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ETH Zürich, Switzerland

Abstract

Various applications ranging from robotics to
climate science require modeling signals on
non-Euclidean domains, such as the sphere.
Gaussian process models on manifolds have
recently been proposed for such tasks, in
particular when uncertainty quantification is
needed. In the manifold setting, vector-
valued signals can behave very differently
from scalar-valued ones, with much of the
progress so far focused on modeling the lat-
ter. The former, however, are crucial for
many applications, such as modeling wind
speeds or force fields of unknown dynami-
cal systems. In this paper, we propose novel
Gaussian process models for vector-valued
signals on manifolds that are intrinsically de-
fined and account for the geometry of the
space in consideration. We provide compu-
tational primitives needed to deploy the re-
sulting Hodge–Matérn Gaussian vector fields
on the two-dimensional sphere and the hyper-
tori. Further, we highlight two generalization
directions: discrete two-dimensional meshes
and “ideal” manifolds like hyperspheres, Lie
groups, and homogeneous spaces. Finally, we
show that our Gaussian vector fields consti-
tute considerably more refined inductive bi-
ases than the extrinsic fields proposed before.

1 INTRODUCTION

Gaussian processes (Rasmussen and Williams, 2006)
are a widely used class of Bayesian models in ma-
chine learning. They are known to perform well in
small data scenarios and to provide well-calibrated un-
certainty. Their notable applications include model-
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ing spatial data (Chilès and Delfiner, 2012) and au-
tomated decision-making, e.g., optimization (Noskova
and Borovitskiy, 2023; Shields et al., 2021; Snoek et
al., 2012), or sensor placement (Krause et al., 2008).

Gaussian processes can be scalar- or vector-valued (Al-
varez et al., 2012). The important special case of the
latter is Gaussian vector fields. These can for exam-
ple be used to model velocities or accelerations, either
as a target in itself or as means for exploring an un-
known dynamical system. When the input domain
is Euclidean, vector fields are just vector-valued func-
tions. However, when the domain is a submanifold of
a Euclidean space, such as when modeling wind speeds
or ocean currents on the surface of Earth, the situation
can be quite different: geometry places additional con-
straints on vector fields that need to be accounted for.
As illustrated in Figure 1, the values of a vector field
ought to be tangential to the manifold, while those of
a vector function can be arbitrary vectors.

In recent years, two different formalisms were pro-
posed for defining Gaussian vector fields on manifolds.
Lange-Hegermann (2018) approached the problem by
considering linear constraints on vector-valued Gaus-
sian processes, constraining them to lie in the tangent
space of a submanifold of Rd. Additionally, one can

(a) Vector Function (b) Vector Field

Figure 1: Vector fields on manifolds are not just vector
functions, for them the vectors are always tangential.
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impose further linear constraints to the resulting fields,
such as making them divergence-free. Hutchinson et
al. (2021)—which is closer in spirit to this work—
instead considered projecting vector-valued Gaussian
processes to a submanifold of Rd. While both these
procedures can in principle produce any valid Gaus-
sian vector field, they are fundamentally extrinsic and
we will show that the fields one gets in practice intro-
duce undesirable inductive biases.

To remedy this, we propose a new approach: fully
intrinsic Gaussian vector fields based on the Hodge
Laplacian1 that we name Hodge–Matérn Gaussian vec-
tor fields. For some simple manifolds, namely for the
two-dimensional sphere S2 and for the hypertori Td, we
develop computational techniques that allow effortless
use of these intrinsic fields in downstream applications.

The aforementioned computational techniques hinge
on knowing the eigenvalues and eigenfields of the
Hodge Laplacian. To this end, we describe how to:

a) derive these from the eigenpairs of the Laplace–
Beltrami operator when the manifold is two-
dimensional, using automatic differentiation only;

b) compute these on product manifolds in terms of
the eigenvalues and eigenfields on the factors; and

c) get these explicitly in the cases of the circle S1,
the hypertori Td, and the sphere S2.

We conjecture that (a) can also be used to define Gaus-
sian vector fields on meshes, by changing the analytic
notions into their appropriate discretizations. Further-
more, we conjecture that (c) can be done for more gen-
eral parallelizable manifolds, e.g. on Lie groups, which
may then facilitate the generalization to the very gen-
eral class of homogeneous spaces. The latter includes
many manifolds of interest which are poorly amenable
to discretization because of their higher dimension.

By showing how our intrinsic Hodge–Matérn Gaussian
vector fields improve over their näıve extrinsic coun-
terparts on the two-dimensional sphere, we hope to
motivate further research. First, into the development
of practical intrinsic Gaussian vector fields on other
domains. Second, into applying the proposed models
in areas like climate/weather modeling and robotics.

1The concurrent work by Peach et al. (2024) studies
Gaussian vector fields induced by the connection Lapla-
cian rather than the Hodge Laplacian (see Appendix A.7
on the difference between these two notions of Laplacian).
Importantly, they consider a very different setting: a pri-
ori unknown manifolds that are estimated from finite data,
showcasing an impressive neuroscience application.

1.1 Gaussian Processes

Let X be a set. A random function f on X is called
a Gaussian process (GP) with mean µ : X → R and
covariance (or kernel) k : X × X → R—denoted by
f ∼ GP(µ, k)—if for any finite set of points x in X
we have f(x) ∼ N(µ(x),Kxx) where K• •′ = k(•, •′).
Without loss of generality, we usually assume µ(·) = 0.

Assuming a GP prior f ∼ GP(0, k) and a Gaussian
likelihood y | f = N (y | f(x), σ2

ε) with a fixed noise
variance σ2

ε , the posterior f | y is a GP (Rasmussen
and Williams, 2006) with mean and covariance

µf |y(·) = K·x
(
Kxx + σ2

εI
)−1

y, (1)

kf |y(·, ·′) = k(·, ·′)−K·x
(
Kxx + σ2

εI
)−1

Kx·′ . (2)

Here, the function µf |y can be used to draw predictions
and the function kf |y is used to quantify uncertainty.

When X = Rd, Matérn Gaussian processes (Ras-
mussen and Williams, 2006; Stein, 1999) are most
often used. Their respective kernels kν,κ,σ2 are the
three-parameter family of Matérn kernels, whose
limiting case k∞,κ,σ2 for ν → ∞ is known as the
heat (a.k.a. squared exponential, RBF, Gaussian,
diffusion) kernel, which is arguably the most popular.

1.2 Gaussian Processes on Manifolds

Now consider X = M, where M is a compact Rieman-
nian manifold. Throughout this paper, manifolds are
always assumed to be connected. Using the SPDE-
based characterization of Matérn Gaussian processes
of Lindgren et al. (2011) and Whittle (1963), Borovit-
skiy et al. (2020) showed how to compute Matérn ker-
nels on M in terms of the spectrum of the Laplace–
Beltrami operator ∆:

kν,κ,σ2(x, x′) =
σ2

Cν,κ

∞∑
n=0

Φν,κ(λn)fn(x)fn(x
′), (3)

where {fn}∞n=0 is an orthonormal basis of eigenfunc-
tions of ∆ such that ∆fn = −λnfn,

Φν,κ(λ) =

{(
2ν
κ + λ

)−ν−d/2
ν <∞,

e−
κ2

2 λ ν = ∞,
(4)

d = dim(M), and Cν,κ is a normalization constant that
ensures 1

volM

∫
M
kν,κ,σ2(x, x) dx = σ2. There exist an-

alytical (Azangulov et al., 2022; 2023) and numerical
(Borovitskiy et al., 2020; Coveney et al., 2020) tech-
niques for computing the eigenpairs λn, fn, or bypass-
ing the computation thereof. In the end, a truncated
series from Equation (3) yields tractable Gaussian pro-
cesses that respect the intrinsic geometry of the man-
ifold (Rosa et al., 2023), as illustrated in Figure 2.
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(a) Intrinsic kernel

(b) Extrinsic kernel

Figure 2: Comparing an intrinsic Matérn kernel (ν =
∞) of Equation (3) to an extrinsic one, the restriction
of a Euclidean Matérn kernel to the manifold. Note
the latter induces high correlation between the points
across the minor axis of the ellipse, despite them being
far from each other in terms of the intrinsic distance.

Importantly, same as in the Euclidean case we have

k∞,κ,σ2(x, x′) ∝ P(κ
2

2 , x, x
′) (Azangulov et al., 2022),

where P(t, x, x′) is the heat kernel : the solution of

∂P
∂t

= ∆xP, lim
t→0

P(t, x, x′) = δ(x− x′), (5)

where ∆x denotes the Laplace–Beltrami operator act-
ing on the variable x and δ is the Dirac delta function;
convergence takes place in the sense of distributions.

1.3 Gaussian Vector Fields on Manifolds

Following Hutchinson et al. (2021), we introduce the
notions of Gaussian vector fields and their kernels.

Definition 1. A random vector field f is a function
mapping each x ∈ M to a random variable f(x) with
values in the tangent space TxM of M at x. It is
Gaussian if (f(x1), . . . , f(xn)) ∈ Tx1

M⊕ . . .⊕Txn
M is

jointly Gaussian for all x1, . . . , xn ∈ M and n ∈ N.

When M = Rd, this reduces to vector-valued GPs with
output dimension equal to the input dimension d, e.g. a
concatenation of d independent scalar-valued GPs. If
instead M ⊆ Rd is an embedded manifold, concate-
nating d scalar-valued GPs does not lead to a vector
field: in this case, f(x) ∈ Rd rather than f(x) ∈ TxM
as illustrated by Figure 1.

If g is a vector-valued GP on Rd, then its values
g(x) are Gaussian vectors. Thus, the kernel of g is
a matrix-valued function k(x,x′) = Cov(g(x), g(x′)).
Alternatively, it can be defined as a scalar-valued func-
tion k((x,v), (x′,u)) = Cov(v⊤g(x),u⊤g(x′)) where
x,x′,v,u ∈ Rd. Reinterpreting the inner products
a⊤b as the linear functional • → a⊤• applied to the
vector b leads to a particularly elegant generalization.
For a Gaussian vector field f on a manifold M we put

k(x, x′)(u, v) = k
(
(x, v), (x′, u)

)
(6)

= Cov
(
v(f(x)), u(g(x))

)
, (7)

where x, x′ ∈ M , u ∈ T ∗
xM, v ∈ T ∗

x′M and T ∗
xM de-

notes the cotangent space of covectors, linear function-
als on TxM. Together with a deterministicmean vector
field µ, such a kernel k determines the distribution of
f in a coordinate-free way, justifying the use of the
standard notation f ∼ GP(µ, k).

In order to define Gaussian vector fields that can be
used in practice, Hutchinson et al. (2021) introduced
the notion of projected Gaussian processes. These
are constructed by picking an isometric embedding
ϕ : M → RD into some Euclidean space.2 Then, a
tangent space TxM can be identified with a subspace
of Tϕ(x)RD ∼= RD. Thus, there exists a projection Px
from RD to this subspace and f(x) = Px g(x) defines a
valid Gaussian vector field for any vector-valued GP g.

