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Abstract

Recently, machine learning, particularly
message-passing graph neural networks
(MPNNs), has gained traction in enhancing
exact optimization algorithms. For example,
MPNNs speed up solving mixed-integer op-
timization problems by imitating computa-
tional intensive heuristics like strong branch-
ing, which entails solving multiple linear op-
timization problems (LPs). Despite the em-
pirical success, the reasons behind MPNNs’
effectiveness in emulating linear optimiza-
tion remain largely unclear. Here, we show
that MPNNs can simulate standard interior-
point methods for LPs, explaining their prac-
tical success. Furthermore, we highlight how
MPNNs can serve as a lightweight proxy for
solving LPs, adapting to a given problem in-
stance distribution. Empirically, we show that
MPNNs solve LP relaxations of standard com-
binatorial optimization problems close to op-
timality, often surpassing conventional solvers
and competing approaches in solving time.

1 INTRODUCTION

Recently, there has been a surge of interest in training
message-passing graph neural networks (MPNNs) to im-
itate steps of classical algorithms, such as for shortest-
path problems Cappart et al. (2021); Veličković et al.
(2020). As many of those problems can be formulated
as linear optimization problems (LPs), it is natural to
ask whether MPNNs could be trained to solve general
LPs, at least approximately.

Another recent line of research makes this question
particularly intriguing. In integer linear optimiza-
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tion, state-of-the-art solvers all rely on the branch-
and-bound algorithm, in which one must repeatedly
select variables, subdividing the search space. The
best-known heuristic for variable selection is known
as “strong branching,” which entails solving LPs to
score the variables. This heuristic is, unfortunately, too
computationally expensive to use in practice. However,
in recent years, there has been a collection of works
(Gasse et al., 2019; Gupta et al., 2020, 2022; Nair et al.,
2020; Seyfi et al., 2023) that have proposed to use
MPNNs to imitate strong branching, with impressive
empirical success. No theoretical explanation has ever
been put forward to explain this success. However, per-
haps the most straightforward explanation would be
that MPNNs implicitly learn to imitate the LP solving
underlying strong branching.

Chen et al. (2023) provide a first step towards an ex-
planation. In this work, the authors propose to encode
LPs as bipartite graphs in the spirit of (Gasse et al.,
2019) and show that MPNNs, in principle, can learn to
predict the optimal solution of an LP instance up to ar-
bitrary small ε concerning the supremum norm. They
also provide some small-scale experiments suggesting
that MPNNs can learn to approximate LP solutions
surprisingly well. While a step in the right direction,
their theoretical result heavily relies on invoking the
universal approximation theorem for multi-layer per-
ceptrons Cybenko (1992); Leshno et al. (1993), and
therefore does not explain why modestly-sized MPNNs
could be particularly effective LP solvers in practice.

In this paper, we present instead a more specific expla-
nation. We show that several variants of interior-point
methods (IPMs) Gondzio (2012); Nocedal and Wright
(2006), an established class of polynomial-time algo-
rithms for solving LPs, can be interpreted as an MPNN
with a specific architecture and choice of parameters
that takes as input a graph representation of the LP.
Specifically, for two common IPM variants, we show
that a sequence of standard MPNN steps can emu-
late a single iteration of the algorithm on a tripartite
(rather than bipartite) graph representation of the LP.
This novel theoretical result suggests several conclu-
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sions. First, it indicates that MPNNs appear successful
at imitating LP solving because they might often be
imitating IPMs and that there is a close connection be-
tween MPNNs and this specific LP algorithm. Secondly,
although the MPNN’s architecture in our theoretical
result involves many MPNN layers, MPNNs are a nat-
ural choice of machine learning model for LP solving.
It is likely possible to solve LPs approximately with
fewer layers.

To prove the last hypothesis, we train MPNNs with sev-
eral layers less than predicted by our theoretical results
to imitate the output of a practical IPM algorithm for
LP solving, resulting in the IPM-MPNN architecture.
Our empirical results show that IPM-MPNNs can lead
to reduced solving times compared to a state-of-the-art
LP solver with time constraints and competing neu-
ral network-based approaches; see Figure 1b for an
overview of our approach.

In summary, our findings significantly contribute to the
theoretical framework of data-driven exact optimization
using MPNNs, and we also showcase the potential of
MPNNs in serving as a light-weight proxy for solving
LPs.

1.1 Additional related works

In the following, we discuss relevant related work.

MPNNs MPNNs (Gilmer et al., 2017; Scarselli et al.,
2009) have emerged as a flexible framework for ma-
chine learning on graphs and relational data. No-
table instances of this architecture include, e.g., Duve-
naud et al. (2015); Hamilton et al. (2017); Veličković
et al. (2018), and the spectral approaches proposed in,
e.g., Bruna et al. (2014); Defferrard et al. (2016); Kipf
and Welling (2017)—all of which descend from early
work in Baskin et al. (1997); Kireev (1995); Merkwirth
and Lengauer (2005); Micheli (2009); Micheli and Ses-
tito (2005); Scarselli et al. (2009); Sperduti and Starita
(1997).

Machine learning for combinatorial optimiza-
tion Bengio et al. (2021); Kotary et al. (2021) dis-
cuss and review machine learning approaches to en-
hance combinatorial optimization (CO). Concrete ex-
amples include the imitation of computationally inten-
sive variable selection rules within the branch-and-cut
framework (Khalil et al., 2016; Zarpellon et al., 2020),
learning to run (primal) heuristics (Khalil et al., 2017;
Chmiela et al., 2021), learning decompositions of large
MILPs for scalable heuristic solving (Song et al., 2020),
learning to generate cutting planes (Deza and Khalil,
2023) or leveraging machine learning to find (primal)
solutions to stochastic integer problems quickly (Bengio
et al., 2020).

MPNNs for CO Many prominent CO problems
involve graph or relational structures, either directly
given as input or induced by the variable-constraint
interactions. Recent progress in using MPNNs to bridge
the gap between machine learning and combinatorial
optimization is surveyed in Cappart et al. (2021).

Most relevant to the present work, Gasse et al. (2019)
proposed to encode the variable-constraint interaction
of a mixed-integer linear optimization problem as a
bipartite graph and trained MPNNs in a supervised
fashion to imitate the costly strong branching heuristic,
which entails solving multiple linear optimization prob-
lems, within the branch-and-cut framework (Achter-
berg et al., 2005). Building on that, Gupta et al. (2020)
proposed a hybrid branching model using an MPNN at
the initial decision point and a light multi-layer percep-
tron for subsequent steps, showing improvements on
pure CPU machines. Subsequently, Nair et al. (2020)
expanded the MPNN approach to branching by imple-
menting a GPU-friendly parallel linear programming
solver using the alternating direction method of multi-
pliers that allows scaling the strong branching expert
to substantially larger instances, also combining this
innovation with a novel MPNN approach to diving.
For all the above works, it remains largely unclear
why MPNNs are good at (approximately) predicting
strong branching scores. Moreover, Khalil et al. (2022)
used MPNNs to predict the probability of variables
being assigned to 0 or 1 in near-optimal solutions of
binary-integer linear optimization problems.

Ding et al. (2020) used MPNNs on a tripartite graph
consisting of variables, constraints, and a single ob-
jective node enriched with hand-crafted node features.
The target is to predict the 0-1 values of the so-called
stable variables, i.e., variables whose assignment does
not change over a set of pre-computed feasible solu-
tions. Li et al. (2022) used MPNNs on a bipartite
graph together with a pointer network (Bello et al.,
2016) to reorder the variables of a given LP instance,
resulting in reduced solving time. Fan et al. (2023)
leveraged MPNNs to find good initial basis solutions
for the Simplex algorithm.

Finally Wu and Lisser (2023) expressed an LP as an
ordinary differential equations system whose state solu-
tion converges to the LP’s optimal solution and trained
a feed-forward neural network to approximate this state
solution. However, their approach hinges on the need
to compute the Jacobian matrix, rendering its training
phase computationally costly.

2 BACKGROUND

In the following, we describe the necessary background.
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(b) IPM-MPNNs emulate interior-point methods.

Figure 1: Overview of our IPM-MPNN framework.

Notation Let N := {1, 2, 3, . . . }. For n ≥ 1, let [n] :=
{1, . . . , n} ⊂ N. We use {{. . . }} to denote multisets,
i.e., the generalization of sets allowing for multiple
instances for each of its elements. A graph G is a
pair (V (G), E(G)) with finite sets of vertices or nodes
V (G) and edges E(G) ⊆ {{u, v} ⊆ V (G) | u ̸= v}.
An attributed graph G is a triple (V (G), E(G), a) with
a graph (V (G), E(G)) and (vertex-)attribute function
a : V (G) → R1×d, for some d > 0. Then a(v) are
an node attributes or features of v, for v in V (G).
Equivalently, we define an n-vertex attributed graph
G := (V (G), E(G), a) as a pair G = (G,L), where
G = (V (G), E(G)) and L in Rn×d is a node attribute
matrix. Here, we identify V (G) with [n]. For a matrix
L in Rn×d and v in [n], we denote by L in R1×d the
vth row of L such that Lv := a(v). We also write Rd

for Rd×1. The neighborhood of v in V (G) is denoted
by N(v) := {u ∈ V (G) | (v, u) ∈ E(G)}. Moreover, let
x ∈ R1×d, then D(x) denotes the diagonal matrix with
diagonal x, 0 and 1 denote the vector of zero and ones,
respectively, with an appropriate number of entries. By
default, a vector x ∈ Rd is a column vector.

