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Abstract

We propose a novel framework for kernel-
based statistical independence tests that en-
able adaptatively learning parameterized ker-
nels to maximize test power. Our frame-
work can effectively address the pitfall inher-
ent in the existing signal-to-noise ratio crite-
rion by modeling the change of the null dis-
tribution during the learning process. Based
on the proposed framework, we design a
new class of kernels that can adaptatively
focus on the significant dimensions of vari-
ables to judge independence, which makes
the tests more flexible than using simple ker-
nels that are adaptive only in length-scale,
and especially suitable for high-dimensional
complex data. Theoretically, we demon-
strate the consistency of our independence
tests, and show that the non-convex objec-
tive function used for learning fits the L-
smoothing condition, thus benefiting the op-
timization. Experimental results on both
synthetic and real data show the superior-
ity of our method. The source code and
datasets are available at https://github.

com/renyixin666/HSIC-LK.git.

1 Introduction

Given two variables X and Y , the statistical inde-
pendence test determines whether the null hypothesis
PXY = PXPY can be rejected. Traditional tests such
as Pearson’s correlation coefficient (Cohen et al., 2009)
and Kendall’s τ can only measure monotonic rela-
tions between low-dimensional variables. Many recent
works have tried to capture more complex non-linear
dependencies in higher dimensional spaces (Lyons,
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2013; Liu et al., 2022; Chatterjee, 2021; Lopez-Paz
et al., 2013; Zhang et al., 2012). These methods have
been applied to various machine learning problems
such as self-supervised learning (Li et al., 2021), fea-
ture selection (Camps-Valls et al., 2010) and causal
discovery (Ren et al., 2023; Hoyer et al., 2008).

Kernel-based independence tests stand for a class of
non-parametric tests that are widely used. Their crite-
ria are mainly derived from the cross-covariance oper-
ators in the reproducing kernel Hilbert space (RKHS).
The kernel canonical correlation (KCC) (Bach
and Jordan, 2002) and the constrained covariance
(COCO) (Gretton et al., 2005) are the pioneers. KCC
uses the maximal correlation between the feature maps
to measure dependency and COCO drops the nor-
malization. As one of the most popular kernel-based
dependence measures, the Hilbert-Schmidt Indepen-
dence Criterion (HSIC) (Gretton et al., 2007) uses the
squared Hilbert-Schmidt norm to detect dependence.
The HSIC-based independence tests (Gretton et al.,
2007; Zhang et al., 2018) outperform the other kernel-
based measures in performance and can handle differ-
ent data scenarios through appropriate kernels.

However, these kernel-based methods either presup-
pose the kernel function (Gretton et al., 2007) (e.g.
the Gaussian kernel with median bandwidth) or use
a randomized feature mapping (Zhang et al., 2018),
thus have limited flexibility and cannot capture the
differences in the distributions of complex structures.
To solve this, some works (Jitkrittum et al., 2016; Liu
et al., 2021) tried to learn the kernels/features to max-
imize the power of hypothesis tests. Jitkrittum et al.
(2017) proposed a method to obtain features by op-
timizing the lower bound of testing power. Neverthe-
less, this method requires a large number of samples to
ensure effectiveness, as well as a pre-set test location
parameter, which is not easy to apply in new scenarios.
Besides, Liu et al. (2020, 2021) learned the kernels us-
ing a criterion called the signal-to-noise ratio (Kübler
et al., 2022) as the optimization objective in the two-
sample test problem (Gretton et al., 2005). However,
our study shows that this criterion may result in wrong
solutions when learning kernels for independence tests
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since the change of the null distribution is ignored. In
this paper, we solve this problem by proposing a novel
framework that models the null distribution change
during the learning process. The proposed framework
enables the design of flexible kernels for specific sce-
narios to make the tests more powerful.

Contributions. In summary, our contributions are as
follows: 1) We propose a novel framework for kernel-
based statistical independence tests that enable adap-
tatively learning parameterized kernels to maximize
test power. Our framework overcomes the pitfall of
the learning criterion in existing work by modeling
the change of null distribution during the learning pro-
cess. 2) We further design a new class of kernels that
can adaptatively focus on the significant dimensions of
variables for judging independence, which makes the
tests more flexible than using simple kernels that are
adaptive only in length-scale, and especially suitable
for high-dimensional complex data. 3) We theoreti-
cally demonstrate the consistency of our method and
show that the non-convex objective function fits the
L-smoothing condition, thus benefiting the optimiza-
tion. 4) We conduct extensive experiments on both
synthetic and real data, which demonstrate the supe-
riority of the proposed method.

Outline. The rest of the paper is organized as fol-
lows: Sec. 2 reviews HSIC-based statistical indepen-
dence tests. Sec. 3 first presents the pitfall of the learn-
ing criterion with existing work and then introduces a
novel framework to solve it. Furthermore, a class of
importance-weighted kernels is designed. Sec. 4 gives
the theoretical analyses and Sec. 5 is the performance
evaluation. We conclude the paper in Sec. 6. All theo-
retical proofs are given in the Supplementary Material.

Related Work. Kernel-based independence test aims
to compare the embedding difference of distributions
between the joint distribution and the product of
marginals in the RKHS. HSIC (Gretton et al., 2007)
is recognized as one of the most powerful tests among
them. In addition, some variants (Zhang et al., 2018)
utilize kernel approximation algorithms such as ran-
dom Fourier features to further improve the efficiency
of HSIC, which may lose power if the random map-
pings are insufficient. A closely related independence
test method is based on distance covariance (Székely
et al., 2007; Székely and Rizzo, 2013) which utilizes
characteristic functions to measure and test depen-
dence. In fact, distance-based methods are equivalent
to the HSIC with specific kernels (Sejdinovic et al.,
2013). However, these methods require predefined ker-
nel functions or distance functions and thus lack the
flexibility to handle complex situations. To solve this
issue, our proposed scheme attempts to learn parame-
terized kernels adaptively in a data-driven way.

Learning kernels to maximize the power of the test has
also been extensively studied in different applications
(e.g. two-sample tests (Sutherland et al., 2016), inde-
pendence tests (Albert et al., 2022), and goodness-of-
fit tests (Schrab et al., 2022)), and many methods have
been proposed. Depending on the way of kernel learn-
ing, we can categorize them into two main directions.
The first is to learn the parameters of the (single) ker-
nels, which assumes a fixed form of the kernel and
then optimizing the parameters. Optimizing the scale
of Gaussian kernels (Li and Yuan, 2019) and learning
deep kernels (Liu et al., 2020) are representative ex-
amples of this direction. The second is called kernel
selection, which selects one or combines several from
a set of predefined kernels (e.g. a set of kernels with
different bandwidths). The representative methods in-
clude aggregated kernel tests (Albert et al., 2022). Our
scheme can be implemented in both directions. In this
paper, we focus on the first direction (i.e., optimiz-
ing the Gaussian kernel bandwidth and learning the
importance-weighted kernel). As for the second direc-
tion, due to the space limit we provide the results in
the supplementary file.

2 Preliminaries

2.1 Statistical Independence Test

Let X ,Y be separable metric spaces, PXY be Borel
probability measure defined on X × Y, PX and PY

be the respective marginal distributions on X and Y.
Given n independent and identically distributed (i.i.d)
samples Z := (X,Y ) = {(xi, yi)}ni=1 with distribution
PXY , we wish to know whether PXY can be factorized
into PXPY : does PXY = PXPY (i.e. X ⊥⊥ Y )?

The hypothesis testing framework is used, i.e.,

H0 : PXY = PXPY versus H1 : PXY ̸= PXPY . (1)

The independence hypothesis testing is performed in
the following steps. First, state the statistic T and
calculate its observed value with the samples. Then,
select a significance level α (typically taken as 0.05).
After that, obtain the p-value, which is the probability
that the sampling of T under H0 is at least as extreme
as the observed value. Finally, the null hypothesis H0

is rejected if the p-value is not greater than α.

Two types of errors may be generated during hypoth-
esis testing. Type I error means the false rejection of
H0, and Type II error indicates when H0 is wrong but
not rejected. A good independence test requires that
Type I error rate is upper bounded by α meanwhile
Type II error is minimized (Zhang et al., 2012).
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2.2 Hilbert-Schmidt Independence Criterion

We base our statistical independence tests on the
Hilbert-Schmidt Independence Criterion (HSIC).

Definition 1. (Gretton et al., 2007). Let F be an
RKHS, with the kernel k : X × X 7→ R. Likewise, let
G be a second RKHS on Y with kernel l : Y ×Y 7→ R.
The Hilbert-Schmidt Independence Criterion between
X and Y , denoted as HSIC(X,Y ) is defined as

E
[
k(X,X ′)l(Y, Y ′)

]
+E
[
k(X,X ′)

]
E
[
l(Y, Y ′)

]
− 2EX′Y ′

[
EXk(X,X

′)EY l(Y, Y
′)
]
,

(2)

where (X ′, Y ′) is a independent copy of (X,Y ).

For characteristic kernels (Gretton, 2015), the inde-
pendence relationship (X ⊥⊥ Y ) between X and Y
can be judged by HSIC(X,Y ) = 0.

Given n i.i.d samples Z = {(xi, yi)}ni=1 with distribu-
tion PXY , an observation of HSIC(X,Y ), denoted as
HSICb(Z), can be given by

1

n2

∑
i,j

kij lij +
1

n4

∑
i,j,q,r

kij lqr − 2
1

n3

∑
i,j,q

kij liq, (3)

where kij := k(xi, xj), and lij := l(yi, yj). This esti-
mate can also be easily expressed by 1

n2Tr(KHLH),
where K is the n× n matrix with entries kij , L is the
n × n matrix with entries lij , H = I − 1

n11
T is the

center matrix and 1 is an n× 1 vector of ones.

2.3 Asymptotics of HSIC

The asymptotic distribution of the statistic under two
hypotheses can be established by the following propo-
sition (Gretton et al., 2007, Theorem 1, 2).

Proposition 1. (Asymptotics of HSICb(Z)). Let

hijqr = 1
4!

∑(i,j,q,r)
(t,u,v,w) ktultu + ktulvw − 2kuvltv, where

the sum represents all ordered quadruples (t, u, v, w)
drawn without replacement from (i, j, q, r) and assume
that kernels k, l are bounded. Then, Under the null
hypothesis H0, HSICb(Z) coverages in distribution as

nHSICb(Z)
d−→

∞∑
l=1

λlz
2
l , (4)

where zl ∼ N (0, 1) i.i.d and λl is the solution to
the eigenvalue problem λlψl(zl) =

∫
hijqrψl(zl)dFi,q,r,

where the integral is over the distribution of variables
zi, zq, zr. And under the alternative H1, HSICb(Z)
converges in distribution to a Gaussian variable

n
1
2

(
HSICb(Z)−HSIC(X,Y )

)
d−→ N (0, σ2

u), (5)

where the variance is given by

σ2
u = 16

(
Ei(Ej,q,rhijqr)

2 −HSIC(X,Y )2
)

(6)

with the simplified notation Ej,q,r := Ezj ,zq,zr .

3 Learning Kernels

3.1 The Pitfall with the Signal-to-Noise
Ratio Criterion

The power of the test is equal to 1−Type II error rate,
which measures the efficacy of the hypothesis test.

According to Proposition 1, the power of the test with
HSIC can be formulated by

PH1 (nHSICb(Z) > r)→ Φ

(
nHSIC(X,Y )− r√

nσu

)
,

(7)
where Φ is the standard normal CDF and r is the
threshold, i.e., the (1 − α)-quantile of distribution of
Eq. (4) that controls Type I error rate to be < α.

To maximize the test power, the term without the

threshold corresponds to nHSIC(X,Y )
σu

, is the popular
choice (Liu et al., 2020, 2021) in kernel learning for
the two-sample test problem (Gretton et al., 2006),
called signal-to-noise ratio (Kübler et al., 2022). Note
that the criterion is theoretically biased as long as r in
Eq. (7) is not 0. Also, in practical applications of inde-
pendence tests, learning the kernels with this criterion
may lead to undesired and even catastrophic solutions.
To explain this issue, we give an example as follows:

Example. We consider the case that k, l are Gaus-

sian kernels, i.e., k(x, x′) := exp
(
−∥x−x′∥2

2ω2
x

)
, l(y, y′) :=

exp
(
−∥y−y′∥2

2ω2
y

)
, where ωx, ωy are the width parame-

ters. The estimate of signal-to-noise is taken as

Jw/o :=
nHSICb(Z)

σ̂u(Z)
, (8)

where σ̂2
u(Z) is a estimator of σ2

u with Z, given by

16 ·
( 1
n

∑
i

( 1

n3

∑
j,q,r

hijqr
)2−(HSICb(Z)

)2)
. (9)

For fixed samples Z of sample size n and fixed width
ωy > 0, we explore the behavior of the criterion Jw/o

when ωx is close to zero. Assume that ∥xi − xj∥2 ̸= 0
for all i ̸= j, then we have the following results:

[K]
∣∣
ωx=0+

= In, [nHSICb(Z)]
∣∣
ωx=0+

=
1

n
Tr(Lc),

[σ̂2
u(Z)]

∣∣
ωx=0+

=
4

n2

[
Tr
[
(Lc)

·2]
n

−
(Tr(Lc)

n

)2]
,

where Lc := HLH and ()·2 is the entrywise matrix
power. As a result,

Jw/o

∣∣
ωx=0+

=
n

2
· Tr(Lc)/n√

Tr
[
(Lc)·2

]
/n−

[
Tr(Lc)/n

]2 .
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As a comparison, we study a criterion with threshold
estimation. We obtain an estimate of r by the mo-
ments of the distribution under H0. The moments are
given as follows (Gretton et al., 2007):

Proposition 2. (Moments of Null Distribution). Un-
der H0, the estimation of mean with bias of O(n−1) to
E[nHSICb(Z)] can be given by

E0 := 1 + ∥̂µx∥2∥̂µy∥2 − ∥̂µy∥2 − ∥̂µx∥2, (10)

where we assume kii = lii = 1 and the terms

∥̂µx∥2 = 1
(n)2

∑
(i,j)∈in2

kij , ∥̂µy∥2 = 1
(n)2

∑
(i,j)∈in2

lij.

