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Abstract

We consider stochastic optimization problems
with heavy-tailed noise with structured den-
sity. For such problems, we show that it is
possible to get faster rates of convergence than
O(K−2(α−1)/α), when the stochastic gradients
have finite moments of order α ∈ (1, 2]. In par-
ticular, our analysis allows the noise norm to
have an unbounded expectation. To achieve
these results, we stabilize stochastic gradients,
using smoothed medians of means. We prove
that the resulting estimates have negligible
bias and controllable variance. This allows
us to carefully incorporate them into clipped-
SGD and clipped-SSTM and derive new high-
probability complexity bounds in the consid-
ered setup.

1 INTRODUCTION

Stochastic optimization problems with heavy-tailed
noise have been gaining a lot of attention in the ma-
chine learning community. This phenomenon can be
partially explained due to the growing popularity of
large language models (Brown et al., 2020; OpenAI,
2023) where stochastic gradients are often far from
being well-concentrated (Zhang et al., 2020). In the-
oretical studies, such behaviour is reflected in the so-
called bounded (central) α-th moment assumption with
α ∈ (1, 2] (Nemirovskij and Yudin, 1983; Zhang et al.,
2020), written as

E
[
∥g(x)−∇f(x)∥α

]
⩽ σα, (1)

where ∇f(x) is the gradient of the objective function
f(x), g(x) is the stochastic gradient, and σ ⩾ 0. While
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in the classical literature on stochastic optimization
the authors usually require the noise to have bounded
variance (see, for instance, (Nemirovski et al., 2009;
Ghadimi and Lan, 2013)), many recent results on high-
probability/in-expectation rates of convergence were
obtained under a strictly weaker condition 1 < α < 2.

In deep learning and machine learning communities,
one of the most popular techniques to deal with heavy-
tailed noise is gradient clipping. In (Pascanu et al.,
2013), the authors showed that such a simple trick
helps to stabilize neural network training via stochastic
gradient descent. Their algorithm called clipped-SGD
and clipping in general were then studied in a series of
papers including (Abadi et al., 2016; Zhang et al., 2019;
Chen et al., 2020; Zhang et al., 2020; Mai and Johans-
son, 2021; Karimireddy et al., 2021). In particular, for
strongly convex functions Zhang et al. (2020) showed
that the expected error of clipped-SGD (Pascanu et al.,
2013) decreases as O(K−2(α−1)/α) when the number of
iterations K grows. In (Sadiev et al., 2023), the authors
extended this result and proved that a similar bound
(up to logarithmic factors) holds with high probability.
According to (Zhang et al., 2020, Theorem 5), the rate
of convergence O(K−2(α−1)/α) is tight and cannot be
improved if no assumptions, except for (1), are made.
However, this rate deteriorates when α is close to 1,
and, if α = 1, the convergence is not even guaranteed.
Fortunately, authors usually have to construct quite
specific families of discrete distributions to attain the
lower bound Ω(K−2(α−1)/α) (see, e. g., (Nemirovskij
and Yudin, 1983; Devroye et al., 2016; Zhang et al.,
2020; Cherapanamjeri et al., 2022; Vural et al., 2022)).
Such an extreme situation is unlikely to hold in practice
and we can hope for more optimistic error guarantees.
This brings us to a natural question: is it possible to
achieve better rates of convergence in stochastic opti-
mization problems with heavy-tailed noise under refined
assumptions on its structure? In this paper, we give
an affirmative answer to this question.

Contribution. We consider a novel stochastic
convex optimization setup with smooth (quasi-
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strongly/strongly) convex objective and structured
noise (see Assumption 2.1 below), going beyond the
standard bounded α-th moment condition with α ∈
(1, 2]. We provide new high-probability upper bounds
on the error of versions of clipped-SGD and its accel-
erated variant called clipped-SSTM in smooth (quasi-
strongly/strongly) problems, properly tailored to our
setting. In particular, we do not assume bounded-
ness of α-th moments and get Õ(K−1/2) bound, which
outperforms O(K−2(α−1)/α) for α < 4/3. Moreover,
for symmetric noise distributions, we obtain rates of
convergence, which match (up to logarithmic factors)
the state-of-the-art ones derived under the bounded
variance assumption (Nazin et al., 2019; Davis et al.,
2021; Gorbunov et al., 2020). In particular, for smooth
strongly convex problems, the dominating term in our
upper bound decreases as Õ(K−1). Our approach re-
lies on new non-asymptotic results on the performance
of smoothed median of means.

Paper structure. The rest of the paper is organized
as follows. In Section 2, we introduce our notation
and formulate problem setup. Section 3 is devoted to
an overview of related work. In Sections 4 and 5, we
present our main results and illustrate the performance
of suggested algorithms in Section 6. Many technical
details are deferred to Appendix.

2 SETUP AND NOTATION

Before we formulate our main contributions, we need
to introduce the notation and formalize the problem
and setup we focus on.

Notation. Throughout the paper, we denote the
standard Euclidean norm in Rd as ∥ · ∥. To simplify
the bounds in the main text, we use Õ(·) notation
that hides constant and polylogarithmic factors. For
any x1, . . . , xn ∈ Rd, we denote Mean(x1, . . . , xn) =
(x1+. . .+xn)/n. For any random vectors ξ1, . . . , ξ2m+1,
Med(ξ1, . . . , ξ2m+1) stands for the (m + 1)-th or-
der statistic (also called the median), taken in the
component-wise fashion. For any non-zero x ∈ Rd and
λ > 0, clip(x, λ) = min{1, λ/∥x∥}x denotes the clip-
ping operator. We also define clip(0, λ) = 0 for all
λ > 0. For any θ > 0,

Φθ(t) =
1√
2πθ

t∫
−∞

e−u2/(2θ2) du

stands for the CDF of a Gaussian random variable
with zero mean and variance θ2. Sometimes, we use
the notation a ∧ b and a ∨ b, instead of min{a, b} and
max{a, b}, respectively. Along with the standard O(·)
notation, we use the relations g ≲ h and h ≳ g, which

are equivalent to g = O(h). Finally, for any functions
g : Rd → R and h : Rd → R, their convolution is
denoted as g ∗ h(x) =

∫
Rd g(x − y)h(y) dy. We also

adopt the notation g∗k(x) = g ∗ . . . ∗ g︸ ︷︷ ︸
k times

(x).

Setup. We consider an unconstrained smooth convex
optimization problem

min
x∈Rd

f(x), (2)

where the function f : Rd → R is accessible through
the stochastic first-order oracle G : Rd → Rd that for
given point x ∈ Rd returns some estimate of ∇fξ(x)
of the true gradient ∇f(x). We make the following
assumption about the distribution of ν = ∇fξ(x) −
∇f(x).
Assumption 2.1. For any x ∈ Rd and each j ∈
{1, . . . , d}, the marginal density pj of the j-th compo-
nent of the noise ν = ∇fξ(x) − ∇f(x) satisfies the
following conditions:

• there exists Mj > 0, such that rj(u) = (pj(u) −
pj(−u))/2 fulfils

+∞∫
−∞

urj(u) du = 0 and
+∞∫

−∞

u2 |rj(u)| du ⩽Mj .

• there are Bj > 0 and βj ⩾ 1, such that, for any
k ∈ N,

s∗kj (u) ⩽
Bjk

k
(βj+1)/βj + |u|1+βj

,

where sj(x) = (pj(x) + pj(−x))/2.

In Assumption 2.1, we split marginal densities of noise
components into a sum of symmetric and antisymmetric
parts. For each j ∈ {1, . . . , d}, the antisymmetric
remainder rj(u) is a signed density with a finite second
moment. However, the symmetric term sj(u) may
decay much slower, than rj(u). As a result, the density
pj(u) has finite moments up to order α < (βj ∧ 2).
Note that if βj = 1 for some j ∈ {1, . . . , d}, then the
noise norm ∥ν∥ may have no expectation.

We proceed with several examples of sj(u), satisfying
Assumption 2.1. Obviously, if the j-th component
of ν(x) has a standard Cauchy distribution, that is,
sj(u) = 1/π · 1/(1 + u2), then, for any k ∈ N, s∗kj (u) =

1/π · k/(k2 + u2), and Assumption 2.1 is fulfilled with
Bj = 1/π and βj = 1. This is a particular example
of a symmetric α-stable distribution with parameter
α = 1. All symmetric α-stable distributions have a
characteristic function of the form φ(y) = e−|y/σ|α ,
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where σ > 0 and α ∈ (0, 2] (see, e.g., (Feller, 1971,
Chapter XVII, Sections 5-6)). If 1 ⩽ α ⩽ 2, they also
satisfy Assumption 2.1 with βj = α and some Bj > 0.
In general, if sj(u) ∼ B/|u|1+βj , then it is known
from probability theory that s∗kj (u) ∼ Bk/|u|1+βj for
any k ∈ N. Assumption 2.1 can be viewed as a non-
asymptotic version of this property.

We also make several standard assumptions about func-
tion f itself. Similarly to (Gorbunov et al., 2021; Sadiev
et al., 2023), it is sufficient for our analysis to make all
the assumptions only on some compact subset (ball)
of Rd since we show that with high probability the
considered methods do not leave this compact. We
start with the standard smoothness assumption.

Assumption 2.2. There exists a set Q ⊆ Rd and
constant L > 0 such that for all x, y ∈ Q

∥∇f(x)−∇f(y)∥ ⩽ L∥x− y∥, (3)
∥∇f(x)∥2 ⩽ 2L (f(x)− f∗) , (4)

where f∗ = infx∈Q f(x) > −∞.

When Q = Rd, (4) follows from (3). However, when
Q ̸= Rd, condition (4) can be derived from (3), if the
latter is assumed on a slightly larger set, see (Sadiev
et al., 2023, Appendix B) for additional discussion.

We assume convexity or strong convexity of f for the
results with accelerated rates.

Assumption 2.3. There exists set Q ⊆ Rd and con-
stant µ ⩾ 0 such that f is µ-strongly convex, i.e., for
all x, y ∈ Q, it holds that

f(y) ⩾ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥y − x∥2. (5)

Finally, for non-accelerated case, it is sufficient to as-
sume a relaxed condition called quasi-strong convexity.

Assumption 2.4. There exists set Q ⊆ Rd and con-
stant µ ⩾ 0 such that f is µ-quasi-strongly convex, that
is, for all x ∈ Q and x∗ = arg min

x∈Rd
f(x)

f(x∗) ⩾ f(x) + ⟨∇f(x), x∗ − x⟩+ µ

2
∥x− x∗∥2. (6)

The above assumption belongs to the class of condi-
tions on structured non-convexity. When µ > 0 it
(together with smoothness) implies linear convergence
for Gradient Descent (Necoara et al., 2019).

3 RELATED WORK

High-probability complexity bounds. Under sub-
Gaussian noise assumption, optimal (up to logarith-

mic factors) high-probability complexity bounds1 are
proven by Nemirovski et al. (2009) for (strongly) convex
non-smooth problems with bounded sub-gradients, by
Ghadimi and Lan (2012) for (strongly) convex smooth
problems, and by Li and Orabona (2020) for smooth
non-convex problems. These results are achieved for
the same methods that are optimal in terms of the
in-expectation convergence. However, when the noise
has just a finite variance, some algorithmic changes
seem to be necessary, e.g., as it is shown in (Sadiev
et al., 2023, Section 2), standard SGD has provably bad
(inverse-power instead of poly(log(1/δ))) dependence on
the confidence level δ in this case.

A popular tool for overcoming this issue is gradient
clipping, i.e., the application of the clipping operator
to the gradient estimator. A version of gradient clip-
ping is used by Nazin et al. (2019) who derive the first
(non-accelerated) high-probability complexity bounds
for smooth (strongly) convex problems on compact
domains with logarithmic dependence on 1/δ under
bounded variance assumption. Accelerated results are
obtained by Davis et al. (2021) and Gorbunov et al.
(2020) for smooth strongly convex and smooth convex
problems respectively. Gorbunov et al. (2021) general-
ize these results to the case of problems with Hölder
continuous gradients.

State-of-the-art high-probability complexity bounds are
derived under bounded (central) α-th moment assump-
tion (1). The first work in this direction is (Cutkosky
and Mehta, 2021) where the authors derived optimal
(up to logarithmic factors) bounds in the smooth non-
convex regime with the additional assumption of bound-
edness of the gradients. Without this assumption, a
worse bound is derived by Sadiev et al. (2023), and the
optimal one is obtained by Nguyen et al. (2023b). For
(strongly) convex problems the results for clipped-SGD
and its accelerated version clipped-SSTM (Gorbunov
et al., 2020) are derived by Sadiev et al. (2023). Up
to logarithmic factors, these results match the known
lower bounds in the strongly convex case (Zhang et al.,
2020). Nguyen et al. (2023a) improve the logarithmic
factors in the upper bounds from Sadiev et al. (2023);
Nguyen et al. (2023b). Recently, the generalization of
the results from (Sadiev et al., 2023) to the case of
composite and distributed optimization were obtained
by Gorbunov et al. (2023).

Other results under heavy-tailed noise. Al-
though in our work we primarily focus on high-
probability convergence results, we briefly discuss here

1Such results establish upper bounds for the number of
oracle calls needed for a method to find point x such that
f(x)− f(x∗) or ∥x−x∗∥2 or ∥∇f(x)∥2 are less than ε with
probability at least δ, where x∗ is a solution of (2).
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other existing works devoted to the convergence of
stochastic methods under heavy-tailed noise assump-
tion. For convex functions with bounded gradients,
Nemirovskij and Yudin (1983) show O(K−(α−1)/α) in-
expectation convergence rate for Mirror Descent and
Vural et al. (2022) propose an extension of this result
for uniformly convex functions. For strongly convex
functions with bounded gradients, Zhang et al. (2020)
show O(K−2(α−1)/α) in-expectation rate of convergence.
In the smooth non-convex case, O(K−2(α−1)/(3α−2)) in-
expectation convergence rate is achieved by Zhang et al.
(2020) who also derive a matching lower bound.

In the case of the noise with symmetric density
function and bounded first moment, Jakovetić et al.
(2023) derive O(K−ζ) in-expectation convergence rate
for µ-strongly convex L-smooth functions and SGD-
type methods with general non-linearities. However,
parameter ζ is proportional to µ/L

√
d in the worst

case. Therefore, this rate can be much slower than
O(K−2(α−1)/α) for ill-conditioned/large-scale problems
though Jakovetić et al. (2023) do not assume (1) and
consider general class of non-linearities. Our analysis
also does not rely on (1), but we additionally allow
non-symmetric noise distributions and do not assume
the existence of the finite first moment of the noise.

Median estimates. Median, median of means, and
smoothed median were extensively used in the prob-
lems of robust mean estimation and robust machine
learning (see, for instance, (Nemirovskij and Yudin,
1983; Minsker, 2015; Devroye et al., 2016; Lugosi and
Mendelson, 2019b, 2020; Lecué and Lerasle, 2020; Cher-
apanamjeri et al., 2022)). A reader is referred to a
comprehensive survey of Lugosi and Mendelson (2019a)
on this topic. Usually, the authors use median of means
or its modifications to get sub-Gaussian rates of conver-
gence, assuming the existence of only two moments. In
Cherapanamjeri et al. (2022), the authors went further
and derived a minimax optimal upper bound in the
problem of mean estimation when observations have fi-
nite moments of order α ∈ (1, 2]. However, the authors
faced the same problem as Zhang et al. (2020): the rate
of convergence became very slow when α approached
1. This happens, because the family of distributions of
interest is extremely large if one assumes the existence
of α-th moment only. In our paper, we exploit the
special noise structure, described in Section 2. Under
Assumption 2.1, we derive new non-asymptotic bounds
on the performance of the smoothed median of means,
which do not deteriorate even if the underlying density
has quite heavy tails.

4 SMOOTHED MEDIAN OF MEANS
AND ITS PROPERTIES

In this section, we describe how to get reliable gradient
estimates from noisy stochastic gradients given by the
first-order oracle. Let us start with a simple example.
Fix an arbitrary x ∈ Rd and assume that the noise
ν = ∇fξ(x)−∇f(x) ∈ Rd has a symmetric absolutely
continuous distribution. For any j ∈ {1, . . . , d}, let
pj(u) be the marginal density of νj , the j-th component
of ν. Then the following proposition holds true.
Proposition 4.1. Fix any j ∈ {1, . . . , d} and assume
that the marginal density of νj is symmetric, that is,
pj(u) = pj(−u) for all u ∈ R. Suppose that there exist
positive numbers Bj and βj, such that

pj(u) ⩽
Bj

1 ∨ |u|βj+1
, for all u ∈ R.

Let νj,1, . . . , νj,(2m+1) be independent copies of νj. If
m > 3/βj, then E Med(νj,1, . . . , νj,(2m+1)) = 0 and
E Med

(
νj,1, . . . , νj,(2m+1)

)2 is finite.

The proof of the proposition with an explicit bound
on the variance of Med(νj,1, . . . , νj,(2m+1)) is postponed
to Appendix. Proposition 4.1 shows that, despite the
heavy tails of the underlying density p, m > max{3/βj :
1 ⩽ j ⩽ d} oracle calls are enough to produce an un-
biased estimate g(x) = Med(∇fξ1(x), . . . ,∇fξm(x)) of
∇f(x) with a finite variance. After that, we can use the
standard clipping technique to solve the optimization
problem (2).

Unfortunately, the symmetry assumption, which played
the central role in Proposition 4.1, is rather restrictive.
To deal with asymmetric distributions, we use more
sophisticated gradient estimates, based on smoothed
median of means.
Definition 4.2. Let ζ be a random element in Rd

and let θ > 0 be an arbitrary number. For any posi-
tive integers m and n, the smoothed median of means
SMoMm,n(ζ, θ) is defined as follows:

SMoMm,n(ζ, θ) = Med (υ1, . . . , υ2m+1) ,

where, for each j ∈ {0, . . . , 2m},

υj = Mean(ζjn+1, . . . , ζ(j+1)n) + θ ηj+1,

ζ1, . . . , ζ(2m+1)n are i.i.d. copies of ζ, and
η1, . . . , η2m+1 ∼ N (0, Id) are independent standard
Gaussian random vectors.

Let us briefly describe the idea behind our approach.
Assuming that ∇fξ(x)−∇f(x) at a point x ∈ Rd has
a density p(u), we represent the latter in the following
form:

p(u) = s(u) + r(u),
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where s(u) = (p(u) + p(−u))/2 is a symmetric part
and r(u) = (p(u) − p(−u))/2 is an antisymmetric
remainder. If the tails of the remainder r(u) are
much lighter than the ones of p(u), we can make n
oracle calls at the point x and take the average of
∇fξ1(x), . . . ,∇fξn(x). If n is large enough, then the
distribution of Mean(∇fξ1(x), . . . ,∇fξn(x)) is almost
symmetric. Hence, we can use the same trick as in
Proposition 4.1 to get an estimate of ∇f(x) with a finite
variance. We add small Gaussian noise to ensure that
the density of our estimate is infinitely differentiable, as
we need it for technical purposes. Note that, in general,
the expectation of SMoMm,n(∇fξ(x)−∇f(x), θ) is not
equal to zero, and it is a challenging task to show that
it is sufficiently small.

Before we move to the heavy-tailed setup, let us illus-
trate the efficiency of our approach in the case when
the stochastic gradients have a finite second moment.
Lemma 4.3. Assume that stochastic gradient ∇fξ(x)
at a point x ∈ Rd has an absolutely continuous dis-
tribution and a finite second moment E(∇fξ(x) −
∇f(x))(∇fξ(x)−∇f(x))⊤ = Σ. Then, for any positive
integer m and n, it holds that

E
∥∥SMoMm,n

(
∇fξ(x), θ

)
−∇f(x)

∥∥2
⩽ 4(2m+ 1)

(
Tr(Σ)

n
+ θ2d

)
.

If, in addition, m ⩾ 3 and nθ2 ≳ m∥Σ∥, then∥∥ESMoMm,n

(
∇fξ(x), θ

)
−∇f(x)

∥∥ ≲
m

θn

√
Tr(Σ2).

Remark 4.4. Lemma 4.3 also yields that∥∥ESMoMm,n

(
∇fξ(x), θ

)
−∇f(x)

∥∥
≲

√
m

(√
Tr(Σ)

n
+ θ

√
d

)
.

Though this bound is enough for our purposes, neverthe-
less, we find it useful to prove a dimension-free O(1/n)
upper bound on expectation of the smoothed median
of means, which follows from the analysis of impact
of antisymmetric density part on the expectation (see
Lemma A.1 in Appendix).

Lemma 4.3 shows that, if the noise vector has a finite
second moment, then the smoothed median of means
has a small controllable shift and bounded variance. In
this case, it behaves similarly to clipping. However, if
we deal with heavy-tailed noise, the standard clipping
technique fails, while the smoothed median of means
still has a small bias and finite variance. We proceed
with the main result of this section.
Lemma 4.5. Assume that the stochastic gradient
∇fξ(x) at a point x ∈ Rd has an absolutely contin-
uous distribution. Suppose that, for any j ∈ {1, . . . , d}

and any x ∈ Rd, the density of νj = ∇fξ(x) −∇f(x)
meets Assumption 2.1. Then, if m > 2 + 3/βj and
θ2n ⩾ (2 ∨m2)Mj for all j ∈ {1, . . . , d}, it holds that

E
∥∥SMoMm,n

(
∇fξ(x), θ

)
−∇f(x)

∥∥2
≲ m

{
(1 + θ2)d+

d∑
j=1

[(
Mj

θn

)2

+

(
2βjBj

βjnβj−1

)2/βj

+

(
BjMj

θnβj

)2/(βj+1)
]}

and∥∥ESMoMm,n

(
∇fξ(x), θ

)
−∇f(x)

∥∥
≲
m(1 + θ)

θ2n

√√√√ d∑
j=1

M2
j +

m

θ2n

√√√√ d∑
j=1

M2
j

(
2βjBj

nβj−1

)2/βj

.

Remark 4.6. The bounds on
∥∥ESMoMm,n

(
∇fξ(x), θ

)
−

∇f(x)
∥∥ in Lemma 4.3 and Lemma 4.5 rely on the fact

that convolution with the Gaussian density is infinitely
differentiable. However, if s1, . . . , sd are also sufficiently
smooth, then one can take θ = 0 and apply a similar
technique as in Lemma A.1 and Lemma A.4.

The proof of Lemma 4.5 is moved to Appendix. It
shows that the bias of the smoothed median of means
decays rapidly with the growth of the batch size, though
the noise may have extremely heavy tails. The reason
for that is the special noise structure guaranteed by
Assumption 2.1. This favourable property allows us
to obtain faster rates of convergence in heavy-tailed
stochastic convex optimization problems.

5 MAIN RESULTS FOR
STOCHASTIC OPTIMIZATION

In view of the results of the previous section, Assump-
tion 2.1 allows constructing an estimator with bounded
bias and variance using the smoothed median of means.
Since in the analysis of the stochastic first-order meth-
ods we only use these two properties, we formulate
them as a separate assumption for convenience.

Assumption 5.1. There exists N ∈ N, aggrega-
tion rule R and (possibly dependent on N) constants
b ⩾ 0, σ ⩾ 0 such that for an x ∈ Rd i.i.d. samples
∇fξ1(x), . . . ,∇fξN (x) from the oracle G(x) satisfy the
following relations:

|E[∇fΞ(x)]−∇f(x)| ⩽ b, (7)

E
[
∥∇fΞ(x)− E[∇fΞ(x)]∥2

]
⩽ σ2, (8)

where ∇fΞ(x) = R(∇fξ1(x), . . . ,∇fξN (x)) and expec-
tations are taken w.r.t. ∇fξ1(x), . . . ,∇fξN (x).
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We emphasize once again that Assumption 5.1 holds
whenever Assumption 2.1 is satisfied. Indeed, we can
take ∇fΞ(x) = SMoMm,n

(
∇fξ(x), θ

)
with parameters

m, n, and θ, satisfying the conditions of Lemma 4.5.
In this case, the batch size is equal to N = (2m+ 1)n.

