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Abstract

Many industrial and scientific applications
require optimization of one or more objec-
tives by tuning dozens or hundreds of input
parameters. While Bayesian optimization
has been a popular approach for the efficient
optimization of blackbox functions, its per-
formance decreases drastically as the dimen-
sionality of the search space increases (i.e.,
above twenty). Recent advancements in high-
dimensional Bayesian optimization (HDBO)
seek to mitigate this issue through techniques
such as adaptive local search with trust re-
gions or dimensionality reduction using ran-
dom embeddings. In this paper, we provide a
close examination of these advancements and
show that sampling strategy plays a promi-
nent role and is key to tackling the curse-of-
dimensionality. We then propose cylindrical
Thompson sampling (CTS), a novel strategy
that can be integrated into single- and multi-
objective HDBO algorithms. We demon-
strate this by integrating CTS as a mod-
ular component in state-of-the-art HDBO
algorithms. We verify the effectiveness of
CTS on both synthetic and real-world high-
dimensional problems, and show that CTS
largely enhances existing HDBO methods.

1 INTRODUCTION

The need for optimization of high-dimensional black-
box functions with unknown gradients is pervasive in
real-world applications, ranging from hyper-parameter
optimization (Kandasamy et al., 2018), camera image
signal processor tuning (Mosleh et al., 2020), policy
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parameter optimization in robotic control (Calandra
et al., 2016), vehicle design optimization (Kohira et al.,
2018), and drug discovery (Negoescu et al., 2011).

Bayesian optimization (BO) stands out for its excep-
tional sample efficiency in the optimization of black-
box functions. Typically, these BO algorithms encom-
pass two vital components. The first employs learning
methodologies to construct a surrogate model of the
unknown objective function(s). The second compo-
nent utilizes this model, combined with a sample ac-
quisition strategy, to judiciously select query point(s)
for evaluation. By leveraging the uncertainty quan-
tification provided by the surrogate model, BO algo-
rithms balance exploration and exploitation, resulting
in highly sample-efficient optimization. While BO has
emerged as a versatile approach with applications in
diverse problem domains, a fundamental challenge re-
mains — the “curse of dimensionality”, which poses
a significant obstacle to traditional BO (Wang et al.,
2018b). Presumably due to increased real-world de-
mand, there is an increased interest in overcoming
this challenge by enhancing the performance of high-
dimensional Bayesian optimization (HDBO). Different
approaches to HDBO have been explored, including
transformation of the search space geometry (Oh et al.,
2018; Jaquier et al., 2020), limiting search to local
trust regions (Eriksson et al., 2019; Daulton et al.,
2022), and simultaneous discovery and optimization of
low-dimensional active subspaces (Wang et al., 2016a;
Munteanu et al., 2019; Raponi et al., 2020; Papenmeier
et al., 2022). However, there is a lack of systematic
study on how these independent design features affect
HDBO performance, and which of them is most criti-
cal.

In this paper, we aim to bridge this gap by first review-
ing recent HDBO methods, where each can be viewed
as a combination of design choices to effectively tackle
the curse-of-dimensionality. From there, we show that
the candidate generation strategy is arguably the most
important component in Thompson sampling-based
HDBO algorithms. Upon this observation, we de-
velop Cylindrical Thompson Sampling (CTS), which
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can improve high-dimensional exploration in existing
HDBO frameworks. Experiments in which CTS is in-
tegrated as a modular component in state-of-the-art
algorithms show that CTS enhances HDBO perfor-
mance on both public benchmarks and real-world do-
mains. The source code for CTS-BO is available at
https://github.com/HW-AI-Research/CTS-HDBO.

2 SUMMARY OF PREVIOUS
WORK

We begin by examining the curse-of-dimensionality in
HDBO from the sampling strategy point of view. Af-
ter that, we provide an anatomy of HDBO by exten-
sively reviewing recent HDBO algorithms. We then
summarize their algorithmic differences by identifying
a list of design choices where they differ by employing
disparate choices to mitigate the dimensionality issue.

2.1 Curse-of-Dimensionality From the
Perspective of Sampling Strategies

The curse-of-dimensionality manifests in many ways,
and in Bayesian optimization it is particularly sinister
(Binois and Wycoff, 2022). At the root of several is-
sues is the fact that uniformly sampled points in high
dimensions will almost certainly be distant from one
another (see Figure. 1). In the course of optimiza-
tion, a candidate point randomly sampled from a high-
dimensional search space is likely to be distant from
all previously observed points. This is problematic
because the commonly used Gaussian Process (GP)
model relies heavily on the assumption that nearby
points exhibit similar function values. If a candi-
date point has no nearby neighbors, the posterior will
thus exhibit high uncertainty. This high uncertainty
yields large scores according to the acquisition func-
tions, causing the BO algorithm to become trapped in
a cycle of constant exploration. This phenomenon is
dubbed the “over-exploration problem” Siivola et al.
(2018). Due to the over-exploration problem, stan-
dard GP surrogates without any dedicated strategies
for dealing with high-dimensional spaces (e.g., (Snoek
et al., 2012)) are usually limited to BO with functions
over spaces with less than twenty dimensions (Letham
et al., 2020).

2.2 Anatomy of HDBO

Existing HDBO solutions tackle the curse of dimen-
sionality by innovations from majorly three aspects:
parameter range reduction, parameter dimensionality
reduction and effective strategies for acquisition. In
below, we review each of them and then provide a fo-
cused discussion on the acquisition strategy.

Figure 1: Squared interpoint distances of points sam-
pled uniformly from unit hypercubes of increasing di-
mensionality. The coefficient of variation (CV) de-
creases as d increases.

(1) Parameter range reduction as proposed in
LaMoo(Zhao et al., 2022), utilizes a support vector
machine (SVM) within a Monto-Carlo Tree Search
(MCTS) defined over search space to truncate the pa-
rameter range space, distinguishing good (i.e., Pareto-
front areas likely to yield optimum solutions) from
bad regions. While this approach offers improve-
ments over standard BO (Daulton et al., 2021), its
computational complexity restricts its practicality. In
(Perrone et al., 2019), it is proposed to utilize trans-
fer learning to design BO search space automatically.
This approach outperforms its predecessor sequential
model-based optimization (SMBO) (Wistuba et al.,
2015) which also leverages knowledge transfer to re-
duce search space volume.

