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Abstract

Learning from preference-based feedback has
recently gained considerable traction as a
promising approach to align generative mod-
els with human interests. Instead of relying
on numerical rewards, the generative mod-
els are trained using reinforcement learning
with human feedback (RLHF). These ap-
proaches first solicit feedback from human la-
belers typically in the form of pairwise com-
parisons between two possible actions, then
estimate a reward model using these compar-
isons, and finally employ a policy based on
the estimated reward model. An adversar-
ial attack in any step of the above pipeline
might reveal private and sensitive informa-
tion of human labelers. In this work, we
adopt the notion of label differential privacy
(DP) and focus on the problem of reward esti-
mation from preference-based feedback while
protecting privacy of each individual label-
ers. Specifically, we consider the paramet-
ric Bradley-Terry-Luce (BTL) model for such
pairwise comparison feedback involving a la-
tent reward parameter θ∗ ∈ Rd. Within a
standard minimax estimation framework, we
provide tight upper and lower bounds on the
error in estimating θ∗ under both local and
central models of DP. We show, for a given
privacy budget ε and number of samples n,
that the additional cost to ensure label-DP

under local model is Θ
(

1
eε−1

√
d
n

)
, while it is

Θ
(poly(d)

εn

)
under the weaker central model.

We perform simulations on synthetic data
that corroborate these theoretical results.
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1 INTRODUCTION

In recent years, the problem of aligning generative
models to human preferences has garnered a lot of
interest (Christiano et al., 2017; Glaese et al., 2022;
Ouyang et al., 2022). One of the most promising ap-
proaches to achieve this is via preference-based rein-
forcement learning (Christiano et al., 2017). It has
gained considerable attention across multiple applica-
tion domains such as game playing (MacGlashan et al.,
2017), large language models (Ouyang et al., 2022),
and robotics (Shin et al., 2023).

Preference-based learning: In standard RL, the
agent learns to maximize a numerical reward, which
she observes from the environment. In the above appli-
cations, however, observing appropriate numerical re-
wards can be challenging, which could significantly af-
fect the performance of the agent. In such cases, it is of
common practice to solicit feedback from a human la-
beler in the form of pairwise comparisons between two
possible actions at every state (Christiano et al., 2017).
Notably, the language model application InstructGPT
(Ouyang et al., 2022) is based on this feedback model.
First, the prompts (states) are sampled from a pre-
collected datasest, and then, for each prompt, a pair
of responses (actions) are sampled by deploying the
pre-trained model. For each prompt, a human la-
beler provides pairwise preferences over the responses,
which are then used to train a reward model by maxi-
mum likelihood estimation, or, equivalently, by cross-
entropy minimization (Christiano et al., 2017). Fi-
nally, this reward model is used for a downstream pol-
icy training (i.e., finetuning the pre-trained model).
This complete pipeline forms the basis of preference-
based RL, see e.g. Pacchiano et al. (2021); Chen et al.
(2022); Zhu et al. (2023); Zhan et al. (2023).

Privacy (or the lack of it): One important aspect
which is ignored in the aforementioned learning lit-
erature is protecting privacy of human labelers. Po-
tentially sensitive information of an individual can be
revealed through the collected (pairwise comparisons)
feedback in case of an adversarial attack at any stage
of the RL pipeline. In fact, after the emergence of



Differentially Private Reward Estimation with Preference Feedback

ChatGPT, several instances of privacy breach includ-
ing that of human labelers have been reported (Li
et al., 2023). Since then, efforts have been made to
privately fine-tune large language models (Yu et al.,
2021; Behnia et al., 2022).

Label-Differential Privacy: In view of this, Differ-
ential privacy (DP) (Dwork, 2008) is the most adopted
notion to protect the sensitive information of individu-
als whose preference feedback is used during the model
training. The prompts (states) are not considered sen-
sitive since they are typically sampled from a pre-
collected dataset which is already public knowledge.
In this work, we develop new results for privacy (as
well as accuracy) of estimators obtained with such po-
tentially sensitive feedback information via the notion
of label differential privacy (Label-DP). This notion of
label-DP has been studied previously in deep learning
(Ghazi et al., 2021) and in learning theory in general
(Chaudhuri and Hsu, 2011; Beimel et al., 2013).

We focus on the problem of reward estimation from
pairwise preferences while protecting the privacy of
individual labelers. Specifically, we consider the para-
metric Bradley-Terry-Luce (BTL) model for such feed-
back involving a latent reward parameter θ∗ ∈ Rd. We
prove upper and lower bounds on the error in estimat-
ing θ∗ under local (where the learner only observes pri-
vatized labels) and central models (where the learner
has access to the raw non-private data) of DP.

Our contributions are summarized below:
(1) We show that the additional cost in estimation
for ensuring ε-label-DP under local model is at least

Ω
(

1
eε−1

√
d
n

)
, where ε is a given privacy budget and n

is the total number of samples.
(2) For the local model, we design an estimator of
θ∗ based on the Randomized Response (RR) mech-
anism (Warner, 1965) that satisfies ε label-DP and
achieves a matching upper bound on estimation error.
To do so, we design a novel loss function tailored to
RR, which de-biases the effect of label randomization
and can potentially be of independent interest.
(3) For the central model, we show that the additional
cost for ensuring (ε, δ)-label-DP under this weaker pri-

vacy model is at least Ω
(

1
ε+δ

√
d
n

)
for δ ∈ (0, 1).

(4) Finally, for the central model, we also provide a
matching upper bound (in n and ε) by designing an
estimator of θ∗ based on the classical objective pertur-
bation technique with Gaussian privacy noise.

We present numerical simulations on synthetic data to
support our theoretical results.

Related work. Our work is inspired by a recent
study on reward estimation (and offline bandits/RL)
under the linearly parametrized BTL model without

privacy protection (Zhu et al., 2023). Our work in-
troduces label-DP into the same setting and provides
sharp results on estimation errors as well as some
downstream applications. Both Zhu et al. (2023) and
our work can be viewed as a generalization of the work
on non-private reward estimation under the tabular
BTL model (Shah et al., 2015), which studies estima-
tion error under both semi-norm and ℓ2-norm. Label-
DP is first introduced by Chaudhuri and Hsu (2011)
for private PAC learners. Recently, it has been lever-
aged to yield better performance for many practical
situations where only labels are sensitive data, rela-
tive to standard DP which is an overkill (Ghazi et al.,
2021; Malek Esmaeili et al., 2021; Esfandiari et al.,
2022). As in Esfandiari et al. (2022), we consider la-
bel DP under both local and central models. We also
remark that our work differs from the vast literature
on private logistic regression (or stochastic optimiza-
tion) (e.g., Chaudhuri and Monteleoni (2008); Song
et al. (2021); Bassily et al. (2014)) in the performance
metrics, i.e., parameter estimation error vs. general-
ization/excess population risk. See more details and
additional related work in Appendix A.

2 PRELIMINARIES

Let D = (si, a
0
i , a

1
i , yi)

n
i=1 be a dataset of n samples,

where each sample has a state si ∈ S (e.g., prompt
given to a language model), two actions a0i , a

1
i ∈ A

(e.g., two responses from the language model), and la-
bel yi ∈ {0, 1} indicating which action is preferred by
humans experts. We assume that the state si is first
sampled from some fixed distribution ρ. The pair of
actions (a0i , a

1
i ) are then sampled from some joint dis-

tribution (i.e., a behavior policy) µ conditioned on si.
Finally, the label yi is sampled from a Bernoulli distri-
bution conditioned on (si, a

0
i , a

1
i ), i.e., for l ∈ {0, 1},

Pθ∗
[
yi= l|si, a0i , a1i

]
=

exp(rθ∗(si, a
l
i))

exp(rθ∗(si, a0i ))+exp(rθ∗(si, a1i ))
.

Here rθ∗(·, ·) is the reward model parameterized by
an unknown parameter θ∗, which we would want to
estimate using D. This model is often called Bradley-
Terry-Luce (BTL) model (Bradley and Terry, 1952;
Luce, 2012).

In this work, we consider a linear reward model
rθ∗(s, a) = ϕ(s, a)⊤θ∗, where ϕ : S × A → Rd is some
known and fixed feature map. For instance, such a
ϕ can be constructed by removing the last layer of a
pre-trained language model, and in that case, θ∗ cor-
respond to the weights of the last layer. With this
model, one can equivalently write the probability of
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sampling yi = 1 given (si, a
0
i , a

1
i ) as

Pθ∗
[
yi = 1|si, a0i , a1i

]
= σ

((
ϕ(si, a

1
i )−ϕ(si, a0i )

)⊤
θ∗
)
,

where σ(z) = 1
1+e−z is the sigmoid function. We let

xi = ϕ(si, a
1
i )−ϕ(si, a0i ) denote the differential feature

of actions a1i and a0i at state si. This lets us denote,
for any θ ∈ Rd, the predicted probabilities of a label
yi given xi as (we omit dependence on θ for brevity)

pi,1 :=Pθ [yi=1|xi]=σ(x⊤i θ) , pi,0 :=1−pi,1 . (1)

We make the following assumption which is standard
in the literature (Shah et al., 2015; Zhu et al., 2023).

Assumption 2.1 (Boundedness). (a) θ∗ lies in the
set ΘB = {θ ∈ Rd|⟨1, θ⟩ = 0, ∥θ∥ ≤ B}. The condition
⟨1, θ⟩ = 0 ensures identifiability of θ∗. (b) Features
are bounded, i.e., ∥ϕ(s, a)∥ ≤ L, ∀(s, a).

Now, we recall the notion of differential privacy
(Dwork, 2008). Roughly, it ensures that the output
of an algorithm M operating on a dataset D doesn’t
change much if we change a single example in D. In
this paper, we adopt the notion of label DP (Ghazi
et al., 2021) to protect sensitive information that lies
in preference-based feedback yi. This is motivated by
the fact that in most applications, the data (si, a

0
i , a

1
i )

presented to the human annotator is public (or pre-
collected) while the feedback yi ∈ {0, 1} indicates her
personal preference, which needs to be protected.

Definition 2.2 (Label DP in Central Model). Let ε ≥
0, δ ∈ (0, 1]. A randomized algorithm M is said to be
(ε, δ)-label differentially private in central model if for
any two datasets D and D′ that differ in the label of a
single sample and for any subset S in the range of M,
it holds that

P [M(D) ∈ S] ≤ eε · P [M(D′) ∈ S] + δ.

If δ = 0, M is said to be ε-label DP. We will simply
call it central label DP in the following.

For our specific reward estimation problem, Defini-
tion 2.2 roughly means that any single change of feed-
back label will not change the final estimator too much.

The central DP model assumes that the learning agent
A has access to preference feedback given by human
labelers in the clear-text. In some applications, how-
ever, the individual labelers might not be willing to
share their feedback in the clear-text. This motivates
us to consider label DP in the local model, where each
feedback yi, before being observed by the agent, is first
privatized by some local randomizer R at each labeler,
which is formally defined as follows.

Definition 2.3 (Label DP in Local Model). If each
label is first privatized by a local randomizer R, which

satisfies for any y, y′ and any subset S in the range of
R, it holds that

P [R(y) ∈ S] ≤ eε · P [R(y′) ∈ S] + δ,

then, we say R is an (ε, δ)-label differentially private
local randomizer, and the entire algorithm (e.g., es-
timator) that operates with the randomized labels is
said to satisfy local label DP.

Remark 2.4. Note that for central label DP, the pri-
vacy burden lies in the central agent while for local
label DP, the privacy protection relies on local ran-
domizer R. By post-processing of DP (Dwork, 2008),
an algorithm that satisfies local label DP also satisfies
central local DP. Thus, in the following, we will first
focus on the stronger local model of privacy.

The rest of the paper is organized as follows. In the
next two sections, we will focus on local label DP and
present the lower bound and upper bounds for the es-
timation error, respectively. In Section 5, we turn to
the central label DP and also present corresponding
lower and upper bounds.

3 LOCAL MODEL: LOWER BOUND
ON ESTIMATION ERROR

In this section, we present the lower bounds on the esti-
mation error under local label DP (cf. Definition 2.3).
Let ΣD := 1

n

∑n
i=1 xix

⊤
i denote the sample covariance

matrix of differential features xi = ϕ(si, a
1
i )−ϕ(si, a0i ).

Then, for any λ > 0, we have the following lower bound
on the estimation error in the semi-norm ∥·∥ΣD+λI .

Theorem 3.1 (Semi-norm lower bound). For a large

enough n, any estimator θ̂ based on n samples from the
BTL model that satisfies ε-label DP in the local model
has estimation error in semi-norm lower bounded as

E
[∥∥∥θ̂ − θ∗

∥∥∥2
ΣD+λI

]
≥ Ω

(
d

n
+

d

(eε − 1)2n

)
.

Shah et al. (2015) shows that (squared) error of estima-
tion under the tabular BTL model of pairwise compar-
isons is at least Ω(d/n) without any privacy constraint.
In comparison, we pay an additional Ω

(
d

(eε−1)2n

)
error

in estimation in order to ensure ε-label DP. We suffer
a similar privacy cost while bounding estimation error
in ℓ2-norm too. The result is formally stated below

Theorem 3.2 (ℓ2-norm lower bound). Under the
same hypothesis of Theorem 3.1, the estimation error
of θ̂ in ℓ2-norm is lower bounded as

E
[∥∥∥θ̂ − θ∗

∥∥∥2] ≥ Ω

(
d

L2
·
(
d

n
+

d

(eε − 1)2n

))
.
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Note that the lower bound in ℓ2 norm is an Ω(d) mul-
tiplicative factor higher than the one in semi-norm
(when L = Θ(1)). A similar comparative behavior
holds for non-private lower bounds too (Shah et al.,
2015). Moreover, if the differential features xi is dis-
tributed according to a standard Gaussian, then we
have L = O(

√
d). In this case, the first term in ℓ2-norm

lower bound reduces to Ω(d/n), which recovers the
mean-squared-error (MSE) lower bound under Gaus-
sian design without any privacy considerations (Chen
et al., 2016; Hsu and Mazumdar, 2023).

Proof summary of lower bounds. For both lower
bounds, we leverage the classic reduction from esti-
mation to testing. In particular, for the ℓ2 norm, we
apply a variant of the (private) version of Assouad’s
lemma (cf. Yu (1997)) by constructing a hypercube
over the underlying parameter space. On the other
hand, for the semi-norm case, it is somewhat difficult
to construct a hypercube. Instead, we turn to (private)
version of Fano’s lemma, which only requires a pack-
ing (in terms of semi-norm). This can be achieved by
Varshamov–Gilbert’s bound (cf. Guntuboyina (2011))
and vector rotations. For the privacy parts in both
bounds, we leverage strong data processing inequality
under local DP (cf. Duchi et al. (2018)). The complete
proofs for both results are presented in Appendix B.

4 LOCAL MODEL: UPPER BOUND
ON ESTIMATION ERROR

In this section, we discuss private estimators of the
unknown parameter θ∗ and develop a series of results
that answer the following questions.
(1) Is the standard MLE estimator useful under the
Randomized Response model, and in what privacy
regime?
(2) Can we design an estimator for all privacy regimes
that achieves the same order of estimation as in the
lower bound?
(3) How do we compute the estimator efficiently?
(4) Can we extend the ideas to other popular prefer-
ence feedback models such as Thurstone and Placket-
Luce?
We first describe the Randomized Response (RR)
mechanism (Warner, 1965), which we use to guarantee
local label DP.

Randomized Response. Let ε ≥ 0 be the privacy
budget and y ∈ {0, 1} be the true label. When queried
the value of y, the RR mechanism outputs ỹ, which is
randomly sampled from the probability distribution

P [ỹ = y] =
eε

1 + eε
= σ(ε), P [ỹ ̸= y] = 1− σ(ε) . (2)

It is well-known that RR is ε-DP (Dwork, 2008). In

the following, we will use RR as R in Definition 2.3 to
achieve label DP in the local model.

We start with a simple maximum likelihood estima-
tor (MLE), which will help us develop intuition for a
comparatively complex but a better estimator.

