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Abstract

Randomized controlled trials (RCTs) are
gold standards for assessing intervention effi-
cacy. Yet, generalizing evidence from classi-
cal RCTs can be challenging and sometimes
problematic due to their limited external va-
lidity under stringent eligibility criteria and
inadequate statistical power resulting from
limited sample sizes under budgetary con-
straints. “Digital clinical trial,” which uti-
lizes digital technology and electronic medi-
cal records (EMRs) to expand eligibility cri-
teria and enhance data collection efficiency,
offers a promising concept for solving the
above-mentioned conundrums encountered in
classical RCTs. In this paper, we propose two
novel digital clinical trial design strategies as-
sisted by EMRs collected from diverse pa-
tient populations. On the one hand, leverag-
ing digital technologies, our design strategies
adaptively modify both the eligibility criteria
and treatment assignment mechanism to en-
hance data collection efficiency. As a result,
evidence gathered from our design can pos-
sess greater statistical power. On the other
hand, since EMRs capture diverse patient
populations and provide large sample sizes,
our design not only broadens the trial’s eligi-
bility criteria but also enhances its statistical
power, enabling us to collect more generaliz-
able evidence with boosted statistical power
for evaluating intervention efficacy than clas-
sical RCTs. We demonstrate the validity and
merit of the proposed designs with detailed
theoretical investigation, simulation studies,
and a synthetic case study.
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1 INTRODUCTION

1.1 Motivation and Contribution

In clinical studies, randomized controlled trials
(RCTs) are considered gold standards for assess-
ing the safety of new drugs and the efficacy of in-
terventions. Leveraging the randomized treatment
assignment mechanism, RCTs can provide reliable
causal conclusions. However, traditional clinical tri-
als present two practical challenges that can hamper
the generalization of their results. On the one hand,
although classical RCTs aim to determine the efficacy
of a treatment in a general population, the causal effect
estimator derived from such trials can significantly dif-
fer from this objective. This deviation can arise from
restrictive enrollment criteria and challenges in reach-
ing diverse populations. For example, after studying
32 major HIV RCTs, Gandhi et al. (2005) has sug-
gested that the eligibility criteria of HIV trials exclude
a large proportion of HIV-infected women from being
enrolled in the trial. As the trial population is not
representative of the general population, the obtained
evidence may not be generalizable.

On the other hand, due to high implementation
costs, traditional RCTs can only recruit a relatively
small number of participants, and treatments are of-
ten administered with fixed randomization probabil-
ity throughout the trial. Not only does the limited
sample size restrict the statistical power of confirm-
ing the treatment efficacy, but the fixed randomization
raises concerns regarding inefficient data usage. Imag-
ine a scenario where, during a trial, outcomes in the
placebo arm show little variability but vary widely in
the treatment arm. In this case, it is reasonable to
assign more future patients to the treatment arm be-
cause the increased variability in outcomes suggests a
need for further investigation.

With the rise of digital technology and increased avail-
ability of electronic medical records (EMRs), “digi-
tal clinical trial” is an emerging new concept to solve
the above-mentioned challenges. In a joint workshop
hosted by the National Institutes of Health and the
National Science Foundation in 2019, “Digital clinical
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trial” refers to utilizing digital technology to broaden
patient enrollment and optimize data collection. Intu-
itively, online platforms can send push notifications
to encourage patient enrollment or digitally revise
the treatment allocation scheme while monitoring pa-
tients’ response to the treatment.

In this paper, we propose a novel digital clinical trial
design leveraging external EMRs to deliver robust and
generalizable causal evidence. Given the rich and di-
verse information contained in EMR data, we note
that our approach is just one of many methods for in-
tegrating EMR data, particularly when data on histor-
ical subpopulations and outcomes are accessible. We
summarize our contributions as follows:

From a methodological perspective, (i) we provide the
mathematical formulation of digital clinical trial de-
sign assisted by the external EMR data (Section 2),
such that the evidence collected from our digital clini-
cal trials can be easily generalized to the broader pop-
ulation. (ii) Our design realizes the promise of dig-
ital clinical trials by broadening the enrollment cri-
teria and improving the efficiency of the data collec-
tion mechanism (Section 3). These can be achieved
by adaptively revising the randomization probability
and enrollment criteria in digital platforms. (iii) We
propose two flexible design strategies operating under
different practical considerations (Section 4.1 and 4.2),
allowing practitioners to choose a design based on how
closely the treatment effect in the general population
aligns with that of the trial population.

From a theoretical perspective, we first demonstrate
the merit of designing EMR-assisted digital clinical
trials by showcasing the improved efficiency under our
design compared with the design without using EMR
data (Remark 2). Second, we establish the statisti-
cal validity of our design by showing the asymptotic
normality of our proposed estimator and the conver-
gence of our derived design strategies (Theorem 1).
As our design operates in an adaptive manner and the
collected data depend on historical data, we address
the challenge of establishing theoretical results of de-
pendent and non-identically distributed data (Theo-
rem 1). Third, we demonstrate that our design can
deliver valid statistical inference in a realistic setting
where the treatment effect in the general population
may not align with that of the trial population (The-
orem 2).

From an application perspective, our design demon-
strates robust finite sample performance compared to
other benchmark designs. In the simulation studies
(Section 6), our design achieves higher estimation ef-
ficiency than the design without incorporating any
EMR data. Furthermore, we provide guidance regard-

ing the performance of our design under different lev-
els of misalignment of treatment effects between the
general population and the trial population. In the
synthetic case study, we demonstrate that our design
can help uncover significant effects by re-designing an
HIV cash transfer trial assisted by an external EMR
database.

1.2 Related Literature

Our paper is motivated by recent advances in digi-
tal clinical trials (Inan et al., 2020; Steinhubl et al.,
2019). Digital tools offer convenience, reducing the
burden on participants and coordinators, thereby en-
abling broader enrollment and greater generalizability
of the trial (Zhan et al., 2018). Additionally, digi-
tal platforms for massive data collection can enhance
experimental design and estimation efficiency. How-
ever, existing studies do not provide a comprehen-
sive framework for efficient digital clinical trial design
(Perez et al., 2019; Garcia and et al., 2022). Further-
more, our proposed digital clinical design leverages
external EMR data, which are known to encompass
extensive patient information, such as demographics,
medical history, and lab tests (Sun et al., 2018). EMR
data have gained increasing attention because they can
facilitate evidence-based medicine (Frankovich et al.,
2011; Hoffman and Williams, 2011) and improve the
quality of primary care (Bates et al., 2003; Wang et al.,
2003; Ayaad et al., 2019).

Our proposed digital clinical trial design strategy has
a connection with adaptive experiment literature. It
naturally connects with response-adaptive randomiza-
tion (RAR) design, which refers to the design that
adaptively revises treatment assignment probabilities
based on the collected outcomes accrued during the ex-
periment (Eggenberger and Pólya, 1923; Zelen, 1969;
Rosenberger and Lachin, 1993; Williamson et al., 2017;
Hu and Rosenberger, 2003). Furthermore, it connects
with adaptive enrichment design (Simon and Simon,
2013; Thall, 2021; Lai et al., 2019; Stallard, 2023),
which uses interim analysis to revise patient enroll-
ment criteria such that the benefitted patient groups
can be identified at the end of the trial.

Our estimation of causal effects in digital clinical tri-
als is related to the literature on statistical infer-
ence with adaptively collected datasets. For exam-
ple, Zhang et al. (2021) proposed inference strategies
based on M-estimation for adaptively collected data.
Dimakopoulou et al. (2021) discussed online bandits
with adaptive inference. Shi et al. (2023) introduced a
unified statistical inference framework for multi-armed
bandits to estimate causal parameters with delayed
outcomes. Shi et al. (2022) proposed statistical infer-
ence for confounded Markov decision processes. Hadad
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et al. (2021) introduced a class of test statistics for pol-
icy evaluation in adaptive experiments.

Our paper also relates to the literature on data in-
tegration, which aims to estimate the causal effect of
the target population by combining RCTs and obser-
vational studies. In cases where observational data
only contains covariate information, various meth-
ods can be applied, such as stratification (Buchanan
et al., 2018), the plug-in g-formula (Dahabreh et al.,
2020), inverse probability of sampling weighting (Col-
net et al., 2022), and calibration weighting (Lee et al.,
2023). When observational data contain treatment
and outcome information, Li et al. (2023) and Yang
et al. (2020) use the semiparametric efficiency theory
to derive a semiparametrically efficient integrative es-
timator.

2 PROBLEM SETUP

In this section, we will mathematically formulate the
challenges and definition of designing digital clinical
trials assisted by external EMRs. We will then es-
tablish the promise of digital clinical trials assisted by
EMR data.

We start by providing the observed EMR data struc-
ture under consideration. Suppose EMR data are col-
lected from N patients in a general population. Given
a medication or a treatment of interest, we hope to
assess its efficacy by investigating its average treat-
ment effect (ATE) measured in this general popula-
tion. To rigorously quantify this causal effect, for
i “ 1, . . . , N , let Yi P R denote patient i’s observed
outcome, Di P t0, 1u the treatment assignment sta-
tus with Di “ 0 being the control and Di “ 1 being
the treatment, and Xi P Rp the patients’ covariate
information (such as biomarkers and demographics).
We note that the EMRs considered in our paper only
contain controls collected from the general population.
That is, we restrict Di “ 0, for i “ 1, . . . , N , for the
EMRs to be integrated into our designs. Following the
Neyman-Rubin causal model (Splawa-Neyman et al.,
1990; Rubin, 1974), we define Yipdq as the potential
outcome we would have observed under treatment d,
d P t0, 1u. To set a clear difference between the EMR
data and the trial data to be introduced, we introduce
a variable Zi P t0, 1u, where Zi “ 0 denotes EMR data
source, Zi “ 1 denotes trial data source. We are now
ready to define our target parameter of interest, which
is the ATE in the general population,

τ “ ErYip1q ´ Yip0q|Zi “ 0s. (1)

Directly estimating the ATE in the general popula-
tion τ from EMRs can be challenging for two reasons.