5.1 Convergence of clipped-SGD

We start with clipped-SGD defined as follows:

xk+1 = xk − γkclip(∇fΞk(xk), λk), (9)

where ∇fΞk(xk) is an estimator satisfying Assump-
tion 5.1 sampled independently from previous itera-
tions. Below we formulate the main convergence result
for clipped-SGD in the quasi-convex case.
Theorem 5.2. Let Assumptions 2.2 and 2.4 with
µ = 0 hold on Q = B2R(x

∗), where R ⩾ ∥x0 −
x∗∥. Suppose that ∇fΞk(xk) satisfies Assumption 5.1
with parameters bk, σk for k = 0, 1, . . . ,K, K > 0
and γk = γ = Θ(min{1/LA,R/σ

√
KA,R/bA,R/b(K+1)}),

λk ≡ λ = Θ(R/γA), where A = ln(4(K+1)/δ) and
b = maxk=0,1,...,K bk, σ = maxk=0,1,...,K σk. Then the
iterates produced by clipped-SGD after K iterations with
probability at least 1− δ satisfy

f(xK)− f(x∗) = Õ
(
max

{
LR2

K
,
σR√
K
, bR

})
,

where x = 1
K+1

∑K
k=0 x

k.

The rate of convergence in the above result matches (up
to logarithmic factors) the best-known one for clipped-
SGD under bounded variance assumption (Gorbunov
et al., 2021). Due to systematic bias bounded by b the
method reaches only Õ(bR) error after a sufficiently
large number of steps. When the bias is just bounded
and cannot be controlled, this situation is standard
(Devolder et al., 2014). The proof of the above result
follows the ones given in (Gorbunov et al., 2021; Sadiev
et al., 2023): using the induction argument, we show
that under a proper choice of parameters, the iterates
stay in a bounded set with high probability, which
allows us to apply standard Bernstein inequality (see
Lemma B.1). In particular, this proof technique differs
from the standard ones that rely on the boundedness
of the noise (Rakhlin et al., 2011) or on the assumption
that the noise is sub-Gaussian (Harvey et al., 2019).

However, in our setup, we can control the bias. For
example, if the distribution is symmetric and has a
bounded moment of the order β for some β > 0,
then according to Proposition 4.1, it is sufficient to
use coordinate-wise median estimator to get ∇fΞ(x)
satisfying Assumption 5.1 with b = 0 and σ2 =

d(2m+ 1)
(
1 ∨ 4Bj

βj

)2/βj

(see (18)) using O(1/β) sam-
ples of ∇fξ(x). In this case, we have the following
result.

Corollary 5.3 (Symmetric noise). Let the assump-
tions of Theorem 5.2 hold and for all x ∈ Rd the
noise ν = ∇fξ(x) − ∇f(x) satisfies the conditions
from Proposition 4.1. Then the iterates produced af-
ter K iterations of clipped-SGD with ∇fΞk(xk) being
a coordinate-wise median of 2m+ 1 samples ∇fξ(xk)
with m > max{3/βj : 1 ⩽ j ⩽ d} and γk = γ =
Θ(min{1/LA,R/σ

√
KA}), λk ≡ λ = Θ(R/γA) for σ2 =

d(2m + 1)
(
1 ∨ 4Bj

βj

)2/βj

and where A = ln(4(K+1)/δ)

with probability at least 1− δ satisfy

f(xK)− f(x∗) = Õ
(
max

{
LR2

K
,
σR√
K

})
and the overall number of stochastic oracle calls equals
(2m+ 1)K = O(Kmax{1/βj : 1 ⩽ j ⩽ d}).

This result implies that as long as the distribution is
symmetric, its tails can be even heavier than the ones of
Cauchy distribution, i.e., moments of order larger than
β for some β ∈ (0, 1] can be unbounded, but clipped-
SGD with coordinate-wise median estimator inside will
still converge as in the case when the stochastic gra-
dients are unbiased and have bounded variance. We
emphasize that the existing state-of-the-art high prob-
ability convergence results (Sadiev et al., 2023; Nguyen
et al., 2023b,a) have a slower decreasing main term
(of the order Õ(K−(α−1)/α)) and are derived for much
lighter tails. However, in contrast to Corollary 5.3, the
mentioned results do not rely on the symmetry.

Finally, we consider the general case, when the noise
satisfies Assumption 2.1, i.e., the noise also has a non-
symmetric component. In this case, Lemma 4.5 implies
that the smoothed median of means gives an estimator
∇fΞ(x) satisfying Assumption 5.1 with

b = O(C/n), σ2 = O(d(1 + θ2) +D), (10)

C =
(1 + θ)

θ2

√√√√ d∑
j=1

M2
j

+
1

θ2

√√√√ d∑
j=1

M2
j

(
2βjBj

nβj−1

)2/βj

, (11)

D =

d∑
j=1

((
Mj

θn

)2

+

(
2βjBj

βjnβj−1

)2/βj
)

+

d∑
j=1

(
BjMj

θnβj

)2/(βj+1)

(12)

using O(n) samples ∇fξ(x) (when m = O(1)). To-
gether with Theorem 5.2 this implies the following
result.
Corollary 5.4 (General noise). Let the assumptions
of Theorem 5.2 hold and for all x ∈ Rd the noise
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ν = ∇fξ(x) −∇f(x) satisfies Assumption 2.1. Then
clipped-SGD with ∇fΞk(xk) being the smoothed me-
dian of means of O(n) samples ∇fξ(xk) and γk =
γ = Θ(min{1/LA,R/σ

√
KA,R/bA,R/b(K+1)}), λk ≡ λ =

Θ(R/γA) for b and σ defined in (10) with probability at
least 1−δ after K iterations ensures that f(xK)−f(x∗)
equals

Õ

(
max

{
LR2

K
,

√
(1 + θ2)d+DR√

K
,
(1 + θ)CR

θ2n

})
,

where n ⩾ Ω(maxj∈[d] Mj/θ2) and C, D are defined in
(11)-(12). The overall number of oracle calls equals
O(nK).

Due to the heavy-tailedness of the symmetric part of
the noise distribution and the presence of bias, the
variance term does not necessarily improve with the
growth of the number of samples. However, the bias
term still can be smaller than any predefined level via
increasing n. When the bias is large, i.e., the noise is suf-
ficiently non-symmetric, then one can take n = Õ(ε−1)

and K = Õ(ε−2) to guarantee f(xK) − f(x∗) ⩽ ε
with probability at least 1 − δ, i.e., the total ora-
cle complexity is Õ(ε−3). However, when the bias
is small, i.e., maxj∈[d]Mj are sufficiently small2, then
for ε = Θ((1+θ)CR/θ2) one can achieve evenK = Õ(ε−2)
total oracle complexity that matches (up to logarith-
mic factors and constants related to the variance) the
main term in the optimal complexities under bounded
variance assumption (Gorbunov et al., 2020). However,
in contrast to the existing results, we do not require
the noise to have a finite first moment.

The following theorem gives a convergence rate for
clipped-SGD in the quasi-strongly convex case.

Theorem 5.5. Let Assumptions 2.2 and 2.4 with
µ > 0 hold on Q = B2R(x

∗), where R ⩾ ∥x0 − x∗∥.
Suppose that ∇fΞk(xk) satisfies Assumption 5.1 with
parameters bk, σk for k = 0, 1, . . . ,K, K > 0 and
γk = γ = Θ(min{1/LA,min{lnBK ,lnCK ,lnD}/µ(K+1)}),
λk = Θ(exp(−γµ(1+k/2))R/γA), where A = ln(4(K+1)/δ)
and BK , CK , D are some parameters dependent on
b = maxk=0,1,...,K bk, σ = maxk=0,1,...,K σk, µ, R, and
K. Then the final iterate produced by clipped-SGD after

2In practice, this can happen when a non-symmetric
noise is added to the stochastic gradients with symmetric
noise, e.g., this can happen in some mechanisms for ensur-
ing differential privacy such as the one from (Guo et al.,
2023) (the non-symmetric part of the noise in the resulting
vector after averaging over multiple clients can have a small
variance when the number of clients is large, which is typical
for modern Federated Learning applications (Kairouz et al.,
2021)).

K iterations with probability at least 1− δ satisfies

∥xK − x∗∥2

= Õ

(
max

{
R2 exp

(
− µK

L ln K
δ

)
,
σ2

µK
,
bR

µ

})
.

Similarly to the convex case, in the case of symmetric
noise with bounded β-th moment for some β > 0, the
above result matches the best-known one for clipped-
SGD under bounded variance and strong convexity
(Gorbunov et al., 2021). In particular, for such noise
distributions, condition (1) is not necessarily satisfied,
and even if it is satisfied, our rate Õ(K−1) is better
than the lower bound Ω(K−2(α−1)/α) under condition
(1) for α ∈ (1, 2) (Zhang et al., 2020). However, it is
worth mentioning that we do rely on the symmetry of
the noise distribution to achieve this rate, while the
lower bound holds for any distributions satisfying (1).

In the non-symmetric case, we combine Theorem 5.5
with Lemma 4.5 and get the following result.

Corollary 5.6 (General noise). Let the assump-
tions of Theorem 5.5 hold and for all x ∈ Rd

the noise ν = ∇fξ(x) − ∇f(x) satisfies Assump-
tion 2.1. Then the iterates produced after K itera-
tions of clipped-SGD with ∇fΞk(xk) being the smoothed
median of means of O(n) samples ∇fξ(xk) and γk =
γ = Θ(min{1/LA,min{lnBK ,lnCK ,lnD}/µ(K+1)}), λk =
Θ(exp(−γµ(1+k/2))R/γA), where A = ln(4(K+1)/δ) and
BK , CK , D are some parameters dependent on b and σ
defined in (10), with probability at least 1− δ satisfy

∥xK − x∗∥2 = Õ

(
R2 exp

(
− µK

L ln K
δ

))

+ Õ
(
max

{
(1 + θ2)d+D

µK
,
(1 + θ)CR

θ2nµ

})
,

where n ⩾ Ω(maxj∈[d] Mj/θ2) and C, D are defined in
(11)-(12). The overall number of oracle calls equals
O(nK).

Taking n = Õ(ε−1) and K = Õ(ε−1), one can guaran-
tee ∥xK − x∗∥2 ⩽ ε with probability at least 1− δ, i.e.,
the total oracle complexity is Õ(ε−2). This result is
worse than the one for the case of symmetric distribu-
tion, but it still does not require the existence of the ex-
pectation of the noise and is better than Õ(ε−α/2(α−1)),
which is known to be optimal (up to logarithmic factors)
under assumption (1), when α < 4/3.

5.2 Convergence of clipped-SSTM

Next, we consider an accelerated variant of clipped-SGD
called clipped-SSTM (Gorbunov et al., 2020; Gasnikov
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and Nesterov, 2016):

xk+1 =
Aky

k + αk+1z
k

Ak+1
, (13)

zk+1 = zk − αk+1clip(∇fΞk(xk+1), λk+1),(14)

yk+1 =
Aky

k + αk+1z
k+1

Ak+1
, (15)

where z0 = y0 = x0, α0 = A0, αk+1 = k+2
2aL for some pa-

rameter ak+1 > 0, Ak+1 = Ak+αk+1, and ∇fΞk(xk+1)
is an estimator satisfying Assumption 5.1 sampled inde-
pendently from previous iterations. Below we formulate
the main convergence result for clipped-SSTM in the
convex case.

Theorem 5.7. Let Assumptions 2.2 and 2.3 with
µ = 0 hold on Q = B3R(x

∗), where R ⩾ ∥x0 − x∗∥.
Suppose that ∇fΞk(xk+1) satisfies Assumption 5.1
with parameters bk, σk for k = 0, 1, . . . ,K, K >
0 and a = Θ(min{A2, σ(K+1)

3/2
√
A/LR, b(K+2)2/LR}),

λk = Θ(R/αk+1A), where A = ln(4(K+1)/δ) and b =
maxk=0,1,...,K bk, σ = maxk=0,1,...,K σk. Then the iter-
ates produced by clipped-SSTM after K iterations with
probability at least 1− δ satisfy

f(yK)− f(x∗) = Õ
(
max

{
LR2

K2
,
σR√
K
, bR

})
.

As expected for accelerated methods, the above bound
has a better Õ(K−2) “deterministic” term in contrast
to the Õ(K−1) corresponding term in the upper bound
for clipped-SGD. When the noise is symmetric and has
bounded β-th moment for some β > 0 (not necessarily
larger than 1), then one can construct an estimator with
b = 0 and finite σ (see Proposition 4.1). In this case, the
result matches (up to logarithmic factors) the optimal
ones derived under bounded variance (Gorbunov et al.,
2020) or sub-Gaussian noise (Ghadimi and Lan, 2012)
assumptions. The improvement of the deterministic
part can be utilized when parallel independent com-
putations of the estimator are possible with marginal
overheads (e.g., on communications/aggregation of the
results of parallel computations).

Finally, for non-symmetric noise distributions satisfying
Assumption 2.1, Theorem 5.7 with Lemma 4.5 imply
the following result.

Corollary 5.8 (General noise). Let the assump-
tions of Theorem 5.7 hold and for all x ∈ Rd the
noise ν = ∇fξ(x) − ∇f(x) satisfies Assumption 2.1.
Then clipped-SSTM with ∇fΞk(xk) being the smoothed
median of means of O(n) samples ∇fξ(xk) and
a = Θ(min{A2, σ(K+1)

3/2
√
A/LR, b(K+2)2/LR}), λk =

Θ(R/αk+1A), where A = ln(4(K+1)/δ) and b and σ de-
fined in (10), with probability at least 1 − δ after K

iterations ensures that f(yK)− f(x∗) equals

Õ

(
max

{
LR2

K2
,

√
(1 + θ2)d+DR√

K
,
(1 + θ)CR

θ2n

})
,

where n ⩾ Ω(maxj∈[d] Mj/θ2) and C, D are defined in
(11)-(12). The overall number of oracle calls equals
O(nK).

When the non-symmetric part is large, then the same
comments are valid as the ones we make after Corol-
lary 5.4. However, when the non-symmetric part is
small, then there are regimes when the effect of accel-
eration is noticeable (for small enough θ).

For the strongly convex problems, we consider a
restarted version of clipped-SSTM. We provide the re-
sults for this method in Appendix C.2.

6 NUMERICAL EXPERIMENTS

In this section, we illustrate the performance of clipped-
SGD combined with the median and smoothed median
of means on a simple quadratic problem:

min
x∈Rd

1

2
x⊤Ax, (16)

where A ∈ Rd×d is a randomly generated symmetric
positive definite matrix. The code of numerical experi-
ments is available on GitHub3. We consider stochastic
gradients of the form ∇fξ(x) = Ax+ ξ, where ξ is an
artificial noise following one of the following distribu-
tions.

Example 1. Cauchy distribution with the density
pc(x) =

1
π(1+x2) .

Example 2. The mixture of Cauchy and exponential
distributions with the density p(x) = 0.7 · pc(x) + 0.3 ·
e−(x+1) · 1{x ⩾ −1}.

Example 3. The mixture of Cauchy and Pareto dis-
tributions with the density p(x) = 0.7 · pc(x) + 0.3 ·

3
(x+1.5)4 · 1{x ⩾ −1.5}.

The experiments check the ability of median and
smoothed median of means to deal with symmetric
and asymmetrical heavy-tailed noise. We consider two
examples of asymmetrical distributions with rapidly
(Example 2) and slowly (Example 3) decaying antisym-
metric part to examine its influence on the performance
of optimization procedures.

We compare the following baselines:

• clipped-MB-SGD: clipped-SGD, where clipping is
taken after mini-batching/averaging;

3https://github.com/Kutuz4/AISTATS2024_SMoM

https://github.com/Kutuz4/AISTATS2024_SMoM
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Figure 1: Dependence of the mean error on the oracle calls number with a 95th and 5th percentile bounds.

• MB-clipped-SGD (mini-batched clipped-SGD, where
averaging is taken after clipping);

• Med-MB-SGD (mini-batched SGD with median
instead of averaging);

• clipped-Med-MB-SGD (mini-batched SGD with me-
dian instead of averaging and clipping operation
after median);

• SMoM-MB-SGD (mini-batched SGD with the
smoothed median of means);

• clipped-SMoM-MB-SGD (mini-batched SGD with
clipping of the smoothed median of means).

For all methods, except for SMoM-MB-SGD and clipped-
SMoM-MB-SGD, the batch size is 5, while for SMoM-
MB-SGD and clipped-SMoM-MB-SGD we took SMoMm,n

with m = n = 2. We have chosen x0 = 8/
√
d ·

(1, 1, 1, ..., 1)⊤, where d = 50, as a starting point,
launched all the methods 50 times and computed the
average errors. The results are displayed in Figure 1.

In the case of a symmetric distribution, Med-MB-SGD
and clipped-Med-MB-SGD perform better than clipped-
SMoM-MB-SGD due to lower oracle calls count for one
iteration. However, as we expected, Med-MB-SGD and
clipped-Med-MB-SGD cannot achieve high accuracy in
the case of asymmetric distributions due to the presence
of a bias, while the smoothed median of means suc-
cessfully adapts to this situation. Suddenly, averaging
gradients after clipping has good performance in the
asymmetric case, but it still converges slower compared
to clipped-SMoM-MB-SGD. In terms of the number of
steps, clipped-SMoM-MB-SGD converges much faster
than other methods on asymmetric noise because it
needs (2m + 1)n = 10 oracle calls on each iteration.
We also see that SMoM-MB-SGD has a similar con-
vergence rate to clipped-SMoM-MB-SGD in the case of
distributions with less heavy tails.

7 CONCLUSION

In this work, we show that under some structural as-
sumptions on the noise distribution with heavy tails,
one can achieve faster convergence in solving of stochas-
tic optimization problems. The key instrument we use
is the smoothed median of means, which provably has
a small bias and a finite variance for quite a wide class
of distributions. Although our results are given for
smooth convex/strongly convex problems, using simi-
lar technique, one can derive high-probability conver-
gence results for smooth non-convex problems (Sadiev
et al., 2023; Nguyen et al., 2023b), non-smooth con-
vex and strongly convex problem (Gorbunov et al.,
2021), variational inequalities under some structured
non-monotonicity assumptions (Gorbunov et al., 2022),
and composite and distributed optimization problems
(Gorbunov et al., 2023). One can also improve the
logarithmic factors in our results using the technique
from (Nguyen et al., 2023a).
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A SMOOTHED MEDIAN OF MEANS ESTIMATOR

A.1 Proof of Proposition 4.1

Let Pj be the cumulative distribution function of νj :

Pj(t) =

t∫
−∞

pj(u)du, for all t ∈ R.

Then the probability density of the median Med(νj,1, . . . , νj,2m+1) is given by

(2m+ 1)

(
2m

m

)
Pj(t)

m
(
1− Pj(t)

)m
pj(t).

Let us prove that the variance is bounded. To be more precise, we are going to show that

+∞∫
−∞

t2 Pj(t)
m
(
1− Pj(t)

)m
pj(t) dt ⩽

(
1 ∨ 4Bj

βj

)2/βj

· 4−m.

Since, according to the conditions of the proposition, pj(u) ⩽ Bj/(1 ∨ |u|)1+βj for any u ∈ R, it holds that

1− Pj(t) ⩽

+∞∫
t

Bj

u1+βj
du =

Bj

βj
· 1

tβj
for any t ⩾ 1.

Similarly, for any t ⩽ −1, we have

Pj(t) ⩽
Bj

βj
· 1

|t|βj
.

Hence, for any t ∈ R, Pj(t)
(
1− Pj(t)

)
satisfies the inequality

Pj(t)
(
1− Pj(t)

)
⩽

4−m ∧
(

Bj

βj |t|βj

)m
if |t| ⩾ 1,

4−m otherwise.
(17)

This implies that the integral of t2 Pj(t)
m(1− Pj(t))

mpj(t) over the real line does not exceed

+∞∫
−∞

t2 Pj(t)
m
(
1− Pj(t)

)m
pj(t) dt ⩽ sup

t∈R

{
t2 Pj(t)

m
(
1− Pj(t)

)m} · +∞∫
−∞

pj(u) du

= sup
t∈R

{
t2 Pj(t)

m
(
1− Pj(t)

)m}
= max

{
sup
|t|⩽1

{
t2 Pj(t)

m
(
1− Pj(t)

)m}
, sup
|t|⩾1

{
t2 Pj(t)

m
(
1− Pj(t)

)m}}

⩽ max

{
4−m, sup

|t|⩾1

{
t2 Pj(t)

m
(
1− Pj(t)

)m}}
.

We use (17) to bound the supremum in the right-hand side:

sup
|t|⩾1

{
t2 Pj(t)

m
(
1− Pj(t)

)m}
⩽ sup

|t|⩾1

{
t2
(
1

4
∧ Bj

βj |t|βj

)m}

⩽ max

{
sup

1⩽|t|⩽(4Bj/βj)
1/βj

{
t2 · 4−m

}
, sup
|t|⩾(4Bj/βj)

1/βj

{
t2
(

Bj

βj |t|βj

)m}}
.
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If mβj ⩾ 2, then we have

sup
|t|⩾(4Bj/βj)

1/βj

{
t2
(

Bj

βj |t|βj

)m}
=

(
4Bj

βj

)2/βj

· 4−m,

and, hence,

sup
|t|⩾1

{
t2 Pj(t)

m
(
1− Pj(t)

)m}
⩽ sup

|t|⩾1

{
t2
(
1

4
∧ Bj

βj |t|βj

)m}
⩽

(
1 ∨ 4Bj

βj

)2/βj

· 4−m.

Thus, we obtain that

+∞∫
−∞

t2 Pj(t)
m
(
1− Pj(t)

)m
pj(t) dt ⩽ sup

t∈R

{
t2 Pj(t)

m
(
1− Pj(t)

)m}
⩽

(
1 ∨ 4Bj

βj

)2/βj

· 4−m.

It only remains to note that(
2m

m

)
=

(2m)!

m! ·m!
=

m∏
j=1

2j

j
·

m∏
j=1

2j − 1

j
⩽ 2m · 2m = 4m

to derive the desired bound

E Med (νj,1, . . . , νj,2m+1)
2 ⩽ (2m+ 1)

(
1 ∨ 4Bj

βj

)2/βj

. (18)

Concerning the expectation of Med (νj,1, . . . , νj,2m+1), we point out that it is finite, because Med (νj,1, . . . , νj,2m+1)
has a finite second moment. Moreover, due to the symmetry of pj , we have Pj(−t) = 1− Pj(t) and, thus,

(−t)Pj(−t)m
(
1− Pj(−t)

)m
pj(−t) = −t

(
1− Pj(t)

)m
Pj(t)

mpj(t) for all t ∈ R.

Hence, it holds that

E Med (νj,1, . . . , νj,2m+1) =

+∞∫
−∞

tPj(t)
m
(
1− Pj(t)

)m
pj(t) dt = 0.

