function Structure Learning for Multi-Level Data

Acknowledgments

This research/project is supported by the National Re-
search Foundation, Singapore under its AI Singapore
Programme (AISG Award No: AISG3-PhD-2023-08-
052T), and A*STAR, CISCO Systems (USA) Pte. Ltd
and National University of Singapore under its Cisco-
NUS Accelerated Digital Economy Corporate Labora-
tory (Award I21001E0002).

References

Arnaldo, I., Krawiec, K., and O’Reilly, U.-M. (2014).
Multiple regression genetic programming. In Pro-
ceedings of the 2014 Annual Conference on Genetic
and Evolutionary Computation, pages 879–886.

Bliese, P. D. (1998). Group size, icc values, and group-
level correlations: A simulation. Organizational re-
search methods, 1(4):355–373.

Broyden, C. G. (1970). The convergence of a class of
double-rank minimization algorithms 1. general con-
siderations. IMA Journal of Applied Mathematics,
6(1):76–90.

Bryk, A. S. and Raudenbush, S. W. (1992). Hierar-
chical linear models: applications and data analysis
methods. Sage Publications, Inc.

Cicchetti, D. V. (1994). Guidelines, criteria, and rules
of thumb for evaluating normed and standardized
assessment instruments in psychology. Psychological
assessment, 6(4):284.

Cockcroft, D. W. and Gault, H. (1976). Predic-
tion of creatinine clearance from serum creatinine.
Nephron, 16(1):31–41.

Ferreira, C. (2002). Gene Expression Programming in
Problem Solving, pages 635–653. Springer London,
London.

Ferreira, J., Pedemonte, M., and Torres, A. I. (2019).
A genetic programming approach for construction
of surrogate models. In Computer Aided Chemical
Engineering, volume 47, pages 451–456. Elsevier.

Fong, K. S. and Motani, M. (2023). Distilsr: A dis-
tilled version of gene expression programming sym-
bolic regression. In Proceedings of the Companion
Conference on Genetic and Evolutionary Computa-
tion, pages 567–570.

Fowe, T.-k. (2007). Pade approximants and one of its
applications. Master’s thesis, University of Central
Florida, https://stars.library.ucf.edu/etd/3160.

Gürkaynak, R. S., Sack, B., and Wright, J. H. (2007).
The us treasury yield curve: 1961 to the present.
Journal of monetary Economics, 54(8):2291–2304.

Hamaker, E. L. and Muthén, B. (2020). The fixed ver-
sus random effects debate and how it relates to cen-

tering in multilevel modeling. Psychological meth-
ods, 25(3):365.

Harrison, D. and Rubinfeld, D. L. (1978). Hedonic
housing prices and the demand for clean air. Jour-
nal of Environmental Economics and Management,
5(1):81–102.

Inker, L. A., Eneanya, N. D., Coresh, J., Tighiouart,
H., Wang, D., Sang, Y., Crews, D. C., Doria, A.,
Estrella, M. M., Froissart, M., et al. (2021). New
creatinine-and cystatin c–based equations to esti-
mate gfr without race. New England Journal of
Medicine, 385(19):1737–1749.

Jin, Y., Fu, W., Kang, J., Guo, J., and Guo, J.
(2019). Bayesian symbolic regression. arXiv preprint
arXiv:1910.08892.

Kim, J. T., Larma, M. L., and Petersen, B. K.
(2021). Distilling wikipedia mathematical knowl-
edge into neural network models. arXiv preprint
arXiv:2104.05930.

Koo, T. K. and Li, M. Y. (2016). A guideline of
selecting and reporting intraclass correlation coeffi-
cients for reliability research. Journal of chiropractic
medicine, 15(2):155–163.

Koza, J. R. (1992). Genetic programming. on the pro-
gramming of computers by means of natural selec-
tion. Complex adaptive systems.

La Cava, W., Orzechowski, P., Burlacu, B., de França,
F. O., Virgolin, M., Jin, Y., Kommenda, M., and
Moore, J. H. (2021). Contemporary symbolic re-
gression methods and their relative performance.
Neurips Track on Datasets and Benchmarks.

Langford, I. H., Bentham, G., and McDonald, A.-L.
(1998). Multi-level modelling of geographically ag-
gregated health data: a case study on malignant
melanoma mortality and uv exposure in the euro-
pean community. Statistics in medicine, 17(1):41–
57.