Also, the estimation of variance with bias of O(n−1)
to Var[nHSICb(Z)] can be given by

V0 =
2(n− 4)(n− 5)

(n− 1)2(n− 2)(n− 3)
1T
(
B− diag(B)

)
1, (11)

where B =
(
(HKH)⊙ (HLH)

)·2
= (Kc⊙Lc)

·2 and ⊙
is the entrywise matrix product.

The limit of these two moments can be calculated by

E0
∣∣
ωx=0+

=
1

n− 1
TrLc,

V0
∣∣
ωx=0+

=
2(n− 4)(n− 5)

n2(n− 1)2(n− 2)(n− 3)

∑
i̸=j

(Lc)
2
ij .

(12)

Since the variance is O(n−2) as in Eq. (12), according
to Chebyshev’s inequality, the distribution is concen-
trated around E0. Hence, we can use E0 as an estimator
of r when ωx = 0+. Let the criterion with E0 as

Jw/,E0
:=

nHSICb(Z)− E0
σ̂u(Z)

, (13)

such that Jw/,E0

∣∣
ωx=0+

= − 1
n−1Jw/o

∣∣
ωx=0+

.

In conclusion, we have shown that ignoring the thresh-
old causes the criterion to differ by a factor of −(n−1)
from the true power estimate when ωx = 0+. This
will result in a very different behavior, as illustrated
in Fig. 1. When ωx is close to zero, Jw/o takes a very
large value (maximum in this case) compared to the
value with the threshold. This can lead to the wrong
maximum point (ωx = 0 in this case) of test power
with Jw/o, resulting in a catastrophic wrong solution.

Remark. Although our example is based on Gaussian
kernels, the more general case also holds as long as
there exists parameter k such that the kernel matrix
K approaches I (such as the Laplace kernel with a
width close to 0) and the fixed L is appropriate, the
rest of the analysis is similar. If interested, the readers
can refer to more examples as well as analysis given in
the supplementary file.
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Figure 1: The values of optimization objective for dif-
ferent ωx on the ISA dataset under the setting n=250,
d=3, θ=π/10, ωy=1.0. The “w/o threshold” line cor-
responds to Eq. (8) and the other to Eq. (16).

In the next section, we will resolve this pitfall by de-
signing a differentiable criterion that takes into ac-
count the variation of the threshold under the null
hypothesis during the optimization process.

3.2 Our Framework

Using a permutation test to construct the estimator
of the threshold is a possible way. That is, permut-
ing sample Y repeatedly while that of X is kept fixed
to directly simulate the null distribution. However,
this process is expensive due to the significant num-
ber of permutations. Even if a parallel scheme can
be adopted to improve the computational efficiency
of this process, the required memory is heavily posi-
tively correlated with the number of permutations re-
quired. It is therefore not desirable in certain resource-
constrained scenarios. Here, we consider a gamma ap-
proximation method (Gretton et al., 2007), which in-
stead requires only a single pass calculation. The idea
is to use a two-parameter gamma distribution to ap-
proximate the infinite sum of χ2 variables as in Eq. (4).
The first two moments of Eqs. (10), (11) are used to
determine the two parameters, i.e.,

nHSICb(Z) ∼
xγ−1e−x/β

βγΓ(γ)
, γ =

E20
V0
, β =

V0
E0
, (14)

where Γ(·) is the gamma function. The estimate of the
threshold, denoted as ĉα, can be given by the (1−α)-
quantile of this gamma distribution, i,e.,∫ ĉα

β

0

xγ−1e−x

Γ(γ)
dx = 1− α. (15)

And the criterion can be obtained by 1

Jw/,ĉα :=
nHSICb(Z)− ĉα

σ̂u(Z)
. (16)

1In practice, we add a small constant to the denomina-
tor as suggested in (Liu et al., 2020).
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Then, Jw/,ĉα can be used to learn kernels (e.g. Gaus-
sian kernels with learnable bandwidth) to maximize
the testing power. We aim to optimize this objective
function with any commonly used optimizer such as
Adam (Kingma and Ba, 2014). However, the gradi-
ent of Jw/,ĉα cannot be obtained explicitly because it
is related to the parameters of the kernel through the
implicit functions. Let the parameter spaces of kernels
k, l be Ω0,Ω1, at the point ω∗ ∈ Ω0 × Ω1, we get the
gradient in two steps. First, we estimate the partial
derivative ∂β ĉα and ∂γ ĉα. The first term at ω∗ can

be directly calculated by ∂β ĉα
∣∣
ω∗
= ĉα

β

∣∣
ω∗

according to

Eq. (15). For the second term, which cannot be easily
calculated due to the presence of the Gamma function,
we use the finite differences to estimate it numerically,

i.e., calculating ∂γ ĉα = limδ→0
ĉα(γ+δ)−ĉα(γ)

δ . Then,
we can get the gradient of

nHSICb(Z)− ĉα
∣∣
ω∗

σ̂u(Z)
−
(
∂β ĉα

∣∣
ω∗

)
·β +

(
∂γ ĉα

∣∣
ω∗

)
·γ

σ̂u(Z)
∣∣
ω∗

(17)
by combining with an automatic differentiation frame-
work such as PyTorch (Paszke et al., 2017) to estimate
the gradient ∂ωJw/,ĉα at the point ω = ω∗.

Data split. Given samples Z, the above process al-
lows the kernels to be learned end-to-end and then
used for test. However, this would lead to uncontrol-
lable Type I error (Kübler et al., 2020). Here we adapt
the technique used in a variety of tests (Liu et al., 2020;
Jitkrittum et al., 2017): splitting the data into disjoint
training and test data. The split ratio is heuristically
set to 0.5 since how to set the optimal split ratio in
practice remains an open problem.

Algorithm. Our algorithm is outlined in Alg. 1. As
a pre-processing step, we split the data to training
data Ztr and test data Zte (Line 1). The test con-
tains two phases: 1) We learn the kernels with Adam
optimizer using full batches on Ztr (Lines 2-9). 2)
With the learned kernels, we calculate the test statistic
and threshold (Lines 12-13) to determine the indepen-
dence (Lines 14) on Zte. The overall time complexity
is O

(
Tn2(dx + dy)

)
, where dx and dy are the dimen-

sions of X and Y respectively.

3.3 Importance-weighted Kernels

The Gaussian kernel has only one parameter. It as-
signs equal weight to the distance measure on each
dimension of the multivariate variable. Here, we con-
sider a class of more general Gaussian kernels with the
following form:

k(x, x′) = exp
(
−(x− x′)Σx(x− x′)

)
, (18)

where Σx is a positive definite matrix and x ∈ Rdx of
dx dimensions. Since this kernel is translation invari-

Algorithm 1 The learning and testing framework

Input: samples Z of X,Y , significance level α.
Output: X ⊥⊥ Y or X ⊥̸⊥ Y .

1: Split the data as Z = Ztr ∪ Zte.
2: ◁ Learning kernels on Ztr.
3: Initialize parameters of kernels, set learning rate ϵ,

and set iteration steps T .
4: for t = 1, 2, ..., T do
5: kω0

, lω1
← kernels with parameters ω0, ω1.

6: Jw/,ĉα ← calculate Eq. (16) with kω0
, lω1

.
7: ∇(ω0,ω1)Jw/,ĉα ← estimate using Eq. (17).
8: (ω0, ω1)← (ω0, ω1) + ϵ∇(ω0,ω1)Jw/,ĉα .
9: end for

10: After training, use the learned kernels for testing.
11: ◁ Testing on Zte with learned kernels.
12: nteHSICb(Z

te)← estimate the statistic.
13: ĉα(Z

te)← calculate the threshold on Zte.
14: Return X ⊥̸⊥ Y if ĉα(Z

te) ≤ nteHSICb(Z
te) holds.

ant, i.e., k(x, x′) = k(x − t, x′ − t) for any t ∈ Rdx ,
it can be shown to be characteristic (Gretton, 2015;
Fukumizu et al., 2008). This class of kernels models
correlations between each two dimensions and hence
is more generic. However, due to the positive definite
constraints on the matrix Σx, it is not easy to main-
tain while learning the kernels. Here we consider the
case that it is a diagonal positive definite matrix, i.e.,
assigning different positive weights to the distances
on different dimensions. In this case, the kernels are
referred to as the ARD kernels (Williams and Ras-
mussen, 1995). Here we rephrase this class of kernels
as importance-weighted kernels to emphasize the role
that enables higher weights on important dimensions
to enhance the test power. Formally,

k(x, x′) :=

dx∏
i=1

exp
(
−wi(xi − x′i)2

2ω2
x

)
, wi ∈ (0, 1), (19)

where xi is the i-th dimension of x, wi is the im-
portance weight of the i-th dimension, and ωx is the
overall bandwidth among all dimensions (we add it
to keep the form of Gaussian kernel). In conjunction
with the proposed framework, importance weights can
be learned end-to-end. This is very crucial for high-
dimensional complex data, as in most cases, each di-
mension is not equally important.

Interpretability. Larger weights indicate more im-
portant dimensions for the power of independence test-
ing. This contributes to the interpretability of the re-
sults. An example is given in Sec. 5.2.2.

4 Theoretical Analysis

We require some assumptions as follows:
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(a) The kernels kω0 and lω1 are uniformly bounded:

sup
ω0∈Ω0

sup
x∈X

kω0(x, x) ≤ ν, sup
ω1∈Ω1

sup
y∈Y

lω1(y, y) ≤ ν.

(b) The kernel parameters ω0, ω1 lie in Banach spaces
of dimensionD0 andD1 respectively. Furthermore,
the set of possible kernel parameters Ω0,Ω1 is sep-
arately bounded by Rω0

, Rω1
respectively, i.e.,

Ω0 ⊆
{
ω0

∣∣ ∥ω0∥ ≤ RΩ0

}
,Ω1 ⊆

{
ω1

∣∣ ∥ω1∥ ≤ RΩ1

}
.

(c) The kernel parameterizations are Lipschitz, i.e. for
all x, x′ ∈ X , ω0, ω

′
0 ∈ Ω0,∣∣kω0(x, x

′)− kω′
0
(x, x′)

∣∣≤ Lk · ∥ω0 − ω′
0∥

and for all y, y′ ∈ Y, ω1, ω
′
1 ∈ Ω1,∣∣lω1(y, y

′)− lω′
1
(y, y′)

∣∣≤ Ll · ∥ω1 − ω′
1∥

with the nonnegative Lipschitz constant Lk, Ll.

The assumptions (a) (b) (c) do not restrict the specific
form of the kernels, and the kernels used in our paper
satisfy these properties.

We first give the uniform bound results for the kernel
learning criterion as follows:

Theorem 1. (Uniform Bound) Let ω0, ω1 parame-
terize uniformly bounded kernels kω0

, lω1
in Banach

spaces of dimension D0, D1. And kω0 , lω1 satisfy the
Lipschitz condition in ω0, ω1 with the Lipschitz con-
stant Lk, Ll. Let Ωc := Ω0 × Ω1 be a set of (ω0, ω1)
for which σu ≥ c > 0 with small constant c and
∥ω0∥ ≤ RΩ0

, ∥ω1∥ ≤ RΩ1
. Let r denote the threshold,

i.e., (1−α)-quantile for the asymptotic distribution in
Eq. (4) and r(n) be the threshold with kernels of size n.
Under Assumptions (a) to (c), then with probability at
least 1− δ,

sup
(ω0,ω1)∈Ωc

∣∣∣∣HSICb(Z)− r(n)/n
σ̂u(Z)

− HSIC(X,Y )− r/n
σu

∣∣∣∣
∼ O

(
1

c3

[√
1

n
log

1

δ
+ (D0 +D1)

log n

n
+
Lk + Ll√

n

])
.

The theorem extends the result in (Liu et al., 2020)
since our criterion considers the threshold and removes
the need for regular constants. This result shows that
with sufficient samples, our criterion converges to the
ground truth power criterion (for any kernel parame-
ters), i.e., the error due to the estimation is reduced to
0. Thus, optimizing this criterion results in a gener-
alizable (not just overfitting to the training set) solu-
tion. As a result, if the optimization process with our
criterion is successful, we can obtain a solution that
maximizes the test power. Next, we show the consis-
tency of the tests, i.e., the test power tends to 1 as the
sample size increases.

