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Abstract

We propose two extensions to existing impor-
tance sampling based methods for lossy com-
pression. First, we introduce an importance
sampling based compression scheme that is a
variant of ordered random coding (Theis and
Ahmed, 2022) and is amenable to direct eval-
uation of the achievable compression rate for
a finite number of samples. Our second and
major contribution is the importance match-
ing lemma, which is a finite proposal coun-
terpart of the recently introduced Poisson
matching lemma (Li and Anantharam, 2021).
By integrating with deep learning, we provide
a new coding scheme for distributed lossy
compression with side information at the de-
coder. We demonstrate the effectiveness of
the proposed scheme through experiments
involving synthetic Gaussian sources, dis-
tributed image compression with MNIST and
vertical federated learning with CIFAR-10.

1 INTRODUCTION

Lossy compression has become increasingly important
in the field of machine learning, fueled by the expand-
ing scale of data (Deng et al., 2009), models (Ramesh
et al., 2021; OpenAI, 2023), and infrastructure(Tang
et al., 2018). Furthermore, with the growing demand
for decentralized and distributed learning, compres-
sion techniques that operate in multi-terminal settings
must be considered. We focus on a class of lossy com-
pression techniques based on channel simulation, tar-
geting one-shot or finite block length settings. The
sender, upon observing X ∼ pX(·), communicates a
noisy sample Y ∼ pY |X(.) to the decoder at a rate of
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R bits/sample. In practice, the distribution pY |X(.|x)
is selected to satisfy a variety of constraints e.g., fi-
delity constraint or distribution constraints. In a re-
cent work, Li and El Gamal (2018) propose a method
based on the Poisson functional representation lemma
(PFRL) with near optimal compression rate:

R ≤ I(X;Y ) + log(I(X;Y ) + 1) + 5. (1)

Here I(X;Y ), which denotes the mutual information
between X and Y is well known to be a lower bound
on the compression rate (Cuff (2013); Bennett et al.
(2002)). However PFRL, requires an infinite number
of samples to be generated between the encoder and
decoder. More practical approaches for channel sim-
ulation have been developed using importance sam-
pling (Chatterjee and Diaconis, 2018) for a variety of
applications e.g., neural compression (Flamich et al.,
2020; Theis et al., 2022), federated learning (Isik et al.,
2023; Triastcyn et al., 2021), differential privacy (Shah
et al., 2022), and model compression (Havasi et al.,
2019). We will refer to these approaches as importance
sampling based compression (ISC). In these methods,
the output samples follow a proxy distribution p̃Y |X(·)
whose divergence w.r.t the target distribution pY |X(·)
can be made arbitrarily small, provided that the num-
ber of samples is sufficiently large. Ordered random
coding (ORC, Theis and Ahmed (2022)) is a recently
proposed method in this family that also achieves near-
optimal compression rate in (1). The analysis of com-
pression rate in ORC is based on one-to-one compari-
son of the selected sample index with PFRL.

To our knowledge ISC methods till date have not con-
sidered distributed source coding (DSC) which enables
higher compression rates by exploiting the correlations
between multiple sources (El Gamal and Kim, 2011).
We note that this is particularly relevant in many
machine learning setups (Castiglia et al., 2022; Mital
et al., 2022). While the information-theoretic limits
of DSC have been well studied in classical settings,

∗ Equal Contribution.
† Qualcomm AI Research is an initiative of Qualcomm

Technologies, Inc. and/or its subsidiaries.



Importance Matching Lemma for Lossy Compression with Side Information

0 1 2 3 4
W2(pY , qY )

0.0

0.2

0.4

0.6

0.8

1.0

P
(U

p
6=
U
q)

Y

S

Y

S

pY (Y )/ψY (Y ) qY (Y )/ψY (Y ) {Si, Yi}Ni=1

Figure 1: (Left) Overview of IML: Alice and Bob independently sample YUp , YUq by applying the Gumbel-max trick
on the shared randomness. (Middle) The empirical mismatch probability with respect to the Wasserstein-2 distance
W2(pY , qY ), where pY=N (m, 1), qY=N (−m, 1) and m ∈ [0,∞). (Right) Mechanism of IML: each party scales their

respective importance weights function pi(y)
ψi(y)

and qi(y)
ψi(y)

until one point {Si, Yi} falls on the curve. Top and bottom figures

show the matching and mismatching case respectively.

practical implementations remain challenging. First,
the joint source distributions are often unknown and
need to be learned using data. Second quantization
based approaches for DSC are challenging to imple-
ment in higher dimensions (Zamir and Shamai, 1998)
and are mostly studied in one-dimensional case (Liu
et al., 2006; Chen and Tuncel, 2010; Domanovitz et al.,
2022). The extension of PFRL to DSC settings has
been recently proposed in (Li and Anantharam, 2021)
through the introduction of a new analysis technique
called the Poisson matching lemma (PML). It however
requires an infinite number of samples to be generated
and can be challenging to implement in practice. In
this work, as our main contribution, we introduce a
new theoretical tool called the importance matching
lemma, which enables us to extend ISC to DSC set-
tings with provable guarantees. Our main contribu-
tions are:

• We propose an ISC scheme, which we call commu-
nication efficient importance sampling based com-
pression (CE-ISC). Our scheme is amenable to di-
rect evaluation of the achievable compression rate.
We also discuss a potential extension to the case
of multiple importance sampling.

• We introduce a new analysis tool called the impor-
tance matching lemma (IML), which is the coun-
terpart of PML to importance sampling. This en-
ables us to significantly expand the scope of ISC.
We discuss in detail the application of ISC to DSC
using IML.

• We conduct experimental studies on synthetic
Gaussian sources, distributed compression involv-
ing the MNIST dataset, and a vertical federated
learning setting with CIFAR-10 to demonstrate
the effectiveness of our approach. We propose a
data-driven approach to implement the decoding

rule, and make use of a feedback link from the
decoder to encoder to improve the rate-distortion
performance.

A core technical challenge in our work involves anal-
ysis of self-normalized importance sampling, where
bounds on standard quantities (e.g., bias and variance)
are considerably challenging to characterize (Agapiou
et al., 2017). In our work, we are required to perform
novel analysis of such methods for characterizing the
compression rate in ISC and error probabilities asso-
ciated with IML.

Related Work.

Channel Simulation. Our work falls in the class of ISC
schemes, which include ORC (Theis and Ahmed, 2022)
and minimum random coding (MRC) (Havasi et al.,
2019). Our proposed scheme is different from these
techniques, is amenable to direct evaluation of the
achievable rate and appears compatible with multiple
importance sampling (Elvira et al., 2019). While ISC
schemes are approximate sampling techniques with an
upper bound on the total number of proposal samples,
other methods such as PFRL based sampling (Li and
El Gamal, 2018), A* sampling (Maddison et al., 2014;
Flamich et al., 2022) and rejection sampling (Har-
sha et al., 2007; Flamich and Theis, 2023) are exact
sampling techniques and may require arbitrarily large
number of proposal samples in the worst case.

Distributed Source Coding (DSC). To our knowledge
the only channel simulation technique that extends to
DSC is from Li and Anantharam (2021) discussed pre-
viously. Deep learning based DSC has been consid-
ered in some recent works (Mital et al. (2022); Whang
et al. (2021); Ozyilkan et al. (2023)), which provide
empirical evidence that neural networks could learn
the binning. In contrast, our approach is motivated by
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theoretical analysis of IML and integrates deep learn-
ing to incorporate complex joint distributions. Tra-
ditional information theoretic approaches for one-shot
DSC (Verdú, 2012; Liu et al., 2015; Song et al., 2016)
do not appear amenable to practical implementations.
Finally quantization based approaches for DSC have
several limitations as are already discussed before.

2 COMMUNICATION-EFFICIENT
IMPORTANCE SAMPLING

We introduce our communication efficient ISC scheme,
provide analysis of the achievable compression rate and
discuss an extension to multiple importance sampling.