4.1 The Maximum Likelihood Estimator

For any θ ∈Rd, (1) and (2) together define predicted
probabilities of a randomized label ỹi given xi as

p̃i,1=σ(x
⊤
i θ)σ(ε)+(1−σ(x⊤i θ))(1−σ(ε)) ,

p̃i,0=(1−σ(x⊤i θ))σ(ε)+σ(x⊤i θ)(1−σ(ε)) .
With n such pairs of features and randomized labels
(xi, ỹi)

n
i=1, the private MLE θ̃MLE-RR aims to minimize

the negative log-likelihood

l̃D,ε(θ)=−
n∑
i=1

[
1(ỹi=1) log p̃i,1+1(ỹi=0) log p̃i,0

]
. (3)

As mentioned before, θ̃MLE is ε-label DP for any
ε ≥ 0. Recall that ΣD = 1

n

∑n
i=1 xix

⊤
i denotes the

sample covariance matrix of differential features and
let γ be a constant such that σ′(x⊤θ) ≥ γ for all
θ ∈ ΘB and for all features x. Under Assumption 2.1,
γ = 1

2+e−2LB+e2LB satisfies this condition. Then, we

have the following estimation error bound for θ̃MLE.

Theorem 4.1 (Estimation error of MLE). Fix α ∈
(0, 1), ε > 2LB, λ > 0. Then, under Assumption 2.1,
with probability at least 1− α, we have

∥θ̃MLE−θ∗∥ΣD+λI≤
C

γ

eε+2LB+1

eε−2LB−1

√
d+log(1/α)

n
+
√
λB,

where C is some absolute constant.

The above error bound of θ̃MLE holds only when
the privacy budget is higher than a certain threshold
(which depends on the norm of θ∗ and ϕ), i.e., when
ε > 2LB, thus limiting its applicability only to lower
privacy regimes (since a high value of ε implies a low

level of privacy). This is due to the fact that θ̃MLE

minimizes a noisy objective (3), that is strongly con-
vex in the semi-norm ∥·∥ΣD

only if ε > 2LB, which
is a crucial step in bounding the estimation error (see
Appendix C.1 for details). Instead, we want an objec-
tive that is strongly convex in the semi-norm for all
privacy levels ε > 0. This leads us to an estimator
that is specifically tailored to the RR mechanism.

4.2 An Estimator Tailored to RR

For any θ ∈ Rd, the logits (log-odds) of the probability
that the clear-text label yi = 1 given xi is

logit(pi,1)=log
pi,1
pi,0

=log
σ(x⊤i θ)

1− σ(x⊤i θ)
,
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where the same for randomized label ỹi = 1 is

logit(p̃i,1)=log
σ(x⊤i θ)σ(ε)+(1−σ(x⊤i θ))(1−σ(ε))
(1−σ(x⊤i θ))σ(ε)+σ(x⊤i θ)(1−σ(ε))

.

It holds that (see Appendix C for details)

logit(p̃i,1) ≤ σ(ε) · logit(pi,1) if pi,1 ≥ pi,0 ,

logit(p̃i,0) ≤ σ(ε) · logit(pi,0) if pi,0 ≥ pi,1 .

Since σ(ε) ∈ (1/2, 1) for any ε > 0, this implies that
whenever yi is more likely to occur than 1 − yi in
the clear-text, the log-odds of predicting yi under ε-
randomization given by (2) is at most σ(ε)-th fraction
of the corresponding log-odds in the clear-text. This
makes the objective (3) ill-suited for obtaining a tight
estimator for θ∗ under randomization of labels.

Essentially, we want to design an objective (or, equiv-
alently a loss function) so that the log-odds of predic-
tions under randomization is same as the log-odds in
the clear-text. The following loss achieves this:

l̂D,ε(θ)=−
n∑
i=1

[
1(ỹi=1) log p̂i,1+1(ỹi=0) log p̂i,0

]
, (4)

where we define, for any θ ∈Rd, the predicted scores
of each randomized label ỹi given xi as

p̂i,1=
σ(x⊤i θ)

σ(ε)

(1−σ(x⊤i θ))(1−σ(ε))
, p̂i,0=

(1−σ(x⊤i θ))σ(ε)

σ(x⊤i θ)
(1−σ(ε)) . (5)

Although p̂i,1 and p̂i,0 are not probabilities, these sat-
isfy our desired property:

log
p̂i,1
p̂i,0

=log
σ(x⊤i θ)

1− σ(x⊤i θ)
=logit(pi,1) .

Hence the loss function l̂D,ε(θ) essentially de-biases
the effect of randomization. This, in turn, yields that
l̂D,ε(θ) is γ(2σ(ε)−1) strongly convex in the semi-norm
∥·∥ΣD

for all θ ∈ ΘB , and importantly, it holds for any
ε > 0. This helps us obtain an estimator for θ∗ with
error bound for all privacy levels ε > 0, defined as

θ̂RR ∈ argminθ∈ΘB
l̂D,ε(θ) . (6)

θ̂RR satisfies ε-label DP due to RR and post-processing
of DP. Now, for any constant λ > 0, we have the fol-
lowing estimation error bound for θ̂RR. Proof of this
result is deferred to Appendix C.2.

Theorem 4.2 (Estimation error of θ̂RR). Fix α ∈
(0, 1), ε > 0, λ > 0. Then, under Assumption 2.1, with
probability at least 1− α, we have

∥θ̂RR−θ∗∥ΣD+λI≤
C

γ

eε+1

eε−1

√
d+log(1/α)

n
+C ′

√
λB, (7)

where γ= 1
2+e−2LB+e2LB , C,C ′ are absolute constants.

Cost of Privacy. We compare the error of our pri-
vate estimator θ̂RR with that of the clear-text (i.e.,
non-private) estimator θMLE, which minimizes the fol-
lowing non-private negative log-likelihood

lD(θ)=−
n∑
i=1

[
1(yi=1) log pi,1+1(yi=0) log pi,0

]
. (8)

As shown in Zhu et al. (2023), θMLE achieves an esti-
mation error of O

(√
d/n

)
in semi-norm. Comparing

this with Theorem 4.2, we observe that the cost of en-

suring label DP for θ̂RR is of the order O

(
1

eε−1

√
d
n

)
,

which almost matches lower bound discussed below.

Comparison with Lower Bound. We now com-
pare the upper bound in Theorem 4.2 with the semi-
norm lower bound in Theorem 3.1. Setting λ =(
eε+1
eε−1

)2
d+log(1/α)
B2γ2n , we see that the upper bound

matches the lower bound up to a factor of O(1/γ) ≈
eLB . Hence, if both L = O(1) and B = O(1), the
bounds are tight up to a constant factor.

Applications in Contextual Bandits. In applica-
tions such as offline linear contextual bandits (Li et al.,
2022), this bound can then be used to learn a down-
stream pessimistic policy

π̂Θ = argmax
π∈Π

inf
θ∈Θ

Es∼ρ
[
ϕ(s, π(s))⊤θ

]
. (9)

Here Π is the set of all action selection policies π :
S → A and Θ is a high-probability confidence set
for θ∗, i.e., it is a set of all θ ∈ ΘB that satisfies
(7). Similar to Li et al. (2022), one can show that
this pessimistic policy achieves a sub-optimality gap of

O
(
L
γ
eε+1
eε−1

√
d
n ∥ΣD+λI∥−1/2

+
√
λLB

)
in high proba-

bility for any λ > 0 while guaranteeing label DP.

4.3 Efficient Computation via SGD

It is evident that computing the exact minimizer θ̂RR

in (4) is impractical in practice – an issue shared by
the non-private estimator θMLE of Zhu et al. (2023)
as well. Note that even if an approximate solution is
allowed, it still requires solving the optimization prob-
lem up to a certain accuracy level so as to preserve
the same estimation error bound. This motivates us
to consider the (one-pass) SGD algorithm, which iter-
ates over each sample once. In particular, we replace
(6) by a sequential update rule:

θ̂1 = 0 , θ̂t+1 = ΠΘB

(
θ̂t − ηtĝt

)
, 1 ≤ t ≤ n . (10)

Here ΠΘB
is a projection operator onto the set ΘB ,

ηt is a suitable learning rate and ĝt = −∇θ̂t
log p̂t,ỹt

is the (negative) gradient of the log-predicted score of
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randomized label ỹt computed at current estimate θ̂t,
where p̂t,y, y ∈ 0, 1 is given by (5). We denote the

estimate after n iterations as θ̂SGD-RR.

Although the error bound under semi-norm as proved
in Theorem 4.2 does not hold for this SGD variant, we
can bound the estimation error of θ̂SGD-RR in ℓ2-norm.
To begin with, we note that Theorem 4.2 implies a
bound on the estimation error of θ̂RR in ℓ2-norm.

Corollary 4.3. Under the same hypothesis of Theo-
rem 4.2, we have, with probability at least 1− α,

∥θ̂RR−θ∗∥2 ≤ C

γ
√
λmin(ΣD)

eε+1

eε−1

√
d+log(1/α)

n
.

where λmin(ΣD) is the minimum eigenvalue of ΣD.

This bound is non-trivial only if assume that sam-
ple covariance matrix ΣD is positive definite. One
can also relax this assumption to the population co-
variance matrix of differential state-action features
x = ϕ(s, a1)− ϕ(s, a0), defined as

Σ = Es∼ρ(·),(a0,a1)∼µ(·|s)
[
xx⊤

]
.

Assumption 4.4 (Coverage of feature space). The
data distributions ρ, µ are such that λmin(Σ) ≥ κ for
some constant κ>0.

This is essentially a coverage assumption on the state-
action feature space, which is standard in offline ban-
dits and RL (Yin et al., 2022). The next result bounds

the estimation error of θ̂SGD-RR in ℓ2-norm.

Theorem 4.5 (Estimation error of θ̂SGD-RR). Fix
α ∈ (0, 1/e) and ε ≥ 0. Then, under Assumptions 2.1
and 4.4 and setting ηt =

1
γκ , we have, with probability

at least 1− α,

∥∥∥θ̂SGD-RR−θ∗
∥∥∥
2
≤C · L

γκ
· e
ε+1

eε−1

√
log (log(n)/α)

n
,

where γ = 1
2+e−2LB+e2LB , C is an absolute constant.

The complete algorithm and proof of the theorem is
deferred to Appendix C.3. In fact, we prove a stronger
and general result than Theorem 4.5 by bounding the
estimator error uniformly for all intermediate parame-
ter estimates θ̂t+1, 1 ≤ t ≤ n, with

√
1/n replaced by√

1/t in the bound. The log log n term is the (min-
imal) cost to ensure uniform concentration over all

t ≤ n. The bound for θ̂SGD-RR follows by setting t=n
in the general result. The key idea behind this result
is to show the gradient ĝt in the SGD update (10)
is an unbiased estimate of the gradient (except some
scaling) in the clear-text gt = −∇θ̂t

log pt,yt , where
pt,y, y ∈ {0, 1} denotes the probability of observing y

at round t, see (1). Specifically, we have

ĝt =

∑
y∈{0,1} ∇θ̂t

log pt,y

eε + 1
−∇θ̂t

log pt,ỹt ,

which, in turn, gives E
[
ĝt|xt, yt, θ̂t

]
= (2σ(ε)− 1) gt,

where the expectation is over the ε-randomization of
clear-text label yt given by (2). This, along with the
coverage assumption and the fact that σ′(x⊤t θ) ≥ γ for
all θ ∈ ΘB help us achieve the desired error bound.

Comparison with Semi-norm Bound. The main
difference compared to the semi-norm bound in The-
orem 4.2 is the inverse dependence on coverage pa-
rameter κ – estimation error increases as κ decreases.
Another apparent difference is the dependence (or the
lack of it) on the feature dimension d in the error
bound. However, κ is a problem dependent quan-
tity. It depends implicitly on the dimension d of fea-
ture space (Wang et al., 2020), thereby capturing the
dependence of error bound on d. For example, since
∥x∥ ≤ L, we have κ = O(L2/d) under Assumption 2.1.
In the best case when κ = Θ(L2/d), the error bound

in ℓ2-norm scales as Õ
(

1
γ
eε+1
eε−1

d√
n

)
, which is

√
d fac-

tor higher than that in semi-norm ∥·∥ΣD
. Finally, due

to the coverage assumption, instead of employing a
pessimistic policy as in (9) for a downstream offline
contextual bandit task, we can design a greedy (plug-

in) policy π̂Greedy(s) = argmaxa∈A ϕ(s, a)
⊤θ̂SGD-RR,

which achieves a sub-optimality gap of Õ
(
L2

γκ
eε+1
eε−1

1√
n

)
in high-probability while ensuring label-DP.

Comparison with Lower Bound. We now com-
pare the upper bound in Theorem 4.5 with the ℓ2-
norm lower bound in Theorem 3.2. First, we note
that κ = O(L2/d) under Assumption 2.1. That is, in
the best case when κ = Θ(L2/d), the upper bound in

Theorem 4.5 becomes Õ
(

d
Lγ

√
n
eε+1
eε−1

)
. This matches

the lower bound up to a factor of O(eLB). Hence,
similar to the semi-norm bounds, if L,B are Θ(1), the
ℓ2-norm bounds are also tight up to a constant factor.

Remark 4.6. A similar SGD update as (10) is used
in Ghazi et al. (2021) in the context of private stochas-
tic convex optimization (SCO). They bound the excess
population risk of the SGD estimate in expectation un-
der the clear-text distribution (xt, yt) ∼ P . Natarajan
et al. (2013) consider a similar objective function as
(4) in the context of binary classification with noisy
labels. They obtain a classifier by minimizing the em-
pirical risk on the noisy samples (xt, ỹt)

n
t=1 (which is

equivalent to maximizing (4)) and bound its excess
population risk under the clear-text distribution. In
contrast to both works, we aim to bound the estima-
tion error of the parameter estimate in high probabil-
ity, which brings additional challenges in the analysis.
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4.4 Extensions to Other Preference Models

Thurstone Model. Our result can be extended to
any pairwise comparison model of the form

Pθ∗
[
yi=1|si, a0i , a1i

]
=F (x⊤i θ

∗)

if F satisfies following two properties: (i) F is an even
function, i.e., F (z) = 1 − F (−z) for all z and (ii) F
is strongly log-concave in an interval around z = 0,
i.e., there is a curvature parameter γ > 0 and a range
parameter c > 0 such that

d2

dz2
(− log(F (z))) ≥ γ ∀ z ∈ [−c, c] .

For the BTL model, where F is specified by the sig-
moid function, these properties hold for c = 2LB and
γ = 1

2+exp(−2LB)+exp(2LB) under Assumption 2.1.

In the Thurstone model (Thurstone, 1927), each label
yi ∈ {0, 1} is sampled from the conditional distribution

Pθ∗
[
yi=1|si, a0i , a1i

]
=Φ(x⊤i θ

∗) ,

where Φ is the CDF of standard Gaussian distribution.
It holds that Φ is strongly log-concave for all θ ∈ ΘB
under Assumption 2.1 (Tsukida et al., 2011). Hence, a
similar error bound as Theorem 4.5 for the SGD-based
estimator holds under Thurstone model with a proper
choice of the curvature parameter γ.

Placket-Luce Model. One practical extension of
our results is to privately learn the reward parameter
θ∗ from K-wise comparisons between actions, which is
captured by the Placket-Luce (PL) model (Plackett,
1975; Luce, 2012). Let s be a state and a1, . . . , aK
be K actions to be compared at that state. Let the
label/preference feedback y ∈ {1, 2, . . . ,K} indicates
which action is most preferred by human labeler.1 Un-
der the Placket-Luce model, the label y is sampled ac-
cording to the probability distribution

Pθ∗[y=k|s, a1, . . . , aK ]=
exp(ϕ(s, ak)

⊤θ∗)∑K
j=1 exp(ϕ(s, aj)

⊤θ∗)
. (11)

In this case, label-DP is ensured by employing the
K-Randomized Response (K-RR) mechanism, which,
when queried the value of y, outputs ỹ that is ran-
domly sampled from the probability distribution:

P [ỹ=y]=
eε

eε+K−1
, P [ỹ=y′]=

1

eε+K−1
∀y′ ̸=y . (12)

Given n samples (st, at,1, . . . at,k, yt)
n
t=1, we estimate

θ∗ using the SGD update of (10), with the gradient

ĝt =

∑K
y=1 ∇θ̂t

log pt,y

eε +K − 1
−∇θ̂t

log pt,ỹt ,

1We differ here from the standard PL model, where hu-
man labeler outputs the entire ranking between K actions.

where pt,y, y ∈ [K] is the probability of observing y at
round t, see (11).