Proposition 3. (Consistency) Let ω∗
0 , ω

∗
1 be the ker-

nel parameters after learning, Zte be the testing sam-
ples of size m, then the probability of Type II error

PH1

(
mHSICb(Z

te) ≤ r(m)|ω∗
0 , ω

∗
1

)
∼ O(m−1/2). (20)

The result above focuses on the asymptotic behav-
ior. The following result instead shows the property
of the objective function under practical settings. Our
proof focuses on the Gaussian kernel (but keep in mind
that it holds for the Laplace kernel as well as the
importance-weighted kernel). As a start, we need to
attach some weak assumptions (which usually hold in
practice, see the supplementary file for a detailed dis-
cussion). The assumptions are

1. The domain X is Euclidean and bounded, X ⊆
{x ∈ Rd : ∥x∥ ≤ RX /2} for constant RX <∞.

2. The non-diagonal elements of center matrices Kc,
Lc are not zero, i.e. (Kc)

2
ij > 0, (Lc)

2
ij > 0 for all

i ̸= j when the kernel widths (ωx, ωy) ∈ [ωxl, ωxu]×
[ωyl, ωyu] with given positive constants ωxl, ωxu,
ωyl, ωyu.

Based on the above assumptions, we have the following
theorem holds.

Theorem 2. (Smoothness of Objective Function) Let
kωx , lωy be Gaussian kernels with bandwidth parame-
ter ωx, ωy, for fixed samples Z of size n, the objective
function we used in practice

Jλ(Z) :=
nHSICb(Z)− ĉα√

σ̂2
u(Z) + λ

, λ > 0

satisfies the L-smoothing condition, i.e., its gradients
of ωx, ωy are Lipschitz continuous on the compact do-
main (ωx, ωy) ∈ [ωxl, ωxu] × [ωyl, ωyu], for all positive
constants ωxl, ωxu, ωyl, ωyu.

The L-smoothing condition benefits the optimiza-
tion (Zou et al., 2019) in practice. Due to the space
limit, we present proofs in the supplementary file.

5 Performance Evaluation

5.1 Compared Methods

We compare the following tests on several datasets.

We consider the randomized dependence coeffi-
cient (RDC) (Lopez-Paz et al., 2013). A state-of-the-
art method based on the canonical correlation between
a finite set of random Fourier features.

The HSIC with random Fourier feature (FH-
SIC) (Zhang et al., 2018). A variant of HSIC that
uses finite-dimensional random Fourier feature map-
pings to approximate kernels.
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The normalized version of the Finite Set In-
dependence Criterion (NFSIC) (Jitkrittum et al.,
2017). A state-of-the-art adaptive test by choosing fea-
tures on a hold-out validation set to optimize a lower
bound on the test power.

HSIC-M (Gretton et al., 2007). The original HSIC
testing with the kernel width being set to the Eu-
clidean distance median of the samples.

HSIC-O (Ours). HSIC with the Gaussian kernel
whose bandwidth (length-scale) is optimized.

HSIC-W (Ours). HSIC with importance-weighted
kernels as described in Sec. 3.3.

Following are the default settings unless stated other-
wise. We use Gaussian kernels for both X and Y in all
methods. We set the number of random mappings in
RDC and FHSIC to 10, the test location parameter J
of NFHSIC to 10, which are the recommended settings
in (Jitkrittum et al., 2017). For RDC and FHSIC, we
permute the samples 100 times to simulate the null dis-
tribution and compute the threshold. The thresholds
for the remaining methods are obtained by asymptotic
null distribution, i.e., we set the test threshold to the
(1 − α)-quantile of χ2(J) for NFSIC and obtain the
test threshold of HSIC-M/O/W by gamma approxi-
mation. The significance level α is set to 0.05. In
the optimization step, for stabilizing the training, in
the implementation of NFSIC we determine the ini-
tial bandwidth by searching the best from 25 band-
width combinations (including the median bandwidth
combination). For HSIC-O/W, to be fair, we perform
the same grid search on the benchmark datasets. In
other experiments, we still use the median bandwidth
as initialization for kernel width. Also, the maximum
number of iterations for the optimization is set to 100
for NFSIC and HSIC-O/W. For synthetic data, we set
the split ratio to 0.5 for NFSIC and HSIC-O/W, i.e.,
we randomly sample half of the data for training and
use the remaining for independence testing, while the
other methods use all data for testing. For real data,
we divide a small portion of the data for training and
then extract 100 random subsets of the remaining data
(disjoint from the training set) for evaluation. Results
for more settings (e.g. Laplace kernel setting) and
more compared (not only kernel-based) methods are
given in the supplementary file.

5.1.1 Benchmark Datasets

5.2 Results on Synthetic Data

We consider the benchmarks from (Zhang et al., 2018;
Jitkrittum et al., 2017) and the application on inde-
pendent subspace analysis from (Gretton et al., 2007).
We also conduct experiments on high-dimensional

data based on 3Dshapes (Burgess and Kim, 2018).

We use the following three benchmarks:

Sine Dependency (SD). We begin with a nonlinear
dependence model. Concretely,

X ∼ Nd(0, Id), Y = 20 sin
(
4π(X2

1 +X2
2 )
)
+Z, (21)

whereXi is the i-th dimension ofX, d is the dimension
of X, and Z ∼ N (0, 1) is independent with X. When
d ≥ 2, there is a nonlinear dependence of Y on X in
some local dimensions.

Sinusoid (Sin). We then consider the Sinusoid model
that has local change in the probability density func-
tion. Concretely, let pXY be the probability density
function on X × Y := [−π, π]2, i.e.,

(X,Y ) ∼ pxy(x, y) ∝ 1 + sin(ωx) sin(ωy), (22)

where ω is frequency. Higher frequency makes the
drawn samples more similar to those drawn from
Uniform([−π, π]2) (Sejdinovic et al., 2013), thus more
difficult to detect dependency for small sample sizes.

Gaussian Sign (GSign). Next, we consider the
Gaussian Sign model, i.e.,

X ∼ Nd(0, Id), Y = |Z|
d∏

i=1

sgn(Xi), (23)

where sgn(·) is the sign function, Xi is the i-th di-
mension of X, d is the dimensionality of X, and
Z ∼ N (0, 1) is independent with X. The challenge
lies in that Y is independent of any proper subset of
X, but is dependent on X. Therefore, considering all
dimensions of X simultaneously is crucial to indepen-
dence testing.

The experimental setup is as follows: For SD, we
set d = 3 and sample size n ∈ {300, 400, 500, 600}.
For Sin, we set ω = 3 and sample size n ∈ {300,
600, 900, 1200}. For GSign, we set d = 4 and sam-
ple size n ∈ {400, 500, 600, 700}. For each setup, we
perform 100 repeated randomized experiments and re-
port the average result of test power. For the evalu-
ation of Type I error, we set the sample size to 500,
permute the samples randomly to obtain new indepen-
dent samples, then perform the full independence test.
The results are shown in Fig. 2.

Results and analysis. HSIC-M/O/W succeeds in
controlling Type I error rate below 0.05 on all three
datasets, RDC and FHSIC also succeed in controlling
Type I error rate around 0.05, while NFSIC has a rel-
atively large Type I error rate (around 0.1). As for the
testing power, HSIC-O/W and NFSIC perform better
on the three benchmarks compared to the other meth-
ods, which confirms the need for kernel learning. The
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Figure 2: Left: Results of Type I error rate on the three benchmarks with sample size n = 500. The other three
plots: the results of average test power on the three benchmarks.

performance of HSIC-O/W is stably improved as the
number of samples increases, which corroborates the
consistency of our proposed test. Besides, it is worth
noting that HSIC-W does not always obtain superior
performance over HSIC-O. This is due to the addi-
tional risk that HSIC-W may face when having a poor
estimate of the important weight wi.

On Sin, the results are the same due to the data being
one-dimensional. On SD, HSIC-W gets better results
since d = 3 and Y is only dependent on the first two
dimensions of X. While on GSign, HSIC-O performs
better. The reason is that each dimension of X is
equally important in generating Y , making it in fact
no need to learn the importance weight wi. Impre-
cise estimation results of wi due to insufficient samples
cause the performance degradation of HSIC-W. As the
number of samples gradually increases, more accurate
estimations of importance weight narrow this gap.

5.2.1 Independence of Subspaces

One important application of independence testing is
to determine the convergence of algorithms for inde-
pendent component analysis (ICA) (Gretton et al.,
2007), which involves separating random variables
from their linear mixtures. We construct the data
as follows: First, generating n i.i.d samples of two
univariate random variables with the distribution
1
2N (−1, 0.01) + 1

2N (1, 0.01). Second, mixing these
random variables using a rotation matrix parameter-
ized by an angle θ, varying from [0, π/4] (a zero angle
means the data are independent, while a larger angle
leads to stronger dependency. See the left in Fig. 3
for an example. Third, appending noise of distribu-
tion Nd−1(0, Id−1) to each of the mixtures. Finally,
multiplying an independent random d-dimensional or-
thogonal matrix, to obtain vectors dependent across
all observed dimensions. The resulting random vari-
ables X and Y are dependent but uncorrelated. When
d is greater than 1, the problem is associated with the
independent subspace analysis (ISA) problem (Theis,

2006). We set d = 4, sample size n = 128, then eval-
uate the average test power with θ ∈ [0, π/4]. Recall
that according to the default settings, we take 64/64
samples for training/testing for the methods of learn-
ing kernels. Unfortunately, NFSIC faces optimization
issues in this setting and cannot successfully control
Type I error, so we only present the results for the re-
maining five methods, as shown in the right of Fig. 3.
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Figure 3: Left: Example dataset for d = 1, n = 128
and rotation angles θ = π/8. Right: The average test
power v.s. the rotation angle of each method.

Results. The results obtained at θ = 0 reflect Type
I error rate, as the variables are independent in this
case. All methods successfully control Type I error ≤
0.05. HSIC-W stably outperforms the other methods
significantly as the angle increases, while HSIC-M fails
to capture the dependence with a sample size of 128,
which shows the importance of kernel learning.

Figure 4: Examples of images generated by varying
the orientation factor while fixing the object shape.

5.2.2 High-Dimensional Data

We consider a challenge setting on high-dimensional
image data. 3DShapes (Burgess and Kim, 2018) is a
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dataset of 3D scenes with additional features such as
shadows and background (sky). There are 6 ground-
truth independent latent factors including floor hue,
wall hue, object hue, object scale, object shape and
orientation, which can be controlled to generate cor-
responding images. We consider orientation as a de-
pendency factor for independence testing, i.e., let X
be the image, Y be the corresponding angle of orien-
tation, and test the dependency between X and Y .
To be more challenging, we fix the shape of the ob-
ject to be a ball thereby (compared to a square etc.)
reducing the apparent orientation feature and random-
izing the other factors. Some generated examples are
shown in Fig. 4, where the numbers indicate the rela-
tive orientation angles. For the experimental setup, we
vectorize X to obtain a random vector with dimension
64× 64× 3 = 12, 288. The sample size is set as 64. As
NFSIC cannot handle such high-dimensional input, we
use the other methods for testing. Type I error rate
is evaluated by the samples obtained by permutation.
The results are shown in Fig. 5.
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Figure 5: Left: The average rates of the two types of
error on the 3Dshapes dataset. Right: The visualiza-
tion of the learned weights of HSIC-W.

Results and analysis. All methods are successful
in controlling Type I error rate under 0.05. For Type
II error, the result of HSIC-W is significantly better
than the other methods. HSIC-O obtains worse perfor-
mance than HSIC-M due to the fact that the amount
of data evaluated is half the size, thus losing some of
the test power. A visualization of the weights learned
by HSIC-W is shown in the right of Fig. 5, from which
we can see that the channels (edges) decided by the
orientation receive more attention.

5.3 Results on Real Data

As for real data testing, we consider the subset of
the Million Song Data2 (Bertin-Mahieux, 2011). This
dataset contains 515, 345 songs with 91-dimensional
features. The first dimension is the release year of each
song, which we take as the variable Y . The remaining
features (e.g., timbre average and timbre covariance of

2Million Song Data subset: https://archive.ics.
uci.edu/dataset/203/yearpredictionmsd

each song) are taken as the variable X. The goal is to
detect the dependency between X and Y . For the ex-
perimental setup, we follow the recommended settings
of NFSIC, for which we use permutation to ensure that
Type I error is controlled. To be fair, HSIC-M/O/W
are also evaluated using the permutation scheme, with
the number of permutations set to 100. Note that
when training, HSIC-O/W still use the gamma ap-
proximation to compute the threshold, corresponding
to Alg. 1. Recall that we randomly select a small por-
tion (n = 500) of data as the training set, and use
the rest for evaluation. In order to fully utilize the
data, we randomly sample 500 data from the remain-
ing data each time during the evaluation and obtain
the average result of 100 times. The above training
and testing processes are repeated 10 times to evalu-
ate the robustness of the optimization scheme. Other
settings are the same as before.
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Figure 6: The average test power of 6 methods. The
dashed line in each box is the mid-point.