2 CHALLENGES

The class of projected GPs we reviewed in Section 1.3
is very large. In fact, any Gaussian vector field f can
be represented as a projected GP, simply because f =
Px g with g = f , as proved in Hutchinson et al. (2021).
However, in order to obtain f using this trick we need
to know it in the first place.

To avoid this “chicken and egg” problem, we should
construct g using the tools we already posses. Practi-
cally, this means stacking together scalar-valued GPs.
The first challenge is to find scalar GPs that respect
the geometry of the manifold. It can be solved by using
the manifold Matérn GPs reviewed in Section 1.2. To
obtain an expressive family, we can define g = Ah
where hj ∼ GP(0, kν,κj ,σ2) are independent and A
is an arbitrary matrix. In fact, this is exactly what
Hutchinson et al. (2021) propose to do in practice.

However, as can be seen in Figure 3, this construc-
tion can produce undesirable artifacts. Upon a closer
examination, the reasons for this can be formalized.

Proposition 2. With notation as above, if rkA > 1,
there are x, x′ ∈ S2 so that ∠(x, x′) = 90◦ but

∥Cov(f(x), f(x′))∥<∥Cov(f(x), f(x̃))∥, κj→∞, (8)

where x̃ = −x is antipodal to x (i.e. ∠(x, x̃) = 180◦)
and ∥•∥ denotes the Frobenius norm.

For a proof, see Appendix B.1. Proposition 2 implies
that, for large length scales κ, the covariance of a pro-
jected GP is non-monotonic in the intrinsic distance
on the sphere—this is an undesirable trait, usually.

Another issue is that the projected GP construction
does not provide a way to force divergence-free or curl-
free inductive biases. These can be quite important for

2Such an embedding always exists by the Nash embed-
ding theorem; it is not unique.
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(a) Projected Matérn (b) Projected Matérn, rotated (c) Hodge–Matérn (d) Hodge–Matérn, rotated

Figure 3: GP regression from a single observation (the red vector) for a very large length scale κ. Black vectors
represent the prediction µf |y(·), the background color shows the uncertainty

∥∥kf |y(·, ·)∥∥: yellow for high, blue for
low. On (a) and (b) we use a projected Matérn GP of Hutchinson et al. (2021); on (c) and (d) we use our Hodge–
Matérn Gaussian vector field, ν = ∞ in both cases. Unnaturally, uncertainty in (a) and (b) is non-monotonous
with respect to the distance on the sphere: it is considerably lower at the antipode than halfway to it.

certain types of vector field data (Berlinghieri et al.,
2023), as we will clearly observe in Section 5.

To overcome these challenges, we introduce a fully in-
trinsic class of Gaussian vector fields on manifolds.

3 INTRINSIC GAUSSIAN VECTOR FIELDS

In this section, we present the main ideas behind the
construction of the intrinsic Gaussian vector fields we
propose. The mathematical formalism for this section
is detailed in Appendix A.

3.1 The Hodge Heat Kernel

We start by generalizing the heat kernel, i.e. the
Matérn kernel with ν = ∞.

Let M be a compact, oriented Riemannian manifold.
Then, Hodge theory—see e.g. Rosenberg (1997) for an
approachable introduction—defines a generalization ∆
of the Laplace–Beltrami operator that acts on vector
fields on M instead of scalar functions, called the Hodge
Laplacian. We consider the associated heat equation

∂u

∂t
(t, x) = ∆xu(t, x), (9)

where u is smooth in both variables and u(t, x) ∈ TxM.
This equation admits a fundamental solution P : the
Hodge (heat) kernel which for any choice of t ∈ R>0

and x, x′ ∈M gives a function

P(t, x, x′) : T ∗
xM⊗ T ∗

x′M −→ R. (10)

Considering t as a hyperparameter, we obtain a func-
tion Pt(x, x

′) with the exact signature that a kernel of
Gaussian vector field should posses, as by Section 1.3.
We prove the following.

Theorem 3. For any t > 0 there exists a Gaussian
vector field whose kernel is Pt.

Having found a suitable adaptation of the heat kernel
to the vector field case, we turn to making it explicit.
Similarly to the scalar case, a Hilbert space L2(M;TM)
of square integrable vector fields can be defined. There
is always an orthonormal basis {sn}∞n=0 of L2(M;TM)
such that ∆sn = −λnsn, i.e. sn are eigenfields of the
Hodge Laplacian. Moreover, we have λn ≥ 0 for n ≥ 0.
The kernel Pt can be computed in terms of the eigen-
fields just like its scalar counterpart (cf. (3)). Namely,
as discussed in Appendix A.4, we have

Pt(x, x
′) =

∞∑
n=0

e−tλnsn(x)⊗ sn(x
′), (11)

Here, the notation means

(sn(x)⊗ sn(x
′))(u, v) = u(sn(x)) v(sn(x

′)) (12)

for u ∈ T ∗
xM and v ∈ T ∗

x′M.

3.2 Hodge–Matérn Kernels

Following Azangulov et al. (2022, 2023), we define
Matérn kernels kν,κ,σ2 as integrals of the heat kernel:

kν,κ,σ2(x, x′)=
σ2

Cν,κ

∫ ∞

0

tν−1+n
2 e−

2ν
κ2 tPt(x, x

′) dt. (13)

Fubini’s theorem then readily implies the key formula

kν,κ,σ2(x, x′) =
σ2

Cν,κ

∞∑
n=0

Φν,κ(λn)sn(x)⊗sn(x′), (14)

where Φν,κ is as in (4) and Cν,κ is a normalizing con-
stant that ensures 1

volM

∫
M
tr(kν,κ,σ2(x, x)) dx = σ2.

Same as the for Hodge heat kernel, these Hodge–
Matérn kernels determine Gaussian vector fields.

Theorem 4. For any ν, κ, σ2 > 0 there exists a Gaus-
sian vector field whose kernel is kν,κ,σ2 .
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In practice, the series in Equation (11) should be trun-
cated, with only a few terms corresponding to the
smallest eigenvalues λn used to approximately com-
pute the kernel, just like in the scalar case. Notice that
the functions Φν,κ(λ) are all decreasing in λ, so that
the most significant terms are the ones corresponding
to the smallest eigenvalues.

3.3 Divergence-Free and Curl-Free Kernels

The celebrated Helmholtz decomposition (also known
as the fundamental theorem of vector calculus) states
that any vector field in Rd decomposes into the sum
of its divergence-free and curl-free parts. The former,
intuitively, has no sinks and sources; the latter has
no vortexes. Many vector fields in physics are known
to have only one of these parts. This suggests that
divergence-free and curl-free Gaussian vector fields can
be useful inductive biases (Berlinghieri et al., 2023).

For manifolds, the analog of Helmholtz decomposition
is the Hodge decomposition, see e.g. Rosenberg (1997,
Theorem 1.37). It states that any vector field u on M
can be represented as a sum of three fields:

u = u1 + u2 + u3, (15)

where u1 = ∇f1 for some function f1, and thus is pure
divergence—meaning that div u1 ̸= 0 and curlu1 =
0—and in particular curl-free, u2 = ⋆∇f2, and thus
is pure curl and divergence-free, and u3 is a harmonic
form, ∆u3 = 0, both curl- and divergence-free. The
symbol ⋆ denotes the Hodge star operator, which we
recall in Appendix A.1. For intuition on divergence
and curl, see Appendix A.2.

Importantly, the orthonormal basis of eigenfields
{sn}∞n=0 may be chosen in such a way that each sn
is in exactly one of the three classes above. Let Idiv,
Icurl, and Iharm denote the index sets of the respective
classes of eigenfields. Using a single class, we can de-
fine versions of Matérn Gaussian vector fields on the
manifold M with the associated inductive bias.

Theorem 5. There exists a Gaussian vector field f •—
where • ∈ {div, curl,harm} —with kernel

k
•
ν,κ,σ2(x, x′) =

σ2

Cν,κ

∑
n∈I•

Φν,κ(λn)sn(x)⊗sn(x′). (16)

What is more, div f curl = 0, curl fdiv = 0 and
∆fharm = 0 almost surely as long as f • is smooth
enough that div and curl are well-defined.

3.4 Hodge-compositional Matérn Kernels

Combining the pure divergence, pure curl, and har-
monic kernels, each with a separate set of hyperpa-

rameters, gives a more flexible family of kernels:

σ2
1k

div
ν,κ1,1 + σ2

2k
curl
ν,κ2,1 + σ2

3k
harm
ν,κ3,1. (17)

By analogy with the concurrent paper by Yang et
al. (2024), we call this family Hodge-compositional
Matérn kernels. Unless prior knowledge suggests a
more specialized choice, this is the family we recom-
mend for use in practical applications, inferring all the
hyperparameters κi, σi from data. Our experimental
results in Section 5 support this recommendation.

3.5 Gaussian Process Regression

All kernels defined above fall under the umbrella
framework of Gaussian vector fields described in
Hutchinson et al. (2021). In practice, there are two
ways to perform Gaussian process regression in this
setting. The first one—if the manifold is embedded
in RD—is to treat Gaussian vector fields as special
cases of Gaussian vector functions in RD. The second
is to introduce a frame, i.e. a coordinate choice (not
necessarily smooth) in all of the tangent spaces, and
describe all quantities in these coordinates. Depend-
ing on whether an embedding or a frame is available,
either can be used. Both are merely modes of compu-
tation, not affecting the inductive biases of Gaussian
vector fields and not introducing any error per se.

3.6 Kernel Evaluation and Sampling

As mentioned in the end of Section 3.2, given that
eigenfields and eigenvalues are known, we can approx-
imately evaluate the kernels by truncating the series
in Equation (14). Such a truncation is a well-defined
kernel, i.e. it corresponds to a Gaussian vector field.

Proposition 6. The Gaussian vector field

f(x) =
σ√
Cν,κ

L∑
n=0

wn

√
Φν,κ(λn)sn(x), (18)

where wn
iid∼ N (0, 1), corresponds to the kernel given

by the truncation of Equation (14) with the sum
∑∞
n=0

therein substituted by the sum
∑L
n=0.

Importantly, Equation (18) allows to approximately
sample Hodge–Matérn Gaussian vector fields in an ex-
tremely computationally efficient way by simply draw-
ing random wn ∼ N(0, 1). Efficiently sampling their
respective posteriors can be performed using pathwise
conditioning for Gaussian vector fields, as described in
Hutchinson et al. (2021).

Remark 7. Of course, direct analogs of Equation (18)
also hold for the kernels of Theorem 5.
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(a) Eigenfield 1√
λ3

∇Y3,2 (b) Eigenfield 1√
λ3

⋆∇Y3,2 (c) Eigenfield 1√
λ7

∇Y7,3 (d) Eigenfield 1√
λ7

⋆∇Y7,3

Figure 4: Eigenfunctions on the sphere S2 (represented by color) and the respective eigenfields.

In summary, (approximate) sampling, kernel evalua-
tion and differentiation reduce to knowing eigenvalues
and eigenfields of the Hodge Laplacian on M . Thus,
we proceed to discuss how to obtain those in practice.

4 EXPLICIT EIGEN-VALUES AND -FIELDS

The above allows defining intrinsic kernels on gen-
eral compact oriented Riemannian manifolds. How-
ever, actually computing these kernel requires solving
for eigenfields and eigenvalues of the Hodge Laplacian.
Luckily, in some important cases this turns out to be
tractable. We present them in this section.