On the one hand, EMR data typically only contain
the control arm information, making the estimation
of causal effect infeasible. On the other hand, even
when EMR data contain both treatment and control
arms information, the estimation of causal effect can
be confounded by unmeasured confounding variables,
potentially delivering unreliable causal conclusions.

Clinical trials (or RCTs) seemingly provide a natu-
ral remedy to address the above-mentioned challenges
that emerged in EMR data because the treatments
are randomly assigned to patients and are thus inde-
pendent of all unmeasured confounders. Nevertheless,
as pointed out in Gandhi et al. (2005) and Fehren-
bacher et al. (2009), RCTs recruit participants in a
restricted population, suggesting the covariate distri-
bution in RCTs may substantially differ from the gen-
eral population’s. Therefore, the sample collected from
RCTs might be adopted to characterize a parameter
different from τ . Without loss of generality, we denote
the target parameter in RCTs as

τtrial “ ErYip1q ´ Yip0q|Zi “ 1s ‰ τ,

where Zi “ 1 denotes the subject i being collected
from RCTs. Furthermore, due to the high costs of
clinical trials, not only the sample size of clinical tri-
als is typically limited, but the data collection mech-
anism with fixed randomization is prevalent, suggest-
ing a potentially inefficient allocation of trial efforts.
Given these two concerns, it remains uncertain how ef-
fectively traditional RCTs can inform clinical decisions
regarding treatment efficacy in the general population.

With the help of digital technology, the concept of
“digital clinical trials” has been proposed to revolu-
tionize traditional RCTs (Inan et al., 2020) with the
promise of broadening enrollment and optimizing data
collection. This is because, rather than conducting
fixed randomization and enrollment criteria through-
out the trial, digital technologies enable practitioners
to use the accrued evidence to flexibly revise the ran-
domization probability as well as the enrollment cri-
teria in multiple stages, potentially without limit. In
particular, the randomization probability can be se-
quentially modified to allocate more (less) treatments
to strata exhibiting greater (lower) variability in the
outcome variable. This allows practitioners to improve
the data collection efficiency, and thus, the statistical
power of identifying the desired treatment effect can
be potentially elevated.

To provide a comprehensive understanding of how dig-
ital clinical trials enhance traditional RCTs, Section 3
will be dedicated to a detailed exploration. In the re-
mainder of this section, we will focus on systematically
introducing the data collection mechanisms utilized in
digital clinical trials.
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Suppose in a digital clinical trial, subjects are enrolled
in the trial across t “ 1, . . . , T stages, and the total
number of subjects enrolled in the trial is n “

řT
t“1 nt,

where nt is the number of subjects enrolled in Stage t.
For the subjects i at Stage t, we denote the treatment
assignment status as Dit P t0, 1u, and the covariates
Xit P Rp. Clinical trials typically involve pre-specified
patient subpopulations defined by the covariates; that
is, we assume the sample space of covariates can be
divided into K non-overlapping regions X “

ŤK
k“1 Sk.

We denote the total number of individuals enrolled in
subpopulation k in the EMR data as Nk. The to-
tal number of subjects enrolled in the digital clinical
trial in subpopulation k is nk “

řT
t“1 ntk. Lastly, we

denote the observed outcome as Yit P R and assume
the outcomes are observed at the end of each stage
without delay. Similarly, we can define the potential
outcomes as Yitpdq, d P t0, 1u. Together, we consider
the following digital clinical trial data structure:

(Digital clinical trial data). Across T stages, we
observe the dataset: tpYit, Dit, Xit, Zitq

nt
i“1uTt“1.

Because digital clinical trials can enroll patients se-
quentially across multiple stages and revise design
strategies at the end of each stage, we have the unique
opportunity to revolutionize traditional clinical trials
by flexibly revising two features that are typically fixed
in traditional trials: (1) enrollment eligibility crite-
ria and (2) treatment assignment probability. Let
the enrollment proportion and the treatment assign-
ment probability in each subpopulation at trial Stage
t be ptk and etk, respectively. For t “ 1, . . . , T, k “

1, . . . ,K,

ptk : “ P pXit P Sk | Zit “ 1q , (2)

etk : “ P pDit “ 1 | Xit P Skq .

In our digital clinical trial design, we will adaptively
revise ptk and etk, assisted by external EMR data. By
revising these two quantities, we hope to fulfill the
promise of digital clinical trials : (1) broaden eligibil-
ity criteria, and (2) allocate treatments to efficiently
estimate τ in Eq (1).

3 THE PROMISE OF DIGITAL
CLINICAL TRIALS

In this section, we shall introduce the objective of our
digital clinical trial to showcase the promise of digi-
tal clinical trials. The promise of digital clinical trials
includes (1) broadening eligibility criteria and (2) im-
proving the estimation efficiency of the ATE. We show
that our design fulfills the first promise in Remark 1
under an oracle setting. By “oracle”, we refer to the
setting where we have perfect knowledge regarding the

data-generating distribution, such that the true pa-
rameters are known. We demonstrate that our design
fulfills the second promise by showing the estimator
under our design achieves higher semiparametric ef-
ficiency than the design without incorporating EMR
data (Remark 2, Section 5). As our design leverages
both the EMR data and the clinical trial data, in the
oracle setting, we make the “perfect transportability”
assumption:

Assumption 1 EpY pdq|X,Z “ 0q “ EpY pdq|X,Z “

1q, d P t0, 1u.

Assumption 1 assumes that the conditional expecta-
tion of potential outcomes under each treatment arm
is the same in the EMR data and the trial data. In
Section 4.2, we shall provide a novel design strategy in
which perfect transportability is not required.

Our goal is to find the optimal digital clinical trial
design assisted by EMR data, such that we can effi-
ciently estimate τ in Eq (1). To estimate τ , we adopt
a stratified version of the estimator in Li et al. (2023):

τ̂ “

K
ÿ

k“1

Nk

N
τ̂k, (3)

τ̂k “ Êr
1 ´ Z

1 ´ π̂k
pm̂1pXq ´ m̂0pXq `

DZ

π̂kêk
pY ´ m̂1pXqq

´
Zp1 ´ Dq ` p1 ´ Zqr̂pXq

π̂k p1 ´ êkq ` p1 ´ π̂kq r̂pXq
pY ´ m̂0pXqqs,

where all the quantities with subscript k indexes sub-
population k. Here, π̂k is the estimator for πk “ PpZ “

1|X P Skq, the proportion of subjects from the trial in
subpopulation k. m̂dpXq is the estimator for the condi-
tional expectationmdpXq “ ErY |X,D “ d, Z “ 1s. êk
is the estimator for ek “ PpD “ 1|X P Skq, the treat-
ment assignment probability in subpopulation k. r̂pXq

is the estimator for the variance ratio of the potential
outcome under the control arm in the two data sources:
rpXq “

VpY p0q|X,Z“1q

VpY p0q|X,Z“0q
. Let the asymptotic variance of

τ̂ under enrichment proportions p “ pp1, . . . , pKq and
treatment allocations e “ pe1, . . . , eKq as Vrτ̂pp, eqs.

Our design goal is to minimize the variance of esti-
mating τ by working with the optimization Problem
1. By solving this oracle problem, we can find the ora-
cle treatment allocation e˚ “ pe˚

1 , ..., e
˚
Kq and the ora-

cle subpopulation proportion p˚ “ pp˚
1 , ..., p

˚
Kq. Here,

c1 P p0, 1{2q, p0k is the subpopulation proportion in
the EMR data, and pk is the subpopulation propor-
tion in the trial. κ0 is the asymptotic proportion of
EMR data when combining EMR data and the trial
data, and ek is the treatment allocation in the trial.
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Problem 1.

min
p,e

Vrτ̂pp, eqs

“

K
ÿ

k“1

p20kt
pτk ´ τq2

κ0p0k ` p1 ´ κ0qpk

`
σ2
1k

p1 ´ κ0qpkek
`

σ2
0k

p1 ´ κ0qpk p1 ´ ekq ` κ0p0krk

*

,

s.t.
K
ÿ

k“1

pk “ 1, pk ą 0, k “ 1, . . . ,K

c1 ď ek ď 1 ´ c1, k “ 1, . . . ,K

τk “ ErY p1q ´ Y p0q|X P Sk, Z “ 0s and σ2
dk “

E rVrY pdq | X,Z “ 1s | X P Sks, d P t0, 1u, denote
the treatment effect and the associated variance
in subpopulation k, respectively. Lastly, rk “

E rrpXq | X P Sks, where rpXq “
VpY p0q|X,Z“1q

VpY p0q|X,Z“0q
. As

the solution to Problem 1 does not have a closed-
form expression, we provide some insights on the ora-
cle solution in a simplified setting in Remark 1.

Remark 1 (Oracle solution in the presence of
binary outcomes) Assume the outcome Y is binary.
Under Assumption 1, we have rk “ 1, hence the oracle
solutions are

p˚
k “

«

wk

p1 ´ κ0q
řK

k“1 wkp0k
´

κ0

1 ´ κ0

ff

p0k,

e˚
k “

σ1k

´

1 `
κ0p0k

p1´κ0qp˚
k

¯

σ0k ` σ1k
,

where wk “

´

pσ1k ` σ0kq
2

` pτk ´ τq
2
¯1{2

.