The final results are in Fig. 6. Compared to the other
methods, HSIC-W achieves a test power close to 1 with
a very small variance. RDC and HSIC-M/O achieve a
test power above 0.8. As a comparison, NFSIC has
a large variance. These results corroborate the ro-
bustness of the optimization approach of our method,
which benefits from the design of our criterion and the
theoretical guarantee of smoothness.

6 Conclusion

In this paper, we propose a novel framework for
kernel-based independence tests that enable adapta-
tively learning parameterized kernels to maximize test
power. The framework enables the design of flexi-
ble kernels, concretely, importance-weighted kernels,
which can focus on the significant dimensions of vari-
ables for judging independence, thus making the tests
powerful. Both theoretical analysis and experimental
results show the effectiveness of our method. Future
work will focus on applying our framework to more
settings including multiple kernel learning.
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the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes]

(b) The license information of the assets, if ap-
plicable. [Yes]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Yes]

(d) Information about consent from data
providers/curators. [Yes]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]
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• Section A: List of Symbols and Notations.

• Section B and C: Preliminaries and Assumptions.

• Section D: Proof of Theorem 1.

• Section E: Proof of Proposition 3.

• Section F: Gamma Approximation of Threshold.

• Section G: Limit Behavior with Gaussian Kernels.

• Section H: Proof of Theorem 2.

• Section I: Time Complexity.

• Section J: Additional Experiment Results.

A List of Symbols and Notations

O big O notion
o small O notion
i.i.d. independent and identically distributed
R the set of real numbers
B(R) Borel σ-algebra on R
RV (s) random variable(s)
PX marginal distribution of X
PXY joint distribution of X, Y
E[X] expectation of X
Var(X) variance of X
Cov(X,Y ) covariance of X, Y
X ⊥⊥ Y random variables X, Y are independent
inr the set of all r-tuples drawn without replacement from the set {1, ...,m}(
n
k

)
number of k-combinations of n elements

(n)k number of permutations, define as n!
(n−k)!

Tr(·) the trace of a square matrix
K,L kernel matrix with entries kij , lij
1 an vector of all ones
H centering matrix define as H = I− 1

n11
T

⊙ element-wise product
()·2 element-wise power
N (Ω, r) covering number with radii r for Ω
d−→ convergence in distribution.



Learning Adaptive Kernels for Statistical Independence Tests: Supplementary Materials

B Preliminaries

In this preliminary section, we give the detailed derivation of some of the formulas in the main paper. We first
restate the results of asymptotic distributions as a reference, and next, give the procedure for calculating the
moments of the null and alternative distributions.

B.1 Asymptotics Distribution

We restate the results of asymptotic distributions here.

Proposition 1. (Asymptotics of HSICb(Z)). Let hijqr = 1
4!

∑(i,j,q,r)
(t,u,v,w) ktultu + ktulvw − 2kuvltv, where the sum

represents all ordered quadruples (t, u, v, w) drawn without replacement from (i, j, q, r) and assume that kernels
k, l are bounded. Then, Under the null hypothesis H0, HSICb(Z) converges in distribution as

nHSICb(Z)
d−→

∞∑
l=1

λlz
2
l , (1)

where zl ∼ N (0, 1) i.i.d and λl is the solution to the eigenvalue problem λlψl(zl) =
∫
hijqrψl(zl)dFi,q,r, where

the integral is over the distribution of variables zi, zq, zr. And under the alternative H1, HSICb(Z) converges in
distribution to a Gaussian variable

n
1
2

(
HSICb(Z)−HSIC(X,Y )

)
d−→ N (0, σ2

u), (2)

where the variance is given by
σ2
u = 16

(
Ei(Ej,q,rhijqr)

2 −HSIC(X,Y )2
)

(3)

with the simplified notation Ej,q,r := Ezj ,zq,zr .

B.2 Statistic under H0

We give the procedure for calculating the first two moments of the null distribution.

B.2.1 Mean of HSICu(Z) under H0

An unbiased estimate of HSIC(X,Y ), denoted by HSICu(Z), is a sum of three U-statistics

HSICu(Z) :=
1

(n)2

∑
(i,j)∈in2

kij lij +
1

(n)4

∑
(i,j,q,r)∈in4

kij lqr − 2
1

(n)3

∑
(i,j,q)∈in3

kij liq, (4)

which has E[HSICu(Z)] = E[HSIC(X,Y )] = 0 under H0.

B.2.2 Mean of HSICb(Z) under H0

The complete proof is given in (Gretton et al., 2007). We show only some of the key steps here. The biased
estimate of HSIC(X,Y ), denote as HSICb(Z), is a sum of three V-statistics

HSICb(Z) :=
1

n2

n∑
i,j

kij lij +
1

n4

n∑
i,j,q,r

kij lqr − 2
1

n3

n∑
i,j,q

kij liq, (5)

First, we can show that the difference can be calculated by

n
(
HSICb(Z)−HSICu(Z)

)
=
1

n

∑
i

kiilii −
2

n2

∑
(i,j)∈in2

(kiilij + kij lii)

+
1

n3

∑
(i,j,q)∈in3

(kiiljq + kij lqq)−
3

(n)2

∑
(i,j)∈in2

kij lij

+
10

(n)3

∑
(i,j,q)∈in3

kij liq −
6

(n)4

∑
(i,j,q,r)∈in4

kij lqr +O
(
n−1

)
,

(6)



when we assume the kernel is bounded. Secondly, we take the expectation of the last equation. To simplify, we
use the notation Exyy′kl = Exyy′k(x, x)l(y, y′) (and so on for the rest), then

n
(
E[HSICb(Z)]−E[HSICu(Z)]

)
=Exykl − 2(Exyy′kl +Exx′ykl)

+Exy′y′′kl +Exx′y′′kl − 3Exx′yy′kl

+ 10Exx′yy′′kl − 6Exx′kEyy′ l +O
(
n−1

)
.

UnderH0, x is independent with y, thus we can draw the conclusions that Exyy′kl = Exy′y′′kl,Exx′ykl = Exx′y′′kl
and Exx′yy′kl = Exx′yy′′kl = Exx′kEyy′ l. Combining with E[HSICu(Z)] = 0, we obtain that

E[HSICb(Z)] =
1

n

(
Exykl + ∥µx∥2∥µy∥2 −Exk∥µy∥2 −Eyl∥µx∥2

)
+O

(
n−2

)
(7)

where µx := Exϕ(x), µx := Eyϕ(y). And when we assume that kii = lii = 1, an empirical estimate can be
obtained by replacing the term above with

∥̂µx∥2 =
1

(n)2

∑
(i,j)∈in2

kij , ∥̂µy∥2 =
1

(n)2

∑
(i,j)∈in2

lij . (8)

The obtained estimate
E[nHSICb(Z)] = 1 + ∥̂µx∥2∥̂µy∥2 − ∥̂µy∥2 − ∥̂µx∥2 (9)

results in a (generally negligible) bias of O(n−1) and can be calculated within the time cost O(n2).

B.2.3 Variance of HSICu(Z) under H0

The complete proof is given in (Gretton et al., 2007). We show only some of the key steps here. According to
(Serfling, 2009, Section 5.2.1), the variance of the U-statistic with the kernel can be calculated by

Var[HSICu(Z)] =

(
n

4

)−1 4∑
c=1

(
4

c

)(
n− 4

4− c

)
ζc =

4
(
n−4
3

)(
n
4

) ζ1 +
6
(
n−4
2

)(
n
4

) ζ2 +O(n−3), (10)

where we only need to consider the dominant term

ζ2 = Ei,j

[
(Eq,rhijqr)

]2
− [EHSICu(Z)]

2︸ ︷︷ ︸
0 under H0

. (11)

using degeneracy (ζ1 = 0) under H0. Under H0, using x, y are independent, we have

Eq,rhijqr =
1

6
(kij +Exx′k −Exki −Exkj)(lij +Eyy′ l −Eyli −Eylj). (12)

Combining with the results

Eij(kij +Exx′k −Exki −Exkj)
2 = Eij⟨ϕ(xi)− µx, ϕ(xj)− µx⟩2

= Eij⟨(ϕ(xi)− µx)⊗ (ϕ(xi)− µx), (ϕ(xj)− µx)⊗ (ϕ(xj)− µx)⟩HS := ∥Cxx∥2,
(13)

then the variance of the statistic is obtained by

Var[HSICu(Z)] =
2(n− 4)(n− 5)

(n)4
∥Cxx∥2HS∥Cyy∥2HS +O(n−3), (14)

where ∥ · ∥2HS is the Hilbert-Schmidt norm. An empirical estimate of the product of Hilbert-Schmidt norms
∥Cxx∥2HS∥Cyy∥2HS is given by

1T
(
B− diag(B)

)
1

n(n− 1)
,with B =

(
(HKH)⊙ (HLH)

)·2
, (15)

where ⊙ is the entrywise matrix product and ()·2 is the entrywise matrix power. The estimate in Eq. (14) has a
bias of O(n−3) and can be calculated within time cost O(n2).
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B.2.4 Variance of HSICb(Z) under H0

Since the additional terms of the bias vanish faster than Eq. (14), the result is identical to the case of unbiased.

B.3 Statistic under H1

We give the procedure for calculating the first two moments of the alternative distribution.

B.3.1 Mean of HSICu(Z) and HSICb(Z)

By definition of unbiased estimator HSICu(Z), we have EHSICu(Z) = HSIC(X,Y ), i.e., the mean of EHSICu(Z)
is equal to the population mean HSIC(X,Y ). And for the mean of HSICb(Z), the result is HSIC(X,Y )+O(n−1)
since the difference between HSICu(Z) and HSICb(Z) is O(n−1) according to Eq. (6).

B.3.2 Variance of HSICu(Z) and HSICb(Z)

Under H1, the term ζ1 in Eq. (10) become positive. In this case, the variance becomes

Var[HSICu(Z)] =
16

n
ζ1 +O(n−2) =

16

n

(
Ei

(
Ej,q,rhijqr

)2−HSIC(X,Y )2
)
+O(n−2). (16)

In this paper, we denote

σ2
u := 16

(
Ei

(
Ej,q,rhijqr

)2−HSIC(X,Y )2
)

(17)

as the variance of
√
nHSICu(Z). The variance of

√
nHSICb(Z) are the same since the difference between them

is given in Eq. (6) hence
√
n(HSICb(Z)−HSICu(Z)) ∼ O(n−1/2). The estimator of Eq. (17) can be taken as

16 ·
( 1
n

∑
i

( 1

n3

∑
j,q,r

hijqr
)2−(HSICb(Z)

)2)
. (18)

The terms in Eq. (18) can be calculated within the time cost O(n2). We mainly explain the calculation of∑
j,q,r hijqr here. We can express it with matrices by

∑
j,q,r

hijqr =
∑
j,q,r

1

4!

(i,j,q,r)∑
(t,u,v,w)

ktultu + ktulvw − 2ktultv

=
1

4!

∑
j,q,r

(j,q,r)∑
(u,v,w)

(kiuliu + kiulvw − 2kiuliv) +
1

4!

∑
j,q,r

(j,q,r)∑
(t,v,w)

(ktilti + ktilvw − 2ktiltv)

+
1

4!

∑
j,q,r

(j,q,r)∑
(t,u,w)

(ktultu + ktuliw − 2ktulti)] +
1

4!

∑
j,q,r

(j,q,r)∑
(t,u,v)

(ktultu + ktulvi − 2ktultv)

=
1

4!

∑
j,q,r

(j,q,r)∑
(u,v,w)

(2kiuliu + 2kiulvw − 2kiuliv)−
1

4!

∑
j,q,r

(j,q,r)∑
(t,v,w)

(2ktiltv)

+
1

4!

∑
j,q,r

(j,q,r)∑
(t,u,w)

(2ktultu + 2ktuliw − 2ktulti)−
1

4!

∑
j,q,r

(j,q,r)∑
(t,u,v)

(2ktultv)

=
1

2

[
n2(KL)i,i + (K1)i(1

TL1)− n[(K1)⊙ (L1)]i − n(KL1)i

+ nTr(KL) + (L1)i(1
TK1)− n(LK1)i − (1TKL1)

]
,

(19)

where each term can be calculated within the time cost O(n2).



B.4 Summary Section

In the previous parts, we have given the asymptotic distribution (mainly Proposition 1) and the first two moments
of the null and alternative distributions. In addition, we have explained that the first two moments of null and
alternative distributions can be computed within time cost O(n2). Here, we restate some of the important results
for convenient reference in the following sections, as shown in the following.

Proposition 2. (Moments of Null Distribution). Under H0, the estimation of mean with bias of O(n−1) to
E[nHSICb(Z)] can be given by

E0 := 1 + ∥̂µx∥2∥̂µy∥2 − ∥̂µy∥2 − ∥̂µx∥2, (20)

where we assume kii = lii = 1 and the terms ∥̂µx∥2 = 1
(n)2

∑
(i,j)∈in2

kij , ∥̂µy∥2 = 1
(n)2

∑
(i,j)∈in2

lij. Also, the

estimation of variance with bias of O(n−1) to Var[nHSICb(Z)] can be given by

V0 =
2(n− 4)(n− 5)

(n− 1)2(n− 2)(n− 3)
1T
(
B− diag(B)

)
1, (21)

where B =
(
(HKH)⊙ (HLH)

)·2
= (Kc ⊙ Lc)

·2 and ⊙ is the entrywise matrix product.