Let xi,j = ϕ(s, ai) − ϕ(s, aj) be the feature differ-
ence between actions ai and aj at state and Σi,j =
E[xi,jx⊤i,j ] be the corresponding population covariance
matrix. Assume there exists a coverage parameter
κ > 0 such that Σij ≥ κ for all pair of actions (ai, aj).
Then, similar to Theorem 4.5, we can prove an error
bound for this SGD-based estimator with K-RR, de-
noted by θ̂SGD-KRR. Specifically, we have∥∥∥θ̂SGD-KRR−θ∗

∥∥∥
2
=Õ

(
·L
γκ

· e
ε+K−1

eε−1

1√
n

)
with high probability, where γ = 1

e4LB . See Ap-
pendix C.4 for a precise statement and complete proof.

5 CENTRAL MODEL:
ESTIMATION ERROR BOUNDS

In this section, we turn to study label DP in the cen-
tral model where the learning agent has access to the
clear-text dataset D and it only needs to guarantee the
estimator is “insensitive” with respect to any single
change of the label. Under this weaker privacy model,
we show that the estimation error can be greatly im-
proved compared to those in the local model. In the
main paper, we will mainly focus on ℓ2-norm bounds
and leave semi-norm bounds to Appendix D.4.

5.1 Lower Bound

We first have the following lower bound on estimation
error, the proof of which is given in Appendix D.1.

Theorem 5.1. For a large enough n, any estimator
θ̂ based on samples form the BTL model that satisfies
(ε, δ)-label DP in the central model has the estimation
error in ℓ2-norm lower bounded as

E
[∥∥∥θ̂ − θ∗

∥∥∥2] ≥ Ω

(
d2

nL2
+

d

n2(ε+ δ)2

)
.

Let us compare our lower bound with a similar one
(although via a different approach) established in Cai
et al. (2023), which enforces privacy protection for
both label and features (i.e., standard DP notion
rather than label DP). If L = O(

√
d) (which holds for

Gaussian design), then the first term is the same as
in Cai et al. (2023) and is equal to the standard non-
private mean-square-error (MSE) lower bound (Hsu
and Mazumdar, 2023). The main difference is the de-
pendence on dimension in the second term, i.e., d in
our bound vs. d2 in Cai et al. (2023). This improve-
ment is due to the fact that our privacy protection
is only for the scalar label, whereas Cai et al. (2023)
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also protects d-dimensional feature vectors (albeit in a
different application than ours).

5.2 Algorithm and Upper Bound

In this section, we present our algorithm and its pri-
vacy and estimation error guarantees.

Our algorithm builds upon the classic technique – ob-
jective perturbation (Kifer et al., 2012), i.e., it adds
an additional noise term in the objective function. In
particular, our estimator is given by

θ̂obj = argmin
θ∈ΘB

lD(θ) +
β

2
∥θ∥22 + w⊤θ ,

where lD(θ) is the negative log-likelihood defined
in (8), β > 0 is some regularizer and w ∼ N (0, σ2I)
is an independent Gaussian noise. We then have the
following privacy guarantee. See Appendix D.2 for the
proof and Algorithm 2 for pseudo-code.

Theorem 5.2 (Privacy). Let ε> 0, δ ∈ (0, 1). Then,

setting σ =
L
√

8 log(2/δ)+4ε

ε under Assumption 2.1, Al-
gorithm 2 satisfies (ε, δ)-label DP in the central model.

The next theorem provides the estimation error of θ̂obj
in ℓ2-norm. See Appendix D.3 for the full proof.

Theorem 5.3 (Estimation error). Let α ∈ (0, 1).
Then, under Assumptions 2.1 and 4.4, with probability
at least 1− α, θ̂obj satisfies∥∥∥θ̂obj−θ∗∥∥∥

2
≤O

(
L

κγ

√
log(1/α)

n
+
σ
(√
d+
√
log(1/α)

)
nκγ

)

where γ := 1
2+exp(−2LB)+exp(2LB) and κ is the coverage

coefficient in Assumption 4.4.

Corollary 5.4. For ε ∈ (0, 1] and δ ∈ (0, 1), let σ =
L
√

8 log(2/δ)+4ε

ε as in Theorem 5.2, then the estimation
error is of the order

∥∥∥θ̂obj − θ∗
∥∥∥
2
≤ Õ

(
L

κγ
√
n
+
L
√
d log(1/δ)

nεκγ

)
.

Remark 5.5 (Central vs. Local Models). A key ob-
servation here is that the cost to ensure label DP is
an additive lower-order term of the order 1

εn under
the central model. In contrast, under the local model,
the privacy cost is of the order 1

(eε−1)
√
n

(cf. Theo-

rem 4.5), which is approximately 1
ε
√
n
for high privacy

regime (i.e., ε < 1). This sharp decrease in privacy
cost under the central model is due to the fact that it
is a weaker privacy model; hence, instead of random-
izing each label, one needs to add noise only once in
the loss function.

Comparison with Lower Bound. We now compare
the upper bound in Corollary 5.4 with lower bound in
Theorem 5.1. Under Assumption 2.1 and in the best
case when κ = Θ(L2/d), we observe that the upper
bound matches the lower bound up to a factor of deLB .
If L = B = Θ(1), the gap between the bounds is on
the order of d. Closing this gap and obtaining optimal
error bounds is an open question.

Extension to approximate minimizer. Currently,
the privacy guarantee in Theorem 5.2 only holds for
the exact minimizer θ̂obj. One can also add an addi-
tional output perturbation as in Bassily et al. (2019);
Iyengar et al. (2019) to guarantee that an approximate
minimizer (e.g., obtained by SGD) is private with the
same order of estimation error.

6 SIMULATIONS

We numerically evaluate the errors of our estima-
tors under local and central models of label DP; and
present comparisons with that of the non-private esti-
mator of Zhu et al. (2023). Our simulations are proof-
of-concept only; we do not tune any hyper-parameters.

We consider the BTL preference model of pairwise
comparisons, with the number of samples 1000 ⩽
n ⩽ 10000. Each sample size is repeated 100 times.
We randomly generate θ∗ from d-dimensional stan-
dard Gaussian, where we vary d ∈ {3, 5, 10}. The
state-action features ϕ are sampled iid, also from a d-
dimensional standard Gaussian. The results for d = 5
is shown in Figure 1.

For the local model, we use our SGD-based estimator
θ̂SGD-RR. For the central model, we implement our
objective perturbation based estimator θ̂obj using SGD
updates. To ensure consistency, we also implement the
non-private estimator θMLE of Zhu et al. (2023) using
SGD updates. We use learning rate η = 0.1 for all
three estimators. We compare estimation error in ℓ2-
norm for all the estimators for varying privacy levels
ε ∈ {0.1, 0.5, 1}. We fix δ = 0.001 for θ̂obj.

We observe that estimation error decreases for all the
estimators as the number of samples grows larger.
Moreover, we observe that the non-private MLE-based
estimator has the smallest estimation error, while the
error in RR based estimator under local model is
higher than the objective perturbation based estima-
tor under the central model. This is consistent with
our theoretical results in Sections 4 and 5. 2

2Codes can be found at https://github.com/sayakrc/
Differentialy Private Estimation.

https://github.com/sayakrc/Differentialy_Private_Estimation
https://github.com/sayakrc/Differentialy_Private_Estimation
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(a) ε = 0.1 (b) ε = 0.5 (c) ε = 1

Figure 1: Comparison of estimation error in ℓ2-norm between non-private MLE-based estimator, RR based estimator in
local model and objective perturbation based estimator in central model for different privacy levels ε.

7 CONCLUSION

We provided a systematic study of reward estimation
via human feedback under the label DP. We also dis-
cuss the generalization to standard DP in Appendix E.
For future directions, it is instructive to establish up-
per bounds with a dependency milder than eLB . Along
the lines of Bach (2010), where risk bounds are consid-
ered, it might be possible to leverage self-concordance
properties of log-loss to obtain tighter estimation er-
ror bounds. Another important direction is to empir-
ically evaluate the performance of a downstream pol-
icy trained using the estimated reward model along
the lines of Zhu et al. (2023) under different privacy
notions and budgets.
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A ADDITIONAL RELATED WORK

Preference-based Learning. Shah et al. (2015) study the problem of reward estimation under the pairwise
(BTL and Thurstone) model and K-wise (PL) comparisons model. They work in the tabular setting and provide
minimax error bounds for estimated rewards under both semi-norm and ℓ2-norm. Zhu et al. (2023) consider
linearly parameterized rewards under the BTL and PL comparisons model, and prove the error bound of the
maximum likelihood estimator. They further use this estimator to learn a pessimistic policy for an offline contex-
tual bandit task and bound its sub-optimality gap. Multi-armed bandits (both tabular and parametric) under
dueling/preference-based feedback are considered in a range of work, and different notions of regret guarantees
are established; see Bengs et al. (2021) for a comprehensive survey. Pacchiano et al. (2021) consider the episodic
online RL problem under the BTL comparison model with tabular latent rewards and prove sublinear regret
guarantees in the number of episodes. Chen et al. (2022) generalize this to latent rewards with function approxi-
mation and establish sublinear regret bounds. Zhan et al. (2023) consider the offline RL problem in the function
approximation framework and prove corresponding performance guarantees. In contrast to all these prior work,
we consider learning under the privacy of human labelers, where the pairwise comparisons provided by them is
considered to be sensitive information. It is worth noting that Cai et al. (2023) also consider privacy protection
under the BTL model. Some key differences are as follows: (i) they study the tabular case rather than our linear
reward model; (ii) their privacy notion is also different from ours in that it protects all the outcomes of a single
item, rather than our label DP notion.

Label Differential Privacy. Privacy of pairwise comparisons can be protected using the notion of Label
Differential Privacy. Chaudhuri et al. (2011) introduce this notion for the first time in learning theory and
design private PAC learners under label DP. Since then, several follow-up work consider this notion of DP (see,
e.g. Beimel et al. (2013); Ghazi et al. (2021); Esfandiari et al. (2022)) where standard DP seems to be an overkill.
The most related work to ours is Ghazi et al. (2021), which considers training deepNNs under label DP. Our work
differs from theirs as well as from the literature on private stochastic optimization Chaudhuri and Monteleoni
(2008); Bassily et al. (2014); Kifer et al. (2012); Bassily et al. (2019); Song et al. (2021) in the utility guarantees
(i.e. performance metrics); we consider bounding the error of parameter estimates under some metric, whereas
these papers bound generalization errors or population risks.

B ADDITIONAL DETAILS ON SECTION 3

We first introduce some necessary backgrounds and notations for our proofs on lower bounds, i.e., the lower
model in this section and the central model in Appendix D.

Let P be a family of distributions over Xn, where X is the data universe and n is the sample size. Let θ : P → Θ
be the parameter of the distribution that we aim to estimate and let ρ : Θ × Θ → R+ be a pseudo-metric that
is the loss function for estimating θ. The minimax risk of estimation under loss ρ for the class P is

R(P, ρ) := min
θ̂

max
P∈P

EX∼P

[
ρ(θ̂(X), θ(P ))

]
. (13)

For (ε, δ)-label DP in the central model, the minimax risk is

Rc(P, ρ, ε, δ) := min
θ̂ is(ε,δ)-label DP

max
P∈P

EX∼P

[
ρ(θ̂(X), θ(P ))

]
.

For (ε, δ)-label DP in the local model, the minimax risk is

Rl(P, ρ, ε, δ) := min
Q is (ε,δ)-label DP mechanism

min
θ̂

max
P∈P

EX∼P,Q

[
ρ(θ̂(X), θ(P ))

]
.

for pure-DP where δ = 0, we simply write Rc(P, ρ, ε) and Rl(P, ρ, ε).

In this work, under BTL model, our goal is essentially to estimate the unknown parameter θ in the logistic
model/distribution. In particular, we consider a fixed design (i.e., xi ∈ Rd is known) and the goal is to infer
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unknown θ after observing (private) sequence yi, where the non-private yi is drawn from

P [yi = 1|xi] = σ(θ⊤xi) =
1

1 + exp(−θ⊤xi)
, P [yi = 0|xi] = 1− σ(θ⊤xi).

We denote this family of distribution by Plog. More specifically, for the local model, the learner/agent aims to
estimate θ from a sequence of private ỹi generated by an LDP mechanism Q, while under the central model, the
goal is to output an estimate θ̂ that is close to θ while guaranteeing label DP. Here, ρ will be either squared ℓ2
norm or squared semi-norm.

The following result will be useful in our proofs.

Claim B.1. Let pa := 1/(1 + ea) and pb := 1/(1 + eb), we have

kl(pa∥pb) + kl(pb∥pa) ≤ (a− b)2,

where kl(p∥q) := DKL (Bernoulli(p)∥Bernoulli(q)) denotes KL-divergence between Bernoulli distributions with
parameters p and q.

Proof. By a direct calculation, we have

kl(pa∥pb) + kl(pb∥pa) = (pa − pb) log

(
pa

1− pa

1− pb
pb

)
.

Further, by the definition of pa, pb, we have

(pa − pb) log

(
pa

1− pa

1− pb
pb

)
=

(
1

1 + ea
− 1

1 + eb

)
· (b− a).

Without loss of generality, we assume b ≥ a, then(
1

1 + ea
− 1

1 + eb

)
≤ eb − ea

eb
= 1− ea−b ≤ 1− (1 + a− b) = b− a.

Combining the above, yields the result.

B.1 Proof of Theorem 3.1

Before we state the main proof, let us first present some useful lemmas. In particular, as mentioned in the main
paper, for the semi-norm part, we will rely on Fano’s lemma to derive the minimax lower bound. The key idea
is to construct a proper packing rather than restricting to hypercubes as in Assouad’s lemma. Let us first recall
the non-private Fano’s lemma (Yu, 1997) as follows.

Lemma B.2 (Fano’s Lemma). Let V = {P1, P2, . . . , PM} ⊆ P such that for all i ̸= j,

DKL (Pi∥Pj) ≤ β , ρ′(θ(Pi), θ(Pj)) ≥ τ

for a semi-metric ρ′ and some τ, β > 0. Then, we have

R(P, (ρ′)2) ≥ τ2

4

(
1− β + log 2

logM

)
.

To construct a proper packing, Varshamov–Gilbert’s bound (cf. Guntuboyina (2011)) will be useful.

Lemma B.3 (Varshamov–Gilbert’s bound). For any ξ ∈ (0, 1/2) and for every dimension d ≥ 1, there exist

M ≥ e
ξ2d
2 and w1, . . . , wM ∈ {0, 1}d such that

dham(wi, wj) ≥ (1/2− ξ)d, ∀i ̸= j.

Now, we are ready to prove Theorem 3.1.
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Proof of Theorem 3.1. We divide it into non-private and private parts.

Non-private part. Let ξ = 1/4 in Lemma B.3, then there exist M ≥ e
ξ2d
2 and w1, . . . , wM ∈ {0, 1}d such that

∀i ̸= j,
d

4
≤ ∥wi − wj∥22 ≤ d.

Now, let the eigenvalue decomposition of ΣD + λI be U⊤ΛU and θi :=
∆√
d
U⊤

√
Λ−1wi, then we have

∥θi − θj∥2ΣD+λI = (θi − θj)
⊤(ΣD + λI)(θi − θj)

=
∆2

d
(wi − wj)

⊤
√
Λ−1U(U⊤ΛU)U⊤

√
Λ−1(wi − wj)

=
∆2

d
∥wi − wj∥22 .

Thus, we have constructed a packing such that for any i, j ∈ [M ] and i ̸= j,

∆ ≥ ∥θi − θj∥ΣD+λI ≥
∆

2
.