Linear optimization problems A linear optimiza-
tion problem (LP) aims at optimizing a linear func-
tion over a feasible set described as the intersection
of finitely many half-spaces, i.e., a polyhedron. We
restrict our attention to feasible and bounded LPs.
Formally, an instance I of an LP is a tuple (A, b, c),
where A is a matrix in Qm×n, and b and c are vectors
in Qm and Qn, respectively. We aim at finding a vector
x∗ in Qn that minimizes cTx∗ over the feasible set

F (I) = {x ∈ Qn |Ajx ≤ bj for j ∈ [m] and

xi ≥ 0 for i ∈ [n]}.
(1)

In practice, LPs are solved using the Simplex method
or polynomial-time IPMs (Nocedal and Wright, 2006).

We now detail the theoretical result that motivates
our approach. We first summarize both interior point

methods for linear optimization and MPNNs and then
prove a theorem that relates the two.

Interior-point methods for linear optimization
IPMs are algorithms for solving constrained optimiza-
tion problems. They are particularly efficient for linear
optimization, where they were first developed as a
(polynomial-time) alternative to the Simplex methods.
Variants of the algorithm differ in theoretical guaran-
tees and empirical performance but revolve around the
same core approach (Shanno, 2012). In short, the LP
to solve is replaced by a perturbed family of problems
where a barrier penalty has replaced hard constraints
with a parameter µ > 0. IPMs alternate between tak-
ing a Newton step to solve this perturbed problem and
decreasing this parameter µ > 0, eventually converging
to the optimal solution of the original problem.

For concreteness, we present two variants of the ap-
proach, an algorithm with theoretical guarantees and
a practical algorithm that could be used in practice,
following Nocedal and Wright (2006, Chapter 14) and
Gondzio (2012), respectively. In the next section, we
will show that both algorithms can be connected to
MPNNs.

The core idea of IPMs is as follows. First, we consider
a perturbed version of the LP (1),

min
x∈Qn

cTx− µ[1T log(b−Ax) + 1T log(x)] (2)

for some µ > 0. By introducing the variables si = µ/xi,
rj = Ajx−bj and wj = µ/rj , the first-order optimality
conditions for (2) can be written as a system

Ax∗ − r∗ = b

ATw∗ + s∗ = c

x∗
i s

∗
i = µ i ∈ [n],

w∗
i r

∗
i = µ j ∈ [m],
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with x∗,w∗, s∗, r∗ ≥ 0. Let σ ∈ (0, 1) be another
hyperparameter. The two algorithms start from an
initial positive point (x0,w0, s0, r0) > 0, and alternate
between computing the Newton step for the perturbed
problem (2) at barrier parameter σµ

A 0 0 −I
0 AT I 0

D(s) 0 D(x) 0
0 D(r) 0 D(w)



∆x
∆w
∆s
∆r

 =


b−Ax+ r
c−ATw − s

σµ1−D(x)D(s)1
σµ1−D(w)D(r)1

,
and taking a step in that direction with
length α > 0, such that the resulting point
(x′,w′, s′, r′) = (x,w, s, r) + α(∆x, ∆w, ∆s, ∆r)
satisfies (x′,w′, s′, r′) > 0.

The above system can be simplified as follows. First,
we can infer that

∆s = σµD(x)−11− s−D(x)−1D(s)∆x, (3)

∆r = σµD(w)−11− r −D(w)−1D(r)∆w, (4)

which implies that

A∆x+D(w)−1D(r)∆w = b−Ax+ σµD(w)−11,

AT∆w −D(x)−1D(s)∆x = c−ATw − σµD(x)−11.

Therefore, ∆x =

D(s)−1D(x)[AT∆w − c+ATw + σµD(x)−11] (5)

Q∆w = b−Ax+ σµD(w)−11 (6)

+AD(s)−1D(x)[c−ATw − σµD(x)−11]

for Q = AD(s)−1D(x)AT +D(w)−1D(r). Thus, by
solving the linear system in Equation (6), we can find
∆w, then ∆x, ∆r, and ∆s through Equations (3)-(5).

The two algorithms we consider only differ in how they
compute µ and α. The theoretical algorithm recom-
putes, at every iteration, µ = (xTs +wTr)/(n +m),
and chooses α to be the largest α < 1 such that
x′
is

′
i ≥ γ(x′Ts′+w′Tr′)/(n+m) and w′

jr
′
j ≥ γ(x′Ts′ +

w′Tr′)/(n+m) for i ∈ [n] and j ∈ [m] for some hyper-
parameter γ ∈ (0, 1] (Nocedal and Wright, 2006, Algo-
rithm 14.2). The practical algorithm instead picks µ0 =
(xT

0s0+wT
0r0)/(n+m) initially, for (x0,w0, s0, r0) the

initial point, and thereafter decreases µ as µ′ = σµ at
every iteration, while choosing α to be α = 0.99α′ for
α the largest α > 0 such that x′

is
′
i > 0, w′

jr
′
j > 0. The

two algorithms are summarized in Algorithms 1 and 2.

Algorithm 1 is guaranteed to converge to an ϵ-accurate
solution in O((n+m) log(1/ϵ)) iterations (Nocedal and
Wright, 2006, Theorem 14.3), that is, to a number of
iterations proportional to the problem size. Algorithm
2, in contrast, does not come with any theoretical
guarantees but is typical of practical IPM algorithms,
which tend to converge in an almost constant number of

Algorithm 1 Theoretical IPM for LPs

Input: An LP instance (A, b, c), a barrier reduc-
tion hyperparameter σ ∈ (0, 1), a neighborhood
hyperparameter γ ∈ (0, 1], and initial values
(x0,w0, s0, r0) such that Ax0 − r0 = b, ATw0 +
s0 = c, (x0,w0, s0, r0) > 0 and mini x0iw0i ≥ γµ0,
mini w0ir0i ≥ γµ0 for µ0 = (xT

0s0+wT
0r0)/(n+m).

1: repeat
2: µ← (xTs+wTr)/(n+m)
3: Compute ∆w by solving the linear system

Q∆w = b−Ax+ σµD(w)−11
+AD(s)−1D(x)[c−ATw−σµD(x)−11]

for Q = AD(s)−1D(x)AT +D(w)−1D(r)
4: ∆x ← D(s)−1D(x)[AT∆w − c + ATw +

σµD(x)−11]
5: ∆s← σµD(x)−11− s−D(x)−1D(s)∆x
6: ∆r ← σµD(w)−11− r −D(w)−1D(r)∆w
7: Compute the largest α ∈ (0, 1) such that

min
i,j

{(x+ α∆x)i(s+ α∆s)i, (w + α∆w)j(r + α∆r)j}

≥ γ
(x+ α∆x)T(s+ α∆s) + (w + α∆w)T(r + α∆r)

n+m
.

8: Update (x,w, s, r) += α(∆x, ∆w, ∆s, ∆r)
9: until convergence of (x,w, s, r)

10: return the point x, which solves 1.

Algorithm 2 Practical IPM for LPs

Input: An LP instance (A, b, c), a barrier reduc-
tion hyperparameter σ ∈ (0, 1), and initial values
(x0,w0, s0, r0, µ0) such that (x0,w0, s0, r0) > 0
and µ0 = (xT

0s0 +wT
0r0)/(n+m).

1: repeat
2: Compute ∆w by solving the linear system

Q∆w = b−Ax+ σµD(w)−11
+AD(s)−1D(x)[c−ATw−σµD(x)−11]

for Q = AD(s)−1D(x)AT +D(w)−1D(r).
3: ∆x ← D(s)−1D(x)[AT∆w − c + ATw +

σµD(x)−11]
4: ∆s← σµD(x)−11− s−D(x)−1D(s)∆x
5: ∆r ← σµD(w)−11− r −D(w)−1D(r)∆w
6: Find the largest α > 0 such that

min
i,j

{(x+ α∆x)i(s+ α∆s)i,

(w + α∆w)j(r + α∆r)j} ≥ 0

7: Update (x,w, s, r) += 0.99α(∆x, ∆w, ∆s, ∆r)

8: µ← σµ
9: until convergence of (x,w, s, r)

10: return the point x, which solves 1.
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iterations—usually within 30-40 iterations, irrespective
of problem size (Gondzio, 2012; Colombo and Gondzio,
2008).

Message-passing graph neural networks Intu-
itively, MPNNs learn node features or attributes, i.e., a
d-element real-valued vector, representing each node in
a graph by aggregating information from neighboring
nodes. Let G = (G,L) be an attributed graph, follow-
ing, Gilmer et al. (2017) and Scarselli et al. (2009), in
each layer, t > 0, we update node attributes or features

h(t)
v := UPD(t)

(
h(t−1)
v ,MSG(t)

(
{{h(t−1)

u | u ∈ N(v)}}
))

,

and h
(0)
v := Lv. Here, the message function MSG(t)

is a parameterized function, e.g., a neural network,
mapping the multiset of neighboring node features to a
single vectorial representation. We can easily adapt a
message function to incorporate possible edge features
or weights. Similarly, the update function UPD(t) is
a parameterized function mapping the previous node
features, and the output of MSG(t) to a single vectorial
representation.

To adapt the parameters of the above functions, they
are optimized end-to-end, usually through a variant of
stochastic gradient descent, e.g., Kingma and Ba (2015),
together with the parameters of a neural network used
for classification or regression. In the following, we
define a message-passing step as the application of a
message and update function.