The oracle subpopulation enrichment proportion p˚
k

suggests that when σdk and τk do not differ too much
across K subpopulations, p˚

k « p0k, implying that the
oracle subpopulation enrichment proportion in the dig-
ital clinical trial mimics the subpopulation proportions
in the EMR data. Such an oracle enrichment strategy
is particularly beneficial as the trial population can
match with the general population, making the evi-
dence derived from digital clinical trials widely gener-
alizable. Furthermore, to understand the oracle treat-
ment assignment probability e˚

k , we can compare it
with the classical Neyman allocation approach (Ney-
man, 1992), where eNeymank “ σ1k{pσ0k ` σ1kq. Com-
pared with Neyman allocation, our oracle treatment
assignment probability leans toward enrolling more
subjects into the treatment arm in subpopulation k.
We conjecture that this is because the EMR dataset
already provides rich information regarding the control
arm. When no EMR data are included, that is N “ 0;

our oracle treatment assignment strategy aligns with
the Neyman allocation. As suggested by the oracle
designs, we reach the promise of the digital clinical
trial by broadening the eligibility criteria and estimat-
ing the ATE efficiently with adaptive treatment allo-
cation. In Section 4, we shall formally introduce our
digital clinical trial design strategies in the non-oracle
setting.

4 DIGITAL CLINICAL TRIAL
DESIGN STRATEGIES IN TWO
SETTINGS

In this section, we propose two novel digital clinical
trial designs assisted by EMR data. The first design in
Section 4.1 assumes perfect transportability (Assump-
tion 1), while the second design in Section 4.2 is robust
to imperfect transportability (violation of Assumption
1). As the parameters τk and σdk in the oracle problem
(Problem 1) are typically unknown in practice, we
propose to sequentially learn the unknown parameters
from the digital clinical trials. Based on the accrued
data, we refine our understanding of the optimal design
strategies pp˚

k , e
˚
kq. We consider a multi-stage digital

clinical trial, where the sample size in each stage, nt,
is large, and the number of stages, T , is small.

4.1 Design under Perfect Transportability

In this section, we shall illustrate our first digital clin-
ical trial design under perfect transportability in Al-
gorithm 1.

In Stage 1 (line 1-2), since we have no prior in-
formation about the distribution in the trial pop-
ulation, Stage 1 serves as an exploration stage.
We estimate the unknown parameters from both
EMR data and the first-stage trial data. The
form of the estimators can be found in Supple-
mentary Materials Section A. In Stage t (line 4-
6), we find the optimal designs by solving Prob-

lem 2. The form of τ̂
pt´1q

k , τ̂ pt´1q, pσ̂
pt´1q

1k q2, pσ̂
pt´1q

0k q2

and r̂
pt´1q

k can be found in the Supplementary Ma-
terials. In addition, we rescale the subpopulation
proportion and propensity score by the sample sizes

of the previous stages: p̃˚
tk “ 1

nt

´

p̂˚
tkn ´

řt´1
s“1 nsk

¯

and ẽ˚
tk “ 1

ntk

´

ê˚
tk

řt
s“1 nsk ´

řt´1
s“1 nske

˚
sk

¯

. Af-

ter Stage T (line 8-9), we construct the final-
stage treatment effect estimator τ̂ by Eq (3),

and the associated variance estimators as V̂ “
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řK
k“1

N2
k

N2

!

pτ̂k´τ̂q
2

Nk`np̂k
`

pσ̂1kq
2

np̂k êk
`

pσ̂0kq
2

np̂kp1´êkq`Nk r̂k

)

.

Problem 2.

min
p,e

K
ÿ

k“1

N2
k

N2

$

’

&

’

%

´

τ̂
pt´1q

k ´ τ̂ pt´1q

¯2

Nk ` npk
`

´

σ̂
pt´1q

1k

¯2

npkek

`

´

σ̂
pt´1q

0k

¯2

npk p1 ´ ekq ` Nkr̂
pt´1q

k

,

/

.

/

-

,

s.t.
K
ÿ

k“1

pk “ 1, pk ą 0, c1 ď ek ď 1 ´ c1.

Lastly, we can construct the two-sided α-level confi-
dence interval for τ̂ as

”

τ̂ ˘ Φ´1p1 ´ α{2q

a

V̂
ı

(4)

4.2 Design under Imperfect Transportability

In practice, it is imperative to carefully assess the im-
pact of violating the perfect transportability assump-
tion and adopt a digital clinical design that is more
robust to such a violation. In this section, we pro-
pose another digital clinical trial design under imper-
fect transportability.

First, we characterize the “imperfect transportability”
using a bias function, following the notation intro-
duced by Dahabreh et al. (2023):

upd,Xq “ E rY pdq | X,Z “ 1s ´ E rY pdq | X,Z “ 0s ,

δpXq “ up1, Xq ´ up0, Xq,

where d P t0, 1u. upd,Xq is the bias function, and δpXq

denotes the difference of bias functions. It is infeasible
to identify δpXq because we cannot obtain any infor-
mation about ErY p1q|X,Z “ 0s from EMR data in the
absence of treatment arm information. For simplicity,
Dahabreh et al. (2023) suggests to use functions that
do not depend on covariates, such that

up0, Xq ” up0q, δpXq ” δ.

Hence, we can have a pair of sensitivity parameters
pup0q, δq. In our setting, we can also consider subpopu-
lation sensitivity parameters pup0qk, δkq, k “ 1, . . . ,K.

Second, we consider a new objective function, mean
squared error (MSE), to account for the trade-off be-
tween efficiency and unbiasedness of estimating τ .
This is because in the presence of imperfect trans-
portability, the estimator in Eq (3) is inconsistent.
We propose a minimax framework to design an ex-
periment that is robust to the potential violation of
the transportability assumption. Similar to Problem

2, we can find the optimal designs by solving optimiza-
tion Problem 3, where Γ0 and Γ1 are the sensitivity
bounds to quantify the range of bias functions. We
present the algorithms and considerations for choos-
ing the sensitivity bounds in Supplementary Material
Section B. As Problem 3 does not have a closed-form
solution, we can solve the problem by numerical meth-
ods.

Lastly, we conduct statistical inference based on the
combined EMR data and digital clinical trial data.
However, when there exists imperfect transportabil-
ity, the traditional Gaussian-type confidence intervals
in Eq (4) are no longer invalid. Instead, we employ
a percentile bootstrap approach (Zhao et al., 2019) to
conduct valid inference. This approach effectively ad-
dresses both the bias arising from the violation of per-
fect transportability (Assumption 1) and the inherent
estimation uncertainty without requiring an explicit
characterization of the asymptotic distributions of the
estimators. Note that our approach is different from
Zhao et al. (2019), as we take bootstrap samples within
each stratum and obtain the final bound by weighted
average. Our approach is summarized in Algorithm 3.

To start, for fixed Γ0,Γ1, we choose a pair of sensitivity
parameters pup0q, δq such that |up0q| ď Γ0, |δ| ď Γ1.
We define the k-th bias-calibrated treatment effect
estimand under the specific parameter pup0q, δq as

τ
pup0q,δq

k “ rτk ´ Bias prτk, τkq , and the bias-calibrated

estimator as τ̂
pup0q,δq

k “ τ̂k ´ yBias prτk, τkq . We take
B bootstrap samples from a subset of the col-
lected data where Xit P Sk. For every pup0q, δq,

we can construct a confidence interval for τ
pup0q,δq

k

via percentile bootstrap:
”

L
pup0q,δq

k , U
pup0q,δq

k

ı

“
”

Qα{2

´

τ̂
˚pup0q,δq

k

¯

, Q1´α{2

´

τ̂
˚pup0q,δq

k

¯ı

, where

τ̂
˚pup0q,δq

k is estimated from bootstrap sample
t1, 2, . . . , Bu, and Qα{2 is the α{2-percentile of
the bootstrap distribution. In Section 5, we

will show that
”

L
pup0q,δq

k , U
pup0q,δq

k

ı

is an asymp-

totically valid confidence interval for τk
pup0q,δq

under sensitivity parameters pup0q, δq. Lastly, we
can construct a 1 ´ α confidence interval for τ as
”

Qα{2

`

infup0q,δ τ̂
˚pup0q,δq

˘

, Q1´α{2

´

supup0q,δ τ̂
˚pup0q,δq

¯ı

.

5 THEORETICAL
INVESTIGATION

In this section, we investigate the theoretical proper-
ties of our proposed digital clinical trial design under
the perfect transportability in Theorem 1 and Remark
2 and the design under the imperfect transportabil-
ity in Theorem 2. We start with listing an additional
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assumption.

Assumption 2 The sample sizes N,nt Ñ 8, such
that nt

N`n Ñ κt, where 0 ă κt ă 1, 0 ď t ď T .

Lemma 1 Under Assumptions 1-2, Problem 1 has
unique solutions pp˚, e˚q.

Lemma 1 says that our solutions to the oracle prob-
lem are unique, which can be proved by separating
Problem 1 into two iterative subproblems and show-
ing the convexity of each subproblem. Building onto
Lemma 1, we establish the consistency of our first de-
sign (Section 4.1) and the asymptotic normality of our
proposed estimator under the perfect transportability
assumption.

Theorem 1 Under Assumptions 1-2 and assume all
working models are correctly specified, we have p̂˚

kt

p
ÝÑ

p˚
k , ê˚

kt

p
ÝÑ e˚

k , where t “ 2, . . . , T , k “ 1, . . . ,K.
Under regularity conditions described in Theorems 2.6
and 3.4 of Newey and McFadden (1994), we have

?
N ` npτ̂ ´ τq

d
Ñ N p0,V˚q

where V˚ “
řK

k“1 p
2
0k

!

pτk´τq
2

κ0p0k`p1´κ0qp˚
k

`
σ2
1k

p1´κ0qp˚
k e˚

k

`

σ2
0k

p1´κ0qp˚
k p1´e˚

k q`κ0p0krk

)

.

Theorem 1 shows that, on the one hand, our design
strategies are consistent with the oracle design strate-
gies. This suggests that our design operates in a simi-
lar manner as the oracle design, thus it can realize the
promise of digital clinical trials as specified in Section
3. On the other hand, our proposed design-based es-
timator τ̂ asymptotically converges to a Gaussian dis-
tribution and it validates our constructed confidence
interval in Eq (4).