Lee, S. Y. (2022). Bayesian nonlinear models for re-
peated measurement data: An overview, implemen-
tation, and applications. Mathematics, 10(6):898.

Levey, A. S., Stevens, L. A., Schmid, C. H., Zhang, Y.,
Castro III, A. F., Feldman, H. I., Kusek, J. W., Eg-
gers, P., Van Lente, F., Greene, T., et al. (2009). A
new equation to estimate glomerular filtration rate.
Annals of internal medicine, 150(9):604–612.

Liu, J., Tang, W., Chen, G., Lu, Y., Feng, C., and Tu,
X. M. (2016). Correlation and agreement: overview
and clarification of competing concepts and mea-
sures. Shanghai archives of psychiatry, 28(2):115–
120.

Malinen, M. I. and Fränti, P. (2014). Balanced k-
means for clustering. In Structural, Syntactic, and

Kei Sen Fong, Mehul Motani

Statistical Pattern Recognition: Joint IAPR Inter-
national Workshop, S+ SSPR 2014, Joensuu, Fin-
land, August 20-22, 2014. Proceedings, pages 32–41.
Springer.

Miranda Filho, R., Lacerda, A., and Pappa, G. L.
(2020). Explaining symbolic regression predictions.
In 2020 IEEE congress on evolutionary computation
(CEC), pages 1–8. IEEE.

Mundhenk, T. N., Landajuela, M., Glatt, R., San-
tiago, C. P., Faissol, D. M., and Petersen, B. K.
(2021). Symbolic regression via neural-guided
genetic programming population seeding. arXiv
preprint arXiv:2111.00053.

Orzechowski, P., La Cava, W., and Moore, J. H.
(2018). Where are we now? a large benchmark study
of recent symbolic regression methods. In Proceed-
ings of the Genetic and Evolutionary Computation
Conference, pages 1183–1190.

Paterson, L. (1991). Socio-economic status and educa-
tional attainment: a multi-dimensional and multi-
level study. Evaluation & Research in Education,
5(3):97–121.

Petersen, B. K., Larma, M. L., Mundhenk, T. N., San-
tiago, C. P., Kim, S. K., and Kim, J. T. (2019).
Deep symbolic regression: Recovering mathematical
expressions from data via risk-seeking policy gra-
dients. The International Conference on Learning
Representations.

Romano, J. D., Le, T. T., La Cava, W., Gregg, J. T.,
Goldberg, D. J., Chakraborty, P., Ray, N. L., Him-
melstein, D., Fu, W., and Moore, J. H. (2021). Pmlb
v1.0: an open source dataset collection for bench-
marking machine learning methods. arXiv preprint
arXiv:2012.00058v2.

Shieh, G. (2012). A comparison of two indices for the
intraclass correlation coefficient. Behavior research
methods, 44:1212–1223.

Sun, S., Ouyang, R., Zhang, B., and Zhang, T.-Y.
(2019). Data-driven discovery of formulas by sym-
bolic regression. MRS Bulletin, 44(7):559–564.

Udrescu, S.-M. and Tegmark, M. (2020). AI Feynman:
A physics-inspired method for symbolic regression.
Science Advances, 6(16):eaay2631.

Wang, Y., Wagner, N., and Rondinelli, J. M. (2019).
Symbolic regression in materials science. MRS Com-
munications, 9(3):793–805.

Zhang, H., Zhou, A., Qian, H., and Zhang, H.
(2022). Ps-tree: A piecewise symbolic regres-
sion tree. Swarm and Evolutionary Computation,
71:101061.

Multi-Level Symbolic Regression: Function Structure Learning for Multi-Level Data

A DATASET DETAILS – MSRBench

MSRBench is a collection of synthetic MuL datasets we developed and real-world datasets we collated.

A.1 Synthetic Datasets

Table 6: Synthetic Function Structures

Name Expression Name Expression

S1 {x1/x2 − x
αj

3 |j ∈ G} S11 {x1/αj − x
βj

2 |j ∈ G}
S2 {(x1 − x2)

(x3−αj)|j ∈ G} S12 {(x1 − αj)
(x2−βj)|j ∈ G}

S3 {(x1 + x2) ∗ (x3 − αj)|j ∈ G} S13 {(x1 + αj) ∗ (x2 − βj)|j ∈ G}
S4 {(x1 ∗ x2)/(x3 ∗ αj)|j ∈ G} S14 {(x1 ∗ αj)/(x2 ∗ βj)|j ∈ G}
S5 {xx2