3 SIMULATING IPMS VIA MPNNS

We now show that there exist MPNNs, with specific
architecture and choices of parameters, such that Al-
gorithms 1 and 2 can be interpreted as inference over
these MPNNs for a specific tripartite graph encoding
the LP as input.

Representing LPs as graphs Let I = (A, b, c)
be an instance of LP. Similar to the setting of
Ding et al. (2020), we model the instances with
an (undirected) weighted tripartite graph G(I) :=
(V (I), C(I), {o}, E(I)vc, E(I)vo, E(I)co). Here, the
node set V (I) := {vi | i ∈ [n]} represents the vari-
ables of I, the node set C(I) := {ci | i ∈ [m]}
represents the constraints of I, and the node o rep-
resents the objective. Further, the first edge set
E(I)vc models the variable-constraint interaction, i.e.,
E(I)vc := {(vi, cj) | Aij ̸= 0}, where each such edge
(vi, cj) is annotated with the weight Aij . Further,
the objective node o is connected to all other nodes
in the graphs, i.e., E(I)vo := {(o, vi) | vi ∈ V (I)}
and E(I)co := {(o, ci) | ci ∈ C(I)}. Each edge

(o, vi) ∈ E(I)vo is annotated with the weight ci. Simi-
larly, each edge (o, ci) ∈ E(I)co is annotated with the
weight bi. The resulting graph is illustrated in Fig-
ure 1a.

Theoretical results We now state the main results
of this paper. To describe them, first notice that Al-
gorithms 1 and 2 operate by taking an initial point
(x0,w0, s0, r0) and a duality measure µ0, and updating
them after every iteration, yielding a sequence of points
(xt,wt, st, rt) and duality measure µt for iterations
t > 0. The following result shows that Algorithm 1 can
be reproduced by a specific MPNN in the sense that a
fixed-depth MPNN can reproduce each of its iterations.

Theorem 1. There exists an MPNN fMPNN,IPM1 com-
posed of O(m) message-passing steps that reproduces
an iteration of Algorithm 1, in the sense that for any
LP instance I = (A, b, c) and any iteration step t ≥ 0,
fMPNN,IPM1 maps the graph G(I) carrying [xt, st] on
the variable nodes and [wt, rt] on the constraint nodes
to the same graph G(I) carrying [xt+1, st+1] on the
variable nodes and [wt+1, rt+1] on the constraint nodes.

This implies, by composing several instances of
fMPNN,IPM1, that Algorithm 1 can be simulated by an
MPNN with a number of layers proportional to the
number of iterations taken by the algorithm. We can
derive an analogous result for Algorithm 2.

Proposition 2. There exists an MPNN fMPNN,IPM2

composed of O(m) message-passing steps that repro-
duces each iteration of Algorithm 2, in the sense that
for any LP instance I = (A, b, c) and any iteration step
t ≥ 0, fMPNN,IPM2 maps the graph G(I) carrying [xt, st]
on the variable nodes, [wt, rt] on the constraint nodes
and [µt] on the objective node to the same graph G(I)
carrying [xt+1, st+1] on the variable nodes, [wt+1, rt+1]
on the constraint nodes and [µt+1] on the objective
node.

Similarly, this implies, by composing several instances
of fMPNN,IPM2, that Algorithm 2 can be simulated by
an MPNN with a number of layers proportional to the
number of iterations taken by the algorithm.

Implication of the theoretical results Theorem 1
and Proposition 2 show that MPNNs are, in principle,
capable of simulating modern IPMs. That is, they are
capable of solving LPs to optimality. Hence, our find-
ings shed light on the recent success of MPNN-based
neural architectures by Gasse et al. (2019) and similar
approaches, which use MPNNs to mimic strong branch-
ing within the branch-and-bound framework for solving
mixed-integer linear optimization problems. Moreover,
in the following section, we derive MPNN architectures
that act as lightweight proxies for solving LPs while
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being able to adapt to the given problem instance dis-
tributions. We verify their effectiveness empirically on
real-world LP instances stemming from relaxing mixed-
integer linear formulations of well-known combinatorial
optimization problems.

4 IPM-MPNNS: MPNNS FOR LPS

Inspired by the theoretical alignment of IPMs and
MPNNs derived above, we outline our IPM-MPNN
framework, allowing for solving LP instances while
adapting to a given problem instance distribution.

Given an LP instance I, we now outline an asyn-
chronous MPNN operating on the tripartite graph

G(I); see Section 3. Let h
(t)
c ∈ Rd, d > 0, be the

node features of a constraint node c ∈ C(I) at iteration

t > 0, and let h
(t)
v ∈ Rd and h

(t)
o ∈ Rd be the node

features of a variable node v ∈ V (I) and the objec-
tive node o at iteration t, respectively. Moreover, let
eco, evc, evo denote the edge weights. Initially, at t = 0,
we set the node features by applying a linear mapping
to the raw node features xv, xc or xo, extracted from
the instance I; see Section 5 for details.

All three node types are updated in three separate
update passes. In the first pass, we update the embed-
dings of constraint nodes from the embeddings of the
variable nodes and of the objective node. That is, let
c ∈ C(I) be a constraint node and let t > 0, then

h(t)
c :=UPD(t)

c

[
h(t−1)
c ,MSG(t)

o→c

(
h(t−1)
o , eoc

)
,

MSG(t)
v→c

(
{{(h(t−1)

v , evc) | v ∈ N(c) ∩ V (I)}}
)]

.

Here, the parameterized message function MSG(t)
v→c

maps a multiset of vectors, i.e., variable node features
and corresponding edge features evc, to a vector in
Rd. Similarly, the parameterized function MSGo→c

maps the current node features of the objective node
and edge features eoc to a vector in Rd. Finally, the
parameterized function UPD(t)

c maps the constraint

node’s previous features, the outputs of MSG(t)
o→c and

MSG(t)
v→c to vector in Rd.

Next, similarly to the above, we update the objective
node’s features depending on variable and constraint
node features,

h(t)
o :=UPD(t)

o

[
h(t−1)
o ,MSG(t)

c→o

(
{{h(t)

c , eco | c ∈ C(I)}}
)
,

MSG(t)
v→o

(
{{h(t−1)

v , evo | v ∈ V (I)}}
)]

.

Finally, analogously to the update of the constraint
nodes’ features, we update the representation of a vari-
able node v ∈ V (I) from the constraints nodes and

objective node,

h(t)
v :=UPD(t)

v

[
h(t−1)
v ,MSG(t)

o→v

(
h(t)
o , eov

)
,

MSG(t)
c→v

(
{{h(t)

c , ecv | c ∈ N(v) ∩ V (C)}}
)]

.

The entire process is executed asynchronously, in that
the nodes updated later incorporate the most recent
features updates from preceding nodes. We map each

variable node feature h
(t)
v to MLP(h

(t)
v ) ∈ R, where

MLP is a multi-layer perceptron, and concatenate the
resulting real numbers over all variable nodes column-
wise, resulting in the final prediction z(t) ∈ Rn.

In the experiments in Section 5, we probe various
message-passing layers to express the various message
and update functions. Concretely, we leverage the
GCN (Kipf and Welling, 2017), GIN (Xu et al., 2019),
and GEN (Li et al., 2020) MPNN layers, respectively;
see Appendix B for details.

We train the above IPM-MPNN architecture, i.e., adapt
its parameters, in a supervised fashion. Below, we
outline the three components constituting our training
loss function. To that, let (A, b, c) be an LP instance.

Variable supervision As discussed above, our IPM-
MPNN aims to simulate the solving steps provided
by a standard IPM. Thus, aligned with Theorem 1
and Proposition 2, a perfectly parameterized MPNN
is expected to follow the steps without deviation for
all T iterations. We maintain the intermediate outputs
z(t) ∈ Rn of each MPNN layer and calculate the mean
squared error (MSE) loss between every pair of the
expert solution y(t) ∈ Rn and MPNN prediction z(t).
Moreover, we introduce a step decay factor α ∈ [0, 1]
so that early steps play a less important role, resulting
in the following loss function,

Lvar :=
1

N

N∑
i=1

T∑
t=1

αT−t∥y(t)
i − z

(t)
i ∥

2

2, (7)

where N denotes the number of training samples.

Objective supervision We use regularization on
the prediction regarding the ground-truth objective
values at every step. Empirically, this regularization
term helps with convergence and helps finding more
feasible solutions that minimize the objective in case
the LP instance has multiple solutions. Note that we
do not predict the objective directly with our MPNNs
but calculate it via cTz(t) instead. Suppose the ground-
truth values are given by cTy(t), we have

Lobj :=
1

N

N∑
i=1

T∑
t=1

αT−t
[
cT

(
y
(t)
i − z

(t)
i

)]2
.
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Constraint supervision Finally, we aim for the
IPM-MPNN to predict an optimal solution regarding
the objective value while satisfying all the constraints.
To that, we introduce a regularization penalizing con-
straint violations, i.e.,

Lcons :=
1

N

N∑
i=1

T∑
t=1

αT−t∥ReLU(Aiz
(t)
i − bi)∥

2

2.

Finally, we combine the above three loss terms into the
loss function

L := wvarLvar + wobjLobj + wconsLcons,

where we treat wvar, wobj, and wcons > 0 as hyper-
paramters.

At test time, given an LP instance I, we construct the
tripartite graph G(I) as outlined above and use the
trained MPNN to predict the variables’ values.

5 EXPERIMENTAL STUDY

Here, we empirically evaluate the ability of IPM-
MPNNs to predict the optimal solutions of LPs. In
particular, we aim to answer the following questions.

Q1 Can MPNNs properly imitate the performance of
IPM solvers in practice?