2.1 Problem Setup

We begin by introducing the setup of approximate
channel simulation under communication constraints.
Let (X,Y ) ∈ X × Y be a pair of random variables
distributed according to pX,Y , with marginal distribu-
tions pX(·) and pY (·), respectively. The encoder ob-
serves a realization x of X ∼ pX . Additionally, there
is a shared source of randomness denoted by W ∈ W,
which is available to both the encoder and the decoder.
We define the mappings f and g for the encoder and
decoder respectively:

f : X ×W → M, (2)

g : M×W → Y, (3)

where M ∈ {0, 1}⋆ denotes the (variable length) mes-
sage that the encoder sends to the decoder and ℓ(M)
denotes the length of message M . A rate-divergence
tuple (R, ϵ̃) is defined to be one-shot achievable if there
exists f, g satisfying:

E[ℓ(M)] ≤ R, (4)

DTV(p̃Y |X(.|x), pY |X(.|x))≤ϵ̃,∀x ∈ X (5)

where p̃Y |X(.|x) denotes the proxy distribution real-
ized by our choice of f and g, while pY |X(.|x) is the
desired target distribution.

2.2 Coding Scheme

The encoder and decoder generate shared randomness
W = {Si, Yi}Ni=1 where Yi ∼ pY (·) and Si ∼ Exp(1)
are sampled in an i.i.d. fashion. The encoder, upon
observing X = x must select an index i ∈ {1, ..., N}
and communicate it such that both (4) and (5) are sat-
isfied. Specifically, the encoding function is described
in the following steps:

1. Index Selection. Upon observing X=x, the en-
coder selects index U by:

U = arg min
1≤i≤N

Si
pY (Yi)

pY |X(Yi|x)
(6)

which is also known as Gumbel-max trick (Mad-
dison et al., 2014).

2. Index Reordering. Instead of directly sending U
to the decoder, which will cost log(N) bits, the
encoder will send its corresponding position K
in the sorted list: Sπ(1)≤Sπ(2)≤ . . .≤Sπ(N), such
that π(K)=U .

3. Entropy Coding. Finally, the encoder convert K
into a bit string M by entropy coding with a Zipf
distribution (Li and El Gamal, 2018, Section 2).

The decoding step g is straightforward. As the sorted
list is both known to the encoder and decoder, the
decoder can recover K (and by so, U) losslessly from
M , and outputs YU .

Note that our index selection in step 1 is the same as in
importance sampling (Havasi et al., 2019). In partic-
ular, given a common sequence of samples Y1, . . . , YN ,
our approach selects the sample Yi with probability:

λi =

{
pY |X(Yi|x)
pY (Yi)

}
/

{
N∑
i=1

pY |X(Yi|x)
pY (Yi)

}
. (7)

Conditioned on the common sequence Y N
1 , our setting

reduces to the exponential functional representation
lemma for discrete alphabets in (Li, 2017, Def. 4.1).
Following their approach, we transmit the position of
the selected index in the sorted list of {Si} in steps 2
& 3. Our construction is different from ORC (Theis
and Ahmed, 2022, Sec. 3.4) that reorders (sorts) the
exponential random variables before the index selec-
tion operation in (6). Interestingly both schemes lead
to the same output distribution when the samples are
generated in an i.i.d. fashion.

Note that the proxy distribution generated by our
scheme is:

p̃Y |X(y|x) = EY1,...,YN

[
N∑
i=1

λi · δ(y − Yi)

]
(8)

where λi are defined in (7). Following prior
works (Havasi et al., 2019; Theis and Ahmed, 2022;
Chatterjee and Diaconis, 2018) the output distribu-
tion can be close to the target distribution pY |X(·) for
sufficiently many samples. In particular, under the
standard assumption:

pY |X(y|x)
pY (y)

≤ ω,∀x, y, (9)

we can construct a N0(ϵ) such that for N ≥ N0(ϵ),
we have that DTV(p̃Y |X(.|x), pY |X(.|x))≤ϵ. A charac-
terization of N0(ϵ) is provided in the Section 7 of the
supplementary material for sake of completeness. We
next provide analysis of the achievable rate.

Theorem 1. Given (X,Y ) ∼ pX,Y , and N,K as in
the scheme in Sec. 2.2, we have that:

E[logK|X = x] ≤ EY N
1

[D(λ||u)] + δ (10)
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where λ = (λ1, . . . , λN ) is defined via (7), D(.||.) is
the KL divergence, u = (1/N, . . . , 1/N) is associated
with the uniform distribution and δ = 1 + log e/e is a
constant. Furthermore,

H[K]≤I(X;Y )+
∆

N
+ log

(
I(X;Y )+

∆

N
+1

)
+4 (11)

where ∆ := ∆(pX,Y ) is a constant defined in the sup-
plementary material via (31) and (32) that does not
depend on N .

We provide the proof of Theorem 1 in the Section 8 in
the supplementary material. While the upper bound
in (10) follows through connection with (Li, 2017,
Chapter 4), the derivation of (11) is complicated by
the normalizing term in the denominator in (7). The-
orem 1 demonstrates that the proposed scheme also
achieves a near optimal compression rate and an ad-
ditive penalty of at most Θ(1/N). We also provide an
alternative bound to (11) in the supplementary mate-
rial in section 9, which is simpler to derive but involves
a multiplicative penalty term.

2.3 Beyond i.i.d. samples

Our discussion so far has assumed that the proposal
samples {Yi} are generated in an i.i.d. fashion from
a distribution pY (·). However in variance reduction
schemes, such as multiple importance sampling (Elvira
et al., 2019), it is required that different samples be
generated from different distributions. As a simple
example, suppose that Y1, . . . , YN̄ are sampled i.i.d.

from p
(1)
Y (·) and YN̄+1, . . . , YN are sampled i.i.d. from

p
(2)
Y (·) where N̄ = N/2 and p

(1)
Y (·) and p

(2)
Y (·) are se-

lected to satisfy pY (y) = 1
2p

(1)
Y (y) + 1

2p
(2)
Y (y). Given

X = x, the probability that the output index K = i in
Multiple Importance Sampling (MIS) is proportional
to λi (see scheme N3 in Elvira et al. (2019)) in (7).
As a result our proposed coding scheme in Section 2.2
can be immediately used as stated. In the rate anal-
ysis, note that the upper bound in (10) in Theorem 1
also applies with the difference that Y N

1 are not i.i.d.

but distributed according to either p
(1)
Y (·) or p

(2)
Y (·).

We discuss further analysis of this specific case in
Section 10 in the supplementary material. We show
that under a simplifying assumption that the denom-
inator in (7) equals its expectation, the distribution
of the output samples equals the target distribution
and the associated compression rate matches ORC.
We also study a numerical example involving a Gaus-
sian mixture model and demonstrate that MIS with
our proposed compression scheme can achieve signifi-
cantly lower bias and variance than the ORC scheme
for a given number of samples.

3 IMPORTANCE MATCHING
LEMMAS

3.1 Importance Matching Lemma

The Poisson Matching Lemma (PML) (Li and Anan-
tharam, 2021) enables the application of Poisson Func-
tional Representation lemma (PFRL) to a broad class
of problems in multi-terminal source and channel cod-
ing with provable guarantees. In this section, we intro-
duce the Importance Matching Lemma (IML), which
enables application of importance sampling to such
settings. We demonstrate the application of IML to
a specific setting of source coding with side informa-
tion in the next section.

Let Y1, . . . , YN be sampled i.i.d. from distribution
pY (·) and let pY |X(·|X = x) and qY |X(·|X = x) be two
conditional distributions. We note that such pY (·) can
be replaced by any distribution over Y such that (9)
is satisfied as our proof does not require any relation
between pY (·) and pY |X(·) to hold. We generate two
indices Up and Uq as follows:

Up = arg min
1≤i≤N

Si

λp
i

, Uq = arg min
1≤i≤N

Si

λq
i

(12)

Where S1, . . . , SN are sampled i.i.d. Exp(1) and λp
i

and λq
i are the importance weight counterparts of (7):

λp
i=

pY |X(Yi|X=x)

pY (Yi)∑N
j=1

pY |X(Yj |X=x)

pY (Yj)

, λq
i=

qY |X(Yi|X=x)

pY (Yi)∑N
j=1

qY |X(Yj |X=x)

pY (Yj)

.