4.1 Surfaces and the Sphere

The main case of interest here is the sphere S2. How-
ever, we start by considering the more general case
of manifolds of dimension 2 (surfaces). We explain
how to obtain the eigenfields and eigenvalues granted
their scalar counterparts and a basis of harmonic vec-
tor fields are known.

Surfaces Suppose M is a compact, oriented Rieman-
nian surface. We consider two intrinsic operators for
this case. The first is the gradient of a scalar func-
tion, giving us a vector field. The second operator
is the Hodge star operator ⋆ acting on vector fields,
which in the case of surfaces is just a 90◦ rotation of a
vector field in the positive direction, as shown in Ap-
pendix A.2.

Suppose we know all eigenfunctions {fn}n≥0 and their
respective eigenvalues 0 = λ0 < λ1 ≤ λ2 ≤ · · · of
the Laplace–Beltrami operator on M. Further, assume
that we have an orthonormal basis {gj}0≤j≤J of the
0-eigenspace of the Hodge Laplacian.3

3By the Hodge decomposition theorem, these form a
basis of the first de Rham cohomology group (a real vector
space) of M, which is finite dimensional since M is compact
by assumption.

Theorem 8. For each n ≥ 1, both ∇fn and ⋆∇fn are
eigenfields of the Hodge Laplacian, and the set{

∇fn√
λn
,
⋆∇fn√
λn

, gj

∣∣∣∣n ≥ 1 and 0 ≤ j ≤ J

}
(19)

forms an orthonormal basis of L2(M;TM).

All of these operators can easily be computed numer-
ically, e.g. via automatic differentiation, which makes
pointwise evaluation and differentiation of the kernels
an easy endeavor with modern computing systems.

The Sphere It is well known that the eigenfunctions
of the Laplace–Beltrami operator on the sphere S2 are
given by the spherical harmonics Yℓ,m, for ℓ ≥ 0,−ℓ ≤
m ≤ ℓ, with eigenvalues λℓ = λℓ,m = ℓ(ℓ + 1). Addi-
tionally, the 0-eigenspace of the Hodge Laplacian on
the sphere is trivial, see Appendix A.3. This, together
with Theorem 8, allows us to compute the eigenfields.
We visualize some of them in Figure 4.

The approximation of the full kernel can be made even
more efficient via the addition theorem, e.g. De Vito et
al. (2021, Section 7.3), that states

∑
−ℓ≤m≤ℓ

Yℓ,m(x)Yℓ,m(x′) =
2ℓ+ 1

4π
Pℓ(x · x′), (20)

where Pℓ is the ℓ-th Legendre polynomial and the
scalar product is taken in R3 after embedding the S2
as the standard unit sphere. This reduces the compu-
tations to a single simple function for each eigenvalue.
As a result, we have the following.

Proposition 9. Writing

P̃ℓ,ν,κ(z) =
2ℓ+ 1

4πλℓ
Φν,κ(λℓ)Pℓ(z), (21)

the pure divergence and pure curl Hodge–Matérn ker-
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(a) Divergence-free field fcurl (b) Curl-free field fdiv

Figure 5: Intrinsic Gaussian vector field samples on S2.

nels on S2 are given by

kdiv
ν,κ,σ2(x, x′) =

σ2

Cdiv
ν,κ

∞∑
n=1

(∇x ⊗∇x′)P̃ℓ,ν,κ(x · x′),

kcurl
ν,κ,σ2(x, x′) =

σ2

Ccurl
ν,κ

∞∑
n=1

(⋆∇x ⊗ ⋆∇x′)P̃ℓ,ν,κ(x · x′).

The full Hodge–Matérn kernel is the mean of the two:

kν,κ,σ2 =
1

2

(
kdiv
ν,κ,σ2 + kcurl

ν,κ,σ2

)
. (22)

Combining this with Proposition 6, we can sample
Hodge–Matérn Gaussian vector fields. Thanks to Re-
mark 7, we can also sample their pure divergence and
pure curl counterparts, which we illustrate in Figure 5.

4.2 Product Manifolds and Hypertori

Another tractable setting is product manifolds: if we
know the eigenfields of the Hodge Laplacian for the
factors, we can construct those of the product. We
give an overview of this in general before deriving the
spectrum of the circle from the scalar case and using
it to resolve the case of the hypertori.

Product Manifolds Let M,N be two compact, ori-
ented Riemannian manifolds with scalar manifold heat
kernels PM,PN and Hodge heat kernels PM,PN. The
vector kernel on the product M×N is given by

PM×N
t (x, x′) = PM

t (x1, x
′
1)P

N
t (x2, x

′
2)+

+ PN
t (x2, x

′
2)P

M
t (x1, x

′
1)

(23)

for x = (x1, x2) and x′ = (x′1, x
′
2) and x1, x

′
1 ∈ M;

x2, x
′
2 ∈ N. The details are explained in Appendix A.6.

Knowing the Hodge heat kernels, the other Hodge–
Matérn kernels can be derived using Equation (13).

Circle The circle S1 is the only4 compact Rieman-
nian manifold of dimension 1. The Hodge star oper-

4To be precise: any 1-dimensional compact Riemannian
manifold is isometric to the circle of the same length.

ator in this case gives an identification of scalar func-
tions and vector fields on S1: there is a canonical global
vector field v such that ∥v(x)∥ ≡ 1—in fact, there
are exactly two of them, and a choice of orientation
selects one—and a function f(x) on S1 is identified
with f(x)v(x). The Hodge Laplacian reduces to the
Laplace–Beltrami operator

∆(f(x)v(x)) = ∆(f(x))v(x). (24)

Thus, the spectrum of the Hodge Laplacian is the same
as the spectrum of the Laplace–Beltrami operator un-
der this identification. Similarly, the vector kernels co-
incide with their scalar counterparts, for which explicit
formulas can be found in Borovitskiy et al. (2020).

Hypertori The d-dimensional (flat5) hypertorus is
defined as the product of d circles Td := S1 × · · · × S1.
It has a global basis of tangent vector fields by the
canonical identification TTd ∼= TS1 ⊗ · · · ⊗ TS1, so
that we can write tangent fields on Td as a vector of
vector fields on S1. Putting together what was said
above, we obtain the following, cf. Appendix A.6.

Proposition 10. The eigenfields on Td are(
d∏
i=1

fni
(xi)

)
ej ∈ TS1 ⊗ · · · ⊗ TS1 ∼= TTd, (25)

1 ≤ j ≤ d, with eigenvalue
∑d
i=1 λni , where xi ∈ S1,

and (fn, λn) are eigenpairs of the Laplace–Beltrami op-

erator on S1. In particular, with kT
d

the scalar Matérn
kernel on Td, the vector Hodge–Matérn kernel is

kTd

ν,κ,σ2(x, x′) =
1

d
kT

d

ν,κ,σ2(xi, x
′
i)Id. (26)

4.3 Possible Extensions

We propose two prospective directions into which our
results could be extended.

Meshes Neither Hodge–Matérn kernels nor the
eigenfields can be analytically computed on a general
two-dimensional manifold. This is true even for their
scalar counterparts (Borovitskiy et al., 2020). How-
ever, we expect that Hodge–Matérn kernels can be
numerically approximated on surfaces discretized into
meshes. To do this, one needs to apply suitable dis-
crete counterparts of ⋆ and ∇ to numerically approx-
imate the scalar eigenfunctions the Laplace–Beltrami
operator and also take care of the harmonic forms.

5Not to be confused with the torus defined as a “donut”
in R3, which has a different intrinsic geometry.
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(a) Projected Matérn (ν = 1
2
) (b) Ground truth (January 2010) (c) Div.-free Hodge-Matérn (ν = 1

2
)

Figure 6: Interpolation of wind speed on the surface of Earth. The observations are the red vectors along a
meridian. Figures (a) and (c) report predictive mean (black vectors) and uncertainty (color: yellow is high, blue
is low). Note that in figure (a) sinks and sources are present, while the inductive bias of (c) prohibits that. We
advise the reader to examine the global Figures 8 and 9, located in the appendix because of space limitations.

Lie Groups and Related Manifolds It is possi-
ble to obtain the scalar manifold Matérn kernels on
homogeneous spaces via the representation theory of
their symmetry groups (Azangulov et al., 2022). We
conjecture that the the vector case can be treated
similarly—in particular, in view of the work of Ikeda
and Taniguchi (1978). This could result in explicit for-
mulas for eigenfields and eigenvalues for homogeneous
spaces given in terms of algebraic quantities only.

5 EXPERIMENTS

We complement the theoretical motivations for the use
of intrinsic kernels on manifolds with a practical exper-
iment on weather data from the ERA5 dataset (Hers-
bach et al., 2023). Further experiments on syntheti-
cally generated data are available in Appendix C.

5.1 Setup

The dataset comes from the fifth generation ECMWF
atmospheric reanalysis of the global climate (ERA5)
(Hersbach et al., 2023). We took the monthly aver-
aged reanalysis data for wind (u- and v-components)
at the fixed 500hPa pressure level (corresponding to
approximately 5.5km altitude) from January to De-
cember 2010. As the wind at the 500hPa pressure level
at mid and high latitudes is approximately geostrophic
and therefore, approximately divergence-free (Holton,
2004), we expect the family of divergence-free (i.e. pure
curl) Hodge–Matérn kernels to provide good results.

The training and testing points are distributed along a
great circle, as displayed in Figure 6b. An experiment
was run for each month of data, totaling 12 experi-
ments for each kernel.

We applied GP regression using pure noise, pro-
jected Matérn (P. M.), Hodge–Matérn (H.–M.), and
divergence-free Hodge–Matérn (div-free H.–M.) ker-

nels all with ν = 1
2 ,∞. The hyperparameters are the

noise variance for the first kernel, and the length scale
κ, the variance σ2, and the noise variance σ2

ε for the
others. They were optimized by maximizing marginal
log-likelihood. After visual inspection of the ground
truth, we selected the best performing kernel—the
divergence-free Hodge–Matérn kernel with ν = 1

2—
and the projected Matérn- 12 kernel, and ran four fur-
ther experiments by fixing their length scale to high
values κ = 0.5 and 1. Importantly, we also experi-
mented with the Hodge-compositional Matérn (H.-C.
M.) kernels of Section 3.4 to understand if these could
detect the correct inductive bias.6

We report the mean and standard deviation of mean
squared error (MSE) of the predicted mean and pre-
dictive negative log-likelihood (PNLL) of the ground
truth against the predictive distribution, where each
test point is considered independently of the others.

(a) Projected (b) Hodge

Figure 7: Posterior samples of the models featured
in Figure 6 (note: different scaling of vectors).
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Kernel
MSE PNLL

Mean Std Mean Std

Pure noise 2.07 0.18 2.89 0.10
P. M.– 1

2 1.39 0.15 2.33 0.11
P. M.–∞ 1.53 0.20 2.43 0.15
H.–M.– 1

2 1.67 0.16 2.58 0.12
H.–M.–∞ 1.76 0.17 2.63 0.14
div-free H.–M.– 1

2 1.10 0.12 2.16 0.13
div-free H.–M.–∞ 1.34 0.20 2.33 0.18

H.-C. M.– 1
2 1.09 0.10 2.16 0.12

H.-C. M.–∞ 1.34 0.20 2.33 0.18

Table 1: Mean squared error and predictive negative
log-likelihood in the ERA5 wind data experiment.

