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Abstract

The posterior in probabilistic programs with
stochastic support decomposes as a weighted
sum of the local posterior distributions as-
sociated with each possible program path.
We show that making predictions with this
full posterior implicitly performs a Bayesian
model averaging (BMA) over paths. This
is potentially problematic, as BMA weights
can be unstable due to model misspecification
or inference approximations, leading to sub-
optimal predictions in turn. To remedy this
issue, we propose alternative mechanisms for
path weighting: one based on stacking and
one based on ideas from PAC-Bayes. We show
how both can be implemented as a cheap post-
processing step on top of existing inference
engines. In our experiments, we find them to
be more robust and lead to better predictions
compared to the default BMA weights.

1 INTRODUCTION

Universal probabilistic programming systems (PPS)
(Tolpin et al., 2016; Goodman et al., 2008; Bingham
et al., 2019; Ge et al., 2018; Mansinghka et al., 2014)
provide flexible frameworks for expressing powerful
probabilistic models, along with tools to aid performing
inference in them. By permitting branching on the
outcomes of sampling statements, they allow users to
express programs with stochastic support, wherein the
number of latent variables varies between program
executions, leading to challenging inference problems.

Such programs can be thought of as a combination of
independent sub-programs, each with static support,
known as straight-line programs (SLP) (Chaganty et al.,
2013; Sankaranarayanan et al., 2013; Luo et al., 2021).
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The overall posterior is then given by the weighted sum
of individual SLP posteriors, with weights correspond-
ing to the local normalization constants of the SLPs;
a breakdown recent work has exploited to improve
inference (Zhou et al., 2020; Reichelt et al., 2022a).

We show that this decomposition also reveals that the
posterior of any program with stochastic support is a
Bayesian Model Averaging (BMA) (Hoeting et al., 1999)
over the constituent SLPs of the program. Thus, all
PPS inference engines are implicitly estimating a BMA
when the program has stochastic support, whether they
explicitly account for this or not.

However, it is widely acknowledged in the Bayesian
statistics literature that BMA can be a problematic
mechanism for combining the posteriors of individual
models (Minka, 2000; Yao et al., 2018), with alterna-
tives often preferred in practice, especially when our
aim is to make good predictions. In particular, BMA of-
ten performs poorly under model misspecification (Gel-
man and Yao, 2020; Oelrich et al., 2020), wherein it
tends to produce overconfident posterior model weights
that collapse towards a single model (Huggins and
Miller, 2021; Yang and Zhu, 2018). Given that models
will rarely be perfect when working with real data (Box,
1976; Key et al., 1999; Vehtari and Ojanen, 2012), this
is a serious practical concern that has been observed to
cause notable issues in many applied fields (Yang and
Zhu, 2018; Smets and Wouters, 2007; Leff et al., 2008).

We argue that PPSs need to account for these shortfalls
and provide access to more robust weighting schemes.
To provide such alternatives, we suggest optimizing the
SLP weights for predictive performance. Specifically,
we introduce weighting schemes based on stacking of
predictive distributions (Wolpert, 1992; Breiman, 1996;
LeBlanc and Tibshirani, 1996; Yao et al., 2018) and
PAC-Bayes objectives (Masegosa, 2020; Masiha et al.,
2021; Morningstar et al., 2022; Alquier, 2023). We show
how to run them as a cheap post-processing step on
the outputs of any sample-based inference scheme, and
demonstrate that they provide more robust weights
with better predictive performance.
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Our contributions are: (a) By interpreting the posterior
in programs with stochastic support as a BMA, we show
that the weights assigned to SLPs can be unstable, e.g.
due to model misspecificiation. (b) Providing a general
scheme to adapt PPS inference algorithms to utilize
alternative weighting schemes, with an implementa-
tion in Pyro (Bingham et al., 2019). (c) Investigating
their behaviour for a variety of different programs and
showing its benefits on synthetic and real-world data.

2 BACKGROUND

2.1 Bayesian Model Averaging

An important question in Bayesian statistics is how to
best combine the inferences of different possible models.
In a pure Bayesian framework, this is done by weighting
the model posteriors according to their posterior model
probability, leading to a framework called Bayesian
model averaging (BMA) (Hoeting et al., 1999).

To be more precise, assume we have a countable set of
Bayesian models indexed by k, each with corresponding
latent parameters 6, € Oy, prior pi (), and likelihood
pi(y|0k), where y is data we want to condition on.!
In BMA, we set a prior over which model generated
the data, p(M = k), from which we can derive the
posterior model probability

p(M=k | y) o< p(y | M=Fk) p(M=k) (1)

where p(y | M=k) = [ pr(y|0x) pr(0k)dby, is the model
evidence, or marginal likelihood, for the kth model.

Predictions and expectations can now be calculated by
combining those from individual models using p(M =k |
y) as weights. In particular, the posterior predictive
distribution for new hypothetical data, g, is given by

Py | y) :Zk p(M=k | y) Ep, 0,1 [or(310)],  (2)

where pi(0r]y) o< pr(0k)pr(y|0x) and py(g|0y) are the
local posterior and local parameterized predictive dis-
tribution, respectively.

Criticisms of BMA In practice, our models will
never be able to capture the full complexities of the
real world as, in the words of George Box, “all mod-
els are wrong, some are useful” (Box, 1976). It is
therefore important to investigate the behaviour of
frameworks when our models are misspecified, that is
when ﬂ (gka k) Pk(y|9k) = ptrue(y) Vy7 where ptrue(y)
is the (unknown) true data generating distribution.

Crucially, BMA implicitly assumes that the data was
sampled from exactly one of the constituent models.
This is often referred to as the M-closed assumption

'Note our formulations apply equally when there are also
inputs the model is conditioned on, i.e. we have pi(y|0k, ),
but we negate this from our notation to avoid clutter.

(Bernardo and Smith, 2009; Clyde and Iversen, 2013;
Key et al., 1999). As a result, as the amount of data
increases the BMA weights will always (except for a few
special edge cases) collapse on a single model (Clyde
and Iversen, 2013); the approach reverts to just perform-
ing model selection. Consequently, BMA predictions
are often inferior compared to other model combination
techniques (Minka, 2000; Yao et al., 2018).

Viewed another way, model misspecification tends to
lead to posterior model probabilities that are overconfi-
dent: both empirical and theoretical results have shown
that they too readily collapse on a single model (Hug-
gins and Miller, 2021; Yang and Zhu, 2018), even when
there are multiple plausible models with similar pre-
dictive performance. Moreover, the exact model onto
which the posterior collapses can change drastically
when regenerating the data from piyue(y). In general,
we expect there to be some variance in the BMA weights
due to the fact that we need to estimate the model ev-
idence for many real-world models. However, previous
work has demonstrated that overconfidence is an issue
even with analytic BMA weights (Yang and Zhu, 2018;
Huggins and Miller, 2021; Oelrich et al., 2020).

2.2 Programs with Stochastic Support

A probabilistic program can be interpreted as defining
an unnormalized density function v : © — RZ°, where
© denotes the sample space of the latent variables in
the program (Borgstrom et al., 2016; Staton et al.,
2016). These variables are typically defined as the out-
comes of random sampling statements and each sample
statement is associated with a unique lexical address.
The goal of inference is then to find a representation of
the normalized program density 7(6) = ~(8)/ [ ~v(0)d6,
where df is an implicitly defined reference measure
(Gordon et al., 2014; Rainforth, 2017; van de Meent
et al., 2018). One can informally think of 7(6) as a
posterior distribution, p(|y). See App. A for a more
detailed introduction.

Universal PPS allow users to branch on the outcomes
of random sampling statements leading to programs
with stochastic support. An important property of
such programs is that they can be decomposed into (a
countable number of) straight-line programs (SLPs),
sub-programs without any control flow (Chaganty et al.,
2013; Sankaranarayanan et al., 2013; Zhou et al., 2020;
Luo et al., 2021; Reichelt et al., 2022a). These SLPs
are effectively the different possible control-flow paths
that exist in the program and they are defined by their
address path, i.e. the sequence of the lexical addresses
encountered during the program’s execution.

Each SLP corresponds to a disjoint sub-region, Oy, of
the overall sample space (such that © = [, ©) and has
the local unnormalized density v (0) := 1[0 € O] ().
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The unnormalized density for the whole program can
thus be written as v(6) = >, yx(¢). Similarly, the
normalized program density can be rewritten as

m(0) = Zk (Zk/ ZZ Zz) i (0), 3)

where Z, = [7,(0)d and 7(0) = vx(0)/Z) are the
local normalization constant and local posterior respec-
tively. We refer to w(0) as the full Bayes posterior.
Note that the disjoint supports of the SLPs means that
there exists exactly one k : 71(6) > 0 for any given 6.

3 INFERENCE IN STOCHASTIC
SUPPORT PROGRAMS IS BMA

Examining Eq. (3), we immediately see that 7(0) is a
weighted sum of localized posteriors. This decompo-
sition also reveals that using the full Bayes posterior
to calculate predictions or expectations is implicitly
performing a BMA over the individual SLPs. To see
this, consider calculating the expectation of some pa-
rameterized predictive density p(g|6):

Z

Exo) [P(316)] = ij s 7 Bt Pe@160] - (4)
where py, is any conditional density function such that
pi(9|0) = p(7]60) Vg, 0 € O, and we have defined new
random variables 6, drawn from the local posterior
of the kth SLP. We thus have that the downstream
posterior predictive on ¢ is a weighted sum of the
posterior predictives that would result from using the
kth SLP instead of our full program.

There is now a clear analog between Eq. (4) and Eq. (2).
To show that the former corresponds to a BMA, all that
remains is to show that the weights can be interpreted
as posterior model probabilities. At a high-level, this
follows simply from the fact that the Z; are analogous
to (unnormalized) posterior model probabilities (note,
though, they are not analogous to the model evidences).