(2) Parameter dimensionality reduction effec-
tively handles the challenge of high dimensionality in
Bayesian Optimization (BO) by employing linear em-
beddings (Munteanu et al., 2019; Wang et al., 2016a;
Letham et al., 2020; Raponi et al., 2020). These
embeddings transform the high-dimensional parame-
ter space into a more manageable lower-dimensional
equivalent for GP-based BO. However, active-subspace
methods often necessitate user-guessed dimensions for
the active subspace, which is impractical. In contrast,
BAxUS (Papenmeier et al., 2022) introduces a dis-
tinct random embedding approach, transforming the
parameter space into a lower-dimension latent space,
progressively increasing them towards a theoretical up-
per limit. On the other hand, SAASBO (Eriksson and
Jankowiak, 2021) deactivates redundant parameter di-
mensions in the BO surrogate model using priors on
the length scale hyperparameters, and achieves rapid
convergence to competitive solutions, albeit with high
computational complexity and limited scalability to
high budgets.

(3) Acquisition strategy is pivotal for HDBO, since
in high-dimensional spaces, effective exploration be-
comes very difficult. In comparison to standard BO,
it requires specialization in Sampling Method, Sur-
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rogate Model Choice, Surrogate Model Domain, and
Surrogate Model Sampling Scope. Figure. 2 summa-
rizes the diverse design choices by recent advancements
in HDBO.

(3.I) Sampling Methods can have a significant im-
pact on the performance of BO algorithms. In the
case of Monte Carlo acquisition functions, the choice
of sampler can affect approximation variance. Sev-
eral common acquisition functions can be expressed as
the expectation of some function of the model out-
put (Daulton et al., 2021; Frazier et al., 2009). Eval-
uating these integrals is often intractable, especially
in the batched/parallel acquisition setting. As such,
the expectations are typically replaced with Monte
Carlo approximations. Quasi-Monte Carlo sampling
approaches (e.g., scrambled Sobol sequences) are typ-
ically used to reduce the variance of these approxima-
tions (Balandat et al., 2020).

As an alternative to Monte Carlo acquisition func-
tions, Thompson sampling (TS) (Russo et al., 2020)
has been embraced as a versatile acquisition strategy.
In Thompson sampling, the surrogate model posterior
is sampled over a discrete set of candidate points. The
candidate point with the best function value according
to the posterior sample is then selected for evaluation.
Several HDBO algorithms, namely TuRBO (Eriksson
et al., 2019) and its multi-objective extension MORBO
(Daulton et al., 2022), rely on TS with a specific ap-
proach to generating candidate points (Figure 2 I-c).
In these algorithms, candidates for TS are generated
by perturbing promising points along random axis-
aligned subspaces (i.e., by perturbing random subsets
of the dimensions). Although this sampling approach
was unnamed in the original publications, we found
it crucial to TuRBO/MORBO’s performance in high-
dimensional problems. We will henceforth refer to this
sampling strategy as Random Axis-Aligned Subspace
Perturbations (RAASP)1.

RAASP Sampling reduces over-exploration by lim-
iting the distance between the generated candidate
points and previously observed points. By perturb-
ing a small number (say 20) of coordinates in a high-
dimensional (e.g., d = 500) space, RAASP effectively
yields interpoint distances distributed as in the cen-
tral plot of Figure 1. Näıvely sampling in the original
space would result in much larger interpoint distances,
according to the distribution depicted on the right-
hand side of Figure 1. The smaller interpoint distances
achieved through RAASP sampling enable GP surro-
gates to predict the local function values with a much
higher degree of confidence. In practice, this leads to
more efficient optimization.

1BAxUS, which builds upon TuRBO, also inherits
RAASP sampling.

While RAASP sampling is effective at mitigating over-
exploration, it can lead to under-exploration during
optimization of functions in which only a few coor-
dinates in the high-dimensional search space matter.
To address this issue, we propose Cylindrical Thomp-
son Sampling (CTS) as an alternative approach that
scales to higher dimensions while striking a balance
between over-exploration and under-exploration. The
phenomena of over-exploration and under-exploration
in HDBO are demonstrated in section 4.1.2.

(3.II) Surrogate Model Choice pertains to the
selection of surrogate model type, surrogate kernel
geometry, and distance metric. Common surrogate
model types encompass non-parametric Gaussian Pro-
cess (GP) regression (Snoek et al., 2012), Tree-based
uncertainty models such as Random Forest (RF) (Kim
and Choi, 2022), Gradient Boosting (van Hoof and
Vanschoren, 2021), and Neural Network Ensembles
(Lim et al., 2021).

In general, the choice of surrogate geometry and dis-
tance metric is interlinked with the choice of surrogate
type. In particular, for GP surrogates, the discussion
focuses on design considerations concerning kernel ge-
ometry and distance metrics. For instance, the Matérn
and squared exponential (SE) kernels, typically using
Euclidean distance, are the most common kernels for
GP surrogates. As a result, the Euclidean distance is
commonly used in recent HDBO approaches (Daulton
et al., 2021; Eriksson et al., 2019; Papenmeier et al.,
2022; Konakovic Lukovic et al., 2020; Daulton et al.,
2022). Alternatively, ALEBO (Letham et al., 2020) re-
places Euclidean distance in the SE kernel with Maha-
lanobis distance and introduces a Mahalanobis kernel.
The BOCK algorithm (Oh et al., 2018) transforms the
search space geometry with cylindrical kernels, which
have the effect of expanding the volume near the center
of the search space.