□

A.2 Proof of Lemma 4.3

Let Σ11, . . . ,Σdd be the diagonal elements of Σ. Denote the difference ∇fξ(x)−∇f(x) by ν = (ν1, . . . , νd)
⊤. It is

enough to show that

|E SMoMm,n(νj , θ)| ⩽ (2m+ 1) · Σjj

θ2n

√
θ2 +

∥Σ∥
n

·

[
4m

(2m− 1)
√
2πe

+
m(2m− 1)

(2m− 2)πe
· ∥Σ∥
θ2n

+ 32

(
m∥Σ∥
θ2n

)2
]

≲ (2m+ 1) · Σjj

θn

√
1 +

∥Σ∥
θ2n

·

[
1 +

m∥Σ∥
θ2n

+

(
m∥Σ∥
θ2n

)2
]

and

E SMoMm,n(νj , θ)
2 ⩽ 4(2m+ 1)

(
Σjj

n
+ θ2

)
.

for all j ∈ {1, . . . , d}. We start with the upper bound on the second moment. We split the rest of the proof into
several steps for convenience.
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Step 1: bound on the second moment. For a fixed j ∈ {1, . . . , d}, let pj(u) be the marginal density of νj
and let

F(t) =

+∞∫
−∞

Φθ

(
t− u

n

)
p∗nj (u) du

stand for the cumulative distribution function of Mean(νj,1, . . . , νj,n) + θ ηj , where νj,1, . . . , νj,n are i.i.d. copies of
νj . Then the density of SMoMm,n(νj , θ) is equal to

(2m+ 1)

(
2m

m

)
F(t)m

(
1− F(t)

)m
F′(t).

If we manage to prove that

sup
t∈R

{
t2 F(t)m

(
1− F(t)

)m}
⩽

4(Σjj/n+ θ2)

4m
,

then we immediately obtain

+∞∫
−∞

t2 F(t)m
(
1− F(t)

)m
F′(t) dt ⩽ sup

t∈R

{
t2 F(t)m

(
1− F(t)

)m} · +∞∫
−∞

F′(u) du = sup
t∈R

{
t2 F(t)m

(
1− F(t)

)m}
.

Let νj,1, . . . , νj,n be independent copies of νj and let ηj ∼ N (0, 1) be a Gaussian random variable, which is
independent of νj,1, . . . , νj,n. Then, according to the definition of F(t), for any t ∈ R, it holds that

1− F(t) = P
(
νj,1 + · · ·+ νj,n

n
+ θηj ⩾ t

)
.

Since νj,1, . . . , νj,n and ηj have finite variance, we can apply Chebyshev’s inequality to derive an upper bound on
the right tail of F(t):

1− F(t) ⩽
E (νj,1 + · · ·+ νj,n)

2
/n2 + θ2Eη2j

t2
=

Σjj

nt2
+
θ2

t2
for all t > 0.

Similarly, for any t < 0, we have

F(t) ⩽
Σjj

nt2
+
θ2

t2
.

Combining these bounds with the inequality F(t)(1− F(t)) ⩽ 1/4, which holds for any t ∈ R, we deduce that

F(t)
(
1− F(t)

)
⩽

1

4
∧
(
Σjj

nt2
+
θ2

t2

)
=


1
4 , if |t| ⩽ 2

√
Σjj

n + θ2,

Σjj

n + θ2, otherwise.

(19)

Hence, for any m ⩾ 1,

sup
t∈R

{
t2 F(t)m

(
1− F(t)

)m}
⩽

(
max

t2⩽4Σjj/n+4θ2

t2

4m

)
∨
(

max
t2⩾4Σjj/n+4θ2

t2
(
Σjj

nt2
+
θ2

t2

)m)
=

Σjj/n+ θ2

4m−1
,

as we announced. This implies that

E SMoMm,n(νj , θ)
2 ⩽ (2m+ 1)

(
2m

m

) +∞∫
−∞

t2 F(t)m
(
1− F(t)

)m
F′(t) dt ⩽ (2m+ 1)

(
2m

m

)
· Σjj/n+ θ2

4m−1
.

Similarly to the proof of Proposition 4.1, we use the inequality(
2m

m

)
=

(2m)!

m! ·m!
=

m∏
j=1

2j

j
·

m∏
j=1

2j − 1

j
⩽ 4m,
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which yields that

E SMoMm,n(νj , θ)
2 ⩽ 4(2m+ 1)

(
Σjj

n
+ θ2

)
.

Step 2: bound on the expectation. The rest of the proof is devoted to an upper bound on the expectation
of SMoMm,n(νj , θ). One could apply the Cauchy-Schwarz inequality to show that E SMoMm,n(νj , θ) decreases with
the growth of n. However, we are going to prove a stronger bound. Our approach is based on decomposition of
pj(u) into the sum of symmetric and antisymmetric part:

pj(u) = sj(u) + rj(u), where sj(u) =
pj(u) + pj(−u)

2
and rj(u) =

pj(u)− pj(−u)
2

.

If rj was equal to zero, we could say that E SMoMm,n(νj , θ) = 0 as well. However, in a general situation, has some
impact on the mean of SMoMm,n(νj , θ). To quantify it, we compare the integrals

+∞∫
−∞

tF(t)m
(
1− F(t)

)m
F′(t)dt and

+∞∫
−∞

tG(t)m
(
1− G(t)

)m
G′(t)dt,

where G is a cumulative distribution function defined as

G(t) =

+∞∫
−∞

Φθ

(
t− u

n

)
s∗nj (u) du.

In other words, G corresponds to the CDF of Mean(νj,1, . . . , νj,n) + θηj , where νj,1, . . . , νj,n are i.i.d. copies of νj
and ηj ∼ N (0, 1), in the symmetric case. We are going to show that rj has minor influence on the expectation of
the smoothed median of means if m and n are sufficiently large.

First, let us show that the cumulative distribution functions F(t) and G(t) are close to each other. It is
straightforward to check that

sup
x∈R

|Φ′′
θ (x)| =

1√
2π

· 1

θ2
· sup
x∈R

∣∣∣−x
θ
e−x2/(2θ2)

∣∣∣ ⩽ 1√
2πθ2

·
(
ye−y2/2

)∣∣∣
y=1

=
1√
2πe

· 1

θ2
. (20)

Then Lemma A.1 (see Appendix A.4 below) implies that

|F(t)− G(t)| ⩽ 1

2
√
2πe

· Σjj

θ2n
for all t ∈ R. (21)

In view of (19), for any m ⩾ 3 it holds that

|t|F(t)m
(
1− F(t)

)m → 0 and |t|F(t)m−1
(
1− F(t)

)m−1 → 0 as t→ ∞.

Then, according to Lemma A.2, we have∣∣∣∣∣∣
+∞∫

−∞

tF(t)m
(
1− F(t)

)m
F′(t) dt−

+∞∫
−∞

tG(t)m
(
1− G(t)

)m
G′(t) dt

∣∣∣∣∣∣
⩽

1

2
√
2πe

· Σjj

θ2n

+∞∫
−∞

F(t)m
(
1− F(t)

)m
dt+

m

16πe
·
(
Σjj

θ2n

)2
+∞∫

−∞

F(t)m−1
(
1− F(t)

)m−1
dt

+

(
mΣjj

θ2n

)2

sup
t∈R

{
|t| max

θ∈[F(t)∧G(t),F(t)∨G(t)]

(
θm−2(1− θ)m−2

)}
.

Let us remind the reader that the CDF F(t) satisfies the inequalities

1− F(t) ⩽
Σjj

nt2
+
θ2

t2
for all t > 0 and F(t) ⩽

Σjj

nt2
+
θ2

t2
for all t < 0.
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Due to the Chebyshev inequality, a similar bound holds for G(t):

1− G(t) ⩽
Σjj

nt2
+
θ2

t2
for all t > 0 and G(t) ⩽

Σjj

nt2
+
θ2

t2
for all t < 0.

This yields that∣∣∣∣∣∣
+∞∫

−∞

tF(t)m
(
1− F(t)

)m
F′(t) dt−

+∞∫
−∞

tG(t)m
(
1− G(t)

)m
G′(t) dt

∣∣∣∣∣∣
⩽

1

2
√
2πe

· Σjj

θ2n

+∞∫
−∞

(
1

4
∧ Σjj/n+ θ2

t2

)m

dt+
m

16πe
·
(
Σjj

θ2n

)2
+∞∫

−∞

(
1

4
∧ Σjj/n+ θ2

t2

)m−1

dt

+

(
mΣjj

θ2n

)2

sup
t∈R

{
|t|
(
1

4
∧ Σjj/n+ θ2

t2

)m−2
}
.

Applying Proposition A.3, we obtain that∣∣∣∣∣∣
+∞∫

−∞

tF(t)m
(
1− F(t)

)m
F′(t) dt−

+∞∫
−∞

tG(t)m
(
1− G(t)

)m
G′(t) dt

∣∣∣∣∣∣
⩽

1

2
√
2πe

· Σjj

θ2n
· 2m

(2m− 1) · 4m−1

√
θ2 +

Σjj

n

+
m

16πe
·
(
Σjj

θ2n

)2
2m− 1

(2m− 2) · 4m−2

√
θ2 +

Σjj

n

+

(
mΣjj

θ2n

)2

sup
t∈R

{
|t|
(
1

4
∧ Σjj/n+ θ2

t2

)m−2
}
.

Similarly to Step 1, we can prove that

sup
t∈R

{
|t|
(
1

4
∧ θ2 +Σjj/n

t2

)m−2
}

=
2
√
θ2 +Σjj/n

4m−2
,

and then it holds that∣∣∣∣∣∣
+∞∫

−∞

tF(t)m
(
1− F(t)

)m
F′(t) dt−

+∞∫
−∞

tG(t)m
(
1− G(t)

)m
G′(t) dt

∣∣∣∣∣∣
⩽

[
m

(2m− 1) · 4m−1
√
2πe

· Σjj

θ2n
+

m(2m− 1)

(2m− 2) · 4mπe
·
(
Σjj

θ2n

)2

+
32

4m
·
(
mΣjj

θ2n

)2
]√

θ2 +
Σjj

n
.

Taking into account (
2m

m

)
=

(2m)!

m! ·m!
=

m∏
j=1

2j

j
·

m∏
j=1

2j − 1

j
⩽ 4m,

we immediately obtain that

E SMoMm,n(νj , θ) ⩽ (2m+ 1) · Σjj

θn

√
1 +

Σjj

θ2n
·

[
4m

(2m− 1)
√
2πe

+
m(2m− 1)

(2m− 2)πe
· Σjj

θ2n
+ 32

(
mΣjj

θ2n

)2
]

⩽ (2m+ 1) · Σjj

θn

√
1 +

∥Σ∥
θ2n

·

[
4m

(2m− 1)
√
2πe

+
m(2m− 1)

(2m− 2)πe
· ∥Σ∥
θ2n

+ 32

(
m∥Σ∥
θ2n

)2
]

≲ (2m+ 1) · Σjj

θn

√
1 +

∥Σ∥
θ2n

·

[
1 +

m∥Σ∥
θ2n

+

(
m∥Σ∥
θ2n

)2
]
.
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A.3 Proof of Lemma 4.5

Let ν = (ν1, . . . , νd)
⊤ stand for the difference ∇fξ(x) −∇f(x) and let us show that, for any j ∈ {1, . . . , d}, it

holds that

|E SMoMm,n(νj , θ)| ≲
mMj

θ2n

[
1 + θ +

(
2βjBj

nβj−1

)1/βj
]

and

E SMoMm,n(νj , θ)
2 ≲ m

[
1 + θ2 +

(
Mj

θn

)2

+

(
2βjBj

βjnβj−1

)2/βj

+

(
BjMj

θnβj

)2/(βj+1)
]
.

From now on, we fix an arbitrary j ∈ {1, . . . , d}. Similarly to the proof of Lemma 4.3, the core idea is to compare
the cumulative distribution functions

F(t) =

+∞∫
−∞

Φθ

(
t− u

n

)
p∗nj (u) du and G(t) =

+∞∫
−∞

Φθ

(
t− u

n

)
s∗nj (u) du.

The first one is directly related to the density of SMoMm,n(νj , θ), which is equal to

(2m+ 1)

(
2m

m

)
F(t)m

(
1− F(t)

)m
F′(t).

However, the proof of Lemma 4.5 is far more technical. The main obstacle is that we cannot use Chebyshev’s
inequality to specify the rate of decay of F(t)

(
1− F(t)

)
and of G(t)

(
1− G(t)

)
as t approaches infinity. Instead, we

prove the following non-trivial result (see Lemma A.4 below): if Assumption 2.1 holds and 2Mj ⩽ nθ2, then, for
any t ∈ R it holds that

|F(t)− G(t)| ≲ Mj

θnt

(
1 +

θ

t
+

Bj

nβj−1|t|βj

)
.

Combining this result with the bound on the second derivative of Φθ (20) and Lemma A.1, we obtain that

|F(t)− G(t)| ≲ Mj

θ2n

{
1 ∧

(
θ

t
+

Bjθ

nβj−1|t|βj+1

)}
. (22)

Despite the simple statement, the proof of Lemma A.4 is quite technical. A reader can find it in Appendix A.4.
With the bound (22) at hand, the proof of Lemma 4.5 is relatively simple. For convenience, we divide it into
several steps.

Step 1: a bound on the tails of G. The goal of this step is to specify the rate of decay of G(t)
(
1− G(t)

)
as

t tends to infinity. First, consider the case t > 0. By the definition of G(t), it holds that

1− G(t) =

+∞∫
−∞

(
1− Φθ

(
t− u

n

))
s∗nj (u) du

= n

+∞∫
−∞

(
1− Φθ(−y)

)
s∗nj (nt+ ny) dy

= n

−t/2∫
−∞

(
1− Φθ(−y)

)
s∗nj (nt+ ny) dy + n

+∞∫
−t/2

(
1− Φθ(−y)

)
s∗nj (nt+ ny) dy. (23)

If y ⩽ −t/2, then

1− Φθ(−y) ⩽ 1− Φθ(t/2) ⩽ exp

{
− t2

8θ2

}
,
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and we have

n

−t/2∫
−∞

(
1− Φθ(−y)

)
s∗nj (nt+ ny) dy ⩽ exp

{
− t2

8θ2

} −t/2∫
−∞

s∗nj (nt+ ny)ndy ⩽ exp

{
− t2

8θ2

}
. (24)

Otherwise, if y > −t/2, then, due to Assumption 2.1, it holds that

n

+∞∫
−t/2

(
1− Φθ(−y)

)
s∗nj (nt+ ny) dy ⩽

+∞∫
−t/2

Bjn
2

n(1+βj)/βj + n1+βj (t+ y)1+βj
dy

⩽

+∞∫
0

Bj

nβj−1(t/2 + v)1+βj
dv =

2βjBj

βjnβj−1tβj
. (25)

Plugging the inequalities (24), (25) into (23), we obtain that

1− G(t) ≲
2βjBj

βnβj−1tβj
+ exp

{
− t2

8θ2

}
for all t > 0.

Similarly, we can prove that

G(t) ≲
2βjBj

βjnβj−1|t|βj
+ exp

{
− t2

8θ2

}
for all t < 0.

Hence, for any t ∈ R, we have

G(t)
(
1− G(t)

)
≲ min

{
1

4
,

2βjBj

βjnβj−1|t|βj
+ exp

{
− t2

8θ2

}}
. (26)

Step 2: bound on the second moment. The second moment of SMoMm,n(νj , θ) satisfies the inequality

E SMoMm,n(νj , θ)
2 = (2m+ 1)

(
2m

m

) +∞∫
−∞

t2F(t)m
(
1− F(t)

)m
F′(t) dt

⩽ (2m+ 1)

(
2m

m

)
sup
t∈R

{
t2 F(t)m

(
1− F(t)

)m}
.

On the other hand, (22) and (26) imply that

F(t)
(
1− F(t)

)
≲ min

{
1

4
,

2βjBj

βjnβj−1|t|βj
+ exp

{
− t2

8θ2

}
+
Mj

θnt

(
1 +

Bj

nβj−1|t|βj

)}
for all t ∈ R. (27)

This yields

sup
t∈R

{
t2 F(t)m

(
1− F(t)

)m}
≲ 4−m

[
1 + θ2 +

(
Mj

θn

)2

+

(
2βjBj

βjnβj−1

)2/βj

+

(
BjMj

θnβj

)2/(βj+1)
]

if mβj > 2.

Since (
2m

m

)
=

(2m)!

m! ·m!
=

m∏
j=1

2j

j
·

m∏
j=1

2j − 1

j
⩽ 4m,

we obtain that

E SMoMm,n(νj , θ)
2 ≲ m

[
1 + θ2 +

(
Mj

θn

)2

+

(
2βjBj

βjnβj−1

)2/βj

+

(
BjMj

θnβj

)2/(βj+1)
]
.
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Step 3: bound on the expectation. It remains to bound the expectation of SMoMm,n(νj , θ). For this
purpose, we use Lemma A.2, which yields that

(
(2m+ 1)

(
2m

m

))−1

|ESMoMm,n(νj , θ)|

=

∣∣∣∣∣∣
+∞∫

−∞

tF(t)m
(
1− F(t)

)m
F′(t) dt−

+∞∫
−∞

tG(t)m
(
1− G(t)

)m
G′(t) dt

∣∣∣∣∣∣
⩽

+∞∫
−∞

G(t)m
(
1− G(t)

)m∣∣F(t)− G(t)
∣∣ dt+ m

2

+∞∫
−∞

G(t)m−1
(
1− G(t)

)m−1(
F(t)− G(t)

)2
dt

+m2 sup
t∈R

{
|t|
(
F(t)− G(t)

)2 · max
θ∈[F(t)∧G(t),F(t)∨G(t)]

(
θm−2(1− θ)m−2

)}
.

Note that the requirement

|t|G(t)m
(
1− G(t)

)m∣∣F(t)− G(t)
∣∣→ 0 and |t|G(t)m−1

(
1− G(t)

)m−1(
F(t)− G(t)

)2 → 0 t→ ∞

is satisfied, because of the inequalities (22), (26) and the conditions of the lemma. These inequalities also imply
that

∣∣∣∣∣∣
+∞∫

−∞

tF(t)m
(
1− F(t)

)m
F′(t) dt−

+∞∫
−∞

tG(t)m
(
1− G(t)

)m
G′(t) dt

∣∣∣∣∣∣
≲

+∞∫
−∞

[
1

4
∧
(

2βjB

βjnβj−1|t|βj
+ exp

{
− t2

8θ2

})]m
·
∣∣F(t)− G(t)

∣∣ dt
+
m

2

+∞∫
−∞

[
1

4
∧
(

2βjBj

βjnβj−1|t|βj
+ exp

{
− t2

8θ2

})]m−1 (
F(t)− G(t)

)2
dt

+m2 sup
t∈R

{
|t|
(
F(t)− G(t)

)2 [1
4
∧
(

2βjBj

βjnβj−1|t|βj
+
Mj

θnt

(
1 +

Bj

nβj−1|t|βj

)
+ exp

{
− t2

8θ2

})]m−2
}
.

Taking into account the bound (22) on the absolute value of the difference F(t)− G(t), we obtain that

∣∣∣∣∣∣
+∞∫

−∞

tF(t)m
(
1− F(t)

)m
F′(t) dt−

+∞∫
−∞

tG(t)m
(
1− G(t)

)m
G′(t) dt

∣∣∣∣∣∣
≲
Mj

θ2n

+∞∫
−∞

[
1

4
∧
(

2βjBj

βjnβj−1|t|βj
+ exp

{
− t2

8θ2

})]m
dt

+
m

2

(
Mj

θ2n

)2
+∞∫

−∞

[
1

4
∧
(

2βjBj

βjnβj−1|t|βj
+ exp

{
− t2

8θ2

})]m−1

dt

+m2

(
Mj

θ2n

)2

sup
t∈R

{
|t|
[
1

4
∧
(

2βjBj

βjnβj−1|t|βj
+
Mj

θnt

(
1 +

Bj

nβj−1|t|βj

)
+ exp

{
− t2

8θ2

})]m−2
}
.
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The inequality (a+ b)k ⩽ 2k−1(ak + bk), which holds for any k ⩾ 1 and positive a and b, implies that∣∣∣∣∣∣
+∞∫

−∞

tF(t)m
(
1− F(t)

)m
F′(t) dt−

+∞∫
−∞

tG(t)m
(
1− G(t)

)m
G′(t) dt

∣∣∣∣∣∣
≲
Mj

θ2n

+∞∫
−∞

[
1

4
∧ 2βj+1Bj

βjnβj−1|t|βj

]m
dt+

Mj

θ2n

+∞∫
−∞

[
1

4
∧ 2 exp

{
− t2

8θ2

}]m
dt

+
m

2

(
Mj

θ2n

)2
+∞∫

−∞

[
1

4
∧ 2βj+1Bj

βjnβj−1|t|βj

]m−1

dt+
m

2

(
Mj

θ2n

)2
+∞∫

−∞

[
1

4
∧ 2 exp

{
− t2

8θ2

}]m−1

dt

+m2

(
Mj

θ2n

)2

sup
t∈R

{
|t|
[
1

4
∧ 2βj+1Bj

βjnβj−1|t|βj

]m−2
}

+m2

(
Mj

θ2n

)2

sup
t∈R

{
|t|
[
1

4
∧ 4Mj

θn|t|

]m−2
}

+m2

(
Mj

θ2n

)2

sup
t∈R

{
|t|
[
1

4
∧ 8MjBj

θnβj |t|βj+1

]m−2
}

+m2

(
Mj

θ2n

)2

sup
t∈R

{
|t|
[
1

4
∧ 8 exp

{
− t2

8θ2

}]m−2
}
.

Due to Proposition A.3, it holds that

+∞∫
−∞

[
1

4
∧ 2βj+1Bj

βnβj−1|t|βj

]m
dt+

+∞∫
−∞

[
1

4
∧ 2 exp

{
− t2

8θ2

}]m
dt ≲ 4−m

[
1 + θ +

(
2βj+1Bj

βjnβj−1

)1/βj
]
.

Since

sup
t∈R

{
|t|
[
1

4
∧ 2βj+1Bj

βjnβj−1|t|βj

]m−2
}

+ sup
t∈R

{
|t|
[
1

4
∧ 4Mj

θnt

]m−2
}

+ sup
t∈R

{
|t|
[
1

4
∧ 8MjBj

θnβj |t|βj+1

]m−2
}

+ sup
t∈R

{
|t|
[
1

4
∧ 4 exp

{
− t2

8θ2

}]m−2
}

≲ 4−m

[
1 + θ +

Mj

θn
+

(
MjBj

θnβj

)1/(βj+1)

+

(
2βj+1Bj

βjnβj−1

)1/βj
]
,

we conclude that∣∣∣∣∣∣
+∞∫

−∞

tF(t)m
(
1− F(t)

)m
F′(t) dt−

+∞∫
−∞

tG(t)m
(
1− G(t)

)m
G′(t) dt

∣∣∣∣∣∣
≲ 4−m · Mj

θ2n

[
1 + θ +

(
2βj+1Bj

βjnβj−1

)1/βj
]

+m2 · 4−m ·
(
Mj

θ2n

)2
[
1 + θ +

Mj

θn
+

(
MjBj

θnβj

)1/(βj+1)

+

(
2βj+1Bj

βjnβj−1

)1/βj
]
.

Then it holds that

|ESMoMm,n(νj , θ)| ≲ (2m+ 1)

(
2m

m

)
· 4−m · Mj

θ2n

[
1 + θ +

(
2βj+1Bj

βjnβj−1

)1/βj
]

+ (2m+ 1)

(
2m

m

)
·m24−m ·

(
Mj

θ2n

)2
[
1 + θ +

Mj

θn
+

(
MjBj

θnβj

)1/(βj+1)

+

(
2βj+1Bj

βjnβj−1

)1/βj
]

≲
mMj

θ2n

[
1 + θ +

(
2βjBj

nβj−1

)1/βj
]
.