C Assumptions

Below are some assumptions we required.

(i) The kernels kω0 and lω1 are uniformly bounded:

sup
ω0∈Ω0

sup
x∈X

kω0
(x, x) ≤ ν, sup

ω1∈Ω1

sup
y∈Y

lω1
(y, y) ≤ ν. (22)

For the kernels we use in practice (e.g. Gaussian kernels), ν = 1.

(ii) The possible kernel parameters ω0, ω1 lie in Banach spaces of dimension D0 and D1 respectively. Further-
more, the set of possible kernel parameters Ω0,Ω1 is separately bounded by Rω0

, Rω1
respectively, i.e.,

Ω0 ⊆
{
ω0

∣∣ ∥ω0∥ ≤ RΩ0

}
,Ω1 ⊆

{
ω1

∣∣ ∥ω1∥ ≤ RΩ1

}
. (23)

(iii) The kernel parameterizations are Lipschitz, i.e. for all x, x′ ∈ X , ω0, ω
′
0 ∈ Ω0,∣∣kω0

(x, x′)− kω′
0
(x, x′)

∣∣≤ Lk · ∥ω0 − ω′
0∥ (24)

and for all y, y′ ∈ Y, ω1, ω
′
1 ∈ Ω1, ∣∣lω1

(y, y′)− lω′
1
(y, y′)

∣∣≤ Ll · ∥ω1 − ω′
1∥ (25)

with the nonnegative Lipschitz constant Lk, Ll.

These assumptions (i) (ii) (iii) do not restrict the specific form of the kernels, and the kernels used in our paper
satisfy these properties.

D Proof of Theorem 1

We restate the theorem 1 here. The proof procedure is given in the order of convergence results 1-3.

Theorem 1. (Uniform Bound) Let ω0, ω1 parameterize uniformly bounded kernels kω0
, lω1

in Banach spaces of
dimension D0, D1. And kω0

, lω1
satisfy the Lipschitz condition in ω0, ω1 with the Lipschitz constant Lk, Ll. Let

Ωc := Ω0 ×Ω1 be a set of (ω0, ω1) for which σu ≥ c > 0 with small constant c and ∥ω0∥ ≤ RΩ0
, ∥ω1∥ ≤ RΩ1

. Let
r denote the threshold, i.e., (1− α)-quantile for the asymptotic distribution in Eq. (1) and r(n) be the threshold
with kernels of size n. Under Assumptions (i) to (iii), then with probability at least 1− δ,

sup
(ω0,ω1)∈Ωc

∣∣∣∣HSICb(Z)− r(n)/n

σ̂u(Z)
− HSIC(X,Y )− r/n

σu

∣∣∣∣∼ O

(
1

c3

[√
1

n
log

1

δ
+ (D0 +D1)

log n

n
+
Lk + Ll√

n

])
.
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D.1 Convergence results 1

Lemma 1. Let ξω0,ω1 denote HSIC(X,Y ) with the kernel parameters ω0, ω1, ξ̂
(u)
ω0,ω1 denote the corresponding

(unbiased) estimator of ξω0,ω1 , ∆
(u)
ξ (ω0, ω1) := ξ̂

(u)
ω0,ω1 − ξω0,ω1 represent random error function. ξ̂

(b)
ω0,ω1 and

∆
(b)
ξ (ω0, ω1) are their biased counterparts. Under Assumptions (i) to (iii), then we have that with probability at

least 1− δ,

sup
ω0,ω1

∣∣∆(b)
ξ (ω0, ω1)

∣∣≤ 6ν2
√

2

n
log

2

δ
+ (D0 +D1)

log n

n
+

12ν√
n
(Lk ·RΩ0

+ Ll ·RΩ1
) (26)

Proof. We use McDiarmid’s inequality to obtain the bound.

First, for fixed ω0, ω1, we show that ∆ξ(ω0, ω1) fits the bounded differences property. Since we fix the kernel

parameters in this part, for simplicity we omit the subscript ω0, ω1 from the statistics, e.g. shorten ξ̂
(u)
ω0,ω1 to ξ̂.

Then we replace (x1, y1) with (x′1, y
′
1) and keep the remaining samples the same. The newly obtained samples

are named as Z ′. The difference between

ξ̂ :=
1

(n)2

∑
(i,j)∈in2

kij lij +
1

(n)4

∑
(i,j,q,r)∈in4

kij lqr −
2

(n)3

∑
(i,j,q)∈in3

kij liq (27)

and the new substitution ξ̂′ := HSICu(Z
′) can be given by∣∣ξ̂ − ξ̂′

∣∣≤ 1

(n)2

∑
(i,j)∈in2 ,ij:1∈{i,j}

∣∣kij lij − k′ij l
′
ij

∣∣+ 1

(n)4

∑
(i,j,q,r)∈in4 ,ijqr:1∈{i,j,q,r}

|kij lqr − k′ij l
′
qr

∣∣
+

2

(n)3

∑
(i,j,q)∈in3 ,ijq:1∈{i,j,q}

∣∣kij liq − k′ij l
′
iq

∣∣≤ (n− 1)1
(n)2

ν2 +
2(n− 1)3

(n)4
ν2 +

3(n− 1)2
(n)3

ν2 =
12ν2

n
.

(28)

since for all i, j, the term kij , lij , k
′
ij , l

′
ij are all in the range [0, ν] by assumption (i) and notice that all the term

that none of i, j, q, r are one is zero. Now using McDiarmid’s inequality, we finish the first part of the proof, that
is, for fixed ω0, ω1, with probability at least 1− δ,

∣∣∆(u)
ξ (ω0, ω1)

∣∣≤ 6ν2
√

2

n
log

2

δ
. (29)

Next, we consider the case where ω0, ω1 changes. Take the parameter space Ω0 as an example. Firstly since the
parameter space is a compact Euclidean space, the covering number N (Ω0, r), defined as the smallest number
of closed balls with centers in Ω0 and radii r whose union covers Ω0, is finite. According to (Vershynin, 2018,
Proposition 4.2.12), by comparing the volumes, we have

N (Ω0, r0) ≤
(
2RΩ0

r0
+ 1

)D0

≤
(
3RΩ0

r0

)D0

︸ ︷︷ ︸
when r0≤RΩ0

. (30)

As for Ω1, we can lead a similar conclusion such that for given radii r1, N (Ω1, r1) ≤ (3RΩ1/r1)
D1 . Also,

combining with the assumption (iii), we have for any two ω0, ω
′
0 ∈ Ω0,∣∣ξ̂(u)ω0,ω1

− ξ̂
(u)
ω′

0,ω1

∣∣≤ ν

(n)2

∑
(i,j)∈in2

|kω0
ij − k

ω′
0

ij |+
ν

(n)4
·

∑
(i,j,q,r)∈in4

|kω0
ij − k

ω′
0

ij |+
2ν

(n)3

∑
(i,j,q)∈in3

|kω0
ij − k

ω′
0

ij | ≤ 4νLk∥ω0 − ω′
0∥,

(31)

and using the property of unbiased estimate, then∣∣ξω0,ω1 − ξω′
0,ω1

∣∣ = ∣∣Eξ̂(u)ω0,ω1
−Eξ̂

(u)
ω′

0,ω1

∣∣≤ E
[∣∣ξ̂(u)ω0,ω1

− ξ̂
(u)
ω′

0,ω1

∣∣]≤ 4νLk∥ω0 − ω′
0∥. (32)



The above analysis also applies to ω1, ω
′
1 ∈ Ω1 due to the symmetry, i.e.∣∣ξω0,ω1 − ξω0,ω′

1

∣∣≤ ∣∣ξ̂(u)ω0,ω1
− ξ̂

(u)
ω′

0,ω1

∣∣≤ 4νLl∥ω1 − ω′
1∥. (33)

As a result, for any point (ω0, ω1) ∈ Ω0 × Ω1, we can find a point (ω0,i, ω1,j) in the cover set such that

∥ω0,i − ω0∥ ≤ r0, ∥ω1,j − ω1∥ ≤ r1 (34)

and also ∣∣∆(u)
ξ (ω0, ω1)

∣∣≤ ∣∣∆(u)
ξ (ω0,i, ω1,j)

∣∣+4νLk · r0 + 4νLl · r1. (35)

Combining with the result in the first part, we show that with probability at least 1− δ,

sup
ω0,ω1

∣∣∆(b)
ξ (ω0, ω1)

∣∣≤max
ij

∣∣∆(u)
ξ (ω0,i, ω1,j)

∣∣+4νLk · r0 + 4νLl · r1

≤6ν2
√

2

n
log

2N (Ω0, r0)N (Ω1, r1)

δ
+ 4νLk · r0 + 4νLl · r1.

(36)

We finish the proof of this part by combining Eq. (30) and setting the radis r0 = 3RΩ0/
√
n and r1 = 3RΩ1/

√
n.

The analysis of the case of biased statistics we used in practice is the same as the unbiased case in our analysis.
The reason is that they are bounded by a negligible gap against other dominant terms like O( 1√

n
) in asymptotic

analysis, which is shown by Lemma 2.

Lemma 2. The bias term between the U -statistic estimator HSICu(Z) and V -statistic estimator HSICb(Z) is
asymptotically bounded by O(n−1), that is,

|HSICb(Z)−HSICu(Z)| ∼ O(n−1) (37)

Proof. By definition, we have

|HSICb(Z)−HSICu(Z)| ≤
∣∣∣ 1

(n)2

∑
(i,j)∈in2

kij lij −
1

n2

∑
i,j

kij lij

∣∣∣
+
∣∣∣ 1

(n)4

∑
(i,j,q,r)∈in4

kij lqr −
1

n4

∑
i,j,q,r

kij lqr

∣∣∣+2 ·
∣∣∣ 1

(n)3

∑
(i,j,q)∈in3

kij liq −
1

n3

∑
i,j,q

kij liq

∣∣∣. (38)

Take the first term in Eq. (38) as an example,∣∣∣ 1

(n)2

∑
(i,j)∈in2

kij lij −
1

n2

∑
i,j

kij lij

∣∣∣= ∣∣∣( 1

(n)2
− 1

n2

) ∑
(i,j)∈in2

kij lij −
1

n2

∑
i

kiilii

∣∣∣≤ ν2

n
, (39)

since for all i, j, kij , lij are in the range [0, ν]. The same process can be applied to the second and third terms.
Therefore, the total difference of HSICb(Z) and HSICu(Z) is

|HSICb(Z)−HSICu(Z)| ≤
ν2

n
+

6ν2

n
+ 2 · 3ν

2

n
=

13ν2

n
. (40)

Thus, the lemma is proved.

D.2 Convergence results 2

As a start, we denote the random error

∆(b)
σ (ω0, ω1) :=

∣∣σ̂2
u(Z)− σ2

u

∣∣, (41)

where the variance is
σ2
u = 16

(
Ei

(
Ej,q,rhijqr

)2−HSIC(X,Y )2
)

(42)
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and an estimate without regularization is

σ̂2
u(Z) = 16 ·

 1

n

∑
i

( 1

n3

∑
j,q,r

hijqr

)2
−
(
HSICb(Z)

)2 , (43)

where the term

hijqr =
1

4!

(i,j,q,r)∑
(t,u,v,w)

ktultu + ktulvw − 2kuvltv (44)

and the sum represents all ordered quadruples (t, u, v, w) drawn without replacement from (i, j, q, r). Also, the
statistic HSICb(Z) can be expressed as

HSICb(Z) =
1

n4

n∑
i,j,q,r

hijqr. (45)

Lemma 3. Under Assumptions (i) to (iii), then we have that with probability at least 1− δ,

sup
ω0,ω1

∣∣∆(u)
σ (ω0, ω1)

∣∣ ≤ 768ν4
√

2

n
log

2

δ
+ (D0 +D1)

log n

n
+

6272ν4

n
+

1536ν3√
n

(
Lk ·RΩ0

+ Ll ·RΩ1

)
(46)

Proof. First, we obtain the bound on hijqr with fixed i, j, q, r.

|hijqr| ≤
1

4!

(i,j,q,r)∑
(t,u,v,w)

|ktultu + ktulvw − 2kuvltv| ≤ 2ν2, (47)

since for all i, j, kij and lij have range in [0, ν].

Suppose we change (x1, y1) to (x′1, y
′
1) and keep the remaining samples the same as before. The newly obtained

samples are named as Z ′. We denote the counterpart of hijqr calculated on Z ′ as h′ijqr. Now we require an upper

bound on |σ̂2
u(Z)− σ̂2

u(Z
′)|. For the first term in Eq. (43), we have∣∣∣ 1
n

∑
i

( 1

n3

∑
j,q,r

hijqr

)2
− 1

n

∑
i

( 1

n3

∑
j,q,r

h′ijqr

)2∣∣∣
≤ 1

n

∑
i

( 1

n3

∑
j,q,r

∣∣hijqr − h′ijqr
∣∣

︸ ︷︷ ︸
≤12ν2/n similar as Eq. (28)

)
·
( 1

n3

∑
j,q,r

∣∣hijqr + h′ijqr
∣∣

︸ ︷︷ ︸
≤4ν2 since |hijqr|≤2

)
≤ 48ν4

n
.

