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Abstract

Despite the rich existing literature about mini-
max optimization in continuous settings, only
very partial results of this kind have been
obtained for combinatorial settings. In this
paper, we fill this gap by providing a character-
ization of submodular minimax optimization,
the problem of finding a set (for either the min
or the max player) that is effective against
every possible response. We show when and
under what conditions we can find such sets.
We also demonstrate how minimax submod-
ular optimization provides robust solutions
for downstream machine learning applications
such as (i) prompt engineering in large lan-
guage models, (ii) identifying robust waiting
locations for ride-sharing, (iii) kernelization
of the difficulty of instances of the last setting,
and (iv) finding adversarial images. Our ex-
periments show that our proposed algorithms
consistently outperform other baselines.

1 INTRODUCTION

Many machine learning tasks, ranging from data se-
lection to decision making, are inherently combina-
torial and thus, require combinatorial optimization
techniques that work at scale. Even though, in general,
solving such problems is notoriously hard, practical
problems are very often endowed with extra structures
that lend them to optimization techniques. One com-
mon structure is submodularity, a condition that holds
either exactly or approximately in a wide range of
machine learning applications, including: dictionary se-
lection (Krause and Cevher, 2010), sparse recovery, fea-
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ture selection (Das and Kempe, 2011), neural network
interpretability (Elenberg et al., 2017), crowd teach-
ing (Singla et al., 2014), human brain mapping (Salehi
et al., 2017), data summarizarion (Lin and Bilmes,
2011; Mualem and Feldman, 2022a), among many oth-
ers. Submodular functions are often considered to be
discrete analogs of concave functions, and like con-
cave functions they can be (approximately) maximized.
At the same time, submodular functions can also be
exactly minimized as they can be extended into an effi-
ciently computable continuous convex function (known
as the Lovász extension). These optimization proper-
ties of submodular functions has been often exploited
in scalable machine learning algorithms.

While scalable optimization methods are desirable, they
are not the only requirements for ML algorithm deploy-
ment. Very often, it is also important to get solutions
that are robust with respect to noise, outliers, adver-
sarial examples, etc. Problems looking for solutions
that are robust with respect to worst-case scenarios
have usually been expressed as minimax optimization.
Accordingly, recent years have witnessed a large body
of work addressing minimax optimization in the con-
tinuous settings (see, e.g., Diakonikolas et al. (2021);
Ibrahim et al. (2020); Lin et al. (2020); Mokhtari et al.
(2020)). This line of research has given rise to a myriad
of algorithms, and an ever increasing list of applica-
tions such as adversarial attack generation (Wang et al.,
2021), robust statistics (Agarwal and Zhang, 2022) and
multi-agent systems (Li et al., 2019), to name a few.
To ensure feasibility of finding a saddle point, one has
to make some structural assumptions. For instance,
many of the above-mentioned works assume that the
minimization is taken over a convex function, and the
maximization over a concave function.

Despite the rich existing literature about minimax op-
timization in continuous settings, very few works have
managed to obtain similar results for combinatorial
settings. Staib et al. (2019) and Adibi et al. (2022)
considered hybrid settings in which the maximization is
done with respect to a (discrete) submodular function,
but the minimization is still done over a continuous
domain. Krause et al. (2008), Torrico et al. (2021) and
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Iyer (2019, 2020) considered settings in which both
the maximization and the minimization are discrete,
but one of them is done over a small domain that can
be efficiently enumerated. In this paper we provide
the first systematic study of the natural case of fully
discrete minimax optimization with maximization and
minimization domains that can both be large. To the
best of our knowledge, the only previous works relevant
to this case are works of Bogunovic et al. (2017) and
Orlin et al. (2018), who studied the maximization of a
monotone submodular function subject to a cardinality
constraint in the presence of a worst case (represented
by a minimization) removal of a small number of ele-
ments from the chosen solution.

As submodular functions cannot be maximized exactly,
there is no hope to get a saddle point in our setting.
Instead, like Adibi et al. (2022), we take a game the-
oretic perspective on the setting. From this point of
view, there are two players. Each player selects a set,
and the objective function value is determined by the
sets selected by both players. One of the players aims
to minimize the objective function, while the other
player wishes to maximize it. Our task is to select
for one of the players (either the minimization or the
maximization player) a set that is effective in the sense
that it guarantees a good objective value regardless of
the set chosen by the other player.

We map the tractability and approximability of the
above minimax submodular optimization task as func-
tion of various properties, such as: the player consid-
ered (minimization or maximization), the constraints
(if any) on the sets that can be chosen by the players,
and whether the objective function is submodular as
a whole, or for each player separately. We refer the
reader to Section 2 for our exact results. However, in a
nutshell, we have fully mapped the approximability for
the minimization player, and we also have non-trivial
results for the maximization player.

Our proposed algorithms for minimax submodular op-
timization can lead to finding of robust solutions for
down-stream machine learning applications, including
efficient prompt engineering, ride-share difficulty ker-
nalization, adversarial attacks on image summarization
and robust ride-share optimization. Empirical evalua-
tion of our algorithms in the context of all the above
applications can be found in Section 3.

1.1 Related Work

Submodular Minimization The first polynomial
time algorithm for (unconstrained) submodular mini-
mization was obtained by Grötschel et al. (1981) us-
ing the ellipsoids method. Almost twenty years later,
Schrijver (2000) and Iwata et al. (2001) obtained, inde-

pendently, the first strongly polynomial time (and com-
binatorial) algorithms for the problem. Further works
have improved over the time complexities of the last
algorithms, and the current state-of-the-art algorithm
was described by Lee et al. (2015) (see also Axelrod
et al. (2020) for a faster approximation algorithm for
the problem).

All the above results apply to unconstrained submodu-
lar minimization. Unfortunately, constrained submodu-
lar minimization often (provably) admits only very poor
approximation guarantees even when the constraint is
as simple as a cardinality constraint (see, for exam-
ple, Goel et al. (2010); Svitkina and Fleischer (2011)).
Nevertheless, there are rare examples of constraints
that allow for efficient submodular minimization, such
as the constraint requiring the output set to be of even
size (Goemans and Ramakrishnan, 1995).

Submodular Maximization A simple greedy al-
gorithm obtains the optimal approximation ratio of
1 − 1/e for maximization of a monotone submodular
function subject to a cardinality constraint (Nemhauser
and Wolsey, 1978; Nemhauser et al., 1978). The same
approximation ratio was later obtained for general
matroid constraints via the continuous greedy algo-
rithm (Călinescu et al., 2011). The best possible approx-
imation ratio for unconstrained maximization of a non-
monotone submodular function is 1/2 (Feige et al., 2011;
Buchbinder et al., 2015), even for deterministic algo-
rithms (Buchbinder and Feldman, 2018). However, the
approximability of constrained maximization of such
functions is not as well understood. Following a long
line of works (Buchbinder et al., 2014; Ene and Nguyen,
2016; Feldman et al., 2011; Lee et al., 2009; Oveis
Gharan and Vondrák, 2011; Vondrák, 2013), the state-
of-the-art algorithm for maximizing a non-monotone
submodular function subject to a cardinality or ma-
troid constraint guarantees 0.385-approximation (Buch-
binder and Feldman, 2019), while the best inapproxima-
bility result for these constraints only shows that one
cannot obtain 0.478-approximation for them (Gharan
and Vondrák, 2011; Qi, 2022).

It is also worth mentioning a line of work (Mirza-
soleiman et al., 2017; Mitrovic et al., 2017) aiming
to find a small core set such that even if some elements
are adversarially chosen for deletion, it is still possible
to produce a good solution based on the core set. Note
that this line of work differs from the maximization
player point of view in our setting, in which the aim
is to find a single solution for the maximization player
that is good against every choice of the minimization
player.

Additional related work relevant to some of our appli-
cations can be found in Appendix A.
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2 NOTATION AND OUR
THEORETICAL CONTRIBUTION

Let us describe the formal model for our setting. There
are two (disjoint) ground sets N1 and N2, one ground
set for each one of the players. For each ground set
Ni, we also have a constraint Fi ⊆ 2Ni specifying
the sets that can be chosen from this ground set. Fi-
nally, there is a non-negative objective set function
f : 2N1 ·∪N2 → R≥0.

1 The minimization player gets to
pick a set X from F1, and wishes to minimize the value
of f , while the maximization players picks a set Y
from F2, and aims to maximize the value of f . Our
task is to find for each player a set S that yields the
best value for f assuming the other player chooses the
best response against S. In other words, for the min-
imization player we want to find a set X ∈ F1 that
(approximately) minimizes maxY ∈F2 f(X ·∪Y ), and for
the maximization player we should find a set Y ∈ F2

that (approximately) maximizes minX∈F1
f(X ·∪Y ). As

optimization of general set functions cannot be done
efficiently, we must assume that the objective function
f obeys some properties. Two common properties that
are often considered in the literature are submodularity
and monotonicity. However, to assume these properties,
we first need to discuss what they mean in our setting.

Let us begin with the property of submodularity. In
the following, given an element u and a set S we use
f(u | S) ≜ f(S ∪ {u})− f(S) to denote the marginal
contribution of u to the set S.2 According to the
standard definition of submodularity,3 f is submodular
if the inequality f(u | S) ≥ f(u | T ) holds for every
two sets S ⊆ T ⊆ N1 ·∪ N2 and element u ∈ (N1 ·∪
N2) \ T . Since this definition of submodularity treats
N1 and N2 as two parts of one ground set, in the rest
of this paper we call a function that obeys it jointly-
submodular. However, since the ground sets N1 and
N2 play very different roles in our problems, it makes
sense to consider also functions that are submodular
when restricted to one ground set. We say that f
is submodular when restricted to N1 if it becomes a
submodular function when we fix the set of elements
of N2 chosen. More formally, f is submodular when
restricted to N1 if the inequality f(u | S ∪ A2) ≥
f(u | T ∪ A2) holds for every S ⊆ T ⊆ N1 and u ∈
N1 \ T,A2 ⊆ N2. The definition of being submodular
when restricted to N2 is analogous, and we say that
f is disjointly-submodular if it is submodular when
restricted to either N1 or N2.

1We use ·∪ to denote the union of disjoint sets.
2Similarly, given sets S and T , f(T | S) ≜ f(S∪T )−f(S)

denotes the marginal contribution of T to S.
3A set function g : N → R is submodular if g(u | S) ≥

g(u | T ) for every S ⊆ T ⊆ N and u ∈ N \ T .

Unfortunately, submodular minimization admits very
poor approximation guarantees even subject to simple
constraints such as cardinality (see Section 1.1 for more
details). Therefore, we restrict attention to the case
of F1 = 2N1 . Given this restriction, we cannot assume
that f is monotone4 since this will guarantee that the
best choice for the set X is always ∅. However, some
of our results assume that f is monotone with respect
to the elements of N2. In other words, we say that f is
N2-monotone if the inequality f(u | S) ≥ 0 holds for
every S ⊆ N1 ·∪ N2 and u ∈ N2 \ S.

Table 1 summarizes the theoretical results proved in
this paper. When the table states that we have an in-
approximability result of c for a problem, it means
that no polynomial time algorithm can produce a
value that with probability at least 2/3 approximates
the exact value of this problem up to a factor of c.
For example, if we look at the optimization problem
minX⊆N1

maxY ∈F2
f(X ·∪ Y ), then an inapproximabil-

ity result of c means that no polynomial time algorithm
can produce a value v that obeys

v ≤ c · min
X⊆N1

max
Y ∈F2

f(X ·∪ Y ) ≤ c · v (1)

with probability at least 2/3. In contrast, we hold our
algorithms to a higher standard. Specifically, when Ta-
ble 1 states that we have a c-approximation algorithm
for a problem, it means that the algorithm is able to pro-
duce with probability at least 2/3 two things: a value v
of the above kind, and a solution set S for the external
min or max operation that leads to c-approximation
when the internal min or max is optimality solved.
For example, given the above optimization problem, a
c-approximation algorithm produces with probability
at least 2/3 a value v obeying Equation (1), and a
set S ⊆ N1 such that minX⊆N1

maxY ∈F2
f(X ·∪ Y ) ≤

maxY ∈F2
f(S ·∪ Y ) ≤ c ·minX⊆N1

maxY ∈F2
f(X ·∪ Y ).

The success probability of 2/3 in the above definitions
can always be increased via repetitions. However, such
repetitions can usually be avoided since our algorithms
are typically either deterministic or naturally have a
high success probability.

As is standard in the literature, we assume that access
to the objective function f is done via a value oracle
that given a set S ⊆ N1 ·∪ N2 returns f(S). Further-
more, given a set S and element u, we use S + u and
S − u to denote S ∪ {u} and S \ {u}, respectively.

2.1 Results for maxmin Optimization

For maxmin expressions (the problem of the maxi-
mization player) we have a good understanding of the

4A set function g : 2N → R is monotone if g(S) ≤ g(T )
for every two sets S ⊆ T ⊆ N .
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Table 1: Our theoretical results. We denote by α the approximation ratio that can be obtained for maximizing a
non-negative submodular function subject to F2. If f happens to be N2-monotone, then α can be improved to be
the approximation ratio that can be obtained for maximizing a non-negative monotone submodular function
subject to F2.