5.2 Performance

Results are displayed in Tables 1 and 2. The data was
scaled so that the training observations have unit mean
norm, cf. Appendix C. Baselines are provided by fitting
a pure noise kernel to the data and the projected ker-
nels of Hutchinson et al. (2021). The best scores by far
were obtained by fitting either of the divergence-free
Hodge–Matérn or Hodge-compositional Matérn ker-
nels with ν = 1

2 , which outperformed the other ker-
nels we considered on all metrics. Next to them were
divergence-free Hodge–Matérn with ν = ∞ and the
projected Matérn kernel with ν = 1

2 .

Two factors were of fundamental importance in ob-
taining good results: having a divergence-free induc-
tive bias and allowing for lower degrees of smoothness
by setting ν = 1

2 . In particular, considering the diver-
gence of the various kernels explains why the projected
kernels tend to do better than the full Hodge-Matérn
kernels in this situation: they have lower absolute di-
vergence in expectation, cf. Appendix B.3, Figure 10.

The additional experiments where length scales were
fixed to high values are reported in Table 2. We notice
further test score improvements, but not significant
ones. Figures 6 and 7 display posterior mean, standard
deviations and samples from GP regressions fitted
using projected Matérn and divergence-free Hodge–
Matérn kernels, both with fixed κ = 1.

Analysis of the fitted hyperparameters of Hodge-
compositional Matérn kernels shows that these were
able to automatically detect the correct inductive bias.
Specifically, the resulting Hodge-compositional kernel
was virtually divergence-free, which enabled it to reach

6On the sphere S2, these are linear combinations
of pure-divergence and pure-curl Hodge–Matérn kernels,
without the harmonic part which vanishes on S2

Kernel
MSE PNLL

Mean Std Mean Std

div-free H.–M.– 1
2 1.10 0.12 2.16 0.13

div-free H.–M.–∞ 1.34 0.20 2.33 0.18
H.–M.– 1

2 κ = 0.5 1.06 0.10 2.15 0.13
H.–M.– 1

2 κ = 1.0 1.05 0.10 2.17 0.13
P. M.– 1

2 κ = 0.5 1.36 0.13 2.32 0.10
P. M.– 1

2 κ = 1.0 1.36 0.13 2.34 0.10

Table 2: Mean squared error and predictive negative
log-likelihood in the ERA5 wind data experiment for
divergence-free Hodge–Matérn and projected Matérn
kernels with ν = 1

2 and fixed length scale κ.

the same scores as the actual divergence-free Hodge–
Matérn kernels. See Appendix C for more details.

6 CONCLUSION

In this work, we introduced a novel class of models—
the Hodge–Matérn vector fields—for learning tangen-
tial vector fields on manifolds. These principled mod-
els solve the shortcomings present in the preexist-
ing literature, providing improved inductive biases.
We described computational techniques—kernel evalu-
ation and differentiation, sampling—required for run-
ning Gaussian process regression and for downstream
applications on important manifolds such as the two-
dimensional sphere S2 and hypertori Td, and indicated
further extension directions. We applied our methods
both to synthetic and real-world data on S2, demon-
strating that they can lead to improved performance.
We hope our results will inspire new extensions and ap-
plications in areas like climate modeling and robotics.
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A THEORY

In this section, we present the mathematical theory
behind the Hodge–Matérn Gaussian vector fields in-
troduced in the main body of the paper. Although we
previously almost exclusively talked about vector fields
on manifolds, this section is written in the more tech-
nically appropriate language of differential forms. On
a Riemannian manifold, the metric provides an equiv-
alence between 1-forms and vector fields, which im-
mediately recovers the results of the main part of the
article. The general theory provides more than just
intrinsic kernels for 1-forms, though: we obtain ker-
nels for differential forms of all degrees—hence intrin-
sic Gaussian differential forms—which can be refined
to kernels for pure gradient, pure curl, and harmonic
processes.

We will begin by introducing the Hodge star operator
and link the abstract differential operators to the clas-
sical notions of gradients, curls, and divergences. The
Hodge star operator will allow us to define the Hodge
Laplacian and the heat equation on differential forms.
The fundamental solution of the latter is the heat ker-
nel (up to a normalization constant). We will then ex-
plore the cases of surfaces and products, and conclude
by giving an overview of another possible generaliza-
tion of the Laplacian to sections of a vector bundle
that could be considered in future research.

We assume the reader has some basic familiarity with
concepts of differential geometry, such as differential
forms and the exterior derivative. All manifolds are
assumed to be compact, connected, and oriented.

Most of the material found in this appendix can be
found in the book by Rosenberg (1997). We only give
proofs of original results.

A.1 The Hodge Star Operator

Let V be a finite-dimensional oriented vector space,
say of dimension n, endowed with a non-degenerate
inner product ⟨ · , · ⟩.

The k-th exterior product ΛkV of V is the quotient
of the tensor product of k copies of V by the sign
representation of the symmetric group:

vσ(1) ⊗ · · · ⊗ vσ(k) ∼ sgn(σ)v1 ⊗ · · · ⊗ vk (27)

for v1, . . . , vk ∈ V and σ ∈ Σk a permutation. We
write v1∧· · ·∧vk for the equivalence class of v1⊗· · ·⊗vk,
and we call ∧ the wedge product.

The inner product on V induces an inner product on
the exterior product ΛkV for 0 ≤ k ≤ n by

⟨a, b⟩ = det (⟨ai, bj⟩i,j) (28)

for a = a1 ∧ . . . ∧ ak and b = b1 ∧ . . . ∧ bk.

It is easily checked that ΛnV is 1-dimensional and has
a canonical unit n-vector

ω = e1 ∧ . . . ∧ en ∈ ΛnV, (29)

where e1, . . . , en ∈ V is an oriented orthonormal basis.

The Hodge star operator is the linear operator

⋆ : ΛkV −→ Λn−kV (30)

mapping b ∈ ΛkV to the unique ⋆b ∈ Λn−kV such that

a ∧ (⋆b) = ⟨a, b⟩ω (31)

for any a ∈ ΛkV .

From now on, let M be a compact oriented Rieman-
nian manifold of dimension dM. The cotangent bundle
T ∗M is the dual of the tangent bundle TM. In other
words, at each x ∈ M the fibre T ∗

xM is the linear dual
of the tangent space TxM at x. One can then take
the exterior products of the cotangent bundle, which
are nothing more than the exterior product ΛkT ∗

xM at
each x ∈ M. Sections of this bundle—smooth func-
tions that at each point x ∈ M associate an element
of ΛkT ∗

xM—are called k-differential forms on M. The
space of k-differential forms is denoted by Ωk(M).

The exterior derivative is an intrinsic differential op-
erator

d : Ωk(M) −→ Ωk+1(M) (32)

defined in local coordinates by linear extension of

d(f(x) dxI) =

dM∑
i=1

∂f(x)

∂xi
dxi ∧ dxI , (33)

where I = {i1, . . . , ik} ⊆ {1, . . . , dM} is a set of k in-
dices and dxI = dxi1 ∧ · · · ∧ dxik . In order to build
intuition, one can notice that if X is a vector field
on M and f ∈ Ω0(M), then df(X) is the directional
derivative of f in direction X.

Applying the Hodge star operator to the cotangent
bundle at each point of M (the inner product being
given by the Riemannian metric), one obtains a Hodge
star operator on differential forms

⋆ : Ωk(M) −→ Ωn−k(M). (34)

The canonical unit n-vector in ΛnT ∗M is nothing else
than the Riemannian volume form ωg, and by defini-
tion we have ⋆1 = ωg and ⋆ωg = 1.

If α, β ∈ Ωk(M) are two k-forms, their (Hodge) inner
product is

⟨α, β⟩L2(M) =

∫
M

⟨α, β⟩ωg =
∫
M

α ∧ ⋆β. (35)
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An easy computation shows that the dual of the exte-
rior derivative d : Ωk(M) → Ωk+1(M) is given by

d⋆ = (−1)dMk+1 ⋆ d⋆ : Ωk+1(M) −→ Ωk(M). (36)

A.2 Gradient, Divergence, and Curl on
Surfaces

In this section, we will link the abstract operators ⋆, d,
and d⋆ to quantities which are in some sense more con-
crete. Before doing that, we start with a quick recap
on vector fields, their curls and divergences in R3.

In R3, a basis for 1-forms is given by dx1,dx2,dx3, and
a basis for 2-forms is dx1 ∧ dx2,dx1 ∧ dx3,dx2 ∧ dx3.
The Hodge star operator sends the constant function
1 to the volume form dx1 ∧ dx2 ∧ dx3, and it maps

⋆ dx1 = dx2 ∧ dx3, (37)

⋆ dx2 = − dx1 ∧ dx3, (38)

⋆ dx3 = dx1 ∧ dx2, (39)

and vice versa. Vector fields are identified with 1-forms
by mapping dxi 7→ ei, and also with 2-forms via the
Hodge star operator.

With this in mind, we immediately see that the exte-
rior derivative of a function

df = ∂1f dx1 + ∂2f dx2 + ∂3f dx3 (40)

is identified with taking the gradient ∇f . A straight-
forward calculation also shows that taking the exterior
derivative of a 1-form corresponds to taking the curl of
the corresponding vector field, and the exterior deriva-
tive of a 2-form gives the divergence of the associated
vector field. This and the fact that d2 = 0 recover the
well known relations between ∇, curl, and div. Via the
Hodge star operator, similar statements can be made
about the d⋆ operator.

On surfaces, the situation is a bit different since we
only have two dimensions in which to move. The fact
that our manifold is oriented gives us an orientation
on each cotangent space T ∗

xM. Picking an oriented
orthonormal local basis dx1,dx2 ∈ T ∗

xM, the volume
form is given locally by dx1 ∧ dx2 and it follows that
⋆ dx1 = dx2 and ⋆ dx2 = −dx1. This corresponds to
a rotation by 90◦ in the cotangent space.

In the case where our surface is embedded in R3, the
choice of an orientation is equivalent to the choice of a
global unit normal field for the manifold, i.e. a smooth
choice of a unit normal vector for each point. Then,
for tangent vectors the Hodge star is given extrinsically
by a rotation by 90◦ around the unit normal at each
point. This can also be written as the cross product
of a tangent vector with the unit normal.

Building on the case of R3, we call

∇ = d : Ω0(M) −→ Ω1(M), (41)

div = d⋆ : Ω1(M) −→ Ω0(M), (42)

curl = ⋆ d : Ω1(M) −→ Ω0(M), (43)

under the identification of 1-forms with vector fields
and 2-forms with functions. This also corresponds—
potentially up to a sign, depending on conventions—
to the definition of divergence in Riemannian geometry
using the Levi–Civita connection (Lee, 2009, Equation
13.11). Working in a local coordinate system on M, the
explicit expression for these operators is

∇f(x) =
(
∂1f(x)
∂2f(x)

)
, (44)

div

(
v1(x)
v2(x)

)
= ∂1v1(x) + ∂2v2(x), (45)

curl

(
v1(x)
v2(x)

)
= ∂1v2(x)− ∂2v1(x). (46)

A.3 The Hodge Laplacian

Let M be a d-dimensional manifold. The Hodge Lapla-
cian on differential forms is then defined as

∆ := − (d⋆ d + dd⋆) . (47)

Remark 11. In some texts, including Rosenberg
(1997), the Hodge Laplacian has the opposite sign.