(13)

The indices Up and Uq selected via importance sam-
pling have the same proposal distribution pY (·) but
different target distributions pY |X and qY |X respec-
tively. We bound the error event that {Up ̸= Uq}.
Proposition 1. Letting Ω = {y1, . . . , yN} denote the
sequence of samples:

Pr(Up ̸= Uq|Ω, X = x, Up = k) ≤

1−

1+
pY |X(yk|x)
qY |X(yk|x)

(
1
N

∑N
j=1

qY |X(yj |x)
pY (yj)

)
(

1
N

∑N
j=1

pY |X(yj |x)
pY (yj)

)
−1

. (14)

The proof of Prop. 1 is Section 11 in the supplemen-
tary material. It exploits the fact that conditioned on
the samples Y N

1 , the operation in (12) can be viewed
as sampling over a discrete alphabet with probabili-
ties given by λp

i and λq
i respectively and arguments

as in (Li and Anantharam, 2021) are applicable. Our
main result in this section is the following where the
conditioning on all Yi, except Yk is removed.
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Theorem 2. Define N̄ = N − 1, we have:

Pr(Up ̸= Uq|Yk = yk, Up = k,X = x) ≤

1−
(
1 +

pY |X(yk|x)
qY |X(yk|x)

µyk
(N̄)

)−1 (15)

and µyk
(N̄) is defined via (79)-(81) in Section 12 in

the supplementary material. Note that µyk
(N̄) scales

as Θ(1) as N̄→∞ under some mild assumptions on the
distributions (see Remark 12 in Supplementary Mate-
rial).

The proof of Theorem 2 is in Section 12 in the sup-
plementary material. The main challenge is associated
with the normalizing terms in (13). We also provide
an alternate bound in Section 13 in the supplementary
material that has a shorter derivation, but requires
stronger assumptions on the distribution.

Intuitively, IML bounds the mismatch between the
sampled indices when different target distributions are
used in importance sampling. This is further illus-
trated in Fig. 1. As is the case with PML, it turns out
that in practice we need a conditional version of IML.

3.2 Conditional Importance Matching
Lemma.

Suppose that (Si, Yi)
N
i=1 be sampled i.i.d. as in Sec-

tion 3.1. Let (X,Y, Z) be a triplet of random vari-
ables with a joint distribution pX,Y,Z(·). Let QY |Z(·)
be an arbitrary conditional distribution satisfying
QY |Z(y|z)

PY (y) ≤ω for all (y, z). Given X=x sampled in-

dependently of (Si, Yi)
N
i=1, suppose that we sample

Y = YUP
using importance sampling i.e., we select

UP=arg min
1≤i≤N

Si

λP
i

, λP
i =

pY |X(Yi|X=x)

pY (Yi)∑N
j=1

pY |X(Yj |X=x)

pY (Yj)

. (16)

Next, given X = x and Y = y we generate a sample
Z ∼ pZ|X,Y (·|X = x, Y = y) and note that

Z → (X,Y ) → (Si, Yi)
N
i=1 (17)

is satisfied by construction. Given a realization Z = z
we sample

UQ = arg min
1≤i≤N

Si

λQ
i

, λQ
i =

QY |Z(Yi|Z=z)

pY (Yi)∑N
j=1

QY |Z(Yj |Z=z)

pY (Yj)

. (18)

Theorem 3. The error probability satisfies:

Pr (UP ̸= UQ|UP = k,X = x, Z = z,Ω) ≤

1−

1+
pY |X(yk|x)
QY |Z(yk|z)

(
1
N

∑N
j=1

QY |Z(yj |z)
pY (yj)

)
(

1
N

∑N
j=1

pY |X(yj |x)
pY (yj)

)
−1

,
(19)

where Ω = {y1, . . . , yN}, and furthermore,

Pr(Up ̸= Uq|Yk = yk, Up = k,X = x, Z = z) ≤

1−
(
1 + µyk

(N̄)
pY |X(yk|x)
QY |Z(yk|z)

)−1

. (20)

where µyk
(N̄) defined via (109)-(111) in the supple-

mentary material, scales as Θ(1) when N̄ → ∞ under
some mild assumptions (c.f. Remark 14).

The proof of Thm. 3 is in Section 14 in the supplemen-
tary material. As discussed in Remark 14 there, under
mild conditions on the distributions, we can exhibit an
N1(ϵ) such that

µy(N) ≤ 1 + ϵ, ∀N ≥ N1(ϵ) (21)

In the special case Z = X, (19) reduces to (14) in
Prop. 1. Likewise (20) reduces to (15) in Theorem 2.
The value of Theorem 3 is that it extends IML to any
Z that satisfies (17). In other words, the conditional
version of IML is an extension of Theorem 2 where
the decoder is revealed an observation Z regarding the
sample Y=YUP

selected by the encoder, and improves
the decoding rule (cf. (18)) by making use of the pos-
terior distribution QY |Z(·). We demonstrate an appli-
cation of this result in the next section.

4 LOSSY COMPRESSION WITH
SIDE-INFORMATION

4.1 Problem Setup

Just as the Poisson Matching Lemma (PML) has
broad applications in multi-terminal source and chan-
nel coding settings, IML developed in Section 3.1 can
have analogous applications using importance sam-
pling. We demonstrate the application of IML to the
classical problem of lossy compression with side infor-
mation at the decoder (Wyner and Ziv, 1976). As illus-
trated in Figure 2(left), a source sample V ∼ pV (·) ob-
served at the encoder, must be lossily compressed into
a bit sequence of average rate R bits/sample and sent
to the decoder. Besides the information from the en-
coder, the decoder also has access to the side informa-
tion T ∼ pT |V (.|V = v), both of which are employed
to output W that is required to be approximately
sampled from a conditional distribution pW |V (·|v). In
practice this conditional distribution can be selected
to satisfy an average distortion constraint E[d(V, V̂ )],
where V̂ is the final reconstruction expressed as a func-
tion of W and T , i.e. V̂ = g̃(W,T ).

We present a scheme based on importance sampling
and present the error analysis by making use of IML
in the previous section.
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Figure 2: (Left) Source coding with side information at the decoder with conditional IML. (Right) Decoding mechanism:

the encoder scales
pW |V (w|v)
ψW (w)

and selects WUp(blue circle). Left sub-figure: the decoder selects incorrect indices by purely

scaling
pW |T (w|t)
ψW (w)

(equivalently, rate R=0). Right sub-figure: we generate extra one-bit information li for each codeword

index by randomly marking it either a triangle (li=0) or a circle (li=1). Upon receiving lUP =1 from the encoder, the
decoder eliminates all indices marked by triangle and correctly decode the index among the circles.

4.2 Coding Scheme

Let pW (·) be the marginal distribution of W and
pW |T (w|t) =

∑
v pW |V (w|v)pV |T (v|t) be the condi-

tional of W given T . Following the construction in
Section 2.2, we sample W1, . . . ,WN i.i.d. from the dis-
tribution pW (·). In addition, let L > 0 be an inte-
ger and let pl(·) be uniform over the set of integers
{1, 2, . . . , L}. We generate l1, . . . , lN i.i.d. from pl(·).
Let us define Y = (W, l) with pY (y) = pW (w)pl(l) and
note that Yi = (Wi, li) is sampled i.i.d. from pY (·).
Further let X = V and pY |X(w, l|v) = pW |V (w|v)pl(l)
be the target distribution used at the encoder with
the knowledge of v. Finally we let S1, . . . , SN be a
sequence of i.i.d. exponential random variables Exp(1)
known to both the encoder and the decoder. Follow-
ing (12), the encoder selects an index Up given by:

Up=arg min
1≤i≤N

Si

pY |X(Yi|v)
pY (Yi)

=arg min
1≤i≤N

Si

pW |V (Wi|v)
pW (Wi)

.