To be more precise, consider the factorization () =
f(0)g(0) where f(f) corresponds to all terms from
the sampling and g¢(#) all terms from conditioning
statements, such that we can think of them as prior
and likelihood components respectively. The prior
probability of choosing the kth SLP is now given by
Py:= [ f(0)I[0 € ©4] df, while the “model evidence” is

B, = / %}fgk]g(@)d& (5)

The posterior model probability is then equal to

PB__ _JSOIOEONgO0 _ 5 o
Y PeEe 3, [fO)L[0 € ©g(0)d0 3, Z
Thus Eq. (4) is a BMA with model prior p(M = k) =
Py, local posteriors pg(0x|y) = 7 (6k), model evidences
p(y|M = k) = Ej, and identical local parameterized

predictive distributions py(§|0x) = p(4]6 = k).

Having realized that using the full Bayes posterior
leads to BMA, we can instead define a generalized
model averaging scheme over the SLPs that is explicitly
parameterized by a learnable set of weights, w:

7(0;w) := Zk wy, 7 (0) (7

with ), wy = 1,wy > 0. This opens the door for con-
sidering alternative approaches that avoid the shortfalls
of BMA. We refer to wy o Z as the BMA weights;
the choice made by all current inference engines.

At this point, a critical reader might argue that all
Bayesian inference in general, and not just the weights
in a BMA, is sensitive to model misspecification. How-
ever, averaging over a finite discrete set of models has
been highlighted as a special case in which Bayesian
inference can give counter-intuitive results and is espe-
cially susceptible to misspecification (Yao et al., 2018;
Gelman and Yao, 2020; Oelrich et al., 2020). Addition-
ally, in most realistic models used in practice we need
to estimate the posterior and the local normalization
constants. As we will show in our experiments in Sec. 6
this can be an additional source of variance leading to
sub-optimal predictions. This thus motivates treating
the SLP weights as explicit parameters that we may
wish to set in a non-Bayesian manner, while leaving
the local posteriors unchanged.

4 BEYOND BMA PATH WEIGHTS

There are different ways we can choose the SLP weights,
wg, in Eq. (7), with BMA ouly one possible choice. A
simple, albeit crude, alternative would be to just set
them equally. While we find that this can sometimes
empirically outperform the BMA weights (see Sec. 6),
it is clearly not an appropriate general-purpose solution
and there are cases where it can perform very poorly.

To provide more principled alternatives, we now show
how the weights can be optimized to maximize pre-
dictive performance. For the purpose of exposition,
we will introduce the main ideas through the eyes of
stacking (Yao et al., 2018; Wolpert, 1992; Breiman,
1996; LeBlanc and Tibshirani, 1996) but we will show
in Sec. 4.4 how we can also use PAC-Bayes objectives
(Morningstar et al., 2022) to fit the SLP weights.

4.1 Stacking Objective For PPSs

The goal of stacking is to improve predictions by opti-
mizing the model weights, w. To achieve this, we need
to define a method for making predictions for a hypo-
thetical new observation, which we denote as § € ).
Just as we previously defined a generalized version of
the posterior in Eq. (7), we now need to establish a
generalized version of the posterior predictive.
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For simplicity, we will assume for now that an explicit
predictive density, p(- | -) : I x © — RZ% has been pro-
vided, before showing how this can instead be derived
from the program itself in Sec. 4.2. This ensures for
each SLP we have a local posterior predictive density

p() = Ex (o) [P( | )] . (8)
With this, we can define the stacked predictive density

p(7; w) = Ez;u) [P(7 | 0)] = Zk wy pr(9)  (9)

In its most general form, stacking defines an objective
with a user-defined scoring rule S(p,§) which takes as
input a predictive distribution and a data point (Gneit-
ing and Raftery (2007); c.f. App. C). It then optimizes
the weights, w, to maximize the expected score

R(w; S) :==Ep,, .5 [S((- |w),§)].  (10)
We will focus on using the logarithmic score rule, as it
is by far the most popular one used in practice, yielding

R(w) =By, [log (32, wem@)] . (11)

ASE,, ... [10g Pirue(7)] is a constant, maximizing R(w)
is equivalent to minimizing KL(ptrue(9) || p(7; w)).

We now need a mechanism to estimate the expectation
w.I.t. Prrue(9) in Eq. (11). Multiple strategies for this
exist (Vehtari and Ojanen, 2012). We will first show
how to do so using an explicit validation set, {g¢}%_,,
before describing how to avoid the use of a validation
set for a broad class of models in Sec. 4.3.

As an aside, the stacking weights should be interpreted
differently from BMA weights. In BMA, the weight
of the kth SLP represents the posterior probability
that the data was generated from the kth SLP. In
contrast, stacking generates a mixture of the local
posterior predictive distributions and optimizes the
mixture weights on held-out data. Hence, the stacking
weight for the kth SLP estimates the probability that
a new data point is drawn from the kth SLP.

4.2 Stacking as Post-Processing

Given (normalised) weighted samples {(vs, 05)}5_; gen-
erated from an arbitrary inference algorithm, the pos-
terior of the program is approximated by the empir-
ical measure 7(0) = ZSS=1 vs dp, (0); unweighted sam-
pling schemes correspond to the special case vy = 1/5.
The local posteriors of the kth SLP are consequently
approximated by all the samples which fall into the
kth SLP, ie. 7x(0) = > . (vs/Vk)do,(0) where
I, == {s € {1,...,5} | s € O} are the indices of
the samples from the kth SLP and V} := Zselk Vg 18
the sum of all the associated sample weights. Recall
from Sec. 2.2 that the SLP of a sample 6, is determined
by its address path. Thus, we can generate the index
sets I by grouping all samples with the same path.

Algorithm 1 Stacking as Post-Processing (Sec. 4.2)

Require: Program v, Weighted samples from base
inference procedure {(vs, 05)}5_,
1: For each 6, record address path and return values
{oie |0}, (e §1.2)
2: Partition sample indices 1,...,S into subsets
{Ix}_ | using address paths (c.f. §4.2)
Compute predictive densities pg(g,) (Eq. (14))
Compute w* = argmax R(w) (Eq. (15))
Compute new sample weights ws (Eq. (16))
return {(w;,05)}7_,

The full Bayes posterior hence implicitly uses the ap-
proximation 7(0) = >, Vi 71 (), assigning the weight
Vi to each SLP. We instead replace these with the
learnable SLP weights wy:

7(O:w) = Y ww(0) =S > “’"“/: 5o.(0). (12)
k

k s€ly

We can then use this approximation to get an estimate
of the stacked predictive density defined in Eq. (9)

p(Fe; w) %Zk wy; pre(7e) (13)
where  pr(g¢) := Zselk (vs/Vie) p(ge | 05)  (14)

are the local posterior approximations. In our im-
plementation, the user implicitly defines the p(g, | -)
through the program return values. We can now ap-
proximate R(w) using

R(w) =7 307 og (30, wepel@)) . (15)

Note that, as the pi(g¢) do not depend on the SLP
weights, we can precompute these estimates before
optimizing w in a separate, typically cheap, procedure.

After having obtained the optimized weights, w* =
argmax,, }?(w)7 we want to be able to obtain estimates
w.r.t. the reweighted normalized density 7 (6;w*). This
can be done easily by reweighting the individual poste-
rior samples 6. Letting k(05) denote the SLP index of
sample 05 we can rewrite Eq. (12) as

0 w) =S o e Wk(8.) Vs
7(0;w) ~ 25:1 ws 0. (0); ws := m (16)
Alg. 1 summarizes the high-level steps of our post-
processing stacking procedure. Given an input program
and corresponding (weighted) posterior samples, we
first use the program to extract the address path and
return values for each sample 6 (e.g. using the Trace
data structure in Pyro). Then, we compute the index
subsets I1,...,Ix by grouping unique address paths
together. We can then compute the estimate of the
local posterior predictive densities py(g¢) and store the
estimates in a K x L matrix. Finally, this matrix can
be used to evaluate our stacking objective R(w) and
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thus optimize the weights. This optimization can be
done cheaply relative to the cost of inference as it is a
convex optimization of a small number of parameters
and does not require further inferences; we use the
L-BFGS-B algorithm (Byrd et al., 1995; Zhu et al.,
1997) for this. In App. E we provide further details on
our full implementation in Pyro.

4.3 Stacking Without Validation Sets

So far, we have assumed the existence of an explicit pre-
dictive density p and held-out data {g,}L_,, but neither
is often actually needed to utilize stacking. Specifically,
if we assume that the local unnormalized SLP densi-
ties model the observed data y; € ) as conditionally
independent given parameters 6, then for each SLP we
can write the local unnormalized density as

w0 yn) =110 € O FO T alwi 6),

where fi, : © — RZ0 represents a prior density on 6.
We then use this to derive the following leave-one out
(LOO) cross-validation estimator for Eq. (11),

1 =N
Rroo(w) = + Zi:l log Zk wk pr(Yi | Y—i)-

where p(y; | y—;) denotes the local posterior predictive
density corresponding to v (0, y1.n \y;), i.e. that results
from removing the i-th observation term from ~y.

Naively computing each of the predictive distributions
Pk (y; | y—i) would require running inference N times
to evaluate the stacking objective. However, as shown
in Yao et al. (2018), this can be avoided using Pareto
smoothed importance sampling to estimate the LOO
densities (PSIS-LOO) (Vehtari et al., 2017). Com-
puting the PSIS-LOO approximations to the densi-
ties pi(y: | y—:) requires access the individual likeli-
hood terms g(y; | 05) for each posterior sample 65 (c.f.
App. D). Luckily, these can be extracted automatically
for many common PPSs, e.g. using the loo function of
the ArviZ library (Kumar et al., 2019) for Pyro models.