Now, let us turn to the KL divergence part. Let Pni be the product distribution when θ∗ = θi. Then, by chain
rule of KL divergence and Claim B.1, we have

DKL

(
Pni ∥Pnj

)
≤

n∑
k=1

(x⊤k (θi − θj))
2 = n(θi − θj)

⊤ΣD(θi − θj) ≤ n ∥θi − θj∥2ΣD+λI ≤ n∆2. (14)

Thus, by Fano’s lemma, we have

R(Plog, ∥·∥2ΣD+λI) ≥
∆2

8

(
1− 32 · n∆

2 + log 2

d

)
.

Thus, choosing ∆2 = c dn for some constant c, we have for large d,

R(Plog, ∥·∥2ΣD+λI) ≥ Ω

(
d

n

)
.

Finally, we also need to check that ∥θi∥ ≤ B when n is large. To this end, by the fact that wi ∈ {0, 1}d for any
i, we have that

∥θi∥ ≤ ∆√
d

√
tr(Λ−1) =

∆√
d

√
tr((ΣD + λI)−1) ≤ B,

where the last step holds when n ≥ c tr((ΣD+λI)−1)
B2 , since ∆2 = c dn . We also note that the centered condition

⟨1, θ⟩ = 0 can be simply achieved by reducing d to d/2.

Private part. Let Mn
i be the product distribution of private view when θ∗ = θi. The only change here is the

KL divergence part. By Corollary 3 in Duchi et al. (2018), Pinsker’s inequality and Claim B.1, we can obtain
that

DKL

(
Mn
i ∥Mn

j

)
≤ n(eε − 1)2(θi − θj)

⊤ΣD(θi − θj) ≤ n(eε − 1)2∆2.

Thus, a similar analysis as the non-private case gives

R(Plog, ∥·∥2ΣD+λI , ε) ≥ Ω

(
d

n(eε − 1)2

)
.
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B.2 Proof of Theorem 3.2

Before we present the proof, we first introduce some useful lemmas. A convenient way to establish a lower
bound in ℓ2 norm is via Assouad’s lemma. We restate it below with proof for completeness and some additional
implications, which are useful for our proof.

Lemma B.4 (Assouad’s lemma). Let V ⊆ P be a set of distributions indexed by the hypercube Ed = {±1}d.
Suppose there exists a τ ∈ R and α > 0, such that ρ satisfies: (i) for all u, v, w ∈ Ed, ρ(θ(Pu), θ(Pv)) ≥
2τ ·

∑d
i=1 1(ui ̸= vi) and (ii) ρ(θ(Pu), θ(Pv)) ≤ α(ρ(θ(Pu), θ(Pw)) + ρ(θ(Pv), θ(Pw))), i.e., α-triangle inequality.

For each i ∈ [d], define the mixture distributions:

P+i :=
2

|Ed|
∑

e∈Ed:ei=1

Pe and P+i :=
2

|Ed|
∑

e∈Ed:ei=−1

Pe.

Then, we have

R(P, ρ) ≥ τ

2α

d∑
i=1

(1− ∥P+i − P−i∥TV) .

Proof. Let P ∈ V ⊆ P and X ∼ P . For any estimator θ̂(X), define ψ∗ = argmine∈Ed
ρ(θ̂, θ(Pe)). Thus, we have

ρ(θ(P ), θ(Pψ∗))
(a)

≤ α
(
ρ(θ(P ), θ̂) + ρ(θ(Pψ∗), θ̂)

) (b)

≤ 2α · ρ(θ(P ), θ̂),

where (a) holds by the α-triangle inequality of ρ; (b) holds by the definition of ψ∗. As a result, we have

R(P, ρ) ≥ R(V, ρ) = min
θ̂

max
P∈V

EX∼P

[
ρ(θ̂(X), θ(P ))

]
≥ 1

2α
min
θ̂

max
P∈V

EX∼P [ρ(θ(P ), θ(Pψ∗))] .

Now, by condition (i) of the loss ρ, we have

max
P∈V

EX∼P [ρ(θ(P ), θ(Pψ∗))]
(a)

≥ 1

|Ed|
∑
e∈Ed

EX∼Pe
[ρ(θ(Pe), θ(Pψ∗))]

(b)

≥ 2τ

|Ed|
∑
e∈Ed

d∑
i=1

EX∼Pe
[1(ψ∗

i ̸= ei)]

(c)
=

2τ

|Ed|
∑
e∈Ed

d∑
i=1

Pe [ψ∗
i ̸= ei]

(d)
=

2τ

|Ed|

d∑
i=1

∑
e∈Ed

Pe [ψ∗
i ̸= ei] ,

where (a) holds by maximum is larger than average; (b) holds by condition (i) of ρ; in (c), Pe is the probability
measure when samples are generated from Pe; (d) follows by swapping the two sums. For each i ∈ d, we divide
the set Ed into two parts based on the value at i, i.e.,

2τ

|Ed|
∑
e∈Ed

Pe [ψ∗
i ̸= ei] =

2τ

|Ed|
∑

e∈Ed:ei=+1

Pe [ψ∗
i ̸= ei] +

2τ

|Ed|
∑

e∈Ed:ei=−1

Pe [ψ∗
i ̸= ei]

= τ ·
(
PX∼P+i

[ψ∗
i (X) ̸= 1] + PX∼P−i

[ψ∗
i (X) ̸= −1]

)
.

Combining the above together, we have

R(P, ρ) ≥ τ

2α

d∑
i=1

(
PX∼P+i

[ψ∗
i (X) ̸= 1] + PX∼P−i

[ψ∗
i (X) ̸= −1]

)
≥ τ

2α

d∑
i=1

inf
Ψ

(
PX∼P+i [Ψ(X) ̸= 1] + PX∼P−i [Ψ(X) ̸= −1]

)
(a)
=

τ

2α

d∑
i=1

(1− ∥P+i − P−i∥TV) ,
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where (a) holds by Le Cam’s first lemma.

Corollary B.5. Under the same conditions of Lemma B.4, we have

R(P, ρ) ≥ dτ

2α

1−(1

d

d∑
i=1

1

2d

∑
e∈Ed

∥Pe − Pēi∥
2
TV

)1/2
 ,

where ēi is a vector in Ed that flips the i-th coordinate of e.

Proof. To start with, we introduce the following additional notations. For any e ∈ Ed, let Pe,+i be the distribution
indexed by first choosing e and then letting ei = +1. Similarly, we have Pe,−i. By this definition, we can rewrite
P+i and P−i above as follows:

P+i =
1

|Ed|
∑
e∈Ed

Pe,+i and P−i =
1

|Ed|
∑
e∈Ed

Pe,−i . (15)

By Lemma B.4, we have

R(P, ρ) ≥ τ

2α

d∑
i=1

(1− ∥P+i − P−i∥TV) . (16)

Now note that

d∑
i=1

∥P+i − P−i∥TV

(a)

≤
√
d

(
d∑
i=1

∥P+i − P−i∥2TV

)1/2

(b)

≤
√
d

(
d∑
i=1

1

|Ed|
∑
e∈Ed

∥Pe,+i − Pe,−i∥2TV

)1/2

=
√
d

(
d∑
i=1

1

2d

∑
e∈Ed

∥Pe,+i − Pe,−i∥2TV

)1/2

.

where (a) holds by Cauchy-Schwarz inequality; (b) holds by (15) and joint convexity of ∥·∥2TV. Plugging it back
to (16) and rearranging, we have

R(P, ρ) ≥ τd

2α

1−(1

d

d∑
i=1

1

2d

∑
e∈Ed

∥Pe,+i − Pe,−i∥2TV

)1/2
 ,

which finishes the first part. The final result in the corollary simply follows from that TV distance is symmetric.

Now, we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. We also divide it into two parts: the non-private part and the private part.

Non-private part. Choose some ∆ > 0 and for each e ∈ Ed = {±1}d, let θe = ∆e. Now we need to check the

two conditions in Lemma B.4. First note that ρ = ∥·∥22 satisfies 2-triangle inequality, i.e., α = 2. Also, note that

for any u, v ∈ Ed, ∥θu − θv∥22 = 4∆2
∑d
i=1 1(ui ̸= vi), i.e., τ = 2∆2. Thus, let Pne be the distribution for the n

independent samples of (non-private) yi when θ = θe and then by Corollary B.5, we have

Rl(Plog, ∥·∥22 , ε, δ) ≥ R(Plog, ∥·∥22) ≥
d∆2

2

1−(1

d

d∑
i=1

1

2d

∑
e∈Ed

∥Pne − Pnēi∥
2
TV

)1/2
 .
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Thus, it remains to bound the part of TV distance. By Pinsker’s inequality and chain rule of KL-divergence, we
have for any u, v ∈ Ed

∥Pnu − Pnv ∥
2
TV ≤ 1

4
(DKL (P

n
u ∥Pnv ) +DKL (P

n
v ∥Pnu ))

=
1

4

n∑
k=1

(kl(pu(xk)∥pv(xk)) + kl(pv(xk)∥pu(xk))) ,

Then, by Claim B.1, we can bound the TV-distance term as follows.

∥Pnu − Pnv ∥
2
TV ≤ ∆2

4

n∑
k=1

(
x⊤k (u− v)

)2
.

This directly implies that

1

d2d

d∑
i=1

∑
e∈Ed

∥Pne − Pnēi∥
2
TV ≤ ∆2

4d

1

2d

∑
e∈Ed

d∑
i=1

n∑
k=1

(2xki)
2
=

∆2

d

1

2d

∑
e∈Ed

d∑
i=1

n∑
k=1

x2ki =
∆2

d

1

2d

∑
e∈Ed

∥X∥2F ,

where X ∈ Rn×d and x⊤k ∈ Rd is the k-th row and ∥·∥F is the Frobenius norm. Hence, we obtain that

Rl(Plog, ∥·∥22 , ε, δ) ≥
d∆2

2

[
1−

(
∆2

d
∥X∥2F

)1/2
]
.

Finally, choosing ∆2 = d
4∥X∥2

F

, we have

Rl(Plog, ∥·∥22 , ε, δ) ≥
d2

16 ∥X∥2F
=
d

n
· 1

16 1
dn

∑n
k=1 ∥xk∥

2 .

Since ∥xk∥2 ≤ L2, one can further simplify it as

Rl(Plog, ∥·∥22 , ε, δ) ≥ Ω

(
d

L2
· d
n

)
.

Finally, note that one can indeed easily check that for large enough n, ∥θ∥ ≤ B and also ⟨1, θ⟩ = 0 by halving
the dimension d.

Private part. Now, let us turn to the private part. In particular, let Mn
e be the distribution for the n

independent samples of private view ỹi when θ = θe and then by Corollary B.5, we have

Rl(Plog, ∥·∥22 , ε, δ) ≥
d∆2

2

1−(1

d

d∑
i=1

1

2d

∑
e∈Ed

∥Mn
e −Mn

ēi∥
2
TV

)1/2
 .

Again, the key is to bound the TV-distance term. To this end, by Corollary 3 in Duchi et al. (2018) and Pinsker’s
inequality, we have

∥Mn
u −Mn

v ∥
2
TV ≤ (eε − 1)2

2

n∑
k=1

(kl(pu(xk)∥pv(xk)) + kl(pv(xk)∥pu(xk))) .

Then, following the same analysis as the non-private case, we can obtain that

Rl(Plog, ∥·∥22 , ε, δ) ≥
d∆2

2

[
1−

(
2(eε − 1)2∆2

d
∥X∥2F

)1/2
]
.

Finally, choosing ∆2 = d
8(eε−1)2∥X∥2

F

, we have

Rl(Plog, ∥·∥22 , ε, δ) ≥
d2

32(eε − 1)2 ∥X∥2F
=

d

n(eε − 1)2
· 1

32 1
dn

∑n
k=1 ∥xk∥

2 .
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Again, noting that ∥xk∥2 ≤ L2, one can simplify it as

Rl(Plog, ∥·∥22 , ε, δ) ≥ Ω

(
d

L2
· d

n(eε − 1)2

)
.

C ADDITIONAL DETAILS ON SECTION 4

We are given a query-observation dataset D = (si, a
0
i , a

1
i , yi)

n
i=1. Define xi = ϕ(si, a

1
i ) − ϕ(si, a

0
i ). Under the

BTL model, the labels yi ∈ {0, 1} be drawn from the distribution

pi,1 = P [yi = 1|xi] = σ(θ⊤xi) =
1

1 + exp(−θ⊤xi)
, pi,0 = P [yi = 0|xi] = 1− σ(θ⊤xi) .

When queried the value of yi, the RR mechanism outputs ỹi with probability

P [ỹi = yi] = σ(ε) =
1

1 + exp(−ε)
, P [ỹi ̸= yi] = 1− σ(ε) .

Then, for any θ∈Rd, the predicted probabilities of a randomized label ỹi given xi are

p̃i,1 = P [ỹi = 1|xi] = σ(θ⊤xi)σ(ε) + (1− σ(θ⊤xi))(1− σ(ε)) ,

p̃i,0 = P [ỹi = 0|xi] = (1− σ(θ⊤xi))σ(ε) + σ(θ⊤xi)(1− σ(ε)) .

C.1 Proof of Theorem 4.1

First, the predicted probabilities for any θ ∈ Rd can be computed as

P [ỹi = 1|xi] =
1

1 + exp(−⟨θ, xi⟩)
· exp(ε)

1 + exp(ε)
+

exp(−⟨θ, xi⟩)
1 + exp(−⟨θ, xi⟩)

· 1

1 + exp(ε)
=

1 + e−εe−θ
⊤xi

(1 + e−θ⊤xi)(1 + e−ε)

P [ỹi = 0|xi] =
exp(−⟨θ, xi⟩)

1 + exp(−⟨θ, xi⟩)
· exp(ε)

1 + exp(ε)
+

1

1 + exp(−⟨θ, xi⟩)
· 1

1 + exp(ε)
=

e−ε + e−θ
⊤xi

(1 + e−θ⊤xi)(1 + e−ε)
.

Based on this, the negative log-likelihood in (3) takes the form

l̃D,ε(θ) = − 1

n

n∑
i=1

[
1(ỹi = 1) log

1 + e−εe−θ
⊤xi

(1 + e−θ⊤xi)(1 + e−ε)
+ 1(ỹi = 0) log

e−ε + e−θ
⊤xi

(1 + e−θ⊤xi)(1 + e−ε)

]
.

Now the gradient of negative log-likelihood is given by ∇lD,ε(θ) = − 1
n

∑n
i=1 Vθ,ixi = − 1

nX
⊤Vθ, where

Vθ,i = 1(ỹi = 1)

(
e−θ

⊤xi

1 + e−θ⊤xi
− e−εe−θ

⊤xi

1 + e−εe−θ⊤xi

)
+ 1(ỹi = 0)

(
e−θ

⊤xi

1 + e−θ⊤xi
− e−θ

⊤xi

e−ε + e−θ⊤xi

)
.

It holds that

Eθ[Vθ,i|xi] =
e−θ

⊤xi

1 + e−θ⊤xi
−

(
e−εe−θ

⊤xi

1 + e−εe−θ⊤xi
· 1 + e−εe−θ

⊤xi

(1 + e−θ⊤xi)(1 + e−ε)
+

e−θ
⊤xi

e−ε + e−θ⊤xi
· e−ε + e−θ

⊤xi

(1 + e−θ⊤xi)(1 + e−ε)

)

=
e−θ

⊤xi

1 + e−θ⊤xi
− e−θ

⊤xi

1 + e−θ⊤xi
= 0

Now, under Assumption 2.1, we have −c ⩽ θ⊤xi ⩽ c, where c = O(LB). Hence, we have

Vθ,i|(ỹi = 1) =
e−θ

⊤xi(eε − 1)

(1 + e−θ⊤xi)(eε + e−θ⊤xi)
≤ eε − 1

(eε + e−c)
=
ec(eε − 1)

(eεec + 1)
,

Vθ,i|(ỹi = 0) =
e−θ

⊤xi(eε − 1)

(1 + e−θ⊤xi)(1 + eεe−θ⊤xi)
≤ (eε − 1)

(eε + e−c)
=
ec(eε − 1)

(eεec + 1)
.
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Therefore, it holds that Vθ,i is zero-mean and v = ec(eε−1)
(eεec+1) -sub-Gaussian under the conditional distribution

Pθ[·|xi] and under Assumption 2.1.