(22)

The encoder, in turn, transmits lUp
∈ {1, 2, . . . , L}

to the decoder using logL bits. In defining the de-
coding rule, we let Z = (T, lUp). and note that
Z → (X,YUp

) → (Si, Yi)
N
i=1 is satisfied. Let

QY |Z(y|z) = Q(W,l)|(T,lUp )
(w, l|t, lUp

) (23)

= pW |T (w|t)I(l = lUp
) (24)

be the distribution used at the decoder. Follow-
ing (16), the decoder outputs an index Uq given by:

Uq = arg min
1≤i≤N

Si

QY |Z(Yi|t,lUp )

pY (Yi)

= arg min
1≤i≤N

Si

pW |T (Wi|t)I(li=lUp )

pW (Wi)pl(li)

(25)

The decoder finally outputs Ŵ=WUq as the sample.

Since the encoder selects the sample WUp
using impor-

tance sampling (22), it follows from the discussion in

Section 2.2 that for sufficiently largeN the distribution
pWUp |V (·) can be arbitrarily close to the target distri-

bution pW |V (·). The error probability can be bounded
as below:

Proposition 2. For sufficiently large N ,

Pr(Up ̸= Uq) ≤

EV,W,T

[
1−

(
1 + (1 + ϵ)L−12i(W ;V |T )

)−1
]

(26)

where iW,V |T (w; v|t) = log
pW |V (w|v)
pW |T (w|t) is the conditional

information density and recall T → V → W .

The proof of Prop. 2 is in Section 15 in the supple-
mentary material. Note that (26) provides a tradeoff
between the compression rate R= logL and the error
probability. The larger the value of R, the smaller
will be the error probability. We illustrate how this
decoding mechanism reduces the error in Figure 2
(right) for the case R=0 and R=1. Similar to re-
sults in Li and Anantharam (2021), we can extend
this result to bound the excess distortion probability
Pe=Pr(d(V, V̂ )>D) where V̂=g̃(WUq

, T ) is the recon-
struction output by the decoder and d(., .) is the dis-
tortion (Section 16 in the Supplementary).

Remark 1. Note that the error probability directly de-
pends on the compression rate R = logL and the con-
ditional information density i(W ;V |T ). Provided that
N is sufficiently large (which is necessary to track the
target distribution in ISC) it only exhibits a second-
order dependence on N via the ϵ factor.

Remark 2. In some of our experiments, we will
consider compressing k i.i.d. samples together. The
error probability can be recovered by setting L = 2k·R

and i(W k;V k|T k) =
∑k

i=1 i(Wi;Vi|Ti).

4.3 Decision Feedback Based Scheme

In practice, a decoding error from (26) can result in
high average reconstruction distortion. This motivates
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Figure 3: Left: Empirical matching probabilities with dif-
ferent target distribution and number of proposals. Right:
effects of compressing multiple samples jointly on the
matching probability (Best view in screen).

us to use feedback communication to correct the er-
rors and improve the rate-distortion performance as
follows:

1. Index Selection. The encoder communicates
log2(L) least significant bits (LSB) of the selected
index Up, see (22), to the decoder.

2. Decoding and Feedback. The decoder outputs Uq

using (25) and send log2(N/L) most significant
bits (MSB) to the encoder.

3. Re-tranmission. From the feedback MSB, if the
index is correct, the encoder responds with an ac-
knowledgment bit. Otherwise, it sends the MSB
of its selection to the decoder.

We verified in our experiments that the use of LSB in-
stead of random bits in step 1 did not have any notice-
able difference. While the feedback rate of log2(N/L)
bits guarantees that the encoder can perfectly locate
the decoded index, we experimentally observe that we
can reduce it by sending a hashed value of MSB, while
tolerating a slight increase in distortion. Note that this
small hash of the decoded index requires significantly
fewer bits than full side information (e.g., by > 500
times in Sec 5.2).

Our rate-distortion analysis uses the total length of the
messages in both index selection and re-transmission
(including any acknowledgement messages) for com-
puting the rate. We do not include the rate of the
feedback message, however. This can be justified if
there is an asymmetric cost in communication in the
forward and reverse directions, e.g., wireless channels.
For details about the rate distortion analysis of this
scheme, see Section 17 in the supplementary material.

5 EXPERIMENTS

We experimentally study ISC schemes for the setup
in Section 4 with different datasets as discussed be-
low. For real-world datasets, we note that the decod-

ing step requires computing log pW (Wi)
pW |T (Wi|t) , which can

be learned by training a neural estimator (Hermans
et al., 2020). Further details are available in Section
24 in the supplementary.
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Figure 4: Analysis and rate-distortion performance of dif-
ferent IML schemes. (Best view in screen)

5.1 Synthetic Gaussian Source

For the setup in Section 4.1 we assume that the source
V∼N (0, σ2

V =1.0) and the side information T = V + ζ
where ζ∼N (0, 0.01), i.e pT |V (.|v)=N (v, σ2

T |V = 0.01).
Furthermore, the encoder and decoder have access to
the shared randomness (Si, Yi, ℓi)

N
i as described pre-

viously. The decoder must ideally output W ∼ pW |V ,
where pW |V (·|v)=N (v, σ2

W |V ). The encoder follows

(22) to select the index UP and transmit lUp
to the

decoder, using log2(L) bits. Upon receiving lUp , the
decoder selects its index following (25) and outputs
Ŵ=WUq

. Finally, note that in this scenario, a closed-
form solution for pW |T exists, and a refined reconstruc-

tion V̂=g̃(Ŵ , T ) can be generated with inverse vari-
ance weighting (see Section 24 in the supplementary).

Figure 3 illustrates the empirical matching probabil-
ity: pm = Pr(Up = Uq) in our setup. In the left
figure, we plot pm as a function of rate for different
choices of σ2

W |V and different number of proposal can-
didates N . We note that provided N is sufficiently
large (which is required for guaranteeing p̃W |V ≈ pW |V
in all ISC schemes), it has a negligible effect on pm
as noted in Remark 12. We also note that consis-
tent with the theoretical analysis (1) increasing the
rate for a fixed σ2

W |V increases pm and (2) increas-

ing σ2
W |V with a fixed rate increases pm. Finally in

the right sub-figure in Fig. 3, we also demonstrate the
behaviour of pm when compressing multiple (say k)
independent source samples. In the regime where pm
(and correspondingly R) is large, which is of practical
interest, we observe that compressing k > 1 indepen-
dent samples improves pm. This effect is also reflected
in our theoretical analysis in Remark 2. In particular if
we approximate

∑k
i=1 i(Wi;Vi|Ti) by the expectation,

kI(W ;V |T ), then the error probability is decreasing
in k provided R > I(W ;V |T ).
Figure 4a presents the rate-distortion (RD) trade-off
with and without feedback when compressing either a
single sample or 5 samples together (which we will refer
to as 1D and 5D respectively). First, note that there is
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Figure 5: Distributed Image Compression with MNIST. In
(a), the orange curve is IML without feedback and the per-
formance is restricted to 8 bits due to limited computing re-
sources. In (b), the gray area denotes the side-information
sent to the decoder, which is 0 at the encoder side.

a substantial improvement in the RD trade-off in the
5D case. It is worth mentioning that each operating
point in the figure is such that compressing multiple
samples is beneficial (see Fig. 3). Secondly, when con-
sidering the 1D Gaussian case, feedback demonstrates
a significant enhancement in performance, albeit at
the cost of an additional acknowledgment bit required
in the re-transmission step. The overhead of the ac-
knowledgment bit gets amortized over 5 samples in the
5D case, resulting in the overhead of 0.2 bits/sample.
As such when comparing the 1D and 5D compression
schemes with feedback, the consistent improvement in
the latter can be attributed to both the reduced over-
head in the acknowledgment bit, as well as improved
matching probability. Note that the feedback com-
munication here is perfect as described previously in
Section 4.3.

We show the effects of different feedback rates on the
RD tradeoffs in Figure 4b for the 5D case. Note that
1 and 5 bits are not sufficient to recover the index
since we use N=227 and the maximum value of L is
215. Nevertheless, they can correct most of the de-
coding error as the result shows. With 1 bit of feed-
back, we can offset the penalty of the overhead in re-
transmission and with 5 bit feedback, the performance
remains close to that achieved with full feedback (at
least 12 bits). This demonstrates that limited number
of feedback bits may also be sufficient in practice.