(48)

For the second term in Eq. (43), denote ξ̂b = HSICb(Z), ξ̂
′
b = HSICb(Z

′) (for this part only), we have∣∣∣(ξ̂b)2−(ξ̂′b)2∣∣∣= ∣∣ξ̂b + ξ̂′b
∣∣·∣∣ξ̂b − ξ̂′b

∣∣≤ 4ν2 · 12ν
2

n
=

48ν4

n
, (49)

since ξ̂b, ξ̂
′
b is bounded in [0, 2ν] and the bound on difference term can be obtained by a similar analysis in

Eq. (28). Therefore,

|σ̂2
u(Z)− σ̂2

u(Z
′)| ≤ 1536ν4

n
. (50)

Simply applying McDiamid’s to σ̂2
u(Z), we obtain that with probability at least 1− δ,

|σ̂2
u(Z)−E[σ̂2

u(Z)]| ≤ 768ν4
√

2

n
log

2

δ
. (51)

Now we consider the bound of bias term |E[σ̂2
u(Z)]− σ2

u|. By definition, We can rewrite the first subterm as

E[σ̂2
u(Z)] = 16

( 1

n7

∑
ijqrj′q′r′

E[hijqrhij′q′r′ ]−
1

n8

∑
ijqri′j′q′r′

E[hijqrhi′j′q′r′ ]
)

(52)



and rewrite the second subterm with matching as

σ2
u = 16

( 1

n7

∑
ijqrj′q′r′

E[h1234h1678]−
1

n8

∑
ijqri′j′q′r′

E[h1234h5678]
)
, (53)

where the number subscripts represent a specific set of values, then by calculating the number of non-zero terms
and combining Eq. (47), we obtain that

|E[σ̂2
u(Z)]− σ2

u| ≤ 16 ·
(
2− (n)7

n7
− (n)8

n8

)
︸ ︷︷ ︸

by the number of non-zero terms

·8ν4. (54)

Also, when n > 8, it results in

|E[σ̂2
u(Z)]− σ2

u| ≤ 16 ·
(
7
2

)
+
(
8
2

)
n

· 8ν4 =
6272ν4

n
. (55)

Next, we consider the case where ω0, ω1 changes. To simplify, in this part, we denote ω := (ω0, ω1) and
ω′ := (ω′

0, ω
′
1). The superscript indicates the value taken under the corresponding parameter value, as an

example, k
(ω)
tu = k

(ω0)
tu and h

(ω)
ijqr = h

(ω0,ω1)
ijqr . Now we proof the Lipschitz property of σ̂2

u,ω(Z) and σ
2
u,ω. One can

check that for fixed a, b, c, d,∣∣k(ω)
ab l

(ω)
cd − k

(ω′)
ab l

(ω′)
cd

∣∣ ≤ ∣∣k(ω)
ab

∣∣·∣∣l(ω)
cd − l

(ω′)
cd

∣∣+∣∣k(ω)
ab − k

(ω′)
ab

∣∣·∣∣l(ω′)
cd

∣∣≤ ν
(
Lk∥ω0 − ω′

0∥+ Ll∥ω1 − ω′
1∥
)
. (56)

by assumption (i) and (iii). Then combining with Eq. (44), for each term we can use the results of Eq. (56), then

|h(ω)
ijqr − h

(ω′)
ijqr| ≤ 4ν

(
Lk∥ω0 − ω′

0∥+ Ll∥ω1 − ω′
1∥
)
. (57)

Also, since |hijqr| ≤ 2ν,

∣∣h(ω)
ijqrh

(ω)
abcd−h

(ω′)
ijqrh

(ω′)
abcd

∣∣≤ ∣∣h(ω)
ijqr

∣∣·∣∣h(ω)
abcd − h

(ω′)
abcd

∣∣+∣∣h(ω)
ijqr − h

(ω′)
ijqr

∣∣·∣∣h(ω′)
abcd

∣∣≤ 16ν3
(
Lk∥ω0 − ω′

0∥+ Ll∥ω1 − ω′
1∥
)
(58)

As a result,

∣∣σ̂2
u,ω(Z)− σ̂2

u,ω′(Z)
∣∣≤16

n7

∑
ijqrbcd

∣∣h(ω)
ijqrh

(ω)
ibcd − h

(ω′)
ijqrh

(ω′)
ibcd

∣∣+16

n8

∑
ijqrabcd

∣∣h(ω)
ijqrh

(ω)
abcd − h

(ω′)
ijqrh

(ω′)
abcd

∣∣
≤512ν3

(
Lk∥ω0 − ω′

0∥+ Ll∥ω1 − ω′
1∥
)
.

(59)

Again using a similar process, we can show that∣∣σ2
u,ω − σ2

u,ω′

∣∣≤ 512ν3
(
Lk∥ω0 − ω′

0∥+ Ll∥ω1 − ω′
1∥
)

(60)

Since we focus on the same parameter space as before, we take the same cover set we used in Eq. (30). Then,
by combing the results of Eqs. (51), (55), (59) and (60), we have with probability at least 1− δ,

sup
ω0,ω1

∣∣∆(u)
σ (ω0, ω1)

∣∣ ≤ 768ν4
√

2

n
log

2N (Ω0, r0)N (Ω1, r1)

δ
+

6272ν4

n
+ 512ν3

(
Lk · r0 + Ll · r1

)
. (61)

We finish the proof of this part by combining Eq. (30) and setting the radis r0 = 3RΩ0/
√
n and r1 = 3RΩ1/

√
n.
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D.3 Convergence results 3

Recall that c is a small constant, we can set it to less than 1 for analysis. Since σu ≥ c on Ωc := Ω0 × Ω1,
according to the Eq. (61), when

n ≥ N0 =

(
2

c

)3

·

[
768ν4

(√
2 log

4

δ
+
√
D0 +D1

)
+1536ν3

(
LkRΩ0

+ LlRΩ1

)
+6272ν4

]3
. (62)

we have σ̂u(Z) ≥ c/2 with at least probability 1 − δ/2. And for simplicity, we denote σ̂u as σ, σ̂u(Z) as σ̂,

HSICb(Z) as ξ̂ and HSIC(X,Y ) as ξ, then

sup
ω0,ω1

∣∣∣∣∣ ξ̂ − r(n)/n

σ̂
− ξ − r/n

σ

∣∣∣∣∣ ≤ sup
ω0,ω1

(∣∣∣∣∣ ξ̂ − ξ

σ̂

∣∣∣∣∣+
∣∣∣∣r(n) − r

nσ̂

∣∣∣∣+ ∣∣∣∣ξ + r/n

σ

∣∣∣∣ · ∣∣∣∣ σ̂ − σ

σ̂

∣∣∣∣
)

≤ sup
ω0,ω1

(
2

c
·
∣∣ξ̂ − ξ

∣∣+ 2

cn
·
∣∣r(n) − r

∣∣+8(ν + r/n)

3c3
·
∣∣σ̂2 − σ2

∣∣) . (63)

Combining the results Eqs. (36) and (61), also according to the results (Korolyuk and Borovskich, 2013, Theorem
13) that shown that |rn − r| ∼ o(n−1/2) and supω0,ω1

r <∞, thus we have

sup
ω0,ω1

∣∣∣∣∣ ξ̂ − r(n)/n

σ̂
− ξ − r/n

σ

∣∣∣∣∣ =O

(
1

c3

[√
2

n
log

4

δ
+ (D0 +D1)

log n

n
+
LkRΩ0

+ LlRΩ1√
n

])
= O

(√
log n

n

)
, (64)

with probability at least 1− δ.

E Proof of Proposition 3.

Proposition 3. (Consistency) Let ω∗
0 , ω

∗
1 be the kernel parameters after learning, Zte be the testing samples of

size m, then the probability of Type II error

PH1

(
mHSICb(Z

te) ≤ r(m)|ω∗
0 , ω

∗
1

)
∼ O(m−1/2). (65)

Proof. For simplify, we denote ξ̂b as the biased estimator of HSICb(Z
te) and ξ̂u as the corresponding unbiased

estimate. We first show a uniform bound of the threshold and then give the upper bound of the probability of
Type II error.

Bound on the threshold. After the training process, let the fixed kernel bandwidths we find as ω∗
0 , ω

∗
1 . For

these fixed kernel bandwidths, according to the process in Eq. (29), we can have a uniform bound for r(m) for

mξ̂b that

r(m) ≤ 6ν2
√
2 log

2

1− α

√
m+ 13ν2 ∼ O(m1/2). (66)

Decrease rate of Type II error. By definition, the probability of the Type II error is given by

P
(
Type II error

)
= PH1

(
mξ̂b ≤ r(m)|ω∗

0 , ω
∗
1

)
≤ PH1

(
mξ̂u ≤ r(m) + 13ν2

∣∣ω∗
0 , ω

∗
1

)
= PH1

(√
m(ξ̂u −Eξ̂u)

4σ1/2
≤ r(m)/

√
m−

√
mEξ̂u + 13ν2/

√
m

4σ1/2

∣∣∣ω∗
0 , ω

∗
1

)
.

(67)

According to the results shown in (Serfling, 2009, Section 5.5.1 Theorem B), and also σ > 0 under H1, we have

P
(
Type II error

)
≤Φ

(
r(m)/

√
m−

√
mEξ̂u + 13ν2/

√
m

4σ1/2

)
+
C1νh
σ3/2

1√
m

≤ Φ
(
C2 − C3

√
mEξ̂u + C4/

√
m
)
+C5

1√
m

(68)



where νh := E|h1234|3 < ∞ and using r(m) ∼ O(m1/2) we prove before. Since under H1, ξ > 0, hence

Eξ̂u = ξ > 0. For the function Φ(x), we consider the asymptotic expansion when x is close to negative infinity,
that is

Φ(x) =− e−x2

2x
√
π

(
1 +

∞∑
n=1

(−1)n
1 · 3 · 5 · · · (2n− 1)

(2x2)
n

)
, (69)

then Φ
(
C2 − C3

√
mEξ̂u + C4/

√
m
)
∼ O(m−1/2). As a result, the decreasing rate is at least O(m−1/2).

F Gamma Approximation of Threshold

We first restate the definition of ĉα. Under H0, we approximate the cumulative distribution function with the
two-parameter gamma distribution

nHSICb(Z) ∼
xγ−1e−x/β

βγΓ(γ)
, (70)

where the two parameters are

γ =
(E[HSICb(Z)])

2

Var[HSICb(Z)]
, β =

nVar[HSICb(Z)]

E[HSICb(Z)]
. (71)

Assume that kii = lii = 1 (the Gaussian kernels satisfy this condition), then the mean of the statistic, denoted
E[HSICb(Z)], is obtained as follows,

1

n
TrCxxTrCyy =

1

n

(
1 + ∥µx∥2∥µy∥2 − ∥µx∥2 − ∥µy∥2

)
. (72)

An empirical estimate can be obtained by replacing the term above with

∥̂µx∥2 =
1

(n)2

∑
(i,j)∈in2

kij , ∥̂µy∥2 =
1

(n)2

∑
(i,j)∈in2

lij . (73)

Alternatively, a matrix expression

E[HSICb(Z)] =
1

n

( 1

n− 1
Tr(HKH)

)( 1

n− 1
Tr(HLH)

)
, (74)

where H = I− 1
n11

T is the centering matrix. Also, the variance of the statistic is obtained by

Var[HSICb(Z)] =
2(n− 4)(n− 5)

(n)4
∥Cxx∥2HS∥Cyy∥2HS, (75)

where ∥ · ∥2HS is the Hilbert-Schmidt norm. The empirical estimate of the product of HS norms ∥Cxx∥2HS∥Cyy∥2HS

is
1T
(
B− diag(B)

)
1

n(n− 1)
,with B =

(
(HKH)⊙ (HLH)

)·2
, (76)

where ⊙ is the entrywise matrix product and ()·2 is the entrywise matrix power.

Next, we begin to discuss the properties of functions. For simplify, we denote Kc = HKH and Lc = HLH.
Also, we construct the following function to be analyzed

E0 =
( 1

n− 1
TrKc

)( 1

n− 1
TrLc

)
,V0 =

2(n− 4)(n− 5)

(n− 1)2(n− 2)(n− 3)
1T
(
B− diag(B)

)
1, (77)

where B = (Kc ⊙ Lc)
·2, and one can check that

E0 = E[nHSICb(Z)],V0 = Var[nHSICb(Z)]. (78)

The estimate of threshold ĉα with a confidence level of 1− α is the solution of the following equation∫ ĉα

0

xγ−1e−x/β

βγΓ(γ)
dx =

∫ ĉα
β

0

xγ−1e−x

Γ(γ)
dx = 1− α, (79)

where Γ is the gamma function.
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G Limit Behavior with Gaussian Kernels

In this section, we study the limiting behavior (with respect to the bandwidth) of the statistics when the kernel
function is taken to be a Gaussian function, in order to show the detailed calculations in the examples given in
the main paper and to motivate Theorem 2. For analysis, we consider the Gaussian kernel with the form

k(x, x′) = exp
(
−η · ∥x− x′∥2

)
, (80)

where the parameter η = 1/2ω2
x. We also consider the case with fixed samples Z of sample size n and fixed width

ωy > 0, then explore the behavior of the statistics of null and alternative distribution. In addition to the results
at ωx = 0 (i.e., η = +∞) shown in the main paper, we also show the results at η = 0+. As a start, we begin by
stating the following assumptions.