Q2 How is MPNNs’ performance compared with com-
peting neural-network-based solutions?

Q3 What advantage does our MPNN architecture hold
compared with traditional IPM solvers?

Q4 Do MPNNs generalize to instances larger than seen
during training?

Our experimental results are reproducible with the
code available at https://github.com/chendiqian/
IPM_MPNN.

Datasets We obtain LP instances from mixed-integer
optimization instances by dropping the integrality con-
straints over variables. Following Gasse et al. (2019),
we use four classes of problems, namely set covering,
maximal independent set, combinatorial auction, and
capacitated facility location. For each problem type, we
generate small- and large-size instances. We describe
the datasets and our parameters for dataset generation
in Appendix C. From each LP instance I = (A, b, c),
we generate a tripartite graph G(I), following Section 3,
and construct initial node and edge features as follows.
We indicate the ith row of the constraint matrix A as
Ai and the jth column as A·,j . For a given variable
node vj ∈ V (I), its initial node features are set to the
mean and standard deviation of the column vector A·,j ,

resulting in two features. Analogously, for a constraint
node ci ∈ C(I), we derive initial features from the
statistical properties of the row vector Ai. For the
objective node o, the features are characterized in a
corresponding manner using the vector c. In the super-
vised learning regime, it is mandatory to have ground
truth labels to guide the model predictions. For our
IPM-MPNNs, the outputs of each layer t are the pre-
diction of the variables’ value z(t). Consequently, we
utilize the intermediate variable values y(t), as provided
by the solver, to serve as our ground truth. However,
to prevent the MPNN from becoming excessively deep,
we sample the ground truth steps, i.e., we adopt an
equidistant sampling strategy for the solver’s steps, en-
suring that the number of sampled steps aligns with the
depth of the corresponding MPNN. We split the graph
datasets into train, validation, and test splits with ra-
tios 0.8, 0.1, and 0.1. We conducted the experiments
by evaluating each dataset multiple times, performing
three independent runs with distinct random seeds.
The reported results represent the average numbers
over the test set across these runs and the correspond-
ing standard deviations. We executed all experiments
on a single NVIDIA A100 80GB GPU card—see Ap-
pendix D for training-related hyperparameters.

IPM-MPNNs’ ability to solve LPs (Q1) We
collect and organize the results of our MPNN method
in Table 1. We report the numbers on the four types
of relaxed MILP instances, each with small and large
sizes. As explained in Section 4, we leverage three
types of MPNN layers, GCN (Kipf and Welling, 2017),
GIN (Xu et al., 2019), and GEN (Li et al., 2020), as
the backbone of our MPNN architectures. We split the
table into two main parts, namely the mean absolute
relative objective gap

1

N

N∑
i=1

∣∣∣∣∣cT
(
y
(T )
i − z

(T )
i

)
cTy

(T )
i

∣∣∣∣∣× 100

of the last step T over the test set, and the mean
absolute constraint violation of the last step

1

N

N∑
i=1

1

mi
∥reLU(Aiz

(T )
i − bi)∥1,

where the normalization term mi is the number of con-
straints of the ith instance. As seen, our IPM-MPNN
architectures consistently align with the IPM solver
at the last converged step, with marginal constraint
violation. Moreover, the relative objective gaps of
our method are all under 1%. The GCN-based IPM-
MPNNs perform best on large maximal independent
set relaxation instances at 0.094 ± 0.005%. Overall,
GEN and GCN perform better than GIN layers among
the three graph convolutions. The absolute constraint

https://github.com/chendiqian/IPM_MPNN
https://github.com/chendiqian/IPM_MPNN
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Table 1: Results of our proposed IPM-MPNNs (✓) versus bipartite representation ablations (✗). We report the
relative objective gap and the constraint violation, averaged over all three runs. We print the best results per
target in bold.

Tri. MPNN
Small instances Large instances

Setcover Indset Cauc Fac Setcover Indset Cauc Fac

O
b
je
c
ti
v
e
g
a
p

[%
]

✓

GEN 0.319±0.020 0.119±0.003 0.612±0.049 0.549±0.112 0.629±0.086 0.158±0.035 0.306±0.047 0.747±0.083

GCN 0.418±0.008 0.103±0.006 0.682±0.029 0.578±0.015 0.420±0.047 0.094±0.005 0.407±0.038 0.914±0.141

GIN 0.478±0.038 0.146±0.011 0.632±0.036 0.810±0.221 0.711±0.115 0.126±0.021 0.378±0.052 0.911±0.132

✗

GEN 8.310±1.269 0.735±0.032 1.417±0.009 2.976±0.013 15.170±6.844 0.320±0.008 0.851±0.122 2.531±0.025

GCN 5.523±0.133 0.639±0.009 1.394±0.081 3.031±0.059 6.092±0.456 0.298±0.009 0.766±0.093 2.535±0.034

GIN 5.592±0.179 0.634±0.021 1.202±0.016 2.996±0.031 5.835±1.917 0.290±0.005 0.810±0.140 2.660±0.062

C
o
n
st
ra

in
t
v
io
la
ti
o
n

✓

GEN 0.002±0.0002 0.0006±0.00003 0.003±0.0007 0.002±0.001 0.009±0.001 0.0015±0.0003 0.0004±0.0002 0.002±0.001

GCN 0.002±0.001 0.0003±0.0001 0.002±0.00007 0.002±0.0002 0.009±0.001 0.0005±0.00004 0.001±0.0005 0.001±0.0004

GIN 0.004±0.001 0.0006±0.00008 0.001±0.0001 0.002±0.0005 0.008±0.002 0.0006±0.0001 0.002±0.0008 0.002±0.0007

✗

GEN 0.181±0.023 0.006±0.0003 0.006±0.001 0.011±0.004 0.309±0.025 0.004±0.0002 0.006±0.001 0.003±0.001

GCN 0.207±0.006 0.004±0.001 0.002±0.001 0.006±0.0003 0.267±0.049 0.003±0.0004 0.004±0.001 0.002±0.0003

GIN 0.211±0.007 0.003±0.0002 0.003±0.001 0.008±0.002 0.236±0.014 0.003±0.0004 0.004±0.002 0.003±0.0002

violations are mostly at the 1×10−3 level, with the best
(0.0003± 0.0001) achieved by GCN on small maximal
independent set relaxation instances.

Baselines (Q2) To answer question Q2, we compare
IPM-MPNNs to two baselines. First, we compare our
IPM-MPNNs to Chen et al. (2023), where the authors
proposed encoding LP instances as bipartite graphs.
In Table 1, the rows with a cross mark (✗) on the left
are the bipartite baselines. As seen in this table, our
IPM-MPNNs outperform the bipartite architectures in
all instances with all types of MPNNs. Most relative
objective gaps lie above 1%, except on the maximal
independent set and large combinatorial auction re-
laxation instances. The largest gap is observed on
the small set covering relaxation instances by GEN,
with the baseline reporting as much as 26.1× higher
constraint violation number. Hence, our results indi-
cate that IPM-MPNNs’s tripartite representation is
crucial. We also compare our IPM-MPNNs to a neural-
ODE-based approach (Wu and Lisser, 2023). Since
their approach is quite expensive during training by
means of both time and GPU memory, we generate
1000 mini-sized instances. Due to the architecture-
agnostic property of their approach, we embed our
MPNNs in their training pipeline. When presenting
the runtime and GPU usage, we use the same batch
size as the baseline method on our MPNN approach
for a fair comparison, even though our method can
scale to a much larger batch size in practice. We re-
port results in Table 2. Taking the GEN layer as an
example, our method shows consistently better results
than the neural-ODE baseline method by reaching at
most 14.2× lower relative objective gap, 8.6× faster
training, and 300.8× less memory on the mini-sized
capacitated facility location relaxation instances.

Table 2: Comparing between IPM-MPNNs and the Wu
and Lisser (2023) method on 1000 mini-sized instances.
We report the average relative objective gap, constraint
violation, training time over three runs, and maximal
GPU memory allocated. We print the best results per
target in bold.

Method MPNN Setcover Indset Cauc Fac

O
b
j.

ga
p
[%

]

ODE
GEN 14.915±0.425 6.225±0.097 13.845±0.554 20.560±0.059

GCN 14.545±0.055 6.148±0.071 12.945±0.385 20.690±0.037

GIN 15.050±0.228 6.474±0.114 13.470±1.145 21.010±0.529

Ours
GEN 2.555±0.122 1.580±0.095 2.733±0.074 1.449±0.255

GCN 2.375±0.062 1.447±0.152 2.769±0.091 1.478±0.154

GIN 2.740±0.3184 1.404±0.153 2.847±0.091 1.328±0.201

C
on

st
ra
in
t
v
io
.