5.2 Distributed Image Compression

We validate the efficacy of our method through a dis-
tributed image compression setting (Whang et al.,
2021; Mital et al., 2022). We consider the MNIST
dataset where the side information is the cropped
bottom-left quadrant of the image, see Figure 5b, while
the source image to be reconstructed is the remaining.

Directly sending the noisy source image as in the Gaus-
sian case will incur high complexity. Instead, we rely
on the learned compression approach, where a β-VAE
(Higgins et al., 2016) is trained to first project the
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Figure 6: VFL with CIFAR-10. Left: Rate-Accuracy per-
formance. Right: Covariance matrix between the source
and side information’s embeddings (V and T respectively).

source image to the embedding vector of size 4. This
vector, together with the side information, is then fed
into a neural network to reconstruct the source im-
age, where the whole process is trained end-to-end.
Once the β-VAE converges, we train a neural estima-
tor (details in Section 23 in the supplementary) for
the decoding process at test time, where the proposal
distribution of the 4D embedding is the prior distri-
bution used in β-VAE. At test time, we deploy the
feedback process described in Section 4.3. Note that
the variance of the target distribution is dependent on
the input and we vary the β factor to obtain different
rate-distortion tradeoffs. Also, we use a fixed trans-
mission size of 5 bits per feedback, irrespective of the
number of samples to be compressed.

We compare our approach with NDIC (Mital et al.,
2022), a method that enhances compression rates in
this task by modeling the common information where
we also set its bottleneck dimension to 4. Figure 5a
shows that our approach achieves comparable perfor-
mance with a single sample (4D vector) while consis-
tently outperforming NDIC when jointly compressing
two samples (8D vector), as in the Gaussian case. It is
also worth highlighting that due to the high dimension-
ality of the side information (14×14), employing clas-
sical 1D binning is not straightforward. Unlike NDIC
which heavily relies on the learning capability of neu-
ral networks for encoding and decoding, our scheme
explicitly exploits the statistical correlation between
the source and side information and gives stronger RD
performance. Figure 5b shows examples of when the
decoder selects the correct/incorrect index, showing
that the neural estimator selects messages that are se-
mantically related to the side information. Finally, we
provide additional experiment with different feedback
rates in Section 24 in the supplementary material.

5.3 Vertical Federated Learning

5.3.1 CIFAR-10 Dataset.

We demonstrate the applicability of our method to
the compressed-vertical federated learning setting pro-
posed by Castiglia et al. (2022), whose work we will re-
fer to as C-VFL. Specifically, given a pre-trained model
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(e.g. the neural networks at the server and each party),
we want to exploit the statistical correlation between
the features or learned embeddings to efficiently com-
press and therefore save communication costs from
each party to the server during inference, while also
minimizing the accuracy drop. We adapt the setup
and network architecture in C-VFL for CIFAR-10 to
the two-party scenario, where each party is assigned
a non-overlapping quadrant of an input image. Each
party then transforms their given quadrant into an em-
bedding of dimension 4. Assuming perfect transmis-
sion, one party’s embedding is compressed losslessly
(32 bits per dimension) and treated as side informa-
tion, while the other party’s embedding is compressed
in a lossy manner. Note that we exclude the possibility
of splitting images into half since the side information
alone in this case achieves near-optimal accuracy, ren-
dering the source information unnecessary, and vice
versa. This lets us evaluate the effectiveness of differ-
ent compression methods when one party’s informa-
tion alone is insufficient for optimal accuracy.

Following our CE-IS approach, we compress the em-
bedding by communicating its noisy version. Here,
each of the 4 dimensions is perturbed with indepen-
dent Gaussian noise with zero mean and the same vari-
ance1, whose value is varied to obtain different rate-
accuracy tradeoffs. To further the efficiency, similar
to the MNIST experiment, we exploit the correlation
from the side information by training a neural esti-
mator (see Supplementary, Section 23) and use the
feedback scheme to communicate the perturbed em-
bedding. Note that we employ 4-bit feedback, which
is sufficient for locating the index in this experiment.

We compare our method with scalar and vector quanti-
zation baselines, proposed by Castiglia et al. (2022). In
scalar quantization, each dimension of the 4D embed-
dings is discretized, while in vector quantization, a 2D
lattice is constructed for every 2 dimensions. In Figure
6 (left), we observe that our method outperforms the
baselines, achieving near-optimal accuracy of 81.24%
with ∼11 bits, while both vector and scalar quantiza-
tion requires up to ∼15 bits for similar accuracy. This
improvement can be attributed to the utilization of the
correlation structure between the source and side in-
formation, as depicted in the covariance matrix in the
right figure. These results further support the effec-
tiveness of our method, even when the objective of the
task considered is not related to source reconstruction.

5.3.2 UCI Breast Cancer Dataset.

We compare our IML method with scalar quantization
on the Breast Cancer dataset (Wolberg and Street,

1For each dimension, before compressing, we shift and
scale their values to zero-mean and unit variance. This
helps us avoid searching the variance for each dimension.
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Figure 7: VFL with Breast Cancer Dataset. Left: Rate-
Accuracy performance. Right: Covariance matrix between
the source and side information’s features.

1995). For this task, we use the following features
at the sender: “mean texture”, “mean area”, “mean
smoothness”, “mean concavity”, and the following as
side information, “mean symmetry”, “mean fractal di-
mension”, “texture error”, “area error”. Here, we di-
rectly compress the features at the sender and the com-
bined input features (size of 8) will be fed into a neural
network consisting of 2 hidden layers of size 8 (with
ReLU activation) and an output layer of size 1. The
results are shown in Figure 7, which shows that IML
consistently outperforms scalar quantization. On the
other hand, our scheme with the current hyperparam-
eter tuning did not outperform vector quantization in
this experiment. Results are averaged over 10 runs.

6 CONCLUSIONS

We introduce a new one-shot ISC scheme with theo-
retical guarantees for lossy compression with side in-
formation at the decoder. Different from the previ-
ous work by (Li and Anantharam, 2021), we introduce
the importance matching lemma that quantifies the
influence of the number of proposals N on the mis-
match probability. We also present a detailed study of
synthetic Gaussian sources to validate our theoretical
results. On the practical side, we present an algo-
rithm that uses neural networks to enable the exten-
sion of IML to complex probability distributions. We
then demonstrated its effectiveness in the task of dis-
tributed image compression with MNIST and vertical
federated learning with CIFAR-10.

For future research, an important direction is to fur-
ther scale and extend our approach to other DSC and
machine learning settings. We note that it may be
possible to extend this method to higher dimensional
source models, by employing similar techniques pro-
posed by Havasi et al. (2019) for model compression.
Specifically, one can split source vectors into k smaller
parts and transmit them separately. This can reduce
the proposals by roughly a factor of 2O(k) but increase
the decoding error probability. Finally, another av-
enue for exploration is the elimination of feedback for
latency reduction.
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(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]
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7 Output Distribution of Importance Sampling

The result in this section has already been shown in prior works (Havasi et al., 2019; Theis and Ahmed, 2022;
Chatterjee and Diaconis, 2018). In particular, following (Theis and Ahmed, 2022, Corollary 3.2), we have that,
for each x, if we set:

N = 2[DKL(pY |X(·|x) || pY (·))+t] (27)

for any t ≥ 2 log(e)/(e), thenDTV(p̃Y |X(.|x), pY |X(.|x))≤4ϵ, where recall that p̃Y |X(.|x) is the output distribution
of the importance sampling scheme as defined in (8) in the main paper. Here ϵ is given by:

ϵ = 2−t/8+
√
2 exp

(
− 1

4B2

(
t/2− log e

e

)2
)

(28)

and B = logω, where ω is defined in (9) in the main paper. Thus for any given ϵ > 0, we can construct a t(ϵ)
such that selecting N ≥ N(x, ϵ), where

N(x, ϵ) = 2[DKL(pY |X(·|x) || pY (·))+t(ϵ)]

guarantees that DTV(p̃Y |X(.|x), pY |X(.|x))≤4ϵ. Finally since this bound must hold for every x it suffices to take
N0(ϵ) = maxx N(x, ϵ).