4.4 Regularized Stacking and PAC-Bayes

Stacking directly optimizes an estimate of the expected
predictive density on held-out data (Eq. (11)). Such
estimates are fundamentally based on a finite amount
of data and optimizing them directly can, at least in
principle, lead to overfitting. Our proposed remedy
for this is to add an additional KL regularization term
inspired by PAC-Bayes objectives. Namely we consider

Rp(w) = % Z;l log (Zk wkﬂk@z))
— (1/8L) KL(Categorical(wy, ..., wg) || 7(k)),

where r(k) is a reference weighting we want to regu-
larize towards. Since we want to discourage the SLP

weights from collapsing towards a single SLP, we will
generally take (k) to be the uniform distribution. The
hyperparameter 3 controls the amount of regulariza-
tion: 8 — oo recovers the standard stacking objective,
and S — 0 leads to the weights following r(k).

This regularized objective corresponds to a particular
instantiation of a PAC-Bayes bound that was proposed
by Morningstar et al. (2022). In the PAC-Bayes litera-
ture, —R(w) (Eq. (11)) is sometimes referred to as the
true predictive risk. Hence, optimizing Rg(w) can be
viewed as optimizing a stochastic bound on the true
predictive risk, see App. G for details.

5 RELATED WORK

Alternatives to BMA. Bayesian model combination
(BMC) (Minka, 2000; Monteith et al., 2011; Kim and
Ghahramani, 2012) aims to break the BMA assumption
that the data was generated from exactly one of the
candidate models. This is done by specifying a new
extended model which explicitly combines the predic-
tions of all candidate models. However, fitting the new
extended model is significantly more expensive as the
inference task no longer breaks down into independent
sub-problems. Further, how to best combine predic-
tions from different models is highly problem dependent
and a modelling decision in its own right and, hence,
not suitable for automation.

Yao et al. (2022) introduced Bayesian hierarchical stack-
ing, which infers different weights for different regions
in the covariate space, similar to the frequentist mixture
of experts (Gormley and Frithwirth-Schnatter, 2019).
This is less suitable for the fully automated PPS setting
because it requires knowledge of the covariate space
and assumes the existence of covariates in the first
place. So-called Pseudo-BMA weights (Geisser and
Eddy, 1979) use LOO predictive densities to replace
marginal likelihoods but have been shown to work less
well than stacking (Yao et al., 2018). BayesBag (Hug-
gins and Miller, 2021) weights models by generating
bootstrapped datasets, and averaging the normaliza-
tion constant over datasets. This is computationally
very intensive as it requires running inference separately
in each bootstrapped dataset.

PAC-Bayes. Warrell and Gerstein (2022) extend PAC-
Bayes bounds to work with hierarchical models inspired
by deep probabilistic programs (Tran et al., 2017) and
use this extension to derive bounds for multi-task set-
tings such as transfer and meta-learning. However,
they do not consider programs with stochastic support,
the impact of model misspecification, nor integrate
their method with a PPS. PAC-Bayes style arguments
have also been used to reason about the hardness of
posterior inference in PPS (Freer et al., 2010).
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(b) LPPDpig on held-out data. Negative values imply stacking is performing better. Diamonds show medians.
Figure 1: Behaviour of the BMA and stacked weights in the models as described in Sec. 6.1.

Programs with stochastic support as BMA. Ex-
isting inference algorithms for programs with stochas-
tic support (Wingate et al. (2011); Yang et al. (2014);
Wood et al. (2014); Rainforth et al. (2016); Le et al.
(2017); Mak et al. (2021, 2022), c.f. App. A) all implic-
itly generate a weighting of individual SLPs through
the proportion of (weighted) samples generated from
each SLP. Some inference algorithms are adaptions and
extensions of the reversible-jump MCMC methods that
were originally developed for the BMA setting (Green,
1995; Roberts et al., 2019; Cusumano-Towner et al.,
2020). However, previous work does not discuss the
inherent issues with targeting the BMA model weights
and the consequences of this for making predictions;
existing algorithms which explicitly assign weights to
SLPs only target the default BMA model weights (Zhou
et al., 2020; Luo et al., 2021; Reichelt et al., 2022a).

6 EXPERIMENTS

We will now compare different weighting schemes on a
range of models and datasets. Our quantitative mea-
sure for comparison will be the average log posterior
predictive density (LPPD) on held-out data 1.7, where
LPPD := % Z?:l log p(§:; w). In particular, we focus
on the difference in LPPD from other methods to stack-
inga LPPDpig = LPPDogther — LPPDStacking~

Additionally, we will investigate the behaviour of the
SLP weights wy; a major criticism of the BMA weights
is that they are too sensitive to minor changes in the
data. To ensure replicable analysis, we desire the SLP
weights to be robust and consistent, i.e. they should
be similar across different possible generated datasets.

Except when otherwise indicated, we use a variant
of the divide, conquer, and combine (DCC) inference
algorithm (Zhou et al., 2020) for the base inference
algorithm. Our DCC implementation uses HMC (Neal,
2011; Hoffman et al., 2014; Betancourt, 2018) for the
local inference algorithm of each SLP and allocates the
computational budget uniformly between SLPs. Addi-
tionally, we also consider the reversible-jump MCMC
(RIMCMC, c.f. App. A) algorithm implemented in
Gen (Cusumano-Towner et al., 2019). Our implemen-
tation is available at https://github.com/treigerm/
beyond_bma_in_probprog.

6.1 When is Stacking Helpful?

First, to develop an understanding of the scenarios in
which stacking is beneficial, we consider three simple
examples in which we limit ourselves to input programs
with two SLPs. Unless otherwise stated, BMA weights
are computed analytically and the stacking weights are
based on PSIS-LOO. For each problem, we generate
102 datasets with 200 data points each and generate
another 103 data points to evaluate the held-out LPPD.

Distinct SLPs. For the first setting, we assume
the data is generated by y; ~ N(0,1). We consider
a program with two, misspecified SLPs where the
unnormalized density for the kth SLP is given by
W(01,605) = 1[0 = k] 3 TTL, N (ys; 61, 07) N (6150, 1)
where we set 07 = 0.62177 and 03 = 2 (cf. App. A
for the corresponding Pyro program). This example is
adapted from Yang and Zhu (2018).

SLPs with overlap. Next, we generate a dataset us-
ing the relation y; = 2321 Baxidq + € where ¢ ~
N(0,1), ;4 ~ N(0,1) and = [1.5,1.5,0.3,0.1].
For inference, we consider a program with two SLPs
with unnormalized densities v (01, 02,603) = 1[05 = k]
LTI N (i3 fr(61,602,2:),1) [T5_, N(6;;0,1), where
for the first SLP f1(91792,1;i) = 91.%‘1"1 + 92.’1,'1‘,3 and
for the second fa2(01,602, ;) = 6121 + 022,4. Note,
that the covariates z; 4 are modelled as fixed by the
program. Both SLPs are misspecified because they do
not have access to all the covariates. However, the two
sub-models share complexity /expressiveness, as they
both have access to the first covariate.

Dominant SLP. Lastly, we generate data from
yi = f(z;) + ¢ with f(x) = 2a; + sin(5z;) and
€, 7; ~ N(0,1). Our program for inference has two
SLPs which are defined as ~;(01,62,03) = 1[0 = k|
LTI N (yis f(61, ), 02) N (6130, 1) T (8251, 1) where
f1(0,x2) = 0x, f2(0,x) = sin(0z), and I'(6; v, B) is a
Gamma distribution parameterized by shape «, and
rate 8. The first SLP will provide a significantly better
fit to the data as it is able to recover the dominant
linear trend. We use importance sampling to estimate
the BMA weights (see App. F).

Results. The results are presented in Fig. 1. For the
first two models the stacked weights lead to better pre-
dictive performance and more robust weights. While
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Table 1: LPPDp;ig (1 better) for models in Sec. 6.2, 6.3, and 6.4, results computed over 10 replications. Bold indicates no
significant difference to Stacked under a Wilcoxon signed-rank test.

Model Stacked RJMCMC Equal

Subset 0.0 —0.01+0.01 —0.11£0.05 —0.11£0.05 —0.1140.04 —0.024+0.01
Fun. Ind. (misspecified) 0.0 —1.73e—3 £2.98¢—3 —9.10e—4 +£2.42¢—-3 N/A —0.08 +0.03 —0.31£0.01
Fun. Ind. (well-specified) 0.0 —5.61le—3+7.14e—3 —3.76e—1+2.5le-1 N/A —2.4440.32 —2.31+0.09

California 0.0 —1.55¢—3 +2.89¢—3 —2.10e—2 £ 6.19e—3
Diabetes 0.0 —8.22e—3 £ 1.44e—2
Stroke 0.0 —7.79¢e—4 +1.57e—3

—1.0le-2+1.64e—2 N/A
—6.22e—3 + 3.81e—3 N/A

—2.10e—2+6.0le—3 —2.82e—1=+1.19e—1
—3.83e—2 + 2.19e—2

—2.25e—1 £ 9.94e—2

—1.96e—1 % 3.11e—3
—3.66e—2 4 9.97e—3
—1.3le—1 £ 5.68¢—3

£ 1.0 - e Stacked
2 Stacked (Val)
= 0.5 . BMA
- * 5 BMA (Analytic)
woo1ef 848 85 * RJMCMC
8 12
SLP Index

Figure 2: SLP weights for problem in Sec. 6.2. Each
dot represents the weight of the corresponding SLP in the
model. Results are computed over 10 generated datasets.

there is some variation in the stacked weights, their
overall distribution is unimodal whereas the distribu-
tion of the BMA weights are bimodal instead. The
tendency of the BMA weights to collapse on either 0 or
1 is exactly the overconfident behaviour we described in
Sec. 3. In the setting with one dominant SLP, both the
BMA and stacking weights lead to similar predictive
performance (with BMA doing slightly better) and con-
sistently collapse onto the dominant SLP; here this is
desirable behaviour as the first SLP is clearly superior.