(3.III) Surrogate Model Learning Domain. The
domain over which surrogates are tasked with model-
ing the unknown function (Figure. 2III) directly in-
fluences sample efficiency and scalability in HDBO.
Standard BO methods typically employ a single sur-
rogate model (i.e., Global) to predict objective val-
ues across the entire parameter search space. Another
intuitive approach utilizes a local surrogate models
through Trust Regions (TRs), as in (Eriksson et al.,
2019). In this strategy, trust regions are defined over
promising regions of the parameter search space, and
within these trust regions samples are used to train
local models. As depicted in Figure. 2, TR-based BO
methods rely on two additional design choices: TR
shape (e.g., Rectangular and Spherical) and the num-
ber of TR.
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Acquisition Strategy

Surrogate Model
(Geometry-Metric)

Surrogate Model
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Sampling
Scope

Sampling
Method

(a) Euclidean (c) Cylindrical (a) Global Trust Region (TR)
(a) Monte Carlo

Thompson Sampling
(TS)

(b) Original TS (c) RAASP (d) Cylindrical TS
(CTS)

(a) Global Trust Region (TR)
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Figure 2: Different design choices for acquisition strategy within high-dimensional BO

Table 1: Summary of how recent HDBO methods tackle curse-of-dimensionality

Method
Dim

Reduction
Scalability

Support
# of Obj

Acquisition
Strategy wr.t. Figure 2

CTS-BO (Ours) ✗ ✓ Multi I(d), II(a), III(a,b,c,d), IV(a,b,c,d)
BAxUS(Papenmeier et al., 2022) ✓ ✓ Single I(c), II(a), III(b,d,e), IV(b,d,e)
MORBO(Daulton et al., 2022) ✗ ✓ Multi I(c), II(a), III(b,d,e) ,IV(b,d,e)

LaMOO-qNEHVI(Zhao et al., 2022) ✗ ✗ Multi I(a), II(a), III(a), IV(a)
SAASBO(Eriksson and Jankowiak, 2021) ✓ ✗ Single I(a), II(a), III(a), IV(a)

qNEHVI(Daulton et al., 2021) ✗ ✗ Multi I(a), II(a),III(a), IV(a)
DGEMO(Konakovic Lukovic et al., 2020) ✗ ✗ Multi I(a), II(a), III(a), IV(a)

ALEBO(Letham et al., 2020) ✓ ✗ Single I(a), II(b), III(a), IV(a)
TuRBO(Eriksson et al., 2019) ✗ ✓ Single I(c), II(a), III(b,d,e) ,IV(b,d,e)
HESBO(Munteanu et al., 2019) ✓ ✓ Single I(a), II(a),III(a), IV(a)

BOCK(Oh et al., 2018) ✗ ✗ Single I(a), II(c), III(a), IV(a)
REMBO(Wang et al., 2016a) ✓ ✗ Single I(a), II(a),III(a), IV(a)
TSEMO(Bradford et al., 2018) ✗ ✗ Single I(b), II(a), III(a), IV(a)

(3.IV) Sampling Scope dictates whether candidate
points are sampled globally from the entire search
space, or locally from a specific region. Although the
choice of sampling scope typically mirrors the surro-
gate model learning domain (Daulton et al., 2022), in
principle these design choices are independent.

In summary, Table 1 offers a thorough comparison
of recent HDBO approaches by presenting the corre-
sponding choices made in the design tree depicted in
Figure 2. We further outline their scalability, which is
indicative of an approach’s ability to effectively man-
age a relatively large evaluation budget (e.g., ≥ 1000)
without encountering severe computational inefficien-
cies. Scalability can be achieved through the utiliza-
tion of trust regions to regulate the surrogate model
domain (reducing the number of samples used to com-
pute the GP posterior) or by implementing a batch
sampling strategy. Conversely, LaMOO (Zhao et al.,
2022) and SAASBO (Eriksson and Jankowiak, 2021)
do not scale to large evaluation budgets due to the
introduction of additional computational complexity
that becomes prohibitively expensive.

3 CYLINDRICAL THOMPSON
SAMPLING

We propose a novel strategy for sampling in HDBO
algorithms, namely cylindrical Thomson sampling

(CTS). Algorithm 1 presents pseudocode for CTS-BO:
a generic BO framework that includes CTS as a mod-
ule. This module can also be integrated with SOTA
trust-region-based algorithms (see section 4.2).

CTS transforms the geometry of the low-level sampler
within the standard TS acquisition function. Samples
take the form

x = c+ rv, r ∼ U(0, R), ∥v∥ = 1, (1)

where c is the center of perturbation, unit vector
v is the angular component, and perturbation dis-
tance r is the radial component of the sample. In
our experiments, we take the best solution achieved
thus far (i.e. the incumbent solution) as the center of
perturbation. Note that in a bounded search space,
the maximum perturbation radius R depends on v.
Thus v must be sampled before r. As we will show,
the choice of distribution from which to sample v is
critical to the performance of CTS as an acquisition
sampling method in Bayesian optimization.

3.1 Sampling the Angular Component

The CTS angular component (i.e. perturbation direc-
tion) in Eq. (1) can be sampled in various ways. A
naive approach is to sample uniformly from the sur-
face of a d-dimensional hypersphere. In practice, such
samples are typically generated by normalizing sam-



Bahador Rashidi†, Kerrick Johnstonbaugh†, Chao Gao

Algorithm 1 CTS-BO: Bayesian optimization with
Cylindrical Thompson Sampling

1: Input: Initial data D, incumbent and lowest discov-
ered function value (c, y∗), budget B

2: Output: Minimizer x∗ ∈ argmin
x∈X

f(x)

3: nevals ← |D|
4: while nevals ≤ B do ▷ Until budget expended
5: Init set of eval candidates Xcand ← ∅
6: for i = 1 to ncand do
7: Sample v from TMVN . . . (Eq. 4)
8: Compute rmax(c,v) . . . (Eq. 5)
9: R← min{rmax(c,v), Rmax}
10: Sample radial component r ∼ U(0, R)
11: xcand ← c+ rv
12: Xcand ← Xcand ∪ {xcand}
13: end for
14: xeval ← argmin

x∈Xcand

ypred,

↪→ where ypred ∼ GP (µ(x), σ(x)| D)
15: Collect yeval by evaluating f at xeval

16: if yeval < y∗ then
17: Update incumbent c← xeval

18: Update best function value y∗ ← yeval
19: end if
20: Update dataset D ← D ∪ {(xeval, yeval)}
21: nevals ← nevals + 1
22: end while

CTS

ples from a d-dimensional isotropic multivariate nor-
mal distribution:

v← z

∥z∥
, z ∼ N (0, Id) (2)

Angular components sampled according to Eq. (2) in-
herently exhibit the spherical symmetry characteristic
of the multivariate normal distribution. Indeed, this
approach can be effective when the center of perturba-
tion lies near the center of the search space. However,
when the perturbation center approaches the search
space boundaries, the angular components from this
distribution, as depicted in Figure 3, only result in
minor perturbations.