ODE
GEN 0.072±0.006 0.046±0.002 0.025±0.008 0.020±0.001

GCN 0.049±0.012 0.048±0.008 0.025±0.0002 0.020±0.0005

GIN 0.064±0.005 0.043±0.008 0.024±0.005 0.014±0.004

Ours
GEN 0.023±0.002 0.005±0.0001 0.015±0.003 0.013±0.003

GCN 0.030±0.003 0.005±0.0006 0.017±0.002 0.005±0.0006

GIN 0.023±0.005 0.005±0.0003 0.014±0.001 0.006±0.0006

T
im

e
[s
] ODE

GEN 47.829 51.283 63.068 96.298
GCN 57.196 80.133 79.606 34.297
GIN 55.918 64.628 39.904 62.448

Ours
GEN 10.177 9.617 9.946 11.124
GCN 18.964 8.688 7.368 8.834
GIN 6.042 8.096 8.881 10.771

M
em

or
y
(G

B
)

ODE
GEN 16.455 25.931 23.354 44.520
GCN 16.489 34.003 23.805 10.640
GIN 18.238 30.101 13.482 24.713

Ours
GEN 0.091 0.088 0.101 0.148
GCN 0.201 0.134 0.069 0.142
GIN 0.094 0.073 0.148 0.187

Inference time profiling (Q3) We also com-
pare IPM-MPNN’s performance to exact IPM solvers.
Thereto, we compare the time required to solve an
instance between traditional solvers, namely SciPy’s
IPM solver and a Python-based custom-build one, and
our IPM-MPNN. We run the solvers and our MPNNs
on the test set of each dataset and report the mean and
standard deviation in seconds. According to Table 4,
our MPNN clearly outperforms the SciPy IPM solver
on all large instances. Further, IPM-MPNNs beat our
Python-based IPM solver described in Algorithm 2 on
all instances. It is worth noting that both IPM solvers
exhibit sensitivity to problem sizes. For example, the
SciPy solver sees a performance degradation of approx-



Chendi Qian, Didier Chételat, Christopher Morris

Table 3: Size generalization. We report the relative objective gap and constraint violation on larger test instances.
Numbers represent mean and standard deviation across multiple pretrained models.

Train size Inference size GEN GCN GIN
Rows Cols Rows Cols Obj. (%) Cons. Obj. (%) Cons. Obj. (%) Cons.

S
e
tc
.

[300, 500] [500, 700]

500 700 0.717±0.158 0.516±0.010 0.511±0.047 0.509±0.004 1.034±0.237 0.486±0.023

550 750 0.917±0.317 0.552±0.012 0.871±0.252 0.543±0.003 2.318±1.411 0.497±0.032

600 700 0.993±0.211 0.573±0.015 0.705±0.125 0.565±0.012 1.491±0.512 0.521±0.045

500 800 0.902±0.323 0.528±0.008 1.058±0.441 0.509±0.004 12.538±16.027 0.485±0.050

600 800 1.004±0.407 0.589±0.014 1.556±0.588 0.568±0.005 12.217±14.715 0.486±0.071

In
d
se
t.

[584, 990] [300, 500]

[978, 994] 500 0.128±0.027 0.299±0.001 0.099±0.008 0.303±0.001 0.129±0.031 0.304±0.001

[1028, 1044] 525 0.157±0.063 0.300±0.001 0.101±0.013 0.304±0.001 0.111±0.017 0.305±0.001

[1076, 1094] 550 0.300±0.186 0.301±0.002 0.096±0.022 0.303±0.001 0.177±0.097 0.304±0.001

[1128, 1144] 575 1.402±1.036 0.305±0.006 0.146±0.044 0.304±0.001 0.380±0.367 0.304±0.002

[1178, 1194] 600 4.552±3.153 0.317±0.015 0.408±0.317 0.304±0.001 0.647±0.725 0.304±0.002

C
a
u
c
.

[320, 562] [300, 499]

[530, 564] 500 0.333±0.134 0.257±0.001 0.318±0.048 0.259±0.001 0.344±0.108 0.259±0.001

[596, 646] 500 0.363±0.131 0.267±0.002 0.519±0.069 0.270±0.003 0.576±0.165 0.271±0.001

[652, 720] 500 0.524±0.039 0.284±0.001 1.255±0.523 0.289±0.007 0.944±0.114 0.289±0.001

[559, 596] 600 7.325±3.615 0.257±0.002 0.587±0.268 0.255±0.001 1.014±0.845 0.263±0.006

[633, 677] 600 7.965±3.941 0.263±0.002 0.868±0.441 0.258±0.003 1.375±0.693 0.269±0.005

F
a
c
.

[441, 900] [420, 870]

961 930 0.912±0.251 0.178±0.006 1.154±0.206 0.173±0.007 1.452±0.528 0.178±0.003

936 900 1.320±0.347 0.148±0.009 1.615±0.322 0.145±0.009 1.736±0.558 0.153±0.004

936 910 0.964±0.063 0.209±0.005 1.538±0.526 0.211±0.007 1.538±0.422 0.215±0.006

1116 1080 1.502±0.704 0.163±0.009 3.540±3.134 0.161±0.006 2.288±0.659 0.167±0.005

1296 1260 1.808±0.566 0.173±0.009 7.629±7.577 0.179±0.008 13.522±8.027 0.163±0.021

Table 4: Comparing IPM-MPNNs’ inference time to
SciPy’s IPM implementation and our Python-based
IPM solver. We report mean and standard deviation
in seconds over three runs. We print the best results
per target in bold.

Instances SciPy Solver Our Solver GEN GCN GIN

Small setcover 0.006±0.004 0.071±0.015 0.033±0.001 0.029±0.001 0.017±0.001

Large setcover 0.390±0.098 3.696±2.141 0.033±0.001 0.030±0.001 0.021±0.001

Small indset 0.008±0.067 0.089±0.024 0.033±0.001 0.031±0.002 0.021±0.001

Large indset 0.226±0.087 1.053±0.281 0.033±0.002 0.030±0.001 0.021±0.001

Small cauc 0.012±0.005 0.151±0.035 0.033±0.001 0.028±0.001 0.021±0.001

Large cauc 0.282±0.065 3.148±0.880 0.033±0.001 0.029±0.001 0.021±0.001

Small fac 0.017±0.011 2.025±1.854 0.029±0.001 0.029±0.001 0.022±0.001

Large fac 0.732±0.324 6.229±2.672 0.030±0.001 0.031±0.001 0.022±0.001

imately 65.0× when transitioning from small to large
set covering problems. In contrast, our MPNN method
demonstrates a more consistent behavior across vary-
ing problem sizes, showing only 1.2× slowdown for the
analogous instances. Hence, we can positively answer
question Q3.

Size generalization (Q4) We investigate the possi-
bility of generalizing our pre-trained MPNNs to larger
instances than encountered during training. To that,
we generate new sets of novel instances, each with the
same number of instances as the test set. In Table 3, we
list our training instance sizes and a collection of test
instance sizes. Taking GEN on set covering relaxation
problems as an example, as the inference size grows,
the relative objective gap increases a bit, while the con-
straint violations are overall worse than on the training
set. Notably, for the training size [600,800], which is
at least 1.37× larger than the training instances, the
objective gap is merely 0.28% worse than [500,700] size.
For question Q4, we can conclude that our pre-trained

MPNNs can generalize to unseen, larger instances to
some extent.

6 CONCLUSION

In summary, our study establishes a strong connection
between MPNNs and IPMs for LPs. We have shown
that MPNNs can effectively simulate IPM iterations,
revealing their potential in emulating strong branching
within the branch-and-bound framework, as demon-
strated by Gasse et al. (2019). In addition, building on
this connection, we proposed IPM-MPNNs for learning
to solve large-scale LP instances approximately, surpass-
ing neural baselines and exact IPM solvers in terms of
solving time across various problem domains. Looking
forward, promising avenues for further research involve
expanding our theoretical framework to encompass a
broader range of convex optimization problems.
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Algorithm 3 Conjugate gradient algorithm for IPMs

Input: An instance I = (A, b, c) and a point (x,w, s, r) > 0.
1: p ← b−Ax+ σµD(w)−11+AD(s)−1D(x)[c−ATw − σµD(x)−11]
2: v ← −p
3: ∆w ← 0
4: for m iterations do
5: u← [AD(s)−1D(x)AT +D(w)−1D(r)]p
6: α← vTv/pTu
7: ∆w += αp
8: vnew ← v + αu
9: β ← vTnewvnew/v

Tv
10: v ← vnew

11: p← −v + βp
12: end for
13: return A direction ∆w that solves the system (6).

A Missing proofs

In this section, we prove Theorem 1 and Proposition 2. To do so, first notice the following. In Step 3 of
Algorithm 1 and Step 2 of Algorithm 2, we must solve the system Equation (6). This can be done as follows.
Since (x,w, s, r) ≥ 0 at any step of the algorithm, the matrix Q = AD(s)−1D(x)AT +D(w)−1D(r) is always
symmetric and positive definite. Therefore, we can solve the system with the conjugate gradient algorithm
(Nocedal and Wright, 2006, Algorithm 5.2), say with initial point set at ∆w0 = 0 for simplicity. A specialization
of the algorithm to the problem of solving Equation (6) is described as Algorithm 3.

Lemma 3. There exists a MPNN fMPNN,CG composed of a O(m) successive message-passing steps that reproduces
Algorithm 3, in the sense which for any LP instance I = (A, b, c) and any point (x, s,w, r) > 0, fMPNN,CG maps
the graph G(I) carrying [x, s] on the variable nodes, [w, r] on the constraint nodes and [µ] on the objective node
to the same graph G(I) carrying the output [∆w] of Algorithm 3 on the constraint nodes.

Proof. We will go through every step of the algorithm and show that it can be computed by message-passing
steps on G(I).

• For Step 1, the computation can be broken down as follows. First, we can compute h1 ← ATw, h2 ← µ1n

and h3 ← c by a constraints-to-variables and two objective-to-variables message-passing steps, respectively.
Next, one can compute h4 = −x+D(s)−1D(x)[h3−h1−σD(x)−1h2] as a local operation on variable nodes.
Then we can compute h5 ← Ah4, h6 ← µ1m and h7 ← b as a variables-to-constraints and two objective-to-
constraints message-passing steps, respectively. Finally, we can compute p← h7 + h5 + σD(w)−1h6 as a
local operation on constraint nodes.