6.2 Subset Regression

To further outline the issues of the default BMA
weights, we consider a regression problem with data
generated from a linear model of the form y; =
€+ Zéil Ba i q where €; ~ N(0,1) and all the covari-
ates x,, 4 are drawn independently from N'(5,1). Note,
the covariates are sampled to generate the synthetic
data set, but they are modelled as fixed by the program.
The ground-truth values for the regression coefficients
Ba are set following a scheme used in Breiman (1996)
and Yao et al. (2018) which ensures all covariates are
relevant for the prediction of y,, (c.f. App. F).

We compare multiple methods: 1. Stacked, using PSIS-
LOO to compute weights, w (Sec. 4.3); 2.

, which uses an explicit validation set instead
(Sec. 4.2); 2. , using the PI-MAIS algorithm
(Martino et al., 2017) to compute local normaliza-
tion constants (this is the default weighting in DCC);
3. , using analytic solutions for the
local normalization constants; 4. RJMCMC, imple-
mented in Gen (Cusumano-Towner et al., 2019);* 5.

2We also have conducted experiments that run stacking
on top RJIMCMC and found that this also led to improve-
ments in predictive performance (c.f. App. F). Here, we
only present the stacking results with samples generated
from DCC as this gave the best base inference procedure.

Equal, weights each SLP equally. We use warm colors
to present the results which use one of our proposed
alternative objectives to set SLP weights and cooler
colours for methods which target the BMA weights.
Note , , and RIMCMC all
target the posterior distribution in Eq. (3); in practice,
differences between these methods will arise due to dif-
ferences in the quality of the posterior approximation.

Our input program has 15 SLPs and each SLP only gets
access to one of the covariates so our overall model is
misspecified. However, since every covariate influences
the targets y;, each SLP is relevant for making good
predictions. We generate 50 different datasets from
the true data generating distribution, with 200 data
points used to run our inferences and 10® data points
to evaluate the held-out log posterior predictive density.
For the we use half of the 200 data
points for inference and use the rest to estimate the
stacking objective (c.f. Eq. (15)).

Tab. 1 shows that stacking outperforms all other meth-
ods in terms of predictive performance. The BMA
weights here actually provide even worse predictions
than weighting each SLP equally. Fig. 2 shows the
behaviour of the weights for the SLPs with k = 8 and
k = 12 over different randomly generated datasets (see
Fig. 9 in the Appendix for others). Both and

exhibit clear signs of overconfidence
as described in Sec. 2.1: the weights often collapse
onto a single SLP, but the exact SLP changes between
datasets, leading to a bimodal sampling distribution
for the SLP weights. As expected, RIMCMC pro-
duces qualitatively and quantitivaly similar results to
the other Bayesian weighting mechanisms. This is in
contrast with the Stacked weights which are more
evenly spread. The weights behave
qualitatively similarly to using PSIS-LOO, but with
slightly worse predictive performance. This is likely
due to the corresponding reduction in training set size.

6.3 Function Induction

Our next example investigates how well stacking scales
to a larger number of SLPs. We generate observa-
tions from the relation y; = —z; + 2 sin(2 2?) + ¢; with
€; ~ N(0,0.1%) and the inputs x; uniformly sampled
between -5 and 5. We generate 400 data points used for
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;:;nl (O — ! 3 L] U e Stacked Table 2: LPPDpig for Radon model.
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& i o ‘ | ° RMCMC Method LPPDpig (T)
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SLP Index —8.24e—3 + 1.20e—2
Figure 3: SLP weights for Sec. 6.5. X-tick labels indicate the different modelling RIMCMC —599—2+ 1.86e—2
choices for o and B; the pattern is “a model choice, f model choice” with P = Equal _1.8%¢—2 + 1.18¢—2

pooling, NP = no pooling, H = hierarchical, and G = group-level predictor.

inference and 103 data points for evaluation. Following
Zhou et al. (2020), we use a probabilistic context-free
grammar (PCFG) to posit a model over functions. We
consider two PCFGs, the misspecified PCFG has pro-
duction rules e — {x | sin(a*xe) | a*xe+bx*e},
where x is a terminal symbol denoting an input, and
a, b are coefficients to be inferred. The well-specified
PCFG additionally includes the terminal symbol z2.
Therefore the well-specified PCFG can express the data
generating function whereas the misspecified one can-
not. The program recursively samples from the PCFG
using samples from categorical distributions to select
production rules and defines latent variables for all the
coefficients in a given expression (c.f. App. F). Note
analytic BMA weights cannot be calculated here.

Tab. 1 shows that Stacked provides better predictions
compared to all other methods, even when the model
is well-specified! Notably, inference in this model is
particularly challenging due to the fact that distinct
SLPs can have similar or even identical posterior predic-
tive distributions due to symmetries in the PCFG, e.g.
x + sin(x) and sin(x) + 2 correspond to two separate
SLPs. The fact that stacking outperforms the meth-
ods targeting the BMA weights in the well-specified
case is an indicator that the inference algorithms are
struggling in this model. Indeed, we found RJMCMC
tends to get stuck in a single SLP which is a well-known
issue with MCMC methods for programs with stochas-
tic support (all weights are shown in App. F). Even
though Stacked weights give better predictions, we
found that the weights themselves exhibit relatively
high-variance. This is due to the finite sample size of
the dataset and the usage of approximate inference
algorithms which introduce variance in estimating the
stacking objective. However, the fact that stacking
is able to produce superior predictions shows that it
can be a useful mechanism for improving predictive
performance even when inference algorithms struggle
to produce accurate posteriors approximations.

6.4 Variable Selection

Next, we apply stacking to real-world classification and
regression tasks. Here, we have a matrix of covari-
ates X € RV*P and targets yi.n, and we want to do
variable selection, i.e. select a subset of the features
D C {1,...,D} to make predictions. This problem
of variable selection can be encoded as a probabilistic

program with stochastic support in which each SLP cor-
responds to one of the potential subsets of the features
D. We consider three different datasets: California
(regression) (Pace and Barry, 1997), Diabetes (classifi-
cation) (Smith et al., 1988), and Stroke (classification)
(Kaggle, 2020). For the regression, our model is a linear
regression with conjugate priors, permitting an analytic
solution to the BMA weights. For the classification
tasks, we use a logistic regression model which does
not permit an analytic solution. As the true data gen-
erating process in this setting is unknown, we run each
method on different train-test splits to estimate the
variation in the weights and predictions.

Tab. 1 shows the LPPD values of the weighting schemes
on different datasets. The Stacked and

weighting schemes generally give better predictive per-
formance compared to the alternatives. Overall, these
results show that stacking can be beneficial for predic-
tive performance even on real-world data.

6.5 Radon Contamination

Our final example considers the analysis of data about
Radon contamination for houses in different US coun-
ties (Gelman and Hill, 2006). We here only give a
high-level description of the dataset and model, full de-
tails in App. F. For each house recorded in the dataset,
we have radon measurements, ¥;, as well as, a covariate,
x; € {0,1}, which indicates whether the measurement
was made in the basement (z; = 0) or first floor of
the house (z; = 1). Our program for this dataset has
at its core the regression relation y; = a4+ Bx; + €;
and the different SLPs in the program make different
assumptions for how to model the coefficients « and
B. For both, we can either: 1) Fit the same coefficient
across all counties; 2) Fit a separate coefficient o, for
each county ¢; or 3) Have separate coefficients for each
county but assume they come from the same under-
lying population distribution. For the intercept term
we also consider a fourth option: using county-wide
level uranium measurements as a group-level predictor.
The program considers all combinations of modelling
choices for o and g, i.e. it has 4-3 = 12 SLPs.

Each SLP in this program can have potentially hun-
dreds of latent variables and exhibit complex posterior
geometries, making this a good testing ground to com-
pare the different weighting schemes. In Tab. 2 we
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Figure 4: Impact of regularization parameter § on predic-
tive performance in the different models (higher is better).
Plotted are mean and standard deviation.

Table 3: Timings for running inference and stacking, aver-
aged over 5 runs. Inference is conducted using DCC.

Subset  Var. Select. Fun. Ind. Radon
Inference 29 s 297 s 285 m 700 s
Stacking 0.09s 43 s 11s 0.2s

find that the Stacked weights give better performance
compared to the weights (we do not consider
using a validation set here because some counties con-
tain only a handful of observations). Fig. 3 shows that
the weights tend to concentrate on SLPs with
modelling choices “H,H” or “G,H” and have a bimodal
sampling distribution. The Stacked weights are more
robust, giving more consistent results between different
train-test splits and more conservative weights. No-
tably, RJIMCMC here collapses onto different SLPs
than the BMA weights. This is due to the fact that the
RJMCMC struggles with SLPs which have a large num-
ber of latent variables. In the limit of infinite samples,
the behaviour of RIMCMC and BMA will be identical
but Fig. 3 illustrates nicely that approximate inference
algorithms might collapse onto different SLPs based on
the quality of their posterior approximation.

6.6 Impact of Regularization: PAC-Bayes

As we have shown in Sec. 4.4, the PAC-Bayes bound
Rg(w) offers an alternative objective to fit the weights
and can be interpreted as the stacking loss with an
added regularization term where the hyperparameter g
controls the amount of regularization. Smaller values
of B push the stacking weights closer to the uniform
distribution over SLPs. In Fig. 4 we plot the effect of
varying (8 on the predictive performance on the different
models. In our experiments, values of 3 below 1 tend to
lead to worse predictive performance and the stacking
objective with no regularization (8 = oo in Fig. 4) is not
outperformed by any form of regularization. However,
depending on the application setting some level of
regularization might still be desirable.