To illustrate this phenomenon, let c represent a per-
turbation center near the vertex of a d-dimensional
hypercube, constrained by 0 as the lower bound. As-
suming c = ϵ1d for a small ϵ > 0, meaningful per-
turbations are achievable only when the samples point
away from the vertex (i.e., v is positive in every co-
ordinate). Given the independence of components in
a standard normal random vector, and a 0.5 proba-
bility of selecting a positive value for each coordinate,
the probability of selecting such a direction is (0.5)d,
diminishing exponentially with increasing dimension-
ality, d.

To avoid this problem, we instead proposed to sam-
ple from a truncated multivariate normal distribution
(TMVN). The TMVN distribution is derived from the

of Sphere
Surface 

Figure 3: Near a vertex, the probability a uniformly
sampled direction affords non-negligible perturbations
shrinks exponentially as a function of the search space
dimension (prob. ∼ ( 12 )

d). This motivates usage of
the TMVN angular sampler.

standard multivariate normal distribution, with den-
sity

f(z) =
1

γ
exp

(
−1

2
z⊤z

)
· I{l ≤ z ≤ u},

z = [z1, . . . , zd]
⊤, u, l ∈ Rd, (3)

where I{·} denotes the indicator function, and γ =
P(l ≤ z ≤ u) is the probability that a random vector
Z with standard normal distribution in d-dimensions
falls in the hypercube defined by the lower and upper
bounds l and u. The TMVN distribution cuts off the
density of the standard MVN that would lie outside of
the search domain, biasing samples away from search
domain boundaries. This ensures that meaningful per-
turbations are afforded with high probability. In CTS,
the angular component is sampled according to

v← z

∥z∥
, z ∼ TMVN(0, σ2Id, l,u). (4)

Sampling from the TMVN distribution is relatively
more challenging and expensive than sampling from
its univariate counterpart. We mitigate this cost by
implementing a vectorized version of the algorithm for
efficient simulation described in (Botev, 2017).

3.1.1 Variance of Angular Sampler

The variance of the truncated multivariate normal an-
gular sampler in CTS has a significant impact on BO
performance. When σ is set to a large value, it steers
samples away from the search domain’s boundaries.
Conversely, small values of σ can yield angular com-
ponents that offer only minor perturbations, resem-
bling those from the untruncated multivariate normal
(MVN) angular sampler, as seen in Figure 3. In gen-
eral, higher σ values promote exploration towards the
center of the search space, while smaller values of σ en-
able precise adjustments, particularly near the search
domain’s edges.
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To balance these considerations, we decrease the value
of σ following τfail consecutive “failures”. Here, failure
means that the sample selected for evaluation failed
to decrease regret relative to the current incumbent.
If the algorithm succeeds in improving the best so-
lution thus far, the failure counter is reset to zero.
After τsucc consecutive successes, σ is doubled, i.e.
σ ← min{σmax, 2σ}. Similarly, after τfail consecutive
failures, σ is halved, i.e. σ ← σ/2. This scheme en-
ables the CTS sampler to initially explore the center
of the search space, and then fine-tune solutions over
time as progress slows.

3.2 Maximum Perturbation Magnitude

In general, we can write the linear constraints (e.g.,
lower and upper bounds) of the search space in the
form Ax ≤ b. Given some center of perturbation c
and an angular component v s.t. ∥v∥ = 1, we can
compute the maximum perturbation rmax(c,v) in the
direction v. Letting ρ = rmax(c,v) to simplify no-
tation: A(c + ρv) ≤ b. Then letting v′ = Av and
b′ = b − Ac, we have ρv′ ≤ b′. Since this vector
inequality has to hold for every element, i.e., ρv′i ≤ b′i
∀i ∈ {1, . . . , d}, the maximum permissible value for ρ
is:

rmax(c,v) = ρ← min{b′i/v′i} (5)

Finally, CTS limits the maximum perturbation mag-
nitude to some largest radius Rmax. That is, R ←
min{rmax(c,v), Rmax}. This R is the upper bound for
the radial component in CTS (Eq. 1).

3.3 Geometry of Trust Regions with CTS

The choice of trust region (TR) geometry relies on
the characteristics of the optimization problem. For
problems with general linear or nonlinear constraints
on parameter space, an ellipsoidal TR is commonly
preferred. However, when dealing with unconstrained
or bound-constrained parameter spaces, such as our
focus here, a spherical trust region offers simplic-
ity in computation and implementation. Hence, we
adopt CTS with spherical TRs for our experimenta-
tion, leaving the adaptation of CTS for ellipsoidal TRs,
that is a natural extension of rectangular TR used by
TuRBO/BAXUS for future research. In our case, the
problem constraints are represented as Ax ≤ b, as dis-
cussed in Section 3.2.

A spherical TR geometry can be integrated with CTS
by limiting the maximum radius of perturbations. For
a CTS with a global scope, the maximum radius Rmax

is typically set to
√
d, where d is the dimension of

the search space (assuming the search space is scaled
to a unit hypercube). The adaptation of the spher-
ical TR radius in CTS follows similar principles to

Figure 4: Results of TuRBO variants on 1000-
dimension Lasso hard benchmark, with performance
ranking CTS-TuRBO > TuRBO ≈ TuRBO w/o TR >
TuRBO w/o RAASP > TuRBO w/o {RAASP, TR}.

the TR side-lengths in TuRBO. The TRs are centered
on the incumbent, representing the best current solu-
tion. After τsucc consecutive successes, Rmax is dou-
bled: Rmax ← min

√
d, 2Rmax. Conversely, after τfail

consecutive failures, Rmax is halved: Rmax ← Rmax/2.
If Rmax falls below a predefined minimum threshold,
the current TR is terminated, and a new TR is ini-
tialized. Throughout our experiments, we maintain
consistency by using the same τfail and τsucc values for
adjusting σ and Rmax, ensuring they grow or shrink in
tandem.