• Steps 2 and3 are just local operations on constraint nodes.

• Step 5 can be broken down as h1 ← ATp, h2 ← D(s)−1D(x)h1, h3 ← Ah2, u ← h3 +D(w)−1D(r)p.
This can be realized as a constraints-to-variables message-passing step, a local operation on variable nodes, a
variables-to-constraints message-passing step, and a local operation on constraint nodes.

• Step 6 can be broken down as h1 ← vTv, h2 ← pTu, α← h1/h2. This can be realized as a constraints-to-
objective message-passing step, another constraints-to-objective message-passing step, and a local operation
on the objective node.

• Step 7 can be broken down as a message-passing step from the objective node to the constraint nodes
h1 ← α1, followed by a local operation on the constraint nodes ∆w ← ∆w +D(h1)p.

• Similarly, step 8 can be written an objective-to-constraints message-passing step h1 ← α1, followed by a
local operation on constraint nodes ∆vnew ← v +D(h1)u.

• Step 9 can be broken down as h1 ← vTnewvnew, h2 ← vTv, β ← h1/h2. This can be realized as a constraints-to-
objective message-passing step, another constraints-to-objective message-passing step, and a local operation
on the objective node.
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• Step 10 is a local operation on constraint nodes.

• Finally, step 11 can be written an objective-to-constraints message-passing step h1 ← β1, followed by a local
operation on constraint nodes ∆p← −v +D(h1)p.

Counting the number of successive message-passing steps, we find that Steps 1–3 can be realized in 8 message-
passing steps, while each iteration, comprised of Steps 5–11, can be realized in 9 message-passing steps, completing
the proof.

We now move on with the proofs of Theorem 1 and Proposition 2.

Theorem 4. There exists an MPNN fMPNN,IPM1 composed of O(m) message-passing steps that reproduces
an iteration of Algorithm 1, in the sense that for any LP instance I = (A, b, c) and any iteration step t ≥ 0,
fMPNN,IPM1 maps the graph G(I) carrying [xt, st] on the variable nodes and [wt, rt] on the constraint nodes to
the same graph G(I) carrying [xt+1, st+1] on the variable nodes and [wt+1, rt+1] on the constraint nodes.

Proof. We need to check that every step can be computed by message-passing steps over G(I).

• Step 2 can be written as h1 ← xTs, h2 ← wTr, µ = (h1 + h2)/(n + m). These can be realized as a
variable-to-objective message-passing step, a constraints-to-objective message-passing step, and a local
operation on the objective node, respectively.

• Step 3 can be written as message-passing steps by Lemma 3.

• Step 4 can be broken down as follows. We can compute h1 ← AT[w +∆w], h2 ← µ1n and h3 ← c by a
constraints-to-variables and two objective-to-variables message-passing steps, respectively. Then, one can
compute ∆x←D(s)−1D(x)h1 − h3 + σD(x)−1h2 by a local operation on variable nodes.

• Step 5 can be realized by taking an objective-to-variables message-passing step h1 ← µ1n, and computing
∆s← σD(x)−1h1 − s−D(x)−1D(s)∆x.

• Step 6 can be realized by taking an objective-to-constraints message-passing step h1 ← µ1m, and computing
∆r ← σD(w)−1h1 − r −D(w)−1D(r)∆w.

• Step 7 can be performed by message-passing steps as follows. We need to find the largest α ∈ (0, 1) such that

(x+ α∆x)i(s+ α∆s)i (8)

≥ γ
(x+ α∆x)T(s+ α∆s) + (w + α∆w)T(r + α∆r)

n+m
(9)

for every i ∈ [n] and

(w + α∆w)j(r + α∆r)j} (10)

≥ γ
(x+ α∆x)T(s+ α∆s) + (w + α∆w)T(r + α∆r)

n+m
(11)

for every j ∈ [m]. Equivalently, for each i ∈ [n], we can find the largest αi < 1 such that 9 holds, that is such
that

α2
i

(
∆xi∆si − γ

∆xT∆s+∆wT∆r

n+m

)
+ αi

(
xi∆si +∆xisi − γ

xT∆s+∆xTs+wT∆r +∆wTr

n+m

)
+

(
xisi − γ

xTs+wTr

n+m

)
≥ 0
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holds; and similarly, find the largest ᾱj < 1 such that 11 holds, that is such that

ᾱ2
j

(
∆wj∆rj − γ

∆xT∆s+∆wT∆r

n+m

)
+ ᾱj

(
wj∆rj +∆wjrj − γ

xT∆s+∆xTs+wT∆r +∆wTr

n+m

)
+

(
wjrj − γ

xTs+wTr

n+m

)
≥ 0

holds; then α = mini,j{αi, ᾱj}.
This can be computed by message-passing steps as follows. First, we can compute h1 ← ∆xT∆s, h2 ← ∆xTs,
h3 ← xT∆s and h4 ← xTs by variable-to-objective message-passing steps; and similarly h̄1 ← ∆wT∆r,
h̄2 ← ∆wTr, h̄3 ← wT∆r, h̄4 ← wTr by constraints-to-objective message-passing steps. The quantities
t1 ← γ(h1 + h̄1)/(n+m), t2 ← γ(h2 + h3 + h̄2 + h̄3)/(n+m) and t3 ← γ(h4 + h̄4)/(n+m) can then be
computed by local operations on the objective node, and returned to the variable and constraint nodes by
objective-to-variables message-passing steps t1 ← t11n, t2 ← t21n, t3 ← t31n and objective-to-constraint
message-passing steps t̄1 ← t11n, t̄2 ← t21n, t̄3 ← t31n. Then, on each variable node vi, we can solve

αi =max{α ∈ (0, 1) | α2(∆xi∆si − t1i)

+ α(xi∆si +∆xisi − t2i) + (xisi − t3i) ≥ 0}

as a local operation, and similarly, on each constraint node cj , we can find

ᾱj =max{α ∈ (0, 1) | α2(∆wj∆rj − t̄1j)

+ α(wj∆rj +∆wjrj − t̄2j) + (wjrj − t̄3j) ≥ 0}

as a local operation. Finally, we can compute αv ← mini αi as a variables-to-objective message-passing step,
and αc ← minj ᾱj as a constraints-to-objective message-passing step, and finally take α = min(αv, αc) as a
local operation on the objective node.

• Finally, step 8 can be performed by taking objective-to-variables, objective-to-constraints message-passing
steps h1 ← α1n, h̄1 ← α1m, and taking local operations (x, s) ← (x + D(h1)∆x, s + D(h1)∆s) and
(w, r)← (w +D(h̄1)∆w, r +D(h̄1)∆r) on variable and constraint nodes respectively.

Counting the number of successive message-passing steps, we find that all steps can be realized in 23 message-
passing steps, plus the O(m) steps of Step 3, completing the proof.

Further, we show an analogous result for Algorithm 2.

Proposition 5. There exists an MPNN fMPNN,IPM2 composed of O(m) message-passing steps that reproduces
each iteration of Algorithm 2, in the sense that for any LP instance I = (A, b, c) and any iteration step t ≥ 0,
fMPNN,IPM2 maps the graph G(I) carrying [xt, st] on the variable nodes, [wt, rt] on the constraint nodes and [µt]
on the objective node to the same graph G(I) carrying [xt+1, st+1] on the variable nodes, [wt+1, rt+1] on the
constraint nodes and [µt+1] on the objective node.

Proof. We need to show that every step can be written as message-passing steps over G(I), as in Theorem 1.
Steps 2-5 are the same as 3-6, so by Theorem 1, they can be written as message-passing steps. This leaves to
check steps 6-8.

• The analysis of Step 6 is similar to the analysis of Step 7 of Algorithm 1 in Theorem 1, but simpler. On
every variable node, we can compute

αi =max{α ∈ (0,∞) | α2∆xi∆si

+ α(xi∆si +∆xisi) + xisi ≥ 0}

as a local operation, and similarly, on each constraint node cj we can find

ᾱj =max{α ∈ (0,∞) | α2∆wi∆ri

+ α(wi∆ri +∆wiri) + wiri ≥ 0}
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as a local operation. Then we can compute αv ← mini αi as a variables-to-objective message-passing step,
and αc ← minj ᾱj as a constraints-to-objective message-passing step, and finally take α = min(αv, αc) as a
local operation on the objective node.

• The analysis of step 7 is similar to the analysis of Step 8 of Algorithm 1 in Theorem 1 as well. It can
be performed by taking objective-to-variables, objective-to-constraints message-passing steps h1 ← α1n,
h̄1 ← α1m, and taking local operations (x, s) ← (x + 0.99D(h1)∆x, s + 0.99D(h1)∆s) and (w, r) ←
(w + 0.99D(h̄1)∆w, r + 0.99D(h̄1)∆r) on variable and constraint nodes respectively.

• Finally, step 8 is a local operation on the objective node.

Just like in Theorem 4, we can see all the computations can be realized in O(m) message-passing steps, completing
the proof.

B Details of IPM-MPNNs

In the following, we outline details regarding the specific MPNN layers used in Section 5. We follow the notation
outlined in Section 3. Furthermore, let MLP be a multi-layer perceptron whose subscript denotes its role.
Specifically, MLP∗ is for node initialization or node updating after gathering message functions, MLP∗→∗ is for
message vector mapping, and MLP∗∗ is for edge feature embedding in each layer. At the initialization t = 0, we
obtain node embeddings by

h(0)
v := MLP(0)

v (xv),∀v ∈ V (I),

h(0)
c := MLP(0)

c (xc),∀c ∈ C(I),

h(0)
o := MLP(0)

o (xo).