8 Proof of Theorem 1

For convenience we re-state the Theorem below:

Theorem (Restatement of Theorem 1 in main paper). Given (X,Y ) ∼ pX,Y , and N,K are defined as in the
scheme in Sec. 2.2 in the main paper, then we have that:

E[logK|X = x] ≤ EY N
1

[D(λ||u)] + δ (29)

where λ = (λ1, . . . , λN ) is defined in (7) (in the main paper), u = (1/N, . . . , 1/N) is associated with the uniform
distribution and δ = 1 + log e/e is a constant. Furthermore,

H[K]≤I(X;Y )+
∆

N
+ log(I(X;Y )+

∆

N
+1)+4, (30)

where ∆ := ∆(pX,Y ) is a constant defined via (31) and (32) (below) that depends on the distributions pY |X(·|x),
pY (·) and ω in (9), but not on N .

Here we introduce:

∆ = 6(ω − 1) logω + EX∼pX(·)
[
α(pY (·), pY |X(·|X = x))

]
(31)

and

α(pY (·), pY |X(·|x)) = 2(ω − 1) + 2
√
ω − 1(d3(pY (·)||pY |X(·|x))− d22(pY (·)||pY |X(·|x))) 1

2

+ 4ω · d2(pY (·)||pY |X(·|x)), (32)
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and finally

dN+1(pY (·), pY |X(·|X = x)) = EY∼pY (·)

[
pNY (·)

pNY |X(·|X = x)

]
, (33)

for each N ≥ 1.

8.1 Proof of (29) (Eq. (10) in main paper)

We start with the proof of (29). Following the description of the coding scheme in Section 2.2 in the main paper,
we note the following: conditioned on Y n

1 = yn1 , our construction is equivalent to channel simulation over a
discrete alphabet

Ω = {y1, . . . , yN} (34)

where the probability of selecting yi must equal:

λi =

{
pY |X(yi|x)
pY (yi)

}
/

{
N∑
i=1

pY |X(yi|x)
pY (yi)

}
. (35)

The index selection rule i.e., (6) in Section 2.2 in the main text and the associated compression scheme is
equivalent to the construction of the Exponential Function Representation Lemma (Li, 2017, Chapter 4) which
is summarized below.

1. Input: Ω = {y1, . . . , yN} is a discrete alphabet, µ(·) is a proposal distribution over Ω known to both the
encoder and the decoder while ν(·) is a target distribution only known to the encoder.

2. Step 1: The encoder and decoder sample S1, . . . , SN i.i.d. from Exp(1) distribution using shared random-
ness.

3. Step 2: The encoder and decoder compute ϕi =
Si

µ(yi)
and sort them so that:

ϕπ1
≤ ϕπ2

. . . ≤ ϕπN
.

4. Step 3: Given ν(·), the encoder computes

I = arg min
1≤i≤N

Si

ν(yi)

and transmits index K such that I = πK .

5. Analysis: Following the analysis in (Li, 2017, Chapter 4) we can show that with the selected index I we
have yI ∼ ν(·) and furthermore

E[logK] ≤ D(ν(·)||µ(·)) + log e

e
+ 1︸ ︷︷ ︸

=δ

. (36)

We provide a proof of (36) for completeness in Section 18 in this document.

Note that our proposed scheme is equivalent to the exponential functional representation lemma over the discrete
alphabet Ω where the proposal distribution µ(·) = u is the uniform distribution over all N samples and the target
distribution ν(·) = (λ1, . . . , λN ) is based on (35). It follows that the transmitted index K satisfies:

E[logK|Y N
1 = yn1 , X = x] ≤ D(λ||u) + δ (37)

where λ = (λ1, . . . , λN ), with λi defined in (35) and u = (1/N, 1/N, . . . , 1/N) is the uniform distribution. Taking
expectation w.r.t. Y N

1 completes the proof.
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8.2 Proof of (30) above (Eq. (11) in main paper)

We will provide some intuition behind the proof under certain heuristic assumptions. First note that:

EY N
1

[
N∑
i=1

λi log
λi

ui

]
(38)

= EY N
1

[
N∑
i=1

λi log(Nλi)

]
(39)

=

N∑
i=1

EY N
1

[λi log(Nλi)] (40)

= NEY N
1
[λ1 log(Nλ1)] = EY N

1
[Nλ1 log(Nλ1)] (41)

The last step follows from symmetry since Y1, . . . YN are sampled i.i.d. from pY (·).
Next observe that for each i = 1, 2, . . . N we have that

EYi∼PY (·)

[
PY |X(Yi|x)
PY (Yi)

]
=

∫
y

PY (y)
PY |X(y|x)
PY (y)

dy =

∫
y

PY |X(y|x) = 1.

Also since Y1, . . . YN are sampled i.i.d. it follows by law of large numbers that 1
N

∑N
i=1

PY |X(Yi|x)
PY (Yi)

→ 1 as N → ∞.

Note the followings heuristic approximation:

Nλ1 =

pY |X(Y1|x)
pY (Y1)

1
N

∑N
i=1

pY |X(Yi|x)
pY (Yi)

≈
pY |X(Y1|x)

pY (Y1)

1
N

∑N
i=2

pY |X(Yi|x)
pY (Yi)

≈ N

N − 1

pY |X(Yi|x)
pY (Yi)

(42)

In turn, for large N by assuming N
N−1 ≈ 1 we have that

EY N
1
[Nλ1 log(Nλ1)] ≈ EY1

[
pY |X(Y1|x)
pY (Y1)

log
pY |X(Y1|x)
pY (Y1)

]
= D(PY |X(·|x)||PY (·)) (43)

Thus it shows that under the above approximations E[logK] is upper bounded by EX [D(PY |X(·|x)||PY (·))] =
I(X;Y )+ δ. Finally as in (Li and El Gamal, 2018) the upper bound on E[logK] can be converted into an upper
bound on H(K) using the maximum entropy theorem:

H(K) ≤ E[logK] + log(E[logK] + 1) + 1, (44)

which will complete the proof.

In establishing (30) we formalize the heuristic argument by adding a penalty term that scales as O(1/N). In
particular we will show that:

Proposition 3. For any N ≥ 1 we have that:

EY N
1

[
N∑
i=1

λi log
λi

ui

]
≤ D(pY |X(·|x)||pY (·)) +

6(ω − 1) logω

N
+

α(pY (·), pY |X(·))
N

(45)

Note that upon taking expectation with respect to X on both sides in (45) and using (37) we have that:

E[logK] ≤ I(X;Y ) +
∆

N
+ δ (46)

where

∆ = 6(ω − 1) logω + EX∼pX(·)
[
α(pY (·), pY |X(·|X = x))

]
(47)
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Finally using the maximum entropy theorem as in (Li and El Gamal, 2018) we can show that:

H(K) ≤ I(X;Y ) +
∆

N
+ log

(
I(X;Y ) +

∆

N
+ 1

)
+ 4, (48)

which completes the proof of (30).

It thus remains to provide a proof of Prop. 3. The proof is rather long and the main challenge is to handle the
normalizing term in the expression for λi carefully. It is presented in Section 19 in this document.

9 Alternative Bound for Eq. (11) in Theorem 1 in the main paper

We establish the following alternate upper bound on H(K), which is the counterpart of (30). For any ϵ > 0, we
have:

H(K) ≤ αN (ϵ)I(X;Y ) + βN (ϵ) + log (αN (ϵ)I(X;Y ) + βN (ϵ) + 1) + 4 (49)

where

αN (ϵ) =
N

(N − 1)(1− ϵ)
(50)

and

βN (ϵ) =
N

(N − 1)(1− ϵ)
log

N

(N − 1)(1− ϵ)
+N logN exp

(
−2(N − 1)ϵ2/ω2

)
(51)

Note that the upper bound in (49) involves a multiplicative constant for I(X;Y ) and appears weaker than the
bound in (11) in main paper. However by setting ϵ → 0 and N → ∞ such that Nϵ2 → ∞ we can have αN (ϵ) → 1
and βN (ϵ) → 0, so that we can also attain the same rate as in Theorem 1 when N → ∞.