1. The domain X is Euclidean and bounded, X ⊆ {x ∈ Rd : ∥x∥ ≤ RX /2} for some constant RX <∞.

2. The non-diagonal elements of center matrices Kc,Lc are not zero, i.e. (Kc)
2
ij > 0, (Lc)

2
ij > 0 for all i ̸= j

when the kernel widths (ωx, ωy) ∈ [ωxl, ωxu]× [ωyl, ωyu] with given positive constants ωxl, ωxu, ωyl, ωyu.

3. The distributions of data are continuous. Hence ∥xi − xj∥ ≠ 0, ∥yi − yj∥ ≠ 0 for all i ̸= j almost surely.

Compared to assumption 3, which requires the data to have a continuous distribution, assumptions 1 and 2 are
weaker, and we focus on analyzing assumption 2 due to it relates to both samples and bandwidth. Since by the
definition Kc = HKH, hence

(Kc)ij = kij −
1

n

∑
i

kij −
1

n

∑
j

kij +
1

n2

∑
ij

kij . (81)

Intuitively, the value of (Kc)ij is equal to itself minus the average of the row and column it is in and plus the
average of all the elements. As a result, in practice, we hardly ever face a situation where it is strictly equal to
0 when the bandwidth is a positive constant. Under these assumptions, we now show the limit behavior.

We first get the limit of the kernel matrix

K(η = 0+) = 11T ,K(η = +∞) = I. (82)

and the limit of centering kernel matrix

Kc(η = 0+) = O,Kc(η = +∞) = H. (83)

Then by substituting the results of Eqs. (82) and (83) gives the limit of two moments of null distribution

E0(η = 0+) = 0, E0(η = +∞) =
( 1

n− 1
TrLc

)
.

V0(η = 0+) = 0, V0(η = +∞) =
2(n− 4)(n− 5)

n2(n− 1)2(n− 2)(n− 3)

∑
i ̸=j

(Lc)
2
ij .

(84)

Now we consider the limit behavior of the moments of alternative distribution. Recall the definitions, the mean
of the distribution under H1 is given by

E1 := nHSICb(Z) =
1

n
Tr(HKHL). (85)

The limit is

E1(η = 0+) = 0, E1(η = +∞) =
1

n
Tr(Lc). (86)

And the variance is

V1 := σ̂2
u(Z) = 16 ·

 1

n

∑
i

( 1

n3

∑
j,q,r

hijqr

)2
−
(
HSICb(Z)

)2 , (87)



where the term

hijqr =
1

4!

(i,j,q,r)∑
(t,u,v,w)

ktultu + ktulvw − 2kuvltv (88)

and the sum represents all ordered quadruples (t, u, v, w) drawn without replacement from (i, j, q, r). Also, we
can show that the statistic HSICb(Z) can be expressed as

HSICb(Z) =
1

n4

n∑
i,j,q,r

hijqr. (89)

To compute the limit easily, we can also make use of its matrix expression of the term given in Eq. (19). Then∑
j,q,r

hijqr

 ∣∣∣
η=0+

= 0,

∑
j,q,r

hijqr

 ∣∣∣
η=+∞

=
n2(Lc)ii + nTr(Lc)

2
. (90)

After that, the limit of Eq. (87) can be calculated that

V1

∣∣
η=0+

= 0,V1

∣∣
η=+∞=

4

n2

[
Tr
[
(Lc)

·2]
n

−
(Tr(Lc)

n

)2]
. (91)

In summary, the variance V0,V1 are very small when η is taken to both 0 and +∞ (when n is large), but the
mean E0, E1 get constant value when η = +∞. This further explains the overfitting problem in the main paper,
i.e., disregarding the threshold at ωx = 0+ will result in very large values. In addition, the behavior of the
variance in the limit encourages us to add a small regular constant to the denominator of the objective function
to prevent numerical errors in practice. We will employ this in the next section and further show the result of
the smoothness of the objective function.

H Proof of Theorem 2

In this section, we give the proof of Theorem 2. In the beginning, we restate the Theorem 2 below. Our
proof is based on assumptions 1 and 2, which as explained in the previous section almost hold in practice. For
simplicity, we set RX = 1 which can be achieved by normalization. In addition, we assume for xi there exists
i ̸= j, ∥xi − xj∥ > 0, i.e. all points xi are prevented from taking the same value, and so are yi. Note that this
assumption is used to simplify the analysis but is not necessary due to the fact that if xi = xj for all i ̸= j, then
K ≡ 11T for all positive bandwidth thus Jλ(Z) ≡ 0 for all positive bandwidth which indicates the smoothness.

Theorem 2. (Smoothness of Objective Function) Let kωx
, lωy

be Gaussian kernels with bandwidth parameter
ωx, ωy, for fixed samples Z of size n, the objective function we used in practice

Jλ(Z) :=
nHSICb(Z)− ĉα√

σ̂2
u(Z) + λ

, λ > 0

satisfies the L-smoothing condition, i.e., its gradients of ωx, ωy are Lipschitz continuous on the compact domain
(ωx, ωy) ∈ [ωxl, ωxu]× [ωyl, ωyu], for all positive constants ωxl, ωxu, ωyl, ωyu.

Proof. We consider the Gaussian kernel with the form (the conclusion remain the same as the form with ωx)

k(x, x′) = exp
(
−η · ∥x− x′∥2

)
(92)

with parameter η for analysis and only show the results of smoothness on the bandwidth of x since the conclusions
also hold for y due to symmetry. One can easily check the following

∂k(x, x′)

∂η
= −∥x− x′∥2 exp

(
−η · ∥x− x′∥2

)
≤ 0,

∂2k(x, x′)

∂2η
= ∥x− x′∥4 exp

(
−η · ∥x− x′∥2

)
≥ 0. (93)

Hence for the case where the variable x has upper bounded norm RX /2 s.t. ∥x∥ ≤ RX /2 for all x ∈ X , then

0 ≤ −∇ηk ≤ R2
X , 0 ≤ ∇2

ηk ≤ R4
X . (94)
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Combining with the assumption 1 and RX = 1, we have

0 ≤ ∇2
ηk ≤ −∇ηk ≤ k ≤ 1. (95)

This directly indicates that both kernel k and its derivative function are 1-Lipschitz continuous functions.

Smoothness of the threshold under H0. We now prove the smoothness of the threshold ĉα. Since ĉα is
defined as in Eq. (79), and it involves two variables β, γ, which are calculated by the first two moments of the
null distribution, so we first prove the smoothness of these two moments. For analysis, we define

E := E0 =
( 1

n− 1
TrKc

)( 1

n− 1
TrLc

)
,V :=

1T
(
B− diag(B)

)
1

n(n− 1)
=

(n− 1)(n− 2)(n− 3)

2n(n− 4)(n− 5)
V0 = C0V0, (96)

where E0,V0 are the two moments of null distribution defined in Eq. (84). Note that for fixed n, E ,V have the
same smoothness property with E0,V0.

We show the smoothness of E by considering the higher-order gradients

∇ηE =
( 1

n− 1
Tr∇ηKc

)( 1

n− 1
TrLc

)
=
( 1

n(n− 1)
1T [−∇ηK]1

)( 1

n− 1
TrLc

)
≥ 0

∇2
ηE =

( 1

n(n− 1)
1T [−∇2

ηK]1
)( 1

n− 1
TrLc

)
≤ 0.

(97)

Hence E is a monotonic non-decreasing function with η and

|∇ηE| ≤ 1, |∇2
ηE| ≤ 1, (98)

which indicates that both E and ∇ηE are Lipschitz continuous functions.

And then we show the smoothness of V. The higher-order gradients of B can be given by

∇ηB = 2 · ∇ηKc ⊙Kc ⊙ (Lc)
·2,∇2

ηB = 2 ·
(
∇2

ηKc ⊙Kc + (∇ηKc)
·2
)
⊙(Lc)

·2. (99)

Also, the following results can be given

0 ≤ V ≤ 1

n(n− 1)

∑
i ̸=j

Bij ≤
4

n(n− 1)

∑
i ̸=j

|Lc|2ij ≤ 16,

|∇ηV| ≤
1

n(n− 1)

∑
i ̸=j

|∇ηB|ij ≤
8

n(n− 1)

∑
i̸=j

|Lc|2ij ≤ 32,

|∇2
ηV| ≤

1

n(n− 1)

∑
i ̸=j

|∇2
ηB|ij ≤

16

n(n− 1)

∑
i̸=j

|Lc|2ij ≤ 64,

(100)

since the non-diagonal elements in Kc,∇ηKc,∇2
ηKc all fall in the range [−2, 2], and for Lc as well. Hence both

V and ∇ηV are Lipschitz continuous functions.

Under assumption 2, the following lower bound can be obtained by using Sedrakyan’s inequality

V =
1

n(n− 1)

∑
i̸=j

(Kc)
2
ij(Lc)

2
ij ≥

1

n(n− 1)

(∑
i ̸=j(Kc)ij

)2∑
i̸=j(Lc)

−2
ij

. (101)

Since the sum of the elements of the matrix Kc = HKH is 0, we further have

V ≥ 1

n(n− 1)

(−TrKc)
2∑

i̸=j(Lc)
−2
ij

=
n− 1

n

E2(
1

n−1TrLc

)2 1∑
i̸=j(Lc)

−2
ij

. (102)

Since n and Lc is all fixed, we set the const in Eq. (102) as C1, then we have the bound between V and E
as V ≥ C1E2. If we restrict the minimum value of width to ηmin, then according to the results that E is a
monotonically increasing function and combining the assumption that we prevent all points of xi from taking



the same value and so as yi, hence we have 0 < C(ηmin) ≤ E , where the const C(ηmin) := E(η = ηmin). As a

result, the variance has a bound C1

(
C(ηmin)

)2≤ V ≤ 16.

Since E ,V are all bounded in the convex set [ηmin, ηmax] of the width, we can show that γ, β are have strictly

positive (larger than a positive const) lower and upper bounds since γ =
E2
0

V0
, β = nV0

E0
defined in Eq. (71) and

Eq. (96). Hence γ, β, γ−1, β−1 are all Lipschitz continuous functions in the domain [ηmin, ηmax]. In addition, we
can further show that the gradients of γ, β, γ−1, β−1 are also Lipschitz continuous functions by proving that the
second order derivative of them are all bounded.

Next, we show that ĉα is smoothness. We restate the definition of ĉα here. According to Eq. (79), the threshold
ĉα is the solution of the following equation∫ ĉα

0

xγ−1e−x/β

βγΓ(γ)
dx =

∫ ĉα
β

0

xγ−1e−x

Γ(γ)
dx = 1− α, (103)

where Γ is the gamma function. We now obtain the range of the threshold ĉα.

For the upper bound, we use the concentration inequation to bound the probability of the gamma distribution
tail. Let T be the random variable with Gamma(γ, 1/β) distribution, then for all λ < 1

β , we have

α = P(T ≥ ĉα) ≤
EeλT

eλĉα
= (1− βλ)−γe−λĉα , (104)

which indicates that

ĉα ≤ min
λ∈[0,β−1]

− log(α)− γ log(1− βλ)

λ
. (105)

By heuristically setting λ = 1
2β , we then obtain a upper bound

ĉα ≤ 2 ·
( 1
γ
log(

1

α
) + log 2

)
·E . (106)

And for the lower bound, we have

1− α =

∫ ĉα
β

0

xγ−1e−x

Γ(γ)
dx <

∫ ĉα
β

0

xγ−1

Γ(γ)
dx =

ĉα
γ

βγΓ(γ + 1)
(107)

which indicate that ĉα > (1− α)1/γΓ(γ + 1)1/γβ. As a result, combining with γ ≥ C0

C1
:= C2 then

ĉα ≥ min
γ≥C2

(1− α)1/γΓ(γ + 1)1/γβ = (1− α)1/C2Γ(C2 + 1)1/C2β, (108)

where the last equation uses the monotonically increasing properties of the function.

In summary, we show that the threshold is constrained by positive lower and upper bounds. Next, we further
prove that the threshold satisfies the Lipschitz continuous condition. Here we start our study with ĉα

β as the
object in order to facilitate the calculation of the gradient since∫ ĉα

β

0

xγ−1e−x

Γ(γ)
dx = 1− α. (109)

We denote the function xγ−1e−x

Γ(γ) as gγ(x) and take the derivative on both sides. As a result,

gγ

( ĉα
β

)
︸ ︷︷ ︸

⋆

·∇η

( ĉα
β

)
+

∫ ĉα
β

0

[∇ηgγ ](x)dx︸ ︷︷ ︸
■

= 0. (110)

For the first term in Eq. (110)

⋆ = gγ

( ĉα
β

)
=
ĉα

γ−1
e−ĉα/β

βγ−1Γ(γ)
, (111)
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according to the fact that both upper and lower bounds of β, γ, ĉα, [1/Γ](γ) exist and the lower bound is greater
than a positive constant, it is clear that the first term inherits the property. For the second term in Eq. (110)

■ =
(
∇ηγ

)
·

{∫ ĉα
β

0

xγ−1e−x

(
ln(x)

Γ(γ)
+∇γ

( 1

Γ(γ)

))
dx

}
︸ ︷︷ ︸

♠

, (112)

it can be checked that the integral term is convergent because the integral is convergent at zero (x = 0) since

γ > 0, and the upper limit of the integral is bounded. ∇γ

(
1

Γ(γ)

)
is also bounded due to it being continuous on

a closed interval of γ. And since we have proven that γ is a Lipschitz continuous function, ∇ηγ is also bounded.