Remark 12. For k = 0 (i.e. on functions) this recov-
ers the Laplace–Beltrami operator

∆ = −d d⋆ = −∇∗∇, (48)

where ∇ is the Levi–Civita connection. Cf. also ap-
pendix A.7. In the dual context of vector fields, we
obtain the classical divergence of the gradient

∆ = div∇. (49)

The following deep results—found in Rosenberg (1997,
Theorems 1.30, 1.37, and 1.45)—give us all we need to
know about the spectrum of the Hodge Laplacian.

Theorem 13 (Hodge). All the eigenvalues of the
Hodge Laplacian ∆ on Ωk(M) are non-negative, they
have finite multiplicity, and they accumulate only at
infinity. The eigenforms span a dense subset of
ΩL2(M). In particular, there exists an orthonormal
basis of ΩL2(M) consisting of smooth eigenforms of ∆.

Remark 14. The convention on eigenpairs is that ϕ
is an eigenform of (minus) eigenvalue λ if ∆ϕ = −λϕ.
Theorem 15 (Hodge decomposition). The space of
smooth k-forms decomposes as

Ωk(M) = ker∆⊕ im d⊕ im d⋆. (50)
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The next result links the kernel of the Hodge Laplacian
with a purely topological property of the manifold: de
Rham cohomology. An accessible introduction is given
in Rosenberg (1997, Section 1.4).

Theorem 16 (Hodge). The kernel of the Hodge
Laplacian on k-forms is naturally isomorphic to the
k-th de Rham cohomology group, which is a real vector
space:

ker∆ ∼= Hk
dR(M). (51)

Remark 17. The following facts about de Rham co-
homology are often useful. Assume M is compact and
connected.

1. H0
dR(M) ∼= R, spanned by the constant function

f(x) = 1.

2. HdM
dR (M) ∼= R, spanned by the volume form.

3. All of the Hk
dR(M) are finite dimensional, see

e.g. Lee (2009, Theorem 10.17).

An example that is exploited in the main body of this
paper is the well known fact that

H1
dR(S2) = 0. (52)

This can be computed using the Mayer–Vietoris se-
quence, see e.g. Lee (2009, Section 10.1).

Proposition 18. The various spaces of eigenforms
have the following relations.

1. The Hodge star ⋆ : Ωk(M) → Ωn−k(M) sends
eigenforms of the Hodge Laplacian to eigenforms
with the same eigenvalue, and it preserves their
orthogonality and norm.

2. The exterior derivative d : Ωk(M) → Ωk+1(M)
sends eigenforms in im d⋆ to eigenforms with the
same eigenvalue (and is zero on the other eigen-
forms), it preserves orthogonality, and

∥ dϕ∥L2(M) =
√
λ∥ϕ∥L2(M) (53)

for ϕ ∈ im d⋆ ⊆ Ωk(M) an eigenform of eigen-
value −λ.

3. The operator d⋆ : Ωk(M) → Ωk−1(M) sends
eigenforms in im d to eigenforms with the same
eigenvalue (and is zero on the other eigenforms),
it preserves orthogonality, and

∥d⋆ϕ∥L2(M) =
√
λ∥ϕ∥L2(M) (54)

for ϕ ∈ im d ⊆ Ωk(M) an eigenform of eigen-
value −λ.

Proof. For (1), it is immediate to see that ∆⋆ = ⋆∆ so
that ⋆ sends eigenforms to eigenforms with the same
eigenvalue. If α, β are any two k-forms, then

⟨⋆α, ⋆β⟩L2(M) =

∫
M

⋆α ∧ ⋆ ⋆ β (55)

=

∫
M

⋆α ∧ β (56)

=

∫
M

β ∧ ⋆α = ⟨β, α⟩L2(M) (57)

= ⟨α, β⟩L2(M), (58)

showing that ⋆ is an isometry and concluding the
point.

For (2), one easily checks that ∆d = d∆ so that d
sends eigenforms that are in imd⋆, i.e. the complement
of ker d, to eigenforms with the same eigenvalue. Let
ϕ, ψ ∈ im d⋆ be eigenforms with eigenvalues λϕ, λψ
respectively, then

⟨dϕ, dψ⟩L2(M) = ⟨ϕ, d⋆ dψ⟩L2(M) (59)

= ⟨ϕ,−∆ψ⟩L2(M) (60)

= λψ ⟨ϕ, ψ⟩L2(M) , (61)

where in the middle equality we used the fact that
ψ ∈ im d⋆ and that d⋆ d⋆ = 0. This concludes the
proof of the point, and (3) is analogous.

A.4 The Heat Equation and its Kernel

The heat equation for k-forms can now be defined as

∂tα(t, x) = ∆xα(t, x) (62)

with a given initial condition α(0, x) = β(x) ∈ Ωk(M).

A double (k-)form over M is a smooth section of the
bundle R⊗ ΛkT ∗M⊗ ΛkT ∗M over M×M, where the
fibre above (x, x′) ∈ M×M is R⊗ ΛkT ∗

xM⊗ ΛkT ∗
x′M.

A heat kernel for k-forms is a double form Pt(x, y)
such that

1. (∂t −∆x)Pt(x, x′) = 0 and

2. limt→∞
∫
M

⟨Pt(x, x′), α(x′)⟩x′ dx′ = α(x) for any

α ∈ Ωk(M), where the pointwise inner product
and the integration are taken with respect to x′,
and integration is against the volume form of M.

Theorem 19. Let ϕi ∈ Ωk(M) be an orthonormal ba-
sis of k-eigenforms of the Hodge Laplacian with (mi-
nus) eigenvalues 0 ≤ λ1 ≤ λ2 ≤ · · · . The heat kernel
on k-forms exists, it is unique, and it can be expressed
by the following sum over eigenforms:

Pt(x, x′) =
∞∑
n=0

e−λntϕn(x)⊗ ϕn(x
′). (63)
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Proof. See Rosenberg (1997, Proposition 3.1) for func-
tions, the discussion at the end of Rosenberg (1997,
Section 3.2) and Patodi (1971) for the general state-
ment on forms.

Given the heat kernel, the solution for the heat equa-
tion

(∂t +∆x)α(t, x) = 0 (64)

with initial condition α(0, x) = β(x) is given by

α(t, x) =
(
e−t∆β

)
(x) (65)

:=

∫
M

⟨Pt(x, x′), β(x′)⟩x′ dx
′ (66)

= ⟨Pt(x, ·), β(·)⟩L2(M) (67)

for t > 0. We now show that the heat kernel is a valid
kernel for Gaussian processes.

Proposition 20. The heat kernel satisfies the follow-
ing properties.

1. The kernel Pt(x, x′) is symmetric: for x, x′ ∈ M
we have Pt(x, x′) = Pt(x′, x) under the canonical
identification

ΛkT ∗
xM⊗ ΛkT ∗

x′M ∼= ΛkT ∗
x′M⊗ ΛkT ∗

xM. (68)

2. The propagator e−t∆ satisfies the semigroup prop-
erty e−(t+s)∆ = e−t∆e−s∆.

3. The kernel Pt(x, x′) is positive semi-definite: for
all α ∈ ΩkL2(M) we have

⟨α(x), ⟨Pt(x, x′), α(x′)⟩x′⟩x ≥ 0. (69)

Proof. Statement (1) is immediate from Theorem 19.
Alternatively, it can be proved from the fact that the
Hodge Laplacian is self-adjoint. Statement (2) follows
in the same way as in Rosenberg (1997, pp. 28–29), as
does statement (3).

As an immediate corollary in the vector setting, we
obtain the following.

Theorem 3. For any t > 0 there exists a Gaussian
vector field whose kernel is Pt.

Proof. The statement follows from Hutchinson et al.
(2021, Theorem 4), provided we prove that our ker-
nel satisfies Definition 3 in the cited work. The link
between the two definitions is given by

k(αx, βx′) =
〈
αx, ⟨Pt(x, x′), βx′⟩ptx′

〉pt
x
, (70)

where the scalar products on the right-hand side are
taken pointwise, not integrating over the manifold.

Fibrewise bilinearity is obvious, we are left to prove
that our kernel is positive semi-definite in the sense of
Hutchinson et al. (2021, Definition 3). In order to do
so, for xi ∈ M and αxi

∈ T ∗
xi
M, 1 ≤ i ≤ n, consider

the sequence

αmi (x) =
〈
P 1

m
(x, xi), αxi

〉pt
xi

. (71)

Then we have

⟨Pt(x, x′), αmi (x′)⟩x′ = (72)

=

〈
Pt(x, x′),

〈
P 1

m
(x′, xi), αxi

〉pt
xi

〉
x′

(73)

=
〈〈

Pt(x, x′),P 1
m
(x′, xi)

〉
x′
, αxi

〉pt
xi

(74)

m→∞−−−−→ ⟨Pt(x, xi), αxi⟩
pt
xi

(75)

and similarly

k(αxi , αxj ) =

= lim
m→∞

〈
αmi (x),

〈
Pt(x, x′), αmj (x′)

〉
x′

〉
x
.
(76)

Therefore, letting αm(x) =
∑n
i=1 α

m
i (x) we obtain

n∑
i=1

n∑
j=1

k(αxi
, αxj

) = (77)

= lim
m→∞

⟨αm(x), ⟨Pt(x, x′), αm(x′)⟩x′⟩x (78)

≥ 0, (79)

since each term in the sequence is non-negative.

Proposition 6. The Gaussian vector field

f(x) =
σ√
Cν,κ

L∑
n=0

wn

√
Φν,κ(λn)sn(x), (18)

where wn
iid∼ N (0, 1), corresponds to the kernel given

by the truncation of Equation (14) with the sum
∑∞
n=0

therein substituted by the sum
∑L
n=0.

Proof. The mean of the random variable f(x) is obvi-
ously 0. The covariance is easily computed to be

Cov(f(x), f(x′)) =

=
σ2

Cν,κ

L∑
n=0

Φν,κ(λn)sn(x)⊗ sn(x
′).

(80)

This concludes the proof.

As a direct consequence of Theorem 19, Proposi-
tion 20, and of the Hodge decomposition theorem, we
also have the following.
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Theorem 5. There exists a Gaussian vector field f •—
where • ∈ {div, curl,harm} —with kernel

k
•
ν,κ,σ2(x, x′) =

σ2

Cν,κ

∑
n∈I•

Φν,κ(λn)sn(x)⊗sn(x′). (16)

What is more, div f curl = 0, curl fdiv = 0 and
∆fharm = 0 almost surely as long as f • is smooth
enough that div and curl are well-defined.