4 EXPERIMENTS

To illustrate the strength of CTS, we first elaborate
on how sampling strategies affect BO by performing
a controlled empirical study with TuRBO, a repre-
sentative HDBO algorithm. Then, we conduct end-
to-end experiments on both synthetic and real-world
problems by integrating CTS into three state-of-the-
art HDBO algorithms as shown in Table 1.

4.1 Controlled Study with TuRBO

We motivate the development of cylindrical Thomp-
son sampling by first demonstrating the significance of
sampling strategies in an ablation of TuRBO. We then
study in more detail the mechanistic consequences of
each sampling strategy.

4.1.1 Significance of Sampling Strategy

To highlight the importance of the sampling strategy
in Thompson sampling, we begin with an ablation
of TuRBO, which has served as the core for several
state-of-the-art HDBO algorithms (e.g., MORBO and
BAxUS; see Table 1).

Using the super-high-dimensional 1000D Lasso-Hard
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Over-Exploration

Under-Exploration

Over-Exploration

Figure 5: Sobol TS suffers from over-exploration (left and middle), tending to sample distant points with high
uncertainty. TuRBO solves this problem by adopting RAASP. RAASP reduces over-exploration but perturbs
the active subspace with decreasing probability (under-exploration) as dimensionality increases (right). CTS
strikes a balance between these extremes, ensures significant perturbations in the active subspace (right), while
reducing over-exploration (left and middle).

test problem (Šehić et al., 2022) as a benchmark, we
collect experiment results of the following algorithm
variants along with the original TuRBO.

(1) TuRBO w/o RAASP: Replace the RAASP candidate
generation of TuRBO’s TS acquisition with Sobol sam-
pling. (2) TuRBO w/o TR: Turn off the use of TR from
TuRBO, performing global optimization with RAASP
sampling. (3) TuRBO w/o {RAASP, TR}: Turn off
both RAASP sampling and TRs, resulting in global
Thompson sampling with Sobol candidate genera-
tion. (4) CTS-TuRBO: Replace the RAASP sampler of
TuRBO with cylindrical Thompson sampling.

As in Figure 4, experiment results indicate that in
TuRBO, the use of sampling method RAASP had a
greater impact than the adoption of trust regions. Re-
moving the RAASP sampler from TuRBO while re-
sorting to generating candidates in the global search
space using scrambled Sobol sequences resulted in con-
siderable performance degradation of TuRBO. Mean-
while, removing the use of TR only slightly harmed
TuRBO on this benchmark. Additionally, replacing
RAASP with CTS enhanced TuRBO, producing lower
regret than original TuRBO.

4.1.2 How Different Thompson Sampling
Methods Affect TuRBO

To gain insight into the mechanics and limitations
of different sampling strategies, we investigated how
model uncertainty increases as a function of search
space dimensionality for three TS strategies: Sobol

TS, RAASP, and CTS. As the distance between a can-
didate and previously observed points (e.g., the in-
cumbent) grows, the uncertainty of the GP surrogate
model increases. We measure the magnitude of pertur-
bations within the global search space, specifically ex-
amining the distance between samples and incumbent
points. At the same time, we quantify the GP surro-

gate uncertainty for the selected samples. While con-
sistent high uncertainty can lead to over-exploration,
a successful sampling strategy must explore the active
subspace of the test function. We track the magni-
tude of perturbations in the active subspace to quan-
tify active subspace exploration. Data were collected
by tracking the initial 50 points selected for evaluation
during optimization of the embedded Branin2 function
(Wang et al., 2016b). This function serves as an ideal
benchmark for assessing the performance of HDBO
algorithms on problems with low-dimensional active
subspaces. The experiment was replicated across var-
ious dimensions, ranging from 20 to 1000.

Sobol TS succumbs to the curse-of-dimensionality,
with perturbation magnitudes increasing significantly
with the number of input dimensions (Figure 5, left).
These large perturbations result in high uncertainty
(Figure. 5, middle), which leads to over-exploration.
On the other hand, RAASP solves the problem of
over-exploration by limiting perturbations to low-
dimensional random subspaces. However, this solution
introduces a new problem; as the dimensionality of
the search space increases, RAASP perturbs the active
subspace with decreasing probability. When averaged
across many samples, this results in a tiny value for the
mean active subspace perturbation (Figure. 5, right).
It is worth mentioning that under-exploration of the
active subspace leads to slow optimization progress.
As seen in Figure 5, CTS maintained a balance be-
tween these two extremes. Global perturbation mag-
nitudes grow slower than Sobol Thompson sampling,
and the uncertainty of the GP surrogate is comparable
to that of RAASP sampling (Figure. 5, left & mid-
dle). At the same time, CTS managed to consistently
produce perturbations in the active subspace (Figure.
5, right), which is likely to produce a more effective
training set of samples to update the surrogate model.

As an auxiliary analysis, we compared the first 260
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samples acquired using RAASP-TuRBO and CTS-
TuRBO on the 500D embedded Branin function in Fig.
6a and 6b, respectively. Sample candidates generated
by RAASP form a cross pattern and do not result in
good coverage of the 2-D active subspace (Figure 6a).
Many of the samples do not perturb the active sub-
space at all, causing the points in the plot to overlap
(under the incumbent). When the incumbent is per-
turbed in the active subspace, it is usually perturbed
along only one dimension, resulting in the formation
of the observed cross pattern. Clearly, RAASP sam-
pling struggled to explore the active subspace — this
is reflected in the small averaged magnitude of active
subspace perturbations in high-dimensional variants of
the embedded Branin function (Fig. 5, right). On the
other hand, candidates generated by CTS provide a
local exploration of the active subspace (Figure. 6b).
These results corroborate the quantitative measure of
active subspace perturbations provided in the right-
hand plot of Figure 5.

(a) TuRBO with RAASP. (b) TuRBO with CTS.

Figure 6: Candidates selected for evaluation pro-
jected to the 2D active subspace of the 500D embed-
ded Branin function. RAASP generated samples that
mostly overlap when projected onto the active sub-
space.