The key step in the following proposition:

Proposition 4. We have that for any ϵ > 0

EY N
1

[
N∑
i=1

λi log
λi

ui

]
≤ αN (ϵ)D(pY |X(·|x)||pY (·)) + βN (ϵ). (52)

The proof of Prop. 4 is relegated to Section 20 in this document. Note it follows from Prop. 4,

E[logK|X = x] ≤ αN (ϵ)D(pY |X(·|x)||pY (·)) + βN (ϵ), (53)

and thus we have:

E[logK] ≤ αN (ϵ)I(X;Y ) + βN (ϵ). (54)

The upper bound in (54) leads to an upper bound on H(K) as in the previous section. That argument is similar
and will not be repeated.

10 Multiple Importance Sampling

10.1 Analysis

We consider the setting discussed in Section 2.3 in the main text. We generate our samples as follows:



Buu Phan∗, Ashish Khisti∗, Christos Louizos

• Y1, . . . , YN̄ are sampled i.i.d. from p
(1)
Y (·)

• YN̄+1, . . . , YN are sampled i.i.d. from p
(2)
Y (·)

where we select p
(1)
Y (·) and p

(2)
Y (·) to satisfy: pY (y) =

1
2p

(1)
Y (y) + 1

2p
(2)
Y (y).

Given X = x, the index K in Multiple Importance Sampling (MIS) is selected Elvira et al. (2019) using the
following probability distribution:

Pr(K = i) = λi =

pY |X(Yi|X=x)

pY (Yi)∑N
j=1

pY |X(Yj |X=x)

pY (Yj)

(55)

We perform approximate analysis assuming that N is sufficiently large and that we can approximate

N∑
j=1

pY |X(Yj |X = x)

pY (Yj)
≈ N, (56)

so that

λi ≈
1

N

pY |X(Yi|X = x)

pY (Yi)
. (57)

The above approximation is justified by noting that for i = 1, 2, . . . , N̄ we have that:

1

N

N̄∑
i=1

EYi,Yi+N̄

[
pY |X(Yi|X = x)

pY (Yi)
+

pY |X(Yi+N̄ |X = x)

pY (Yi+N̄ )

]
=

1

2

∫
y

pY |X(y|x)
pY (y)

(
p(1)(y) + p(2)(y)

)
dy = 1. (58)

We argue that under the simplifying assumption (57), the proxy distribution is close to the target distribution.
Indeed, note that from (8) in the main text

p̃Y |X(y|x) = EY1,...,YN

[
N∑
i=1

λi · δ(y − Yi)

]
(59)

≈ 1

N
EY1,...,YN

[
N∑
i=1

pY |X(Yi|X = x)

pY (Yi)
· δ(y − Yi)

]
(60)

=
1

N

N∑
i=1

∫
yi

pY |X(yi|X = x)

pY (yi)
pY (yi)δ(y − yi) (61)

= pY |X(y|X = x). (62)

Thus the distribution of the output samples will be close to the target distribution. For the approximate rate
analysis, we note that the proof in Section 8.1 in this document still applies and we have:

E[logK|X = x] ≤ EY1,...,YN
[D(λ||u)] + δ (63)

where again we have

λi =

pY |X(Yi|X=x)

pY (Yi)∑N
j=1

pY |X(Yj |X=x)

pY (Yj)

, i = 1, 2, . . . , N



Importance Matching Lemma for Lossy Compression with Side Information

4 6 8 10 12 14 16

Number of Proposal

100

101

102

103

104

105
E

(X
−
Y

)2

CE-IS (non i.i.d proposals)

ORC (i.i.d proposals)

Target Distortion

101 102 103

Number of Proposal

1.8

2.0

2.2

2.4

2.6

2.8

3.0

H
(K

)

CE-IS (non i.i.d proposals)

ORC (i.i.d proposals)

4 6 8 10 12 14 16

Number of Proposal

101

103

105

107

109

1011

V
a
r[

(X
−
Y

)2 ]

CE-IS (non i.i.d proposals)

ORC (i.i.d proposals)

Target Variance

Figure 8: Multiple Importance Sampling. From left to right: expected distortion, distortion variance, and compression
rate as a function of the number of proposals, N . MIS exhibits faster convergence to the target levels while maintaining
a comparable compression rate to ORC. We set m = 512 and D = 1.

and u denotes the uniform distribution. Now note that:

EY1,...,YN
[D(λ||u)] = EY1,...,YN

 N̄∑
i=1

(
λi logNλi + λi+N̄ logNλi+N̄

) (64)

≈ EYi,Yi+N̄

[
1

2

pY |X(Yi|X = x)

pY (Yi)
log

pY |X(Yi|X = x)

pY (Yi)

+
1

2

pY |X(Yi+N̄ |X = x)

pY (Yi+N̄ )
log

pY |X(Yi+N̄ |X = x)

pY (Yi+N̄ )

]
(65)

= D(pY |X(·|X = x)||pY (·)) (66)

Thus to the first order approximation in N , the MIS scheme achieves the same compression rate as the IS scheme.

10.2 Numerical Example

We demonstrate the advantage of our proposed over ORC through a numerical example. We assume that the

source sampleX is a mixture of two Gaussians: pX(x) = 1
2p

(1)
X (x)+ 1

2p
(2)
X (x), where we have p

(1)
X (x) = N (m, 1) and

p
(2)
X (x) = N (−m, 1). The conditional distribution of Y given X is given by Y = X+ζ, where ζ ∼ N (0, D). Note

that we can also express the marginal distribution of Y as pY (y) =
1
2p

(1)
Y (y)+ 1

2p
(2)
Y (y) where p

(1)
Y (y) = N (m, 1+D)

and p
(2)
Y (y) = N (−m, 1+D). In this example, we setm = 512, D = 1 and average our results over 220 simulations.

In Figure 8, given a source sample X at the encoder and output Y at the decoder, we compute E[(Y − X)2],
Var((Y −X)2) as well as the compression rate for our proposed scheme (computed from the index histogram)
and ORC (with i.i.d. samples from pY (·)) for a different number of candidate proposals. Here, E[(Y −X)2] is
the expected distortion, and Var((Y − X)2) is the distortion variance and is equal to D and 2D2 respectively
when p̃Y |X(.|x) = pY |X(.|x) for all x, which we refer to as target distortion and target variance. We observe that
while both schemes achieve a similar compression rate, our proposed scheme outperforms ORC in other metrics
indicating that it more closely approximates the target distribution pY |X(.|x). This occurs because when a small
number of i.i.d proposals N is considered, there is a high probability that all the proposals are sampled from
different modes of the source variable X. This probability is 2−(N+1) and can result a significant distortion in

the output. The extent of this distortion is primarily determined by the distance between the two modes p
(1)
X (.)

and p
(2)
X (.) of pX(.), which is 4m2 in this example. On the other hand, such probability is 0 in our MIS scheme,

enabling us to achieve a better convergence rate in this example.