The proof is finished.
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A.4 Technical results

Lemma A.1. Let h : R → R be a twice differentiable function with uniformly bounded second derivative:

|h′′(x)| ⩽ H for all x ∈ R.

Let q(x) be a probability density of a random variable and let

ρ(x) =
q(x) + q(−x)

2
and ψ(x) =

q(x)− q(−x)
2

stand for its symmetric and antisymmetric parts, respectively. Assume that there exists M > 0 such that the
function ψ(x) fulfils

+∞∫
−∞

xψ(x)dx = 0 and
+∞∫

−∞

x2|ψ(x)|dx ⩽M.

Then, for any positive integer n, it holds that∣∣∣∣∫ h
(x
n

)
q∗n(x)dx−

∫
h
(x
n

)
ρ∗n(x)dx

∣∣∣∣ ⩽ HM

2n
,

provided that the integrals in the left-hand side converge.

Proof. Let X1, . . . , Xn be i.i.d. random variables with the density q(x). It is known that (X1+ . . .+Xn) ∼ q∗n(x).
Then the integral ∫

h
(x
n

)
q∗n(x)dx

admits a representation∫
h
(x
n

)
q∗n(x)dx = Eh

(
X1 + . . .+Xn

n

)
=

∫
h

(
x1 + . . .+ xn

n

)
q(x1) . . . q(xn)dx1 . . . dxn.

Similarly, it holds that∫
h
(x
n

)
ρ∗n(x)dx =

∫
h

(
x1 + . . .+ xn

n

)
ρ(x1) . . . ρ(xn)dx1 . . . dxn,

and thus,∫
h
(x
n

)
q∗n(x)dx−

∫
h
(x
n

)
ρ∗n(x)dx =

∫
h

(
x1 + . . .+ xn

n

)
q(x1) . . . q(xn)dx1 . . . dxn

−
∫
h

(
x1 + . . .+ xn

n

)
ρ(x1) . . . ρ(xn)dx1 . . . dxn.

Let us introduce

πk(x1, . . . , xn) =

k∏
i=1

q(xi)
n∏

i=k+1

ρ(xi), where k ∈ {0, . . . , n}.

Then it holds that∫
h

(
x1 + . . .+ xn

n

)
q(x1) . . . p(xn)dx1 . . . dxn

−
∫
h

(
x1 + . . .+ xn

n

)
ρ(x1) . . . ρ(xn)dx1 . . . dxn

=

∫
h

(
x1 + . . .+ xn

n

)
πn(x1, . . . , xn)dx1 . . . dxn

−
∫
h

(
x1 + . . .+ xn

n

)
π0(x1, . . . , xn)dx1 . . . dxn

=

n∑
k=1

∫
h

(
x1 + . . .+ xn

n

)(
πk(x1, . . . , xn)− πk−1(x1, . . . , xn)

)
dx1 . . . dxn.
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Let us fix any k ∈ {1, . . . , n} and consider∫
h

(
x1 + . . .+ xn

n

)(
πk(x1, . . . , xn)− πk−1(x1, . . . , xn)

)
dx1 . . . dxn.

Note that, according to the definition of πk, we have

πk(x1, . . . , xn)− πk−1(x1, . . . , xn) =

(
k−1∏
i=1

q(xi)

)(
n∏

i=k+1

ρ(xi)

)
ψ(xk).

Moreover, due to the Taylor’s expansion with the Lagrange remainder term, it holds that∣∣∣∣∣∣h
(
x1 + . . .+ xn

n

)
− h

 1

n

∑
i ̸=k

xi

− h′

 1

n

∑
i̸=k

xi

 · xk
n

∣∣∣∣∣∣ ⩽ Hx2k
2n2

.

Since, according to the definition of ψ and the conditions of the lemma,

+∞∫
−∞

ψ(xk)dxk = 0,

+∞∫
−∞

xkψ(xk)dxk = 0, and
+∞∫

−∞

x2k|ψ(xk)|dxk ⩽M2,

we have ∫
h

 1

n

∑
i ̸=k

xi

(πk(x1, . . . , xn)− πk−1(x1, . . . , xn)
)
dx1 . . . dxn = 0,

∫
h′

 1

n

∑
i ̸=k

xi

 · xk
n

(
πk(x1, . . . , xn)− πk−1(x1, . . . , xn)

)
dx1 . . . dxn = 0,

and then ∣∣∣∣∫ h

(
x1 + . . .+ xn

n

)(
πk(x1, . . . , xn)− πk−1(x1, . . . , xn)

)
dx1 . . . dxn

∣∣∣∣
⩽

H

2n2

∫
x2k

(
k−1∏
i=1

q(xi)

)(
n∏

i=k+1

ρ(xi)

)
|ψ(xk)|dx1 . . . dxn ⩽

HM

2n2
.

Finally, applying the triangle inequality, we obtain that∣∣∣∣∣
∫
h

(
x1 + . . .+ xn

n

)
q(x1) . . . q(xn)dx1 . . . dxn

−
∫
h

(
x1 + . . .+ xn

n

)
ρ(x1) . . . ρ(xn)dx1 . . . dxn

∣∣∣∣∣
⩽

n∑
k=1

∣∣∣∣∫ h

(
x1 + . . .+ xn

n

)(
πk(x1, . . . , xn)− πk−1(x1, . . . , xn)

)
dx1 . . . dxn

∣∣∣∣
⩽

n∑
k=1

HM

2n2
=
HM

2n
.

□

Lemma A.2. Let F and G be any differentiable cumulative distribution functions, such that

|t|G(t)m
(
1− G(t)

)m∣∣F(t)− G(t)
∣∣→ 0 and |t|G(t)m−1

(
1− G(t)

)m−1(
F(t)− G(t)

)2 → 0 as t→ ∞.
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Then it holds that∣∣∣∣∣∣
+∞∫

−∞

tF(t)m
(
1− F(t)

)m
F′(t) dt−

+∞∫
−∞

tG(t)m
(
1− G(t)

)m
G′(t) dt

∣∣∣∣∣∣
⩽

+∞∫
−∞

G(t)m
(
1− G(t)

)m∣∣F(t)− G(t)
∣∣ dt+ m

2

+∞∫
−∞

G(t)m−1
(
1− G(t)

)m−1(
F(t)− G(t)

)2
dt

+m2 sup
t∈R

{
|t|
(
F(t)− G(t)

)2 · max
θ∈[F(t)∧G(t),F(t)∨G(t)]

(
θm−2(1− θ)m−2

)}
.

Proof. The proof is based on integration by parts. Let us define a function Ψ : [0, 1] → R as follows:

Ψ(x) =
1

m2
(xm(1− x)m)

′′
=

1

m
xm−2(1− x)m−2

(
(m− 1)(1− 2x)2 − 2x(1− x)

)
.

Note that, for any x ∈ [0, 1], we have

− 1

2m
xm−2(1− x)m−2 ⩽ Ψ(x) ⩽

(
1− 1

m

)
xm−2(1− x)m−2. (28)

Due to Taylor’s expansion with the Lagrange remainder term, for any t ∈ R, there exists θ(t) ∈
(
F(t)∧G(t),F(t)∨

G(t)
)
, such that

F(t)m
(
1− F(t)

)m − G(t)m
(
1− G(t)

)m
= mG(t)m−1

(
1− G(t)

)m−1(
1− 2G(t)

)(
F(t)− G(t)

)
+
m2

2
Ψ(θ(t))

(
F(t)− G(t)

)2
.

Then it holds that

+∞∫
−∞

tF(t)m
(
1− F(t)

)m
F′(t) dt−

+∞∫
−∞

tG(t)m
(
1− G(t)

)m
G′(t) dt

=

+∞∫
−∞

tG(t)m
(
1− G(t)

)m(
F′(t)− G′(t)

)
dt

+m

+∞∫
−∞

tG(t)m−1
(
1− G(t)

)m−1(
1− 2G(t)

)(
F(t)− G(t)

)
F′(t) dt (29)

+
m2

2

+∞∫
−∞

tΨ(θ(t))
(
F(t)− G(t)

)2
F′(t) dt.

Let us focus on the first term in the right-hand side. Integration by parts yields that

+∞∫
−∞

tG(t)m
(
1− G(t)

)m(
F′(t)− G′(t)

)
dt = −

+∞∫
−∞

G(t)m
(
1− G(t)

)m(
F(t)− G(t)

)
dt

−m

+∞∫
−∞

tG(t)m−1
(
1− G(t)

)m−1(
1− 2G(t)

)(
F(t)− G(t)

)
G′(t) dt.
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Substituting this equality into (29), we obtain that

+∞∫
−∞

tF(t)m
(
1− F(t)

)m
F′(t) dt−

+∞∫
−∞

tG(t)m
(
1− G(t)

)m
G′(t) dt

= −
+∞∫

−∞

G(t)m
(
1− G(t)

)m(
F(t)− G(t)

)
dt

+m

+∞∫
−∞

tG(t)m−1
(
1− G(t)

)m−1(
1− 2G(t)

)(
F(t)− G(t)

)(
F′(t)− G′(t)

)
dt (30)

+
m2

2

+∞∫
−∞

tΨ(θ(t))
(
F(t)− G(t)

)2
F′(t) dt.

Now we can apply integration by parts to the second term in the right-hand side of (30):

m

+∞∫
−∞

tG(t)m−1
(
1− G(t)

)m−1(
1− 2G(t)

)(
F(t)− G(t)

)(
F′(t)− G′(t)

)
dt

= −m
2

+∞∫
−∞

G(t)m−1
(
1− G(t)

)m−1(
1− 2G(t)

)(
F(t)− G(t)

)2
dt

− m2

2

+∞∫
−∞

tΨ
(
G(t)

)(
F(t)− G(t)

)2
G′(t) dt.

Hence, we can rewrite the equality (30) in the following form:

+∞∫
−∞

tF(t)m
(
1− F(t)

)m
F′(t) dt−

+∞∫
−∞

tG(t)m
(
1− G(t)

)m
G′(t) dt

= −
+∞∫

−∞

G(t)m
(
1− G(t)

)m(
F(t)− G(t)

)
dt

− m

2

+∞∫
−∞

G(t)m−1
(
1− G(t)

)m−1(
1− 2G(t)

)(
F(t)− G(t)

)2
dt

+
m2

2

+∞∫
−∞

t
[
Ψ
(
θ(t)

)
F′(t)−Ψ

(
G(t)

)
G′(t)

] (
F(t)− G(t)

)2
dt.

Then, due to (28) and the triangle inequality, it holds that∣∣∣∣∣∣
+∞∫

−∞

tF(t)m
(
1− F(t)

)m
F′(t) dt−

+∞∫
−∞

tG(t)m
(
1− G(t)

)m
G′(t) dt

∣∣∣∣∣∣
⩽

+∞∫
−∞

G(t)m
(
1− G(t)

)m(
F(t)− G(t)

)
dt+

m

2

+∞∫
−∞

G(t)m−1
(
1− G(t)

)m−1∣∣1− 2G(t)
∣∣(F(t)− G(t)

)2
dt

+
m2

2

+∞∫
−∞

|t|
∣∣Ψ(θ(t))∣∣ (F(t)− G(t)

)2
F′(t) dt+

m2

2

+∞∫
−∞

|t|
∣∣Ψ(G(t))∣∣ (F(t)− G(t)

)2
G′(t) dt.



Puchkin, Gorbunov, Kutuzov, Gasnikov

Since
∣∣1− 2G(t)

∣∣ ⩽ 1,

+∞∫
−∞

|t|
∣∣Ψ(θ(t))∣∣ (F(t)− G(t)

)2
F′(t) dt ⩽ sup

t∈R

{
|t|
∣∣Ψ(θ(t))∣∣ (F(t)− G(t)

)2}
,

and, similarly,

+∞∫
−∞

|t|
∣∣Ψ(G(t))∣∣ (F(t)− G(t)

)2
G′(t) dt ⩽ sup

t∈R

{
|t|
∣∣Ψ(G(t))∣∣ (F(t)− G(t)

)2}
,

we finally obtain that∣∣∣∣∣∣
+∞∫

−∞

tF(t)m
(
1− F(t)

)m
F′(t) dt−

+∞∫
−∞

tG(t)m
(
1− G(t)

)m
G′(t) dt

∣∣∣∣∣∣
⩽

+∞∫
−∞

G(t)m
(
1− G(t)

)m∣∣F(t)− G(t)
∣∣dt+ m

2

+∞∫
−∞

G(t)m−1
(
1− G(t)

)m−1(
F(t)− G(t)

)2
dt

+m2 sup
t∈R

{
|t|
(
F(t)− G(t)

)2 · max
θ∈[F(t)∧G(t),F(t)∨G(t)]

(
θm−2(1− θ)m−2

)}
.

□

Proposition A.3. For any positive numbers a, k, α, and β, such that βk > α+ 1, it holds that

+∞∫
−∞

|t|α
(
1

4
∧ aβ

tβ

)k

dt =
βk

(α+ 1)(βk − α− 1)
· 2(4

1/βa)α+1

4k
.

Proof. The proof follows from simple calculations:

+∞∫
−∞

|t|α
(
1

4
∧ aβ

tβ

)k

dt = 2

+∞∫
0

tα
(
1

4
∧ aβ

tβ

)k

dt

=
2

4k

41/βa∫
0

tα dt+ 2aβk
+∞∫

41/βa

tα−βk dt

=
2(41/βa)α+1

(α+ 1) · 4k
+

2aβk
(
41/βa

)α−βk+1

(βk − α− 1)

=
2(41/βa)α+1

4k

(
1

α+ 1
+

1

βk − α− 1

)
=

βk

(α+ 1)(βk − α− 1)
· 2(4

1/βa)α+1

4k
.

□

Lemma A.4. Grant Assumption 2.1 and let

F(t) =

+∞∫
−∞

Φθ

(
t− u

n

)
p∗nj (u) du =

∫
Rn

Φθ

(
t− Mean(u1, . . . , un)

)
pj(u1) . . . pj(un) du

and

G(t) =

+∞∫
−∞

Φθ

(
t− u

n

)
s∗nj (u) du =

∫
Rn

Φθ

(
t− Mean(u1, . . . , un)

)
sj(u1) . . . sj(un) du
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be two cumulative distribution functions. Assume that 2Mj ⩽ nθ2. Then, for any t ∈ R it holds that

|F(t)− G(t)| ≲ Mj

θnt

(
1 +

θ

t
+

Bj

nβj−1|t|βj

)
.

Proof. Since pj(u) = sj(u) + rj(u), it holds that

p∗nj =
(
sj(u) + rj(u)

)∗n
=

n∑
k=0

(
n

k

)
r∗kj ∗ s∗(n−k)

j ,

and then

F(t)− G(t) =

+∞∫
−∞

Φθ

(
t− u

n

)
p∗nj (u) du−

+∞∫
−∞

Φθ

(
t− u

n

)
s∗nj (u) du

=

n∑
k=1

(
n

k

) +∞∫
−∞

Φθ

(
t− u

n

)
r∗kj ∗ s∗(n−k)

j (u) du (31)

=

n∑
k=1

(
n

k

)∫
Rn

Φθ

(
t− Mean(u1, . . . , un)

)( k∏
i=1

rj(ui)

)
·

(
n∏

i=k+1

sj(ui)

)
du1 . . . dun.

In the rest of the proof, we bound the summands in the right-hand side one by one. For readability, we split our
derivations into several steps.

Step 1: Taylor’s expansion. Let us fix an arbitrary k ∈ {1, . . . , n} and consider∫
Rn

Φθ

(
t− Mean(u1, . . . , un)

)( k∏
i=1

rj(ui)

)
·

(
n∏

i=k+1

sj(ui)

)
du1 . . . dun.

Using Taylor’s expansion with the integral remainder term, we rewrite the expression of interest in the form∫
Rn

Φθ

(
t− Mean(u1, . . . , un)

)( k∏
i=1

rj(ui)

)
·

(
n∏

i=k+1

sj(ui)

)
du1 . . . dun

=

∫
Rn

[
Φθ

(
t− Mean(u1, . . . , un) +

u1
n

)
− Φ′

θ

(
t− Mean(u1, . . . , un) +

u1
n

)
· u1
n

(32)

+
u21
n2

1∫
0

Φ′′
θ

(
t− Mean(u1, . . . , un) +

(1− v1)u1
n

)
v1 dv1

](
k∏

i=1

rj(ui)

)
·

(
n∏

i=k+1

sj(ui)

)
du1 . . . dun.

Note that
Φθ

(
t− Mean(u1, . . . , un) +

u1
n

)
and Φ′

θ

(
t− Mean(u1, . . . , un) +

u1
n

)
do not depend on u1. Since, according to Assumption 2.1, it holds that

+∞∫
−∞

rj(u1) du1 = 0 and
+∞∫

−∞

u1rj(u1) du1 = 0,

the right-hand side of (32) simplifies to∫
Rn

Φθ

(
t− Mean(u1, . . . , un)

)( k∏
i=1

rj(ui)

)
·

(
n∏

i=k+1

sj(ui)

)
du1 . . . dun

=

1∫
0

v1dv1

∫
Rn

du1 . . . dun · Φ′′
θ

(
t− Mean(u1, . . . , un) +

(1− v1)u1
n

)
· u

2
1

n2
·

(
k∏

i=1

rj(ui)

)
·

(
n∏

i=k+1

sj(ui)

)
.
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Repeating this trick (k − 1) more times, we obtain that

∫
Rn

Φθ

(
t− Mean(u1, . . . , un)

)( k∏
i=1

rj(ui)

)
·

(
n∏

i=k+1

sj(ui)

)
du1 . . . dun

=

1∫
0

v1dv1 . . .

1∫
0

vkdvk

∫
Rn

du1 . . . dun

· Φ(2k)
θ

(
t− Mean(u1, . . . , un) +

k∑
i=1

(1− vi)ui
n

)(
k∏

i=1

u2i rj(ui)

n2

)(
n∏

i=k+1

sj(ui)

)
,

where Φ
(2k)
θ stands for the (2k)-th derivative of Φθ. Due to the properties of convolution, the integral in the

right-hand side is equal to

1∫
0

v1dv1 . . .

1∫
0

vkdvk

∫
Rn

du1 . . . dun · Φ(2k)
θ

(
t−

k∑
i=1

viui
n

−
n∑

i=k+1

ui
n

)(
k∏

i=1

u2i rj(ui)

n2

)
· s∗(n−k)

j

(
n∑

i=k+1

ui

)
.

Substituting uk+1 + . . .+ un by y, we conclude that

∫
Rn

Φθ

(
t− Mean(u1, . . . , un)

)( k∏
i=1

rj(ui)

)
·

(
n∏

i=k+1

sj(ui)

)
du1 . . . dun

=

1∫
0

v1dv1 . . .

1∫
0

vkdvk

∫
Rk

du1 . . . duk

+∞∫
−∞

dy · Φ(2k)
θ

(
t−

k∑
i=1

viui
n

− y

n

)(
k∏

i=1

u2i rj(ui)

n2

)
· s∗(n−k)

j (y). (33)

Step 2: bound on the integral (33). We represent the expression (33) as a sum of two terms:

1∫
0

v1dv1 . . .

1∫
0

vkdvk

∫
Rk

du1 . . . duk

+∞∫
−∞

dy · Φ(2k)
θ

(
t−

k∑
i=1

viui
n

− y

n

)(
k∏

i=1

u2i rj(ui)

n2

)
· s∗(n−k)

j (y)

=

1∫
0

v1dv1 . . .

1∫
0

vkdvk

∫
[−nt

2k ,nt
2k ]

k

du1 . . . duk

+∞∫
−∞

dy · Φ(2k)
θ

(
t−

k∑
i=1

viui
n

− y

n

)(
k∏

i=1

u2i rj(ui)

n2

)
· s∗(n−k)

j (y)

+

1∫
0

v1dv1 . . .

1∫
0

vkdvk

∫
Rk

∖
[−nt

2k ,nt
2k ]

k

du1 . . . duk

+∞∫
−∞

dy · Φ(2k)
θ

(
t−

k∑
i=1

viui
n

− y

n

)(
k∏

i=1

u2i rj(ui)

n2

)
· s∗(n−k)

j (y),

and bound the former and the latter summands in the right-hand side separately. According to Lemma A.5 and
A.6, it holds that∣∣∣∣∣∣∣∣

1∫
0

v1dv1 . . .

1∫
0

vkdvk

∫
[−nt

2k ,nt
2k ]

k

du1 . . . duk

+∞∫
−∞

dy · Φ(2k)
θ

(
t−

k∑
i=1

viui
n

− y

n

)(
k∏

i=1

u2i rj(ui)

n2

)
· s∗(n−k)

j (y)

∣∣∣∣∣∣∣∣
⩽

√
(2k − 1)!√

2π
·
(
23+2βjBjθ

√
π

nβj−1|t|1+βj
+ exp

{
− t2

64θ2

})
·
(

Mj

2θ2n2

)k

.



Breaking the Heavy-Tailed Noise Barrier in Stochastic Optimization Problems

and∣∣∣∣∣∣∣∣
1∫

0

v1dv1 . . .

1∫
0

vkdvk

∫
Rk

∖
[−nt

2k ,nt
2k ]

k

du1 . . . duk

+∞∫
−∞

dy · Φ(2k)
θ

(
t−

k∑
i=1

viui
n

− y

n

)(
k∏

i=1

u2i rj(ui)

n2

)
· s∗(n−k)

j (y)

∣∣∣∣∣∣∣∣
⩽
√
(2k − 2)!

(
Mj

2θ2n2

)k (
4k2θ2

t2
+

1√
2π

· 2kθ
t

)
.

Hence, we obtain that∣∣∣∣∣∣
1∫

0

v1dv1 . . .

1∫
0

vkdvk

∫
Rk

du1 . . . duk

+∞∫
−∞

dy · Φ(2k)
θ

(
t−

k∑
i=1

viui
n

− y

n

)(
k∏

i=1

u2i rj(ui)

n2

)
· s∗(n−k)

j (y)

∣∣∣∣∣∣
⩽

√
(2k − 1)!√

2π
·
(
23+2βjBjθ

√
π

nβj−1|t|1+βj
+ exp

{
− t2

64θ2

})
·
(

Mj

2θ2n2

)k

(34)

+
√
(2k − 2)!

(
Mj

2θ2n2

)k (
4k2θ2

t2
+

1√
2π

· 2kθ
t

)
.

Step 3: final bound. Summing up the equalities (31), (33), and the equality (34), we obtain that

∣∣F(t)− G(t)
∣∣ ⩽ n∑

k=1

(
n

k

)√
(2k − 1)!√

2π
·
(
23+2βjBjθ

√
π

nβj−1|t|1+βj
+ exp

{
− t2

64θ2

})
·
(

Mj

2θ2n2

)k

+

n∑
k=1

(
n

k

)√
(2k − 2)!

(
4k2θ2

t2
+

1√
2π

· 2kθ
t

)
·
(

Mj

2θ2n2

)k

≲
n∑

k=1

(
n

k

)√
(2k)!

(
Bjθ

nβj−1|t|1+βj
+ exp

{
− t2

64θ2

}
+
kθ2

t2
+
θ

t

)
·
(

Mj

2θ2n2

)k

.

Finally, Lemma A.7 implies that

∣∣F(t)− G(t)
∣∣ ≲ n∑

k=1

(
n

k

)√
(2k)!