Now the Hessian of negative log-likelihood is given by ∇2lD,ε(θ) =
1
n

∑n
i=1 [1(ỹi = 1)α1,i + 1(ỹi = 0)α0,i]xix

⊤
i ,

where

α1,i =
e−θ

⊤xi

(1 + e−θ⊤xi)2
− e−εe−θ

⊤xi

(1 + e−εe−θ⊤xi)2
=

e−θ
⊤xi

(1 + e−θ⊤xi)2
· (e

ε − 1)(eεe2θ
⊤xi − 1)

(1 + eεeθ⊤xi)2
,

α0,i =
e−θ

⊤xi

(1 + e−θ⊤xi)2
− e−θ

⊤xi

(e−ε + e−θ⊤xi)2
=

e−θ
⊤xi

(1 + e−θ⊤xi)2
· (e

ε − 1)(eεe−2θ⊤xi − 1)

(1 + eεe−θ⊤xi)2
.

Under Assumption 2.1, both α1,i, α0,i ≥ γ̃ε for all θ ∈ ΘB , where

γ̃ε = γ
(eε − 1)(eεe−2c − 1)

(eεec + 1)2
.

Now γ̃ε > 0 only when ε > 2c. This implies that l̃D,ε is γ̃ε strongly convex in θB when ε > 2c with respect to

the semi-norm ∥·∥ΣD
. Since θ∗ ∈ ΘB , introducing the error vector ∆ = θ̃MLE − θ∗, we conclude that

γ̃ε ∥∆∥2ΣD
⩽
∥∥∥∇l̃D,ε(θ∗)∥∥∥

(ΣD+λI)−1
∥∆∥(ΣD+λI)

for some λ > 0. Introducing M = 1
n2X(ΣD + λI)−1X⊤, we have

∥∥∥∇l̃D,ε(θ∗)∥∥∥2
(ΣD+λI)−1

= V ⊤
θ∗MVθ∗ . Then, the

Bernstein’s inequality for sub-Gaussian random variables in quadratic form (see e.g. Hsu et al. (2012, Theorem
2.1)) implies that with probability at least 1− α,∥∥∥∇l̃D,ε(θ∗)∥∥∥2

(ΣD+λI)−1
= V ⊤

θ∗MVθ∗ ⩽ v2
(
tr(M) + 2

√
tr(M⊤M) log(1/α) + 2 ∥M∥ log(1/δ)

)
⩽ C1 · v2 ·

d+ log(1/α)

n

for some constant C1 > 0. This gives us

γ̃ε ∥∆∥2ΣD+λI ⩽
∥∥∥∇l̃D,ε(θ∗)∥∥∥

(ΣD+λI)−1
∥∆∥(ΣD+λI) + 4λγ̃εB

2

⩽

√
C1 · v2 ·

d+ log(1/α)

n
∥∆∥(ΣD+λI) + 4λγ̃εB

2 .

Solving for the above inequality, we get

∥∆∥(ΣD+λI) ⩽ C2 ·

√
v2

γ̃2ε
· d+ log(1/α)

n
+ λB2

for some constant C2 > 0. Now note that v
γ̃ε

= ec(eεec+1)
γ(eεe−2c−1) ≤ C3 · (eεe2c+1)

γ(eεe−2c−1) for some constant C3 > 0.

Substituting this, we get∥∥∥θ̃MLE − θ∗
∥∥∥
(ΣD+λI)

⩽ C · (eεe2c + 1)

γ(eεe−2c − 1)

√
d+ log(1/α)

n
+ C ′ ·

√
λB

for some constants C,C ′ > 0, which holds for any ε > 2c. Setting c = O(LB) completes the proof.

C.2 Proof of Theorem 4.2

First recall from (4) our de-biased loss function

l̂D,ε(θ) = − 1

n

n∑
i=1

[
1(ỹi = 1)

(
σ(ε) log σ(θ⊤xi)− (1− σ(ε)) log(1− σ(θ⊤xi))

)
+ 1(ỹi = 0)

(
σ(ε) log(1− σ(θ⊤xi))− (1− σ(ε)) log σ(θ⊤xi)

) ]
.
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The gradient of the loss function is given by ∇l̂D,ε(θ) = − 1
n

∑n
i=1 Vθ,ixi = − 1

nX
⊤Vθ, where

Vθ,i = 1(ỹi = 1)

(
σ′(θ⊤xi)

σ(θ⊤xi)
σ(ε) +

σ′(θ⊤xi)

1− σ(θ⊤xi)
(1− σ(ε))

)
− 1(ỹi = 0)

(
σ′(θ⊤xi)

1− σ(θ⊤xi)
σ(ε) +

σ′(θ⊤xi)

σ(θ⊤xi)
(1− σ(ε))

)
.

It holds that

Eθ[Vθ,i|xi] =
(
σ(θ⊤xi)σ(ε) + (1− σ(θ⊤xi))(1− σ(ε))

)(σ′(θ⊤xi)

σ(θ⊤xi)
σ(ε) +

σ′(θ⊤xi)

1− σ(θ⊤xi)
(1− σ(ε))

)
−
(
(1− σ(θ⊤xi))σ(ε) + σ(θ⊤xi)(1− σ(ε))

)( σ′(θ⊤xi)

1− σ(θ⊤xi)
σ(ε) +

σ′(θ⊤xi)

σ(θ⊤xi)
(1− σ(ε))

)
= 0 .

Furthermore, we have

|Vθ,i|ỹi=1 =
σ′(θ⊤xi)

σ(θ⊤xi)
σ(ε) +

σ′(θ⊤xi)

1− σ(θ⊤xi)
(1− σ(ε)) ,

|Vθ,i|ỹi=0 =
σ′(θ⊤xi)

1− σ(θ⊤xi)
σ(ε) +

σ′(θ⊤xi)

σ(θ⊤xi)
(1− σ(ε)) .

The first derivative of the logistic function σ(·) is given by σ′(z) = σ(z)(1− σ(z)), which gives us

|Vθ,i|ỹi=1 = (1− σ(θ⊤xi))σ(ε) + σ(θ⊤xi)(1− σ(ε)) = Pθ[ỹi = 0|xi]

|Vθ,i|ỹi=0 = σ(θ⊤xi)σ(ε) + (1− σ(θ⊤xi))(1− σ(ε)) = Pθ[ỹi = 1|xi] .

Therefore, it holds that Vθ,i is zero-mean and v = 1 sub-Gaussian under the conditional distribution Pθ[·|xi] .

Now the Hessian of the loss function is given by

∇2 l̂D,ε(θ) =
1

n

n∑
i=1

[
1(ỹi = 1)

(
(1− σ(ε))∇2 log(1− σ(θ⊤xi))− σ(ε)∇2 log σ(θ⊤xi)

)
+ 1(ỹi = 0)

(
(1− σ(ε))∇2 log σ(θ⊤xi)− σ(ε)∇2 log(1− σ(θ⊤xi))

) ]
,

where

∇2 log σ(θ⊤xi) =
σ′′(θ⊤xi)σ(θ

⊤xi)− σ′(θ⊤xi)
2

σ(θ⊤xi)2
xix

⊤
i ,

∇2 log(1− σ(θ⊤xi)) = −σ
′′(θ⊤xi)(1− σ(θ⊤xi)) + σ′(θ⊤xi)

2

(1− σ(θ⊤xi))2
xix

⊤
i .

Now the second derivative of the logistic function σ(·) is given by σ′′(z) = σ′(z)(1− 2σ(z)), which gives us

∇2 log σ(θ⊤xi) = ∇2 log(1− σ(θ⊤xi)) = −σ′(θ⊤xi)xix
⊤
i .

Hence, the Hessian of the loss function takes the form

∇2 l̂D,ε(θ) =
1

n

n∑
i=1

[
1(ỹi = 1)(2σ(ε)− 1)σ′(θ⊤xi) + 1(ỹi = 0)(2σ(ε)− 1)σ′(θ⊤xi)

]
xix

⊤
i .

Now, under Assumption 2.1, observe that σ′(θ⊤xi) ≥ γ for all θ ∈ ΘB , where γ = 1
2+exp(−2LB)+exp(2LB) . This

implies that l̂D,ε is γε := γ(2σ(ε)− 1) strongly convex in ΘB for all ε > 0 with respect to the semi-norm ∥·∥ΣD
.

Since θ∗ ∈ ΘB , introducing the error vector ∆ = θ̂RR − θ∗, we conclude that

γε ∥∆∥2ΣD
⩽
∥∥∥∇l̂D,ε(θ∗)∥∥∥

(ΣD+λI)−1
∥∆∥(ΣD+λI)
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for some λ > 0. Introducing M = 1
n2X(ΣD + λI)−1X⊤, we now have ∥∇lD,ε(θ∗)∥2(ΣD+λI)−1 = V ⊤

θ∗MVθ∗ .

Then, the Bernstein’s inequality for sub-Gaussian random variables in quadratic form (see e.g. Hsu et al. (2012,
Theorem 2.1)) implies that with probability at least 1− α,∥∥∥∇l̂D,ε(θ∗)∥∥∥2

(ΣD+λI)−1
= V ⊤

θ∗MVθ∗ ⩽ v2
(
tr(M) + 2

√
tr(M⊤M) log(1/α) + 2 ∥M∥ log(1/α)

)
⩽ C1 · v2 ·

d+ log(1/α)

n

for some C1 > 0. This gives us

γε ∥∆∥2ΣD+λI ⩽
∥∥∥∇l̂D,ε(θ∗)∥∥∥

(ΣD+λI)−1
∥∆∥(ΣD+λI) + 4λγεB

2

⩽

√
C1 · v2 ·

d+ log(1/α)

n
∥∆∥(ΣD+λI) + 4λγεB

2 .

Solving for the above inequality, we get

∥∆∥(ΣD+λI) ⩽ C2 ·

√
v2

γ2ε
· d+ log(1/α)

n
+ λB2

for some constant C2 > 0. Now note that v
γε

= 1
γ · e

ε+1
eε−1 . Hence, we get

∥∥∥θ̂RR − θ∗
∥∥∥
(ΣD+λI)

⩽
C

γ
· e

ε + 1

eε − 1

√
d+ log(1/α)

n
+ C ′ ·

√
λB,

for some C,C ′ > 0, which holds for any ε ∈ (0,∞). This completes our proof.

C.2.1 Logits

For any θ ∈ Rd, the logits (log-odds) of the probability that the clear-text label yi = 1 given xi is

logit(pi,1)=log
pi,1
pi,0

=log
σ(x⊤i θ)

1− σ(x⊤i θ)
,

where the same for randomized label ỹi = 1 is

logit(p̃i,1) = log
p̃i,1
p̃i,0

=log
σ(x⊤i θ)σ(ε)+(1−σ(x⊤i θ))(1−σ(ε))
(1−σ(x⊤i θ))σ(ε)+σ(x⊤i θ)(1−σ(ε))

.

By Jensen’s inequality and basics of linear programming, we get

logit(p̃i,1) ⩽ log

(
σ(x⊤i θ)σ(ε) + (1− σ(x⊤i θ))(1− σ(ε))

(1− σ(x⊤i θ))
σ(ε)σ(x⊤i θ)

(1−σ(ε))

)
⩽ log

(
max{σ(θ⊤xi), 1− σ(θ⊤xi)}

(1− σ(x⊤i θ))
σ(ε)σ(x⊤i θ)

(1−σ(ε))

)
.

Now, if pi,1 ≥ pi,0, then we have

logit(p̃i,1) ⩽ log

(
σ(θ⊤xi)

(1− σ(x⊤i θ))
σ(ε)σ(x⊤i θ)

(1−σ(ε))

)
⩽ σ(ε) log

(
σ(x⊤i θ)

1− σ(x⊤i θ)

)
= σ(ε) · logit(pi,1) .

Similarly, observe that

logit(p̃i,0) ⩽ log

(
(1− σ(x⊤i θ))σ(ε) + σ(x⊤i θ)(1− σ(ε))

σ(x⊤i θ)
σ(ε)(1− σ(x⊤i θ))

(1−σ(ε))

)
⩽ log

(
max{σ(θ⊤xi), 1− σ(θ⊤xi)}

σ(x⊤i θ)
σ(ε)(1− σ(x⊤i θ))

(1−σ(ε))

)
.

Now, if pi,0 ≥ pi,1, then we have

logit(p̃i,0) ⩽ log

(
1− σ(θ⊤xi)

σ(x⊤i θ)
σ(ε)(1− σ(x⊤i θ))

(1−σ(ε))

)
⩽ σ(ε) log

(
1− σ(x⊤i θ)

σ(x⊤i θ)

)
= σ(ε) · logit(pi,0) .
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Algorithm 1 SGD with Randomized Response

1: Parameters: privacy budget ε; i.i.d dataset D = (xi, yi)
n
i=1; parameter space ΘB ; learning rate (ηt)t≥1.

2: Initialize: θ̂1 = 0.
3: for t=1, . . . , n do
4: Take data point (xt, yt) from the dataset D.
5: Let ỹt be the output of RR mechanism on yt, i.e.,

P [ỹt = yt] =
eε

1 + eε
and P [ỹt ̸= yt] =

1

1 + eε
.

6: Compute the gradient

ĝt =

∑
y∈{0,1} ∇θ̂t

log pt,y

eε + 1
−∇θ̂t

log pt,ỹt ,

where pt,y denotes the probability of observing y ∈ {0, 1} at round t, see (1).

7: Update the estimate θ̂t+1 = ΠΘB
(θ̂t − ηtĝt)

8: end for
9: Output θ̂SGD-RR = θ̂n+1.

Since σ(ε) ∈ (1/2, 1) for any ε > 0, this impies that whenever yi is more likely to occur than 1 − yi in the
clear-text, the log-odds of predicting yi under ε-randomization given by (2) is at most σ(ε)-th fraction of the
corresponding log-odds in the clear-text.

Therefore, we work with the predicted scores of randomized labels:

p̂i,1=
σ(x⊤i θ)

σ(ε)

(1−σ(x⊤i θ))(1−σ(ε))
, p̂i,0=

(1−σ(x⊤i θ))σ(ε)

σ(x⊤i θ)
(1−σ(ε)) ,

which have the property

log
p̂i,1
p̂i,0

=log
σ(x⊤i θ)

1− σ(x⊤i θ)
=logit(pi,1) ,

i.e., the log-odds of predicting yi under ε-randomization is same as the corresponding log-odds in the clear-text.

C.3 Proof of Theorem 4.5

We divide the proof of Theorem 4.5 into the following steps. For ease of presentation, the complete algorithm
for computing θ̂SGD-RR is given in Algorithm 1.

Step 1: For each t ≥ 1, we aim to show that there exists some constants λ, G and random variable ẑt such that

∥∥∥θ̂t+1 − θ∗
∥∥∥2 ≤ (1− 2/t)

∥∥∥θ̂t − θ∗
∥∥∥2 + 2

λt
⟨ẑt, θt − θ∗⟩+

(
G

λt

)2

. (17)

To this end, first recall that that the gradient at round t is given by

ĝt =

∑
y∈{0,1} ∇θ̂t

log pt,y

eε + 1
−∇θ̂t

log pt,ỹt ,

where pt,y, y ∈ {0, 1} denotes the probability of observing y at round t, see (1).

Now, we define ẑt := E[ĝt|Ft−1]−ĝt, where Ft−1 = σ
(
{xs, ys, ỹs}t−1

s=1

)
is the σ-algebra generated by all the random

variables up to and including round t − 1. This conditioning is necessary since θ̂t depends on randomness till



Differentially Private Reward Estimation with Preference Feedback

round t− 1. Then, we have∥∥∥θ̂t+1 − θ∗
∥∥∥2 =

∥∥∥ΠΘB
(θ̂t − ηtĝt)− θ∗

∥∥∥2
≤
∥∥∥θ̂t − ηtĝt − θ∗

∥∥∥2
=
∥∥∥θ̂t − θ∗

∥∥∥2 − 2ηt⟨ĝt, θ̂t − θ∗⟩+ η2t ∥ĝt∥
2

=
∥∥∥θ̂t − θ∗

∥∥∥2 − 2ηt⟨E[ĝt|Ft−1], θ̂t − θ∗⟩+ 2ηt⟨ẑt, θ̂t − θ∗⟩+ η2t ∥ĝt∥
2

(18)

where the last equality holds by definition of ẑt, i.e., ĝt = E[ĝt|Ft−1]− ẑt.