Expression to approximate Assumptions Result proved

maxY ∈F2 minX⊆N1 f(X ·∪ Y ) jointly-submodular (α + ε)-approx. alg. (Thm 2.1)
maxY ⊆N2 minX⊆N1 f(X ·∪ Y ) disjointly-submodular

}
No finite approximation ratio
possible unless BPP = NP
(Thms 2.2 and 2.3)

maxY ⊆N2
|Y |≤k

minX⊆N1 f(X ·∪ Y ) disjointly-submodular
N2-monotone

minX⊆N1 maxY ⊆N2 f(X ·∪ Y ) disjointly-submodular (4 + ε)-approx. alg. (Thm 2.5)

minX⊆N1 maxY ∈F2 f(X ·∪ Y ) jointly-submodular, ∅ ∈ F2 O(α
√

|N1|)-approx. alg. (Thm. 2.6)

minX⊆N1 maxY ∈F2 f(X ·∪ Y )
disjointly-submodular

O(|N2|)-approx. alg. (Thm 2.4){u} ∈ F2 ∀u ∈ N2

approximability, and it turns out that this approxima-
bility strongly depends on the kind of submodularity
guaranteed for f . If f is jointly-submodular, then the
problem admits roughly the same approximation ratio
as the maximization problem obtained by omitting the
min operation.

Theorem 2.1. Assume that there exists an α-approx-
imation algorithm ALG for the problem of maximiz-
ing a non-negative submodular function g subject to
F2. Then, for every polynomially small ε ∈ (0, α],
there exists a polynomial time algorithm that (i) out-
puts a set Ŷ ∈ F2 and the value minX⊆N1 f(X ·∪ Ŷ );
and (ii) guarantees that, with probability at least 2/3,
minX⊆N1

f(X ·∪ Ŷ ) falls within the range [τ/(α+ε), τ ],
where τ = maxY ∈F2

minX⊆N1
f(X ·∪ Y ). Furthermore,

if f is N2-monotone, then it suffices for ALG to obtain
α-approximation when g is guaranteed to be monotone
(in addition to being non-negative and submodular).

We note that by assuming in Theorem 2.1 that ALG is
an α-approximation algorithm, we only mean that the
expected value of the solution of ALG is smaller than
the value of the optimal solution by at most a factor of
α. In other words, we do not make any high probability
assumption on ALG. The proof of Theorem 2.1 is
based on the observation that the joint-submodularity
of f implies that minX⊆N1

f(X ·∪ Y ) is a submodular
function of Y . See Section B.1 for details.

Unfortunately, it turns out that when f is only dis-
jointly submodular, there is little an algorithm can
guarantee. The following theorems show this for two
basic special cases: unconstrained maximization, and
maximization subject to a cardinality constraint of
an N2-monotone function (the special case of uncon-
strained maximization of an N2-monotone function is
trivial since it is always optimal to set Y = N2 in this
case). Both theorems are proved using a reduction
showing that the minimization over X can be replaced
with a minimization over multiple functions, which al-
lows us to capture well-known NP-hard problems with

maxmin expressions. See Section B.2 for details.

Theorem 2.2. When f is only guaranteed to be non-
negative and disjointly submodular, no polynomial time
algorithm for calculating maxY⊆N2 minX⊆N1 f(X ·∪ Y )
has a finite approximation ratio unless BPP = NP .

Theorem 2.3. When f is only guaranteed to be
non-negative, N2-monotone and disjointly submod-
ular, no polynomial time algorithm for calculating
maxY⊆N2,|Y |≤ρ minX⊆N1 f(X ·∪ Y ), where ρ is a pa-
rameter of the problem, has a finite approximation
ratio unless BPP = NP .

2.2 Results for minmax Optimization

We also have some results for minmax expressions (the
problem of the minimization player), although our un-
derstanding of the approximability of such expressions
is worse than for maxmin expressions. We begin with
the following theorem, which shows that when all the
singleton subsets of N1 are feasible choices for the min
operation (which is the case, for example, when the con-
straint is down-closed), it is possible to get a finite ap-
proximation (specifically, O(|N2|)-approximation) for
minmax. The proof of Theorem 2.4 can be found in
Section C.1. In a nutshell, it is based on the observation
for a set X ⊆ N1 the sum f(X) +

∑
u∈N2

f(X ·∪ {u})
is an easy to calculate submodular function of X that
gives O(|N2|)-approximation for maxY⊆N2

f(X ·∪ Y ).

Theorem 2.4. Assuming {u} ∈ F2 for every u ∈ N2,
there is a polynomial time algorithm that, given a non-
negative disjointly submodular function f : 2N → R≥0,

returns a set X̂ ⊆ N1 and a value v such that both
maxY ∈F2

f(X̂ ·∪Y ) and v fall within the range [τ, (|N2|+
1) · τ ], where τ ≜ minX⊆N1

maxY ∈F2
f(X ·∪ Y ).

The approximation ratio of the last theorem can be
improved to a constant when the max operation is
unconstrained (like the min operation). The following
theorem states this formally, and its proof can be found
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in Section C.2. The proof is based on using samples of
N2 to construct a random easy to calculate submodular
function of X approximating maxY⊆N2

f(X ·∪ Y ) up
to a factor of roughly 4.

Theorem 2.5. For every constant ε ∈ (0, 1), there
exists a polynomial time algorithm that given a non-
negative disjointly submodular function f : 2N →
R≥0 returns a set X̂ ⊆ N1 and a value v such

that the expectations of both maxY⊆N2 f(X̂ ·∪ Y ) and
v fall within the range [τ, (4 + ε)τ ], where τ ≜
minX⊆N1

maxY⊆N2
f(X ·∪ Y ). Furthermore, the prob-

ability that both maxY⊆N2
f(X̂ ·∪ Y ) and v fall within

this range is at least 1−O(|N2|−1).

The factor of 4+ε in the last theorem improves to 2+ε
when f is symmetric with respect to N2, i.e., when
f(X ·∪Y ) = f(X ·∪ (N2 \Y )) for every two sets X ⊆ N1

and Y ⊆ N2.

It is interesting to note that the last two results show a
separation between minmax and maxmin optimization
as no finite approximation guarantee can be obtained
for disjointly submodular functions in the later case
(Theorems 2.2 and 2.3). Our last result obtains a
sub-linear approximation guarantee for an (almost)
general constraint F2; however, this comes at the cost
of requiring f to be jointly-submodular.

Theorem 2.6. Assuming ∅ ∈ F2, there exists a poly-
nomial time algorithm that gets as input (i) a non-
negative jointly submodular function f : 2N → R≥0,
and (ii) an oracle that given a set X ⊆ N1 returns
a set Y ∈ F2 that maximizes f(X ·∪ Y ) up to a fac-
tor of α ≥ 1 among such sets,5 and given this in-
put returns a set X̂ ⊆ N1 and a value v such that
both maxY ∈F2 f(X̂ ·∪ Y ) and v are lower bounded
by τ and upper bounded by O(α

√
|N1|) · τ , where

τ ≜ minX⊆N1
maxY ∈F2

f(X ·∪ Y ).

Below, we prove Theorem 2.6. In this proof, we denote
by X∗ an arbitrary set in argminX⊆N1

maxY ∈F2
f(X∪

Y ). Notice that the definitions of X∗ and τ imply
together that τ = maxY ∈F2 f(X

∗ ∪ Y ). Thus, f(X∗ ∪
Y ) ≤ τ for every set Y ∈ F2, and in particular, since
∅ ∈ F2 by assumption, f(X∗) ≤ τ .

5Theorem 2.6 assumes an oracle that never fails. Such
an oracle can be implemented by a deterministic α-
approximation algorithm, or a randomized algorithm that
maximizes f(X ·∪Y ) up to a factor of α with high probability
(in the later case, the algorithm guaranteed by the theorem
also succeeds only with high probability). If one only has
a randomized algorithm guaranteeing α-approximation in
expectation, then repetitions should be used to get an oracle
that maximizes f(X ·∪ Y ) up to a factor of α + ε with high
probability. Note that when ε > 0 is only polynomially
small, this requires only a polynomial number of repetitions
since we may assume that α ≤ |N2| (otherwise, Theorem 2.4
already provides a better approximation).

Algorithm 1: Iterative X Growing

1 Use an algorithm for submodular minimization to
find a set X0 ∈ argminX⊆N1 f(X).

2 for i = 1 to n1 + 1 do
3 Use the given oracle to find a set Yi ∈ F2

maximizing f(Xi−1 ·∪ Yi) up to a factor of α
among all sets in F2.

4 Use an algorithm for submodular minimization
to find a set X ′

i ∈
argminX⊆N1

[
√
n1 · f(X ∪Xi−1) + f(X ·∪ Yi)].

5 if X ′
i ⊆ Xi−1 then return the set Xi−1 and

the value α · f(Xi−1 ·∪ Yi).
6 else Let Xi ← Xi−1 ∪X ′

i.

The algorithm that we use to prove Theorem 2.6 is
Algorithm 1. Below, we use n1 as a shorthand for |N1|,
and use I to denote the number of iterations completed
by the loop of this algorithm. Since the size of Xi

increases following every completed iteration, I ≤ n1.
Note that iteration I + 1 started, but stopped before
completion since X ′

I+1 was a subset of XI . Hence, XI

is the output set of Algorithm 1. We begin the analysis
of Algorithm 1 with the following lemma.

Lemma 2.7. For every integer 1 ≤ i ≤ I,

f(Xi) = f(Xi−1∪X ′
i) ≤ f((X∗∩X ′

i)∪Xi−1)+τ/
√
n1 .

Proof. By the choice of X ′
i, we have

√
n1 · f(X ′

i ∪Xi−1) + f(X ′
i ·∪ Yi)

≤
√
n1 · f((X∗ ∩X ′

i) ∪Xi−1) + f((X∗ ∩X ′
i) ·∪ Yi)

≤
√
n1 ·f((X∗∩X ′

i)∪Xi−1)+f(X∗ ·∪Yi) + f(X ′
i ·∪Yi)

≤
√
n1 · f((X∗ ∩X ′

i) ∪Xi−1) + τ + f(X ′
i ·∪ Yi) ,

where the second inequality follows from the submodu-
larity and non-negativity of f , and the last inequality
follows from the definition of X∗. The lemma now
follows by rearranging the last inequality.

Corollary 2.8. The output set XI of Algorithm 1
obeys f(XI) ≤ O(

√
n1) · τ .

Proof. If I = 0, then XI = X0, and by definition we
have f(XI) ≤ f(X∗) ≤ τ . Therefore, we may assume
from now on I ≥ 1. Using Lemma 2.7, we now get

f(XI)− f(X0) ≤
I∑

i=1

[f(Xi)− f(Xi−1)]

≤
I∑

i=1

[f(X∗ ∩X ′
i | Xi−1) + τ/

√
n1]
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≤
I∑

i=1

f(X∗ ∩X ′
i | X∗ ∩Xi−1) +

√
n1 · τ

= f(X∗ ∩XI | X∗ ∩X0) +
√
n1 · τ

≤ f(X∗ ∩XI)− f(X0) +
√
n1 · τ ,

where the penultimate inequality holds by the submod-
ularity of f and the observation that I ≤ n1, and the
last inequality holds by the definition of X0. Adding
f(X0) to be both sides of the last inequality yields

f(XI)−
√
n1 · τ ≤ f(X∗ ∩XI) ≤ f(X∗) + f(XI)

− f(X∗ ∪XI) ≤ τ + f(XI)− f(X∗ ∪XI) ,

where the second inequality follows from the submodu-
larity of f , and last inequality follows from the defini-
tion of X∗. To lower bound the term f(X∗ ∪XI), we
observe that since I ≥ 1, the definition of X ′

I implies

f(X∗ ∪XI) = f((X∗ ∪X ′
I) ∪XI−1)

≥ f(X ′
I ∪XI−1)−

f(X∗ | X ′
I ·∪ YI)√

n1

≥ f(XI)−
f(X∗)
√
n1
≥ f(XI)− τ/

√
n1 ,

where the second inequality uses the submodularity
and non-negativity of f , and the last inequality holds
by the definition of X∗. The corollary now follows by
combining this inequality with the previous one.

We are now ready to prove Theorem 2.6.

Proof of Theorem 2.6. Since Algorithm 1 outputted
the set XI , we must have X ′

I+1 ⊆ XI . Furthermore,
by the choices of YI+1 and X ′

I+1,

α−1 · max
Y ∈F2

f(XI ·∪ Y )

≤ f(XI ·∪ YI+1) = f(XI) + f(YI+1 | XI)

≤ f(XI) + f(YI+1 | X ′
I+1)

≤ f(XI) + [
√
n1 · f(X∗ ∪XI) + f(X∗ ·∪ YI+1)

−
√
n1 · f(X ′

I+1 ∪XI)− f(X ′
I+1)]

≤ f(XI) +
√
n1 · f(X∗ | XI) + f(X∗ ·∪ YI+1) ,

where the second inequality follows from the submod-
ularity of f , and the last inequality holds by the non-
negativity of f . Observe now that Corollary 2.8 guar-
antees f(XI) ≤ O(

√
n) · τ , and the definition of X∗

guarantees f(X∗ ∪ YI+1) ≤ τ . Furthermore, using the
submodularity and non-negativity of f , we also get
f(X∗ | XI) ≤ f(X∗) ≤ τ . Plugging all these observa-
tions into the previous inequality yields

α−1 · max
Y ∈F2

f(XI ·∪ Y ) ≤ f(XI ·∪ YI+1)

≤ O(
√
n1) · τ +

√
n1 · τ + τ = O(

√
n1) · τ .

Multiplying the last inequality by α, we get the upper
bound on maxY ∈F2 f(XI ·∪Y ) and α ·f(XI ·∪YI+1) (the
value outputted by Algorithm 1) promised in the theo-
rem. The promised lower bound on these expressions
also holds since the definition of YI implies

α · f(XI ·∪ YI+1) ≥ max
Y ∈F2

f(XI ·∪ Y )

≥ min
X⊆N1

max
Y ∈F2

f(X ·∪ Y ) = τ .