There are some situations where it is only necessary
to have partial information on the eigenforms of the
Hodge Laplacian in order to gain full knowledge of
the spectrum. We will now give the examples of
surfaces—where it is enough to know the spectrum in
the scalar case and the harmonic 1-forms—and prod-
uct manifolds—where we only need to know the spec-
trum on the factors separately.

A.5 Surfaces

Suppose now that dimM = 2 and assume that we
have an orthonormal basis {fn}n of eigenfunctions of
the Laplace–Beltrami operator on M with eigenvalues
{−λn}n where 0 = λ1 < λ2 ≤ λ3 ≤ · · · (where we
notice that the only eigenfunction with eigenvalue 0
is the constant), as well as an orthonormal basis of 1-
eigenforms {αj}0≤j≤J of the first de Rham cohomol-
ogy H1

dR(M). Then, thanks to Hodge decomposition
(Theorem 15) and Proposition 18, we have that an
orthonormal basis of 1-eigenforms of Ω1(M) is given
by {

dfn√
λn
,
⋆ dfn√
λn

, αj

∣∣∣∣n ≥ 1 and 0 ≤ j ≤ J

}
. (81)

An orthonormal basis of 2-forms is simply given by
⋆fi = fiω, where ω ∈ Ω2(M) is the canonical volume
form. Similarly, we can also recover all the 0- and
2-eigenforms from knowledge of the 1-eigenforms.

In the dual case we have the following result from the
main body of the paper.

Theorem 8. For each n ≥ 1, both ∇fn and ⋆∇fn are
eigenfields of the Hodge Laplacian, and the set{

∇fn√
λn
,
⋆∇fn√
λn

, gj

∣∣∣∣n ≥ 1 and 0 ≤ j ≤ J

}
(19)

forms an orthonormal basis of L2(M;TM).

A.6 Products

In this section, let M,N be two oriented, connected,
compact Riemannian manifolds. We recall the Stone–
Weierstrass theorem, see e.g. Prolla (1994).

Theorem 21 (Stone–Weierstrass). Let A ⊆ C∞(M)
be a subalgebra of the algebra of smooth functions on M
which contains all constant functions and which sepa-
rates points, i.e. such that for each x, y ∈ M there is
a function f ∈ A with f(x) ̸= f(y). Then A is dense
in C∞(M).

With this, we get the following, e.g. Canzani (2013,
Section 4.6).

Proposition 22. For X ∈ {M,N}, let {fXi }i ⊆
C∞(X) be an orthonormal basis of eigenfunctions of
the Laplace–Beltrami operator on X with eigenval-
ues −λXi . Then{

hi,j(xM, xN) := fMi (xM)gNj (xN)

∣∣∣∣ i, j}, (82)

where (xM, xN) ∈ M × N, is an orthonormal basis
of eigenfunctions of the Laplace–Beltrami operator on
M×N with eigenvalues −(λMi + λNj ).

Proof. It is straightforward to check that the functions
hi,j are eigenfunctions with the prescribed eigenval-
ues, and that they are orthonormal. We need to show
that these functions are dense in L2(M × N). The
sets {fXi }i ⊆ C∞(X) are both dense in the spaces of
smooth functions on the respective manifolds, so that
the hi,j are dense in the subalgebra spanned by the
products C∞(M) · C∞(N). By the Stone–Weierstrass
theorem, this subalgebra is dense in C∞(M×N), and
thus, also in L2(M×N), which concludes the proof.

Corollary 23. For the heat kernel on M×N we have

PM×N
t (x, x′) = PM

t (xM, x
′
M)PN

t (xN, x
′
N), (83)

for x = (xM, xN) ∈ M×N and similarly for x′.

The more general case of differential forms is similar.
We need the following result, which will play the role of
the Stone–Weierstrass theorem (Bryant, 2020). Recall
that if A is an algebra and M is an A-module, an A-
submodule of M is a linear subspace M ′ of M such
that for each a ∈ A and m′ ∈M we have a ·m′ ∈M ′.

Proposition 24. Let A ⊆ C∞(M) be as in Theo-
rem 21 and let E ⊆ Ωk(M) be an A-submodule which
is such that for each point x ∈ M we have

span{e(x) | e ∈ E} = ΛkT ∗
xM. (84)

Then E is dense in Ωk(M) with respect to the supre-
mum norm.

Proof. First notice that we can choose a finite subset
e1, . . . , en ∈ E that spans ΛkT ∗M everywhere. Indeed,
consider the collection of open sets given by

{x ∈ M | e′1(x), . . . , e′n′(x) spans ΛkT ∗
xM} (85)
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for all possible choices of e′1, . . . , e
′
n′ ∈ E. By our as-

sumptions, this covers M. Thus, by compactness we
can choose a finite sub-collection that also covers M.
Taking all the elements of E appearing in this finite
sub-collection gives us the desired set. Every form
α ∈ Ωk(M) can then be written as

α(x) =

n∑
i=1

fi(x)ei(x) (86)

for some smooth fi (e.g. using bump functions). Each
of these functions fi can be approximated by elements
of A, and since all sums of sections of the form a · e
for a ∈ A and e ∈ E are in E (as it is an A-module),
it follows that we can approximate α as well.

Proposition 25. For X ∈ {M,N}, let {ϕX,ki }i ⊆
Ωk(X) be an orthonormal basis of the eigenfields of

the Hodge Laplacian with eigenvalues λX,ki . The set{
ϕM,kMi ∧ ϕN,kNj | kM + kN = k, i, j

}
(87)

is an orthonormal basis of Ωk(M×N) with eigenvalues

λM,kMi + λN,kNj .

Proof. Similar to Proposition 22. Checking that these
forms are eigenforms of the Hodge Laplacian with the
prescribed eigenvalues and that they are orthonormal
is straightforward. To show that their span is dense in
Ωk(M× N), we notice that for x = (xM, xN) ∈ M× N
we have

ΛkT ∗
x (M×N) ∼=

⊕
kM+kN=k

T ∗
xM

M ∧ T ∗
xN

N. (88)

It follows that the span our set of forms can play the
role of E in Proposition 24, with the role of A being
played by the products of eigenfunctions

A =
{
ϕM,0i ∧ ϕN,0j | i, j

}
. (89)

The statement follows.

Corollary 26. The heat kernel on Ωk(M×N) is given
by

PΩk(M×N)
t (x, x′) =

=
∑
i+j=k

PΩi(M)
t (xM, x

′
M)PΩj(N)

t (xN, x
′
N)

(90)

for x = (xM, xN) ∈ M×N and similarly for x′.

A direct application of this is Hodge–Matérn kernels
on the torus, which we give in the context of vector
fields.

Proposition 10. The eigenfields on Td are(
d∏
i=1

fni
(xi)

)
ej ∈ TS1 ⊗ · · · ⊗ TS1 ∼= TTd, (25)

1 ≤ j ≤ d, with eigenvalue
∑d
i=1 λni , where xi ∈ S1,

and (fn, λn) are eigenpairs of the Laplace–Beltrami op-

erator on S1. In particular, with kT
d

the scalar Matérn
kernel on Td, the vector Hodge–Matérn kernel is

kTd

ν,κ,σ2(x, x′) =
1

d
kT

d

ν,κ,σ2(xi, x
′
i)Id. (26)

Proof. We have a canonical identification

TS1 ∼= S1 × R (91)

of the tangent bundle of the circle with a trivial bundle.
It follows that we also have

TTd ∼= Td × Rd (92)

so that we can work in global coordinates as if we were
working in Rd.

The Hodge star operator gives us an identification of
vector fields on the circle with functions on the circle.
By Proposition 25 we obtain the desired form for the
eigenfields on Td.

The unnormalized form of the Hodge–Matérn kernel
is given by

d∑
j=1

∑
n∈Nd

e−tλn

(
d∏
i=1

fni(xi)fni(x
′
i)

)
ej ⊗ ej =

=
∑
n∈Nd

e−tλn

(
d∏
i=1

fni
(xi)fni

(x′i)

)
Id,

(93)

where n = (n1, . . . , nd) and λn =
∑d
i=1 λni . In the

first part of the expression, we recognize the unnor-
malized form of the scalar manifold Matérn kernel on
Td. We then notice that the normalization factors of
the scalar kernel and the vector one will differ by a fac-
tor d by taking the trace of the identity matrix, which
concludes the proof.

A.7 An Alternative: Connection Laplacian

There is another possible natural extension of the
Laplace–Beltrami operator to differential forms, called
the connection (or Bochner) Laplacian. In fact, it can
be extended to much more than just differential forms:
it exists as soon as we have a vector bundle on a mani-
fold with a nicely behaved connection and inner prod-
uct. An accessible introduction to this notion for the
case of differential forms can be found in Rosenberg
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(1997, Section 2.2), while an extensive treatise on it,
including the existence of a heat kernel, in Berline et
al. (1995).

There is a formal relationship between the Hodge
Laplacian and the connection Laplacian, called the
Weitzenböck formula, see Rosenberg (1997, Sec-
tion 2.2.2) or Lee (2009, Section 13.12): their differ-
ence is given by a term depending only on the cur-
vature of the manifold. The Hodge theorems make it
easier to work with the Hodge Laplacian by exploiting
the relationships between the exterior derivative and
the Hodge star operator, which is the reason why we
focused on that operator in the present work. How-
ever, one gets valid kernels for GPs using the connec-
tion Laplacian as well, and this latter operator has
some very nice properties that could be fruitful to use.
For example, the heat kernel of the connection Lapla-
cian asymptotically acts on vectors by parallel trans-
port, see Berline et al. (1995, Theorem 2.30). This
fact was exploited in Sharp et al. (2019) to provide
efficient computational methods for parallel transport
on manifolds.

B FURTHER RESULTS

This section contains the proofs of some additional re-
sults on Gaussian vector fields that were stated in the
main body of the paper or that we found of general
interest but could not include because of space limita-
tions.

The first result formally shows that projected GPs
built from stacking copies of known intrinsic scalar
kernels will generally lead to undesirable uncertainty
patterns. The second subsection studies normaliza-
tion constants for the kernels of Hodge–Matérn Gaus-
sian vector fields. The third and last subsection aims
to quantify the divergence of samples from different
Gaussian vector fields.

B.1 Limitations of Projected GPs

We work on the standard unit sphere S2 ⊂ R3. Let
g = Ah where hj ∼ GP(0, kν,κj ,σ2) for i ∈ {1, 2, 3}
are independent and A ∈ R3×3 is an arbitrary matrix.
Let f be the associated projected vector GP.

Proposition 2. With notation as above, if rkA > 1,
there are x, x′ ∈ S2 so that ∠(x, x′) = 90◦ but

∥Cov(f(x), f(x′))∥<∥Cov(f(x), f(x̃))∥, κj→∞, (8)

where x̃ = −x is antipodal to x (i.e. ∠(x, x̃) = 180◦)
and ∥•∥ denotes the Frobenius norm.

Proof. For simplicity of notation, we assume the κj are
all equal. Otherwise, we can formally regard κj → ∞
as minj κj → ∞.