(
Bjθ

nβj−1|t|1+βj
+ exp

{
− t2

64θ2

}
+
kθ2

t2
+
θ

t

)
·
(

Mj

2θ2n2

)k

⩽

(
Bjθ

nβj−1|t|1+βj
+ exp

{
− t2

64θ2

}
+

2θ2

t2
+
θ

t

)
· 2Mj

θ2n

≲
Mj

θnt

(
1 +

θ

t
+

Bj

nβj−1|t|βj

)
,

whenever 2Mj ⩽ nθ2. The proof is finished.

□

Lemma A.5. Under Assumption 2.1, it holds that∣∣∣∣∣∣∣∣
1∫

0

v1dv1 . . .

1∫
0

vkdvk

∫
[−nt

2k ,nt
2k ]

k

du1 . . . duk

+∞∫
−∞

dy · Φ(2k)
θ

(
t−

k∑
i=1

viui
n

− y

n

)(
k∏

i=1

u2i rj(ui)

n2

)
· s∗(n−k)

j (y)

∣∣∣∣∣∣∣∣
⩽

√
(2k − 1)!√

2π
·
(
23+2βjBjθ

√
π

nβj−1|t|1+βj
+ exp

{
− t2

64θ2

})
·
(

Mj

2θ2n2

)k

.
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Proof. To prove Lemma A.5, it is enough to show that

1∫
0

v1dv1 . . .

1∫
0

vkdvk

∫
[−nt

2k ,nt
2k ]

k

du1 . . . duk

+∞∫
−∞

dy ·

∣∣∣∣∣Φ(2k)
θ

(
t−

k∑
i=1

viui
n

− y

n

)∣∣∣∣∣
(

k∏
i=1

u2i
∣∣rj(ui)∣∣
n2

)
· s∗(n−k)

j (y)

⩽

√
(2k − 1)!√

2π
·
(
23+2βjBjθ

√
π

nβj−1|t|1+βj
+ exp

{
− t2

64θ2

})
·
(

Mj

2θ2n2

)k

.

Our argument is quite technical, so we divide the proof into several parts.

Step 1: a bound on the 2k-th derivative First, let us consider the 2k-th derivative of Φθ. Note that

Φ
(2k)
θ (w) =

1

θ2k
· Φ(2k)

1

(w
θ

)
=

1

θ2k
√
2π

· H2k−1(w/θ) · exp
{
− w2

2θ2

}
,

where H2k−1 is the (2k− 1)-th “probabilist’s” Hermite polynomial. We provide a brief information about Hermite
polynomials in Appendix D. In particular, we refer to the result of Indritz (1961), which implies that

max
w∈R

∣∣∣∣H2k−1 (w/θ) · exp
{
− w2

4θ2

}∣∣∣∣ ⩽√(2k − 1)! for all k ∈ N.

Thus, it holds that ∣∣∣Φ(2k)
θ (w)

∣∣∣ ⩽ √
(2k − 1)!

θ2k
√
2π

exp

{
− w2

4θ2

}
for all w ∈ R and all k, (35)

and we obtain the inequality

1∫
0

v1dv1 . . .

1∫
0

vkdvk

∫
[−nt

2k ,nt
2k ]

k

du1 . . . duk

+∞∫
−∞

dy ·

∣∣∣∣∣Φ(2k)
θ

(
t−

k∑
i=1

viui
n

− y

n

)∣∣∣∣∣
(

k∏
i=1

u2i
∣∣rj(ui)∣∣
n2

)
· s∗(n−k)

j (y)

⩽

√
(2k − 1)!

θ2k
√
2π

1∫
0

v1dv1 . . .

1∫
0

vkdvk

∫
[−nt

2k ,nt
2k ]

k

du1 . . . duk

+∞∫
−∞

dy · exp

− 1

4θ2

(
t−

k∑
i=1

viui
n

− y

n

)2
 (36)

·

(
k∏

i=1

u2i
∣∣rj(ui)∣∣
n2

)
· s∗(n−k)

j (y).

Step 2: a bound on the convolution. Our next goal is to bound the convolution

+∞∫
−∞

exp

− 1

4θ2

(
t−

k∑
i=1

viui
n

− y

n

)2
 s

∗(n−k)
j (y)dy

using the properties of s∗(n−k)
j from Assumption 2.1. Let us fix an arbitrary w ∈ R and consider

+∞∫
−∞

exp

{
− (w − y/n)2

4θ2

}
s
∗(n−k)
j (y)dy.

Since exp
{
−(nw − y)2/(4n2θ2)

}
⩽ 1, it holds that

+∞∫
−∞

exp

{
− (w − y/n)2

4θ2

}
s
∗(n−k)
j (y)dy ⩽ 1. (37)
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On the other hand, we have

+∞∫
−∞

exp

{
− (w − y/n)2

4θ2

}
s
∗(n−k)
j (y)dy = n

+∞∫
−∞

exp

{
− y2

4θ2

}
s
∗(n−k)
j (ny + nw) dy

⩽

w/2∫
−w/2

exp

{
− y2

4θ2

}
Bjn(n− k)

(n− k)(βj+1)/βj + n1+βj |w + y|1+βj
dy

+ n

∫
|y|>w/2

exp

{
− y2

4θ2

}
s
∗(n−k)
j (ny + nw) dy.

If |y| ⩽ w/2, then

Bjn(n− k)

(n− k)(βj+1)/βj + n1+βj |w + y|1+βj
⩽

Bjn(n− k)

(n− k)(βj+1)/βj + n1+βj |w/2|1+βj

and it holds that

w/2∫
−w/2

exp

{
− y2

4θ2

}
Bjn(n− k)

(n− k)(βj+1)/βj + n1+βj |w + y|1+βj
dy

⩽
Bjn(n− k)

(n− k)(βj+1)/βj + |nw/2|1+βj

w/2∫
−w/2

exp

{
− y2

4θ2

}
dy (38)

⩽
Bjn(n− k)

(n− k)(βj+1)/βj + |nw/2|1+βj
·
√
4πθ ⩽

22+βjBjθ
√
π

nβj−1|w|1+βj
.

Otherwise,

n

∫
|y|>w/2

exp

{
− y2

4θ2

}
s
∗(n−k)
j (ny + nw) dy ⩽ exp

{
− w2

16θ2

} +∞∫
−∞

s
∗(n−k)
j (ny + nw)ndy

= exp

{
− w2

16θ2

}
. (39)

Taking into account (37), (38), and (39), we obtain that

+∞∫
−∞

exp

{
− (w − y/n)2

4θ2

}
s
∗(n−k)
j (y)dy ⩽ 1 ∧

(
22+βjBjθ

√
π

nβj−1|w|1+βj
+ exp

{
− w2

16θ2

})

and, hence,

+∞∫
−∞

exp

− 1

4θ2

(
t−

k∑
i=1

viui
n

− y

n

)2
 s

∗(n−k)
j (y)dy

⩽ min

1,

22+βjBjθ
√
π

nβj−1

∣∣∣∣∣t−
k∑

i=1

viui
n

∣∣∣∣∣
−1−βj

+ exp

− 1

16θ2

(
t−

k∑
i=1

viui
n

)2

 . (40)
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Step 3: final bound. The inequalities (36) and (40) yield that

1∫
0

v1dv1 . . .

1∫
0

vkdvk

∫
[−nt

2k ,nt
2k ]

k

du1 . . . duk

+∞∫
−∞

dy ·

∣∣∣∣∣Φ(2k)
θ

(
t−

k∑
i=1

viui
n

− y

n

)∣∣∣∣∣
(

k∏
i=1

u2i
∣∣rj(ui)∣∣
n2

)
· s∗(n−k)

j (y)

⩽

√
(2k − 1)!

θ2k
√
2π

1∫
0

v1dv1 . . .

1∫
0

vkdvk

∫
[−nt

2k ,nt
2k ]

k

du1 . . . duk ·

(
k∏

i=1

u2i
∣∣rj(ui)∣∣
n2

)

·min

1,

22+βjBjθ
√
π

nβj−1

∣∣∣∣∣t−
k∑

i=1

viui
n

∣∣∣∣∣
−1−βj

+ exp

− 1

16θ2

(
t−

k∑
i=1

viui
n

)2

 .

On the set [−nt/(2k), nt/(2k)]k, we have ∣∣∣∣∣t−
k∑

i=1

viui
n

∣∣∣∣∣ ⩾ t

2
,

and, hence,

1∫
0

v1dv1 . . .

1∫
0

vkdvk

∫
[−nt

2k ,nt
2k ]

k

du1 . . . duk

+∞∫
−∞

dy ·

∣∣∣∣∣Φ(2k)
θ

(
t−

k∑
i=1

viui
n

− y

n

)∣∣∣∣∣
(

k∏
i=1

u2i
∣∣rj(ui)∣∣
n2

)
· s∗(n−k)

j (y)

⩽

√
(2k − 1)!

θ2k
√
2π

·
(
23+2βjBjθ

√
π

nβj−1|t|1+βj
+ exp

{
− t2

64θ2

}) 1∫
0

v1dv1 . . .

1∫
0

vkdvk

∫
[−nt

2k ,nt
2k ]

k

du1 . . . duk ·

(
k∏

i=1

u2i
∣∣rj(ui)∣∣
n2

)
.

Due to Assumption 2.1, the right-hand side does not exceed

√
(2k − 1)!

θ2k
√
2π

·
(
23+2βjBjθ

√
π

nβj−1|t|1+βj
+ exp

{
− t2

64θ2

})
·
(
Mj

n2

)k
1∫

0

v1dv1 . . .

1∫
0

vkdvk

=

√
(2k − 1)!√

2π
·
(
23+2βjBjθ

√
π

nβj−1|t|1+βj
+ exp

{
− t2

64θ2

})
·
(

Mj

2θ2n2

)k

.

The proof is finished.

□

Lemma A.6. Let Assumption 2.1 be fulfilled. Then, for any k ⩾ 2, it holds that∣∣∣∣∣∣∣∣
1∫

0

v1dv1 . . .

1∫
0

vkdvk

∫
Rk

∖
[−nt

2k ,nt
2k ]

k

du

+∞∫
−∞

dy · Φ(2k)
θ

(
t−

k∑
i=1

viui
n

− y

n

)(
k∏

i=1

u2i rj(ui)

n2

)
· s∗(n−k)

j (y)

∣∣∣∣∣∣∣∣
⩽
√
(2k − 2)!

(
Mj

2θ2n2

)k (
4k2θ2

t2
+

1√
2π

· 2kθ
t

)
.

Proof. Let {Ai : 1 ⩽ i ⩽ k} be a collection of sets in Rk, such that

• A1, . . . , Ak form a partition of Rk
∖[

−nt
2k ,

nt
2k

]k , that is,

Rk

∖[
−nt

2k
,
nt

2k

]k
=

k⋃
i=1

Ai and Ai ∩Aℓ = ∅ for all i ̸= ℓ;
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• for all i ∈ {1, . . . , k}, it holds that

Ai ⊆
{
u : |ui| ⩾

nt

2k

}
.

Let us fix any ℓ ∈ {1, . . . , k} and consider the integral

1∫
0

v1dv1 . . .

1∫
0

vkdvk

∫
Aℓ

du1 . . . duk

+∞∫
−∞

dy · Φ(2k)
θ

(
t−

k∑
i=1

viui
n

− y

n

) (
k∏

i=1

u2i rj(ui)

n2

)
· s∗(n−k)

j (y).

Applying the Newton-Leibnitz formula, we obtain that

u2ℓ
n2

1∫
0

Φ
(2k)
θ

(
t−

k∑
i=1

viui
n

− y

n

)
vℓ dvℓ = Φ

(2k−2)
θ

t− ∑
1⩽i⩽k,
i ̸=ℓ

viui
n

− y

n



+Φ
(2k−1)
θ

t− ∑
1⩽i⩽k,
i ̸=ℓ

viui
n

− y

n

 · uℓ
n
.

This implies that∣∣∣∣∣∣
1∫

0

v1dv1 . . .

1∫
0

vkdvk

∫
Aℓ

du1 . . . duk

+∞∫
−∞

dy · Φ(2k)
θ

(
t−

k∑
i=1

viui
n

− y

n

) (
k∏

i=1

u2i rj(ui)

n2

)
· s∗(n−k)

j (y)

∣∣∣∣∣∣
⩽

1∫
0

v1dv1 . . .

1∫
0

vkdvk

∫
Aℓ

du1 . . . duk

+∞∫
−∞

dy ·

∣∣∣∣∣∣∣∣Φ
(2k−2)
θ

t− ∑
1⩽i⩽k,
i ̸=ℓ

viui
n

− y

n


∣∣∣∣∣∣∣∣

·

 ∏
1⩽i⩽k
i ̸=ℓ

u2i
∣∣rj(ui)∣∣
n2

 ·
∣∣rj(uℓ)∣∣ · s∗(n−k)

j (y)

+

1∫
0

v1dv1 . . .

1∫
0

vkdvk

∫
Aℓ

du1 . . . duk

+∞∫
−∞

dy ·

∣∣∣∣∣∣∣∣Φ
(2k−1)
θ

t− ∑
1⩽i⩽k,
i ̸=ℓ

viui
n

− y

n


∣∣∣∣∣∣∣∣

·

 ∏
1⩽i⩽k
i ̸=ℓ

u2i
∣∣rj(ui)∣∣
n2

 ·
uℓ
∣∣rj(uℓ)∣∣
n

· s∗(n−k)
j (y)

Let us apply the inequality (35) we derived in the proof of Lemma A.5 to Φ
(2k−2)
θ and Φ

(2k−1)
θ : for all w ∈ R, it

holds that

0 ⩽ Φθ(w) ⩽ 1,
∣∣∣Φ(2k−2)

θ (w)
∣∣∣ ⩽ √

(2k − 3)!

θ2k−2
√
2π

exp

{
− w2

4θ2

}
⩽

√
(2k − 2)!

θ2k−2
, for all k ⩾ 2.

and ∣∣∣Φ(2k−1)
θ (w)

∣∣∣ ⩽ √
(2k − 2)!

θ2k−1
√
2π

exp

{
− w2

4θ2

}
⩽

√
(2k − 2)!

θ2k−1
√
2π

.
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Then, for any k ∈ N,

1∫
0

v1dv1 . . .

1∫
0

vkdvk

∫
Aℓ

du1 . . . duk

+∞∫
−∞

dy ·

∣∣∣∣∣∣∣∣Φ
(2k−2)
θ

t− ∑
1⩽i⩽k,
i̸=ℓ

viui
n

− y

n


∣∣∣∣∣∣∣∣

·

 ∏
1⩽i⩽k
i̸=ℓ

u2i
∣∣rj(ui)∣∣
n2

 ·
∣∣rj(uℓ)∣∣ · s∗(n−k)

j (y)

⩽

√
(2k − 2)!

θ2k−2

1∫
0

v1dv1 . . .

1∫
0

vkdvk

∫
Aℓ

 ∏
1⩽i⩽k
i ̸=ℓ

u2i
∣∣rj(ui)∣∣
n2

 ·
∣∣rj(uℓ)∣∣du1 . . . duk.

Due to Assumption 2.1,

√
(2k − 2)!

θ2k−2

1∫
0

v1dv1 . . .

1∫
0

vkdvk

∫
Aℓ

 ∏
1⩽i⩽k
i ̸=ℓ

u2i
∣∣rj(ui)∣∣
n2

 ·
∣∣rj(uℓ)∣∣du1 . . . duk

⩽
√
(2k − 2)!

(
Mj

2θ2n2

)k−1 ∫
|uℓ|>nt/(2k)

∣∣rj(uℓ)∣∣duℓ
⩽
√

(2k − 2)!

(
Mj

2θ2n2

)k−1

· 2k2

n2t2

∫
|uℓ|>nt/(2k)

u2ℓ
∣∣rj(uℓ)∣∣duℓ

⩽
√
(2k − 2)!

(
Mj

2θ2n2

)k−1

· 2k
2Mj

n2t2
.

Similarly, it holds that

1∫
0

v1dv1 . . .

1∫
0

vkdvk

∫
Aℓ

du1 . . . duk

+∞∫
−∞

dy ·

∣∣∣∣∣∣∣∣Φ
(2k−1)
θ

t− ∑
1⩽i⩽k,
i ̸=ℓ

viui
n

− y

n


∣∣∣∣∣∣∣∣

·

 ∏
1⩽i⩽k
i ̸=ℓ

u2i
∣∣rj(ui)∣∣
n2

 ·
uℓ
∣∣rj(uℓ)∣∣
n

· s∗(n−k)
j (y)

⩽

√
(2k − 2)!

θ2k−1
√
2π

1∫
0

v1dv1 . . .

1∫
0

vkdvk

∫
Aℓ

 ∏
1⩽i⩽k
i ̸=ℓ

u2i
∣∣rj(ui)∣∣
n2

 ·
uℓ
∣∣rj(uℓ)∣∣
n

du1 . . . duk

⩽

√
(2k − 2)!

θ
√
2π

·
(

Mj

2θ2n2

)k−1 ∫
|uℓ|>nt/(2k)

uℓ
∣∣rj(uℓ)∣∣
n

duℓ

⩽

√
(2k − 2)!

θ
√
2π

·
(

Mj

2θ2n2

)k−1

·
(
k

n2t

) ∫
|uℓ|>nt/(2k)

u2ℓ
∣∣rj(uℓ)∣∣ duℓ

⩽

√
(2k − 2)!√

2π
·
(

Mj

2θ2n2

)k−1

· kMj

θn2t
.
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Thus, we obtain that∣∣∣∣∣∣
1∫

0

v1dv1 . . .

1∫
0

vkdvk

∫
Aℓ

du1 . . . duk

+∞∫
−∞

dy · Φ(2k)
θ

(
t−

k∑
i=1

viui
n

− y

n

) (
k∏

i=1

u2i rj(ui)

n2

)
· s∗(n−k)

j (y)

∣∣∣∣∣∣
⩽
√

(2k − 2)!

(
Mj

2θ2n2

)k

· 4k
2θ2

t2
+

√
(2k − 2)!√

2π
·
(

Mj

2θ2n2

)k

· 2kθ
t
.

Hence, due to the triangle inequality,∣∣∣∣∣∣∣∣
1∫

0

v1dv1 . . .

1∫
0

vkdvk

∫
Rk

∖
[−nt

2k ,nt
2k ]

k

du1 . . . duk

+∞∫
−∞

dy · Φ(2k)
θ

(
t−

k∑
i=1

viui
n

− y

n

)(
k∏

i=1

u2i rj(ui)

n2

)
· s∗(n−k)

j (y)

∣∣∣∣∣∣∣∣
⩽

k∑
ℓ=1

∣∣∣∣∣∣
1∫

0

v1dv1 . . .

1∫
0

vkdvk

∫
Aℓ

du1 . . . duk

+∞∫
−∞

dy · Φ(2k)
θ

(
t−

k∑
i=1

viui
n

− y

n

)(
k∏

i=1

u2i rj(ui)

n2

)
· s∗(n−k)

j (y)

∣∣∣∣∣∣
⩽
√

(2k − 2)!

(
Mj

2θ2n2

)k (
4k2θ2

t2
+

1√
2π

· 2kθ
t

)
.

□

Lemma A.7. Let n ∈ N and a ⩾ 0 be such that na ⩽ 1/2. Then it holds that

n∑
k=1

(
n

k

)√
(2k)!

(a
2

)k
⩽ 2na and

n∑
k=1

(
n

k

)√
(2k)! · k

(a
2

)k
⩽ 4na.

Proof. First, note that, for any positive integer k, we have

(2k)! =

k∏
j=1

(2j) ·
k∏

j=1

(2j − 1) ⩽
k∏

j=1

(2j) ·
k∏

j=1

(2j) ⩽ 4k · k! · k!.

This implies that

n∑
k=1

(
n

k

)√
(2k)!

(a
2

)k
⩽

n∑
k=1

n!

(n− k)!
· ak ⩽

n∑
k=1

(na)k ⩽
∞∑
k=1

(na)k =
na

1− na
⩽ 2na.

Similarly, it holds that

n∑
k=1

(
n

k

)√
(2k)! · k

(a
2

)k
⩽

n∑
k=1

n!

(n− k)!
· kak ⩽

n∑
k=1

k(na)k ⩽ na

∞∑
k=0

k(na)k−1 =
na

(1− na)2
⩽ 4na.

□
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B Proofs for clipped-SGD

B.1 Auxiliary Results

Bernstein inequality. The following lemma (known as Bernstein inequality for martingale differences (Bennett,
1962; Dzhaparidze and Van Zanten, 2001; Freedman et al., 1975)) is essential for deriving high-probability upper
bounds in our analysis.

Lemma B.1. Let the sequence of random variables {Xi}i⩾1 form a martingale difference sequence, i.e.

E [Xi | Xi−1, . . . , X1] = 0 for all i ⩾ 1. Assume that conditional variances σ2
i

def
= E

[
X2

i | Xi−1, . . . , X1

]
ex-

ist and are bounded and assume also that there exists deterministic constant c > 0 such that |Xi| ⩽ c almost
surely for all i ⩾ 1. Then for all b > 0, G > 0 and n ⩾ 1

P

{∣∣∣ n∑
i=1

Xi

∣∣∣ > b and
n∑

i=1

σ2
i ⩽ G

}
⩽ 2 exp

(
− b2

2G+ 2cb/3

)
. (41)

Bias and variance of the clipped stochastic vector. We also rely on the following result from (Gorbunov
et al., 2020).

Lemma B.2 (Simplified version of Lemma F.5 from (Gorbunov et al., 2020)). Let X be a random vector in Rd

and X̃ = clip(X,λ). Then, ∥∥∥X̃ − E[X̃]
∥∥∥ ⩽ 2λ. (42)

Moreover, if for some σ ⩾ 0

E[X] = x ∈ Rd, E[∥X − x∥2] ⩽ σ2 (43)

and x ⩽ λ/2, then

∥∥∥E[X̃]− x
∥∥∥ ⩽

4σ2

λ
, (44)

E
[∥∥∥X̃ − E[X̃]

∥∥∥2] ⩽ 18σ2. (45)

B.2 Quasi-Convex Case

The analysis of clipped-SGD in the quasi-convex case relies on the following lemma from (Sadiev et al., 2023).

Lemma B.3. Let Assumptions 2.2 and 2.44 with µ = 0 hold on Q = B2R(x
∗), where R ⩾ ∥x0 − x∗∥, and let

stepsize γk ≡ γ satisfy γ ⩽ 1
L . If xk ∈ Q for all k = 0, 1, . . . ,K+1, K ⩾ 0, then after K iterations of clipped-SGD

we have

γ
(
f(xK)− f(x∗)

)
⩽

∥x0 − x∗∥2 − ∥xK+1 − x∗∥2

K + 1

− 2γ

K + 1

K∑
k=0

⟨xk − x∗ − γ∇f(xk), θk⟩+
γ2

K + 1

K∑
k=0

∥θk∥2, (46)

xK =
1

K + 1

K∑
k=0

xk, (47)

θk
def
= clip(∇fΞk(xk), λk)−∇f(xk). (48)

Theorem B.4. Let Assumptions 2.2 and 2.4 with µ = 0 hold on Q = B2R(x
∗), where R ⩾ ∥x0 − x∗∥. Assume

4Although Sadiev et al. (2023) claim that they use Assumption 2.3 with µ = 0, their proof relies on Assumption 2.4
with µ = 0 instead, which is strictly weaker.
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that ∇fΞk(xk) satisfies Assumption 5.1 with parameters bk, σk for k = 0, 1, . . . ,K, K > 0 and

γk ≡ γ ⩽ min

 1

160L ln 4(K+1)
δ

,
R

208σk

√
K ln 4(K+1)

δ

,
R

160bk ln
4(K+1)

δ

,
R

1600bk(K + 1)

 , (49)

λk =
R

40γ ln 4(K+1)
δ

, (50)

for some δ ∈ (0, 1]. Then, after K iterations of clipped-SGD the iterates with probability at least 1− δ satisfy

f(xK)− f(x∗) ⩽
2R2

γ(K + 1)
and {xk}Kk=0 ⊆ B√

2R(x
∗). (51)

In particular, when

γ = min

 1

160L ln 4(K+1)
δ

,
R

208σ
√
K ln 4(K+1)

δ

,
R

160b ln 4(K+1)
δ

,
R

1600b(K + 1)

 , (52)

where σ = min
k=0,1,...,K

σk, b = min
k=0,1,...,K

bk, (53)

then the iterates produced by clipped-SGD after K iterations with probability at least 1− δ satisfy

f(xK)− f(x∗) = O

max

LR2 ln K
δ

K
,
σR
√

ln K
δ√

K
,
bR ln K

δ

K
, bR


 . (54)

Proof. Our proof follows similar steps to the one given by Sadiev et al. (2023). The main difference comes due to
the presence of the bias in ∇fΞk(xk). Therefore, for completeness, we provide the full proof here.