Problem 3.

min
p,e

max
δ,up0q

K
ÿ

k“1

N2
k

N2

$

’

&

’

%

´

τ̂
pt´1q

k ´ τ̂ pt´1q

¯2

Nk ` npk
`

´

σ̂
pt´1q

1k

¯2

npkek

`

´

σ̂
pt´1q

0k

¯2

npk p1 ´ ekq ` Nkr̂
pt´1q

k

`

˜

δ `
Nkr̂

pt´1q

k

npkp1 ´ ekq ` Nkr̂
pt´1q

k

up0q

¸2
,

.

-

,

s.t. |δ| ď Γ0, |up0q| ď Γ1,

K
ÿ

k“1

pk “ 1, pk ą 0, c1 ď ek ď 1 ´ c1,

Algorithm 1 Digital clinical trial design strategy

Stage 1 (Initialization):
1: Enroll n1 participants, set the subpopulation pro-

portion as p1k “ 1
K , and propensity score e1k “ 1

2 ,
k “ 1, . . . ,K.

2: Compute τ̂
p1q

k , τ̂ p1q,
´

σ̂
p1q

1k

¯2

,
´

σ̂
p1q

0k

¯2

and r̂
p1q

k from

tpYis, Xis, Dis, Zisq
ns

i“1u
1

s“0.
Stage t (Multi-stage adaptive experiment):

3: for t Ñ 2 to T do
4: Obtain pp̂˚

tk, ê
˚
tkq by solving Problem 2.

5: Enroll nt participants, set the subpopulation
proportion and propensity score as pp̃˚

tk, ẽ
˚
tkq, by

rescaling pp̂˚
tk, ê

˚
tkq.

6: Update τ̂
pt´1q

k , τ̂ pt´1q,
´

σ̂
pt´1q

1k

¯2

,
´

σ̂
pt´1q

0k

¯2

and r̂
pt´1q

k from tpYis, Xis, Dis, Zisq
ns

i“1u
t´1

s“0.
7: end for

Stage T (Inference):

8: Update τ̂k, τ̂ , pσ̂1kq
2
, pσ̂0kq

2
and r̂k from

tpYis, Xis, Dis, Zisq
ns

i“1u
T

s“0.
9: Construct a two-sided α-level confidence interval

for τ̂ in Eq (4).

Algorithm 2 Percentile Bootstrap Algorithm

(Bootstrap sampling)
1: for b “ 1 to B do
2: for k “ 1 to K do
3: Generate a bootstrap sample from a subset

of the collected data where Xit P Sk.
4: Compute the bounds of potential point es-

timates in k-th strata:

5:

„

τ̂
pbq

k ˘ maxup0qk,δk
zBias

pbq

p rτk, τkq

ȷ

6: end for
7: Compute weighted average bounds over K

strata.
8: end for
9: From B bootstrapped sample bounds, construct

CI based on α{2 and 1 ´ α{2 percentile.

Since the design strategy for Stage t is dependent on
the historical data, we do not have the classic i.i.d
assumption. To address this challenge, we leverage
the empirical process arguments similar to Hahn et al.
(2011) to establish the asymptotic normality result.
To provide more insights regarding the benefits of our
design, we compare the asymptotic efficiency gain of
our EMR data-assisted digital clinical trial for estimat-
ing τ̂ with the benchmark digital clinical trial without
using EMR data in Remark 2.

Remark 2 Let pp˚1, e˚1q be the oracle solution cor-
responding to the benchmark design strategy without
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integrating EMR data. The asymptotic variance of
the benchmark design-based estimator can be written

as V˚1 “
řk

k“1
p2
0k

p˚1
k

!

pτk ´ τq
2

`
σ2
1k

e˚1
k

`
σ2
0k

1´e˚1
k

)

. We can

show that pN ` nq´1V˚ ă n´1V˚1.

Remark 2 suggests that our design has efficiency gain
by incorporating EMR data. Lastly, we investigate the
theoretical properties of our second design under the
imperfect transportability assumption in Section 4.2.

Theorem 2 Under the assumption that rpx; γ̂q is cor-
rectly specified and uniformly bounded in x and the reg-
ularity conditions described in Theorems 2.6 and 3.4
of Newey and McFadden (1994), for fixed sensitivity
parameters pup0q, δq, we have

lim sup
Nk,nkÑ8

P
´

τ
pup0q,δq

k ă L
pup0q,δq

k

¯

ď
α

2
,

lim sup
Nk,nkÑ8

P
´

τ
pup0q,δq

k ą U
pup0q,δq

k

¯

ď
α

2
.

Theorem 2 says that the proposed percentile bootstrap
confidence interval in section 4.2 delivers valid infer-
ence. The proofs can be found in the Supplementary
Materials, which involve proving the asymptotic nor-

mality of τ̂
pup0q,δq

k and the bootstrap sample estimator

τ̂
˚pup0q,δq

k .

6 SIMULATION STUDIES

In this section, we conduct simulation studies to in-
vestigate our proposed designs. Simulation setups are
provided in the Supplementary Materials Section F.
We consider three designs: (A) our proposed design
under Problem 2, (B) a design that does not inte-
grate EMR data, and (C) our proposed design under
Problem 3. Under the perfect transportability as-
sumption, we compare designs A and B in Figure 1.
Under the imperfect transportability, we compare de-
signs A and C in Figure 2 and verify the statistical
validity of our percentile bootstrap procedure in Ta-
ble 1. We further compare the mean squared errors
(MSE) of designs B and C in Figure 3.

Figure 1 (a) demonstrates that by incorporating ex-
ternal EMR data, our proposed design A has higher
estimation efficiency compared to the benchmark de-
sign B, which validates the theoretical insights in Re-
mark 2. Figure 1 (b) shows that our design strategies
converge to the oracle design strategies as the sam-
ple size increases. Figure 2 demonstrates that under
imperfect transportability, the oracle treatment allo-
cation e˚ in design C is lower than that under de-
sign A. Furthermore, in design A, the values of p˚

k

closely resemble the subpopulation proportions p0k in
the EMR population, whereas in design C, there is a
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Figure 1: (a) The efficiency comparison between de-
signs A and B. (b) The convergence of our design
strategies to the oracle designs.
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Figure 2: Design strategies comparison between de-
signs A and C.

noticeable deviation from this resemblance. Figure 2
suggests that design C is more robust to the violation
of the perfect transportability assumption. Regarding
the choice of sensitivity bounds, Table 1 suggests de-
sign C is more sensitive to Γ0 than to Γ1. However,
as long as the sensitivity bounds (Γ0,Γ1) can control
the bias parameters pup0q, δq, the percentile bootstrap
confidence interval has high coverage probabilities.

pup0q, δq (Γ0,Γ1) Coverage CI

p0, 0q p0, 0q 0.958 r1.828, 2.149s

(0.5,0.5)

(0,0) 0.005 r2.356, 2.826s

(0.5,0) 0.140 r2.287, 3.168s

(0,0.5) 0.811 r1.871, 3.304s

(0.5,0.5) 0.987 r1.777, 3.682s

(1,0.5) 0.997 r1.604, 3.870s

(0.5,1) 1 r1.236, 4.072s

Table 1: Percentile bootstrap confidence intervals un-
der various tuning parameters.

In Figure 3, we investigate the potential benefits of
leveraging external EMR data, particularly in the pres-
ence of imperfect transportability. The results indi-
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cate that design C outperforms benchmark design B
regarding MSE when the violation of the transporta-
bility assumption is not severe. However, under severe
violation, design C may experience efficiency loss com-
pared to design B. Based on the simulation results, we
recommended practitioners first assess the transporta-
bility assumption (as described in Supplementary Ma-
terials Section G) and then consider adopting design
C if the violation is not too severe.

Figure 3: Efficiency (MSE) comparison between de-
signs B and C under imperfect transportability.

7 A SYNTHETIC CASE STUDY

In this case study, we aim to investigate the treatment
effect of a cash transfer program on the viral suppres-
sion rate in HIV patients leveraging an external EMR
database. This case study showcases the performance
of our design in a realistic setting, as there is no perfect
transportability between the trial data and the EMR
data. The assessment of the transportability assump-
tion can be found in Supplementary Materials Section
G. We consider a Tanzania EMR database contain-
ing 295, 961 patient records from 2015 to 2023. The
original trial was a cash transfer RCT conducted in
Tanzania where subjects are randomized to either the
treatment or control arm (Fahey et al., 2020). The
treatment is “receiving cash transfer”, and the control
is “not receiving any cash transfer”. The outcome is
Viral load suppression, which is a binary biomarker for
HIV status, where Viral load ă 1000 (Y “ 1) and Viral
load ě 1000 (Y “ 0). We consider two subpopulations
defined by biological sex: Males (k “ 1) and females
(k “ 2). The detailed synthetic data-generating pro-
cess is provided in Supplementary Materials Section
G.

As the perfect transportability assumption does not
hold, we consider the second design strategy proposed
in Section 4.2 and set a covariate-dependent sensitiv-
ity bound Γ0 “ p0.1, 0q. We follow a simulation setup
similar to Section 6 to mimic multi-stage clinical tri-
als. We construct the confidence interval by percentile
bootstrap in Figure 4 with respect to various choices

Figure 4: Percentile bootstrap confidence interval with
respect to various choices of Γ1.

of Γ1. When Γ1 is large (Γ1 ą 0.4), we obtain a rather
conservative confidence interval, reflecting our belief
of strong unmeasured confounding. Otherwise, we ob-
tain a narrower confidence interval, suggesting that
the cash transfer program can significantly improve
the proportion of patients recovered from HIV. Figure
4 not only provides realistic guidance for practitioners
to decide the scale of sensitive bound based on domain
knowledge but also demonstrates the estimation effi-
ciency under our design in the presence of moderately
imperfect transportability.