3 APPLICATIONS

In this section and Appendix D we discuss five machine-
learning applications: efficient prompt engineering,
ride-share difficulty kernelization, adversarial attack
on image summarization, robust ride-share optimiza-
tion, and prompt engineering for dialog state tracking.
Each one of these applications necessitates either max-
min or min-max optimization on a jointly submodular
function6 (with a cardinality constraint on the max-
imization part). To demonstrate the robustness of
our suggested methods in this work, we empirically
compare them against a few benchmarks.

In the max-min optimization applications, we compare
the algorithm from Theorem 2.1 (named below Min-as-
Oracle) against 4 benchmarks: (i) “Random” choosing
a random set of k elements from N2 as the set Y ; (ii)
“Max-Only” using a maximization algorithm to find the
a set Y that is (approximately) optimal against X = ∅;
(iii) “Top-k” selecting a set Y consisting of the top k
singletons y ∈ N2, where each singleton is evaluated
based on the corresponding worst case set X; and (iv)
“Best-Response” simulating a best response dynamic
between the minimization and maximization players,
and outputting the set used by the maximization player
after a given number of iterations. The Best-Response
method is a widely used concept in game theory and
optimization, first introduced in the seminal work by
Von Neumann and Morgenstern (1947).

In the min-max optimization applications, we study
the algorithm from Theorem 2.4 (named below Min-
by-Singletons) and a slightly modified version of the
algorithm from Theorem 2.6 (named below Iterative-X-
Growing). Out of the above 4 benchmarks, the Random
and Best-Response benchmarks still make sense in min-
max settings with the natural adaptations. It was also
natural to try to replace the Max-Only benchmark
with a “Min-Only” benchmark, but such a benchmark
would always output the empty set in our applications.
Thus, we use instead a benchmark called “Max-and-
then-Min” that returns a set X that is optimal against

6We consider only jointly submodular functions in our
experiments since our theoretical results for disjointly sub-
modular functions are, unfortunately, mostly negative.
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the set Y returned by Max-Only. See Appendix E for
further detail about the various benchmarks, and the
implementations of our algorithms.

3.1 Efficient Prompt Engineering

Consider the problem of designing efficient prompts
for zero-shot in-context learning. Following Si et al.
(2023), we consider an open-domain question answering
task: the goal is to answer questions from the SQuAD
dataset (Rajpurkar et al., 2016) by prompting a large
language model with k relevant passages of text taken
from a large corpus of Wikipedia articles. To get for
each question an initial set of relevant candidate pas-
sages, 21 million Wikipedia passages were embedded
using a pretrained Contriever model (Izacard et al.,
2022) and indexed using FAISS.7 Then, for each ques-
tion, the top 100 passages were kept as candidates.

Large language models such as OpenAI’s ChatGPT
offer very impressive performance on natural language
tasks via a public API. As the cost of making a pre-
diction depends on the length of the input prompt, we
propose to reduce the cost by jointly answering similar
questions with a common prompt, and thus, a single
query to the GPT-3.5-turbo language model. To use
this approach, we need to select a subset of passages
that are effective on the set of answerable questions,
which we formulate as a combinatorial optimization
problem. Specifically, let N1 be a batch of questions
and let N2 be the union of all candidate passages. (In
general, 100 ≤ |N2| ≤ 100 · |N1| since there may be sig-
nificant overlap among candidates for questions on the
same topic.) Let 0 ≤ su,v ≤ 1 be the cosine similarity
between passage embedding u and question embedding
v. Then, we define

f(X ·∪ Y ) =
∑

v∈N1\X

max
u∈Y

su,v (2)

+ β ·
∑

u∈N1\X

∑
v∈Y

su,v + λ · |X| .

Here λ ≥ 0 and β ≥ 0 are regularization parameters.
The first term represents how well the passages of Y
cover the questions in N1 \X. For small values of β,
the second term ensures f increases in |Y |, and the last
term controls the size of X. The following lemma is
proved in Section F.1.

Lemma 3.1. The objective function (2) is a non-
negative jointly-submodular function.

By solving the max-min optimization maxY⊆N2,|Y |≤k

minX∈N1
f(X ·∪ Y ), we get the set X of answerable

questions, and a small set Y of effective passages. In
our experiments we set β = 10−3, λ = 0.8, and k = 10,

7https://github.com/facebookresearch/faiss

and we grouped the SQuAD test set into batches of 25
questions. In addition to the heterogeneity introduced
by crude batching, we removed δ = 25% of the candi-
dates from N2, leading to some questions having no
relevant passages.

Table 2 shows the performance of the prompts for
GPT-3.5-turbo obtained by Min-as-Oracle and various
benchmarks. Each method is evaluated in terms of
exact match accuracy and F1 score between predicted
and ground truth answers. As a baseline, we also
consider using the common prompt returned by the
retrieval algorithm, but making a separate prediction
for each question in the cluster. We see our proposed
joint prediction with a single prompt increases accuracy
while on average requiring only 5.3% of the tokens per
question compared to separate prediction. Moreover,
Min-as-Oracle has the highest accuracy among all re-
trieval algorithms used for joint prediction. Figure 1
shows a qualitative example of joint prediction for a
batch of questions.

3.2 Ride-Share Difficulty Kernelization

Consider a regulator overseeing the taxi companies
licensed to operate within a given city. The regulator
wants to make sure that the taxi companies give a
fair level of service to all parts of the city, rather than
concentrating on the most profitable neighborhoods.
However, checking that this is indeed the case is not
trivial since often the limited number of taxis available
implies that some locations must remain poorly served.
Our objective in this section is to give the regulator
a small set (kernel) of locations that that capture the
difficulty of the problem faced by the taxi company in
the sense that the locations in the set cannot be served
well (on average) regardless of how the taxi companies
choose the waiting locations for their taxis.

Formally, given a set N1 of (client) pickup locations,
and a set N2 of potential waiting locations for taxies,
we define the following score function to capture the
convenience of serving all the locations of N1 \X by
locating taxis at locations Y .8

f(X ·∪ Y ) =
∑

v∈N\X

max
u∈Y

su,v −
1

|N2|
∑
u∈Y

∑
v∈Y

su,v (3)

+ λ · |X| .

Here, su,v is a “convenience score” which, given a cus-
tomer location u = (xu, yu) and a waiting driver loca-
tion v = (xv, yv),

9 represents the ease of accessing u

8It would have been more natural to define X as the set
of locations to service. However, this would have resulted
in an objective function that is only disjointly submodular.

9Each location is specified by a (latitude, longitude)
coordinate pair.

https://github.com/facebookresearch/faiss


Submodular Minimax Optimization: Finding Effective Sets

Random

… membrane shows its extensive 
invaginations to be stacked, similar to 
thylakoid disks; hence the mitochondrial 
intermembrane space is topologically quite 
similar to the chloroplast lumen…
...
… the stromal thylakoids. These large 
protein complexes may act as spacers 
between the sheets of stromal thylakoids. 
The number of thylakoids and the total 
thylakoid area of a chloroplast is influenced 
by light exposure. Shaded chloroplasts 
contain larger and more grana with more 
thylakoid membrane…
...

…
3. In linked groups ●
… …
18. Mitochondria ✖
19. Grana and stromal ✖
20. Thylakoid-shaped ✖

21. Vary in size ●
22. Six ✖
…

Max-Only

…to their parent thylakoid. In old or stressed chloroplasts, 
plastoglobuli tend to occur in linked groups or chains, still 
always…
…
… In most vascular plant chloroplasts, the thylakoids are 
arranged in stacks called grana, though in certain plant…
…

…
- In old or stressed chloroplasts ✔
… …
- Prokaryotic membranes and the inner chloroplast 
membrane ✖

- Two: chlorophyll ""a"" and chlorophyll ""b"" ●
- Arrangement in stacks called grana ●
- Free-floating ✖
- Disc-shaped ✖
…

Min-As-Oracle

… ATP energy as the hydrogen ions flow back out into the 
stroma—much like a dam turbine. There are two types of 
thylakoids—granal thylakoids, which are arranged in grana, 
and stromal thylakoids, which are in contact with the 
stroma. Granal thylakoids are pancake-shaped
…
… to their parent thylakoid. In old or stressed chloroplasts, 
plastoglobuli tend to occur in linked groups or chains, still 
always…
…

…
3. In old or stressed chloroplasts.    ✔
… …
18. A dam turbine. ✔ 
19. Two types.      ●
20. Arranged in stacks. ●
21. Free floating.          ✖
22. Pancake-shaped. ✔
…

Template

You should use the following text to answer 
questions. Your answers should be very short 
phrases less than 5 words.

{RETRIEVED_PASSAGES}

…
- When do Plastoglobuli occur in linked groups?
- What is ATP synthase similar to?
- How many types of thylakoids are there?
- What distinguishes granal thylakoids?
- What distinguishes stromal thylakoids?
- What shape are granal thylakoids?
…

{LLM_OUTPUT}

Best-Response

…to their parent thylakoid. In old or stressed 
chloroplasts, plastoglobuli tend to occur in linked 
groups or chains, still always…
…
… In most vascular plant chloroplasts, the thylakoids 
are arranged in stacks called grana, though in 
certain plant…
…

…
3. In old or stressed chloroplasts. ✔
…
18. Mitochondria. ✖

19. Two types: grana and stromal. ●
20. Grana are stacked, stromal are free-floating. ●
21. Disc-shaped. ✖
22. 0.2-0.5 micrometers in diameter. ✖
…

Top-k

… ATP energy as the hydrogen ions flow back out 
into the stroma—much like a dam turbine. There 
are two types of thylakoids—granal thylakoids, 
which are arranged in grana, and stromal 
thylakoids, which are in contact with the stroma. 
Granal thylakoids are pancake-shaped
…
… In most vascular plant chloroplasts, the 
thylakoids are arranged in stacks called grana, 
though in certain plant…
…

…
3. When CO is scarce ✖
… …
18. Two types ✖
19. Arranged in stacks ✖

20. In contact with stroma ●
21. Pancake-shaped ✖
22. Varies ✖
…

None

…
3. Linked metabolic pathways ✖
… …
18. Grana and stromal ✖
19. Stacked thylakoids ✖
20. Unstacked thylakoids ✖
21. Flattened discs ✖
22. 10-20 nm in diameter ✖
…

Figure 1: Example of our proposed max-min formulation for jointly answering a batch of questions from the
SQuAD dataset using GPT-3.5-turbo. Template prompt (left), followed by excerpts from the retrieved passages
(blue) and generated answers (green). Exact match, partial match, and incorrect answer are denoted ✔, ●, and
✖, respectively. Min-as-Oracle retrieved two passages that are relevant to Questions 3, 18, 19, 20, 21, and 22,
while the other selection algorithms retrieved only one or neither of them. Consequently, Min-As-Oracle is
best aligned with the ground truth answers, having the highest number of exact matches and the
fewest number of hallucinations.

from v. Following Mitrovic et al. (2018), we set su,v ≜
2− 2

1+e−200d(u,v) , where d(u, v) = |xu−xv|+ |yu−yv| is
the Manhattan distance between the two points. The
value λ ∈ [0, 1] is a regularization parameter whose
use is discussed below. Some properties of this objec-
tive function are given by the next lemma, proved in
Appendix F.2.

Lemma 3.2. The objective function (3) is a non-
negative jointly-submodular function.

Recall that we are looking for a kernel set N1 \X of
pickup locations that cannot be served well (on average)
by any choice of k locations for taxis (k is determined
by the number of taxis available). To do that, we need
to solve the max-min optimization problem given by
minX⊆N1 maxY⊆N2,|Y |≤k f(X ·∪Y ). The regularization
parameter λ can now be used to control the size the
kernel set returned.

In our experiments for this application, we have used
the Uber data set (Uber), which includes real-life Uber
pickups in New York City during the month of April
in the year 2014. To ensure computational tractability,
in each execution of our experiments, we randomly

selected from this data set a subset of |N1| = 6,000
pickup locations within the region of Manhattan. Then,
we randomly selected a subset of 400 pickup locations
from the set N1 to constitute the set N2 (we treat
locations in N1 and N2 as distinct even if they are
identical, to guarantee that N1 and N2 are disjoint).

In the first experiment, we fixed the maximum number
of waiting locations to be 8, and varied λ. Figure 2a
depicts the outputs for this experiment for Min-by-
Singletons, Iterative-X-Growing (with β = 0.5) and
three benchmarks (averaged over 10 executions of the
experiment). One can observe that both Iterative-X-
Growing and Min-by-Singletons surpasses the perfor-
mance of all benchmarks for almost all values of λ. In
both this experiment and the next one the standard
error of the mean is less than 10 for all data points.

In the second experiment, we fixed λ to 0.2 and varied
the number of allowed waiting locations. The results
of this experiment are depicted by Figure 2b (averaged
over 10 executions of the experiment). Once again,
Iterative-X-Growing and Min-by-Singletons demon-
strate superior performance compared to the bench-
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Table 2: Open-domain question answering on SQuAD using GPT-3.5-turbo. Best values are in bold.

Prompting Method Retrieval Algorithm Exact Match % ↑ F1% ↑ Avg Tokens/Question ↓

Joint Prediction

Random 18.6 29.7 73.2
None 22.5 33.9 20.0
Top-k 25.0 37.0 72.8

Max-Only 25.9 37.5 73.2
Best-Response 25.6 37.0 73.2
Min-as-Oracle 26.1 37.8 73.2

Separate Prediction

Random 9.7 17.8 1356.3
None 15.9 29.1 40.1
Top-k 21.3 31.6 1338.8

Max-Only 25.3 36.4 1348.7
Best-Response 25.2 36.2 1348.7
Min-as-Oracle 25.2 36.3 1348.7
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(a) Results for 8 waiting locations
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(b) Results for λ = 0.2

0 10 20 30 40 50

1,950

2,000

2,050

2,100

2,150

2,200

Iterations

F
u
n
ct
io
n
V
al
u
e

(c) Behavior of Best-Response for λ =
0.2 and 8 waiting locations

Figure 2: Empirical results for ride-share difficulty kernelization. Figures (a) and (b) compare the performance of
our algorithms Min-by-Singletons and Iterative-X-Growing with 3 benchmarks for different value of λ and bounds
on the number of weighting locations. Figure (c) depicts the value of the output of the Best-Response method as
a function of the number of iterations performed.

marks for almost all values of k. Please refer to Figure 6
in Appendix D.4 for a visual depiction of the results.