Let Rk = ∥xk − x∗∥ for all k ⩾ 0. Our next objective is to establish, by induction, that Rl ⩽ 2R with a high
probability. This will enable us to apply the result from Lemma B.3 and subsequently utilize Bernstein’s inequality
to estimate the stochastic component of the upper bound. To be more precise, for each k = 0, . . . ,K + 1, we
consider the probability event Ek, defined as follows: inequalities

−2γ

t−1∑
l=0

⟨xl − x∗ − γ∇f(xl), θl⟩+ γ2
t−1∑
l=0

∥θl∥2 ⩽ R2, (55)

Rt ⩽
√
2R (56)

hold for all t = 0, 1, . . . , k simultaneously. We aim to demonstrate through induction that P{Ek} ⩾ 1− kδ/(K+1)

for all k = 0, 1, . . . ,K + 1. The base case, k = 0, is trivial. Assuming that the statement holds for some
k = T − 1 ⩽ K, specifically, P{ET−1} ⩾ 1− (T−1)δ/(K+1), we need to establish that P{ET } ⩾ 1− Tδ/(K+1).

To begin, we observe that the probability event ET−1 implies that xt ∈ B√
2R(x

∗) for all t = 0, 1, . . . , T − 1.
Furthermore, ET−1 implies that

∥xT − x∗∥ = ∥xT−1 − x∗ − γ∇̃fΞT−1(xT−1)∥ ⩽ ∥xT−1 − x∗∥+ γ∥∇̃fΞT−1(xT−1)∥ ⩽
√
2R+ γλ

(50)
⩽ 2R,

i.e., x0, x1, . . . , xT ∈ B2R(x
∗). Hence, with ET−1 implying {xk}Tk=0 ⊆ Q, we confirm that the conditions of

Lemma B.3 are met, resulting in

γ
(
f(xt−1)− f(x∗)

)
⩽

∥x0 − x∗∥2 − ∥xt − x∗∥2

t

−2γ

t

t−1∑
l=0

⟨xl − x∗ − γ∇f(xl), θl⟩+
γ2

t

t−1∑
l=0

∥θl∥2 (57)
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for all t = 1, . . . , T simultaneously and for all t = 1, . . . , T − 1 this probability event also implies that

f(xt−1)− f(x∗) ⩽
1

γt

(
R2 − 2γ

t−1∑
l=0

⟨xl − x∗ − γ∇f(xl), θl⟩+ γ2
t−1∑
l=0

∥θl∥2
)

(55)
⩽

2R2

γt
. (58)

Considering that f(xT−1)− f(x∗) ⩾ 0, we can further deduce from (57) that when ET−1 holds, the following
holds as well:

R2
T ⩽ R2 − 2γ

t−1∑
l=0

⟨xl − x∗ − γ∇f(xl), θl⟩+ γ2
t−1∑
l=0

∥θl∥2. (59)

Next, we define random vectors

ηt =

{
xt − x∗ − γ∇f(xt), if ∥xt − x∗ − γ∇f(xt)∥ ⩽ 2R,

0, otherwise,

for all t = 0, 1, . . . , T − 1. As per their definition, these random vectors are bounded with probability 1

∥ηt∥ ⩽ 2R. (60)

Moreover, for t = 0, . . . , T − 1 event ET−1 implies

∥∇f(xt)∥
(3)
⩽ L∥xt − x∗∥

(56)
⩽

√
2LR

(49),(50)
⩽

λ

2
, (61)∥∥EΞt [∇f(xt)]

∥∥ ⩽
∥∥EΞt [∇f(xt)]−∇f(xt)

∥∥+ ∥∇f(xt)∥
(7),(61)
⩽ bt +

√
2LR

(49),(50)
⩽

λ

2
, (62)

∥xt − x∗ − γ∇f(xt)∥ ⩽ ∥xt − x∗∥+ γ∥∇f(xt)∥
(61)
⩽

√
2R(1 + Lγ)

(49)
⩽ 2R.

The latter inequality means that ET−1 implies ηt = xt − x∗ − γ∇f(xt) for t = 0, . . . , T − 1. Next, we define the
unbiased part and the bias of θt as θut and θbt , respectively:

θut = clip(∇fΞt(xt), λt)− EΞt

[
clip(∇fΞt(xt), λt)

]
, θbt = EΞt

[
clip(∇fΞt(xt), λt)

]
−∇f(xt). (63)

We notice that θt = θut + θbt . Using new notation, we get that ET−1 implies

R2
T ⩽ R2 −2γ

T−1∑
t=0

⟨θut , ηt⟩︸ ︷︷ ︸
①

−2γ

T−1∑
t=0

⟨θbt , ηt⟩︸ ︷︷ ︸
②

+2γ2
T−1∑
t=0

(
∥θut ∥

2 − EΞt

[
∥θut ∥

2
])

︸ ︷︷ ︸
③

+2γ2
T−1∑
t=0

EΞt

[
∥θut ∥

2
]

︸ ︷︷ ︸
④

+2γ2
T−1∑
t=0

∥∥θbt∥∥2︸ ︷︷ ︸
⑤

. (64)

To conclude our inductive proof successfully, we must obtain sufficiently strong upper bounds with high probability
for the terms ①,②,③,④,⑤. In other words, we need to demonstrate that ① + ② + ③ + ④ + ⑤ ⩽ R2 with a high
probability. In the subsequent stages of the proof, we will rely on the bounds for the norms and second moments
of θut and θbt . First, as per the definition of the clipping operator, we can assert with probability 1 that

∥θut ∥ ⩽ 2λ. (65)

Furthermore, given that ET−1 implies ∥EΞt [∇fΞt(xt)]∥ ⩽ λ/2 for t = 0, 1, . . . , T − 1 (as per (62)), then, according
to Lemma B.2, we can deduce that ET−1 implies

∥θbt∥ ⩽
∥∥EΞt

[
clip(∇fΞt(xt), λt)

]
− EΞt [∇fΞt(xt)]

∥∥+ ∥∥EΞt [∇fΞt(xt)]−∇f(xt)
∥∥

(44),(7)
⩽

4σ2

λ
+ bt, (66)

EΞt

[
∥θut ∥2

] (45)
⩽ 18σ2. (67)
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Upper bound for ①. By definition of θut , we readily observe that EΞt [θut ] = 0 and

EΞt [−2γ⟨θut , ηt⟩] = 0.

Next, the sum ① contains only the terms that are bounded with probability 1:

|2γ ⟨θut , ηt⟩ | ⩽ 2γ∥θut ∥ · ∥ηt∥
(60),(65)

⩽ 8γλR
(50)
=

R2

5 ln 4(K+1)
δ

def
= c. (68)

The conditional variances σ2
t

def
= EΞt [4γ2⟨θut , ηt⟩2] of the summands are bounded:

σ2
t ⩽ EΞt

[
4γ2∥θut ∥2 · ∥ηt∥2

] (60)
⩽ 16γ2R2EΞt

[
∥θut ∥2

]
. (69)

To summarize, we have demonstrated that {−2γ ⟨θut , ηt⟩}T−1
t=0 is a bounded martingale difference sequence with

bounded conditional variances {σ2
t }T−1

t=0 . Therefore, one can apply Bernstein’s inequality (Lemma B.1) with
Xt = −2γ ⟨θut , ηt⟩, parameter c as in (68), b = R2

5 , G = R4

150 ln
4(K+1)

δ

and get

P

{
|①| > R2

5
and

T−1∑
t=0

σ2
t ⩽

R4

150 ln 4(K+1)
δ

}
⩽ 2 exp

(
− b2

2G+ 2cb/3

)
=

δ

2(K + 1)
,

which is equivalent to

P {E①} ⩾ 1− δ

2(K + 1)
, for E① =

{
either

T−1∑
t=0

σ2
t >

R4

150 ln 4(K+1)
δ

or |①| ⩽ R2

5

}
. (70)

Additionally, event ET−1 implies that

T−1∑
t=0

σ2
t

(69)
⩽ 16γ2R2

T−1∑
t=0

EΞt

[
∥θut ∥2

] (67)
⩽ 288γ2R2σ2T

(49)
⩽

R4

150 ln 4(K+1)
δ

. (71)

Upper bound for ②. From ET−1 it follows that

② = −2γ

T−1∑
t=0

⟨θbt , ηt⟩ ⩽ 2γ

T−1∑
t=0

∥θbt∥ · ∥ηt∥
(60),(66)

⩽
16γσ2TR

λ
+ 4γRbT

(50)
=

2γ2σ2T ln 4(K+1)
δ

5
+ 4γRbT

(49)
⩽

R2

5
. (72)

Upper bound for ③. By construction, we have

EΞt

[
2γ2

(
∥θut ∥

2 − EΞt

[
∥θut ∥

2
])]

= 0.

Next, the sum ③ contains only the terms that are bounded with probability 1:∣∣∣2γ2 (∥θut ∥2 − EΞt

[
∥θut ∥

2
])∣∣∣ ⩽ 2γ2

(
∥θut ∥2 + EΞt

[
∥θut ∥

2
])

(65)
⩽ 16γ2λ2

(50)
=

R2

100 ln2 4(K+1)
δ

⩽
R2

5 ln 4(K+1)
δ

def
= c. (73)

The conditional variances σ̃2
t

def
= EΞt

[
4γ4

(
∥θut ∥

2 − EΞt

[
∥θut ∥

2
])2]

of the summands are bounded:

σ̃2
t

(73)
⩽

R2

5 ln 4(K+1)
δ

EΞt

[
2γ2

∣∣∣∥θut ∥2 − EΞt

[
∥θut ∥

2
]∣∣∣] ⩽ 4γ2R2

5 ln 4(K+1)
δ

EΞt

[
∥θut ∥2

]
. (74)



Puchkin, Gorbunov, Kutuzov, Gasnikov

To summarize, we have demonstrated that
{
2γ2

(
∥θut ∥

2 − EΞt

[
∥θut ∥

2
])}T−1

t=0
is a bounded martingale differ-

ence sequence with bounded conditional variances {σ̃2
t }T−1

t=0 . Therefore, one can apply Bernstein’s inequality
(Lemma B.1) with Xt = 2γ2

(
∥θut ∥

2 − EΞt

[
∥θut ∥

2
])

, parameter c as in (73), b = R2

5 , G = R4

150 ln
4(K+1)

δ

and get

P

{
|③| > R2

5
and

T−1∑
t=0

σ̃2
t ⩽

R4

150 ln 4(K+1)
δ

}
⩽ 2 exp

(
− b2

2G+ 2cb/3

)
=

δ

2(K + 1)
,

which is equivalent to

P {E③} ⩾ 1− δ

2(K + 1)
, for E③ =

{
either

T−1∑
t=0

σ̃2
t >

R4

150 ln 4(K+1)
δ

or |③| ⩽ R2

5

}
. (75)

Additionally, event ET−1 implies that

T−1∑
t=0

σ̃2
t

(74)
⩽

4γ2R2

5 ln 4(K+1)
δ

T−1∑
t=0

EΞt

[
∥θut ∥2

] (67)
⩽

72γ2R2σ2T

5 ln 4(K+1)
δ

(49)
⩽

R4

150 ln 4(K+1)
δ

. (76)

Upper bound for ④. From ET−1 it follows that

④ = 2γ2
T−1∑
t=0

EΞt

[
∥θut ∥

2
] (67)

⩽ 36γ2σ2T
(49)
⩽

R2

5
. (77)

Upper bound for ⑤. From ET−1 it follows that

⑤ = 2γ2
T−1∑
t=0

∥∥θbt∥∥2 (66)
⩽

32σ4Tγ2

λ2
+ 2γ2b2T

(50)
= 51200 ·

σ4Tγ4 ln 4(K+1)
δ

R2
+ 2γ2b2T

(49)
⩽

R2

5
. (78)

That is, we derived the upper bounds for ①,②,③,④,⑤. More specifically, the probability event ET−1 implies:

R2
T

(64)
⩽ R2 + ① + ② + ③ + ④ + ⑤,

②
(72)
⩽

R2

5
, ④

(77)
⩽

R2

5
, ⑤

(78)
⩽

R2

5
,

T−1∑
t=0

σ2
t

(71)
⩽

R4

150 ln 4(K+1)
δ

,

T−1∑
t=0

σ̃2
t

(76)
⩽

R4

150 ln 4(K+1)
δ

.

In addition, we also have (see (70), (75) and our induction assumption)

P{ET−1} ⩾ 1− (T − 1)δ

K + 1
, P{E①} ⩾ 1− δ

2(K + 1)
, P{E③} ⩾ 1− δ

2(K + 1)
,

where

E① =

{
either

T−1∑
t=0

σ2
t >

R4

150 ln 4(K+1)
δ

or |①| ⩽ R2

5

}
,

E③ =

{
either

T−1∑
t=0

σ̃2
t >

R4

150 ln 4(K+1)
δ

or |③| ⩽ R2

5

}
.

Therefore, probability event ET−1 ∩ E① ∩ E③ implies

R2
T ⩽ R2 +

R2

5
+
R2

5
+
R2

5
+
R2

5
+
R2

5
= 2R2,
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which is equivalent to (55) and (56) for t = T , and

P{ET } ⩾ P {ET−1 ∩ E① ∩ E③} = 1− P
{
ET−1 ∪ E① ∪ E③

}
⩾ 1− P{ET−1} − P{E①} − P{E③} ⩾ 1− Tδ

K + 1
.

We have now completed the inductive part of our proof. That is, for all k = 0, 1, . . . ,K + 1, we have P{Ek} ⩾
1− kδ/(K+1). Notably, when k = K + 1, we can conclude that with a probability of at least 1− δ:

f(xK)− f(x∗)
(58)
⩽

2R2

γ(K + 1)

and {xk}Kk=0 ⊆ Q, which follows from (56).

Finally, if

γ = min

 1

160L ln 4(K+1)
δ

,
R

208σ
√
K ln 4(K+1)

δ

,
R

160b ln 4(K+1)
δ

,
R

1600b(K + 1)

 ,

then with probability at least 1− δ

f(xK)− f(x∗) ⩽
2R2

γ(K + 1)

= max

320LR2 ln 4(K+1)
δ

K + 1
,
416σR

√
K ln 4(K+1)

δ

K + 1
,
320bR ln 4(K+1)

δ

K + 1
, 3200bR


= O

max

LR2 ln K
δ

K
,
σR
√
ln K

δ√
K

,
bR ln K

δ

K
, bR


 .

This concludes the proof. □

B.3 Quasi-Strongly Convex Case

Lemma B.5. Let Assumptions 2.2 and 2.4 with µ = 0 hold on Q = B2R(x
∗), where R ⩾ ∥x0 − x∗∥, and let

stepsize γk ≡ γ satisfy γ ⩽ 1
L . If xk ∈ Q for all k = 0, 1, . . . ,K, K ⩾ 0, then after K iterations of clipped-SGD

we have

∥xK+1 − x∗∥2 ⩽ exp(−γµ(K + 1))∥x0 − x∗∥2 − 2γ

K∑
k=0

exp(−γµ(K − k))⟨xk − x∗ − γ∇f(xk), θk⟩

+γ2
K∑

k=0

exp(−γµ(K − k))∥θk∥2, (79)

where θk is defined in (48).
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Proof. Using the update rule of clipped-SGD, we obtain

∥xk+1 − x∗∥2 = ∥xk − x∗∥2 − 2γ⟨xk − x∗, clip(∇fΞk(xk), λk)⟩+ γ2∥clip(∇fΞk(xk), λk)∥2

= ∥xk − x∗∥2 − 2γ⟨xk − x∗,∇f(xk)⟩ − 2γ⟨xk − x∗, θk⟩
+γ2∥∇f(xk)∥2 + 2γ2⟨∇f(xk), θk⟩+ γ2∥θk∥2

= ∥xk − x∗∥2 − 2γ⟨xk − x∗ − γ∇f(xk), θk⟩
−2γ⟨xk − x∗,∇f(xk)⟩+ γ2∥∇f(xk)∥2 + γ2∥θk∥2

(6),(4)
⩽ (1− γµ)∥xk − x∗∥2 − 2γ⟨xk − x∗ − γ∇f(xk), θk⟩

−2γ(f(xk)− f(x∗)) + 2Lγ2(f(xk)− f(x∗)) + γ2∥θk∥2
γ⩽1/L

⩽ (1− γµ)∥xk − x∗∥2 − 2γ⟨xk − x∗ − γ∇f(xk), θk⟩+ γ2∥θk∥2

−2γ(f(xk)− f(x∗)) + 2Lγ2(f(xk)− f(x∗)) + γ2∥θk∥2
γ⩽1/L

⩽ (1− γµ)∥xk − x∗∥2 − 2γ⟨xk − x∗ − γ∇f(xk), θk⟩+ γ2∥θk∥2

⩽ exp(−γµ)∥xk − x∗∥2 − 2γ⟨xk − x∗ − γ∇f(xk), θk⟩+ γ2∥θk∥2.

Unrolling the recurrence, we obtain (79). □

Theorem B.6. Let Assumptions 2.2 and 2.4 with µ > 0 hold on Q = B2R(x
∗), where R ⩾ ∥x0 − x∗∥. Assume

that ∇fΞk(xk) satisfies Assumption 5.1 with parameters bk, σk for k = 0, 1, . . . ,K, K > 0 and

0 < γ ⩽ min

{
1

400L ln 4(K+1)
δ

,
ln(BK)

µ(K + 1)
,

ln(CK)

µ(1 + K/2)
,

2 ln(D)

µ(K + 1)

}
, (80)

BK = max

2,
(K + 1)µ2R2

5400σ2 ln
(

4(K+1)
δ

)
ln2(BK)

 = O

max

2,
Kµ2R2

σ2 ln
(
K
δ

)
ln2
(
max

{
2, Kµ2R2

σ2 ln(Kδ )

})

 ,(81)

CK = max

2,
(K2 + 1)µR

480b ln
(

4(K+1)
δ

)
ln(CK)

 = O

max

2,
KµR

b ln
(
K
δ

)
ln

(
max

{
2, KµR

b ln(K
δ )

})

 , (82)

D = max

{
2,

µR

80b ln(D)

}
= O

max

2,
µR

b ln
(
max

{
2, µRb

})

 , (83)

λk =
exp(−γµ(1 + k/2))R

120γ ln 4(K+1)
δ

, (84)

for some δ ∈ (0, 1] and b = maxk=0,1,...,K bk, σ = maxk=0,1,...,K σk. Then, after K iterations the iterates produced
by clipped-SGD with probability at least 1− δ satisfy

∥xK+1 − x∗∥2 ⩽ 2 exp(−γµ(K + 1))R2. (85)

In particular, when γ equals the minimum from (80), then the iterates produced by clipped-SGD after K iterations
with probability at least 1− δ satisfy

∥xK − x∗∥2 = O

(
max

{
R2 exp

(
− µK

L ln K
δ

)
,
σ2 ln

(
K
δ

)
ln2 (BK)

Kµ2
,
bR ln

(
K
δ

)
ln (CK)

Kµ
,
bR ln(D)

µ

})
. (86)

Proof. Our proof follows similar steps to the one given by Sadiev et al. (2023). The main difference comes due to
the presence of the bias in ∇fΞk(xk). Therefore, for completeness, we provide the full proof here.

Let Rk = ∥xk − x∗∥ for all k ⩾ 0. As in the previous results, the main part of the proof is inductive. More
precisely, for each k = 0, 1, . . . ,K + 1 we consider probability event Ek as follows: inequalities

R2
t ⩽ 2 exp(−γµt)R2 (87)
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hold for t = 0, 1, . . . , k simultaneously. We aim to demonstrate through induction that P{Ek} ⩾ 1 − kδ/(K+1)

for all k = 0, 1, . . . ,K + 1. The base case, k = 0, is trivial. Assuming that the statement holds for some
k = T − 1 ⩽ K, specifically, P{ET−1} ⩾ 1− (T−1)δ/(K+1), we need to establish that P{ET } ⩾ 1− Tδ/(K+1). Since
R2

t ⩽ 2 exp(−γµt)R2 ⩽ 2R2, we have xt ∈ B2R(x
∗), where function f is L-smooth. Thus, ET−1 implies

∥∇f(xt)∥ ⩽ L∥xt − x∗∥
(87)
⩽

√
2L exp(−γµt/2)R, (88)∥∥EΞt [∇fΞt(xt)]

∥∥ ⩽
∥∥EΞt [∇fΞt(xt)]−∇f(xt)

∥∥+ ∥∇f(xt)∥
(7),(88)
⩽ b+

√
2L exp(−γµt/2)R

(80),(82),(84)
⩽

λt
2

(89)

and

∥θt∥2 ⩽ 2∥∇̃fΞ(xt)∥2 + 2∥∇f(xt)∥2
(88)
⩽

5

2
λ2t

(84)
⩽

exp(−γµt)R2

4γ2
(90)

for all t = 0, 1, . . . , T − 1, where we use that ∥a+ b∥2 ⩽ 2∥a∥2 + 2∥b∥2 holding for all a, b ∈ Rd.

Using Lemma B.5, we obtain that ET−1 implies

R2
T ⩽ exp(−γµT )R2 − 2γ

T−1∑
t=0

exp(−γµ(T − 1− t))⟨xt − x∗ − γ∇f(xt), θt⟩

+γ2
T−1∑
t=0

exp(−γµ(T − 1− t))∥θt∥2.

Next, we define random vectors

ηt =

{
xt − x∗ − γ∇f(xt), if ∥xt − x∗ − γ∇f(xt)∥ ⩽

√
2(1 + γL) exp(−γµt/2)R,

0, otherwise,
(91)

for t = 0, 1, . . . , T − 1. As per their definition, these random vectors are bounded with probability 1

∥ηt∥ ⩽
√
2(1 + γL) exp(−γµt/2)R (92)

for all t = 0, 1, . . . , T − 1. Moreover, for t = 0, . . . , T − 1 event ET−1 implies ∥∇f(xt)∥ ⩽
√
2L exp(−γµt/2)R (due

to (88)) and

∥xt − x∗ − γ∇f(xt)∥ ⩽ ∥xt − x∗∥+ γ∥∇f(xt)∥
(88)
⩽

√
2(1 + γL) exp(−γµt/2)R

for t = 0, 1, . . . , T−1. The latter inequality means that ET−1 implies ηt = xt−x∗−γ∇f(xt) for all t = 0, 1, . . . , T−1,
meaning that from ET−1 it follows that

R2
T ⩽ exp(−γµT )R2 − 2γ

T−1∑
t=0

exp(−γµ(T − 1− t))⟨ηt, θt⟩+ γ2
T−1∑
t=0

exp(−γµ(T − 1− t))∥θt∥2.