1 ∗ (x3 − αj)|j ∈ G} S15 {xαj

1 ∗ (x2 − βj)|j ∈ G}
S6 {(x1 + x2) ∗ x3 ∗ αj |j ∈ G} S16 {(x1 + αj) ∗ x2 ∗ βj |j ∈ G}
S7 {(x1 + x2)− x3 ∗ αj |j ∈ G} S17 {(x1 + αj)− x2 ∗ βj |j ∈ G}
S8 {(xx2

1 ∗ αj)/x3|j ∈ G} S18 {(xαj

1 ∗ βj)/x2|j ∈ G}
S9 {x1 ∗ x2 ∗ x

αj

3 |j ∈ G} S19 {x1 ∗ αj ∗ x
βj

2 |j ∈ G}
S10 {(x1/x2)

(x3/αj)|j ∈ G} S20 {(x1/αj)
(x2/βj)|j ∈ G}

To generate synthetic datasets, we first define a collection of 20 function structures, from S1 to S20 as tabulated in
Table 6. These function structures were selected randomly (with random seed 0) from all possible K-Expressions
(Ferreira et al., 2019) of length 7 with a primitive set of {+,−, ∗, /, ∗∗}, representing addition, subtraction,
multiplication, division and power.

Then we generate the parameters, α, β, which were sampled uniformly from a range of 1 to 3, inclusive. These
parameter values were then substituted into the equations to generate the ‘ground truth’. Only after the ‘ground
truth’ is selected, the values of the variables, x1, x2, x3, are selected, again from a uniform random sampling
(with a specified random seed) from a range of 1 to 3. This allows us to create datasets from each function
structure.

To make the datasets name meaningful to the reader, we use the following convention in naming our datasets:
‘Dataset-{rows of data for each group}-{function structure}-{random seed number}’. For example, in the dataset
named ‘Dataset-(25,125)-S1-8’, we sample the parameters (using random seed 8), α1 (for group 1), α2 (for group
2), and substitute these parameters into S1. More specifically, by referring to our files for ‘Dataset-(25,125)-S1-8’,
y = x1/x2 − x2.94312717

3 for j = 1 and for y = x1/x2 − x1.89899397
3 for j = 2.

The substituted S1 then forms the ‘ground truth’ for these dataset, which MSR and the other methods aims to
recover. 25 and 125 rows of (x1, x2, x3) are then sampled (using random seed 8) for group 1 and 2 respectively,
which are provided to the ‘ground truth’ to generate the outputs.

We create 6 experiment set-ups, each consisting of 100 datasets as follows:

1. Synthetic-3Var-Default: ‘Dataset-(100,100,100)-{M}-{N}’, ∀M ∈ {S1, · · · ,S10}, N ∈ {1, · · · , 10}.

2. Synthetic-2Var-Default: ‘Dataset-(100,100,100)-{M}-{N}’, ∀M ∈ {S11, · · · ,S20}, N ∈ {1, · · · , 10}.

Kei Sen Fong, Mehul Motani

3. Synthetic-3Var-VaryingNoise: ‘Dataset-(100,100,100)-{M}-{N}’, ∀M ∈ {S1, · · · ,S10}, N ∈
{1, · · · , 10} but with output variables of the 3 groups having different Gaussian noise with variance of
10, 0.1 and 0.001 respectively.

4. Synthetic-2Var-VaryingNoise: ‘Dataset-(100,100,100)-{M}-{N}’, ∀M ∈ {S11, · · · ,S20}, N ∈
{1, · · · , 10} but with output variables of the 3 groups having different Gaussian noise with variance of
10, 0.1 and 0.001 respectively.

5. Synthetic-3Var-VaryingSize: ‘Dataset-(25,125)-{M}-{N}’, ∀M ∈ {S1, · · · ,S10}, N ∈ {1, · · · , 10}.

6. Synthetic-2Var-VaryingSize: ‘Dataset-(25,125)-{M}-{N}’, ∀M ∈ {S11, · · · ,S20}, N ∈ {1, · · · , 10}.

A.2 Real-World Datasets

We created 7 experiment set-ups as well, each using one real-world dataset:

1. RealWorld-MuL1: MuL data on ‘malignant melanoma mortality’ (Langford et al., 1998) with a pre-
selected level.

2. RealWorld-MuL2: MuL data ‘pupil educational attainment’ (Paterson, 1991) with a pre-selected level.

3. RealWorld-Tabular1: Non-MuL (no pre-selected level) data from ‘1029 LEV’ in PMLB database(Romano
et al., 2021) (under MIT License). Using MLICC, x2 was selected as a level.