As the third experiment for this application, we con-
ducted a more in depth analysis of Best-Response. Fig-
ure 2c graphically presents the objective function value
obtained by a typical execution of Best-Response after
a varying number of iterations (for λ = 0.5 and an
upper bound of 20 on the number of waiting locations).
It is apparent that Best-Response does not converge
for this execution. Furthermore, both our suggested
algorithms demonstrate better performance even with
respect to the best performance of Best-Response for
any number of iterations between 1 and 50.

4 CONCLUSION

In this paper we have initiated the systematical study
of minimax optimization for combinatorial (discrete)
settings with large domains. We have fully mapped the
theoretical approximability of max-min submodular
optimization, and also obtained some understanding
of the approximability of min-max submodular opti-

mization. The above theoretical work has been comple-
mented with empirical experiments demonstrating the
value of our technique for the machine-learning tasks of
efficient prompt engineering, ride-share difficulty ker-
nelization, adversarial attacks on image summarization,
and robust ride-share optimization.

We hope future work will lead to a fuller understanding
of minimax submodular optimization, and will also
consider classes of discrete functions beyond submodu-
larity. A natural class to consider in that regard is the
class of weakly-submodular functions (Das and Kempe,
2011), which extends the class of submodular functions
and has many machine learning applications (Khanna
et al., 2017; Qian and Singer, 2019; Chen et al., 2018;
El Halabi et al., 2022). However, minimax optimization
of this class seems to be difficult because no algorithm is
currently known even for plain minimization of weakly-
submodular functions. Another open problem is to
prove a performance guarantee for Best-Response.
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A ADDITIONAL RELATED WORK FOR PROMPT ENGINEERING FOR
NATURAL LANGUAGE PROCESSING

In-context learning (Dong et al., 2022) has emerged as a powerful technique to leverage very large language
models (Brown et al., 2020; Chen et al., 2021; Ouyang et al., 2022) for Natural Language Processing (NLP) tasks
to new tasks without fine-tuning. Recent works, such as Min et al. (2022); Wang et al. (2022); Wei et al. (2022),
show the importance of crafting good natural language prompts for these models.

Our prompt engineering experiments build on related works which use a neural retrieval model to prompt large
language models for open-domain question answering (Si et al., 2023) and dialog state tracking (Hu et al., 2022).
While these previous works only use the Top-k candidates based on embedding similarity, we formulate a novel
combinatorial optimization problem for each application.

Some works suggested algorithmic approaches to prompt engineering that learn parameters using gradient-based
optimization (Lester et al., 2022; Li and Liang, 2021; Shin et al., 2020; Wen et al., 2023). More recently, Zhou
et al. (2022) designed prompts by ranking generations from a secondary language model combined with iterative
Monte Carlo search. All of these methods are complex, computationally expensive, and challenging to interpret.

B PROOFS OF SECTION 2.1

B.1 Proof of Theorem 2.1

In this section we prove Theorem 2.1, which we repeat here for convenience.

Theorem 2.1. Assume that there exists an α-approximation algorithm ALG for the problem of maximizing
a non-negative submodular function g subject to F2. Then, for every polynomially small ε ∈ (0, α], there
exists a polynomial time algorithm that (i) outputs a set Ŷ ∈ F2 and the value minX⊆N1

f(X ·∪ Ŷ ); and (ii)

guarantees that, with probability at least 2/3, minX⊆N1
f(X ·∪ Ŷ ) falls within the range [τ/(α + ε), τ ], where

τ = maxY ∈F2
minX⊆N1

f(X ·∪ Y ). Furthermore, if f is N2-monotone, then it suffices for ALG to obtain
α-approximation when g is guaranteed to be monotone (in addition to being non-negative and submodular).

The majority of the section is devoted to proving the slightly different version of the last theorem given by
Proposition B.1. If ALG is a deterministic algorithm, then the algorithm whose existence is guaranteed by
Proposition B.1 is also deterministic, and immediately implies Theorem 2.1. However, if ALG is a randomized
algorithm, then it might be necessary to use repetitions to get the result stated in Theorem 2.1. Specifically, by a
Markov-like argument, the probability that minX⊆N1

f(X ·∪ Ŷ ) ≥ τ/(α+ ε) must be at least ε/α2, and therefore,

by executing the algorithm from Proposition B.1 O(α2/ε) times, the probability of getting a set Ŷ for which
minX⊆N1

f(X ·∪ Ŷ ) ≥ τ/(α+ ε) can be made to be at least 2/3.

Proposition B.1. Assume that there exists an α-approximation algorithm ALG for the problem of maximizing
a non-negative submodular function g subject to F2, then there exists a polynomial time algorithm that outputs
a set Ŷ ∈ F2 and the value minX⊆N1 f(X ·∪ Ŷ ), and guarantees that (i) minX⊆N1 f(X ·∪ Ŷ ) ≤ τ , and (ii) the

expectation of minX⊆N1 f(X ·∪ Ŷ ) is at least τ/α. Furthermore, if f is N2-monotone, then it suffices for ALG to
obtain α-approximation when g is guaranteed to be monotone (in addition to being non-negative and submodular).

To prove Proposition B.1, let us define, for every set Y ⊆ N2, g(Y ) = minX⊆N1 f(X ·∪ Y ). It is well-known that
g is a submodular function, and we prove it in the next lemma for completeness (along with additional properties
of g).

Lemma B.2. The function g : 2N2 → R≥0 is a non-negative submodular function, and there exists a polynomial
time implementation of the value oracle of g. Furthermore, if f is N2-monotone, then g is monotone (in addition
to being non-negative and submodular).

Proof. We begin the proof by considering Algorithm 2. One can observe that this algorithm describes a way to
implement a value oracle for g because, by the definitions of X ′ and hY ,

f(X ′ ∪ Y ) = hY (X
′) = min

X⊆N1

hY (X) = min
X⊆N1

f(X ∪ Y ) = g(Y ) .
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Algorithm 2: Value oracle implementation (Y )

1 Define hY (X) ≜ f(X ·∪ Y ) for every set X ⊆ N1.
2 Find a set X ′ ⊆ N1 minimizing hY (X

′).
3 return f(X ′ ·∪ Y ).

Furthermore, Algorithm 2 can be implemented to run in polynomial time using any polynomial time algorithm
for unconstrained submodular minimization because hY is a submodular function.

The non-negativity of g follows from the definition of g and the non-negativity of f . Proving that g is also
submodular is more involved. Let Y1 and Y2 be two arbitrary subsets of N2, and let us choose a set Xi ∈
argminX⊆N1

f(X ·∪ Yi) for every i ∈ {1, 2}. Then,

g(Y1) + g(Y2) = f(X1 ·∪ Y1) + f(X2 ·∪ Y2)

≥ f((X1 ∩X2) ·∪ (Y1 ∩ Y2)) + f((X1 ∪X2) ·∪ (Y1 ∪ Y2))

≥ min
X⊆N1

f(X ·∪ (Y1 ∩ Y2)) + min
X⊆N1

f(X ·∪ (Y1 ∪ Y2)) = g(Y1 ∩ Y2) + g(Y1 ∪ Y2) ,

where the first inequality holds by the submodularity of f since X1 ∪X2 ⊆ N1 is disjoint from Y1 ∪ Y2 ⊆ N2.
This completes the proof that g is submodular.

It remains to prove that g is monotone whenever f is N2-monotone. Therefore, in the rest of the proof we assume
that f indeed has this property. Then, if the sets Y1 and Y2 obey the inclusion Y1 ⊆ Y2, then they also obey

g(Y2) = f(X2 ∪ Y2) ≥ f(X2 ∪ Y1) ≥ f(X1 ∪ Y1) = g(Y1) ,

where the first inequality follows from the N2-monotonicity of f , and the second inequality follows from the
definition of X1.

We are now ready to prove Proposition B.1.

Proof of Proposition B.1. Note that Lemma B.2 implies that g has all the properties necessary for ALG to
guarantee α-approximation for the problem of minY ∈F2

g(Y ). Therefore, we can use ALG to implement in
polynomial time the procedure described by Algorithm 3 (since ALG runs in polynomial time given a polynomial
time value oracle implementation for the objective function). Since the definition of g implies maxY ∈F2 g(Y ) =

Algorithm 3: Approximate using ALG

1 Use ALG to get a set Y ′ ∈ F2 such that α−1 ·maxY ∈F2
g(Y ) ≤ E[g(Y ′)] ≤ maxY ∈F2

g(Y ).
2 return the set Y ′ and the value g(Y ′).

maxY ∈F2 minX⊆N2 f(X ·∪Y ) = τ , the value g(Y ′) = minX⊆N1 f(X ·∪Y ′) ≤ maxY ∈F2 minX⊆N2 f(X ·∪Y ) produced
by Algorithm 3 is at most τ and in expectation at least τ/α. Therefore, Algorithm 3 has all the properties
guaranteed by Proposition B.1.

B.2 Proofs of Theorems 2.2 and 2.3

In this section we prove the inapproximability results stated in Theorems 2.2 and 2.3. The proofs of both
theorems are based on the reduction described by the following proposition. Below, we use N0 and N to denote
the set of natural numbers with and without 0, respectively. Additionally, recall that for a non-negative integer i,
[i] = {1, 2, . . . , i}. In particular, this implies that [0] = ∅, which is a property we employ later in the section.

Proposition B.3. Fix any family F2 of pairs of ground set N2 and constraint F2 ⊆ 2N2 . Additionally, let
α : N0 × F2 → [1,∞) be an arbitrary function (intuitively, for every pair (N2,F2) ∈ F2, α(m,N2,F2) is an
approximation ratio that we assign to this pair when the ground set N1 has a size of m). Assume that there exists
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a (possibly randomized) polynomial time algorithm ALG which, given a ground set N1, a pair (N2,F2) ∈ F2, and
a non-negative disjointly submodular function f : 2N1 ·∪N2 → R≥0, outputs a value v such that, with probability at
least 2/3,

1
α(|N1|,(N2,F2))

· max
Y ∈F2

min
X⊆N1

f(X ·∪ Y ) ≤ v ≤ max
Y ∈F2

min
X⊆N1

f(X ·∪ Y ) .

Then, there also exists a polynomial time algorithm that given a pair (N2,F2) ∈ F2 and non-negative submodular
functions g1, g2, . . . , gm : 2N2 → R≥0 outputs a value v such that, with probability at least 2/3,

1
α(m−1,(N2,F2))

· max
Y ∈F2

min
1≤i≤m

gi(Y ) ≤ v ≤ max
Y ∈F2

min
1≤i≤m

gi(Y ) .

Furthermore, if the functions g1, g2, . . . , gm : 2N2 → R≥0 are all guaranteed to be monotone (in addition to being
non-negative and submodular), then it suffices for ALG to have the above guarantee only when f is N2-monotone
(in addition to being non-negative and disjointly submodular).

Before proving Proposition B.3, let us show that it indeed implies Theorems 2.2 and 2.3.

Theorem 2.2. When f is only guaranteed to be non-negative and disjointly submodular, no polynomial time
algorithm for calculating maxY⊆N2

minX⊆N1
f(X ·∪ Y ) has a finite approximation ratio unless BPP = NP .

Proof. Fix the family F2 = {([k], 2[k]) | k ∈ N}. Assume that there exists a polynomial time algorithm for
calculating maxY⊆N2

minX⊆N1
f(X ·∪ Y ) that has a polynomial approximation ratio. By plugging this algorithm

and the family F2 into Proposition B.3, we get that there exists a polynomial time algorithm ALG and a
polynomial function α : N×N→ [1,∞) such that, given integer k ∈ N and m non-negative monotone submodular
functions g1, g2, . . . , gm, the algorithm ALG produces a value v such that, with probability at least 2/3,

1
α(m,k) · max

Y⊆[k]
min

1≤i≤m
gi(Y ) ≤ v ≤ max

Y⊆[k]
min

1≤i≤m
gi(Y ) .

In particular, ALG answers correctly with probability at least 2/3 whether the expression maxY⊆[k] min1≤i≤m gi(Y )
is equal to zero. Therefore, to prove the theorem it suffices to show that that exists some NP-hard problem
such that every instance I of this problem can be encoded in polynomial time as an expression of the form
maxY⊆[k] min1≤i≤m gi(Y ) that takes the value 0 if and only if the correct answer for the instance I is “No”.

In the rest of this proof, we show that this is indeed the case for the NP-hard problem SAT. Every instance of SAT
consists a CNF formula ϕ over n variables x1, x2, . . . , xn that has ℓ clauses. To encode this instance, we need to
construct n+ ℓ functions over the ground set [2n]. Intuitively, for every integer 1 ≤ i ≤ n the elements 2i− 1
and 2i of the ground set correspond to the variable xi of ϕ. The element 2i− 1 corresponds to an assignment
of 1 to this variable, and the element 2i corresponds to an assignment of 0. For every integer 1 ≤ i ≤ n, the
objective of the function gi is to make sure that exactly one value is assigned to xi. Formally, this is done by
defining gi(Y ) ≜ |{2i − 1, 2i} ∩ Y | mod 2 for every Y ⊆ [2n]. One can note that gi(Y ) takes the value 1 only
when exactly one of the elements 2i− 1 or 2i belongs to Y . Furthermore, one can verify that gi is non-negative
and submodular.