4.2 End-to-End Results with CTS

We investigate the effectiveness of CTS by comparing
with more HDBO algorithms including SAASBO (Eriks-
son and Jankowiak, 2021), random embedding based
BAxUS (Papenmeier et al., 2022), parallel BO by
qNEHVI (Daulton et al., 2021) and MORBO (Daulton
et al., 2022). We compare the performance on both
single and multiple objective problems. The sin-
gle objective benchmark set includes synthetic prob-
lems Branin2, Hartmann6 (Balandat et al., 2020),
Lasso-Hard (Šehić et al., 2022) and two real-world
problems including Mopta08 and SVM — both exam-
ined in (Eriksson and Jankowiak, 2021). The multi-
objective setting covers benchmark problems includ-
ing Branin-Currin, DTLZ2 (Balandat et al., 2020)
and two-objective benchmark of Rover Trajectory

Planning (Daulton et al., 2022). The first two bench-
marks are synthetic and last one derives from a real-

world application. These problems have large input
dimensions ranging from 60 to 1000.

4.2.1 Single-Objective Problems

For this evaluation, in addition to recent SOTA HDBO
algorithms BOCK SAASBO, TuRBO, BAxUS and a standard
sobol TS, we generate two new algorithms by incor-
porating CTS, resulting in CTS-TuRBO and CTS-BAxUS.
We also ran CTS-BO, which can be viewed as a stan-
dard BO without using trust regions or embeddings
for dimensionality reduction. In our implementation of
TuRBO, we utilize a single trust region, as described in
(Eriksson et al., 2019). This choice prioritizes sample
efficiency, given that in this setup, TRs do not share
data. Opting for a single TR allows us to emphasize
the importance of our sampling strategy and to di-
rectly compare the performance impact of employing
the RAASP versus our proposed CTS. For each run,
optimization proceeded with a batch size of 1 and was
terminated when the regret fell below the threshold
of 0.001. To ensure fair comparisons, we adopted the
baseline tuning parameters and configurations used by
the authors in the original implementations.

As shown in Figure. 7(a, b, c, d, e), the results across
all single objective benchmarks indicate that incorpo-
rating CTS into TuRBO led to improved performance.
For Branin2 and Hartmann6, adding CTS to BAxUS
(CTS-BAxUS) significantly accelerated the convergence.
In the case of Lasso Hard, CTS-BAxUS obtained almost
identical results in comparison to the baseline BAxUS
with RAASP sampling.

4.2.2 Multi-Objective Problems

In multi-objective optimization, there is not a single
optimal solution. Therefore, we take the standard ap-
proach of plotting the hypervolume of the empirical
Pareto fronts as optimization progresses. We select
MORBO as the primary baseline and test on DTLZ2
and Branin-Currin with two objectives and 300 input
parameters, as well as the real-world 2-objective Rover
Trajectory planning problem (Wang et al., 2018a),
with settings as in (Daulton et al., 2022).

MORBO (Daulton et al., 2022) is essentially an ex-
tension of TuRBO into the multi-objective realm, uti-
lizing RAASP Thompson sampling for acquisition.
In our work, we enhance MORBO by replacing its
RAASP sampler with CTS, leading to CTS-MORBO.
Unlike TuRBO, the MORBO implementation fea-
tures TRs that share data points within the sampling
scope, addressing the sample inefficiency observed in
TuRBO. Therefore, we incorporate five trust regions
in both our MORBO and CTS-MORBO implementa-
tions. Besides Thompson sampling-based approaches,
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Figure 7: Optimization results on five single and three multi-objective benchmarks, with CTS integrated to
TuRBO, BAxUS, and MORBO. Simple regret is plotted for single objective benchmarks (lower means better),
while hypervolume is plotted for multi-objective benchmarks (higher means better). Curves plot mean perfor-
mance with the shaded region representing 95% confidence interval.

we also include a comparison with the recent algorithm
qNEHVI (Daulton et al., 2021). Following the experi-
mental setup described in (Daulton et al., 2022), we
perform multi-objective optimization with a budget of
2000 and a batch size of 50 for each benchmark.

As shown in Figure. 7(f,g,h), consistent to the single-
objective case, on both synthetic and real-world bench-
marks, CTS-MORBO improved optimization efficiency
relative to the baselines including MORBO, qNEHVI,
Random Search.

4.2.3 Performance of CTS in the
Low-Dimensional Setting

CTS exhibits notable improvements for both TuRBO
and BAXUS when handling high-dimensional prob-
lems. Yet, it is not immediately clear if CTS can re-
tain its effectiveness in a lower-dimensional context:
is it true that its usefulness is confined to d ≥ 20?
To investigate this, we selected two low-dimensional
problems: 14D-Swimmer and 14D-Robot Pushing as
in (Eriksson et al., 2019), and conduct comparisons be-
tween CTS-TuRBO, the original TuRBO (both with a
single trust region), and Sobol (quasi-random) search.
As shown in Figure 8, CTS-TuRBO is competitive
with TuRBO in Swimmer, but performs slightly worse
in Robot Pushing. We conjecture that TuRBO’s ca-
pacity to adjust trust region side lengths according
to GP length scales confers an advantage in the low-
dimensional regime. This would suggest that utilizing

adaptive ellipsoid trust regions for CTS could enhance
performance in low-dimensional optimization.

Figure 8: Comparison between TuRBO, CTS-TuRBO,
and Sobol search for two low-dimensional problems.
These findings suggest that CTS with spherical trust
regions may underperform in certain low-dimensional
benchmarks (e.g., Robot Pushing).

5 CONCLUSION

We have developed a modular algorithm, namely
cylindrical Thompson sampling (CTS), for improv-
ing Bayesian optimization in high dimensional spaces.
The utility and modularity of CTS has been demon-
strated by incorporating it into multiple state-of-the-
art algorithms. We have shown that CTS strikes a
balance between over and under-exploration in high-
dimensional spaces. Experiments on both single and
multi-objective benchmarks confirm that CTS can im-
prove the performance of existing HDBO algorithms.
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A Experimental Details

Here we report additional details, including hyperparameters, used for each algorithm in our experimental results.
Unless otherwise stated, the default hyperparameter values from official author implementations were used for
the baseline algorithms. Note that the only hyperparameter introduced by CTS is the initial standard deviation
σinit of the TMVN sampler. All experiments were run on a server with two 2.3 GHz Intel Xeon Gold 6140
Processors, and an NVIDIA Tesla V100 GPU.