8 DISCUSSION

In this paper, we propose two digital clinical trial de-
signs leveraging external EMR data. While recogniz-
ing the diversity of patient information available in tra-
ditional EMRs, our approach selectively incorporates
only those elements of patient covariates and outcomes
that align with the data collection requirements of a
digital clinical trial. We look forward to exploring the
possibilities of integrating additional information from
EMRs into future trial designs.
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Supplementary Materials

A The form of estimators in Stage t

In stage t (2 ď t ď T ), we update parameters τk, τ, σ1k, σ0k and rk in the optimization problem by the following

estimates obtained from past information tpYis, Xis, Dis, Zisq, i “ 1, ¨ ¨ ¨ , nsu
t´1
s“0.

τ̂
pt´1q

k “
1

řt´1
s“0

řns

i“1 1tXis P Sku
ˆ

t´1
ÿ

s“0

ns
ÿ

i“1

1tXis P Sku

ˆ

«

p1 ´ Zisq

1 ´ π̂
pt´1q

k

´

m̂
pt´1q

1 pXisq ´ m̂
pt´1q

0 pXisq

¯

`
DisZis

π̂
pt´1q

k ê
pt´1q

k

´

Yis ´ m̂
pt´1q

1 pXisq

¯

´
Zisp1 ´ Disq ` p1 ´ Zisqr̂pt´1qpXisq

π̂
pt´1q

k p1 ´ ê
pt´1q

k q ` p1 ´ π̂
pt´1q

k qr̂pt´1qpXisq

´

Yis ´ m̂
pt´1q

0 pXisq

¯

ff

τ̂ pt´1q “

K
ÿ

k“1

Nk

N
τ̂

pt´1q

k

For d P t0, 1u and stratum k, we have the variance estimator

pσ̂
pt´1q

dk q2 “

řt´1
s“1

řns

i“1

´

Yis1tDis “ du1tXis P Sku ´ 1
řt´1

s“1 ns

řt´1
s“1

řns

i“1 pYis1tDis “ du1tXis P Skuq

¯2

řt´1
s“1

řns

i“1 1tXis P Sku1tDis “ du

And the variance ratio estimator
r̂

pt´1q

k “ pσ̂
pt´1q

0k q2{pσ̂
1pt´1q

0k q2

Where pσ̂
1pt´1q

0k q2 is the estimate of V pY p0q | X,Z “ 0q:

pσ̂
1pt´1q

0k q2 “

řN
i“1

´

Yi1tDi0 “ du1tXi0 P Sku ´ 1
N

řN
i“1 pYi01tDi0 “ du1tXi0 P Skuq

¯2

řN
i“1 1tXi0 P Sku1tDi0 “ du

π̂
pt´1q

k is the estimated proportion of individuals enrolled in the trial among subgroup k:

π̂
pt´1q

k “

˜

t´1
ÿ

s“0

ns
ÿ

i“1

1tXis P Sku

¸´1

ˆ

t´1
ÿ

s“0

ns
ÿ

i“1

Zis1tXis P Sku

ê
pt´1q

k is the estimated propensity score from the trial data

ê
pt´1q

k “

˜

t´1
ÿ

s“1

ns
ÿ

i“1

1tXis P Sku

¸´1

ˆ

t´1
ÿ

s“1

ns
ÿ

i“1

Dis1tXis P Sku

and m̂
pt´1q

d pXisq, r̂pt´1qpXisq are the regression / nonparametric estimators based on past information

tpYis, Xis, Dis, Zisq, i “ 1, ¨ ¨ ¨ , nsu
t´1
s“0.
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B Choosing bounds in practice and alternative approach to address Problem 3

In Problem 3, we propose a minimax framework to design an experiment that is robust to imperfect trans-
portability. The choice of appropriate sensitivity bounds (Γ0 and Γ1) is a critical aspect of this framework as
they quantify the range of bias functions. The choice of sensitivity bounds is a delicate balance. Choosing ex-
cessively large sensitivity bounds leads to better uniform control over a larger range of bias functions, but it can
become overly conservative if the actual bias is constrained by narrower bounds, resulting in an efficiency loss.
Conversely, choosing overly narrow sensitivity bounds yields worse uniform control of imperfect transportability.
This creates a trade-off that needs to be carefully navigated.

The ideal approach to choosing sensitivity bounds is to leverage background knowledge about the trial and the
general population. When the background knowledge is limited, a practical strategy for setting Γ0 is

Γ0 “ sup
XPX

| ÊrY | X,D “ 0, Z “ 1s ´ ÊrY | X,Z “ 0s |

where ÊrY | X,D “ 0, Z “ zs is the regression-based estimator. For Γ1, as no treatment data is available in the
EMR data, we employ a calibration algorithm inspired by the calibration plot introduced by Kallus and Zhou
(2021). The basic idea of the algorithm is to find Γ1 that minimizes the expected MSE. In the absence of prior
information about the true bound Γ˚

1 , we assume Γ˚
1 is uniformly distributed over a wide range

“

Γ1,Γ1

‰

(line 1).
Our calibration algorithm for choosing Γ1 is outlined in Algorithm 3.

Algorithm 3 Calibration Algorithm

1: Choose a sequence of possible Γ1 candidates: Γ
p1q

1 ,Γ
p2q

1 ,Γ
p3q

1 , . . .Γ
pMq

1 evenly from
“

Γ1,Γ1

‰

.
2: for m,m1 “ 1 to M do

3: Treat Γ
pm1q
1 as the true bound Γ˚

1 .

4: Calculate the minimax MSE using the solved optimal design
´

p˚
k

´

Γ
pmq

1

¯

, e˚
k

´

Γ
pmq

1

¯¯

and true bound

Γ
pm1q
1 : MSE

ˆ

p˚
k

´

Γ
pmq

1

¯

, e˚
k

´

Γ
pmq

1

¯

,Γ
pm1q
1

˙

.

5: end for
6: Find Γ

pmq

1 that minimizes the empirical expectation:

Γ˚
1 “ argmin

Γ
pmq

1

1

M

M
ÿ

m1“1

MSE

ˆ

p˚
k

´

Γ
pmq

1

¯

, e˚
k

´

Γ
pmq

1

¯

,Γ
pm1q
1

˙

Problem 3 does not have a closed-form solution. To gain a better understanding of the solutions, we propose
an alternative approach by decomposing the objective function into two components: variance and squared bias.
We optimize the two parts separately and then combine the solutions by taking a weighted average to arrive at
the final solution. Given that the ek solution for minimizing squared bias is zero, we can express the solution for
the weighted average propensity score as

e˚
k “ p1 ´ λq

σ1k

´

1 `
κ0p0k

p1´κ0qp˚
k

rk

¯

σ0k ` σ1k

Compared to the oracle solution under perfect transportability, this outcome manifests as a shrinkage solution
that tends toward zero. This behavior is due to the fact that when there exists imperfect transportability, the
trial data can be considered ”contaminated” when estimating τ , and we need to enroll fewer treatment units to
control estimation bias. Furthermore, it’s important to note that the degree of shrinkage is positively correlated
with factors such as p0k,Γ0, and Γ1.
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C Proof of Lemma 1

In Problem 1, we define oracle treatment allocation e˚
k and subgroup proportion p˚

k as the solution of an
optimization problem. Since the constraints of two optimization variables:

E1 “

#

pk :
K
ÿ

k“1

pk “ 1, pk ą 0, k “ 1, . . . ,K

+

E2 “ tek : c1 ď ek ď 1 ´ c1, k “ 1, . . . ,Ku

are both convex, we can apply Von Newman’s alternating projection Lemma and separate the Problem 1 into
two iterative subproblems, which are easier to solve. In the first subproblem, we optimize ek given pk :

min
ek

V pek; pkq

s.t. c1 ď ek ď 1 ´ c1, k “ 1, . . . ,K

The Hessian matrix is

H1 “ diag

#

2p0k2

˜

σ2
1k

p1 ´ κ0qpke3k
`

p1 ´ κ0q2p2kσ0k
2

pp1 ´ κ0qpk p1 ´ ekq ` κ0p0krkq
3

¸+

k“1,...,K

which is apparently positive definite since the diagonal elements of the diagonal matrix are all positive. Hence
V pek; pkq is strictly convex, and the subproblem has a unique solution

e˚
k ppkq “

σ1k

σ1k ` σ0k

ˆ

1 `
κ0p0k

p1 ´ κ0qpk
rk

˙

, k “ 1, . . . ,K

Now we plug in e˚
k ppkq to the second subproblem and solve pk :

min
pk

V ppkq

s.t.
k
ÿ

k“1

pk “ 1, pk ą 0, k “ 1, . . . ,K

Similarly, we can derive the Hessian matrix to show V ppkq is strictly convex

H2 “ diag

#

2p1 ´ κ0q2p20k

˜

pτk ´ τq
2

pκ0p0k ` p1 ´ κ0qpkq
3 `

pσ1k ` σ0kq
2

pκ0p0krk ` p1 ´ κ0qpkq
3

¸+

k“1,...,K

Hence, the oracle solution is unique. Similarly, we can show that the sample analogs of oracle problems also have
unique solutions.

D Proof of asymptotic properties of design strategies (Theorem 1)

We begin by establishing several lemmas.

Lemma 2 (Convergence of quantities) Following the approach in Hahn et al. (2011), we make the following
assumptions for simplicity in our analysis:

(i) N and nt tend to infinity, with nt

N`n Ñ κt and
N

N`n Ñ κ0, where n “
řT

t“1 nt and 0 ă κ ă 1.

(ii) The covariates Xi follow a multinomial distribution with finite support.

(iii) Let e1
tk “ plimre˚

tk and p1
tk “ plimp̃˚

tk. We assume that ẽ˚
tk “ e1

tk `Op

´

1?
n

¯

and rp˚
tk “ p1

tk `Op

´

1?
n

¯

. Also,

e1
k “

řT
t“1 ntp

1
tke

1
tk

řT
t“1 ntp1

tk

and p1
k “

řT
t“1 ntp

1
tk

řT
t“1 nt

.