Next, we need to define the functions gn+1, gn+2, . . . , gn+ℓ. To define these functions, let us denote by c1, c2, . . . , cℓ
the clauses of ϕ. Additionally we denote by cj(xi = v) an indicator that gets the value 1 if assigning the value v
to xi guarantees that the clause cj is satisfied. In other words, cj(xi = v) equals 1 only if v = 1 and cj includes
the positive literal xi, or v = 0 and cj includes the negative literal x̄j . For every integer 1 ≤ j ≤ ℓ, the function
gn+j(Y ) corresponds to the clause wj and takes the value 1 only when this clause is satisfied by some element of
Y . Formally,

gn+j(Y ) = max
i∈Y

cj(x⌈i/2⌉ = (i mod 2))

(notice that x⌈i/2⌉ is the index of the variable corresponding to element i, and i mod 2 is the value assigned to
this variable by the element i). One can verify that gn+j(Y ) is a non-negative submodular (and even monotone)
function.

Let us now explain why maxY⊆[2n] min1≤i≤m gi(Y ) takes the value 0 if and only if ϕ is not satisfiable. First, if
there exists a satisfying assignment a for ϕ, then one can construct a set Y ⊆ [2n] that encodes a. Specifically,
for every integer 1 ≤ i ≤ n, Y should include 2i− 1 (and not 2i) if a assigns the value 1 to xi, and otherwise Y
should include 2i (and not 2i− 1). Such a choice of Y will make all the above functions g1, g2, . . . , gn+ℓ take the
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value 1, and therefore, maxY⊆[2n] min1≤i≤m gi(Y ) = 1 in this case. Consider now the case in which ϕ does not
have a satisfying assignment. Then, for every set Y ⊆ [2n] we must have one of the following. The first option is
that Y includes either both 2i− 1 and 2i, or neither of these elements, for some integer i, which makes gi evaluate
to 0 on Y . The other option is that Y corresponds to some legal assignment a of values to x1, x2, . . . , xn that
violates some clause cj , and thus, gn+j evaluates to 0 on Y . In both cases min1≤i≤m gi(Y ) = 0.

Theorem 2.3. When f is only guaranteed to be non-negative, N2-monotone and disjointly submodular, no
polynomial time algorithm for calculating maxY⊆N2,|Y |≤ρ minX⊆N1

f(X ·∪ Y ), where ρ is a parameter of the
problem, has a finite approximation ratio unless BPP = NP .

Proof. The proof of this theorem is very similar to the proof of Theorem 2.2, and therefore, we only describe
here the differences between the two proofs. First, the family F2 should be chosen this time as F2 = {([2k], {Y ⊆
[2k] | |Y | ≤ k} | k ∈ N}. This modification implies that we now need to encode ϕ as an instance of

max
Y⊆[2n]
|Y |≤n

min
1≤i≤m

gi(Y ) ,

where the functions gi(Y ) are all non-negative monotone submodular functions over the ground set [2n]. We do
this using n+ ℓ functions like in the proof of Theorem 2.2. Moreover, the functions gn+1, gn+2, gn+ℓ are defined
exactly like in the proof of Theorem 2.2.

For every integer 1 ≤ i ≤ n, the function gi still corresponds to the variable xi, but now the role of gi is only to
guarantee that xi gets at least a single value. This is done by setting gi(Y ) = min{|Y ∩ {2i− 1, 2i}|, 1}, which
means that gi takes the value 1 only when at least one of the elements 2i− 1 or 2i belongs to Y . Note that gi is
indeed non-negative, monotone and submodular, as necessary. The main observation that we need to make is
that if Y is a set of size at most n for which all the functions g1, g2, . . . , gn return 1, then Y must include at least
one element of the pair {2i− 1, 2i} for every integer 1 ≤ i ≤ n. Since these are n disjoint pairs, and Y contains
at most n elements, we get that Y contains exactly one element of each one of the pairs {2i− 1, 2i}. In other
words, min1≤i≤n gi(Y ) = 1 if and only if Y corresponds to assigning exactly one value to every variable xi, which
is exactly the property that the functions g1, g2, . . . , gn need to have to allow the rest of the proof of Theorem 2.2
to go through.

Remark. The above proof of Theorem 2.3 plugs into Proposition B.3 the observation that an expression of the
form maxY⊆N2,|Y |≤k min1≤i≤m gi(Y ) can capture an NP-hard problem. The last observation was already shown
by Theorem 3 of Krause et al. (2008) (for the Hitting-Set problem). Thus, Theorem 2.3 can also be obtained as a
corollary of Proposition B.3 and Theorem 3 of Krause et al. (2008). However, for completeness and consistency,
we chose to provide a different proof of Theorem 2.3 that closely follows the proof of Theorem 2.2.

We now get to the proof of Proposition B.3. One can observe that to prove this proposition it suffices to show the
following lemma (the algorithm whose existence is guaranteed by Proposition B.3 can be obtained by simply
applying ALG to the ground set N1 and function f defined by Lemma B.4).

Lemma B.4. Given non-negative submodular functions g1, g2, . . . , gm : 2N2 → R≥0, there exists a ground set N1

and a non-negative disjointly submodular function f : 2N1 ·∪N2 → R≥0 such that

• the size of the ground set N1 is m− 1.

• given sets X ⊆ N1 and Y ⊆ N2, it is possible to evaluate f(X ·∪ Y ) in polynomial time.

• for every set Y ⊆ N2, minX⊆N1
f(X ·∪ Y ) = min1≤i≤m gi(Y ).

• when the functions g1, g2, . . . , gm are all monotone (in addition to being non-negative and submodular), then
the function f is guaranteed to be N2-monotone (in addition to being non-negative and disjointly submodular).

The rest of this section is devoted to proving Lemma B.4. Let us start by describing how the ground set N1 and
the function f are constructed. We assume without loss of generality that N2 ∩ [m− 1] = ∅, which allows us
to choose N1 = [m− 1]. Given a set X ⊆ [m− 1], let us define c(X) ≜ max{i ∈ N0 | [i] ⊆ X} (in other words,
c(X) is the largest integer such that all the numbers 1 to i appear in X). Additionally, we choose M to be a
number obeying gi(Y ) ≤M/2 for every i ∈ [m] and Y ⊆ N2 (such a number can be obtained in polynomial time
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by running the 2-approximation algorithm of Buchbinder and Feldman (2018) for unconstrained submodular
maximization on the functions g1, g2, . . . , gm, and then setting M to be four times the largest number returned).
Using this notation, we can now define, for every two sets X ⊆ N1 and Y ⊆ N2,

f(X ·∪ Y ) ≜ gc(X)+1(Y ) + (|X| − c(X)) ·M .

The following observation states some properties of f that immediately follow from the definition of f and the
fact that c(X) is at most |X| by definition.

Observation B.5. The function f is non-negative and can be evaluated in polynomial time. Furthermore, f
is N2-monotone when the functions g1, g2, . . . , gm are monotone because gc(X)+1(Y ) + (|X| − c(X)) ·M is a
monotone function of Y for any fixed set X ⊆ N1.

The following two lemmata prove additional properties of f .

Lemma B.6. The function f is disjointly submodular, i.e., it is submodular when restricted to either N1 or N2.

Proof. For every fixed set X ⊆ N1, there exists a value i ∈ [m] and another value c, both depending only on
X, such that f(X ·∪ Y ) = gi(Y ) + c. Since adding a constant to a submodular function does not affect its
submodularity, this implies that f is submodular when restricted to N2. In the rest of the proof we concentrate
on showing that f is also submodular when restricted to N1.

Consider now an arbitrary element i ∈ N1. For every two sets X ⊆ N1 − i and Y ⊆ N2,

f(i | X ·∪ Y ) = gc(X+i)+1(Y )− gc(X)+1(Y ) + (1 + c(X)− c(X + i)) ·M .

To show that f is submodular when restricted to N1, we need to show that the last expression is a down-monotone
function X, i.e., that its value does not increase when elements are added to X. To do that, it suffices to show
that the addition to X of any single element j ∈ N1 \ (X + i) does not increase the value of this expression; which
we show below by considering a few cases.

The first case we need to consider is the case of [i − 1] ̸⊆ X + j. Clearly, in this case c(X) = c(X + i) and
c(X + j + i) = c(X + j), and therefore,

f(i | (X + j) ·∪ Y ) = gc(X+j+i)+1(Y )− gc(X+j)+1(Y ) + (1 + c(X + j)− c(X + j + i)) ·M
= M = gc(X+i)+1(Y )− gc(X)+1(Y ) + (1 + c(X)− c(X + i)) ·M = f(i | X ·∪ Y ) .

The second case we consider the case in which [i− 1] ⊆ X + j, but [i− 1] ̸⊆ X. In this case

f(i | (X + j) ·∪ Y ) = gc(X+j+i)+1(Y )− gc(X+j)+1(Y ) + (1 + c(X + j)− c(X + j + i)) ·M
≤ gc(X+j+i)+1(Y )− gc(X+j)+1(Y ) ≤ gc(X+i)+1(Y )− gc(X)+1(Y ) +M

= gc(X+i)+1(Y )− gc(X)+1(Y ) + (1 + c(X)− c(X + i)) ·M = f(i | X ·∪ Y ) ,

where the first inequality holds since the definition of the case implies c(X + j + i) ≥ i = 1+ c(X + j), the second
inequality follows from the definition of M , and the penultimate equality holds since the definition of the case
implies c(X) = c(X + i).

The third case we need to consider is when [i− 1] ⊆ X and c(X + i) = c(X + i+ j). Since we also have in this
case c(X) = i− 1 = c(X + j), we get

f(i | (X + j) ·∪ Y ) = gc(X+j+i)+1(Y )− gc(X+j)+1(Y ) + (1 + c(X + j)− c(X + j + i)) ·M
= gc(X+i)+1(Y )− gc(X)+1(Y ) + (1 + c(X)− c(X + i)) ·M = f(i | X ·∪ Y )

The last case we need to consider is when [i− 1] ⊆ X and c(X + i) < c(X + j + i). In this case

f(i | (X + j) ·∪ Y ) = gc(X+j+i)+1(Y )− gc(X+j)+1(Y ) + (1 + c(X + j)− c(X + j + i)) ·M
≤ gc(X+j+i)+1(Y )− gc(X+j)+1(Y )−M ≤ gc(X+i)+1(Y )− gc(X)+1(Y )

= gc(X+i)+1(Y )− gc(X)+1(Y ) + (1 + c(X)− c(X + i)) ·M = f(i | X ·∪ Y ) ,

where the first inequality holds since the definition of the case implies c(X+j) = i−1 = c(X+i)−1 < c(X+j+i)−1,
the second inequality follows from the definition of M , and the penultimate equality holds since the definition of
the case implies c(X) = i− 1 = c(X + i)− 1.
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Lemma B.7. For every set Y ⊆ N2, minX⊆N1 f(X ·∪ Y ) = min1≤i≤m gi(Y ).

Proof. Observe that for every integer 1 ≤ i ≤ m, we have f([i−1] ·∪Y ) = gi(Y ) because |[i−1]| = c([i−1]) = i−1.
Therefore,

min
1≤i≤m

f([i− 1] ·∪ Y ) = min
1≤i≤m

gi(Y ) . (4)

Consider now an arbitrary subset X of N1 that is not equal to [i− 1] for any integer 1 ≤ i ≤ m. For such a subset
we must have c(X) ≤ |X| − 1, and therefore,

f(X ·∪ Y ) = gc(X)+1(Y ) + (|X| − c(X)) ·M ≥ gc(X)+1(Y ) +M ≥M ≥ min
1≤i≤m

gi(Y ) ,

where the second inequality follows from the non-negativity of gc(X)+1, and the last inequality holds by the
definition of M . Combining this inequality with Equation (4) completes the proof of the lemma.

Lemma B.4 now follows by combining Observation B.5, Lemma B.6 and Lemma B.7.

C OMITTED PROOFS OF SECTION 2.2

C.1 Proof of Theorem 2.4

In this section we prove Theorem 2.4, which we repeat here for convenience.

Theorem 2.4. Assuming {u} ∈ F2 for every u ∈ N2, there is a polynomial time algorithm that, given a
non-negative disjointly submodular function f : 2N → R≥0, returns a set X̂ ⊆ N1 and a value v such that both

maxY ∈F2 f(X̂ ·∪ Y ) and v fall within the range [τ, (|N2|+ 1) · τ ], where τ ≜ minX⊆N1
maxY ∈F2

f(X ·∪ Y ).

The algorithm that we use to prove Theorem 2.4 is given as Algorithm 4. We note that the function g defined by
this algorithm is the average of |N2|+1 submodular functions (since f is submodular once the subset of N2 in the
argument set is fixed), and therefore, g is also submodular. As written, Algorithm 4 is good only for the case in
which ∅ ∈ F2, and for simplicity, we assume throughout the section that this is indeed the case. If ∅ ̸∈ F2, then
the term f(X) should be dropped from the definition of g in Algorithm 4, which allows the proof to go through.

Algorithm 4: Estimating the min-max using singletons

1 Define a function g : 2N1 → R≥0 as follows. For every set X ⊆ N1, g(X) ≜ f(X) +
∑

u∈N2
f(X ·∪ {u}).

2 Use an unconstrained submodular minimization algorithm to find X ′ ⊆ N1 minimizing g(X ′).
3 return the set X ′ and the value g(X ′).

The analysis of Algorithm 4 is based on the observation that g(X) provides an approximation for maxY ∈F2
f(X ·∪Y ).