Next, we define the unbiased part and the bias of θt as θut and θbt , respectively:

θut
def
= clip(∇fΞt(xt), λt)− EΞt

[
clip(∇fΞt(xt), λt)

]
, θbt

def
= EΞt

[
clip(∇fΞt(xt), λt)

]
−∇f(xt), (93)
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for all t = 0, . . . , T − 1. We notice that θt = θut + θbt . Using new notation, we get that ET−1 implies

R2
T ⩽ exp(−γµT )R2 −2γ

T−1∑
t=0

exp(−γµ(T − 1− t))⟨ηt, θut ⟩︸ ︷︷ ︸
①

−2γ

T−1∑
t=0

exp(−γµ(T − 1− t))⟨ηt, θbt ⟩︸ ︷︷ ︸
②

+2γ2
T−1∑
t=0

exp(−γµ(T − 1− t))EΞ

[
∥θut ∥2

]
︸ ︷︷ ︸

③

+2γ2
T−1∑
t=0

exp(−γµ(T − 1− t))
(
∥θut ∥2 − EΞ

[
∥θut ∥2

])
︸ ︷︷ ︸

④

+2γ2
T−1∑
t=0

exp(−γµ(T − 1− t))∥θbt∥2︸ ︷︷ ︸
⑤

. (94)

where we also apply inequality ∥a + b∥2 ⩽ 2∥a∥2 + 2∥b∥2 holding for all a, b ∈ Rd to upper bound ∥θt∥2. To
conclude our inductive proof successfully, we must obtain sufficiently strong upper bounds with high probability
for the terms ①,②,③,④,⑤. In other words, we need to demonstrate that ① + ② + ③ + ④ + ⑤ ⩽ exp(−γµT )R2

with high probability. In the subsequent stages of the proof, we will rely on the bounds for the norms and second
moments of θut and θbt . First, as per the definition of the clipping operator, we can assert with probability 1 that

∥θut ∥ ⩽ 2λt. (95)

Furthermore, given that ET−1 implies ∥EΞt [∇fΞt(xt)]∥ ⩽ λ/2 for t = 0, 1, . . . , T − 1 (as per (89)), then, according
to Lemma B.2, we can deduce that ET−1 implies∥∥θbt∥∥ ⩽

∥∥EΞt

[
clip(∇fΞt(xt), λt)

]
− EΞt

[
∇fΞt(xt)

]∥∥+ ∥∥EΞt

[
∇fΞt(xt)

]
−∇f(xt)

∥∥
⩽

4σ2

λt
+ b, (96)

EΞt

[
∥θut ∥

2
]

⩽ 18σ2, (97)

for all t = 0, 1, . . . , T − 1.

Upper bound for ①. By definition of θut , we readily observe that EΞt [θut ] = 0 and

EΞt [−2γ exp(−γµ(T − 1− t))⟨ηt, θut ⟩] = 0.

Next, the sum ① contains only the terms that are bounded with probability 1:

| − 2γ exp(−γµ(T − 1− t))⟨ηt, θut ⟩| ⩽ 2γ exp(−γµ(T − 1− t))∥ηt∥ · ∥θut ∥
(92),(95)

⩽ 4
√
2γ(1 + γL) exp(−γµ(T − 1− t/2))Rλt

(80),(84)
⩽

exp(−γµT )R2

5 ln 4(K+1)
δ

def
= c. (98)

The conditional variances σ2
t

def
= EΞt

[
4γ2 exp(−2γµ(T − 1− t))⟨ηt, θut ⟩2

]
of the summands are bounded:

σ2
t ⩽ EΞt

[
4γ2 exp(−γµ(2T − 2− 2t))∥ηt∥2 · ∥θut ∥2

]
(92)
⩽ 8γ2(1 + γL)2 exp(−γµ(2T − 2− t))R2EΞt

[
∥θut ∥2

]
(80)
⩽ 10γ2 exp(−γµ(2T − t))R2EΞt

[
∥θut ∥2

]
. (99)

To summarize, we have demonstrated that {2γ(1− γµ)T−1−t⟨ηt, θut ⟩}T−1
t=0 is a bounded martingale difference se-

quence with bounded conditional variances {σ2
t }T−1

t=0 . Therefore, one can apply Bernstein’s inequality (Lemma B.1)
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with Xt = 2γ(1− γµ)T−1−t⟨ηt, θut ⟩, parameter c as in (98), b = 1
5 exp(−γµT )R

2, G = exp(−2γµT )R4

150 ln
4(K+1)

δ

and get

P

{
|①| > 1

5
exp(−γµT )R2 and

T−1∑
t=0

σ2
t ⩽

exp(−2γµT )R4

150 ln 4(K+1)
δ

}
⩽ 2 exp

(
− b2

2F + 2cb/3

)
=

δ

2(K + 1)
,

which is equivalent to

P{E①} ⩾ 1− δ

2(K + 1)
, for E① =

{
either

T−1∑
t=0

σ2
t >

exp(−2γµT )R4

150 ln 4(K+1)
δ

or |①| ⩽ 1

5
exp(−γµT )R2

}
. (100)

Additionally, event ET−1 implies that

T−1∑
t=0

σ2
t

(99)
⩽ 10γ2 exp(−2γµT )R2

T−1∑
t=0

EΞt

[
∥θut ∥2

]
exp(−γµt)

(97),T⩽K+1

⩽ 180γ2 exp(−2γµT )R2σ2
K∑
t=0

1

exp(−γµt)
(84)
⩽ 180γ2 exp(−2γµT )R2σ2(K + 1) exp(γµK)

(80),(81)
⩽

exp(−2γµT )R4

150 ln 4(K+1)
δ

. (101)

Upper bound for ②. From ET−1 it follows that

② ⩽ 2γ exp(−γµ(T − 1))

T−1∑
t=0

∥ηt∥ · ∥θbt∥
exp(−γµt)

(92),(96)
⩽

√
2γ(1 + γL) exp(−γµ(T − 1))R

T−1∑
t=0

exp(γµt/2)

(
4σ2

λt
+ b

)
(80),(84)

⩽ 3840γ2 exp(−γµT )σ2(K + 1) exp (γµT ) ln 4(K+1)
δ

+2γ exp(−γµT )R(K + 1) exp(γµT/2)b

(80),(81),(83)
⩽

1

5
exp(−γµT )R2. (102)

Upper bound for ③. From ET−1 it follows that

③ = 2γ2 exp(−γµ(T − 1))

T−1∑
t=0

EΞt

[
∥θut ∥2

]
exp(−γµt)

(97)
⩽ 144γ2 exp(−γµ(T − 1))σ2

T−1∑
t=0

1

exp(−γµt)
(84)
⩽ 144γ2 exp(−γµ(T − 1))σ2(K + 1) exp(γµK)

(80)
⩽

1

5
exp(−γµT )R2. (103)

Upper bound for ④. By construction, we have

2γ2 exp(−γµ(T − 1− t))EΞt

[
∥θut ∥2 − EΞt

[
∥θut ∥2

]]
= 0.
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Next, the sum ④ contains only the terms that are bounded with probability 1:

2γ2 exp(−γµ(T − 1− t))
∣∣∥θut ∥2 − EΞt

[
∥θut ∥2

]∣∣ (95)
⩽

16γ2 exp(−γµT )λ2l
exp(−γµ(1 + t))

(84)
⩽

exp(−γµT )R2

5 ln 4(K+1)
δ

def
= c. (104)

The conditional variances

σ̃2
t

def
= EΞt

[
4γ4 exp(−2γµ(T − 1− t))

∣∣∥θut ∥2 − EΞt

[
∥θut ∥2

]∣∣2]
of the summands are bounded:

σ̃2
t

(104)
⩽

2γ2 exp(−2γµT )R2

5 exp(−γµ(1 + t)) ln 4(K+1)
δ

EΞt

[∣∣∥θut ∥2 − EΞt

[
∥θut ∥2

]∣∣]
⩽

4γ2 exp(−2γµT )R2

5 exp(−γµ(1 + t)) ln 4(K+1)
δ

EΞt

[
∥θut ∥2

]
. (105)

To summarize, we have demonstrated that
{
2γ2(1− γµ)T−1−t

(
∥θut ∥2 − EΞt

[
∥θut ∥2

])}T−1

t=0
is a bounded martingale

difference sequence with bounded conditional variances {σ̃2
t }T−1

t=0 . Therefore, one can apply Bernstein’s inequality
(Lemma B.1) with Xt = 2γ2(1− γµ)T−1−t

(
∥θut ∥2 − EΞt

[
∥θut ∥2

])
, parameter c as in (104), b = 1

5 exp(−γµT )R
2,

G = exp(−2γµT )R4

150 ln
4(K+1)

δ

and get

P

{
|④| > 1

5
exp(−γµT )R2 and

T−1∑
l=0

σ̃2
t ⩽

exp(−2γµT )R4

150 ln 4(K+1)
δ

}
⩽ 2 exp

(
− b2

2G+ 2cb/3

)
=

δ

2(K + 1)
,

which is equivalent to

P{E④} ⩾ 1− δ

2(K + 1)
, for E④ =

{
either

T−1∑
t=0

σ̃2
t >

exp(−2γµT )R4

150 ln 4(K+1)
δ

or |④| ⩽ 1

5
exp(−γµT )R2

}
. (106)

Additionally, event ET−1 implies that

T−1∑
l=0

σ̃2
t

(105)
⩽

4γ2 exp(−γµ(2T − 1))R2

5 ln 4(K+1)
δ

T−1∑
t=0

EΞt

[
∥θul ∥2

]
exp(−γµt)

(97),T⩽K+1

⩽
72γ2 exp(−γµ(2T − 1))R2σ2

5 ln 4(K+1)
δ

K∑
t=0

1

exp(−γµt)
(84)
⩽

72γ2 exp(−γµ(2T − 1))R2σ2(K + 1) exp(γµK)

5 ln 4(K+1)
δ

(80)
⩽

exp(−2γµT )R4

150 ln 4(K+1)
δ

. (107)
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Upper bound for ⑤. From ET−1 it follows that

⑤ = 2γ2
T−1∑
l=0

exp(−γµ(T − 1− t))∥θbt∥2

(96)
⩽ γ2 exp(−γµ(T − 1))

T−1∑
t=0

exp(γµt)

(
64σ4

λ2t
+ 2b2

)
(84),T⩽K+1

⩽
921600γ4 exp(−γµ(T − 1))σ4 ln2 4(K+1)

δ

R2

K∑
t=0

exp

(
2γµ

(
1 +

t

2

))
exp(γµt)

+2γ2 exp(−γµ(T − 1))b2
K∑
t=0

exp(γµt)

⩽
921600γ4 exp(−γµ(T − 3))σ4 ln2 4(K+1)

δ (K + 1) exp(2γµK)

R2

+2γ2 exp(−γµ(T − 1))b2 exp(γµK)(K + 1)

(80),(81),(83)
⩽

1

5
exp(−γµT )R2. (108)

That is, we derived the upper bounds for ①,②,③,④,⑤. More specifically, the probability event ET−1 implies:

R2
T

(94)
⩽ exp(−γµT )R2 + ① + ② + ③ + ④ + ⑤,

②
(102)
⩽

1

5
exp(−γµT )R2, ③

(103)
⩽

1

5
exp(−γµT )R2,

⑤
(108)
⩽

1

5
exp(−γµT )R2

T−1∑
t=0

σ2
t

(101)
⩽

exp(−2γµT )R4

150 ln 4(K+1)
δ

,

T−1∑
t=0

σ̃2
t

(107)
⩽

exp(−2γµT )R4

150 ln 4(K+1)
δ

.

Moreover, we also have (see (100), (106) and our induction assumption)

P{ET−1} ⩾ 1− (T − 1)δ

K + 1
,

P{E①} ⩾ 1− δ

2(K + 1)
, P{E④} ⩾ 1− δ

2(K + 1)
.

where

E① =

{
either

T−1∑
t=0

σ2
t >

exp(−2γµT )R4

150 ln 4(K+1)
δ

or |①| ⩽ 1

5
exp(−γµT )R2

}
,

E④ =

{
either

T−1∑
t=0

σ̃2
t >

exp(−2γµT )R4

150 ln 4(K+1)
δ

or |④| ⩽ 1

5
exp(−γµT )R2

}
.

Therefore, probability event ET−1 ∩ E① ∩ E④ implies

R2
T

(94)
⩽ exp(−γµT )R2 + ① + ② + ③ + ④ + ⑤

⩽ 2 exp(−γµT )R2,

which is equivalent to (87) for t = T , and

P{ET } ⩾ P{ET−1 ∩ E① ∩ E④} = 1− P{ET−1 ∪ E① ∪ E④} ⩾ 1− Tδ

K + 1
.
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We have now completed the inductive part of our proof. That is, for all k = 0, 1, . . . ,K + 1, we have P{Ek} ⩾
1− kδ/(K+1). Notably, when k = K + 1, we can conclude that with a probability of at least 1− δ:

∥xK+1 − x∗∥2 ⩽ 2 exp(−γµ(K + 1))R2.

Finally, if

γ = min

{
1

400L ln 4(K+1)
δ

,
ln(BK)

µ(K + 1)
,

ln(CK)

µ(1 + K/2)
,

2 ln(D)

µ(K + 1)

}
,

BK = max

2,
(K + 1)µ2R2

5400σ2 ln
(

4(K+1)
δ

)
ln2(BK)

 = O

max

2,
Kµ2R2

σ2 ln
(
K
δ

)
ln2
(
max

{
2, Kµ2R2

σ2 ln(Kδ )

})

 ,

CK = max

2,
(K2 + 1)µR

480b ln
(

4(K+1)
δ

)
ln(CK)

 = O

max

2,
KµR

b ln
(
K
δ

)
ln

(
max

{
2, KµR

b ln(K
δ )

})

 ,

D = max

{
2,

µR

80b ln(D)

}
= O

max

2,
µR

b ln
(
max

{
2, µRb

})

 ,

then with probability at least 1− δ

∥xK+1 − x∗∥2 ⩽ 2 exp(−γµ(K + 1))R2

⩽ 2R2 max

{
exp

(
− µ(K + 1)

400L ln 4(K+1)
δ

)
,

1

BK
,

1

CK
,
1

D

}

= O

(
max

{
R2 exp

(
− µK

L ln K
δ

)
,
σ2 ln

(
K
δ

)
ln2 (BK)

Kµ2
,
bR ln

(
K
δ

)
ln (CK)

Kµ
,
bR ln(D)

µ

})
.

This concludes the proof. □
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C Proofs for clipped-SSTM

C.1 Convex Case

The analysis of clipped-SSTM in the convex case relies on the following lemma from (Sadiev et al., 2023).
Lemma C.1 (Lemma F.1 from (Sadiev et al., 2023)). Let Assumptions 2.2 and 2.3 with µ = 0 hold on
Q = B3R(x

∗), where R ⩾ ∥x0 − x∗∥, and let stepsize parameter a satisfy a ⩾ 1. If xk, yk, zk ∈ B3R(x
∗) for all

k = 0, 1, . . . , N , N ⩾ 0, then after N iterations of clipped-SSTM for all z ∈ B3R(x
∗) we have

AN

(
f(yN )− f(z)

)
⩽

1

2
∥z0 − z∥2 − 1

2
∥zN − z∥2 +

N−1∑
k=0

αk+1

〈
θk+1, z − zk + αk+1∇f(xk+1)

〉
+

N−1∑
k=0

α2
k+1 ∥θk+1∥2 , (109)

θk+1
def
= clip(∇fΞk(xk+1), λk)−∇f(xk+1). (110)

Next, we also use the following technical result from (Gorbunov et al., 2020).
Lemma C.2 (Lemma E.1 from (Gorbunov et al., 2020)). Let sequences {αk}k⩾0 and {Ak}k⩾0 satisfy

α0 = A0 = 0, Ak+1 = Ak + αk+1, αk+1 =
k + 2

2aL
∀k ⩾ 0, (111)

where a > 0, L > 0. Then for all k ⩾ 0

Ak+1 =
(k + 1)(k + 4)

4aL
, (112)

Ak+1 ⩾ aLα2
k+1. (113)

Theorem C.3. Let Assumptions 2.2 and 2.3 with µ = 0 hold on Q = B3R(x
∗), where R ⩾ ∥x0 − x∗∥. Assume

that ∇fΞk(xk+1) satisfies Assumption 5.1 with parameters bk, σk for k = 0, 1, . . . ,K, K > 0 and

a ⩾ max

97200 ln2
4K

δ
,
1800σ(K + 1)

√
K
√
ln 4K

δ

LR
,
4b(K + 2)2

15LR
,
60b(K + 2) ln 4K

δ

LR

 , (114)

λk =
R

30αk+1 ln
4K
δ

, (115)

for some δ ∈ (0, 1] and b = maxk=0,1,...,K bk, σ = maxk=0,1,...,K σk. Then, after K iterations of clipped-SSTM the
iterates with probability at least 1− δ satisfy

f(yK)− f(x∗) ⩽
6aLR2

K(K + 3)
and {xk}K+1

k=0 , {z
k}Kk=0, {yk}Kk=0 ⊆ B2R(x

∗). (116)

In particular, when parameter a equals the maximum from (114), then the iterates produced by clipped-SSTM
after K iterations with probability at least 1− δ satisfy

f(yK)− f(x∗) = O

max

LR2 ln2 K
δ

K2
,
σR
√

ln K
δ√

K
,
bR ln K

δ

K
, bR


 . (117)

Proof. Our proof follows similar steps to the one given by Sadiev et al. (2023). The main difference comes due to
the presence of the bias in ∇fΞk(xk). Therefore, for completeness, we provide the full proof here.

Let Rk = ∥zk − x∗∥, R̃0 = R0, and R̃k+1 = max{R̃k, Rk+1} for all k ⩾ 0. We will initially demonstrate
through induction that for all k ⩾ 0, the iterates xk+1, zk, yk belong to BR̃k

(x∗). The base of the induction

is straightforward because y0 = z0, R̃0 = R0, and x1 = A0y
0+α1z

0

A1
= z0. Now, assume that for some l ⩾ 1,
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xl, zl−1, yl−1 ∈ BR̃l−1
(x∗). By the definitions of Rl and R̃l, we have zl ∈ BRl

(x∗) ⊆ BR̃l
(x∗). As yl is a convex

combination of yl−1 ∈ BR̃l−1
(x∗) ⊆ BR̃l

(x∗), it follows that zl ∈ BR̃l
(x∗) and, given the convex nature of BR̃l

(x∗),
we can conclude that yl ∈ BR̃l

(x∗). Finally, as xl+1 is a convex combination of yl and zl, it is evident that xl+1

also lies in BR̃l
(x∗).

Our next objective is to establish, by induction, that R̃l ⩽ 3R with high probability. This will enable us to apply
the result from Lemma B.3 and subsequently utilize Bernstein’s inequality to estimate the stochastic component
of the upper bound. To be more precise, for each k = 0, . . . ,K + 1, we consider the probability event Ek, defined
as follows: inequalities

t−1∑
l=0

αl+1

〈
θl+1, x

∗ − zl + αl+1∇fΞl(xl+1)
〉
+

t−1∑
l=0

α2
l+1 ∥θl+1∥2 ⩽ R2, (118)

Rt ⩽ 2R (119)

hold for all t = 0, 1, . . . , k simultaneously. We aim to demonstrate through induction that P{Ek} ⩾ 1− kδ/(K+1)

for all k = 0, 1, . . . ,K + 1. The base case, k = 0, is trivial: the left-hand side of (118) equals zero and R ⩾ R0 by
definition. Assuming that the statement holds for some k = T − 1 ⩽ K, specifically, P{ET−1} ⩾ 1− (T−1)δ/(K+1),
we need to establish that P{ET } ⩾ 1− Tδ/(K+1).

To begin, we observe that the probability event ET−1 implies that R̃t ⩽ 2R for all t = 0, 1, . . . , T − 1. Moreover,
it implies that

∥zT − x∗∥
(14)
⩽ ∥zT − x∗∥+ αT ∥∇̃fΞT−1(xT )∥ ⩽ 2R+ αTλT−1

(115)
⩽ 3R.

Hence, with ET−1 implying {xk}Tk=0 ⊆ Q, we confirm that the conditions of Lemma C.1 are met, resulting in

At

(
f(yt)− f(x∗)

)
⩽

1

2
R2

0 −
1

2
R2

t +

t−1∑
l=0

αl+1

〈
θl+1, x

∗ − zl + αl+1∇f(xl+1)
〉
+

t−1∑
l=0

α2
l+1 ∥θl+1∥2 (120)

for all t = 0, 1, . . . , T simultaneously and for all t = 1, . . . , T − 1 this probability event also implies that

f(yt)− f(x∗)
(118),(120)

⩽
1
2R

2
0 − 1

2R
2
t +R2

At
⩽

3R2

2At
=

6aLR2

t(t+ 3)
. (121)

Considering that f(yT )− f(x∗) ⩾ 0, we can further deduce from (120) that when ET−1 holds, the following holds
as well:

R2
T ⩽ R2

0 + 2

T−1∑
t=0

αt+1

〈
θt+1, x

∗ − zt + αt+1∇f(xt+1)
〉
+ 2

T−1∑
t=0

α2
t+1 ∥θt+1∥2︸ ︷︷ ︸

2BT

⩽ R2 + 2BT . (122)

Prior to our estimation of BT , we need to establish several helpful inequalities. We start with showing that ET−1

implies ∥∇f(xt+1)∥ ⩽ λt/4 for all t = 0, 1, . . . , T − 1. For t = 0 we have x1 = x0 and

∥∇f(x1)∥ = ∥∇f(x0)∥
(3)
⩽ L∥x0 − x∗∥ ⩽

R

aα1
=
λ0
2

·
60 ln 4K

δ

a

(114)
⩽

λ0
4
. (123)
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Next, for t = 1, . . . , T − 1 we have αt+1(x
t+1 − zt) = At(y

t − xt+1) and event ET−1 implies

∥∇f(xt+1)∥ ⩽ ∥∇f(xt+1)−∇f(yt)∥+ ∥∇f(yt)∥
(3),(4)
⩽ L∥xt+1 − yt∥+

√
2L (f(yt)− f(x∗))

(121)
⩽

Lαt+1

At
∥xt+1 − zt∥+

√
12aL2R2

t(t+ 3)

⩽
4LRαt+1

At
+

√
12aL2R2

t(t+ 3)

=
R

60αt+1 ln
4K
δ

240Lα2
t+1 ln

4K
δ

At
+ 60

√
12aL2α2

t+1 ln
2 4K

δ

t(t+ 3)


(112),(115)

⩽
λt
2

240L
(
t+2
2aL

)2
ln 4K

δ
t(t+3)
4aL

+ 60

√
12aL2

(
t+2
2aL

)2
ln2 4K

δ

t(t+ 3)


=

λt
2

240(t+ 2)2 ln 4K
δ

t(t+ 3)a
+ 60

√
3(t+ 2)2 ln 4K

δ

t(t+ 3)a


⩽

λt
2

(
540 ln 4K

δ

a
+

90
√
3 ln 4K

δ√
a

)
(114)
⩽

λt
4
, (124)

where in the last row we use (t+2)2

t(t+3) ⩽ 9
4 for all t ⩾ 1. Therefore, probability event ET−1 implies that

∥∥EΞt [∇fΞt(xt+1)]
∥∥ ⩽

∥∥EΞt [∇fΞt(xt+1)]−∇f(xt+1)
∥∥+ ∥∇f(xt+1)∥ ⩽ b+

λt
4

⩽
λt
2

(125)

and

∥x∗ − zt + αt+1∇f(xt+1)∥ ⩽ ∥x∗ − zt∥+ αt+1∥∇f(xt+1)∥
(119),(123),(124)

⩽ 2R+
R

60 ln 4K
δ

⩽ 3R (126)

for all t = 0, 1, . . . , T − 1. Next, we define random vectors

ηt =

{
x∗ − zt + αt+1∇f(xt+1), if ∥x∗ − zt + αt+1∇f(xt+1)∥ ⩽ 3R,

0, otherwise,

for all t = 0, 1, . . . , T − 1. As per their definition, these random vectors are bounded with probability 1

∥ηt∥ ⩽ 3R. (127)

This means that ET−1 implies ηt = x∗ − zt +αt+1∇f(xt+1) for all t = 0, 1, . . . , T − 1. Then, form ET−1 it follows
that

BT =

T−1∑
t=0

αt+1 ⟨θt+1, ηt⟩+
T−1∑
t=0

α2
t+1 ∥θt+1∥2 .