(iv) All working models are correctly specified.



Electronic Medical Records Assisted Digital Clinical Trial Design

Under these assumptions, we can conclude:

mdpxq ´ m̂dpxq “ Op

´

n´1{2
¯

Vdpxq ´ V̂dpxq “ Op

´

n´1{2
¯

rpxq ´ r̂pxq “ Op

´

n´1{2
¯

p̂tk ´ p̂˚
tk “ Op

´

n´1{2
¯

êtk ´ ê˚
tk “ Op

´

n´1{2
¯

where mdpXq “ ErY | X,D “ d, Z “ 1s,VdpXq “ VpY | X,D “ d, Z “ 1q, d P t0, 1u.

Note that e1
tk and p1

tk are defined as probability limits, which do not necessarily equal the oracle solutions e˚
k and

p˚
k . The second assumption ensures we can directly employ a ”sample-mean version” estimator to estimate the

correct model rather than relying on nonparametric identification. For m̂0pxq, we use all the control units from
external data and T-stage trial data (to enhance efficiency). For other estimators, we exclusively use T-stage
trial data.

Proof. To establish m1pxq ´ m̂1pxq “ Op

`

n´1{2
˘

, we utilize empirical process arguments as presented in Hahn
et al. (2011). We treat the treatment indicators as independent and identically distributed, generated from a
uniform distribution, i.e., Dit “ 1 tUit ď re˚

ktu, and 1 tXit “ xu as 1 tUit ď p˚
ktP pX “ x | X P Skqu. It’s worth

noting that p˚
kt is correlated with previous data, whereas P pX “ x | X P Skq is not.

m̂1pxq “

řT
t“1

řnt

i“1 DitYit1 tXit “ xu
řT

t“1

řnt

i“1 Dit1 tXit “ xu

“

˜

n1

n

1

n1

n1
ÿ

i“1

Yi11 tUi1 ď re˚
k1u 1 tUi1 ď rp˚

k1P pX “ x | X P Sk, Z “ 1qu

`
n2

n

1

n2

n2
ÿ

i“1

Yi21 tUi2 ď re˚
k2u 1 tUi2 ď rp˚

k2P pX “ x | X P Sk, Z “ 1qu ` ¨ ¨ ¨

¸

{
1

n

T
ÿ

t“1

nt
ÿ

i“1

Dit1 tXit “ xu

We begin by considering the numerator. For the first term, since êk1 “ e1
k1

“ 1
2 , p̂k1 “ p1

k1
“ 1

K , which are
uncorrelated with the previous data, we can apply the LLN and CLT,

n1

n

1

n1

n1
ÿ

i“1

Yi11 tUi1 ď re˚
k1u 1 tUi1 ď rp˚

k1P pX “ x | X P Sk, Z “ 1qu

“κ1e
1
k1p

1
k1P pX “ x | X P Sk, Z “ 1qm1pxq ` Op

ˆ

1
?
n1

˙

For the second term, it’s important to note that the set of functions

t1 pUi2 ď re˚
k2q 1 pUi2 ď rp˚

k2P pX “ x | X P Sk, Z “ 1qqYi2u

is Euclidean and stochastic equicontinuous. Therefore, we have

1
?
n2

n2
ÿ

i“1

Yi21 tUi2 ď re˚
k2u 1 tUi2 ď rp˚

k2p pX “ x | X P Sk, Z “ 1qu

“
1

?
n2

n2
ÿ

i“1

Yi21
␣

Ui2 ď e1
k2

(

1
␣

Ui2 ď p1
k2p pX “ x | X P Sk, Z “ 1q

(

` G1
?
n2

`

re˚
k2 ´ e1

k2

˘

` G2
?
n2

`

rp˚
k2 ´ p1

k2

˘

` Opp1q
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where

G1 “
B

Bek2
E
“

1 tUi2 ď ek2u 1
␣

Ui2 ď p1
k2P pX “ x | X P Sk, Z “ 1q

(

Yi2

‰

| ek2 “ e1
k2

“ m1pxqp1
k2P pX “ x | X P Sk, Z “ 1q

Similarly,

G2 “ m1pxqe1
k2P pX “ x | X P Sk, Z “ 1q

Given our assumptions that ẽ˚
k2 ´ e1

k2 “ Op

´

1?
n

¯

, p̃˚
k2 ´ p1

k2 “ Op

´

1?
n

¯

, by LLN and CLT the numerator can

be written as

κ2e
1
k2p

1
k2P pX “ x | X P Sk, Z “ 1qm1pxq ` Op

ˆ

1
?
n2

˙

We handle the 3-T terms in the numerator and the 1-T terms in the denominator similarly. This allows us to
express m̂1pxq as

m̂1pxq “

˜

T
ÿ

t“1

κte
1
ktp

1
ktP pX “ x | X P Sk, Z “ 1qm1pxq ` Op

ˆ

1
?
n

˙

¸

{

˜

T
ÿ

t“1

κte
1
ktp

1
ktP pX “ x | X P Sk, Z “ 1q ` Op

ˆ

1
?
n

˙

¸

“ m1pxq ` Op

ˆ

1
?
n

˙

The proof for m0pxq ´ m̂0pxq “ Op

`

n´1{2
˘

follows a similar but slightly different approach. This is because
m̂0pxq is estimated using data from all control units in the EMR data and trial data

m̂0pxq “

řT
i“1

řnt

i“1 p1 ´ DitqYit1 tXit “ xu `
řN

i“1 p1 ´ Di0qYi01 tXi0 “ xu
řT

t“1

řnt

i“1 p1 ´ Ditq 1 tXit “ xu `
řN

i“1 p1 ´ Di0q 1 tXi0 “ xu

In this context, we use t “ 0 to represent the EMR data for simplicity. As the EMR data exclusively consists of
control units (Di0 ” 0), we can apply the CLT

1

N

N
ÿ

i“1

p1 ´ Di0qYi01 tXi0 “ xu “ EpY | X,D “ 0, Z “ 0qP pXi “ x | Zi “ 0q ` Op

ˆ

1
?
N

˙

“ m0pxqP pXi “ x | Zi “ 0q ` Op

ˆ

1
?
N

˙

The ultimate equation is a consequence of the transportability assumption. Similar to the proof of m̂1pxq ´

m1pxq “ Op

´

1?
n

¯

, we can express m̂0pxq as

m̂0pxq “

˜

T
ÿ

t“1

κt

`

1 ´ e1
kt

˘

p1
ktP pX “ x | X P Sk, Z “ 1qm0pxq ` κ0PpX “ x | Z “ 0qm0pxq

¸

{

˜

T
ÿ

t“1

κt

`

1 ´ e1
kt

˘

p1
ktP pX “ x | X P Sk, Z “ 1q ` κ0PpX “ x | Z “ 0q

¸

“ m0pxq ` Op

ˆ

1
?
n

˙

The proof of the other equalities is similar. For V1pxq ´ V̂1pxq “ Op

´

1?
n

¯

and V0pxq ´ V̂0pxq “ Op

´

1?
n

¯

, we

consider Y 2
it instead of Yit. As r̂pxq is the ratio of two variance estimators that converge to zero at a rate of

1?
n
, we have rpxq ´ r̂pxq “ Op

´

1?
n

¯

. Regarding p̂tk ´ p̂˚
tk “ Op

´

1?
n

¯

, by employing similar empirical process
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arguments, we obtain

p̂tk “

řt
s“1

řnn

i“1 1 tXit P Sku
řt

s“1 ns

“

n1p̃
˚
1k ` Op

´

1?
n

¯

řt
s“1 ns ` Op

´

1?
n

¯ `

n2rp
˚
2k ` Op

´

1?
n

¯

řt
s“1 ns ` Op

´

1?
n

¯ ` . . .

“ p̂˚
tk ` Op

ˆ

1
?
n

˙

The proof of êtk ´ ê˚
tk “ Op

´

1?
n

¯

follows the same approach.

Lemma 3 (Asymptotic normality I) Under the regularity conditions described in Theorems 2.6 and 3.4 of
Newey and McFadden (1994), and assumptions (i)-(iv) described in Lemma 2, we have

?
N ` npτ̂ ´ τq

d
Ñ N

`

0, σ2
˘

where

σ2 “

K
ÿ

k“1

p20k

#

pτk ´ τq
2

κ0p0k ` p1 ´ κ0q p1
k

`
σ2
1k

p1 ´ κ0q p1
ke

1
k

`
σ2
0k

p1 ´ κ0q p1
k p1 ´ e1

kq ` κ0p0krk

+

τ̂ “

K
ÿ

k“1

Nk

N
τ̂k

τ̂k “

˜

T
ÿ

t“0

nt
ÿ

i“1

1 tXit P Sku

¸´1 T
ÿ

t“0

nt
ÿ

i“1

1 tXit P Sku

„

1 ´ Zit

1 ´ π̂k
pm̂1 pXitq ´ m̂0 pXitqq

`
DitZit

π̂kêk

ˆ

Yit ´ m̂1 pXitq ´
Zit p1 ´ Ditq ` p1 ´ Zitq r̂ pXitq

π̂k p1 ´ êkq ` p1 ´ π̂kq r̂ pXitq
pYit ´ m̂0 pXitqq

ȷ

Proof. By the Lemma 2 we have p̂tk ´ p̂˚
tk “ Op

´

1?
n

¯

, then

π̂tk “
p̂tk

řt
s“1 ns

Nk ` p̂tt
řt

s“1 ns

“
p̂˚
tk

řt
s“1 ns ` Op

´

1?
n

¯

Nk ` p̂˚
tk

řt
s“1 ns ` Op

´

1?
n

¯ “ π̂˚
tk ` Op

ˆ

1
?
n

˙

Let t “ T , we have π̂k “ π̂˚
k ` Op

´

1?
n

¯

“ π1
k ` Op

´

1?
n

¯

. Then we can rewrite the nominator of τ̂k as

pIq “
1

N ` n

T
ÿ

t“0

nt
ÿ

i“1

1tUit ď p̂˚
ku

«

1 ´ 1tUit ď π̂˚
k u

1 ´ π1
k

pm1pXitq ´ m0pXitqq

`
1tUit ď ê˚

ku1tUit ď π̂˚
k u

π1
ke

1
k

pYit ´ m1pXitqq

´
1tUit ď ê˚

kup1 ´ 1tUit ď π̂˚
k uqrpXitq

π1
kp1 ´ e1

kq ` p1 ´ π1
kqrpXitq

pYit ´ m0pXitqq

ff

` Op

ˆ

1
?
N ` n

˙

Here, we consider the T-stage trial data a unified dataset and utilize weighted average parameters such as p̂˚
k , ê

˚
k .