Then, a GCN layer updates the constraint, objective, and variable nodes as follows:

h(t)
c := MLP(t)

c

[
MLP(t)

c→c

(
h(t−1)
c

)
+

MLP(t)
o→c

(
1√
dodc

(
h(t−1)
o +MLP(t)

oc (eoc)
))

+

MLP(t)
v→c

 ∑
v∈Nc∩V (I)

1√
dvdc

(
h(t−1)
v +MLP(t)

vc (evc)
)]

h(t)
o := MLP(t)

o

[
MLP(t)

o→o

(
h(t−1)
o

)
+

MLP(t)
c→o

 ∑
c∈C(I)

1√
dodc

(
h(t)
c +MLP(t)

co (eco)
)+

MLP(t)
v→o

 ∑
v∈V (I)

1√
dodv

(
h(t−1)
v +MLP(t)

vo (evo)
)]

h(t)
v := MLP(t)

v

[
MLP(t)

v→v

(
h(t−1)
v

)
+

MLP(t)
o→v

(
1√
dodc

(
h(t)
o +MLP(t)

ov (eov)
))

+

MLP(t)
c→v

 ∑
c∈Nv∩C(I)

1√
dcdv

(
h(t)
c +MLP(t)

cv (ecv)
)]

.

Similarly, for the GIN layer, we have:
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h(t)
c := MLP(t)

c

[(
1 + ϵ(t)c

)
MLP(t)

c→c

(
h(t−1)
c

)
+

MLP(t)
o→c

(
h(t−1)
o +MLP(t)

oc (eoc)
)
+

MLP(t)
v→c

 ∑
v∈Nc∩V (I)

(
h(t−1)
v +MLP(t)

vc (evc)
)]

h(t)
o := MLP(t)

o

[(
1 + ϵ(t)o

)
MLP(t)

o→o

(
h(t−1)
o

)
+

MLP(t)
c→o

 ∑
c∈C(I)

(
h(t)
c +MLP(t)

co (eco)
)+

MLP(t)
v→o

 ∑
v∈V (I)

(
h(t−1)
v +MLP(t)

vo (evo)
)]

h(t)
v := MLP(t)

v

[(
1 + ϵ(t)v

)
MLP(t)

v→v

(
h(t−1)
v

)
+

MLP(t)
o→v

(
h(t)
o +MLP(t)

ov (eov)
)
+

MLP(t)
c→v

 ∑
c∈Nv∩C(I)

(
h(t)
c +MLP(t)

cv (ecv)
)]

.

For the GEN layer, we have:

h(t)
c := MLP(t)

c

[
MLP(t)

c→c

(
h(t−1)
c

)
+

MLP(t)
o→c

(
h(t−1)
o +MLP(t)

oc (eoc) + ϵ(t)o→c

)
+

MLP(t)
v→c

(
MSG

({{
h(t−1)
v +MLP(t)

vc (evc) + ϵ(t)v→c | v ∈ Nc ∩ V (I)
}}))]

h(t)
o := MLP(t)

o

[
MLP(t)

o→o

(
h(t−1)
o

)
+

MLP(t)
c→o

(
MSG

({{
h(t−1)
c +MLP(t)

co (eco) + ϵ(t)c→o | c ∈ C(I)
}}))

+

MLP(t)
v→o

(
MSG

({{
h(t−1)
c +MLP(t)

vc (evc) + ϵ(t)v→o | v ∈ V (I)
}}))]

h(t)
v := MLP(t)

v

[
MLP(t)

v→v

(
h(t−1)
v

)
+

MLP(t)
o→v

(
h(t)
o +MLP(t)

ov (eov) + ϵ(t)o→v

)
+

MLP(t)
c→v

(
MSG

({{
h(t−1)
c +MLP(t)

cv (ecv) + ϵ(t)c→v | c ∈ Nv ∩ C(I)
}}))]

,

where MSG is the softmax aggregation with τ = 1, i.e.,

softmax(X | τ) =
∑
xi∈X

exp(τ · xi)∑
xj∈X exp(τ · xj)

· xi.

C Details of datasets

In the following, we describe our datasets.
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C.1 Combinatorial optimization problems

In the following, we briefly describe the combinatorial optimization problems.

Set cover problem The set cover problem aims at covering the universe U with a collection of given subsets
S = {S1, S2, . . . , Sm} satisfying ∪mi=1Si = U , with the target of minimizing the objective function. Formally, let
xi be the variable deciding whether subset Si is selected, and ci the cost per subset, we have:

min
x

m∑
i=1

cixi

s.t.
∑

i:u∈Si

xi ≥ 1,∀u ∈ U

xi ∈ {0, 1},∀i ∈ [m].

Maximal independent set Given an undirected graph G with node set V (G) and edge set E(G), the goal of
the maximal independent set problem is to find a set of nodes where no pairs of them are connected. If we use xi

to denote a node i is selected or not, we have:

max
x

∑
i∈V

xi

s.t. xu + xv ≤ 1,∀(u, v) ∈ E(G), u, v ∈ V (G)

xi ∈ {0, 1},∀i ∈ V (G).

Combinatorial auction Suppose there are a set of items M and bidders N . Each bidder i ∈ N maintains a
set of bids Bi, each bid b ∈ Bi is associated with a subset Sib ⊆ M of items and a value vib that the bidder i
is willing to pay for this subset. The binary decision variable xib is 1 if the bid b by bidder i is accepted or 0
otherwise. The MILP formulation of the problem is as follows:

max
x

∑
i∈N

∑
b∈Bi

vibxib

s.t.
∑
i∈N

∑
b∈Bi:j∈Sib

xib ≤ 1,∀j ∈M,

xib ∈ {0, 1},∀i ∈ N, b ∈ Bi.

(12)

Capacitated facility location Given a set of facilities M and another of customers N , we aim to build
facilities satisfying the customers’ demand at minimum cost. Let yj , j ∈M be the binary decision of building the
facility j or not, and xij be a continuous variable indicating the fraction of demand facility j sends to customer
i ∈ N . Let di ∈ R+ be the amount of demand of customer i, and vj be the volume of the facility j, cij the cost of
shipment, and fj the cost of building facility j, we formulate the problem as follows:

min
x

∑
j∈M

fjyj +
∑
i∈N

∑
j∈M

cijxij

s.t.
∑
j∈M

xij = 1,∀i ∈ N

∑
i∈N

dixij ≤ vjyj ,∀i ∈ N, j ∈M

yj ∈ {0, 1}, xij ∈ [0, 1],∀i ∈ N, j ∈M.

(13)
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Table 5: Sizes of setcover instances.

Size Num. Row Num. Col. Density Num. instances

Mini [15, 20] [15, 20] 0.15 1000
Small [30, 50] [50, 70] 0.05 10 000
Large [300, 500] [500, 700] 0.01 10 000

Table 6: Sizes of maximal independent set instances.

Size Num. nodes Affinity Num. instances

Mini [10, 20] 2 1000
Small [50, 70] 2 10 000
Large [500, 700] 2 10 000

C.2 Generation of instances

We propose various sizes of generated instances; see Tables 5 to 8 for the size parameters of each dataset. The
generation of instances follows the setting of Gasse et al. (2019). For the set covering instances, problems are
generated with 15-20 rows and columns and a constraint matrix density of 0.15 for mini instances. For small
instances, we used 30-50 rows and 50-70 columns with a density of 0.05. Large instances have 300-500 rows and
500-700 columns with a density of 0.01. We employ the Erdős–Rényi random graph as the foundational graph
when generating maximal independent set instances, designating 10-20 nodes for mini instances, 50-70 nodes for
small instances, and 500-700 nodes for large instances. For combinatorial auction instances, we modulate the
size by varying the number of items and bids: specifically, 20 items and bids are set for mini instances, 50-80 for
small instances, and 500-800 for large instances. Lastly, for the capacitated facility location instances, we set 3-5
customers and facilities for mini instances, 10 for both in small instances, and 20-30 in large ones.

D Training parameters

For all the experiments, we train the neural networks with Adam optimizer with default hyperparamters, and run
for at most 1000 epochs. During training, we leverage learning rate decay with right to the validation objective
gap metric with a decay ratio of 0.5 and patience 50. We terminate the run at patience 100 epochs. Besides, we
display the other task-specific hyperparameters in Table 9, which are the batch size, number of MPNN layers as
well as the number of sampled IPM solver steps, the step decay factor introduced in Equation (7), the loss weight
combination in Section 4, plus the weight decay of the optimizer.

With regard to the bipartiteness ablation study, we also tune the hyperparameters for the sake of fair comparison.
The choosen hyperparameters are listed in Table 10. Moreover, the hyperparameter configurations for the ODE
approach baseline (Wu and Lisser, 2023) are shown in Table 11.

E Extended experimental results

We provide the training time per epoch and maximal GPU memory usage as supplementary results of Table 1 in
Table 13. We also show more elaborated solving time in Table 12.
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Table 7: Sizes of combinatorial auction instances.

Size Num. items Num. bids Num. instances

Mini 20 20 1000
Small [50, 80] [50, 80] 10 000
Large [300, 500] [300, 500] 10 000

Table 8: Sizes of capacitated facility location instances.

Size Num. customers Num. facilities Ratio Num. instances

Mini [3, 5] [3, 5] 5 1000
Small 10 10 5 10 000
Large [20, 30] [20, 30] 5 10 000

Table 9: Training hyperparameters of our tripartite MPNN main experiments, va represents v × 10a.