7 DISCUSSION

We have demonstrated that in programs with stochastic
support, the conventional posterior path probabilities
can be unstable (e.g. due to model misspecification or
inference approximations) and that this in turn can
lead to sub-optimal predictions.

In practice, one of the key sources of instability is model
misspecification. When dealing with misspecification,
the general advice is to revise or expand the model
(Gelman et al., 2020). However, when using real-world
data it is often not obvious how to further expand
a model and mitigate against misspecification. The
radon experiment (Sec. 6.5) is a good example here
as it is already the result of multiple model iterations
and expansions, with no clear strategy for how to ex-
tend it further. Additionally, revising and fitting a
new expanded model is often prohibitively expensive
and therefore not a viable alternative. As our timings
in Tab. 3 demonstrate, stacking is a very cheap pro-
cedure compared to the cost of inference. With the
automated post-processing techniques presented in this
paper, stacking can therefore be conveniently applied at
the end of an analysis after the user has gone through
multiple iterations of model building. Thus, rather
than viewing stacking as a replacement for model ex-
pansion, we view it as a useful tool to safeguard against
the instabilities of the default BMA weighting scheme.

While we have demonstrated that the instability in
the BMA weights can appear in realistic models and
datasets, for any given problem there is no guarantee
that the BMA weights will indeed be unstable. For ex-
ample, as we saw in the initial experiments in Sec. 6.1,
stacking and BMA will produce similar weights if there
is one SLP which clearly dominates the others. How-
ever, finding clear criteria that determine when BMA
will lead to unstable weights is still an area of open
research (Yang and Zhu, 2018; Oelrich et al., 2020;
Huggins and Miller, 2021), so for practitioners it is
difficult to know a priori whether a given model will
produce unstable SLP weights or not.

Overall, this means there are few reasons not to use
stacking: it is cheap, easy-to-use, provides generally
more robust weights, and leads to improved predictions.
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A A Short Introduction to Probabilistic Programming

A.1 Programs as Unnormalized Densities

def model (data):
x = sample("x", Normal(O, 1))
ml = sample("ml", Bernoulli(0.5))
if mil:
std = 0.62177
with plate("datal", data.shapel[0]):
sample ("y1", Normal(x, stdl), obs=data)
else:
std = 2.0
with plate("data2", data.shape[0]):
sample ("y2", Normal(x, std2), obs=data)

Figure 5: Example Pyro program with stochastic support.

We here give an informal description for how the probabilistic programming language Pyro (Bingham et al.,
2019) defines unnormalized densities. For more formal description of the semantic foundations of probabilistic
programming we refer the interested reader to Borgstrom et al. (2016); Staton et al. (2016) and Lew et al. (2019).
Pyro provides the sample primitive function to both define latent random variables and condition on observed
data. More precisely, calling the function sample(addr, dist) draws a sample from the distribution object dist
with the corresponding lexical address addr. Conditioning on observed data is made possible by passing in the
observed data to the sample function as a keyword argument like so sample(addr, dist, obs=data), where again
addr and dist are assumed to be a lexical address and distribution object. The users is responsible for ensuring
that each sample statement gets assigned a unique address, i.e. an address that has not been encountered in
the current execution, and that every lexical sample statement within the program has a distinct address. The
second condition avoids the edge case that a program has multiple branches, each of which samples the same
sequence of addresses. This condition is automatically satisfied in some PPS such as Anglican (Wood et al., 2014),
however, in PPS in which users manually define addresses they are responsible for adhering to this constraint.
An interesting avenue for future work is automatically verifying that this constraint is satisfied.

Pyro is a universal PPS as it is embedded within the Python programming language and users are free to use
language features such as branching on the outcomes of sample statements. This means Pyro is able to express
programs with stochastic support i.e. the number of sample statements and their corresponding distribution type
can vary from one execution to the next. Fig. 5 gives an example of a Pyro program with stochastic support.

A Pyro program defines an unnormalized density over the raw random draws, 01.,, € ©, which are defined as
the sequence of outcomes of the sample statements (without any observed data) encountered in the program.
Crucially, in models with stochastic support the number of sample statements n, can be a random variable and
is not fixed for a given program. Furthermore, the raw random draws are assumed to be the only source of
randomness in the program, such that for given raw random draws 7, all the intermediate variables and return
values can be determined deterministically.

Each sample statement encountered during the program’s execution contributes one term to the program’s
unnormalized density v(61.n,). If a sample does not have associated observed data, then it contributes the term
fa;(0i | m;) where a; is the lexical address, 6; the outcome of the sample statement, f,, is the parameterized density
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function of the associated distribution object, and 7; are the corresponding parameters. Similarly, a sample with
observed data y; contributes the term gy, (y; | ¢;) with b; denoting the lexical address, g, the parameterized
density function, and ¢; the parameters. Overall, as noted by (Rainforth, 2017, §4.3.2) who formalized this for
the PPS Anglican (Wood et al., 2014), this implies the program’s unnormalized density function is given by

UCEE | RFACIED] | AN (17)

Inference in a probabilistic program corresponds to the task of finding a representation of the normalized density
7(01:) = Y(01:n)/Z with normalization constant Z = [ ¥(01:ny)d01:n, -

A.2 Approaches to Inference

For most problems encountered in practice we cannot exactly compute the normalized program density 7(61.n,)
and instead have to resort to approximate inference algorithms. A variety of approaches for approximate inference
in probabilistic programs with stochastic support exist. Particle-based approaches (Wood et al., 2014; Rainforth
et al., 2016; Murray and Schén, 2020) and algorithms based on importance sampling (Le et al., 2017; Baydin et al.,
2019; Harvey et al., 2019) generate a set of weighted samples as an approximate posterior. Markov chain Monte
Carlo (MCMC) methods with either automatic or manual proposals try to generate a set of samples directly from
the posterior (Wingate et al., 2011; Yang et al., 2014; Tolpin et al., 2015; Roberts et al., 2019; Cusumano-Towner
et al., 2020; Mak et al., 2021, 2022). Variational inference algorithms create a parameterized distribution ¢(; ¢)
and optimize the parameters ¢ such that ¢(6; ¢) is “close” to the full Bayes posterior where closeness is measured
with some divergence (most commonly the KL divergence) (Wingate and Weber, 2013; Ranganath et al., 2014;
Paige, 2016).

We now give a more detailed description of involutive MCMC which is the foundation behind Gen’s implementation
of reversible-jump MCMC (RJMCMC) (Cusumano-Towner et al., 2020). In involutive MCMC the user specifies
an auxiliary kernel x which acts on an auxiliary variable v € Y, s.t. kg(-) : Y — [0, 00) for all § € © with v(6) > 0,
and an involution ®: O xY = © x Y, i.e. &~ = &. Given an initial state 6, involutive MCMC proceeds by
first sampling a new auxiliary variable v ~ kg(+), then applying the involution to get the newly proposed state
(0,v) + ®(0,v), and accepting the new state with the acceptance probability

1 20 ke (v)
« :=minq 1, det(VP(0,v . 18
{1 LG e et (va(.0)] (15)
The usage of involutive MCMC is partly automated in Gen. The user only has to implement the auxiliary kernel

and the involution using a domain-specific language. Based on these quantities Gen is then able to automatically
construct an involutive MCMC kernel (Cusumano-Towner et al., 2020).

B Probabilistic Programs without Predictive Distribution

def model(y):
# Input data is a list of length 2
if y[0] > 10:
x = sample("x1", Normal (10, 1))
sample ("y1", Normal(x, 10), obs=y[0])
sample ("y2", Normal(y[0], sqrt(y[0])), obs=y[1])
else:
x = sample("x2", Normal (0, 1))
sample ("y1", Normal(x, 1), obs=y[0])
sample ("y2", Normal(y[0], 1), obs=y[1])

Figure 6: Example of a probabilistic program without a predictive distribution.

Conventionally, in Bayesian statistics the modeller defines a prior p(#) and predictive distribution p(y; | 6). Then

for a dataset y = (y1,...,yn), these two ingredients together define the joint density p(6,y) = HZ\; p(yi | 0) p(9)
from which can compute the posterior p(8 | y) o p(8,y). In order to predict new data ¢, we can then use the
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posterior predictive distribution defined as

mguo:/¢@|mmmme (19)

However, more generally, the joint density does not necessarily factorize in this manner which makes it more
difficult to automatically deduce a prediction task from the model alone. Additionally, in the setting of universal
probabilistic programming languages the input data can directly influence the model definition as well. Take
for example the Pyro program in Fig. 6. Here, the input data y directly influences what sample statements we
encounter during execution. Furthermore, in both sample statenents with address "y2" the distribution depends
on the first data point y[0]. Therefore, just from this program definition alone, it is not clear what exactly a
reasonable predictive distribution for a new data point would be.

C Introduction to Scoring Rules

This introduction mainly follows from Gneiting and Raftery (2007) and Yao et al. (2018). Scoring rules are
functions which take as input a probabilistic forecast and a realized event. The goal of scoring rules is then to
evaluate the quality of the probabilistic forecast. The terminology is specifically used in meteorological forecasts.
In a Bayesian context, these scores are often instead referred to as utilities and Bayesian decision theory aims to
maximize the predicted utility of a given action (Bernardo and Smith, 2009).