By the empirical process arguments similar to Lemma 2, we have

pIq “
1

N ` n

T
ÿ

t“0

nt
ÿ

i“1

1tUit ď p1
ku

«

1 ´ 1tUit ď π1
ku

1 ´ π1
k

pm1pXitq ´ m0pXitqq

`
1tUit ď e1

ku1tUit ď π1
ku

π1
ke

1
k

pYit ´ m1pXitqq

´
1tUit ď e1

kup1 ´ 1tUit ď π1
kuqrpXitq

π1
kp1 ´ e1

kq ` p1 ´ π1
kqrpXitq

pYit ´ m0pXitqq

ff

` Op

ˆ

1
?
N ` n

˙
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Here, p1
k, π

1
k, and e1

k are uncorrelated with the previous data. Consequently, under the regularity conditions
outlined in Theorems 2.6 and 3.4 of Newey and McFadden (1994), we can apply the classical CLT to establish
the asymptotic normality of τ̂

?
N ` npτ̂ ´ τq

d
Ñ N

`

0, σ2
˘

Now that we have established Lemma 2 and Lemma 3, we can proceed to prove Theorem 1. We begin by
demonstrating the consistency of our design strategies.

Theorem 3 (Consistency with oracle) Under Assumption 1 and regularity conditions (i)-(iv) described in
Lemma 2, we have

p̂˚
kt

p
ÝÑ p˚

k

ê˚
kt

p
ÝÑ e˚

k

where t “ 1, . . . , T , k “ 1, . . . ,K.

Proof. For simplicity, define

V pp, eq “

K
ÿ

k“1

p20k

#

pτk ´ τq
2

κ0p0k ` p1 ´ κ0qpk
`

σ2
1k

p1 ´ κ0qpkek
`

σ2
0k

p1 ´ κ0qpk p1 ´ ekq ` κ0p0krk

*

Then the oracle problem can be written as
min
p,e

V pp, eq

s.t. pp, eq P E

We have proved that the oracle problem has unique solution E˚ “ pp˚, e˚q. We define

V̂t pp, eq “

K
ÿ

k“1

N2
k

N2

$

’

&

’

%

´

τ̂
pt´1q

k ´ τ̂ pt´1q

¯2

Nk ` npk
`

´

σ̂
pt´1q

ik

¯2

npkek
`

´

σ̂
pt´1q

0k

¯2

npk p1 ´ ekq ` Nkr̂
pt´1q

k

,

/

.

/

-

and the t-stage optimization problem can be written as

min
p,e

V̂t pp, eq

s.t. pp, eq P E

The unique solution is Ê˚
t “ pp̂˚

t , ê
˚
t q. We further define ”approximate minimizes”,

E˚pεq “

"

pp, eq : pp, eq P E ,V pp, eq ě max
p,e

V pp, eq ´ ε

*

Ê˚
t pεtq “

"

pp, eq : pp, eq P E , V̂t pp, eq ě max
p,e

V̂t pp, eq ´ εt

*

where ε and εt are adapted to optimization slackness, and E˚pεq and Ê˚
t pεtq are the set of solutions. We assume

that εt Ñ 0 as nt Ñ 8, t ě 2. We further define the δ-enlargement of E˚ as E˚ ` Bδ :

E˚ ` Bδ “ tpp˚
k ` u, e˚

k ` vq : }u} ` }v} “ δu .

First, for δ ą 0, we can define

ε “ sup
pp,eqPE

Vpp, eq ´ sup
pp,eqPE:}p´p˚}`}e´e˚}ěδ

Vpp, eq

Therefore, for any δ ą 0, there exists ε ą 0, such that E˚pεq Ď E˚ ` Bδ. Consider the event

Atpε{3q : sup
pp,eqPE

ˇ

ˇ

ˇ

pVtpp, eq ´ Vpp, eq

ˇ

ˇ

ˇ
ď ε{3
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Second, for an arbitrary pp, eq R E˚ ` Bδ, we have

Vpp, eq ă sup
pp,eqPE

Vpp, eq ´ ε

Under the event Atpε{3q,
pVtpp, eq ď Vpp, eq `

ε

3
ă sup

pp,eqPE
Vpp, eq ´ ε `

ε

3
.

In addition, since
ˇ

ˇ

ˇ
suppp,eqPE Vpp, eq ´ suppp,eqPE

pVtpp, eq

ˇ

ˇ

ˇ
ď ε{3,

pVtpp, eq ď Vpp, eq `
ε

3
ă sup

pp,eqPE
Vpp, eq ´

2

3
ε ď sup

pp,eqPE
pVtpp, eq ´

1

3
ε

which gives that
pE˚
t pε{3q Ď E˚ ` Bδ

Since we assume that εt Ñ 0 when nt Ñ 8, then

pE˚
t pεtq Ď pE˚pε{3q Ď E˚ ` Bδ

Therefore, as nt Ñ 8,

P pAtpε{3qq ď P
´

pE˚
t pεtq Ď E˚ ` Bδ

¯

Now we simply need to show P pAtpε{3qq Ñ 1 as nt Ñ 8. We have previously established in Lemma 2 and 3 that

τ̂
pt´1q

k Ñ τk, τ̂
pt´1q Ñ τ,

´

σ̂
pt´1q

1k

¯2

Ñ σ2
1k,

´

σ̂
pt´1q

0k

¯2

Ñ σ2
0k for k “ 1, . . . ,K, 2 ď t ď T . Based on the results,

we can derive
sup

pp,eqPE

ˇ

ˇ

ˇ
V̂t pp, eq ´ V pp, eq

ˇ

ˇ

ˇ
Ñ 0

when nt Ñ 8. As a result, P pAtpε{3qq Ñ 1 and P
´

pE˚
t pεtq Ď E˚ ` Bδ

¯

Ñ 1. Consequently,

P p}p̂˚
t ´ p˚} ` }ê˚

t ´ e˚} ď δq Ñ 1

and
p̂˚
kt

p
ÝÑ p˚

k

ê˚
kt

p
ÝÑ e˚

k

where t “ 2, . . . , T , k “ 1, . . . ,K.

After proving Theorem 3, we can then move on to demonstrate the latter part of Theorem 1.

Theorem 4 (Asymptotic normality II) Under assumptions described in Theorem 3 and regularity conditions
described in theorems 2.6 and 3.4 of Newey and McFadden (1994), we have

?
N ` npτ̂ ´ τq

d
Ñ N p0,V˚q

where

V˚ “

K
ÿ

k“1

p20k

#

pτk ´ τq
2

κ0p0k ` p1 ´ κ0q p˚
k

`
σ2
1k

p1 ´ κ0q p˚
ke

˚
k

`
σ2
0k

p1 ´ κ0q p˚
k p1 ´ e˚

kq ` κ0p0krk

+

Proof. We have demonstrated in Lemma 2 that p1
k “ plimp̂˚

k , e
1
k “ plimê˚

k . Moreover, as established in Theorem
3, the oracle design strategies p˚

k “ plimp̂˚
k and e˚

k “ plimê˚
k . Consequently, we can conclude that p1

k “ p˚
k and

e1
k “ e˚

k , allowing us to replace the probability limits p1
k and e1

k in the lemma with the oracle values p˚
k and

e˚
k .

We now show the asymptotic efficiency gain of our EMR data-assisted digital clinical trial for estimating τ̂ with
the benchmark clinical trial without using EMR data.



Xinrui Ruan, Jingshen Wang, Yingfei Wang, Waverly Wei

Theorem 5 (Efficiency gain) Efficiency gain by utilizing EMR data:

pN ` nq´1V˚ ă n´1V˚1

Proof. Since pp˚1
k , e˚1

k q is suboptimal for Problem 1 in comparison to pp˚
k , e

˚
kq, we can deduce that:

K
ÿ

k“1

p20k

#

pτk ´ τq
2

Np0k ` np˚
k

`
σ2
1k

np˚
ke

˚
k

+

`
σ2
0k

np˚
k p1 ´ e˚

kq ` Np0krk

*

ď

K
ÿ

k“1

p20k

#

pτk ´ τq
2

Np0k ` np˚1
k

`
σ2
1k

np˚1
k e˚1

k

+

`
σ2
0k

np˚1
k p1 ´ e˚1

k q ` Np0krk

*

Given that rk ě 0, and at least one p0k ą 0 for k “ 1, ¨ ¨ ¨ ,K, it is evident that:

K
ÿ

k“1

p20k

#

pτk ´ τq
2

Np0k ` np˚1
k

`
σ2
1k

np˚1
k e˚1

k

+

`
σ2
0k

np˚1
k p1 ´ e˚1

k q ` Np0krk

*

ă

K
ÿ

k“1

p20k

#

pτk ´ τq
2

np˚1
k

`
σ2
1k

np˚1
k e˚1

k

+

`
σ2
0k

np˚1
k p1 ´ e˚1

k q

*

Therefore, we conclude that:
pN ` nq´1V˚ ă n´1V˚1

E Proof of validity of percentile bootstrap (Theorem 2)

For simplicity, we consider a scenario where the working models m pX;αq and r pX; γq are estimated using
the actual sample prior to the bootstrap procedure. Consequently, mpX;αq and rpX; γq are treated as known
functions when the bootstrap is applied. We generate an i.i.d bootstrap sample of size Nk `nk from the empirical
distribution, where Nk samples are drawn from the EMR data and nk samples from the trial data. This yields
a bootstrap sample denoted as tY ˚

i , X˚
i , D

˚
i , Z

˚
i “ 0u

Nk

i“1 and tY ˚
i , X˚

i , D
˚
i , Z

˚
i “ 1u

Nk`nk

i“Nk`1, where we use an
asterisk (*) to signify the bootstrapped data. According to Zhao et al. (2019), we can establish the validity of
the percentile bootstrap method by proving the following lemma.