4. RealWorld-Tabular2: Non-MuL (no pre-selected level) data from ‘1030 ERA’ in PMLB database(Romano
et al., 2021) (under MIT License). Using MLICC, x2 was selected as a level.

5. RealWorld-Tabular3: Non-MuL (no pre-selected level) data from ‘sleuth case2002’ in PMLB
database(Romano et al., 2021) (under MIT License). Using MLICC, x1 was selected as a level.

6. RealWorld-MultiSource1: Data from different sources that provides data for the geographical locations,
Chicago, Amsterdam and Boston (Harrison and Rubinfeld, 1978) respectively (under CC0: Public Domain
License).

7. RealWorld-MultiSource2: Data for the US Government bond yields sourced from 3 January 2022 to 30
December 2022.

B EXPERIMENT DETAILS

We used 7 algorithms for the experiments: MSR-A is a variant of MSR which uses an arithmetic mean instead.
MSR-U is a variant of MSR in which the function structure for each group can be different. DistilSR, MSR and
the MSR variants use K-Expressions of length 7 with a primitive set of {+,−, ∗, /, ∗∗}, representing addition,
subtraction, multiplication, division and power, as these settings allowed for high prediction performance and
yet remains explainable (Fong and Motani, 2023). Deep Symbolic Optimization Symbolic Regression (DSO-
SR) is a state-of-the-art SR algorithm that demonstrated the best performance among other SR algorithms for
recovery of synthetic equations (Mundhenk et al., 2021; Kim et al., 2021; Petersen et al., 2019). We selected
the hyperparameters according to what was tuned to produce the best performance on the paper’s recovery rate
experiments, which is inclusive of the selection of primitive set of {+,−, ∗, /, sin, cos, exp, log}. RISM, which
was introduced in the related works section, serves as a benchmark to demonstrate the potential MuL analysis
despite using a simple linear model. PS-Tree used the default hyperparameters. gplearn-SR is a widely-used
vanilla SR algorithm (Koza, 1992), which we tuned to find that {+,−, ∗, /, ∗∗} to be the best primitive set for
the synthetic data. The same hyperparameters were used throughout the synthetic and real-world experiments.
All experiments were run on Intel(R) Xeon(R) CPU E5-2627 v4@2.30GHz and 128GB RAM.

All experiments used a 75-25 train-test split, with the exception of RealWorld-MultiSource2, in which a 82-18
train-test split in order to have sufficient training data for each group.

Multi-Level Symbolic Regression: Function Structure Learning for Multi-Level Data

C EXPERIMENT FILES

The link for the files are: https://github.com/kentridgeai/MSR-Supplementary

Following the sequence of the Methodology subsections:

1. Link for MSR Algorithm– https://github.com/kentridgeai/MSR-Supplementary/tree/main/MSR.

Contains Jupyter notebook example with MSR algorithm implementation and accompanied with supporting
files.

2. Link for MLICC – https://github.com/kentridgeai/MSR-Supplementary/tree/main/MLICC.

Contains Jupyter notebook example with MLICC implementation and accompanied with supporting files.

3. Link for MSRBench – https://github.com/kentridgeai/MSR-Supplementary/tree/main/MSRBench.

Contains csv files used in experiments along with ground truth equations for synthetic datasets.

https://github.com/kentridgeai/MSR-Supplementary
https://github.com/kentridgeai/MSR-Supplementary/tree/main/MSR
https://github.com/kentridgeai/MSR-Supplementary/tree/main/MLICC
https://github.com/kentridgeai/MSR-Supplementary/tree/main/MSRBench

	INTRODUCTION
	RELATED WORK
	DistilSR
	Other SR Algorithms
	Multi-Level Modeling
	Intraclass Correlation Coefficient (ICC)

	METHODOLOGY
	MSR Algorithm
	Mean Local Intraclass Correlation Coefficient (MLICC)
	MSRBench, A Benchmark for MSR

	RESULTS AND DISCUSSION
	Synthetic Data Experiments
	MLICC Experiments
	Real-World Data Experiments

	CONCLUSION
	DATASET DETAILS – MSRBench
	Synthetic Datasets
	Real-World Datasets

	EXPERIMENT DETAILS
	EXPERIMENT FILES