Take arbitrary x, x′ ∈ S2. Then

Cov(f(x), f(x′)) = Cov(Px g(x),Px′ g(x′)) (94)

= Px Cov(g(x), g(x
′)) P⊤

x′ (95)

= PxACov(h(x),h(x′))A⊤ P⊤
x′ . (96)

Since Cov(h(x),h(x′)) = kν,κ,σ2(x, x′)I and for arbi-
trary x, x′ we have kν,κ,σ2(x, x′) → σ2 when κ → ∞
(Borovitskiy et al., 2020), we obtain

lim
κ→∞

Cov(f(x), f(x′)) = σ2 PxAA⊤ P⊤
x′ =: Cxx′ . (97)

Without loss of generality, we can assume σ2 = 1. To
analyze Cxx′ we construct the singular value decom-
position (SVD) A = UΣV⊤ of the matrix A. Here
U and V are orthogonal matrices and Σ is a diagonal
matrix with non-negative entries. Then

AA⊤ = UΣV⊤V
I

ΣU⊤ = U Σ2

=:Λ

U⊤ = UΛU⊤ (98)

where the right-hand side is the eigendecomposition of
the matrix AA⊤. We denote λi = Λii and, without
any loss of generality, assume that λ1 ≤ λ2 ≤ λ3. By
assumption, λ2, λ3 > 0.

The columns U·j of U, j = 1, .., 3, form an orthonor-
mal basis of R3. We choose x = U·1 and x′ = U·2.
Then

PxU·j = Px̃U·j =

{
0 for j = 1,

1 for j = 2, 3.
(99)

Px′ U·j =

{
0 for j = 2,

1 for j = 1, 3.
(100)

It follows that

Cxx′ = (0,U·2,U·3)Λ (U·1,0,U·3)
⊤

(101)

= λ10U
⊤
·1 + λ2U·2 0

⊤ + λ3U·3 U
⊤
·3 (102)

= λ3U·3 U
⊤
·3. (103)

Analogously, Cxx̃ = λ2U·2 U
⊤
·2 + λ3U·3 U

⊤
·3. Thus, we

have

∥Cxx′∥F =
√

trCxx′C⊤
xx′ = λ3 (104)

and similarly ∥Cxx̃∥F =
√
λ22 + λ23, proving the claim.

B.2 Kernel Normalization Constants

In Section 3.2, we defined the normalization constant
for the kernels of Hodge–Matérn Gaussian vector fields
implicitly by requiring that

1

volM

∫
M

tr
(
k(x, x)

)
dx = σ2. (105)
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We will now explain what this normalization means
in practice and make these constants explicit for the
kernels of Hodge–Matérn Gaussian vector fields and
projected Matérn Gaussian vector fields.

Proposition 27. Assume (105) holds, then

1

volM
Ef∼GP(0,k)

[
∥f∥2L2(M)

]
= σ2. (106)

Proof. We have

1

volM
Ef∼GP(0,k)

[
∥f∥2L2(M)

]
= (107)

=
1

volM
Ef∼GP(0,k)

[∫
M

∥f(x)∥22 dx
]

(108)

=
1

volM

∫
M

Ef∼GP(0,k)

[
∥f(x)∥22

]
dx (109)

=
1

volM

∫
M

Ef(x)∼N (0,k(x,x))

[
∥f(x)∥22

]
dx (110)

=
1

volM

∫
M

tr
(
k(x, x)

)
dx (111)

= σ2, (112)

where the last equality holds by (105).

Proposition 28. The constant Cν,κ for the Hodge–
Matérn kernel kν,κ,σ2 is given by

Cν,κ =
1

volM

∞∑
n=0

Φν,κ(λn), (113)

where the sum runs over all of the eigenfields of the
Hodge Laplacian. Similar formulas are valid for the
pure divergence, pure curl, and harmonic kernels by
restricting the sum to the appearing eigenfields.

Proof. We have∫
M

tr(kν,κ,σ2(x, x)) dx = (114)

=

∫
M

tr

(
σ2

Cν,κ

∞∑
n=0

Φν,κ(λn)sn(x)⊗ sn(x)

)
dx

(115)

=
σ2

Cν,κ

∞∑
n=0

Φν,κ(λn)

∫
M

tr (sn(x)⊗ sn(x)) dx (116)

=
σ2

Cν,κ

∞∑
n=0

Φν,κ(λn)

∫
M

∥sn(x)∥22 dx (117)

=
σ2

Cν,κ

∞∑
n=0

Φν,κ(λn), (118)

since ∥sn∥L2(M) = 1. Notice that here the trace is
taken with respect to the metric on M. The result
follows immediately by requiring the left-hand side of
the equation to equal σ2 volM.

Proposition 29. The appropriately normalized pro-
jected Matérn kernel (with trivial coregionalization
matrix) on a manifold M of dimension d embedded in
RN is given by

kπν,κ,σ2(x, x′) =
1

d
kν,κ,σ2(x, x′)PTx INPx′ , (119)

where kν,κ,σ2 is the scalar manifold Matérn kernel.

Proof. Let x = x′ and pick a coordinate system such
that TxM = span{e1, . . . , ed}. Then we have

PTx INPx′ = diag(1, . . . , 1

d

, 0, . . . , 0). (120)

It follows that

1

volM

∫
M

tr
(
kPν,κ,σ2(x, x)

)
dx = (121)

=
1

volM

∫
M

kν,κ,σ2(x, x) dx (122)

= σ2, (123)

as desired.

B.3 Divergence of Gaussian Vector Fields

We will now study the distribution of the (pointwise)
divergence of the Hodge–Matérn Gaussian vector fields
and projected Matérn GPs. Similar techniques can be
used to compute the full distribution for dα and d⋆α
for α ∼ GP(0,kν,κ,σ2), which turns out to be another
Gaussian process.

We fix a compact, oriented Riemannian manifold M of
dimension dM ≥ 1 and we look at degree k = 1 dif-
ferential forms, although the computations straight-
forwardly generalize to all other k. We write fn ∈
C∞(M) = Ω0(M) for a basis of eigenfunctions with
eigenvalues −λn, for n ≥ 0, where 0 = λ0 < λ1 ≤ · · · .
We also set ϕn, n ∈ N a basis of 1-eigenforms with
eigenvalues including the eigenforms

1√
λn

dfn (124)

for n ≥ 1. We use Ckν,κ to denote the normal-
ization constant for the Hodge–Matérn kernel on k-
forms (with k = 0 being the case of functions). For
α ∼ GP(0,k) a Gaussian differential form, we write
divα(x) for the random variable d⋆α(x), where x ∈ M.
We assume divα(x) is well-defined, i.e. the Gaussian
process is smooth enough, which places restrictions on
the parameter ν. We leave the precise nature of these
out of the scope of this paper.
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Proposition 30. For the Hodge–Matérn Gaussian
form αν,κ,σ ∼ GP(0,kν,κ,σ2) on 1-forms we have

Var(divαν,κ,σ(x))=
σ2

C1
ν,κ

∞∑
n=1

λnΦν,κ(λn)fn(x)
2 (125)

whenever αν,κ,σ is smooth enough for the divergence
to be well-defined.

Proof. By Proposition 6 we have

divαν,κ,σ(x) = d⋆αν,κ,σ(x) (126)

= d⋆

 σ√
C1
ν,κ

∞∑
n=0

√
Φν,κ(λn)wnϕn(x)

 (127)

=
σ√
C1
ν,κ

∞∑
n=0

√
Φν,κ(λn)wn d

⋆ϕn(x) (128)

=
σ√
C1
ν,κ

∞∑
n=1

√
Φν,κ(λn)

λn
wn d

⋆ dfn(x) (129)

=
σ√
C1
ν,κ

∞∑
n=1

√
λnΦν,κ(λn)wnfn(x), (130)

where in the third line we used that d⋆ϕn(x) = 0 un-
less ϕn(x) is of the form (124) and in the last line we
used the fact that d⋆ dfn(x) = −∆fn(x) = λnfn(x).
This gives the full distribution for divαν,κ,σ(x), and in
particular the desired formula for the variance. Note
that Equation (130) can fail to converge when ν is not
large enough (i.e. αν,κ,σ is not smooth enough).

Corollary 31. On the sphere, in terms of vector
fields, we have

Var(div fν,κ,σ(x)) =
σ2

2

∑∞
n=1 λnΦν,κ(λn)

4π
(
C0
ν,κ − Φν,κ(0)

) (131)

for any x ∈ S2.

Proof. By symmetry, Var(div fν,κ,σ(x)) does not de-
pend on x, i.e. it is a constant. Therefore, we have

4πVar( div fν,κ,σ(x)) = (132)

=

∫
M

Var(div fν,κ,σ(x
′)) dx′ (133)

=

∫
M

σ2

C1
ν,κ

∞∑
n=1

λnΦν,κ(λn)fn(x
′)2 dx′ (134)

=
σ2

C1
ν,κ

∞∑
n=1

λnΦν,κ(λn) (135)

since ∥fn∥L2(M) = 1. The statement follows by notic-
ing that each eigenvalue in the spectrum on functions
appears twice in the spectrum on vector fields—except
for 0, which does not appear.

We now look at the projected kernel. Suppose ϕ : M →
RN is an isometric embedding and write kπν,κ,σ2 for the
projected kernel obtained by projecting the vector ker-
nel in RN where each component is a scalar manifold
Matérn kernel with the same hyperparameters ν, κ, σ2.
In this case, we will talk about vectors and gradients
instead of differential forms (although a formulation in
terms of 1-forms is also possible).

We write P : ϕ∗(TRN ) → TM for the orthogonal pro-
jection to the tangent bundle of M. The proof of the
following helpful lemma was provided by Alan Pinoy
in a private communication.

Lemma 32. Let f : M → R be a smooth function and
let w ∈ RN be a fixed vector. Then

div(f(x)Pxw) =
(
∇f(x) + f(x)H(x)

)
·w, (136)

where H is the mean curvature vector of the embedding
defined in Equation (138).

Proof. We denote by ∇ the Levi–Civita connection of
M and by ∇ that of RN . Recall that the (vector)
second fundamental form of the embedding is given
by

II(u, v) = ∇uv −∇uv ∈ ϕ∗(TRN ), (137)

cf. Lee (2009, Section 4.2) (for the scalar version). In-
tuitively, it measures the infinitesimal curvature of M
inside of RN . Notice that it is always orthogonal to the
tangent space of M. The mean curvature vector is the
trace of the second fundamental form: if e1, . . . , edM is
a local orthonormal frame of M, then

H(x) =

dM∑
i=1

II(ei, ei). (138)

With these definitions at hand, we have

div(f(x)Pxw) = ∇f(x) ·w + f(x) div(Pxw). (139)

We use the standard differential geometric notation
v(f) for the derivative of f in direction v, where f is
a function and v is a vector field. For this last term,
with g denoting the metric on M, we compute

div(Pxw) = tr
(
∇(Pxw)

)
(140)

=

dM∑
i=1

g(∇ei(Pxw), ei) (141)

=

dM∑
i=1

ei
(
g(Pxw, ei)

)
− g(Pxw,∇eiei) (142)

=

dM∑
i=1

ei(Pxw · ei)− Pxw · ∇eiei (143)

=

dM∑
i=1

ei(w · ei
)
−w · ∇eiei (144)



Intrinsic Gaussian Vector Fields on Manifolds

=

dM∑
i=1

∇eiw · ei +w · ∇eiei −w · ∇eiei (145)

=

dM∑
i=1

w ·
(
∇eiei −∇eiei

)
(146)

= w ·

(
dM∑
i=1

II(ei, ei)

)
(147)

= w ·H(x), (148)

where (142) comes from the fact that ∇ is the Levi–
Civita connection, (143) from the fact that ϕ is an
isometric embedding, and (145) comes from the fact
that∇ is the Levi–Civita connection of RN (the metric
being given by the dot product). Inserting this in (139)
concludes the proof.