To bound the above, we need to study the term ⟨E[ĝt|Ft−1], θ̂t−θ∗⟩. First note that ĝt is an unbiased and scaled
estimate of the clear-text gradient gt = −∇θ̂t

log pt,yt as

E[ĝt|Ft−1, xt, yt] =

∑
y∈{0,1} ∇θ̂t

log pt,y

eε + 1
−
(

eε

eε + 1
∇θ̂t

log pt,yt +
1

eε + 1
∇θ̂t

log pt,1−yt

)
= −e

ε − 1

eε + 1
∇θ̂t

log pt,yt = (2σ(ε)− 1)gt .

Then, by tower property of conditional expectation, we have

E[ĝt|Ft−1] = E[E[ĝt|Ft−1, xt, yt]|Ft−1] = (2σ(ε)− 1)E[gt|Ft−1] = (2σ(ε)− 1)E[(σ(x⊤t θ̂t)− yt)xt|Ft−1] ,

where the final equality holds by definition of gt. One more application of tower property gives us

E[(σ(x⊤t θ̂t)− yt)xt|Ft−1] = E[E[(σ(x⊤t θ̂t)− yt)xt|Ft−1, xt]|Ft−1] = E[(σ(x⊤t θ̂t)− σ(x⊤t θ̂
∗))xt|Ft−1] .

Since θ̂t is deterministic given Ft−1, we can bound ⟨E[ĝt|Ft−1], θ̂t − θ∗⟩ using the above two equation as

⟨E[ĝt|Ft−1], θ̂t − θ∗⟩ = (2σ(ε)− 1)E[⟨(σ(x⊤t θ̂t)− σ((x⊤t θ
∗))xt, θ̂t − θ∗⟩|Ft−1]

(a)

≥ γ(2σ(ε)− 1)E[(x⊤t (θ̂t − θ∗))2|Ft−1]

(b)

≥ γε(θ̂t − θ∗)⊤E[xtx⊤t |Ft−1](θ̂t − θ∗)

(c)

≥ γεκ
∥∥∥θ̂t − θ∗

∥∥∥2 . (19)

Here (a) holds by mean-value theorem and by noting that σ′(θ⊤xi) ≥ γ for all θ ∈ ΘB under Assumption 2.1,
where γ = 1

2+exp(−2LB)+exp(2LB) ; (b) holds by defining γε = (2σ(ε) − 1)γ; (c) holds by Assumption 4.4 and by

noting that xt is independent of Ft−1.

Now, plugging (19) into (18), yields∥∥∥θ̂t+1 − θ∗
∥∥∥2 ≤

∥∥∥θ̂t − θ∗
∥∥∥2 (1− 2ηtγκ) + 2ηt⟨zt, θ̂t − θ∗⟩+ η2t ∥ĝt∥

2

(a)

≤
∥∥∥θ̂t − θ∗

∥∥∥2 (1− 2ηtγεκ) + 2ηt⟨zt, θ̂t − θ∗⟩+ η2tG
2

(b)
=(1− 2/t)

∥∥∥θ̂t − θ∗
∥∥∥2 + 2

λt
⟨ẑt, θ̂t − θ∗⟩+

(
G

λt

)2

where (a) holds by bounding ∥ĝt∥ ≤ G := 4L under Assumption 2.1; (b) holds by letting λ := γεκ and ηt :=
1
λt ;

Hence, we have established (17).

Step 2: We aim to show that for all t ≥ 2∥∥∥θ̂t+1 − θ∗
∥∥∥2 ≤ 2

λ(t− 1)t

t∑
i=2

(i− 1)⟨ẑi, θ̂i − θ∗⟩+ G2

λ2t2
. (20)
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To this end, we basically expand the recursion in (17) till t = 2 and simple algebra leads to the result. This step
directly follows from Rakhlin et al. (2011).

Step 3: We will apply one particular version of Freedman’s inequality to control the concentration of
∑t
i=2(i−

1)⟨ẑi, θ̂i−θ∗⟩ in (20). In particular, we will apply (Rakhlin et al., 2011, Lemma 3) to bound this sum of martingale
differences for all t ≤ n. This needs to hold for all t since we will rely on induction later.

To start with, we let Zi = ⟨ẑi, θ̂i−θ∗⟩. Then, we have the conditional expectation of Zi given Fi−1 is E[Zi|Fi−1] =

0 and the conditional variance is Var[Zi|Fi−1] ≤ 4G2
∥∥∥θ̂i − θ∗

∥∥∥2, which holds by ∥ẑi∥ ≤ 2G. Now consider the

sum
∑t
i=2(i − 1)⟨ẑi, θi − θ∗⟩ in (20). We need to check two conditions: (i) The sum of conditional variance

satisfies

t∑
i=2

Var[(i− 1)Zi|Fi−1] ≤ 4G2
t∑
i=2

(i− 1)2
∥∥∥θ̂i − θ∗

∥∥∥2 ;

(ii) Uniform upper bound on each term satisfies

|(i− 1)Zi| ≤ 2G(t− 1)
∥∥∥θ̂i − θ∗

∥∥∥ (a)

≤ 2G2(t− 1)

λ
,

where (a) comes from (19) and substituting λ = γεκ. To see this, by Cauchy-Schwartz inequality, we have

γεκ
∥∥∥θ̂t − θ∗

∥∥∥2 ≤ G
∥∥∥θ̂t − θ∗

∥∥∥, and hence
∥∥∥θ̂t − θ∗

∥∥∥ ≤ G/λ for all t. We can then apply (Rakhlin et al., 2011,

Lemma 3) to obtain that for n ≥ 4 and α ∈ (0, 1/e), with probability at least 1− α, it holds for all t ≤ n that

t∑
i=2

(i− 1)Zi ≤ 8Gmax


√√√√ t∑

i=2

(i− 1)2
∥∥∥θ̂i − θ∗

∥∥∥2, G(t− 1)

λ

√
log(log n/α)

√log(log n/α). (21)

Step 4: Once we obtain (21), the remaining step is all about induction and algebra, which follows the same
procedures as in Rakhlin et al. (2011). After all, we will obtain with probability at least 1−α that for all t ≤ n,∥∥∥θ̂t+1 − θ∗

∥∥∥2 ≤ (624 log(log n/α) + 1)G2

λ2t

= CL2

(
eε + 1

eε − 1

)2

· log(log n/α) + 1

γ2κ2t
,

for some absolute constant C. Setting t = n completes the proof.

C.4 Estimation Error under Placket-Luce Model

Let s be a state and a1, . . . , aK be K actions to be compared at that state. Let the label/preference feedback
y ∈ {1, 2, . . . ,K} indicates which action is most preferred by human labeler. Let xi,j = ϕ(s, ai)−ϕ(s, aj), 1 ≤ i ̸=
j ≤ K be the feature difference between actions ai and aj at state s. Define the population covariance matrix

Σi,j = Es∼ρ(·),(a1,...,aK)∼µ(·|s)
[
xi,jx

⊤
i,j

]
.

Assumption C.1 (Coverage of feature space). The data distributions ρ, µ are such that λmin(Σi,j) ≥ κ for
some constant κ>0 for all 1 ≤ i ̸= j ≤ K.

This is a coverage assumption on the state-action feature space. The next result bounds the estimation error of
θ̂SGD-KRR in ℓ2-norm.

Theorem C.2 (Estimation error of θ̂SGD-KRR under Placket-Luce model). Fix α ∈ (0, 1/e) and ε > 0. Then,
under the Placket Luce model (11) and under Assumptions 2.1 and C.1 and setting ηt = 1

γκ , we have, with
probability at least 1− α, ∥∥∥θ̂SGD-KRR−θ∗

∥∥∥
2
≤C · L

γκ
· e
ε+K −1

eε−1

√
log (log(n)/α)

n
,

where γ = e−4LB

2 , C is an absolute constant.
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Proof. We will first show that for all t ≥ 1, the parameter updates satisfy

⟨E[ĝt|Ft−1], θ̂t − θ∗⟩ ≥ γK,εκ
∥∥∥θ̂t − θ∗

∥∥∥2 , (22)

where ĝt =
∑K

y=1 ∇
θ̂t

log pt,y

eε+K−1 − ∇θ̂t
log pt,ỹt is the gradient, Ft−1 = σ

(
{xs, ys, ỹs}t−1

s=1

)
is the σ-algebra generated

by all the random variables up to and including round t− 1, γK,ε := γ eε−1
eε+K−1 and γ = e−4LB/2. Then, one can

follow the steps used in the proof of Theorem 4.5 to derive this result.

Let’s now establish (22). To this end, let Π be the set of all permutations π : [K] → [K] that denotes a
ranking over all K actions given by a human labeler, where aπ(1) denotes the highest-ranked action. Under the
Placket-Luce model, one can compute the probability of observing the permutation π ∈ Π as

Pθ∗[π|s, a1, . . . , aK ]=

K∏
j=1

exp(ϕ(s, aπ(j))
⊤θ∗)∑K

k′=j exp(ϕ(s, aπ(k′))
⊤θ∗)

.

Define, with an abuse of notation, x = (s, a1, . . . , aK) and xπ(j) = ϕ(s, aπ(j)) for all j ∈ [K]. This lets us denote

for any θ ∈ Rd:

Pθ[π|x]=
K∏
j=1

Pθ[π(j)|x] , where Pθ[π(j)|x] =
exp(x⊤π(j)θ)∑K

k′=j exp(x
⊤
π(k′)θ)

.

The negative log-likelihood (log-loss) of predicting the the highest-ranked action aπ(1) given x is

lθ(aπ(1), x) := − logPθ[π(1)|x] = − log
exp(x⊤π(1)θ)∑K

k′=1 exp(x
⊤
π(k′)θ)

.

The expected log-loss takes the form

Gθ(x) := Eπ∼Pθ∗ [·|x]
[
lθ(aπ(1), x)

]
=
∑
π∈Π

Pθ∗ [π|x] lθ
(
aπ(1), x

)
.

This yields the following:

∇2Gθ(x) =
∑
π∈Π

Pθ∗ [π|x]∇2lθ(aπ(1), x) .

Note that the following holds (Zhu et al., 2023):

∇lθ(aπ(1), x) =
K∑
k=1

exp(x⊤π(k)θ)∑K
k′=1 exp(x

⊤
π(k′)θ)

(
xπ(1) − xπ(k)

)
,

∇2lθ(aπ(1), x) =

K∑
k=1

K∑
k′=1

exp(x⊤π(k)θ) · exp(x
⊤
π(k′)θ)

2
(∑K

k′=1 exp(x
⊤
π(k′)θ)

)2 (xπ(k) − xπ(k′)
) (
xπ(k) − xπ(k′)

)⊤
.

Under Assumption 2.1, we have −LB ≤ ϕ(s, a)⊤θ ≤ LB for all θ ∈ ΘB . Define xπ,k,k′ = xπ(k) − xπ(k′) for all

k, k′ ∈ [K]. Then, for any v ∈ Rd and θ ∈ ΘB , we have

v⊤∇2lθ(aπ(1), x)v ≥ e−4LB

2
· v⊤

(
1

K2

K∑
k=1

K∑
k′=1

xπ,k,k′x
⊤
π,k,k′

)
v .

Define the matrix

Σ(π, x) :=
1

K2

K∑
k=1

K∑
k′=1

xπ,k,k′x
⊤
π,k,k′ .
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Then, for θ ∈ ΘB and π ∈ Π, the loss function lθ(aπ(1), x) is γ = e−4LB

2 strongly convex w.rt. the semi-
norm ∥·∥Σ(π,x). This further implies that Gθ(x) is γ strongly convex w.r.t. the semi-norm ∥·∥Σ(x), where

σ(x) :=
∑
π∈Π Pθ∗ [π|x] Σ(π, x).

Since θ∗ ∈ ΘB , we have from definition of strong convexity,

Gθ∗(x) ≥ Gθ(x) + ⟨∇Gθ(x), θ∗ − θ⟩+ γ

2
∥θ − θ∗∥2Σ(x) =⇒ ⟨∇Gθ(x), θ − θ∗⟩ ≥ Gθ(x)−Gθ∗(x) +

γ

2
∥θ − θ∗∥2Σ(x) .

Since θ∗ ∈ argminθ∈ΘB
Gθ(x), we have from definition of first-order optimality of convex functions,

Gθ(x)−Gθ∗(x) ≥ ⟨∇Gθ∗(x), θ − θ∗⟩+ γ

2
∥θ − θ∗∥2Σ(x) ≥

γ

2
∥θ − θ∗∥2Σ(x) .

Combining the above, we have for any θ ∈ ΘB :

⟨∇Gθ(x), θ − θ∗⟩ ≥ γ ∥θ − θ∗∥2Σ(x) =⇒ ⟨Eπ∼Pθ∗

[
∇lθ(aπ(1), x)|x

]
, θ − θ∗⟩ ≥ γ ∥θ − θ∗∥2Σ(x) .

Now, taking expectation over x ∼ (ρ× µ), we have

⟨Ex∼(ρ×µ),π∼Pθ∗ [·|x]
[
∇lθ(aπ(1), x)

]
, θ − θ∗⟩ ≥ γ(θ − θ∗)⊤Ex [Σ(x)] (θ − θ∗)

= γ(θ − θ∗)⊤Ex

[∑
π∈Π

Pθ∗ [π|x]Σ(π, x)

]
(θ − θ∗) .

Note that, by the coverage Assumption C.1, we have Ex [Σ(π, x)] ≥ κ for all π ∈ Π. This yields for any v ∈ Rd,

∀π ∈ Π, v⊤Ex [Σ(π, x)] v ≥ κ ∥v∥2 =⇒ Ex
[
min
π∈Π

v⊤Σ(π, x)v

]
≥ κ ∥v∥2 .

This further yields

v⊤Ex

[∑
π∈Π

Pθ∗ [π|x]Σ(π, x)

]
v = Ex

[∑
π∈Π

Pθ∗ [π|x]v⊤Σ(π, x)v

]

≥ Ex
[
min
π∈Π

v⊤Σ(π, x)v

]
≥ κ ∥v∥2 .

This implies for any θ ∈ ΘB , the following:

⟨Ex∼(ρ×µ),π∼Pθ∗ [·|x]
[
∇lθ(aπ(1), x)

]
, θ − θ∗⟩ ≥ γκ ∥θ − θ∗∥2 . (23)

Now, let πt be the permutation (ranking) given by human labeler at round t, i.e. πt(1) = yt, and π̃t be the
(noisy) ranking after randomization by KRR mechanism (12), i.e. π̃t(1) = ỹt. Note that, we have

P [π̃t(1) = πt(1)] =
eε

eε +K − 1
, P [π̃t(1) = y] =

1

eε +K − 1
,∀y ̸= πt(1) .

Using this, we can re-write the gradient as

ĝt =

∑K
y=1 ∇θ̂t

log pt,y

eε +K − 1
−∇θ̂t

log pt,π̃t(1) ,

where pt,y, y ∈ [K] is the probability of observing y at round t, see (11). Then, we have

E[ĝt|Ft−1, xt, yt] =

∑
y∈{0,1} ∇θ̂t

log pt,y

eε +K − 1
−
(

eε

eε + 1
∇θ̂t

log pt,yt +
1

eε + 1
∇θ̂t

log pt,1−yt

)
= − eε − 1

eε +K − 1
∇θ̂t

log pt,yt =
eε − 1

eε +K − 1
∇lθ̂t(aπt(1), xt) .

Since θ̂t is deterministic given Ft−1, by tower property of conditional expectation, we have

⟨E[ĝt|Ft−1], θ̂t − θ∗⟩ = eε − 1

eε +K − 1
E[⟨∇lθ̂t(aπt(1), xt), θ̂t − θ∗⟩|Ft−1]

≥ γκ
eε − 1

eε +K − 1

∥∥∥θ̂t − θ∗
∥∥∥2 ,

where the last step follows from (23) and by noting that xt, πt are independent of Ft−1. Defining γK,ε := γ eε−1
eε+K−1 ,

we get (22). This completes our proof.
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D ADDITIONAL DETAILS ON SECTION 5

D.1 Proof of Theorem 5.1

Before presenting the proof, let us introduce the following useful lemma. For the label-DP in the central model,
we will leverage the DP version of Assouad’s lemma in Acharya et al. (2021), which is re-stated as follows3.