More formally, assume we have a random variable on the sample space (2, .4) and P is a convex class of probability
measures on ({2,.4). Then, any member P € P is referred to as a probabilistic forecast and a scoring rule is a
function S : P x Q — [—o0, 0] s.t. S(P,-) is P-quasi-integrable for all forecasts P € P. So for a probabilistic
forecast P and observed event y € ), S(P,y) is the score which indicates the quality of our forecast. For notational
convenience, if P and @ are both probabilistic forecasts, we define S(P, Q) = [ S(P,y)dQ(y). Then a scoring rule
is proper if S(Q,Q) > S(P,Q) holds for all P € P, and strictly proper if the equality holds only when P = @
almost surely.

Some common examples of scoring rules include: the quadratic score S(p,y) = 2p(y) — ||pl|3, where p is
a predictive density; the logarithmic score S(p,y) = logp(y); and the continuous-ranked probability score
S(F,y) = — [(F(y') = Iy > y])dy’, where F is the cumulative distribution function of the forecast. Under
regularity conditions, Bernardo (1979) showed that the logarithmic scoring rule is the only proper local scoring
rule where a local scoring rule is a rule that depends on the predictive density p only through the actual observed
event y.

We refer the reader to Gneiting and Raftery (2007) for more extensive details on scoring rules.

D PSIS-LOO Approximation

We here only give a brief description of the PSIS-LOO approximation as it is a common procedure. We refer the
reader to Vehtari et al. (2017) for full details on the approximation and to Vehtari et al. (2015) for more details
on PSIS. We want to approximate the local posterior predictive

-0 = [ gl |9)mil0 | y-)a0 (20)
k
which can be rewritten in terms of the posterior of the full dataset as
(0 | y—i)
= i | 0) —————% (0 | y1.nv)dO. 21
[ 1 0) S w0 ) )

Importantly, the ratio in that integral is proportional to a term that only depends on the individual predictive

density

Um0y
gr(yi 10) — me(0 | yrn)

(22)

Ti -

Hence, we can use a self-normalized importance sampler to get an estimate of Eq. (21) as follows

Zsel 75 gr(yi | 0s)
pe(Yi | y—i) = S (23)
Zse]k T
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where r§ = 1/gi(y; | 0s) and 0 are (approximate) samples from the posterior. However, these ratios r§ can
often have high variance since 7 (6 | y1.n) will usually have lower variance and thinner tails than 74 (0 | y—;),
in turn, leading to unstable estimates. To avoid these instabilities, the PSIS-LOO approximation replaces the
ratios r; with smoothed importance weights v;. The importance weights are computed by fitting a generalized
Pareto distribution to the raw ratios r; and replacing them with the expected order statistics of the fitted Pareto
distribution. This then leads to the estimate

E:sel v gk (yi | 0s)
pr(yi | y—i) = S s : (24)
Zselk v;

E Implementation details

def pyro_subset_regression(X, y, X_val, y_val):

k = pyro.sample(
"k", dist.Categorical(torch.ones(X.shape[1]) / X.shape[1l]),
infer={"branching": True},

)

X = X[:, kl

beta = pyro.sample(f"beta_{k.item()}", dist.Normal (0, np.sqrt(10)))

sigma = pyro.sample("sigma", dist.Gamma (0.1, 0.1))

mean = X * beta

with pyro.plate("data", X.shape[0]):
pyro.sample("y", dist.Normal (mean, sigma), obs=y)

X_val = X_vall:, k]
mean_val = X_val * beta
return dist.Normal (mean_val, sigma).log_prob(y_val)

Figure 7: Pyro program for the experiments in Sec. 6.2.

To be able to evaluate the stacking objective defined in Eq. (15) we need access to pr(9¢), the estimates of the
predictive densities. These, in turn, depend on the evaluations of the predictive densities. Hence, given validation
data ¢, ...,y and posterior samples 61, ...,0g, for stacking we require the evaluations g(g, | 05). Note that the
local posterior predictive distributions pg(g,) are expectations under the posterior.

This is important because previous work noted that in the context of probabilistic programming these types of
expectations can be formalized as the expected return values of a program (Gordon et al., 2014; Zinkov and Shan,
2017; Reichelt et al., 2022b; Lew et al., 2023). Then to apply stacking, we require the user to define a program in
which the return values for a given sample @, are the predictive density evaluations g(g; | 6s),...,9(9zL | 0s). For
our Pyro implementation this means that we require the user to define a program which returns an L-dimensional
vector which correspond to the (log) predictive density on the validation data points. Fig. 7 shows how this can
be done for the subset regression model from Sec. 6.2.

To actually compute the stacking weights we rely on Pyro’s Trace® data structure which saves important metadata
of each program execution such as the distribution type of each sample statement, the corresponding sampled
value, its address, and, crucially, also the return value of the program. Algorithm 1 can then be implemented as a
simple function which takes as input a list of posterior samples in the form of Pyro Traces. Because each Trace
stores the address path of a given run, we can easily determine the set of SLPs and associate each sample with its
SLP. From the Trace data structure we can then also extract the return values i.e. the evaluations log g(ge | 05).
From these evaluations we can calculate the estimates pg(g¢) which are needed in our stacking objective in
Eq. (15). The optimization of the objective is done using SciPy’s (Virtanen et al., 2020) implementation of the
L-BFGS-B optimizer (Liu and Nocedal, 1989).

Similarly, to Zhou et al. (2020) and Reichelt et al. (2022a) we also allow the user to annotate specific discrete
sampling statements to indicate that they influence the SLP of the program. In our implementation, this is done by
passing {"branching": True} to the infer keyword argument of Pyro’s sample statement. Using this annotation
the inference backend can then control which SLP of the program is sampled by conditioning these sample

3https://docs.pyro.ai/en/stable/poutine.html#trace
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statements on specific values. Furthermore, these annotations allow the inference backend to deterministically
enumerate all SLPs. In our implementation, we give the user to enumerate all SLPs using breadth-first search,
i.e. in the enumeration procedure we run the program as normal but if we encounter an annotated sampling
statement we enumerate the whole support of the distribution and put each possible sampled value onto a queue.
Once enumeration of a sample site has finished, execution resumes by popping a value from the front of the
queue and continuing executing the program from the sample statement from which the value was sampled. This
enumeration procedure is similar to how marginalization of discrete sample sites is implemented in Pyro. Note
that we are assuming that each annotated discrete sample site has finite support. Future implementations could
deal with finite support by truncating the sampling distribution.

E.1 Alternative Interface for Stacking

def model_average(models, model_args, model_kwargs):
k = pyro.sample(
"k", dist.Categorical(torch.ones(len(models)) / len(models)),
infer={"branching": True},
)

return models[k] (*model_args, **model_kwargs)

Figure 8: Alternative interface to enable stacking of a list of user-specified models.

The main aim of our paper is to highlight the shortcomings of the default BMA weights in posteriors of probabilistic
programs with stochastic support. However, as a side-effect our Pyro implementation also provides a convenient
mechanism for users to utilize stacking. Probabilistic programs with stochastic support allow users to encode a
large class of problem settings, including the traditional BMA setting. However, in some cases, for convenience,
users might not wish to write a single program with stochastic support which encodes all the different models
in the BMA. Instead, the user might want to write K separate programs, each with static support, and then
want to apply either BMA or stacking to that list of models. However, this interface is easily encoded within our
framework because the user only needs to write another program which combines all the models together. This
program is shown in Fig. 8, it takes as input a list of Pyro models, and the arguments that should be passed to
these models. The program then samples an index k£ and chooses one of the candidate models. Running standard
inference in this program would correspond to BMA. If the user instead wants to run stacking instead of BMA,
they can simply choose our stacking implementation and apply it to this program.

F Experimental Details and Additional Results

To make the stacking approach widely applicable we implemented a version of the DCC framework in Pyro
(Bingham et al., 2019). For our implementation of DCC, we assume that all the stochastic branching happens on
variables with discrete support and that the remaining latent variables in the program are continuous. Models of
this form then permit the usage of Pyro’s built-in Hamiltonian Monte Carlo (Neal, 2011; Hoffman et al., 2014;
Betancourt, 2018) as the local inference algorithm. To improve efficiency, our implementation also leverages
Pyro’s just-in-time (JIT) compilation ability to compile each SLP. Note that leveraging Pyro’s JIT compilation is
possible due to breaking down the original program into its SLPs because by default the JIT compilation cannot
handle programs with stochastic support.

Our experiments were conducted on an internal compute cluster which consists of a mix of Intel Broadwell,
Haswell, and Cascade Lake CPUs. In general, we use 16 cores to parallelize our computation and running a single
replication of an experiment finishes in a matter of minutes if not seconds. An exception is the function induction
experiment in Sec. 6.3 which takes around 3 hours for a single replication, using 32 cores.

F.1 When is Stacking Helpful?

For each setting we collect 10> HMC samples from each SLP with 400 burn-in samples. To estimate the
normalization constant for the dominant SLP setting we use a proposal of q(61,602) = N (61;0,1)T'(62;1,1) with
10% samples.
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Figure 9: SLP weights for model in Sec. 6.2. Each dot represents the weight of the corresponding SLP in the model.
Results are computed over 50 randomly generated datasets.
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Figure 10: Impact of varying regularization parameter 8 on the computed SLP weights. Smaller values of 3 lead to more
regularization, pushing the SLP weights more towards the uniform distribution over SLPs.

Overall, the experiments show that stacking is particularly useful if there are multiple SLPs which fit the data
roughly equally well (with respect to the local normalization constant). In these cases, the SLP weights are at
risk of being unstable and stacking can provide a more robust weight estimation procedure. On the other hand, if
there is one dominant SLP which clearly performs better than all the other SLPs then we would expect there to
be less to gain from stacking, as the weights will already be fairly stable.