Lemma C.1. For every set X ⊆ N1, maxY ∈F2 f(X ·∪ Y ) ≤ g(X) ≤ (|N2|+ 1) ·maxY ∈F2 f(X ·∪ Y ).

Proof. Let Y ′ be the set in F2 maximizing f(X ·∪ Y ′), then the disjoint submodularity of f guarantees that

max
Y ∈F2

f(X ·∪ Y ) = f(X ∪ Y ′) ≤ f(X) +
∑
u∈Y ′

f(u | X)

≤ f(X) +
∑
u∈Y ′

f(X ·∪ {u}) ≤ f(X) +
∑
u∈N2

f(X ·∪ {u}) = g(X) ,

where the second and last inequalities hold by the non-negativity of f . This completes the proof of the first
inequality of the lemma. To see why the other inequality holds as well, we note that g(X) is the sum of |N2|+ 1
terms, each of which is individually upper bounded by maxY ∈F2 f(X ·∪ Y ).

Using the last lemma, we can now prove Theorem 2.4.
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Proof of Theorem 2.4. Let X∗ be the set minimizing maxY ∈F2 f(X
∗ ·∪ Y ). Then, by Lemma C.1 and the choice

of X ′ by Algorithm 4,

τ = min
X⊆N1

max
Y ∈F2

f(X ·∪ Y ) ≤ max
Y ∈F2

f(X ′ ·∪ Y ) ≤ g(X ′) ≤ g(X∗)

≤ (|N2|+ 1) · max
Y ∈F2

f(X∗ ·∪ Y ) = (|N2|+ 1) · min
X⊆N1

max
Y ∈F2

f(X ·∪ Y ) = (|N2|+ 1)τ .

C.2 Proof of Theorem 2.5

In this section we would like to prove Theorem 2.5. However, the majority of the section is devoted to proving
the following slightly different theorem, which implies Theorem 2.5.

Theorem C.2. For every constant ε ∈ (0, 1/2), there exists a polynomial time algorithm that given a non-negative
disjointly submodular function f : 2N → R≥0 returns a set X̂ and a value v such that

• v’s expectation falls within the range [τ, (4 + ε/2)τ ], where τ ≜ minX⊆N1 maxY⊆N2 f(X ·∪ Y ), and

• with probability at least 1− ε/[8(|N2|+1)], both v and maxY⊆N2 f(X̂ ·∪Y ) fall within the range [τ, (4+ ε/2)τ ].

Before getting to the proof of Theorem C.2, let us show that it indeed implies Theorem 2.5, which we repeat here
for convenience.

Theorem 2.5. For every constant ε ∈ (0, 1), there exists a polynomial time algorithm that given a non-negative
disjointly submodular function f : 2N → R≥0 returns a set X̂ ⊆ N1 and a value v such that the expectations

of both maxY⊆N2
f(X̂ ·∪ Y ) and v fall within the range [τ, (4 + ε)τ ], where τ ≜ minX⊆N1

maxY⊆N2
f(X ·∪ Y ).

Furthermore, the probability that both maxY⊆N2
f(X̂ ·∪ Y ) and v fall within this range is at least 1−O(|N2|−1).

Proof. Since the guarantee of Theorems 2.5 becomes stronger as ε becomes smaller, it suffices to prove the
theorem for ε ∈ (0, 1/2). Furthermore, the only way in which the algorithm guaranteed by Theorem C.2 might
not obey the properties described in Theorem 2.5 is if the expectation of maxY⊆N2

f(X̂ ·∪ Y ) for its output set

X̂ does not fall within the range [τ, (4 + ε)τ ]. Thus, to prove Theorem 2.5 it is only necessary to show how
to modify the output set X̂ of Theorem C.2 in a way that does not violate the other properties guaranteed
by this theorem, but makes the expectation of maxY⊆N2

f(X̂ ·∪ Y ) fall into the right range. We do that using
Algorithm 5. This algorithm uses a deterministic polynomial time algorithm that obtains 2-approximation for
unconstrained submodular maximization. Such an algorithm was given by Buchbinder and Feldman (2018).

Algorithm 5: Best of two (ε)

1 Execute the algorithm guaranteed by Theorem C.2. Let X ′ denote its output set.
2 Use an algorithm for unconstrained submodular maximization to find a set Y ′ ⊆ N2 such that

maxY⊆N2 f(X
′ ·∪ Y ) ≤ 2f(X ′ ·∪ Y ′) ≤ 2 ·maxY⊆N2 f(X

′ ·∪ Y ).

3 Execute the algorithm guaranteed by Theorem 2.4. Let X ′′ denote its output set.
4 Use an algorithm for unconstrained submodular maximization to find a set Y ′′ ⊆ N2 such that

maxY⊆N2 f(X
′′ ·∪ Y ) ≤ 2f(X ′′ ·∪ Y ′′) ≤ 2 ·maxY⊆N2 f(X

′′ ·∪ Y ).

5 if f(X ′ ·∪ Y ′) ≤ 2f(X ′′ ·∪ Y ′′) then return X ′.
6 else return X ′′.

Let us denote the output set of Algorithm 5 by X̂, and observe that the choice of the output set in the last five
lines of Algorithm 5 guarantees that whenever X̂ = X ′′, we also have

max
Y⊆N2

f(X̂ ·∪ Y ) = max
Y⊆N2

f(X ′′ ·∪ Y ) ≤ 2f(X ′′ ·∪ Y ′′) ≤ f(X ′ ·∪ Y ′) ≤ max
Y⊆N2

f(X ′ ·∪ Y ) .

Since the inequality maxY⊆N2
f(X̂ ·∪ Y ) ≤ maxY⊆N2

f(X ′ ·∪ Y ) trivially applies also when X̂ = X ′, we get that
this inequality always hold, and therefore, with probability at least 1− ε/[8(|N2|+ 1)] we must have

max
Y⊆N2

f(X̂ ·∪ Y ) ≤ (4 + ε/2)τ
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because Theorem C.2 guarantees that this inequality holds with at least this probability when X̂ is replaced with
X ′. Furthermore, since we always have τ = minX⊆N1 maxY⊆N2 f(X ·∪ Y ) ≤ maxY⊆N2 f(X̂ ·∪ Y ), the inequality

maxY⊆N2 f(X̂ ·∪ Y ) ≤ maxY⊆N2 f(X
′ ·∪ Y ) also shows that X̂ falls within the range [τ, (4 + ε)τ ] whenever X ′

falls within the this range.

Next, we need to prove a second upper bound on maxY⊆N2 f(X̂ ·∪ Y ). By the choice of the output set in the last
five lines of Algorithm 5, when this output set is X ′, we have

max
Y⊆N2

f(X̂ ·∪ Y ) = max
Y⊆N2

f(X ′ ·∪ Y ) ≤ 2f(X ′ ·∪ Y ′) ≤ 4f(X ′′ ·∪ Y ′′) ≤ 4 · max
Y⊆N2

f(X ′′ ·∪ Y ) .

Since the non-negativity of f implies that the inequality maxY⊆N2
f(X̂ ·∪ Y ) ≤ 4 ·maxY⊆N2

f(X ′′ ·∪ Y ) applies

also when X̂ = X ′′, we get by Theorem 2.4,

max
Y⊆N2

f(X̂ ·∪ Y ) ≤ 4 · max
Y⊆N2

f(X ′′ ·∪ Y ) ≤ 4(|N2|+ 1)τ .

We are now ready to prove that the expectation of the expression maxY⊆N2
f(X̂ ·∪ Y ) falls within the range

[τ, (4 + ε)τ ] as is guaranteed by Theorem 2.5. The expectation is at least the lower end of this range because, as
mentioned above, it always holds that τ = minX⊆N1

maxY⊆N2
f(X ·∪ Y ) ≤ maxY⊆N2

f(X̂ ·∪ Y ). Additionally, by

the law of total expectation and the two above proved upper bounds on maxY⊆N2
f(X̂ ·∪ Y ),

E
[
max
Y⊆N2

f(X̂ ·∪ Y )

]
≤

(
1− ε

8(|N2|+ 1)

)
·
(
4 +

ε

2

)
τ +

ε

8(|N2|+ 1)
· 4(|N2|+ 1)τ

=
[(

4 +
ε

2

)
+

ε

2

]
τ = (4 + ε)τ .

It remains to prove Theorem C.2. The algorithm that we use for this purpose is given as Algorithm 6. We note
that the function g defined by this algorithm is the average of m submodular functions (since f is submodular
once the subset of N2 in the argument set is fixed), and therefore, g is also submodular.

Algorithm 6: Estimating the min-max via random subsets (ε)

1 Let n1 = |N1| and n2 = |N2|, and pick m = ⌈3200ε−2[(n1 + 1) ln 2 + ln(n2 + 1) + ln(8/ε)]⌉ uniformly random
(and independent) subsets Y1, Y2, . . . , Ym of N2.

2 Define a function g : 2N1 → R≥0 as follows. For every X ⊆ N1, g(X) ≜ 1
m

∑m
i=1 f(X ·∪ Yi).

3 Use an unconstrained submodular minimization algorithm to find a set X ′ ⊆ N1 minimizing g(X ′).
4 return the set X ′ and the value (4 + ε/2) · g(X ′).

The analysis of Algorithm 6 uses the following known lemma.

Lemma C.3 (Lemma 2.2 of Feige et al. (2011)). Given a submodular function f : 2N → R≥0 and two sets
A,B ⊆ N , if A(p) and B(q) are independent random subsets of A and B, respectively, such that A(p) includes
every element of A with probability p (not necessarily independently), and B(q) includes every element of B with
probability q (again, not necessarily independently), then

E[f(A(p) ∪B(q))] ≥ (1− p)(1− q) · f(∅) + p(1− q) · f(A) + (1− p)q · f(B) + pq · f(A ∪B) .

Given a vector x ∈ [0, 1]N2 , we define R(x) to be a random subset of N2 that includes every element u ∈ N2 with
probability xu, independently. Given a set S ⊆ N2, it will also be useful to denote by 1S the characteristic vector
of S, i.e., the vector in [0, 1]N2 that has 1 in the coordinates corresponding to the elements of S, and 0 in the
other coordinates. Using this notation, we can now define a function h : 2N1 → R≥0 as follows. For every set
X ⊆ N1, h(X) ≜ E[f(X ·∪R(1/2 ·1N2

))]. The following lemma shows that h(X) is related to maxY⊆N2
f(X ·∪Y ).

Lemma C.4. For every set X ⊆ N1, maxY⊆N2
f(X ·∪ Y ) ≤ 4h(X).

Proof. Let us denote by Y ′(X) an arbitrary set in argmaxY⊆N2
f(X ·∪ Y ), and define rX(Y ) ≜ f(X ∪ Y ). Then,

h(X) = E[f(X ·∪ R(1/2 · 1N2
)] = E[rX(R(1/2 · 1Y ′(X)) ∪ R(1/2 · 1N2\Y ′(X))]

≥ 1
4rX(Y ′(X)) = 1

4f(X ·∪ Y ′(X)) = 1
4 · max

Y⊆N2

f(X ·∪ Y ) ,
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where the inequality follows from Lemma C.3 and the observation that for any fixed set X ⊆ N1 the function rX
is a non-negative submodular function.

The last lemma shows that the function h is useful. The following lemma complements the picture by showing
that the function g defined by Algorithm 6 is a good approximation of h.

Lemma C.5. With probability at least 1 − ε/[8(n2 + 1)], for every set X ⊆ N1 (at the same time) we have
|g(X)− h(X)| ≤ (ε/20) · h(X).

Proof. Fix some set X ⊆ N1, and let us define Zi ≜ f(X ·∪ Yi) for every integer 1 ≤ i ≤ m. We would like
to study the properties of the random variables Z1, Z2, . . . , Zm. First, note that these random variables are
independent since the sets Y1, Y2, . . . , Ym are chosen independently by Algorithm 6. Second, by the definition of
h and the distribution of Yi, E[Zi] = E[f(X ·∪ Yi)] = h(X). We would also like to bound the range of values that
the random variables Z1, Z2, . . . , Zm can take. On the one hand, these random variables are non-negative since f
is non-negative. On the other hand, Zi = f(X ·∪ Yi) ≤ maxY⊆N2

f(X ·∪ Y ) ≤ 4h(X), where the second inequality
holds by Lemma C.4.

Given the above proved properties of the random variables Z1, Z2, . . . , Zm, Hoeffding’s inequality shows that

Pr[|g(X)− h(X)| ≤ (ε/20) · h(X)] = Pr

[∣∣∣∣∣ 1
m

m∑
i=1

Zi − E

[
1
m

m∑
i=1

Zi

]∣∣∣∣∣ > (ε/20) · h(X)

]

≤ 2e
− 2m2[(ε/20)·h(X)]2∑m

i=1
[4h(X)]2 = 2e−

mε2

3200 ≤ 2e−(n1+1) ln 2−ln(n2+1)−ln(8/ε) = 2−n1 · ε

8(n2 + 1)
,

where the last inequality follows from the definition of m. The lemma now follows from the last inequality by the
union bound since X was chosen as an arbitrary subset of N1, and there are only 2n1 such subsets.

Using the above lemmata, we can now prove Theorem C.2.

Proof of Theorem C.2. Let us denote by X∗ a set minimizing maxY⊆N2
f(X∗ ·∪ Y ). By the definition of g and

the choice of X ′ by Algorithm 6,

g(X ′) ≤ g(X∗) = 1
m

m∑
i=1

f(X∗ ·∪ Yi) ≤ max
Y⊆N2

f(X∗ ·∪ Y ) = min
X⊆N1

max
Y⊆N2

f(X∗ ·∪ Y ) = τ .