Proposition 33. For the projected Matérn GP
fπν,κ,σ2 ∼ GP(0,kπν,κ,σ2) we have

Var( div fπν,κ,σ2) = (149)

=
σ2

dMC0
ν,κ

( ∞∑
n=1

λnΦν,κ(λn)

∥∥∥∥∇fn(x)√
λn

∥∥∥∥2
2

+ (150)

+

∞∑
n=0

Φν,κ(λn)fn(x)
2 ∥H(x)∥22

)
(151)

whenever fπν,κ,σ2 is smooth enough for the divergence
to be well-defined.

Proof. Once again, by Proposition 6 we have

fπν,κ,σ2(x) =

=
σ√

dMC0
ν,κ

∞∑
n=0

√
Φν,κ(λn)fn(x)Pxwn

(152)

where wn ∼ N (0, IN ) is a sequence of i.i.d. multivari-
ate normal vectors. Taking the divergence by applying
Lemma 32 to each summand, we obtain

divfπν,κ,σ2(x) =

=
σ√

dMC0
ν,κ

∞∑
n=1

√
Φν,κ(λn)∇fn(x) ·wn+

+
σ√

dMC0
ν,κ

∞∑
n=0

√
Φν,κ(λn)fn(x)H(x) ·wn.

(153)

Since the wn are independent and

∥∇fn(x) + fn(x)H(x)∥2 =

= ∥∇fn(x)∥2 + fn(x)
2∥fn(x)H(x)∥2

(154)

as ∇fn(x) and H(x) are orthogonal, the statement
follows.

Corollary 34. On the sphere we have

Var(div fπν,κ,σ2) =

=
σ2

2

(∑∞
n=1 λnΦν,κ(λn)

4πC0
ν,κ

+ 1

)
(155)

for any x ∈ S2.

Proof. By the same symmetry argument as in Corol-
lary 31 and using the fact that for the standard unit
sphere embedding we have H(x) = n(x) the unit nor-
mal vector, we obtain

4πVar(div fπν,κ,σ2) =

=
σ2

2C0
ν,κ

( ∞∑
n=1

λnΦν,κ(λn) + 4πC0
ν,κ

)
,

(156)

which is the stated result.

C ADDITIONAL EXPERIMENTAL DETAILS

C.1 Weather Modeling

In the weather modeling experiments, the signal was
normalized before fitting by scaling it by a constant
scalar value so that the mean norm of the training
observations is 1.

The training points were selected by taking the obser-
vations at longitudes 90◦E and 90◦W, and then picking
one every 180 of them, spaced regularly. This gives a
final training set of 34 points. The 1220 testing points
were generated randomly.8

Using the results of Appendix B.3, it was possible to
quantify the variance of the divergence of the Gaussian
vector fields arising from the (prior) kernels that were
fitted in the experiments. The results are displayed
in Figure 10, confirming that the absolute divergence
was higher for the Hodge heat and Hodge–Matérn ker-
nels, which explains the worse performance of these
intrinsic kernels against the projected kernels for this
experiment.

An examination of the fitted hyperparameters revealed
that the typical length scale for the divergence-free
Hodge–Matérn kernels is between κ = 0.1 and κ = 0.3.
In some rare exceptions, hyperparameter fitting con-
verged to a local optimum with large length scale,
but performance was not overly affected. After visual
inspection of the ground truth, we fitted divergence-
free Hodge–Matérn kernels with fixed length scales of
κ = 0.5 and κ = 1. The results are reported in Ta-
ble 2. We notice potential small improvements in per-
formance, but not statistically significant ones.

8Specifically, we used the Poisson disk sampling rou-
tine create poisson disk samples on the sphere from
https://github.com/aterenin/phdthesis.

https://github.com/aterenin/phdthesis/blob/d1476cbdd9c92b788505b25077b38b92a35c35ca/render/render.py#L733
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In the last experiment on this data, we fitted the
Hodge-compositional Matérn kernels, i.e. linear com-
binations of pure-divergence and pure-curl Hodge–
Matérn kernels, as reported also in Table 1. We
see that these kernels recover almost exactly the re-
sults of fitting a divergence-free Hodge–Matérn ker-
nel. A detailed analysis of the fitted hyperparameters
shows that the resulting length scales and variances
put full weight on the divergence-free part of the ker-
nel with an almost exact match of length scales. The
only exceptions are when the length scale converges
to a local optimum, which fully explains the minimal
advantage in performance of the linear combination
kernel over the divergence-free Hodge–Matérn kernel
with ν = 1

2 . This supports the fact that Hodge-
compositional Matérn kernels are able to automati-
cally recover appropriate inductive biases in such sit-
uations, mirroring their discrete counterparts in Yang
et al. (2024).

C.2 Synthetic Experiments

In addition to the weather modeling experiment de-
tailed in the main body of the paper, we ran various
experiments on synthetically generated data.

Namely, we considered samples drawn from each of
the following GPs on the sphere: Hodge–Matérn (ν =
∞, κ = 0.5), projected Matérn (ν = 1

2 , κ = 0.5),
Hodge–Matérn (ν = 1

2 , κ = 0.5), and curl-free Hodge–
Matérn (ν = 1

2 , κ = 0.5). In addition to this, we also
used the “rotation” vector field of Figure 1b, which is
given by xy

z

 7−→

 y
−x
0

 . (157)

This vector field is pure curl, as it can obtained as
the curl of the function f(x, y, z) = z on the sphere.
For each experiment, 30 training points were selected
uniformly at random from the northern hemisphere,
and 100 testing points were selected—also uniformly
at random—from the southern hemisphere. Each ex-
periment was repeated 10 times: for the rotation vec-
tor field the training and testing points were resampled
at each experiment, while for the others a new sample
was drawn for each experiment.

In each experiment, we fitted the following GPs: pure
noise, projected Matérn (P. M.), Hodge–Matérn (H.–
M.), divergence-free Hodge–Matérn (div-free H.–M.),
and curl-free Hodge–Matérn (curl-free H.–M.), all with
ν = 1

2 ,∞. All kernels also fitted variance and an ad-
ditive noise.

The results are reported in Tables 3 and 4. We see
that for each experiment based on samples, the re-

spective kernel performed best. On the rotation vec-
tor field, Hodge–Matérn and divergence-free Hodge–
Matérn vastly outperformed all other kernels.
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Kernel
H.–M.– 1

2 sample H.–M.–∞ sample P. M.– 1
2 sample Rotation field

curl-free
H.–M.– 1

2 sample

Mean Std Mean Std Mean Std Mean Std Mean Std

Pure noise 0.17 0.04 1.18 0.32 0.22 0.06 0.68 0.02 0.08 0.02
P. M.– 1

2 0.14 0.03 0.87 0.42 0.16 0.05 0.06 0.02 0.07 0.02
P. M.–∞ 0.19 0.04 0.71 0.26 0.20 0.07 0.34 0.36 0.07 0.03
H.–M.– 1

2 0.14 0.03 0.84 0.38 0.16 0.05 0.02 0.01 0.07 0.02
H.–M.–∞ 0.17 0.04 0.65 0.25 0.20 0.06 0.00 0.00 0.08 0.02

curl-free
H.–M.– 1

2

0.20 0.06 1.15 0.47 0.22 0.07 0.68 0.02 0.05 0.01

curl-free
H.–M.–∞ 0.16 0.04 1.11 0.37 0.23 0.06 0.69 0.03 0.08 0.02

div-free
H.–M.– 1

2

0.15 0.05 1.00 0.60 0.19 0.05 0.01 0.00 0.08 0.02

div-free
H.–M.–∞ 0.16 0.04 0.81 0.46 0.18 0.04 0.00 0.00 0.08 0.02

Table 3: MSE for synthetic experiments. The columns are datasets, the rows are models.

Kernel
H.–M.– 1

2 sample H.–M.–∞ sample P. M.– 1
2 sample Rotation field

curl-free
H.–M.– 1

2 sample

Mean Std Mean Std Mean Std Mean Std Mean Std

Pure noise 0.41 0.25 2.39 0.34 0.67 0.29 1.76 0.04 -0.31 0.25
P. M.– 1

2 0.15 0.26 2.18 0.78 0.31 0.27 -0.65 0.20 -0.51 0.34
P. M.–∞ 0.61 0.39 1.47 0.63 0.58 0.40 -3.43 5.47 -0.38 0.73
H.–M.– 1

2 0.13 0.24 2.12 0.71 0.33 0.28 -1.41 0.15 -0.58 0.28
H.–M.–∞ 0.41 0.25 1.27 0.48 0.53 0.31 -9.42 0.04 -0.31 0.25

curl-free
H.–M.– 1

2

0.66 0.59 2.66 0.71 0.67 0.37 1.77 0.03 -0.79 0.21

curl-free
H.–M.–∞ 0.38 0.30 2.55 0.58 0.73 0.32 1.77 0.05 -0.31 0.25

div-free
H.–M.– 1

2

0.25 0.31 2.37 1.16 0.48 0.31 -2.20 0.17 -0.37 0.31

div-free
H.–M.–∞ 0.33 0.25 1.52 0.66 0.46 0.18 -9.63 0.00 -0.31 0.25

Table 4: Predictive NLL for synthetic experiments. The columns are datasets, the rows are models.
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(a) Ground truth (January 2010) and observations.

(b) Predictive mean and uncertainty (blue is low and yellow is high).

(c) Posterior sample.

Figure 8: Robinson projection of Figures 6a, 6b and 7a displaying the ground truth, observations, predictive
mean, uncertainty, and a posterior sample of the GP with projected Matérn kernel with ν = 1

2 and length
scale κ = 0.5. The vectors in the sample are scaled independently from the ground truth and predictive mean.
Visually, the sample does not have structures reminiscent of that of the ground truth.
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(a) Ground truth (January 2010) and observations.

(b) Predictive mean and uncertainty (blue is low and yellow is high).

(c) Posterior sample.

Figure 9: Robinson projection of Figures 6b, 6c and 7b displaying the ground truth, observations, predictive
mean, uncertainty, and a posterior sample of the GP with divergence-free Hodge–Matérn kernel with ν = 1

2 and
length scale κ = 0.5. The vectors in the sample are scaled independently from the ground truth and predictive
mean. Visually, and to the contrary of Figure 8, the sample appears to have structures reminiscent of that of
the ground truth, such as a strong west to east current in the southern hemisphere.
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Figure 10: Variance of divergence for the prior kernels with fitted hyperparameters in the weather modeling
experiments. Note that the variance of the divergence does not depend on the input location in this case. The
divergence-free kernels and the kernels with fixed length scale are not represented here.
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