Next, we define the unbiased part and the bias of θt as θut and θbt , respectively:

θut = clip(∇fΞt(xt+1), λt)− EΞt

[
clip(∇fΞt(xt+1), λt)

]
, θbt = EΞt

[
clip(∇fΞt(xt+1), λt)

]
−∇f(xt+1). (128)
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We notice that θt = θut + θbt . Using new notation, we get that ET−1 implies

BT =

T−1∑
t=0

αt+1

〈
θut+1 + θbt+1, ηt

〉
+

T−1∑
t=0

α2
t+1

∥∥θut+1 + θbt+1

∥∥2
⩽

T−1∑
t=0

αt+1

〈
θut+1, ηt

〉
︸ ︷︷ ︸

①

+

T−1∑
t=0

αt+1

〈
θbt+1, ηt

〉
︸ ︷︷ ︸

②

+2

T−1∑
t=0

α2
t+1

(∥∥θut+1

∥∥2 − EΞt

[∥∥θut+1

∥∥2])
︸ ︷︷ ︸

③

+2

T−1∑
t=0

α2
t+1EΞt

[∥∥θut+1

∥∥2]
︸ ︷︷ ︸

④

+2

T−1∑
t=0

α2
t+1

∥∥θbt+1

∥∥2
︸ ︷︷ ︸

⑤

. (129)

To conclude our inductive proof successfully, we must obtain sufficiently strong upper bounds with high probability
for the terms ①,②,③,④,⑤. In other words, we need to demonstrate that ① + ② + ③ + ④ + ⑤ ⩽ R2 with a high
probability. In the subsequent stages of the proof, we will rely on the bounds for the norms and second moments
of θut and θbt . First, as per the definition of the clipping operator, we can assert with probability 1 that

∥θut+1∥ ⩽ 2λt. (130)

Moreover, since ET−1 implies that ∥EΞt∇fΞt(xt+1)∥ ⩽ λt/2 for t = 0, 1, . . . , T − 1 (see (125)), then, according to
Lemma B.2, we can deduce that ET−1 implies

∥θbt+1∥ ⩽
∥∥EΞt

[
clip(∇fΞt(xt+1), λt)

]
− EΞt

[
∇fΞt(xt+1)

]∥∥+ ∥∥EΞt

[
∇fΞt(xt+1)

]
−∇f(xt+1)

∥∥
⩽

4σ2

λt
+ b, (131)

EΞt

[
∥θut+1∥2

]
⩽ 18σ2. (132)

Upper bound for ①. By definition of θut , we readily observe that EΞt [θut ] = 0 and

EΞt

[
αt+1

〈
θut+1, ηt

〉]
= 0.

Next, the sum ① contains only the terms that are bounded with probability 1:

|αt+1

〈
θut+1, ηt

〉
| ⩽ αt+1∥θut+1∥ · ∥ηt∥

(127),(130)
⩽ 6αt+1λtR

(115)
=

R2

5 ln 4K
δ

def
= c. (133)

The conditional variances σ2
t

def
= EΞt [α2

t+1

〈
θut+1, ηt

〉2
] of the summands are bounded:

σ2
t ⩽ EΞt

[
α2
t+1∥θut+1∥2 · ∥ηt∥2

] (127)
⩽ 9α2

t+1R
2EΞt

[
∥θut+1∥2

]
. (134)

To summarize, we have demonstrated that {αt+1

〈
θut+1, ηt

〉
}T−1
t=0 is a bounded martingale difference sequence

with bounded conditional variances {σ2
t }T−1

t=0 . Therefore, one can apply Bernstein’s inequality (Lemma B.1) with
Xt = αt+1

〈
θut+1, ηt

〉
, parameter c as in (133), b = R2

5 , G = R4

150 ln 4K
δ

and get

P

{
|①| > R2

5
and

T−1∑
t=0

σ2
t ⩽

R4

150 ln 4K
δ

}
⩽ 2 exp

(
− b2

2G+ 2cb/3

)
=

δ

2K
,

which is equivalent to

P {E①} ⩾ 1− δ

2K
, for E① =

{
either

T−1∑
t=0

σ2
t >

R4

150 ln 4K
δ

or |①| ⩽ R2

5

}
. (135)
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In addition, ET−1 implies that

T−1∑
t=0

σ2
t

(134)
⩽ 9R2

T−1∑
t=0

α2
t+1EΞt

[
∥θut+1∥2

] (132)
⩽ 162σ2R2

T−1∑
t=0

α2
t+1

=
162σ2R2

4a2L2

T−1∑
t=0

(t+ 2)2

⩽
1

a2
· 81σ

2R2T (T + 1)2

2a2L2

(114)
⩽

R4

150 ln 4K
δ

. (136)

Upper bound for ②. From ET−1 it follows that

② ⩽
T−1∑
t=0

αt+1∥θbt+1∥ · ∥ηt∥
(127),(131)

⩽ 3R

T−1∑
t=0

αt+1

(
4σ2

λt
+ b

)
(115)
⩽ 360σ2 ln

4K

δ

T−1∑
t=0

α2
t+1 + 3bR

T−1∑
t=0

αt+1

⩽
360σ2 ln 4K

δ

4a2L2

T−1∑
t=0

(t+ 2)2 +
3bR

2aL

T−1∑
t=0

(t+ 2)

⩽
360σ2 ln 4K

δ T (T + 1)2

4a2L2
+

3bRT (T + 1)

2aL

(114)
⩽

R2

5
. (137)

Upper bound for ③. First, we have

EΞt

[
2α2

t+1

(∥∥θut+1

∥∥2 − EΞt

[∥∥θut+1

∥∥2])] = 0.

Next, the sum ③ contains only the terms that are bounded with probability 1:∣∣∣2α2
t+1

(∥∥θut+1

∥∥2 − EΞt

[∥∥θut+1

∥∥2])∣∣∣ ⩽ 2α2
t+1

(
∥θut+1∥2 + EΞt

[∥∥θut+1

∥∥2])
(130)
⩽ 16α2

t+1λ
2
t

(115)
⩽

R2

5 ln 4K
δ

def
= c. (138)

The conditional variances σ̃2
t

def
= EΞt

[
4α4

t+1

(∥∥θut+1

∥∥2 − EΞt

[∥∥θut+1

∥∥2])2] of the summands are bounded:

σ̃2
t

(138)
⩽

R2

5 ln 4K
δ

EΞt

[
2α2

t+1

∣∣∣∥∥θut+1

∥∥2 − EΞk

[∥∥θut+1

∥∥2]∣∣∣] ⩽ α2
t+1R

2EΞt

[
∥θut+1∥2

]
, (139)

To summarize, we have demonstrated that
{
2α2

t+1

(∥∥θut+1

∥∥2 − EΞt

[∥∥θut+1

∥∥2])}T−1

t=0
is a bounded martingale

difference sequence with bounded conditional variances {σ̃2
t }T−1

t=0 . Therefore, one can apply Bernstein’s inequality
(Lemma B.1) with Xt = 2α2

t+1

(∥∥θut+1

∥∥2 − EΞt

[∥∥θut+1

∥∥2]), parameter c as in (138), b = R2

5 , G = R4

150 ln 4K
δ

and
get

P

{
|③| > R2

5
and

T−1∑
t=0

σ̃2
t ⩽

R4

150 ln 4K
δ

}
⩽ 2 exp

(
− b2

2G+ 2cb/3

)
=

δ

2K
,

which is equivalent to

P {E③} ⩾ 1− δ

2K
, for E③ =

{
either

T−1∑
t=0

σ̃2
t >

R4

150 ln 4K
δ

or |③| ⩽ R2

5

}
. (140)

In addition, ET−1 implies that

T−1∑
t=0

σ̃2
t

(139)
⩽ R2

T−1∑
t=0

α2
t+1EΞt

[
∥θut+1∥2

]
⩽ 9R2

T−1∑
t=0

α2
t+1EΞt

[
∥θut+1∥2

] (136)
⩽

R4

150 ln 4K
δ

. (141)
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Upper bound for ④. From ET−1 it follows that

④ = 2

T−1∑
t=0

α2
t+1EΞt

[∥∥θut+1

∥∥2] ⩽ 1

R2
· 9R2

T−1∑
t=0

α2
t+1EΞt

[∥∥θut+1

∥∥2] (136)
⩽

R2

150 ln 4K
δ

⩽
R2

5
. (142)

Upper bound for ⑤. From ET−1 it follows that

⑤ = 2

T−1∑
t=0

α2
t+1

∥∥θbt+1

∥∥2 ⩽ 4

T−1∑
t=0

α2
t+1

(
16σ4

λ2t
+ b2

)
(115)
=

57600σ4 ln2 4K
δ

R2

T−1∑
t=0

α4
t+1 + 4b2

T−1∑
t=0

α2
t+1 =

57600σ4 ln2 4K
δ

16a4L4R2

T−1∑
t=0

(t+ 2)4 +
4b2

4a2L2

T−1∑
t=0

(t+ 2)2

⩽
57600σ4 ln2 4K

δ T (T + 1)4

16a4L4R2
+

4b2T (T + 1)2

4a2L2

(114)
⩽

R2

5
. (143)

That is, we derived the upper bounds for ①,②,③,④,⑤. More specifically, the probability event ET−1 implies:

BT

(129)
⩽ R2 + ① + ② + ③ + ④ + ⑤,

②
(137)
⩽

R2

5
, ④

(142)
⩽

R2

5
, ⑤

(143)
⩽

R2

5
,

T−1∑
t=0

σ2
t

(136)
⩽

R4

150 ln 4K
δ

,

T−1∑
t=0

σ̃2
t

(141)
⩽

R4

150 ln 4K
δ

.

In addition, we also have (see (135), (140) and our induction assumption)

P{ET−1} ⩾ 1− (T − 1)δ

K
, P{E①} ⩾ 1− δ

2K
, P{E③} ⩾ 1− δ

2K
,

where

E① =

{
either

T−1∑
t=0

σ2
t >

R4

150 ln 4K
δ

or |①| ⩽ R2

5

}
,

E③ =

{
either

T−1∑
t=0

σ̃2
t >

R4

150 ln 4K
δ

or |③| ⩽ R2

5

}
.

Therefore, probability event ET−1 ∩ E① ∩ E③ implies

BT ⩽ R2 +
R2

5
+
R2

5
+
R2

5
+
R2

5
+
R2

5
= 2R2,

R2
T

(122)
⩽ R2 + 2R2 ⩽ (2R)2,

which is equivalent to (118) and (119) for t = T , and

P{ET } ⩾ P {ET−1 ∩ E① ∩ E③} = 1− P
{
ET−1 ∪ E① ∪ E③

}
⩾ 1− P{ET−1} − P{E①} − P{E③} ⩾ 1− Tδ

K
.

We have now completed the inductive part of our proof. That is, for all k = 0, 1, . . . ,K, we have P{Ek} ⩾ 1−kδ/K.
Notably, when k = K, we can conclude that with a probability of at least 1− δ:

f(yK)− f(x∗)
(121)
⩽

6aLR2

K(K + 3)

and {xk}K+1
k=0 , {zk}Kk=0, {yk}Kk=0 ⊆ B2R(x

∗), which follows from (119).
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Finally, if

a = max

97200 ln2
4K

δ
,
1800σ(K + 1)

√
K
√
ln 4K

δ

LR
,
4b(K + 2)2

15LR
,
60b(K + 2) ln 4K

δ

LR

 ,

then with probability at least 1− δ

f(yK)− f(x∗) ⩽
6aLR2

K(K + 3)

= O

max

LR2 ln2 K
δ

K2
,
σR
√

ln K
δ√

K
,
bR ln K

δ

K
, bR


 .

□

C.2 Strongly Convex Case

In the strongly convex case, we consider a restarted version of SSTM, see Algorithm 1.

Algorithm 1 Restarted clipped-SSTM (R-clipped-SSTM) (Gorbunov et al., 2020)

Input: starting point x0, number of restarts τ , number of steps of clipped-SSTM between restarts {Kt}τt=1,
stepsize parameters {at}τt=1, clipping levels {λ1k}

K1−1
k=0 , {λ2k}

K2−1
k=0 , . . . , {λτk}

Kτ−1
k=0 , smoothness constant L.

1: x̂0 = x0

2: for t = 1, . . . , τ do
3: Run clipped-SSTM for Kt iterations with stepsize parameter at, clipping levels {λtk}

Kt−1
k=0 , and starting

point x̂t−1. Define the output of clipped-SSTM by x̂t.
4: end for

Output: x̂τ

The main result for R-clipped-SSTM is given below.
Theorem C.4. Let Assumptions 2.2 and 2.3 with µ > 0 hold on Q = B3R(x

∗), where R ⩾ ∥x0 − x∗∥ and
R-clipped-SSTM runs clipped-SSTM τ times. Assume that estimator ∇fΞk,t(xk+1,t) used in clipped-SSTM at k-th
iteration of stage t satisfies Assumption 5.1 with parameters btk and σt

k such that

btk ⩽
15µR

24 · 2t+1
. (144)

Let

Kt =

max

2160

√
LR2

t−1

εt
ln

4320
√
LR2

t−1τ
√
εtδ

, 4

(
5400σtRt−1

εt

)2

ln

(
8τ

δ

(
5400σtRt−1

εt

)2
)

 , (145)

εt =
µR2

t−1

4
, Rt−1 =

R

2(t−1)/2
, τ =

⌈
log2

µR2

2ε

⌉
, (146)

at = max

97200 ln2
4Ktτ

δ
,
1800σ(Kt + 1)

√
Kt

√
ln 4Ktτ

δ

LRt
,
4bt(Kt + 2)2

15LRt
,
60bt(Kt + 2) ln 4Kt

δ

LRt

 , (147)

λtk =
Rt

30αt
k+1 ln

4Ktτ
δ

(148)

for t = 1, . . . , τ . Then to guarantee f(x̂τ )− f(x∗) ⩽ ε with probability ⩾ 1− δ R-clipped-SSTM requires

O

(
max

{√
L

µ
ln

(
µR2

ε

)
ln

( √
L

√
µδ

ln

(
µR2

ε

))
,
σ2

µε
ln

(
σ2

µεδ
ln

(
µR2

ε

))})
(149)

iterations. Moreover, with probability ⩾ 1− δ the iterates of R-clipped-SSTM at stage t stay in the ball B2Rt−1
(x∗).
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Proof. The proof of this theorem follows the same steps as the one given for Theorem F.3 from (Sadiev et al.,
2023). By induction we derive that for any t = 1, . . . , τ with probability at least 1− tδ/τ inequalities

f(x̂l)− f(x∗) ⩽ εl, ∥x̂l − x∗∥2 ⩽ R2
l =

R2

2l
(150)

hold for l = 1, . . . , t simultaneously. We start with the base of the induction. Theorem C.3 implies that with
probability at least 1− δ/τ

f(x̂1)− f(x∗) ⩽
6a1LR

2

K1(K1 + 3)

(147)
= max

{
583200LR2 ln2 4K1τ

δ

K1(K1 + 3)
,
10800σR(K1 + 1)

√
K1 ln

4K1τ
δ

K1(K1 + 3)
,

24b1R(K1 + 2)2

15K1(K1 + 3)
,
360b1R(K1 + 2) ln 4K1

δ

K1(K1 + 3)

}

⩽ max

{
583200LR2 ln2 4K1τ

δ

K2
1

,
10800σR

√
ln 4K1τ

δ√
K1

,

24b1R

15
,
360b1R ln 4K1

δ

K1

}
(144),(145)

⩽ ε1 =
µR2

4

and, due to the strong convexity,

∥x̂1 − x∗∥2 ⩽
2(f(x̂1)− f(x∗))

µ
⩽
R2

2
= R2

1.

The base of the induction is proven. Now, assume that the statement holds for some t = T < τ , i.e., with
probability at least 1− Tδ/τ inequalities

f(x̂l)− f(x∗) ⩽ εl, ∥x̂l − x∗∥2 ⩽ R2
l =

R2

2l
(151)

hold for l = 1, . . . , T simultaneously. In particular, with probability at least 1− Tδ/τ we have ∥x̂T − x∗∥2 ⩽ R2
T .

Applying Theorem C.3 and using union bound for probability events, we get that with probability at least
1− (T+1)δ/τ

f(x̂T+1)− f(x∗) ⩽
6aT+1LR

2
T

KT+1(KT+1 + 3)

(147)
= max

{
583200LR2

T ln2 4KT+1τ
δ

KT+1(KT+1 + 3)
,
10800σRT (KT+1 + 1)

√
KT+1 ln

4KT+1τ
δ

KT+1(KT+1 + 3)
,

24bT+1RT (KT+1 + 2)2

15KT+1(KT+1 + 3)
,
360bT+1RT (KT+1 + 2) ln 4KT+1

δ

KT+1(KT+1 + 3)

}

⩽ max

{
583200LR2

T ln2 4KT+1τ
δ

K2
T+1

,
10800σRT

√
ln 4KT+1τ

δ√
KT+1

,

24bT+1RT

15
,
360bT+1RT ln 4KT+1

δ

KT+1

}
(144),(145)

⩽ εT+1 =
µR2

T

4
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and, due to the strong convexity,

∥x̂T+1 − x∗∥2 ⩽
2(f(x̂T+1)− f(x∗))

µ
⩽
R2

T

2
= R2

T+1.

Thus, we finished the inductive part of the proof. In particular, with probability at least 1− δ inequalities

f(x̂l)− f(x∗) ⩽ εl, ∥x̂l − x∗∥2 ⩽ R2
l =

R2

2l

hold for l = 1, . . . , τ simultaneously, which gives for l = τ that with probability at least 1− δ

f(x̂τ )− f(x∗) ⩽ ετ =
µR2

τ−1

4
=
µR2

2τ+1

(146)
⩽ ε.

It remains to calculate the overall number of iterations during all runs of clipped-SSTM. We have

τ∑
t=1

Kt = O

 τ∑
t=1

max


√
LR2

t−1

εt
ln


√
LR2

t−1τ
√
εtδ

 ,

(
σRt−1

εt

)2

ln

(
τ

δ

(
σRt−1

εt

)2
)


= O

(
τ∑

t=1

max

{√
L

µ
ln

(√
Lτ

√
µδ

)
,

(
σ

µRt−1

)2

ln

(
τ

δ

(
σ

µRt−1

)2
)})

= O

(
max

{
τ

√
L

µ
ln

(√
Lτ

√
µδ

)
,

τ∑
t=1

(
σ · 2t/2

µR

)2

ln

(
τ

δ

(
σ · 2t/2

µR

)2
)})

= O

(
max

{√
L

µ
ln

(
µR2

ε

)
ln

( √
L

√
µδ

ln

(
µR2

ε

))
,

(
σ

µR

)2

ln

(
τ

δ

(
σ · 2τ/2

µR

)2
)

τ∑
t=1

2t

})

= O

(
max

{√
L

µ
ln

(
µR2

ε

)
ln

( √
L

√
µδ

ln

(
µR2

ε

))
,

(
σ

µR

)2

ln

(
τ

δ

(
σ

µR

)2

· 2

)
2τ

})

= O

(
max

{√
L

µ
ln

(
µR2

ε

)
ln

( √
L

√
µδ

ln

(
µR2

ε

))
,

(
σ2

µε

)
ln

(
1

δ

(
σ2

µε

)
ln

(
µR2

ε

))})
,

which concludes the proof. □
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D PROPERTIES OF HERMITE POLYNOMIALS

This section collects some properties of Hermite polynomials which are used in the proof of Lemma A.4. First, let
us recall the definition. There are two versions of Hermite polynomials, which are referred to as “physicist’s” and
“probabilist’s”, given by

Hn(x) = (−1)nex
2 dn

dxn
e−x2

and Hn(x) = (−1)nex
2/2 dn

dxn
e−x2/2 n ∈ N,

respectively. Obviously, for any positive integer n, the following relation holds true:

Hn(x) ≡ 2−n/2Hn

(
x√
2

)
. (152)

Hence, “probabilist’s” Hermite polynomials inherit all the properties of “physicist’s” ones. In (Indritz, 1961), the
author proved that

max
x∈R

∣∣∣Hn(x) e
−x2/2

∣∣∣ ⩽ √
2n · n! for all n ∈ N.

In view of (152), this implies that

max
x∈R

∣∣∣Hn(x) e
−x2/4

∣∣∣ = 2−n/2 max
x∈R

∣∣∣∣Hn

(
x√
2

)
e−x2/4

∣∣∣∣ ⩽ √
n! for all n ∈ N.

E NUMERICAL EXPERIMENTS: ADDITIONAL DETAILS

For every combination of noise distribution and method, we tuned optimal parameters for 70000 steps and ran
methods on 95000 steps, where one step is one oracle call.

The optimal values of the learning rate and the clipping parameter were selected via grid search over the sets
{0.002, 0.004, 0.008, 0.01, 0.02, 0.04} and {0.75, 1, 1.5, 2, 4, 8}, respectively.

Distribution Method Learning
Rate

Clipping
parameter

Cauchy

clipped-MB-SGD
Med-MB-SGD
MB-clipped-SGD
clipped-Med-MB-SGD
SMoM-MB-SGD
clipped-SMoM-MB-SGD

0.004
0.002
0.01
0.002
0.002
0.008

4
-
4
2
-
1

Cauchy + Exponen-
tial

clipped-MB-SGD
Med-MB-SGD
MB-clipped-SGD
clipped-Med-MB-SGD
SMoM-MB-SGD
clipped-SMoM-MB-SGD

0.008
0.002
0.04
0.002
0.002
0.002

1.5
-
4
8
-
8

Cauchy + Pareto

clipped-MB-SGD
Med-MB-SGD
MB-clipped-SGD
clipped-Med-MB-SGD
SMoM-MB-SGD
clipped-SMoM-MB-SGD

0.008
0.002
0.02
0.002
0.002
0.008

1.5
-
0.75
8
-
1

Table 1: Optimal parameters for different distributions and methods.

We also provide plots, reflecting the dependence of the error on the number of iterations, where one iteration is
one method’s update, see Figure 2 below. As we can see, clipped-SMoM-MB-SGD converges much faster than the
competitors due to the larger batch size.
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Figure 2: Dependence of the mean error on the number of iterations with a standard deviation upper bound.

Finally, according to our theoretical findings, the error bound for the mini-batched SGD with clipped smoothed
median of means grows logarithmically with 1/δ. In Figure 3, we plot the dependence of the confidence interval
width on the number of iterations to illustrate this point.

Figure 3: Dependence of the confidence interval width for the error of mini-batched SGD with clipped smoothed
median of means on the number of iterations.
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