Let us now denote by E the event that |g(X)− h(X)| ≤ (ε/20) · h(X) for every set X ⊆ N . By Lemma C.5, E
happens with probability at least 1− ε/[8(n2 + 1)]. Furthermore, conditioned on E , we have

max
Y⊆N2

f(X ′ ·∪ Y ) ≤ 4h(X ′) ≤ 4g(X ′)

1− ε/20
≤ 4τ

1− ε/20
≤ (4 + ε/2)τ , (5)

where the first inequality hold by Lemma C.4, and the last inequality holds for ε ∈ (0, 1/2). Since we always
also have maxY⊆N2

f(X ′ ·∪ Y ) ≥ minX⊆N1
maxY⊆N2

f(X ·∪ Y ) = τ , the above inequality already proves that

maxY⊆N2
f(X̂ ·∪ Y ) falls within the range [τ, (4 + ε/2)τ ] whenever the event E happens.

We now would like to show that the output value (4 + ε/2) · g(X ′) of Algorithm 6 also falls within this range
when the event E happens. Since we already proved that g(X ′) ≤ τ , all we need to show is that (4 + ε/2) · g(X ′)
is at least τ condition on E . This is indeed the case since Inequality (5) implies

(4 + ε/2) · g(X ′) ≥ 4

1− ε/20
· g(X ′) ≥ max

Y⊆N2

f(X ′ ·∪ Y ) ≥ τ ,

where the first inequality holds for ε ∈ (0, 1/2). In conclusion, we have shown that when the event E happens the
value (4 + ε/2) · g(X ′) returned by Algorithm 6 and the expression maxY⊆N2 f(X̂ ·∪ Y ) both fall within the range
(4 + ε/2). Since the probability of the event E is at least 1− ε/[8(n2 +1)], to complete the proof of the theorem it
only remains to show that the expectation of (4 + ε/2) · g(X ′) falls within the range [τ, (4 + ε/2)τ ], which is what
we do in the rest of this proof.



Submodular Minimax Optimization: Finding Effective Sets

The inequality E[(4+ε/2) ·g(X ′)] ≤ (4+ε/2)τ follows immediately from the above proof that we deterministically
have g(X ′) ≤ τ . Using Inequality (5), we can also get that, conditioned on E ,

g(X ′) ≥ (1− ε/20) ·maxY⊆N2
f(X ′ ·∪ Y )

4

≥ (1− ε/20) ·minX⊆N1
maxY⊆N2

f(X ·∪ Y )

4
=

(1− ε/20)τ

4
.

Thus, we can use the law of total expectation to get

E[g(X ′)] ≥ Pr[E ] · E[g(X ′) | E ] ≥
(
1− ε

8(n2 + 1)

)
· (1− ε/20)τ

4
≥

(
1− 9ε/80

4

)
τ ,

which implies

E[(4 + ε/2) · g(X ′)] ≥ (4 + ε/2) · (1− 9ε/80)

4
· τ ≥ τ ,

where the second inequality holds for ε ∈ [0, 1/2].

D ADDITIONAL APPLICATIONS

D.1 Adversarial Attack on Image Summarization

In this section we consider the application of “Adversarial Attack on Image Summarization”, which is an attack
version of an application studied by many previous works (see, e.g., Mitrovic et al. (2018); Mualem and Feldman
(2022b); Tschiatschek et al. (2014)). The setting for this application includes a collection of images from ℓ disjoint
categories (such as birds, airplanes or cats), and a user that specifies r ∈ [ℓ] categories of interest. In the classical
version of this application, the objective is to construct a subset of k images summarizing the images belonging
to the categories specified by the user. However, here we are interested in mounting an attack against this
summarization task. Specifically, our goal is to add a few additional images to the original set of images in a way
that undermines the quality of any subsequently chosen summarizing subset.

Formally, we have in this application a (completed) similarity matrix M comprising similarity scores for both the
set N2 of original images and the set N1 of images that the attacker may add. We aim to choose a set X ⊆ N1 of
images such that adding the images of N1 \X simultaneously minimizes the value every possible summarizing
subset Y . The value of a summarizing set Y is given by the following objective function.

f(X ·∪ Y ) = 3

√ ∑
v∈N\X

∑
u∈Y

M3
u,v −

1

|N2|
3

√∑
u∈Y

∑
v∈Y

M3
u,v + λ · |X| · 3

√
k . (6)

Here, Mu,v is the similarity score between images u and v, which is assumed to be non-negative and symmetric
(i.e., Mu,v = Mv,u ≥ 0); and λ ∈ [0, 1] is a regularization parameter affecting the number of elements added by
the adversary. Choosing a larger value for λ results in a larger set X, and thus, less adversarial images being
added. The objective function f is jointly-submodular and non-negative (the proof is very similar to the proof
that the function in Equation (7) has these properties, and therefore, we omit it). Since we are interested in
finding an attacker set X that is good against the best summary set Y of size k, the optimization problem that
we aim to solve is

min
X⊆N1

max
Y⊆N2

|Y |≤k

f(X ·∪ Y ) .

Our experiments for this application are based on a subset of the CIFAR-10 data set (Krizhevsky, 2009). This
subset includes 10,000 tiny images belonging to 10 classes. Each image consists of 32× 32 RGB pixels, and is thus,
represented by a 3,072 dimensional vector, and the cosine similarity method was used to compute similarities
between images. In order to keep the running time computationally tractable, we randomly sampled from the
data set in each experiment disjoint sets N1 and N2 of sizes |N1| = 2,000 and |N2| = 250.

In our experiments, we study the change in the quality of the summaries obtained by the various algorithms and
benchmarks as a function of the allowed number k of images and the regularization parameter λ. Figure 3a presents
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(b) Results for λ = 0.5

Figure 3: Empirical results for adversarial attack on image summarization. Both plots compares the performance
of our algorithms Min-by-Singletons and Iterative-X-Growing with 3 benchmarks for different value of the
regularization parameter λ and the cardinality parameter k.

the outputs of our algorithms Min-by-Singletons and Iterative-X-Growing (with β = 0.2) and three benchmarks
for k = 5 and a varying regularization parameter λ. Figure 3b presents the outputs of the same algorithms and
benchmarks for λ = 0.5 and a varying limitation k on the number of images in the summary. One can observe
that both of our algorithms consistently outperform the benchmarks of Best-Response, Max-and-then-Min and
Random, with the more involved algorithm Iterative-X-Growing tending to do better than the simpler algorithm
Min-by-Singletons. Both figures are based on averaging 400 executions of the algorithms, leading to a standard
error of the mean of less than 10 for all data points. It is also worth noting that the basic scarecrow benchmark
“Random” outperforms the Best-Response and Max-and-then-Min benchmarks in many cases. This hints that the
last heuristics are unreliable despite being natural, and highlights the significance of the methods we propose.

D.2 Robust Ride-Share Optimization

In the “Robust Ride-Share Optimization” application, our primary objective is to determine the most suitable
waiting locations for idle taxi drivers based on taxi order history. This problem was previously formalized as a
traditional facility location problem (Mitrovic et al., 2018). However, in the current work, we look for a more
robust set of waiting locations. Often some locations are inaccessible (for example, due to road maintenance).
Hence, we wish to find a robust set of waiting locations that effectively minimizes the distance between each
customer and her closest driver even when some of the locations are inaccessible.

The objective function we use to solve the above problem is technically identical to the jointly-submodular
function given by (3). However, now N1 represents the (client) pickup locations that might be inaccessible due to
traffic (while N2 remains the set of potential waiting locations for idle drivers). Furthermore, we now need to
perform max-min optimization on this objective function since we look for a set Y of up to k waiting locations
that is good regardless of which pickup locations become inaccessible.

In our experiments, we used again the Uber data set (Uber) (see Section 3.2). To ensure computational tractability,
in each execution of our experiments, we randomly selected from this data set a subset of |N | = 6,000 pickup
locations within the region of Manhattan. Then, we chose the set N1 to consist of all the pickup locations that
have a latitude value greater than 40.8, or less than 40.73. This set represents the pickup locations that are
potentially unavailable (for example, due to traffic). Furthermore, we randomly selected a subset of 400 pickup
locations from the set N to constitute the set N2. This set represents the potential waiting locations for idle
drivers.

In the first experiment, we fixed the regularization parameter λ to 0.35 and varied the number of allowed waiting
locations. Figure 4a depicts the outputs for this experiment for our algorithm Min-as-Oracle and two benchmarks
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(averaged over 10 executions of the experiment). One can observe that Min-as-Oracle consistently surpasses the
two benchmarks. The two other benchmarks (Random and Top-k) where also included in this experiment and
the next one, but are excluded from the figures since their outputs are worse by a factor of at least 2 comapred to
the presented methods. We also note that in both experiments the standard error of the mean is less than 10 for
all data points.

In the second experiment, we fixed the maximum number of waiting locations to be 15, and varied λ. The results
of this experimented are depicted by Figure 4b (again, averaged over 10 executions of the experiment). Once
again, our proposed method, Min-as-Oracle, demonstrates superior performance compared to the bechnmarks,
with the gap being significant for lower values of λ.

As the third experiment for this application, we conducted a more in depth analysis of the Best-Response technique.
Figure 4c graphically presents the objective function value obtained by a typical execution of Best-Response after
a varying number of iterations (for λ = 0.35 and an upper bound of 20 on the number of waiting locations). It is
apparent that Best-Response does not converge for this execution. Furthermore, Min-as-Oracle demonstrates
better performance even with respect to the best performance of Best-Response for any number of iterations
between 1 and 50.
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Figure 4: Empirical results for robust ride-share optimization. Figures (a) and (b) compare the performance of
our algorithm Min-as-Oracle with 2 benchmarks for different value of λ and bounds on the number of weighting
locations. Figure (c) depicts the value of the output of the Best-Response method as a function of the number of
iterations performed.

Our last experiment for this section aims to give a more intuitive point of view on the performance of our
algorithm (Min-as-Oracle). Figure 5 depicts the results of this algorithm on maps of Manhattan for three different
values of λ (0.2, 0.4 and 0.8). To make the maps easy to read, we allowed the algorithm to select only 6 waiting
locations for idle drivers, and the locations suggested by the algorithm are marked with red triangles on the maps.
We have also marked on the maps the pick up locations of N . The black dots represent the waiting locations that
are inaccessible, while the light gray dots indicate the accessible pickup locations. Intuitively, the regularization
parameter λ captures in this application the probability of pickup locations in N1 to be accessible. For example,
when λ = 0, it is assumed that all locations in N1 are inaccessible, whereas λ = 1 means that all locations in N1

are assumed to be accessible. This intuitive role of λ is demonstrated in Figure 5 in the following sense. As the
value of λ increases, the number of red triangles in the figure inside the areas of the black dots tends to increase,
and furthermore, the locations of theses triangles are pushed deeper into these areas.

D.3 Prompt Engineering for Dialog State Tracking

In this section, we consider the problem of selecting example (input, output) pairs for zero-shot in-context learning.
In this application, the objective is to design prompts for the task of dialog state tracking (DST) on the MultiWOZ
2.4 data set (Budzianowski et al., 2018). Following Hu et al. (2022), we recast this as a text-to-SQL problem in
order to prompt the GPT-Neo (Black et al., 2021) and OpenAI Codex (code-davinci-002) (Chen et al., 2021)
code generation models. These base models are adapted to DST with a combination of subset selection and
in-context learning. First, a corpus of (previous dialog state, current dialog turn, SQL query) tuples is constructed
from the training dialogs. Given a new input u0, our prompt consists of 1) tabular representations of the dialog
state ontology, 2) natural language instructions to query these tables using valid SQL given a task-oriented dialog
turn, and 3) examples selected from the corpus by maximizing an objective function.
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(a) λ = 0.2 (b) λ = 0.4 (c) λ = 0.8

Figure 5: The results of Min-as-Oracle for 3 different values of λ. The red triangles represent waiting locations
chosen by the algorithm, the light gray dots represent always accessible pick-up locations, and the black dots
represent possibly inaccessible pick-up locations.

Let u0 be the input query to a large language model. Each input u0 contains a list of (key, value) pairs representing
the previous dialog state predictions along with the text of the current dialog turn. We would like its prompt
to be robust to incorrect predictions of the previous dialog states, as well as text variation such as misspellings.
Let N1 be a set of perturbed inputs drawn from a small neighborhood around u0. These perturbed inputs are
constructed by randomly editing up to 2 slots and/or values in the dialog state, and additionally dropping up to
15% of tokens from the most recent dialog turn. In cases where u0 is initially incorrect, examples that are similar
to the perturbed inputs from N1 improve the final prompt. Let N = N1 ∪ {u0}, and let N2 be the ground set
of candidate examples. Given a set of examples Y ⊆ N2 and a set of perturbed inputs X ⊆ N1, we define the
following score function.

f(X ·∪ Y ) =
∑

u∈N\X

∑
v∈Y

su,v −
α

|N2|
·
∑
v∈Y

∑
u∈Y

su,v + λ · |X|+ |N2| . (7)

Here, 0 ≤ su,v ≤ 1 is the symmetric similarity score between examples u, v (the similarity score is computed by
embedding both examples with a pretrained SBERT model (Reimers and Gurevych, 2019), and then computing
cosine similarity of the two embeddings), and λ ≥ 0 and 0 ≤ α ≤ 1 are regularization parameters. The
parameter α explicitly trades off recommendation quality and diversity. Since we are interested in finding a
set of candidate examples Y that is good against the worst case set X of perturbed inputs, we would like to
optimize maxY⊆N2,|Y |≤k minX∈N1

f(X ·∪ Y ), where k is an upper bound on the number of examples to include in
the prompt. By an argument similar to the proof of Lemma 3.2, the objective function (7) is a non-negative
jointly-submodular function.