Implementations for the baseline algorithms in our experiments were as follows:

• For TuRBO, we used the implementation at https://github.com/uber-research/TuRBO, license: Uber,
last accessed: Oct 02, 2023.

• For BAxUS, we used the implementation at https://github.com/LeoIV/BAxUS, license: Uber, last ac-
cessed: Oct 02, 2023.

• For MORBO, we used the implementation at https://github.com/facebookresearch/morbo, license: MIT
(Copyright Meta), last accessed: Oct 02, 2023.

• For SAASBO, qNEI, and qNEHVI, we used the BoTorch (Balandat et al., 2020) implementations at
https://github.com/pytorch/botorch, license: MIT (Copyright Meta), last accessed: Oct 02, 2023.

A.1 Details Regarding Figure 5

Next, we provide additional experimental details regarding the generation of the exploration-related quantities
plotted in Figure 5, section 4.1.2. For each input dimension d (i.e., number of input variables) plotted on the
x-axis of Figure 5, the following process was repeated: We carried out three repetitions of Bayesian Optimization
on the d-dimensional embedded Branin function. For each repetition, we collected data associated with the first
50 candidates selected for evaluation. The recorded quantities were (1) Distance from the Incumbent, (2) GP
Prediction Uncertainty, and (3) Active Subspace Perturbation. For each of these quantities, we accumulated the
respective values over the three BO repetitions, resulting in 3 × (50 candidates) = 150 values for each. In Figure
5, we plot the mean of these 150 values, with the error bars indicating one standard deviation.

The quantities plotted in Figure 5 were computed as follows:

(1) Distance from the Incumbent : The L2 distance between the incumbent and the point selected for evaluation.

(2) GP Prediction Uncertainty : The variance of the GP posterior at the point selected for evaluation. This
represents the models uncertainty about this point.

(3) Active Subspace Perturbation: The L2 distance between the incumbent and the point selected for evaluation
after projecting both onto the active subspace. In the case of the embedded Branin function, this projection
is accomplished by simply taking the first two components of the d-dimensional input vector.
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A.2 Single-Objective Optimization

In the reported single-objective experiments, all algorithms used a batch size of 1. In both Figures 4 and 7, the
shaded areas around each curve represent ±1 standard error across 10 repetitions (with different random seeds).
All single-objective variants that included CTS (CTS-BO, CTS-TuRBO, CTS-BAxUS) used σinit = 0.125. CTS-
TuRBO and CTS-BAxUS each sampled 5000 discrete candidate points during acquisition, which is the same as
the baseline variants (as recommended by (Eriksson et al., 2019)).

Our implementation of CTS-TuRBO modifies the geometry of trust regions in TuRBO, changing them from
rectangular to spherical as described in section 3.3. When fitting the local GP models associated with each trust
region, we exclude points outside of a ball centered at the incumbent with radius 2R. That is, CTS samples
points within a sphere of radius R, and selects one of these candidates for evaluation given a GP fitted on data
within radius 2R.

In addition, we chose a more aggressive value for τfail, the number of “failures” before a trust region decreases in
size. In CTS-TuRBO we set τfail such that the minimum trust region size will be reached in half of the budget,
assuming no designs improve upon the current incumbent:

τfail ← min

{
⌈d/q⌉ ,

⌈
B′

2qκ

⌉}
(6)

where B′ = B−ninit is the budget remaining after the initial samples2, q is the batch size (in our single-objective

experiments, q = 1), and κ =
⌈
− log2(R

(min)
max /R

(init)
max )

⌉
is the number of TR shrinking events that must occur

before the minimum radius is reached. Note that ⌈d/q⌉ is the setting recommended by the authors of TuRBO
(Eriksson et al., 2019).

Our implementation of CTS-BAxUS used the dynamically computed value of τfail recommended by the authors
of BAxUS (Papenmeier et al., 2022), until the input dimensionality (i.e., full underlying dimensionality of the
problem) d is reached, at which point we set τfail according to Equation (6) with B′ equal to the remaining
budget.

For the SAASBO baseline in our experiments, we paired a SAAS GP surrogate with qNEI as the acquisition
function. For the GP fitted with a fully Bayesian SAAS prior, we used the NUTS sampler (Eriksson and
Jankowiak, 2021) with 128 warmup steps, and 128 samples, and a thinning parameter of 16. Optimization of
qNEI used 5 random restarts and 5000 raw samples.

A.3 Multi-Objective Optimization

In the reported multi-objective experiments, all algorithms used a batch size of 50. In both Figure 7, the shaded
areas around each curve represent ±1 standard error across 10 repetitions (with different random seeds). The
reported CTS results used σinit = 0.125 in the Branin-Currin experiment, 1.0 for DTLZ2 and 0.0625 for Rover
trajectory planning. CTS-MORBO sampled 4096 discrete candidate points during acquisition, which is the same
as baseline MORBO (as recommended by (Daulton et al., 2022)). For the qNEHVI baseline in our experiments,
we used 2 random restarts and 64 raw samples.

B Computational Cost of CTS

The angular sampler of CTS relies on samples from the truncated multivariate normal (TMVN) distribution
with density f in equation 3. We simulate samples from this density according to the max-exponentially-tilted
(MET) estimator described in (Botev, 2017). This estimator relies on an accept-reject sampling scheme and is
strongly efficient in a technical sense. However, it uses a method called exponential tilting, and requires the
solution to a minimax optimization problem to select the tilting parameters.

Computing these parameters for sampling with general linear constraints (i.e., of the form Ax ≤ b where x ∈ Rd)
requires Cholesky decomposition, with complexity O(d3), as an initial step. However, with standard hypercube
boundary constraints (as in all the experiments reported in this work), this step can be bypassed.

2Here and in Algorithm 1, we use B ∈ N to represent the evaluation budget.
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The cost of the MET estimator is then dominated by the need to solve the aforementioned minimax optimization
problem. The solution is given by the system of nonlinear equations described in Eq. (8) of (Botev, 2017). Our
implementation builds on the implementation at https://github.com/brunzema/truncated-mvn-sampler and
uses the same method for this nonlinear optimization, namely, an implementation of the modified Powell method.