Instances Size MPNN Batch size Num. layers Hidden dim. α wvar wobj wcons Weight decay

Setcover

Small
GEN 512 8 180 0.2 1.2 0.8 0.2 1.2−6

GCN 512 8 180 0.8 1.0 0.3 2.2 4.4−7

GIN 512 8 180 0.7 1.0 2.4 7.5 5.6−6

Large
GEN 128 8 180 0.2 1.2 0.8 0.2 1.2−6

GCN 128 8 180 0.2 1.0 2.2 0.3 1.5−8

GIN 128 8 180 0.7 1.0 4.5 2.2 2.8−8

Indset

Small
GEN 512 8 180 0.2 1.2 0.8 0.2 1.2−6

GCN 512 8 180 0.5 1.0 4.5 9.6 2.0−7

GIN 512 8 180 0.7 1.0 2.4 7.5 5.6−6

Large
GEN 128 8 180 0.2 1.2 0.8 0.2 1.2−6

GCN 128 8 180 0.5 1.0 4.5 9.6 2.0−7

GIN 128 8 180 0.7 1.0 2.4 7.5 5.6−6

Cauc.

Small
GEN 512 8 180 0.9 1.0 4.6 5.3 0.0
GCN 512 8 180 0.4 1.0 3.4 5.8 0.0
GIN 512 8 180 0.6 1.0 4.3 6.3 0.0

Large
GEN 128 8 180 0.9 1.0 4.6 5.3 0.0
GCN 128 8 180 0.4 1.0 3.4 5.8 0.0
GIN 128 8 180 0.6 1.0 4.3 6.3 0.0

Fac.

Small
GEN 512 8 180 0.8 1.0 3.0 8.2 3.8−6

GCN 512 8 96 0.6 1.0 8.7 9.6 4.5−7

GIN 512 8 180 0.8 1.0 1.3 4.6 1.0−7

Large
GEN 128 8 180 0.8 1.0 3.09 8.2 3.8−6

GCN 128 8 96 0.6 1.0 8.7 9.6 4.5−7

GIN 128 8 180 0.9 1.0 2.5 4.0 1.0−5
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Table 10: Training hyperparameters of our bipartite MPNN ablation experiments, va represents v × 10a.

Instances Size MPNN Batch size Num. layers Hidden dim. α wvar wobj wcons Weight decay

Setcover

Small
GEN 512 8 32 0.8 1.0 2.6 0.8 1.0−6

GCN 512 8 32 0.9 1.0 5.5 1.1 1.0−5

GIN 512 8 64 0.3 1.0 4.7 0.8 1.0−5

Large
GEN 128 8 32 0.8 1.0 2.6 0.8 1.0−6

GCN 128 8 32 0.9 1.0 5.5 1.1 1.0−5

GIN 128 8 64 0.3 1.0 4.7 0.8 1.0−5

Indset

Small
GEN 512 8 180 0.6 1.0 4.7 2.0 0.0
GCN 512 8 96 0.7 1.0 6.3 3.1 0.0
GIN 512 8 180 0.7 1.0 2.4 7.5 5.6−6

Large
GEN 128 8 180 0.6 1.0 4.7 2.0 0.0
GCN 128 8 96 0.7 1.0 6.3 3.1 0.0
GIN 128 8 180 0.7 1.0 2.4 7.5 5.6−6

Cauc.

Small
GEN 512 8 128 0.5 1.0 6.2 6.6 1.0−7

GCN 512 8 128 0.6 1.0 4.7 4.3 1.0−7

GIN 512 8 128 0.4 1.0 6.2 4.1 1.2−8

Large
GEN 128 8 128 0.5 1.0 6.2 6.6 1.0−7

GCN 128 8 128 0.6 1.0 4.7 4.3 1.0−7

GIN 128 8 128 0.4 1.0 6.2 4.1 1.2−8

Fac.

Small
GEN 512 8 128 0.9 1.0 2.9 2.5 1.0−7

GCN 512 8 96 0.7 1.0 5.3 3.8 0.0
GIN 512 8 180 0.8 1.0 1.3 4.6 1.0−7

Large
GEN 128 8 128 0.9 1.0 2.9 2.5 1.0−7

GCN 128 8 96 0.7 1.0 5.3 3.8 0.0
GIN 128 8 180 0.8 1.0 1.3 4.6 1.0−7
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Table 11: Training hyperparameters of the ODE approach baseline. The experiments are done on the mini-sized
instances with GEN-based MPNNs, va represents v × 10a.

Instances MPNN Candidate Batch size Num. layers Hidden dim. α wvar wobj wcons Weight decay

Setcover

GEN
Ours 512 3 128 0.3 1.0 3.5 1.3 3.3−3

Baseline 8 3 128 - - - - 0.0

GCN
Ours 512 3 180 0.8 1.0 6.1 1.6 1.0−6

Baseline 8 3 180 - - - - 0.0

GIN
Ours 512 3 180 0.4 1.0 3.8 1.4 5.5−6

Baseline 8 3 180 - - - - 0.0

Indset

GEN
Ours 512 3 128 0.4 1.0 7.1 6.2 1.0−6

Baseline 8 3 128 - - - - 0.0

GCN
Ours 512 3 180 0.8 1.0 3.5 5.6 2.1−6

Baseline 8 3 180 - - - - 0.0

GIN
Ours 512 3 180 0.4 1.0 5.9 3.9 9.7−6

Baseline 8 3 180 - - - - 0.0

Cauc

GEN
Ours 512 3 128 0.8 1.0 9.6 7.1 8.0−5

Baseline 8 3 128 - - - - 0.0

GCN
Ours 512 3 180 0.7 1.0 4.5 5.0 3.7−6

Baseline 8 3 180 - - - - 0.0

GIN
Ours 512 3 128 0.9 1.0 6.4 5.0 1.0−6

Baseline 8 3 128 - - - - 0.0

Fac

GEN
Ours 512 3 128 0.7 1.0 5.3 0.8 1.7−6

Baseline 8 3 128 - - - - 0.0

GCN
Ours 512 3 128 0.8 1.0 2.9 3.7 9.2−6

Baseline 8 3 128 - - - - 0.0

GIN
Ours 512 3 180 0.8 1.0 1.8 1.5 3.6−7

Baseline 8 3 180 - - - - 0.0

Table 12: Comparing IPM-MPNNs’ and bipartite GNN ablations’ inference time to SciPy’s IPM implementation
and our Python-based IPM solver. We report mean and standard deviation in seconds over the validation set.
We print the best results per target in bold.

Instances SciPy Solver Our Solver
Tripartite Bipartite

GEN GCN GIN GEN GCN GIN

Small setcover 0.006±0.004 0.071±0.015 0.033±0.001 0.029±0.001 0.017±0.001 0.011±0.0003 0.010±0.0003 0.006±0.0003

Large setcover 0.390±0.098 3.696±2.141 0.033±0.001 0.030±0.001 0.021±0.001 0.011±0.0002 0.011±0.001 0.008±0.0001

Small indset 0.008±0.067 0.089±0.024 0.033±0.001 0.031±0.002 0.021±0.001 0.011±0.001 0.011±0.001 0.008±0.0001

Large indset 0.226±0.087 1.053±0.281 0.033±0.002 0.030±0.001 0.021±0.001 0.011±0.0001 0.011±0.0001 0.008±0.0005

Small cauc 0.012±0.005 0.151±0.035 0.033±0.001 0.028±0.001 0.021±0.001 0.011±0.001 0.011±0.0005 0.008±0.0005

Large cauc 0.282±0.065 3.148±0.880 0.033±0.001 0.029±0.001 0.021±0.001 0.011±0.001 0.011±0.001 0.008±0.0001

Small fac 0.017±0.011 2.025±1.854 0.029±0.001 0.029±0.001 0.022±0.001 0.010±0.001 0.010±0.001 0.008±0.0001

Large fac 0.732±0.324 6.229±2.672 0.030±0.001 0.031±0.001 0.022±0.001 0.010±0.0005 0.011±0.0001 0.008±0.001
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Table 13: Cost in time (in seconds) and GPU memory (in GBs) of an epoch of training, for our proposed tripartite
MPNNs versus the bipartite ablation.

Tri. MPNN
Small instances Large instances

Setcover Indset Cauc Fac Setcover Indset Cauc Fac

T
.(
se
c
)

✓

GEN 9.057 11.652 16.190 14.910 78.193 79.035 75.225 76.166
GCN 6.985 7.128 7.820 7.093 26.249 36.680 31.067 21.241
GIN 6.809 6.847 7.839 9.260 33.815 27.751 31.587 26.378

✗
GEN 6.598 6.812 7.176 7.170 10.066 34.914 26.692 27.133
GCN 6.560 6.665 6.899 6.742 9.694 10.788 12.267 12.285
GIN 6.653 6.625 6.935 6.867 9.514 13.975 11.622 21.778

M
e
m
.(
G
B
) ✓

GEN 23.399 32.227 51.237 48.900 67.995 69.427 65.875 71.852
GCN 8.643 12.669 15.597 11.297 22.064 27.086 20.288 16.246
GIN 7.318 10.217 17.611 23.906 18.966 21.781 22.902 24.560

✗
GEN 2.462 19.098 26.031 28.096 8.104 41.103 33.250 35.623
GCN 1.015 4.255 8.233 7.292 2.546 9.088 9.386 10.511
GIN 2.051 5.808 8.642 14.339 4.150 12.416 9.844 20.740
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