The above analysis of the two terms directly show that there is an upper bound C3 of
∣∣∣∇η

(
ĉα
β

)∣∣∣, this futher

shows that ĉα
β is a Lipschitz continuous function.

We further consider the range of second-order derivatives of ĉα
β . We continue to derive both sides of Eq. (110),

(∇η⋆) · ∇η

( ĉα
β

)
+⋆ · ∇2

η

( ĉα
β

)
+
(
∇η■

)
= 0. (113)

As before, we show that the term ∇η⋆,∇η■ are bounded.

∇η⋆ = ∇η

exp
{
(γ − 1) log( ĉαβ )− ĉα

β

}
Γ(γ)

 = exp

{
(γ − 1) log

( ĉα
β

)
− ĉα
β

}
·
{
∇η

( 1

Γ(γ)

)
+

1

Γ(γ)
·

[
(∇ηγ) log

( ĉα
β

)
+(γ − 1)

( ĉα
β

)−1

·∇η

( ĉα
β

)
−∇η

( ĉα
β

)]} (114)

By using a similar analysis, it is easy to verify that ∇η⋆ is bounded. And for the term ∇η■, first we have

∇η■ =
(
∇2

ηγ
)
·♠+

(
∇ηγ

)
·∇η♠, (115)

and by the previous analysis ∇2
ηγ,♠,∇ηγ are bounded, thus we only need to analyze ∇η♠.

∇η♠ =∇η

{∫ ĉα
β

0

xγ−1e−x

(
ln(x)

Γ(γ)
+∇γ

( 1

Γ(γ)

))
dx

}

=
( ĉα
β

)γ−1

e−
ĉα
β

 ln
(

ĉα
β

)
Γ(γ)

+∇γ

( 1

Γ(γ)

) · ∇η

( ĉα
β

)
+

{∫ ĉα
β

0

xγ−1

ex

[
ln2(x)

Γ(γ)
+∇γ

(2 ln(x)
Γ(γ)

)
+∇2

γ

( 1

Γ(γ)

)]
dx

}
· ∇η(γ).

(116)

The terms in Eq. (116) all satisfy the bounded condition. As a result, we have proved that ∇η

(
ĉα
β

)
is a Lipschitz

continuous function. According to

∇η ĉα = β ·
(
∇η

( ĉα
β

)
−ĉα · ∇η

( 1
β

))
, (117)

We can obtain the final conclusion that both ĉα,∇η ĉα satisfy the Lipschitz continuous condition.

Smoothness of the mean and variance under H1. Next we prove the smoothness of nHSICb(Z) and
σ̂2
u(Z) + λ. We define

E1 := nHSICb(Z), V1,λ := σ̂2
u(Z) + λ = V1 + λ, (118)

where V1 is defined in Eq. (87). We first obtain the bound of E1,V1.



For fixed i, j, q, r, we can obtain the bound on hijqr.

|hijqr| ≤
1

4!

(i,j,q,r)∑
(t,u,v,w)

|ktultu + ktulvw − 2kuvltv| ≤ 2, (119)

since for all i, j, kij and lij both take the value in [0, 1]. Combining with Eq. (89), we can quickly conclude that

0 ≤ E1 ≤ 1

n3

n∑
i,j,q,r

|hijqr| ≤ 2n, (120)

and the variance

0 < λ ≤ V1,λ ≤ 16 ·

 1

n

∑
i

( 1

n3

∑
j,q,r

hijqr

)2+ λ ≤ 64 + λ. (121)

In addition, the range of the higher-order derivatives can be given by

∇ηhijqr =
1

4!

(i,j,q,r)∑
(t,u,v,w)

∇ηktultu +∇ηktulvw − 2∇ηkuvltv,

∇2
ηhijqr =

1

4!

(i,j,q,r)∑
(t,u,v,w)

∇2
ηktultu +∇2

ηktulvw − 2∇2
ηkuvltv.

(122)

Hence the bounds can be obtained in a similar way,

|∇ηhijqr| ≤ 2, |∇2
ηhijqr| ≤ 2, (123)

since for all i, j, [−∇ηkij ] and ∇2
ηkij are all bounded in [0, 1].

As a result, we have

|∇ηV1,λ| ≤ 32
( 1
n

∑
i

∣∣∣ 1
n3

∑
j,q,r

hijqr

∣∣∣·∣∣∣ 1
n3

∑
j,q,r

∇ηhijqr

∣∣∣+∣∣∣ 1
n4

n∑
i,j,q,r

∇ηhijqr

∣∣∣·∣∣∣ 1
n4

n∑
i,j,q,r

∇ηhijqr

∣∣∣)≤ 256

|∇2
ηV1,λ| ≤ 512.

(124)

Therefore, we can conclude that both E1,V1,λ satisfy the smoothness condition.

Smoothness of the optimization objective Finally we prove the smoothness of the objective function.
According to the properties of the composite function, we can further prove that our optimization object

Jλ(Z) =
nHSICb(Z)− ĉα

σ̂u,λ(Z)
=

E1 − ĉα√
V1,λ

(125)

satisfies the Lipschitz smoothness condition with η when the width η ∈ [ηmin, ηmax].

I Time Complexity

Let the sample size be n, the dimensions of X,Y be dx, dy, and then the time complexity is derived from the
following steps. For each iteration of the train, Computing the kernel matrix costs O

(
n2(dx+dy)

)
and computing

the terms HSICb(Z), σ̂
2
u(Z) and ĉα costs O

(
n2
)
as shown in Sec. B and by the definition of ĉα given in Sec. F.

Hence the total time complexity is O
(
Tn2(dx + dy)

)
, where T is the total number of iterations.

Remark. For the data with a large number of samples, we can train in a small batch way to reduce computational
complexity. This paper uses full batch training since a small sample size is sufficient for good results.
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J Additional Experiment Results

J.1 More Examples for the Pitfull with the Signal-to-Noise Ratio Criterion

In this section, we present more experimental results as well as analysis under additional settings for the pitfall of
existing methods (Sec. 3 in the main paper). We first show the results of the experiments under more settings in
Fig. 1. From the above row, we can see that the overall difference between modeling thresholds or not diminish
as the sample size increases (gradually closing over a wider range of kernel width). The next row has a simpler
setup therefore the difference between the two is smaller. This corresponds to the theoretical explanation that
as the sample size increases, the impact from the threshold gradually decreases compared to the signal-to-noise

criterion. Formally, under the alternative hypothesis, the term nHSIC(X,Y )√
nσu

∼ O(
√
n) while r√

nσu
∼ O( 1√

n
). We

further give visualization results for more details of the optimization process. The results of our method (after
modeling threshold) are given in Fig. 2. For different kernel and dimension settings, our method achieves a
reliable optimization. This is also supported by our theoretical smoothness guarantee. For the case in which no
threshold is applied, the results are presented in Fig. 3. It can be seen that even for the simpler case of d = 2, the
optimization leads to the wrong solution (the solution with zero bandwidths), and the phenomenon has not been
resolved until the sample size reaches 1024 that a converging solution is obtained for the first time. Overall, our
method addresses the pitfalls of the original criterion, thus enabling it to deal with more challenging scenarios
and greatly improving the stability of the optimization.
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Figure 1: The values of optimization objective for different ωx on the ISA dataset under more settings.
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Figure 2: The visualization results of gradient descent process for HSIC-O on the ISA dataset. From left to
right: 1) Gaussian kernel with learnable width. n = 128, θ = π/10, d = 2. 2) Laplace kernel with learnable
width. n = 128, θ = π/10, d = 2. 3) Gaussian kernel with learnable width. n = 256, θ = π/10, d = 4.
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Figure 3: The visualization results of the kernel bandwidth optimization process when using the criterion (w.o.
threshold). The number of iterations is sufficient to ensure convergence. Setup: The ISA dataset is used, d is
fixed to 2 and θ = π/10. The sample size n is changed from 128 to 2048.

J.2 Experiment Results with More Settings and More Compared Methods

In this section, we provide the experimental results under more settings in Fig. 4.

More kernels. The results for more kernel settings are shown on the left. Among them, HSIC-MG, HSIC-ML,
HSIC-OG, HSIC-OL, and HSIC-WG correspond to the results for the Gaussian kernel with median bandwidth,
the Laplace kernel with median bandwidth, the Gaussian kernel with optimized bandwidth, the Laplace kernel
with optimized bandwidth, and the importance-weighted kernel, respectively. In addition, similar to the Gaussian
version of the importance-weighted kernel, we also provide the kernel design for the Laplace case. Specifically,

HSIC-WL corresponds to the result with the kernel k(x, x′) :=
∏dx

i=1 exp
(
−wi|xi−x′

i|
ωx

)
, wi ∈ (0, 1). For the

combined kernel, an example (HSIC-OGL) is also given. Formally, the kernel has the following form k =
π1kOG + π2kOL, where π1, π2 are the learnable combination coefficient and kOG, kOL are the Gaussian/Laplace
kernels with learnable bandwidth parameters. From the results, we can see that the Gaussian kernel is better
in general compared to Laplace in this setting of the ISA dataset. For example, HSIC-OG is better than HSIC-
OL and HSIC-WG is better than HSIC-WL. But notice that HSIC-ML is superior to HSIC-MG due to better
bandwidth initialization. Also note that optimized results are not always better than unoptimized (HSIC-ML
is better than HSIC-OL), since only half of the sample is used for testing. Also, it is noted that the results
of HSIC-OGL are similar to those of HSIC-OG since HSIC-OG achieves better results compared to HSIC-OL
therefore the combined results tend to be closer to HSIC-OG. This also illustrates that our method can be applied
to the scenario that learning the combination of kernels.
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Figure 4: Results of experiments under the ISA dataset with more settings.

More compared methods. On the right, we compare with more methods. We consider the distance-based
methods (Székely and Rizzo, 2013) called distance covariance (dcor) as well as the aggregated kernels tests (Schrab
et al., 2022). To implement the aggregated kernels tests, we consider the kernel selection setting. Specifically,
we first define the set of kernels, which contains a fixed form of kernels with different bandwidths. Here, we
initialize the bandwidth as

{
2iωmid, i ∈ {−5,−4, ..., 4, 5}

}
for both kernels of X and Y . Correspondingly, we

provide the results of our method under the kernel selection scenario as a comparison. We formulate the kernel
with the form k =

∑l
i=1 πiki, where {ki, i = 1, 2, ..., l} are the kernel defined as above and {πi, i = 1, 2, ..., l} are

the learnable combination coefficients. For the method under the kernel selection setting with a sample size of
128, we show the results (Agg-128 and KS-128) in the right of Fig. 4. In this setup, Agg-128 performs better
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compared to KS-128, benefiting from its more adequate utilization of the sample size. As a comparison, we also
provide the results of the aggregated kernels tests with a sample size of 64 (Agg-64). In this case the test sample
size is the same and our method gives comparable results. In conclusion, even though our method can be applied
to the kernel selection scenario, compared to the aggregation test, our scheme loses power due to the reduction
of the sample size resulting from learning the kernel. This suggests that our method needs to compensate for the
loss of sample size due to data splitting. Since this is beyond the scope of our paper, we treat it as an important
direction for future work. For dcor, the test loses power due to its predefined distance function and therefore
cannot handle this challenging setting flexibly.

J.3 Running Time.

The running time of each method is given in Fig. 5. The running time is consistent with our theoretical complexity,
i.e., linear with dimension and proportional to the square of the samples. It also depends largely on the squared
complexity of HSIC on which we are based. For high-dimensional settings, our method is competitive (for the
case where n is relatively small and d is relatively large) and one test can be completed in a few seconds.
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Figure 5: The practical running time of each method. Left: fix n = 128. Right: fix d = 4.

Potential future research directions.

Here, we discuss potential directions for future work.

• Learning kernels without data splitting. To the best of our knowledge, not only our schemes but
also current existing methods that continuously learn the kernel rely on data splitting tend to hurt power
performance. In the line of kernel selection implementation, some works such as (Schrab et al., 2022) have
been proposed to mitigate this problem. How to extend their methods to the scenario that continuous
learning of kernel bandwidth parameters is an interesting direction.

• Reducing computational costs. As our method is based on the quadratic-time HSIC, it inherits the
squared complexity concerning the sample size. To learn kernels in the case of large-scale kernel machines,
kernel approximation methods such as random Fourier features as well as kernel thinning methods can be
combined. We will further explore it in upcoming works.
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