Lemma D.1 (Assouad’s lemma for central DP). Let the same conditions of Lemma B.4 hold. If for all i ∈ [d],
there exists a coupling (X,Y ) between P+i and P−i with E [dHam(X,Y )] ≤ D for some D ≥ 0, then

Rc(P, ρ, ε, δ) ≥
dτ

2α
·
(
0.9e−10εD − 10Dδ

)
.

Now, we are well-prepared to prove Theorem 5.1.

Proof of Theorem 5.1. First note that the non-private part is the same as before. Thus, we only need to focus
on the second private part.

Choose some ∆ > 0 and for each e ∈ Ed = {±1}d, let θe = ∆e. Now we need to check the two conditions in

Lemma B.4. First note that ρ = ∥·∥22 satisfies 2-triangle inequality, i.e., α = 2. Also, note that for any u, v ∈ Ed,
∥θu − θv∥22 = 4∆2

∑d
i=1 1(ui ̸= vi), i.e., τ = 2∆2. Thus, let Pn+i be the product distribution of P+i and similarly

for Pn−i, then by Lemma D.1, we have

Rc(Plog, ∥·∥22 , ε, δ) ≥
d∆2

2

(
0.9e−10εD − 10Dδ

)
(a)

≥ d∆2

2
(0.9− 10D(ε+ δ))

where D is the bound on the expected hamming distance between (X,Y ), which is a coupling between Pn+i and
Pn−i; (a) holds by the fact that ex ≥ 1 + x.

Thus, it remains to determine D in our case. That is, we need to bound the expected hamming distance between
two product distributions Pn+i and P

n
−i. Note that for the lower bound, it suffices to consider xk = x ∈ Rd with

∥x∥∞ ≤ 1 for all k ∈ [n]. In this case, by the standard result on maximal coupling, we have that for the maximal
coupling (X,Y ) between Pn+i and P

n
−i,

E [dHam(X,Y )] = n ∥P+i − P−i∥TV .

Now, it remains to bound the TV-distance. To this end, by (15) and joint convexity of TV distance, we have

∥P+i − P−i∥TV =

∥∥∥∥∥ 1

|Ed|
∑
e∈Ed

Pe,+i − Pe,−i

∥∥∥∥∥
TV

≤ 1

|Ed|
∑
e∈Ed

∥Pe,+i − Pe,−i∥TV

≤ max
e∈Ed,i∈[d]

∥Pe,+i − Pe,−i∥TV

= max
e∈Ed,i∈[d]

∥Pe − Pēi∥TV ,

where recall that ēi is a vector in Ed that flips the i-th coordinate of e. To proceed, for any i ∈ [d], by Pinsker’s
inequality, we have

∥Pe − Pēi∥
2
TV ≤ 1

4
(DKL (Pe∥Pēi) +DKL (Pēi∥Pe))

(a)

≤ ∆2,

where (a) follows from Claim B.1 and the choice of x such that ∥x∥∞ ≤ 1. Thus, putting everything together,
yields that

E [dHam(X,Y )] = n ∥P+i − P−i∥TV ≤ n∆ := D.

3We correct some constant factor error in the original statement.
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Algorithm 2 Objective Perturbation with Gaussian Noise

1: Parameters: privacy budget ε > 0, δ ∈ (0, 1); regularization parameter β; i.i.d dataset D = (xi, yi)
n
i=1;

parameter space ΘB ; log loss ℓ
2: Sample w ∈ N (0, σ2I)

3: Return θ̂obj = argminθ∈ΘB
lD(θ) +

β
2n ∥θ∥22 +

w⊤θ
n , where lD(θ) =

1
n

∑n
i=1 ℓ(θ, (xi, yi))

With this value of D, we finally obtain that

Rc(Plog, ∥·∥22 , ε, δ) ≥
d∆2

2
(0.9− 10n∆(ε+ δ)) .

Thus, choosing ∆ = 0.04
n(ε+δ) , we obtain that

Rc(Plog, ∥·∥22 , ε, δ) ≥ c · d

n2(ε+ δ)2
,

for some universal constant c. Finally, combined with the non-private part, we have finished the proof.

D.2 Proof of Theorem 5.2

Before we present the proof, we first highlight some differences between our proof and the one in Kifer et al.
(2012). In particular, we note that one cannot simply follow the one in Kifer et al. (2012) as there exists a
gap in Lemma 16 of Kifer et al. (2012) due to non-independence. Thus, we carefully handle this subtlety under
our model. We also explicitly write down the two-step procedures of Successive Approximation to handle the
minimization over a constrained set.

Now, we are ready to present the proof.

Proof of Theorem 5.2. Our goal is to show that θ̂obj is (ε, δ)-label DP in the central model, where

θ̂obj = argmin
θ∈ΘB

lD(θ) +
β

2n
∥θ∥22 +

w⊤θ

n
. (24)

To this end, we will first use Successive Approximation (Theorem 1 in Kifer et al. (2012)), which allows us to
only focus on the following sequence of unconstrained problems (indexed by i ∈ N).

θ̂
(i)
obj = argmin

θ∈Rd

lD(θ) +
β

2n
∥θ∥22 +

w⊤θ

n
+
if(θ)

n
, (25)

where f(θ) = minz∈ΘB
∥θ − z∥2, which is a convex function (but not necessarily differentiable everywhere). The

technique of Successive Approximation (SA) says that it suffices to show that for each i, the computation in (25)
is (ε, δ)-label DP. To show this, we will have to use SA again as f(θ) in (25) is not differentiable everywhere. To
handle this, for each i, we will consider another sequence of problems (indexed by j ∈ N) as follows

θ̂
(i,j)
obj = argmin

θ∈Rd

lD(θ) +
β

2n
∥θ∥22 +

w⊤θ

n
+

1

n
r(i,j)(θ), (26)

where r(i,j)(θ) be the convolution between if(θ) and Kj (defined in Eq.(5) of Kifer et al. (2012)). Now, we have
r(i,j)(θ) is differentiable everywhere and convex. Thus, it only remains to show that the computation in (26) is
(ε, δ)-label DP, for all i, j.

Fix a pair (i, j), we simplify notation in (26) by focusing on the following problem.

θ̃D = argmin
θ∈Rd

lD(θ) +
β

2n
∥θ∥22 +

w⊤θ

n
+

1

n
r(θ). (27)

Step 1: Establish the PDF for θ̃D.
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By differentiability, we have n∇θlD(θ̃D) + βθ̃D + w + ∇r(θ̃D) = 0. Define ψD(θ) := n∇θlD(θ) + βθ + ∇r(θ) .

By change of random variables and w ∼ N (0, σ2Id), we have that the probability density of θ̃D is given by for
t ∈ Rd

fθ̃D (t) = C exp

(
−
∥ψD(t)∥22

2σ2

)
︸ ︷︷ ︸

T1,D

·
∣∣∣∣det [dψD(θ)

dθ
|θ=t

]∣∣∣∣︸ ︷︷ ︸
T2,D

(28)

where we use the fact that if X has density function fX , Y = H(X) for some bijective, differentiable function
H, the Y has density

fY (y) = fX(H−1(y))

∣∣∣∣det [dH−1(z)

dz
|z=y

]∣∣∣∣ .
Note that here the bijective relation holds by the strong convexity thanks to the regularization term β > 0.

Step 2: Bound the PDF ratio under two neighboring datasets.

By definition of DP, it suffices to show that for all t ∈ Rd, with probability at least 1− δ

e−εfθ̃D′
(t) ≤ fθ̃D (t) ≤ eεfθ̃D′

(t),

for all neighboring datasets D,D′. To this end, we first look at the ratio of T2,D/T2,D′ . Note that the matrix
inside the determinant in (28) is the Hessian of lD plus some common terms, given by

∇2r(θ)|θ=t + βI +∇2lD(θ)|θ=t = ∇2r(θ)|θ=t + βI +

n∑
i=1

σ(x⊤i t)(1− σ(x⊤i t))xix
⊤
i ,

which does not depend on labels {yi}ni=1. Thus, T2,D/T2,D′ = 1.

Now, we turn to the ratio of T1,D/T1,D′ . In particular, we have

T1,D
T1,D′

= exp

(
∥ψD′(t)∥22 − ∥ψD(t)∥22

2σ2

)

= exp

(
2⟨ψD(t), ψD′(t) − ϕD(t)⟩+ ∥ϕD′(t)− ψD(t)∥22

2σ2

)

= exp

(
2⟨−w,ψD′(t) − ψD(t)⟩+ ∥ψD′(t)− ψD(t)∥22

2σ2

)
. (29)

where we know that ψD(t) = −w, which is distributed according to a normal. However, one needs to be
careful here to show that ϕD′(t) − ϕD(t) is independent of w so that one can claim that the inner product is
also distributed according to a normal. In fact, this is not true in general4! Fortunately, in our case, for two
neighboring datasets D,D′ that differs only in yj , y

′
j we have

ψD′(t)− ψD(t) =

(
1

1 + exp(−⟨xj , t⟩)
− y′j

)
xj −

(
1

1 + exp(−⟨xj , t⟩)
− yj

)
xj

= xjyj − xjy
′
j ,

which is independent of the sampled noise w. Thus, we now can safely follow a similar approach in Kifer et al.
(2012). That is, by the concentration of normal distribution, we have with probability at least 1− δ,

|⟨−w,ψD′(t)− ψD(t)⟩| ≤ ∥ψD′(t)− ψD(t)∥σ
√

2 log(2/δ).

4This is why Lemma 16 in Kifer et al. (2012) does not hold in general.
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Meanwhile, we have ∥ψD′(t)− ψD(t)∥ ≤ 2L by Assumption 2.1. Putting everything back to (29), yields that
with prbability at least 1− δ

T1,D
T1,D′

≤ exp

(
2Lσ

√
8 log(2/δ) + (2L)2

2σ2

)
(a)

≤ exp(ε),

where (a) holds if σ ≥ L
√

8 log(2/δ)+4ε

ε . Combining this with T2,D/T2,D′ = 1, yields the required result, hence
finishing the proof.

D.3 Proof of Theorem 5.3

Before presenting the proof, we first introduce the following useful lemma.

Lemma D.2 (Theorm 5.1.1 in Tropp et al. (2015)). Consider a finite sequence {Xi} of independent random,
symmetric matrices in Rd. Assume that λmin(Xi) ≥ 0 and λmax(Xi) ≤ H for each i. Let Y =

∑
iXi and µmin

denote the minimum eigenvalue of the expectation E [Y ], i.e., µmin = λmin(
∑
i E [Xi]). Then, for any ε ∈ (0, 1),

it holds

P [λmin(Y ) ≤ εµmin] ≤ d · exp
(
−(1− ε)2

µmin

2H

)
.

Now, we are ready to prove Theorem 5.3.

Proof of Theorem 5.3. Let L̃D(θ) := lD(θ) +
β
2n ∥θ∥22 +

w⊤θ
n . We divide the proof into the following steps.

Step 1: Let ∆ := θ̂obj − θ∗. Show that c ∥∆∥ ≤
∥∥∥∇L̃D(θ

∗)
∥∥∥ for some positive constant c.

To this end, note that we always have

L̃D(θ
∗ +∆)− L̃D(θ

∗)− ⟨∇L̃D(θ
∗),∆⟩ ≤ −⟨∇L̃D(θ

∗),∆⟩,

since L̃D(θ
∗ + ∆) = L̃D(θ̂obj) ≤ L̃D(θ

∗) by the optimality of θ̂obj. The RHS of above inequality can be upper

bounded by
∥∥∥∇L̃D(θ

∗)
∥∥∥ ∥∆∥. Thus, it remains to lower bound the LHS, which motivates us to show that L̃D is

strongly convex with respect to the ℓ2-norm ∥·∥2. That is, we need to show that for all v, θ,

v⊤∇2L̃D(θ)v ≥ c ∥v∥22

for some positive constant c > 0. Now, let us look at the Hessian matrix of L̃D at any θ,

∇2L̃D(θ) =
β

n
I +

1

n

n∑
i=1

σ(x⊤i θ)(1− σ(x⊤i θ))xix
⊤
i . (30)

To proceed, we will leverage Lemma D.2. In particular, to apply it to our case, we have Xi = xix
⊤
i with H = L2,

µmin = nκ by Assumptions 2.1 and 4.4. Hence, as a result of Lemma D.2, with probability at least 1− α,

λmin(
∑
i

xix
⊤
i ) ≥

nκ

2
, (31)

when n ≥ 8L2 log(d/α)
κ . Thus, condition on the good event, plugging (31) into (30) and noting that

infz∈[−2LB,2LB] σ(z)(1− σ(z)) ≥ γ := 1
2+exp(−2LB)+exp(2LB) , yields that

v⊤∇2L̃D(θ)v ≥
(
β

n
+
κγ

2

)
∥v∥22 .

Thus, we have so far established that(κγ
2

)
∥∆∥ ≤

(
β

n
+
κγ

2

)
∥∆∥ ≤

∥∥∥∇L̃D(θ
∗)
∥∥∥, (32)
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where β > 0.

Step 2: Bound
∥∥∥∇L̃D(θ

∗)
∥∥∥ with high probability.

To this end, we note that

∇L̃D(θ
∗) =

1

n

n∑
i=1

(
xi(σ(x

⊤
i θ

∗)− yi)
)

︸ ︷︷ ︸
T1

+
β

n
θ∗︸︷︷︸

T2

+
w

n︸︷︷︸
T3

.

Thus, we need to bound each of the terms on the RHS. We start with T1. Let Vi := σ(x⊤i θ
∗)− yi and hence we

have E [Vi] = 0. Thus, we can write T1 = − 1
nX

TV , where X ∈ Rn×d is the data matrix and x⊤i ∈ Rd is the i-th

row of it. Hence, we have ∥T1∥2 = 1
n2V

⊤XX⊤V . To analyze the concentration for this quadratic form, we will
resort to the classic Hanson-Wright inequality. In particular, we will apply the explicit bound in Theorem 2.1
of Hsu et al. (2012). To this end, we need to check the following quantities of M := 1

n2XX
⊤:

tr(M) ≤ 4L2/n

tr(M2) ≤ 16L4/n2

∥M∥op = λmax(M) ≤ 4L2/n,

where the above inequalities hold by simple linear algebra and the boundedness assumption. Thus, by Theorem
2.1 of Hsu et al. (2012), we have with probability at least 1− α

∥T1∥2 = V ⊤MV ≤ C1L
2 1 + log(1/α)

n
,

where C1 is some universal constant.

For T2, we have ∥T2∥ ≤ βB
n by boundedness assumption. For T3, by the standard concentration of the norm of

Gaussian vector (cf. Theorem 3.1.1 in Vershynin (2018)), we have with probability at least 1− α,

∥T3∥ ≤ C3
1

n
σ
(√

d+
√
log(1/α)

)
,

where C3 is again form universal constant.

Putting all these bounds together and choosing β =
√
n/B, yields that with probability at least 1− α,

∥∥∥∇L̃D(θ
∗)
∥∥∥ ≤ C ·

(
L

√
1 + log(1/α)

n
+ σ

1

n

√
d+ σ

1

n

√
log(1/α)

)
, (33)

where C is some universal constant.

Step 3: Derive the final bound.

Plugging the bound in (33) into (32), yields

∥∆∥ ≤ C ′

 L

κγ

√
1 + log(1/α)

n
+
σ
(√

d+
√
log(1/α)

)
nκγ

 .

Recall that σ =
L
√

8 log(2/δ)+4ε

ε , and hence we finally have the bound

∥∆∥ ≤ C ′

 L

κγ

√
1 + log(1/α)

n
+

(√
d+

√
log(1/α)

)
nκγ

·
L
√
8 log(2/δ) + 4ε

ε

 .
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D.4 Semi-norm Error Bounds under Central Label DP

In this section, we prove bounds on the estimation error in semi-norm under central label DP.