Lemma 4 Under the assumption that rpX; γq is correctly specified and uniformly bounded in x, and regularity
conditions described in Theorems 2.6 and 3.4 of Newey and McFadden (1994), for fixed sensitivity parameters
pup0q, δq, we have

a

Nk ` nk

´

τ̂
pup0q,δq

k ´ τ
pup0q,δq

k

¯

d
Ñ N

ˆ

0,
´

σ
pup0q,δq

k

¯2
˙

(L.1)

a

Nk ` nk

´

τ̂
˚pup0q,δq

k ´ τ̂
pup0q,δq

k

¯

d
ÝÑ N

ˆ

0,
´

σ
pup0q,δq

k

¯2
˙

(L.2)

where τ̂˚
k is computed from the bootstrap sample.

Proof. When the transportability assumption holds, we have proved in Theorem 4 that τ̂k is consistent and
asymptotically normal for τk under certain assumptions. When there exists imperfect transportability, τ̂k remains
consistent and asymptotically normal, but now for a different estimand:

rτk “ E
„

1 ´ Z

1 ´ πk
pm1pxq ´ Ăm0pxqq `

DZ

πkek
pY ´ m1pxqq ´

Zp1 ´ Dq ` p1 ´ ZqrpXq

πk p1 ´ ekq ` p1 ´ πkq rpXq
pY ´ Ăm0pXqq

ȷ

In other words, we can express τ̂k ´ rτk “ Op

´

pNk ` nkq
´1{2

¯

. Consequently, to establish L.1, our goal is to

demonstrate that the bias estimator p rτk, τkq “ rτk ´ τk root-n converges to zero. Similar to the proof presented

in Lemma 2, we can establish that p̂tk
p

Ñ p̂˚1
tk, êtk

p
Ñ ê˚1

tk. It’s worth noting that for Problem 3, the true design
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strategies are p̂˚1
tk and ê˚1

tk, rather than p̂˚
tk and ê˚

tk. Given that rpx; γ̂q ´ rpxq “ Opp1q, Nk{N ´ p0k “ Opp1q, for
fixed sensitivity parameters pup0q, δq, we have

δ `
Nkrpx; γ̂q

np̂tkp1 ´ êtkq ` Nkrpx; γ̂q
up0q

“ δ `
pp0k ` Opp1qqprpxq ` Opp1qq

npp̂˚1
tk ` Opp1qqp1 ´ ê˚1

tk ´ Opp1qq{N ` pp0k ` Opp1qqprpxq ` Opp1qq
up0q

“ δ `
p0krpxq

np̂˚1
tkp1 ´ ê˚1

tkq{N ` p0krpxq
up0q ` Opp1q

Therefore,
zBias p rτk, τkq “ Bias p rτk, τkq ` Op

´

pNk ` nkq
´ 1

2

¯

τ̂
pup0q,δq

k “ τ̂k ´ yBias p rτk, τkq

“ rτk ´ Bias p rτk, τkq ` Op

´

pNk ` nkq
´ 1

2

¯

“ τ
pup0q,δq

k ` Op

´

pNk ` nkq
´ 1

2

¯

In order to establish L.2, we start by re-expressing τ̂
pup0q,δq

k as pNk ` nkq
´1řNk`nk

i“1 µi, where µi is a function of
tYi, Xi, Di, Ziu and pup0q, δq for simplicity. Given that the working model is estimated prior to the bootstrap, we

can represent τ̂
˚pup0q,δq

k as pNk ` nkq
´1řNk`nk

i“1 µ˚
i . The proof for L.2 can be established by applying Theorem

2.1 from Bickel and Freedman (1981).

Both the bootstrap pivot pNk ` nkq
´1řNk`nk

i“1 pµ˚
i ´ µiq and the classic one

pNk ` nkq
´1řNk`nk

i“1

´

µi ´ τ
pup0q,δ
k

¯

share the same asymptotic distribution. Hence, we observe that

a

Nk ` nk

´

τ̂
˚pup0q,δq

k ´ τ̂
pup0q,δq

k

¯

d
Ñ N

ˆ

0,
´

σ
pup0q,δq

k

¯2
˙

.

If the working models are estimated based on bootstrap samples, we should introduce more rigorous assumptions
regarding rpX, γ̂q.

Once we have successfully established both L.1 and L.2, the subsequent steps of the proof closely follow the
approach outlined in Corollary C.3 of Zhao et al. (2019).

F Detailed simulation setups

We provide a detailed description of the simulation setups in Section 6. When the transportability assumption
holds, we consider the following DGP. We assume that there are two covariates, X1 and X2, generated from a
multivariate Gaussian distribution

ˆ

X1

X2

˙

| pZ “ 0q „ N
ˆˆ

0
0

˙

,

ˆ

1 0.1
0.1 1

˙˙

ˆ

X1

X2

˙

| pZ “ 1q „ N
ˆˆ

0.5
0.5

˙

,

ˆ

1 0.1
0.1 1

˙˙

The stratification is based on the quantiles of X1, and the number of strata is K “ 4. For convenience, we
assume that the outcomes have linear expectations and log-linear variance:

Y p1q | pX,Z “ 1q „N p3 ` X1 ` 0.5X2, expp0.5 ` 0.5X1 ` 0.5X2qq,

Y p0q | pX,Z “ 1q „N p1 ` 1.5X1 ` X2, expp2 ` 0.5X1 ` 0.5X2qq,

Y p0q | pX,Z “ 0q „N p1 ` 1.5X1 ` X2, expp0.5 ` 0.5X1 ` 0.5X2qq

The true ATE, denoted as EpY p1q ´ Y p0q | Z “ 0q, is set at 2. For the digital clinical trial, we consider a
multi-stage adaptive experiment with T “ 4 experiment stages. We have a total of N “ 500 units in the EMR
data, and the number of units in each stage of the experiment is defined as tntu

T
t“1 “ t250, 500, 750, 1000u.
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In cases where imperfect transportability exists, the outcomes in the trial population are generated using a
different DGP

Y p1q | pX,Z “ 1q „N p3 ` up0q ` δ ` X1 ` 0.5X2, expp0.5 ` 0.5X1 ` 0.5X2qq,

Y p0q | pX,Z “ 1q „N p1 ` up0q ` 1.5X1 ` X2, expp2 ` 0.5X1 ` 0.5X2qq.

Here, pup0q, δq represents the sensitivity parameters (bias functions) discussed in Section 4.2. While the true
ATE remains at 2, it’s important to note that our proposed estimator will exhibit bias in this scenario.

For the comparison between designs B1 and C2, our motivation is that, while design C offers a statistical efficiency
advantage, it may also introduce more bias when the transportability assumption is violated. Specifically, the
bias in the k’th stratum for design (C) is given by rδ `

κ0p0krk
p1´κ0qpkp1´ekq`κ0p0krk

¨ up0qs. In contrast, the bias of

design (B) is simply represented by δ. Intuitively, when up0q and δ have opposite signs, utilizing EMR data
can potentially reduce bias. However, this is not necessarily the case when up0q and δ share the same signs.
Drawing inspiration from Section C of Li et al. (2023), we maintained a common δ “ 0, and varied up0q within
the range of ˘p0, 0.05, 0.1, 0.15, 0.2q. For each case, we conducted 1000 replicates and assessed the efficiency gain
of incorporating EMR data, measured by mean squared errors (MSE).

G Detailed synthetic data-generating process and assessment of transportability

We provide a detailed description of the synthetic data-generating process in Section 7 of our paper. For the
EMR dataset, we generate the outcome in each subgroup k as

Yip0q|pXi P Sk, Zi “ 0q „ Bernoullipµ0kq, k “ 1, 2,

where µ0 “ p0.90, 0.91q1, and subgroup proportions are p0 “ p0.38, 0.62q1.

For the RCT data, for k “ 1, 2, we generate the outcome in subgroup k under treatment or control as

Yip0q|pXi P Sk, Zi “ 1q „ Bernoullipν0kq,

Yip1q|pXi P Sk, Zi “ 1q „ Bernoullipν1kq,

where ν0 “ p0.80, 0.92q1, ν1 “ p0.96, 0.95q1. The parameter values are obtained through regression analysis
using raw data from both the EMR database and the cash transfer RCT conducted in Tanzania.

Before considering which design strategy to employ, it is crucial to assess the transportability assumption. For
continuous covariates, a nonparametric omnibus test, as described in Luedtke et al. (2019), can be used. However,
in our HIV cash transfer study described in Section 7, the stratification is based on a single discrete covariate,
biological sex (0{1). In this case, we simply use a t-test for the following hypothesis:

H0 : EpY |D “ 0, X “ k, Z “ 1q “ EpY |D “ 0, X “ k, Z “ 0q,

This test is applied to the EMR data and stage-1 trial data for each stratum k “ 1, 2. The resulting p-values
indicate a significant violation of the transportability assumption for the k “ 1 subgroup but not for the k “ 2
subgroup. Consequently, it is reasonable to consider the design strategy outlined in Problem 3 and set covariate-
dependent sensitivity bounds pΓ0k,Γ1kq2k“1. In this context, we set Γ01 and Γ11 to be greater than zero, while
Γ02 and Γ12 are both set to zero.

1A design that does not integrate EMR data.
2Our proposed design under Problem 3.
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