F.2 Subset Regression

Following Breiman (1996) and Yao et al. (2018), we generate the regression coefficients according to 54 =
7 (Ca(4) + Ca(8) + Ca(12)) with (yq(a) :=1[|d — a < h|] (h — |d — a])®. The parameter h determines the number
of “strong” coefficients. Following Yao et al. (2018) we set h = 5 which leads to 15 weak coefficients and set

7 such that the signal-to-noise ratio V [Z;‘il B Xd} /(1+V [Zéil Ba Xd}) = 4/5 where X, is the random

variable for the dth covariate. Our input program has 15 SLPs and each SLP has the unnormalized density
Vi (01,02,03) = 1[05 = k] Hfil./\/'(yl, 012k, 03) N'(01;0,10) I'(A2;0.1,0.1) DiscreteUniform(63; 1, 15). For DCC
inference, for each SLP we collect 103> HMC samples with 400 burn-in samples. For RIMCMC our transition
kernel samples a new 03, the variable controlling the covariate that is selected, from a uniform categorical
distribution and new 67, the local regression coefficient, from a standard normal distribution. The noise variable
is independently updated using a Metropolis-Hastings kernel. The individual weights for each SLP are shown in
Fig. 9.

F.3 Function Induction

We are using the probabilistic context-free grammar e — {x | sin(a*e) | axe+bx*e}. In our model, we use prior
production probabilities [0.4, 0.4, 0.2] and for each of the sampled coefficients (denoted a and b in the PCFG) we
use a N(0,10) prior. Using the PCFG we can sample an expression for a function f : R — R, then informally our
model can be written as

f~PCFG(); o~T(c5;1,1); y; ~N(f(2i),0%) for i=1,...,N. (25)

For DCC inference, we run 4 chains with 500 HMC samples and 200 burn-in samples for each SLP. The sampling
distribution of SLP weights are shown in Fig. 11. For RIMCMC, our transition kernel represents each expression
as a PCFG parse tree. To propose a new expression, the transition kernel picks a random node in the parse tree
and replaces that node with a sampled expression from the prior PCFG. The standard deviation of the likelihood,
0, is updated independently with a Metropolis-Hastings transition kernel. For RIMCMC, we collect the same
number of total samples as for DCC to ensure a fair comparison.
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Figure 11: SLP weights for the function induction model with the misspecified PCFG. We only plot SLPs which have
achieved a weight > 0.3 in any run for any method.
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Figure 12: SLP weights for the function induction model with the well-specified PCFG. We only plot SLPs which have
achieved a weight > 0.3 in any run for any method. The SLP indices 11 and 12 both correspond to the true function (due
to the symmetry in the + operator there are two SLPs which represent the true function).

Due to recursion in the PCFG rules, the program actually defines an infinite number of SLPs. Similar to Zhou
et al. (2020), to avoid infinite recursion we restrict the underlying inference engine to only consider a finite number
of SLPs. Our inference engine enumerates the possible PCFG expressions using breadth-first search and only
considers the first 128 expressions.

F.4 Variable Selection

def variable_selection_model(X, y,):
num_features = X.shape[1]
features_included = torch.zeros((num_features,), dtype=torch.bool)
for ix in range(num_features):
features_included[ix] = pyro.sample(
f"feature_{ix}", dist.Bernoulli(0.5), infer={"branching": Truel}
)
X_selected = X[:, features_included]
num_selected = X_selected.shape[1]
noise_var = pyro.sample("noise_var", dist.InverseGamma (2.0, 1.0))
with pyro.plate("features", num_selected):
w = pyro.sample("weights", dist.Normal(0, noise_var.sqrt()))
means = w @ X_selected.T
with pyro.plate("data", y.shape[0]):
pyro.sample("obs", dist.Normal (means, noise_var.sqrt()), obs=y)

Figure 13: Pyro program for the variable selection experiments.

We assume we are given data ;. and an associated matrix of covariates X € RV*P . We consider both regression
and classification problems. The problem of variable selection is to find a subset of the features D C {1,...,D}
to make predictions given our data. For regression task, we have y; € R and our model for a specific subset D of
the features is given by

o? ~T7H2,1), (26)
Baq ~N(0,0%) forde D, (27)
Yi ~ N(ZdeD Bawia,0°). (28)
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Figure 14: SLP weights for the models in Sec. 6.4 (conventions as in Fig. 11). The Stroke and Diabetes problems do not
permit an analytic solution to the BMA weights.

This form of the regression model allows us to analytically calculate the marginal likelihood (see e.g. Ch. 3.5 in
Bishop and Nasrabadi (2006)). For classification tasks, we instead have y; € {0, 1} and use the logistic regression
model

Ba ~N(0,1), for d € D and y; ~ B(S(Zdep Bazia)),

where S(z) = 1/(1 4+ exp(—x)) and B is the Bernoulli distribution.

The three different datasets we consider are: California housing (N = 20,650, D = 8; 50 % train, 50 % test)
(Pace and Barry, 1997), a regression dataset where the goal is to predict the median house prices for districts of
California; Diabetes (N = 768, D = 8; 80 % train, 20 % test) (Smith et al., 1988), a classification dataset on if a
person has diabetes or not; and Stroke (N = 4908, D = 8; 80 % train, 20 % test), a classification dataset on if a
person will have a stroke or not. For DCC inference, we collect 103> HMC samples with 400 burn-in samples for
each SLP. The sampling distribution of the SLP weights are plotted in Fig. 14. For RIMCMC, the transition
kernel randomly selects a feature dimension d and for that dimension flips the inclusion, i.e. if the feature was
previously included it will be excluded and vice versa. For a previously excluded feature, a new coefficient is
sampled from the prior. For all other coeflicients, a new coefficient is proposed from a standard normal centered
at the current value. To ensure a fair comparison to DCC, we collect the same number of samples from RJMCMC
as we do for DCC.

F.5 Modelling Radon Contamination in US Counties

As mentioned in the main text, our program encodes different modelling choices for both the intercept(s), «, and
the slope parameter(s), 3, of the regression relation y; = a + S x;. Below we describe in detail the four different
modelling choices for the intercept term. The modelling choices for the slope parameter are analogous, except we
do not consider using a group-level predictor for 5. The full Pyro program for this experiment is shown in Fig. 15.

Pooling. This model corresponds to the SLP denoted “P, P” in Fig. 3.
a~N(0,10), B~N(0,10), fi=a+ Bx;, o~ Exponential(5), y; ~ N (fi,c?). (29)
No pooling. Here c[i] refers to the county index of the ith house. This model corresponds to the SLP denoted
“NP, P” in Fig. 3.
a. ~ N(0,10) for each county ¢, 3~ N(0,10), o ~ Exponential(5), y; ~ N (fi,o?) (30)
with f; = acp) + B ;.
Hierarchical. This model corresponds to the SLP denoted “H, P” in Fig. 3. We are using a non-centered
parameterization to allow for better sampling performance from the HMC sampler.
0o ~ Exponential(1),  u ~ N(0,10), €c ~N(0,1) for each county ¢, = o +0n€c, (31)
B ~ N(0,10), o ~ Exponential(5),  f; = ae + B, yi ~ N(fi,0%) (32)
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Group-level predictor. This model corresponds to the SLP denoted “G, P” in Fig. 3.
Yo ~ N(0,10), v ~ N(0,10), 0 ~ Exponential(1), €. ~N(0,1) for each county ¢,  (33)
Qe = fac + Oq € B~ N(0,10), o ~ Exponential(5), yi ~ N (fi,0%) (34)
where fioc = Y0 + 71 U and f; = o) + B

To ensure we have a balanced representation of data in each county in both the training and the testing data we
apply stratified sampling: for each county, we hold out 20 % of the observations for evaluation. For this dataset
we do not run stacking with a validation set because of the limited amount of data available per county. For
DCC inference, we collect 2000 HMC samples with 2000 samples for burn-in for each SLP. For RIMCMC, the
transition kernel picks a modelling choice of @ and 8 and then samples the local parameters for each modelling
choice from the prior. The standard deviation ¢ is updated separately with a Metropolis-Hastings transition
kernel. To ensure a fair comparison between DCC and RIMCMC we collect the same total number of samples.

F.6 Stacked RIMCMC

We conducted further experiments to determine the impact of running stacking on top of RIMCMC, we call this
Stacked RIMCMC. The results can be viewed in Fig. 16 where we plot the difference in LPPD between RIMCMC
and other methods, i.e. LPPDp;g = LPPDogher — LPPDRriMmcoMmc. Note, compared to the main paper we here
evaluate the difference in LPPD to RIMCMC and not to stacking on top of DCC. This is because we care about
investigating the performance improvement relative to RIMCMC. We observe in Fig. 16 that Stacked RIMCMC
generally leads to higher LPPD than RIMCMC. The difference is positive for all problem settings. Further, the
difference is statisticaly significant under a Wilcoxon-signed rank test in all problems, except for California and
Stroke.

G PAC-Bayes and Stacking

For completeness, we first give a brief introduction into PAC-Bayes which is mostly based on Morningstar et al.
(2022). Morningstar et al. (2022) assume a setting in which data is sampled i.i.d. from gy ~ prue(), that we
have a parameterized probability model p(3 | #) and we want to find a mechanism to fit a distribution, ¢(6), over
the parameters of the probability model.

The true predictive risk is given by

P(q) == —Ep,,..5) 10g Eq(0)[p(7 | 0)]] (35)

and in most applications is the quantity we care about in the end because it directly measures the quality of our
predictions. However, in practice we cannot evaluate the true predictive risk because we do not have access to
the true data generating distribution. The goal of PAC-Bayes methods is then to provide a stochastic upper
bound on P(g) which can be used to train ¢(f) (Masegosa, 2020; Morningstar et al., 2022).

The empirical predictive risk
L
— 1 B
Pla) = —7 > logEyo)p(ie | ) (36)
=1

is an empirical estimate of the true predictive risk. Ensemble methods (which include stacking) directly minimize
the empirical predictive risk. For example, our stacking objective in Eq. (15) is a particular instantiation of the
empirical predictive risk. We will explain the connection in more detail below.