Luckily, given that many of the Thompson Sampling (TS) candidates share the same center of perturbation,
the optimal tilting parameters need only be calculated once, when the incumbent is updated. The tilting
parameters are then cached and reused for all subsequent samples, until the incumbent changes. Hence the cost
of optimizing the tilting parameters is amortized across the 5000 TS candidates in each batch, and across batches
if the incumbent remains unchanged.

Assuming standard Cholesky-based approaches, exact posterior sampling with all Thompson Sampling acquisi-
tion functions (e.g., including RAASP-TS; Sobol TS) have complexity that is cubic with respect to the number
of test points (Rasmussen and Williams, 2005).

C Global Consistency of CTS-TuRBO and CTS-BAxUS

We show that CTS-TuRBO and CTS-BAxUS converge to a global optimum as the number of samples tends to
infinity, under common assumptions in the Bayesian Optimization literature.

(Papenmeier et al., 2022) extended the proof by (Eriksson and Poloczek, 2021) that established the consistency of
TuRBO, relaxing the assumption of a unique global minimizer. They went on to show that after a finite number
of evaluations, BAxUS will behave like TuRBO, and thus inherits these convergence guarantees. Here we prove
that CTS-TuRBO (and by extension, CTS-BAxUS) also enjoys global consistency. We restate the consistency
theorem from (Papenmeier et al., 2022), including the relevant definitions and assumptions, and show that it
also applies to CTS-TuRBO and CTS-BAxUS.

Theorem 1 (Consistency of CTS-TuRBO and CTS-BAxUS). With the following definitions:

D1. {xk}∞k=1 is a sequence of points of decreasing function value;

D2. x∗ ∈ argminx∈X f(x) is a minimizer in X ;

and under the following assumptions:

A1. f is observed without noise;

A2. f is bounded in X , i.e., ∃ C ∈ R++ s.t. |f(x)| < C ∀x ∈ X ;

A3. CTS-TuRBO (CTS-BAxUS) considers an evaluated point an improvement only if it improves over the
current best solution by at least some constant γ ∈ R++;

A4. At least one of the minimizers x∗
i lies in a continuous region with positive measure;

A5. The initial points {xi}ninit
i=1 after each trust region restart for CTS-TuRBO are chosen such that ∀δ ∈ R++

and x ∈ X , ∃ ν(x, δ) > 0 s.t. P(∃ i : ∥x − xi∥ ≤ δ) ≥ ν(x, δ), i.e., the probability that at least one point
in {xi}ninit

i=1 ends up in a ball centered at x with radius δ is at least ν(x, δ);

A6. The dimension of the search space d = |X | is finite;

Then, CTS-TuRBO and CTS-BAxUS converge to a global optimum f(x∗) with probability 1.

Proof. We first show that consistency holds for CTS-TuRBO (Case 1), then use this result to show it also holds
for CTS-BAxUS (Case 2).

Case 1 (CTS-TuRBO).

Under the more restrictive assumption of a unique global optimum, it was shown by (Eriksson and Poloczek,
2021) that TuRBO converges with probability 1. We summarize their argument, showing that integration of
CTS into TuRBO has no effect on it.
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To begin, note that because f is bounded (A2.) and CTS-TuRBO only considers an evaluated point an improve-
ment if it improves over the current best solution by some constant γ (A3.), CTS-TuRBO can only evaluate a
finite number of points from a given trust region before failing to improve τfail times. That is, TR shrinking
is guaranteed to occur after a finite number of samples. Since a finite number of shrinking events will trigger
a trust region restart, there will be infinite restarts as the number of samples tends to infinity. Each restart
involves uniform random sampling over X that satisfies assumption A5.. Thus, global convergence to a unique
global optimum follows from the proof of global convergence for random search (e.g., see (Spall, 2003)).

Finally, as noted by (Papenmeier et al., 2022) (reproduced here for completeness), this argument can be extended
to the setting with potentially multiple global optima. To do so, we must establish that CTS-TuRBO generates
a sequence of points that adheres to Definition D1. We achieve this by considering the sequence of points of
decreasing function values {

x′ ∈ argmin
x̂∈{xk}i

k=1

f(x̂)

}∞

i=1

(7)

where {xk}ik=1 are the observations up to the i-th function evaluation. This sequence, in addition to the fact that
CTS-TuRBO samples points with uniform probability on X upon trust region restarts, satisfies the assumptions
of the theorem by (Solis and Wets, 1981), which in turn, along with assumption A4., implies convergence to
f(x∗).

Case 2 (CTS-BAxUS).

First, note that assumption A5. applies only to CTS-TuRBO, preventing us from directly applying Case 1.
Now, (Papenmeier et al., 2022) have shown that under assumption A6., BAxUS must eventually arrive at an
embedding equivalent to the input space, at which point BAxUS behaves in a way equivalent to TuRBO. Likewise,
CTS-BAxUS relies on the same mechanics used in BAxUS to initialize and expand its random embeddings — and
therefore also reaches an embedding equivalent to the input space after a finite number of function evaluations.
Hence, after this transient period, CTS-BAxUS begins and continues to behave like CTS-TuRBO, and Case 1
applies.

D Advantage of Adaptive Trust Region Geometry in Low-Dimensional Problems

We found that CTS-TuRBO with spherical trust regions can under-perform compared to TuRBO in low-
dimensional optimization problems, such as the 14D Robot Pushing problem (see figure 8). We hypothesize
that TuRBO’s advantage in this problem could be coming from its ability to modulate its trust region side
lengths according to the GP length scales. To test this hypothesis, we ablated TuRBO’s adaptive trust region
geometry, resulting in a variant of TuRBO with strictly cubic trust regions. The results of this ablation are
shown in figure 9.

Figure 9: Comparison between TuRBO, CTS-TuRBO, and TuRBO with cubic trust regions on the 14D Robot
Pushing problem. Each algorithm was run for ten repetitions. The shaded regions indicate 95% confidence
intervals.
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Removing TuRBO’s adaptive trust region geometry yielded an algorithm with performance similar to that
of CTS-TuRBO. This result serves as evidence that this feature may be important to TuRBO’s performance
on some low-dimensional benchmarks. Experiments on more benchmarks are needed to provide additional
evidence. However, this result suggests that ellipsoidal trust regions with adaptive geometry may yield improved
performance for CTS-TuRBO. This is left to future work.
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