D.4.1 Lower Bound

We have the following result for the lower bound on the estimation error.

Theorem D.3. For a large enough n, any estimator θ̂ based on samples form the BTL model that satisfies
(ε, 0)-label DP in the central model has the estimation error in semi-norm lower bounded as

E
[∥∥∥θ̂ − θ∗

∥∥∥2
ΣD+λI

]
≥ Ω

(
d

n
+

d2

n2ε2

)
.

To prove the theorem, we will leverage the following useful result, i.e., DP version of Fano’s lemma5.

Lemma D.4 (Fano’s lemma for central DP (Acharya et al., 2021)). Let V = {P1, P2, . . . , PM} ⊆ P such that
for all i ̸= j,

DKL (Pi∥Pj) ≤ β , ρ′(θ(Pi), θ(Pj)) ≥ τ .

for a semi-metric ρ′ and for some τ, β > 0. Moreover, let there exists a coupling between Pi and Pj such that
E [dham(X,Y )] ≤ D for some D > 0. Then, we have

R(P, (ρ′)2, ε) ≥ max

{
τ2

4

(
1− β + log 2

logM

)
, 0.2τ2 min

{
1,

M

e10εD

}}
.

Now, we are ready to prove Theorem D.3.

Proof of Theorem D.3. The non-private part is the same as before, i.e., the proof for Theorem 3.1. For the
private part, we follow the same packing construction as in the proof of Theorem 3.1. Let (X,Y ) be the coupling
between Pni and Pnj , since n samples are observed. Again, we utilize the maximal coupling property to obtain

E [dHam(X,Y )] =

n∑
k=1

∥Pi,k − Pj,k∥TV

≤
√
n

√√√√ n∑
k=1

∥Pi,k − Pj,k∥2TV

≤
√
n/2

√∑
k

DKL (Pi,k∥Pj,k)

(a)

≤
√
n/2

√
n∆2 ≤ 1/

√
2n∆ := D,

where (a) follows from (14). Now, noting that τ2 = Θ(∆2), M = Θ(ed), letting ∆ = c · d
nε , we obtain

Rc(Plog, ∥·∥2ΣD+λI , ε) ≥ Ω

(
d2

n2ε2

)
.

D.4.2 Upper Bound

Theorem D.5. Let α ∈ (0, 1). Then, under Assumptions 2.1 and 4.4, θ̂obj satisfies∥∥∥θ̂obj − θ∗
∥∥∥
ΣD+λ′I

≤ O

(
1

γ

√
d+ log(1/α)

n
+

√
σ(d log(1/α))1/4√

nγB

)
5As before, we correct some constant factor errors in the original statement in Acharya et al. (2021).
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with probability at least 1 − α, where γ := 1
2+exp(−2LB)+exp(2LB) and λ′ :=

σ
√
d log(1/α)

γnB . Thus, setting noise

parameter σ =
L
√

8 log(2/δ)+4ε

ε , it satisfies (ε, δ)-label DP in the central model and has estimation error

∥∥∥θ̂obj − θ∗
∥∥∥
ΣD+λ′I

≤ O

(
1

γ

√
d+ log(1/α)

n
+

√
L ((log(2/δ) + 4ε)d log(1/α))

1/4

√
nεγB

)
.

Proof. Let L̃D(θ) := lD(θ) +
β
2n ∥θ∥22 +

w⊤θ
n . We divide the proof into the following steps.

Step 1: Let ∆ := θ̂obj − θ∗. Show that c ∥∆∥2ΣD
≤
∥∥∥∇L̃D(θ

∗)
∥∥∥
(ΣD+λI)−1

∥∆∥ΣD+λI , for some positive constant

c.

To this end, note that we always have

L̃D(θ
∗ +∆)− L̃D(θ

∗)− ⟨∇L̃D(θ
∗),∆⟩ ≤ −⟨∇L̃D(θ

∗),∆⟩,

since L̃D(θ
∗ + ∆) = L̃D(θ̂obj) ≤ L̃D(θ

∗) by the optimality of θ̂obj. The RHS of above inequality can be upper

bounded by
∥∥∥∇L̃D(θ

∗)
∥∥∥
(ΣD+λI)−1

∥∆∥ΣD+λI for any λ > 0. Thus, it remains to lower bound the Hessian. That

is, we aim to show that for all v, θ ∈ ΘB ,

v⊤∇2L̃D(θ)v ≥ c ∥v∥2ΣD

for some positive constant c > 0. By definition, the Hessian of L̃D at any θ ∈ ΘB is

∇2L̃D(θ) =
β

n
I +

1

n

n∑
i=1

σ(x⊤i θ)(1− σ(x⊤i θ))xix
⊤
i

≥ γ ∥v∥2ΣD+λ′I ,

where the inequality follows from β > 0 and infz∈[−2LB,2LB] σ(z)(1 − σ(z)) ≥ γ := 1
2+exp(−2LB)+exp(2LB) and

λ′ := β/(γn) Thus, for all ∆ such that θ∗ +∆ ∈ ΘB , by Taylor expansion, we have

γ

2
∥∆∥2ΣD+λ′I ≤

∥∥∥∇L̃D(θ
∗)
∥∥∥
(ΣD+λ′I)−1

∥∆∥ΣD+λ′I .

Step 2: Bound
∥∥∥∇L̃D(θ

∗)
∥∥∥
(ΣD+λ′I)−1

with high probability.

To this end, we note that

∇L̃D(θ
∗) =

1

n

n∑
i=1

(
xi(σ(x

⊤
i θ

∗)− yi)
)

︸ ︷︷ ︸
T1

+
β

n
θ∗︸︷︷︸

T2

+
w

n︸︷︷︸
T3

.

By the same analysis as in Zhu et al. (2023), we have with probability at least 1− α

∥T1∥(ΣD+λ′I)−1 ≤ C ·
√
d+ log(1/α)

n
,

for some absolute constant C. For T2, we have

∥T2∥(ΣD+λ′I)−1 ≤ β

n
√
λ′

∥θ∗∥ ≤ βB

n
√
λ′
.

For T3, by the concentration of the norm of the Gaussian vector, we have with probability at least 1− α,

∥T3∥(ΣD+λ′I)−1 ≤ 1

n
√
λ′

∥w∥ ≤ O

(
σ

n
√
λ′

(√
d+

√
log(1/α)

))
.
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Putting all of them together, we have

γ

2
∥∆∥2ΣD+λ′I ≤ C ′

(√
d+ log(1/α)

n
+

βB

n
√
λ′

+
σ
√
d log(1/α)

n
√
λ′

)
∥∆∥ΣD+λ′I ,

which directly implies that

∥∆∥ΣD+λ′I ≤ C1 ·
1

γ

√
d+ log(1/α)

n
+ C1

1

γ

(
βB

n
√
λ′

+
σ
√
d log(1/α)

n
√
λ′

)
.

Thus, choosing λ′ =
σ
√
d log(1/α)

γnB (i.e., β =
σ
√
d log(1/α)

B ), yields that

∥∆∥ΣD+λ′I ≤ O

(
1

γ

√
d+ log(1/α)

n
+

√
σ(d log(1/α))1/4√

nγB
.

)

Finally, plugging in noise value σ =
L
√

8 log(2/δ)+4ε

ε , yileds our final result

∥∥∥θ̂obj − θ∗
∥∥∥
ΣD+λ′I

≤ O

(
1

γ

√
d+ log(1/α)

n
+

√
L ((log(2/δ) + 4ε)d log(1/α))

1/4

√
nεγB

)
.

Note that the privacy guarantee follows the same as before, hence completing the proof.

E Generalization to Standard DP

In the main paper, we mainly focus on protecting the labels via label DP, which is well-motivated by many
practical situations. It turns out that our technique can also be generalized to handle privacy protection of both
features and labels, i.e., the standard DP notion.

We start with the central model. Since objective perturbation (Kifer et al., 2012) was originally proposed to
achieve standard DP in the central model, it would be natural to adopt it in our case. However, as before,
we cannot directly employ the results in Kifer et al. (2012) to prove privacy guarantee due to the gap in their
Lemma 16. Instead, we found that for log loss, one can get rid of the independence issue in their Lemma 16,
and hence establish the privacy guarantee with the same order of Gaussian noise. This is not true in general for
arbitrary convex losses (where an additional

√
d factor is required), as also observed in Agarwal et al. (2023).

Privacy. In the following, we will show that with minor constant changes in the noise parameter of Theorem 5.2,
Algorithm 2 also achieves standard DP in the central model, i.e., the neighboring relation is now about a change
of (xi, yi) rather than only yi under label DP as considered in Theorem 5.2.

Theorem E.1 (Privacy under standard DP). Let ε > 0, δ ∈ (0, 1) and Assumption 2.1 hold. Then, setting

σ ≥ 4L
√

8 log(4/δ)+2ε

ε and β ≥ 4L2

ε , Algorithm 2 satisfies (ε, δ)-DP in the central model.

Proof. As in the proof of Theorem 5.2, we will use two Successive Approximations, which allows us to only focus
on the following problem

θ̃D = argmin
θ∈Rd

lD(θ) +
β

2n
∥θ∥22 +

w⊤θ

n
+

1

n
r(θ).

Also, as before, we have the following PDF.

fθ̃D (t) = C exp

(
−
∥ψD(t)∥22

2σ2

)
︸ ︷︷ ︸

T1,D

·
∣∣∣∣det [dψD(θ)

dθ
|θ=t

]∣∣∣∣︸ ︷︷ ︸
T2,D

(34)
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We are again left to bound the two ratios. To this end, we first look at the ratio of T2,D/T2,D′ . Note that the
matrix inside the determinant in (34) is the Hessian of lD plus some common terms, given by

AD := ∇2r(θ)|θ=t + βI +∇2lD(θ)|θ=t = ∇2r(θ)|θ=t + βI +

n∑
i=1

σ(x⊤i t)(1− σ(x⊤i t))xix
⊤
i ,

which now depends on xi. Hence, we need some additional steps to bound this ratio under standard DP. In
particular, we define E := AD −AD′ = σ(x⊤s t)(1−σ(x⊤s t))xsx⊤s −σ(x′⊤s t)(1−σ(x′⊤s t))x′sx′⊤s , where D,D′ differs
in one single sample at index s. Thus, the rank of E is most two and moreover the sum of largest and second
largest eigenvalue of E satisfies

|λ1(E)|+ |λ2(E)| ≤ 1

4
· 4L2 +

1

4
· 4L2 = 2L2,

where we have used the boundedness assumption. This also implies that

|λ1(E)| · |λ2(E)| ≤ L4.

To proceed, we will leverage the following result.

Claim E.2 (Lemma 10 in Chaudhuri et al. (2011)). If A is full rank and if E has rank at most 2, then

det(A+ E)− det(A)

det(A)
= λ1(A

−1E) + λ2(A
−1E) + λ1(A

−1E) · λ2(A−1E),

where λj(Z) is the j-th largest eigenvalue of matrix Z.

Note that for j = 1, 2, |λj(A−1
D′E)| ≤ |λj(E)|

β due to the fact that the minimal eigenvalue of AD′ is at least β.
Thus, by Claim E.2, we have

T2,D
T2,D′

=
|det(AD′ + E)|

|det(AD′)|
=
∣∣1 + λ1(A

−1
D′E) + λ2(A

−1
D′E) + λ1(A

−1
D′E) · λ2(A−1

D′E)
∣∣

≤ 1 +
2L2

β
+
L4

β2

=

(
1 +

L2

β

)2

≤ e2L
2/β .

Thus, when β ≥ 4L2

ε , we have
T2,D
T2,D′

≤ eε/2.

Now, let us turn to bound
T1,D
T1,D′

. In particular, we have

T1,D
T1,D′

= exp

(
∥ψD′(t)∥22 − ∥ψD(t)∥22

2σ2

)

= exp

(
2⟨ψD(t), ψD′(t) − ϕD(t)⟩+ ∥ψD′(t)− ψD(t)∥22

2σ2

)

= exp

(
2⟨−w,ψD′(t) − ψD(t)⟩+ ∥ψD′(t)− ψD(t)∥22

2σ2

)
. (35)

where we know that ψD(t) = −w, which is distributed according to a normal. However, one needs to be careful
here to show that ψD′(t) − ψD(t) is independent of w so that one can claim that the inner product is also
distributed according to a normal. In our case, for two neighboring datasets D,D′ that differs only in (xs, ys)
and (x′s, y

′
s) we have

ψD′(t)− ψD(t) =

(
1

1 + exp(−⟨x′s, t⟩)
− y′s

)
x′s −

(
1

1 + exp(−⟨xs, t⟩)
− ys

)
xs.
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Then, we have

|⟨−w,ψD′(t)− ψD(t)⟩| ≤ |⟨w, x′s⟩|+ |⟨w, xs⟩|,

which combined with the concentration of normal distribution and boundedness of xs, x
′
s, leads to that with

probability at least 1− δ,

|⟨−w, ϕD′(t)− ϕD(t)⟩| ≤ 4Lσ
√

2 log(4/δ).

Meanwhile, we have ∥ψD′(t)− ψD(t)∥ ≤ 4L by Assumption 2.1

Putting everything back to (35), yields that with probability at least 1− δ

T1,D
T1,D′

≤ exp

(
2Lσ

√
8 log(4/δ) + (4L)2

2σ2

)
(a)

≤ exp(ε/2),

where (a) holds if σ ≥ 4L
√

8 log(4/δ)+2ε

ε . Combining this with T2,D/T2,D′ = eε/2, yields the required result, hence
finishing the proof.

Utility. For the estimation error under ℓ2 norm, one can follow the same proof of Theorem 5.3. One difference
is to remember to check the condition of β in Theorem E.1, which can be satisfied by conditions on n and ε. For
the estimation error in semi-norm, one needs additional steps compared to the proof of Theorem D.5, since now
it needs to establish the concentration of ∥·∥Σ̃D+λI , where Σ̃D is the private covariance matrix. First, one can
privatize the covariance matrix ΣD via the standard Gaussian mechanism. Then, to guarantee a semi-positive
nature of Σ̃D + λI, one needs to choose λ properly, which can be done by following the routine in previous
DP linear bandits (see Shariff and Sheffet (2018); Chowdhury and Zhou (2022)). Finally, one can translate the
concentration ∥·∥ΣD+λI in Theorem D.5 to ∥·∥Σ̃D+λI in Theorem D.5 via standard Gaussian concentration and
the property of linear summation of Gaussian. Ignoring all other factors (γ, B, L), the final cost of privacy

should be on the order of (d log(1/δ)1/4√
nε

for ε ∈ (0, 1). One subtlety again is that one needs to check β satisfies the

condition in Theorem E.1.

Remark E.3 (Remark on local DP). In contrast to local label DP in the main paper, establishing local standard
DP is challenging in our offline reward estimation setting, which is non-interactive. This is different from
interactive online logistic regression in Duchi et al. (2018). In fact, it is in general not straightforward to derive
an efficient algorithm even for ERM under the non-interactive setting Smith et al. (2017), let alone the parameter
estimation problem in our setting. We leave it to one of our future research directions.


	INTRODUCTION
	PRELIMINARIES
	LOCAL MODEL: LOWER BOUND ON ESTIMATION ERROR
	LOCAL MODEL: UPPER BOUND ON ESTIMATION ERROR
	The Maximum Likelihood Estimator
	An Estimator Tailored to RR
	Efficient Computation via SGD
	Extensions to Other Preference Models

	CENTRAL MODEL: ESTIMATION ERROR BOUNDS
	Lower Bound
	Algorithm and Upper Bound

	SIMULATIONS
	CONCLUSION
	ADDITIONAL RELATED WORK
	ADDITIONAL DETAILS ON SECTION 3
	Proof of Theorem 3.1
	Proof of Theorem 3.2

	ADDITIONAL DETAILS ON SECTION 4
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Logits

	Proof of Theorem 4.5
	Estimation Error under Placket-Luce Model

	ADDITIONAL DETAILS ON SECTION 5
	Proof of Theorem 5.1
	Proof of Theorem 5.2
	Proof of Theorem 5.3
	Semi-norm Error Bounds under Central Label DP
	Lower Bound
	Upper Bound


	Generalization to Standard DP