The true inferential risk

R(q) = —Epye(9)[Eqeo) [log p(7 | 6)]] (37)

is an upper bound on the true predictive risk (by applying Jensen’s inequality). In the case that our model is
well specified, i.e. 30" s.t. perue(-) = p(- | 0), then argmin P(q) = argmin R(q). Hence, when our model is well
specified minimizing the true inferential risk is equivalent to minimizing the true predictive risk.

The empirical inferential risk

Rlq) 1=+ By llogp(in | 0)] (3%)
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is the empirical estimate of the true inferential risk. Minimizing this risk directly is equivalent to maximum
likelihood estimation. By adding an extra regularization term to the empirical inferential risk we get the
PAC-inferential risk, given by

a(9)
r(8)

where 7(6) is a user specified prior distribution on the parameters 8. This is a stochastic upper bound on the true
predictive risk.

R(g;7, B) = Eq(p) Zlogp Je | )+ fl (39)

Morningstar et al. (2022) use results from Burda et al. (2015) to tighten the PAC-inferential risk and introduce
the PACY bound

1
+ EKL(Q(H) I 7(0))- (40)

Notably, as the PAC-inferential risk, this bound contains a regularization term which is meant to prevent
overfitting.

M
1 -
Parc(a;r,B) ——ZE o) [log | 57> p(Ge | 6)
j=1

Theorem G.1 (Morningstar et al. (2022)). For all g(8) absolutely continuous with respect to 7(0), Go ~ Perue(Y)
i.i.d., B €(0,00), L, M € N, p(g | 0) € (0,00) for all {6 € O | ptrue(g) >0} x {6 € ©| r(0) >0}, and € € (0,1),
then with probability at least 1 — &,

P() < Poso (@7 B) + ¥(Pirues B, M. Ly1,€) = g log € (41)
and furthermore (unconditionally)
Prrsr,n(;,8) < Parnla;r, B) (42)
where ﬁM7L(q;r, B) as in Eq. (40) and:
1 -
¢(ptruey 57 M7 L; T g) = 6 I 10g Eptme(yL)Er(GM [eXp(ﬂLMA(yLa HM))] ) (43)
1L | M M
A(gh, M) = 7 > log Y > v ] 05) | =By, |log Z p(G10;) ] - (44)
=1 j=1 =1

For a proof see Appendix C.3 of Morningstar et al. (2022).

G.1 From PAC-Bayes to Regularized Stacking

In order to connect the ideas from Morningstar et al. (2021) with the stacking objective for probabilistic programs
we need to define a specific form for the parameterized probability model and the distribution ¢ which is meant to
be optimized. We choose the latent variable of our probabilitiy model to be the random variable k£ which indexes
into the SLPs. Our probabilistic model then turns out to be p(§ | k) = px(§) and our approximate posterior g(k)

is a categorical distribution over {1,..., K} parameterized by the weights w, i.e. ¢(k) = Categorical(wy, ..., wk).
In this formulation the true predictive risk is given by
P(@) = —Epy,e () [108 Eqei [0x ()] (45)
K
= Epet@) [log (Z wkpk(w)] (46)
k=1
which is equivalent to Eq. (11) in the main paper. The PAC* bound becomes
M
Poi(a7.8) = ZE wny |18 | 57 2w, i) | | + ZpKLG®) [ () (47)
j=1

Note that 8 = 1 can be interpreted as the “standard Bayesian” setting as it provides an equal weighting of the
prior term KL(q(k) || 7(k)) and likelihood term Zé\lzl Eq (i [log (ﬁ Z;Vil Pk; (;&4))} We can rewrite the sum
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inside the log as a sum over SLPs, as follows
+ —KL(q(k) || (k) (48)

PML((],?“ ﬁ ZE kM) [log <Z| ) BL

where I, == {k; | j={1,... , M}, k; = k} is the set of all parameter samples that are equal to k. Now by the law
of large numbers (LLN) as m — oo this converges to

L K
~ 1 -
=1 =1
The first term in this objective is now the stacking objective and the second term is a regularization term pushing
the distribution over weights to the prior r(k). In other words, this is Eq. (15) with an added regularization
term.

There is one caveat with pushing M — oo, as shown by Morningstar et al. (2021) the slack term ¢ that controls
the tightness of the bound grows linearly in M. Hence, the bound becomes vacuous for infinite M. However,
there are several reasons why in our setting it is still reasonable to work with the objective Py 1(q;7, ). First of
all, in our specific setting the special case M =1 is the degenerate setting in which we collapse onto a single SLP.
This is exactly the behaviour we are trying to avoid in the first place. Additionally, Morningstar et al. (2022)
have shown that performance increases with using larger M and show empirically that using ]5007 r(g;r, B) can be
beneficial when it is possible to do so. The only practical consideration they mention for increasing M are issues
with gradient variance which are not applicable in our setting.

To choose the prior one could be inclined to use the posterior SLP weights Zj,/>",, Zi, as they are our Bayesian
beliefs about which SLP has generated the data. However, as we have argued in the main text these weights
can be very unstable and expensive to estimate. Hence, a reasonable default choice could be to use the discrete
uniform distribution. This will further discourage stacking from collapsing onto a single SLP. For the special case
of the prior (k) being chosen to be the uniform distribution the objective further simplifies to

Rs(w1.x) Zlog (Zwkpk Ye ) - 57( [q(k; wi.k)] + log K) (50)

where H denotes the Shannon entropy.
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def radon_model(log_radon, floor_ind, county, num_counties, uranium):

alpha_choice = pyro.sample(
"alpha_choices", dist.Categorical (torch.ones(4) / 4), infer={"branching": Truel}
)
if alpha_choice == 0:
# Pooled model
alpha = pyro.sample("alpha", dist.Normal(O0, 10))
elif alpha_choice == 1:
# County specific intercepts
with pyro.plate("num_alpha", num_counties):
alpha = pyro.sample("alpha", dist.Normal(0, 10))
alpha = alphal[..., county] # Shape: (num_counties,) -> (num_data,)
elif alpha_choice == or alpha_choice == 3:
if alpha_choice == 2:
# Partially pooled model
mean_a = pyro.sample("mean_a", dist.Normal(0, 1))
elif alpha_choice == 3:
# Uranium context
gamma_0 = pyro.sample("gamma_0", dist.Normal (0, 10))
gamma_1 = pyro.sample("gamma_1", dist.Normal(O0, 10))
mean_a = gamma_0 + gamma_1 * uranium

[ SR

std_a = pyro.sample("std_a", dist.Exponential(1l))
with pyro.plate("num_alpha", num_counties):
z_a = pyro.sample("z_a", dist.Normal(0, 1))

alpha = mean_a + std_a * z_a

alpha = alphal[..., county] # Shape: (num_counties,) -> (num_data,)
beta_choice = pyro.sample(

"beta_choices", dist.Categorical(torch.ones(3) / 3), infer={"branching": True}
)
if beta_choice == 0:

# Pooled model

beta = pyro.sample("beta", dist.Normal (0, 10))
elif beta_choice == 1:

# County specific slopes

with pyro.plate("num_beta", num_counties):

beta = pyro.sample("beta", dist.Normal (0, 10))

beta = betal..., county] # Shape: (num_counties,) -> (num_data,)

elif beta_choice == 2:

# Partially pooled model
mean_b = pyro.sample("mean_b", dist.Normal (0, 1))
std_b = pyro.sample("std_b", dist.Exponential (1))
with pyro.plate("num_beta", num_counties):
z_b = pyro.sample("z_b", dist.Normal(0, 1))
beta = mean_b + std_b * z_b
beta = betal..., county] # Shape: (num_counties,) -> (num_data,)

theta = alpha + beta * floor_ind
sigma = pyro.sample("sigma", dist.Exponential(5))
with pyro.plate("data", log_radon.shape[0]):
pyro.sample("ys", dist.Normal(theta, sigma), obs=log_radon)

Figure 15: Pyro program for the radon model.
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Figure 16: Difference in LPPD between RIMCMC and other methods (higher is better).

def distinct(y):
modell = pyro.sample("modell", dist.Bernoulli(0.5))
if modell:
z = pyro.sample("zl", dist.Normal (0, 1))
with pyro.plate("data", y.shape[0]):
pyro.sample("obs", dist.Normal(z, 0.62), obs=y)
else:
z = pyro.sample("z2", dist.Normal (0, 1))
with pyro.plate("data", y.shape[0]):
pyro.sample("obs", dist.Normal(z, 2.0), obs=y)

def overlap(X, y):
modell = pyro.sample("modell", dist.Bernoulli(0.5))
if modell:
w = pyro.sample (
"wi", dist.Normal(O, 1).expand([2]).to_event (1),
)
mean = w @ X[:, [0, 2]].T
elif model2:
w = pyro.sample(
"w2", dist.Normal (0, 1).expand([2]).to_event (1),
)
mean = w @ X[:, [0, 3]].T
with pyro.plate("data", X.shape[0]):
pyro.sample("obs", dist.Normal (mean, 1.0), obs=y)

def dominating (X, y):
modell = pyro.sample("modell", dist.Bernoulli(0.5))

if modell:
w = pyro.sample("w", dist.Normal(0, 1))
fs = w *x X
else:
sin_w = pyro.sample("sin_w", dist.Normal(O0, 1))
fs = torch.sin(sin_w * X)
sigma = pyro.sample("sigma", dist.Gamma(1l, 1))

with pyro.plate("data", X.shape[0]):
pyro.sample("obs", dist.Normal(fs, sigma), obs=y)

Figure 17: Pyro program for experiments in Sec. 6.1
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