Initially, the GPT-Neo-Small generative model was evaluated with all possible combination of values for the
regularization parameters from the grid λ ∈ {0, 0.5, 0.75, 0.9, 2.5} and α ∈ {0, 0.1, 0.3, 0.5, 0.7}. The best
parameters (λ = 0.9, α = 0.5) were then used for the other generative models. Following Section 5 of Hu et al.
(2022), all retrieval models were evaluated on inputs obtained by randomly sampling 10% of the MultiWOZ
validation set, and all results were averaged over 3 different candidate sets, which are randomly sampled 5%
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subsets of the MultiWOZ training set. We set (k = 5, |N1| = 20) for GPT-Neo models and (k = 10, |N1| = 4) for
the OpenAI Codex model.

In our experiments, we have compared Min-as-Oracle with the our standard max-min benchmarks Top-k, Max-
Only and Best-Response, and also with a baseline termed “Non-robust Top-k” from Hu et al. (2022). For Top-k,
Max-Only, Best-Response and Min-as-Oracle, we first retrieved a ground set of size |N2| = 100k candidates using
the precomputed KD Tree, and only then selected the output set Y using the retrieval algorithm. Table 3 shows
the Joint F1 score for each of the above-mentioned methods. Results for GPT-Neo models are averaged over
4 random seeds. One can observe that prompting with our robust formulation outperforms the Non-Robust
Top-k baseline by as much as 1.5%. Among the algorithms using the robust formulation, our proposed algorithm
Min-as-Oracle is consistently the best or 2nd best. Table 3 also shows that Min-as-Oracle achieves the highest
objective value in all cases. Note that Min-as-Oracle has theoretical guarantees for both its convergence and
approximation ratio, whereas Sections 3.2 and D.2 demonstrate that the Best-Response heuristic diverges for
some instances.

Table 3: Dialog state tracking performance and objective values for different language models and retrieval
algorithms. Best values are in bold.

Generative Model Retrieval Algorithm Joint F1 Objective Value

GPT-Neo-Small

Random 0.0480 25.259
Non-robust Top-k (Hu et al., 2022) 0.3249 26.165

Top-k 0.2787 26.125
Max-Only 0.2783 26.134

Best-Response 0.3251 26.165
Min-as-Oracle 0.3022 26.168

GPT-Neo-Large

Random 0.2275 25.254
Non-robust Top-k (Hu et al., 2022) 0.4872 26.164

Top-k 0.4821 26.127
Max-Only 0.4830 26.134

Best-Response 0.4845 26.165
Min-as-Oracle 0.5020 26.168

Codex-Davinci

Random 0.8273 17.410
Non-robust Top-k (Hu et al., 2022) 0.8929 19.021

Top-k 0.8974 18.954
Max-Only 0.8913 18.953

Best-Response 0.8972 19.022
Min-as-Oracle 0.8991 19.027

D.4 Additional Figures For Ride-Share Difficulty Kernelization

In this section, we provide a graphical representation of the experimental outcomes discussed in Section 3 for the
Ride-Share Difficulty Kernelization application. Figure 6 demonstrates that the locations chosen by our algorithm,
based on the objective function (3) used for the application, create a spatial arrangement resembling a “frame”
encompassing the Manhattan area. This agrees with the intuitive expectation from a well-structured kernelization,
demonstrating that the objective function (3) is a good fit for the Ride-Share Difficulty Kernelization application.

E BENCHMARKS AND ALGORITHM IMPLEMENTATIONS

In this section we define all the benchmarks that we compare in Section 3 and Section D against our algorithms.
We then discuss the implementation details of these benchmarks and our algorithms.

• Random: Returns a random feasible solution. In the max-min setting this means random k elements from
the ground set N1, and in the min-max setting this means a random subset of N2.

• Max-Only: This benchmark makes sense only in the max-min setting. It uses a submodular maximization
algorithm to find a feasible set Y (approximately) maximizing the objective for X = ∅.
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(a) λ = 0.1, k = 8 (b) λ = 0.25, k = 8

(c) λ = 0.1, k = 4 (d) λ = 0.25, k = 4

Figure 6: The results of our algorithm Iterative-X-Growing for different values of λ (the regularization parameter)
and k (the number of taxis). The red dots represent the pick-up locations in the difficulty kernel chosen by the
algorithm (the other pick-up locations are marked by light gray dots).
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• Max-and-then-Min: A variant of Max-Only for use in the min-max setting. It returns a set X minimizing the
objective given the set Y chosen by Max-Only. Note that this is essentially equivalent to a single iteration of
Best-Response.

• Top-k: This benchmark makes sense only in the max-min setting. It returns the k singletons from N2 with
the maximum value, where the value of every singleton u ∈ N2 is defined as minX⊆N1

f(X ·∪ {u}).

• Best-Response: This benchmark proceeds in iterations. In the first iteration, one obtains a subset Y ∈ F2

(approximately) maximizing f(Y ) through the execution of a maximization algorithm, which is followed by
finding a set X ⊆ N2 minimizing f(X ·∪ Y ) by running a minimization algorithm. Subsequent iterations are
similar to the first iteration, except that the set Y chosen in these iterations is a set that (approximately)
maximizes f(X ·∪ Y ), where X is the minimizing set chosen in the previous iteration. The output is then the
last set Y in the max-min setting, and the last set X in the min-max setting.

In most of our applications, we aim to optimize objectives that are not N2-monotone, which requires a procedure
for (approximate) maximization of non-monotone submodular functions. As mentioned in Section 1.1, the state-of-
the-art approximation guarantee for the case in which the objective function f is not guaranteed to be monotone
is currently 0.385 (Buchbinder and Feldman, 2019). However, the algorithm obtaining this approximation ratio
is quite involved, which limits its practicality. Arguably, the state-of-the-art approximation ratio obtained by
a “simple” algorithm is 1/e-approximation obtained by an algorithm called Random Greedy (Buchbinder et al.,
2014). In practice, the performance of this algorithm is comparable to that of the standard greedy algorithm,
despite the last algorithm not having any approximation guarantee for non-monotone objective functions. Hence,
throughout the experiments, the maximization component used in all the relevant benchmarks and algorithms is
either the standard greedy algorithm or an accelerated version of it (suggested by Badanidiyuru and Vondrák
(2014)) named Threshold Greedy.

In our experiment we often report the values of the objective function corresponding to the output sets produced
by the various benchmarks and algorithms. In the max-min setting, given an output set X, computing the
objective value is done by utilizing an efficient minimizing algorithm to identify a minimizing set X. In the
min-max setting, the situation is more involved as calculating the true objective value for given an output set
X cannot be done efficiently in sub-exponential time (as it corresponds to maximizing a submodular function
subject to a cardinality constraint). Therefore, we use Threshold Greedy algorithm mentioned above to find a set
Y that approximately maximize the objective with respect to X, and then report the value corresponding to this
set Y as a proxy for the true objective value.

Our experiments for the min-max setting use a slightly modified version of Iterative-X-Growing (Algorithm 1).
Specifically, we make two modifications to the algorithm.

• Iterative-X-Growing grows a solution in iterations. As written, it outputs the set obtained after the last
iteration. However, we chose to output instead the best set obtained after any number of iterations. This is
a standard modification often used when applying to practice an iterative theoretical algorithm.

• Line 4 of Iterative-X-Growing looks for a set X ′
i that minimizes an expression involving two terms. The first

of these terms
√
n1 · f(X ∪Xi−1) has the large coefficient

√
n1. The value of this coefficient was chosen to fit

the largest number of possible iterations that the algorithm may perform (n1 + 1). However, in practice
we found that the algorithm usually makes very few iterations. Thus, the use of the large coefficient

√
n1

becomes sub-optimal. To truly show the empirical performance of Iterative-X-Growing, we replaced the
coefficient

√
n1 with a parameter β whose value is chosen based on the application in question.

All prompt engineering experiments were run using a single NVIDIA A10 GPU. Running inference with the
Contriever and GPT-Neo-Large models required a server with 128GB of memory, and all other parts of the
pipeline required less than 16GB of memory.

All other experiments were run using 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz CPU, requiring less
than 32GB of CPU memory and no GPU.
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F ADDITIONAL OMITTED PROOFS

F.1 Proof of Lemma 3.1

In this section we prove Lemma 3.1, which we repeat here for convenience.

Lemma 3.1. The objective function (2) is a non-negative jointly-submodular function.

Proof. Observe that the objective function (2) is a conical combination of three terms. Below we explain why each
one of these terms is non-negative and jointly-submodular, which immediately implies that the entire objective
function also has these properties.

The second term is
∑

u∈N1\X
∑

v∈Y su,v. This term can be viewed as the cut function of a directed bipartite
graph in which the elements of N1 and N2 form the two sides of the graph, and for every u ∈ N1 and v ∈ N2 the
graph includes an edge from v to u whose weight is su,v. Directed graph functions are known to be non-negative
and submodular over the set of elements of the graph, which translates into joint-submodularity in our terminology
since the both the elements of N1 and N2 are vertices of the graph.

The third term is |X|, which is a non-negative linear function, and thus, also jointly-submodular.

It remains to consider the first term, namely
∑

v∈N1\X maxu∈Y su,v. This term is clearly non-negative, so we
concentrate below on proving that it is jointly submodular. Recall that f is jointly-submodular if

f(u | Y ′ ·∪X ′) ≥ f(u | Y ·∪X) ∀ X ′ ⊆ X ⊆ N1, Y
′ ⊆ Y ⊆ N2, u ∈ (N1 ·∪ N2) \ (X ·∪ Y ) .

To prove that our objective function obeys this inequality, there are two scenarios to consider, based on whether
u belongs to the set N1 or N2.

Case 1: The element u belongs to N1. Here,

f(u | Y ′ ·∪X ′)− f(u | Y ·∪X) = max
v∈Y

su,v −max
v∈Y ′

su,v ≥ 0 .

Case 2: the element u belongs to N2. Observe that, in this case,

f(u | Y ′ ·∪X ′) =
∑

N1\X′

max{0, su,v − max
v′∈Y ′

su,v′}

≥
∑

N1\X

max{0, su,v −max
v′∈Y

su,v} = f(u | Y ·∪X) .

F.2 Proof of Lemma 3.2

In this section we prove Lemma 3.2, which we repeat here for convenience.

Lemma 3.2. The objective function (3) is a non-negative jointly-submodular function.

Proof. First, we shall establish that the objective function is non-negative by demonstrating that the first term of
the function is consistently greater than the subsequent term. This is established through the following inequality.∑

v∈N\X

max
u∈Y

su,v ≥
∑
v∈N2

max
u∈Y

su,v ≥
1

|Y |
·
∑
v∈N2

∑
u∈Y

su,v ≥
1

|N2|
·
∑
v∈Y

∑
u∈Y

su,v .

Next, we demonstrate that the objective function f(X,Y ) is jointly-submodular. Recall that f is jointly-
submodular if

f(u | Y ′ ·∪X ′) ≥ f(u | Y ·∪X) ∀ X ′ ⊆ X ⊆ N1, Y
′ ⊆ Y ⊆ N2, u ∈ (N1 ·∪ N2) \ (X ·∪ Y ) .

To prove that our objective function obeys this inequality, there are two scenarios to consider, based on whether
u belongs to the set N1 or N2.
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Case 1: The element u belongs to N1. Here, f(u | Y ′ ·∪X ′)−f(u | Y ·∪X) = maxv∈Y su,v−maxv∈Y ′ su,v ≥ 0.

Case 2: The element u belongs to N2. Let ϕ(Y,w, J) =
∑

v∈J(maxu∈Y+w su,v −maxu∈Y su,v); and note
that, for every two sets Y ′ ⊆ Y ⊆ N2, set J ⊆ N1 and element u ∈ N2 \ T , ϕ(Y ′, u, J) ≥ ϕ(Y, u, J). Using this
notation, we get that in this case (the case of u ∈ N2)

• f(u | Y ′ ·∪X ′) = ϕ(Y ′, {u},N \X ′)− 1
|N2|

(
2 ·

∑
v∈Y ′ su,v + su,u

)
, and

• f(u | Y ·∪X) = ϕ(Y, {u},N \X)− 1
|N2|

(
2 ·

∑
v∈Y su,v + su,u

)
.

Thus,

f(u | Y ′ ·∪X ′)− f(u | Y ·∪X) = ϕ(Y ′, {u},N \X ′)− ϕ(Y, {u},N \X) +
2

|N2|
·

∑
v∈Y \Y ′

su,v ≥ 0 ,

where the last inequality holds since ϕ(Y ′, {u},N \X ′)−ϕ(Y, {u},N \X) ≥ 0 and su,v ≥ 0 for any u, v ∈ N .


	INTRODUCTION
	Related Work

	NOTATION AND OUR THEORETICAL CONTRIBUTION
	Results for maxmin Optimization
	Results for minmax Optimization

	APPLICATIONS
	Efficient Prompt Engineering
	Ride-Share Difficulty Kernelization

	CONCLUSION
	ACKNOWLEDGMENTS
	ADDITIONAL RELATED WORK FOR PROMPT ENGINEERING FOR NATURAL LANGUAGE PROCESSING
	PROOFS OF SECTION 2.1
	Proof of Theorem 2.1
	Proofs of Theorems 2.2 and 2.3

	OMITTED PROOFS OF SECTION 2.2
	Proof of Theorem 2.4
	Proof of Theorem 2.5

	ADDITIONAL APPLICATIONS
	Adversarial Attack on Image Summarization
	Robust Ride-Share Optimization
	Prompt Engineering for Dialog State Tracking
	Additional Figures For Ride-Share Difficulty Kernelization

	BENCHMARKS AND ALGORITHM IMPLEMENTATIONS
	ADDITIONAL OMITTED PROOFS
	Proof of Lemma 3.1
	Proof of Lemma 3.2