In Figure 9, we show that when the proposals {Yi}N1 are non-i.i.d, ORC is unable to simulate the target distri-
bution pY |X(.|x) properly. In this example, for each figure, we fix a source sample X = x and plot the histogram
of the obtained samples Y ∼ p̃Y |X(.|x), from multiple sets of non-i.i.d proposals. We set N = 512 in this case

and refer to p
(1)
X (.) = N (m, 1) and p

(2)
X (.) = N (−m, 1) as the positive and negative mode respectively. Figure 9

plots and compares the simulated histogram of our method CE-IS and ORC in the case where X is from the
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Figure 9: ORC does not simulate the target distribution properly in the case of non-i.i.d proposals. (Left) When X = x
is from the positive mode, i.e. x = 512.88 in this case, ORC can simulate the p̃Y |X(.|x) approximately close to the target
pY |X(.|x). (Right), X = x is from the negative mode, i.e. x = −509.93, when ORC is unable to simulate p̃Y |X(.|x)
accurately. Our method CE-IS can simulate accurately in both cases. We set m = 512 and D = 1.

postive mode (left) and negative mode (right). Our first observation is that our proposed scheme CE-IS is able to
simulate the distribution accurately in both cases. On the other hand, while ORC seems to simulate accurately
the distribution when x > 0, or from the positive mode (left figure), its simulated distribution when x < 0
(negative mode) is very different from the target distribution pY |X(.|x) (right figure). This is because ORC
requires the exponential variables S1, ..., S2N to be sorted before performing index selection, which only works
when the proposals are i.i.d. In the right figure, when the proposals are non-i.i.d and x < 0, ORC will ignore

the first half of the proposals (since log pY (Yi)
pY |X(Yi|x) is extremely large due to large m) to select samples in the

second half of the proposals YN+1...Y2N . As a result, it loses the exponential race property to simulate proper
distribution. When x > 0, on the other hand, ORC does not need to ignore the first half and as a result, can
simulate approximately accurate p̃Y |X(.|x).

11 Proof of Prop. 1 in the Main Paper

We restate the result for convenience.

Proposition. Let Ω = {y1, . . . , yN} denote the sequence of samples.

Pr(Up ̸= Uq|Ω, X = x, Up = k) ≤ 1−

1 +
pY |X(yk|x)
qY |X(yk|x)

(
1
N

∑N
j=1

qY |X(yj |x)
pY (yj)

)
(

1
N

∑N
j=1

pY |X(yj |x)
pY (yj)

)
−1

. (67)

The proof follows by observing that given Y N
1 = yN1 , the sampling procedures in (12) in the main paper,

is equivalent to the Poisson Matching Lemma applied to a discrete alphabet Ω = {y1, . . . , yN} with target
distributions given by

λp
i =

pY |X(yi|X=x)

pY (yi)∑N
j=1

pY |X(yj |X=x)

pY (yj)

, λq
i =

qY |X(yi|X=x)

pY (yi)∑N
j=1

qY |X(yj |X=x)

pY (yj)

. (68)

We provide the analysis for completeness below. Let us define:

S̃p = min
1≤i≤N

Si

λp
i

∼ Exp(
∑
i

λp
i = 1). (69)

We further condition on Up = k and S̃p = s. It follows that for each j ̸= k we have that:

Sj

λp
j

≥ s, (70)
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and thus Sj − λp
j · s is an Exponential(1) random variable. Since this holds for each s, it follows tht Sj − λp

j · S̃p

is also an Exponential(1) and is independent of the variable S̃p.

We consider the following events:

Pr(Up ̸= Uq|Ω, Up = k) = Pr

(
min
j ̸=k

Sj

λq
j

≤ Sk

λq
k

∣∣∣∣ Ω, Up = k

)
(71)

= Pr

(
min
j ̸=k

Sj

λq
j

≤ S̃p
λp
k

λq
k

∣∣∣∣ Ω, Up = k

)
(72)

≤ Pr

(
min
j ̸=k

Sj − λp
j · S̃p

λq
j

≤ S̃p
λp
k

λq
k

∣∣∣∣ Ω, Up = k

)
(73)

=

∑
j ̸=k λ

q
j∑

j ̸=k λ
q
j +

λq
k

λp
k

(74)

≤ 1

1 +
λq
k

λp
k

= 1−
(
1 +

λp
k

λq
k

)−1

(75)

= 1−

1 +

pY |X(yk|x)
pY (yk)

qY |X(yk|x)
pY (yk)

(∑N
j=1

qY |X(yj |x)
pY (yj)

)
(∑N

j=1
pY |X(yj |x)

pY (yj)

)
−1

(76)

= 1−

1 +
pY |X(yk|x)
qY |X(yk|x)

(
1
N

∑N
j=1

qY |X(yj |x)
pY (yj)

)
(

1
N

∑N
j=1

pY |X(yj |x)
pY (yj)

)
−1

(77)

12 Proof of Theorem 2 in Main Paper

In what follows, we will set k = 1 without loss of generality. The argument can be easily extended to any k. We
rewrite the Theorem below for sake of convenience.

Theorem (Expanded version of Theorem 2 in main paper.). Define N̄ = N − 1, we have:

Pr(Up ̸= Uq|Y1 = y1, Up = 1) ≤ 1−
(
1 +

λ(y1)

β(y1)
µy1(N̄)

)−1

, (78)

where

µy1
(N̄) =

(
β(y1)
N̄

+ 1
λ(y1)
N̄

+ 1

)
+

1

N̄

(
1 +

λ(y1)

N̄

)
K(N̄) +

2ω

N̄

(
1 +

λ(y1)

N̄

)
L(N̄), (79)

K(N̄) = 4
(ω − 1)

(1 + λ(y1)
N̄

)2

(
1 +

N + 1

N̄
ω

)√√√√2 + 4

(
1 + β(y1)

N̄

1 + 2λ(y1)
N̄

)2{(
1 +

N + 1

N̄
ω

)2

+
(ω − 1)

N̄

}
(80)

and

L(N̄) =
√
ω − 1

√
(d5(pY (·)||pY |X(·|X = x))− d23(pY (·)||pY |X(·|x))) + (ω − 1)d3(pY (·)||pY |X(·|x)) (81)

in (80) and (81) respectively scale as Θ(1) as N̄ → ∞. Also, we use λ(y1) =
pY |X(y1|x)

pY (y1)
, and β(y1) =

qY |X(y1|x)
pY (y1)

.



Buu Phan∗, Ashish Khisti∗, Christos Louizos

Upon examining (80) and (81), note that as N̄ → ∞, the dominating term in K(N̄) scales as ω3, while L(N̄) is
upper-bounded by ω ·d5(pY (·)||pY |X(·|x)), regardless of N . Under the assumption that d5(pY (·)||pY |X(·|x)) < ∞,
see (33), we observe that for any ϵ > 0 there is a sufficiently large N1(ϵ), we will have that µy1

(N) ≤ 1+ ϵ for any
N ≥ N1(ϵ). In turn (78) recovers the bound in the Poisson Matching Lemma in (Li and Anantharam, 2021).

To proceed with the proof, observe that:

Pr(Up ̸= Uq|Y1 = y1, Up = 1) (82)

= 1− EY N
2


1 +

pY |X(y1|x)
qY |x(y1|x)

(
1
N

∑N
j=1

qY |X(Yj |x)
pY (Yj)

)
(

1
N

∑N
j=1

pY |X(Yj |x)
pY (Yj)

)
−1 ∣∣∣∣Y1 = y1, Up = 1

 (83)

≤ 1−

1 +
pY |X(y1|x)
qY |X(y1|x)

EY N
2


(

1
N

∑N
j=1

qY |X(Yj |x)
pY (Yj)

)
(

1
N

∑N
j=1

pY |X(Yj |x)
pY (Yj)

)∣∣∣∣Y1 = y1, Up = 1

−1

, (84)

where the last step is a consequence of Jensen’s inequality since the function f(t) = 1/t is a convex function so
that E[f(t)] ≥ f(E[t]) holds. We thus need to upper bound the expectation above.

EY N
2


(∑N

j=1
qY |X(Yj |x)

pY (Yj)

)
(∑N

j=1
pY |X(Yj |x)

pY (Yj)

)∣∣∣∣Y1 = y1, Up = 1

 (85)

=

∫
yN
2

(∑N
j=1

qY |X(yj |x)
pY (yj)

)
(∑N

j=1
pY |X(yj |x)

pY (yj)

)pY N
2 |{Y1,Up}(y2, . . . , yN |Y1 = y1, Up = 1)dy2 . . . dyN (86)

=

∫
yN
2

∑N
j=1 β(yj)∑N
j=1 λ(yj)

pY N
2 |{Y1,Up}(y2, . . . , yN |Y1 = y1, Up = 1)dy2 . . . dyN (87)

(88)

where we define

β(yj) =
qY |X(yj |x)
pY (yj)

λ(yj) =
pY |X(yj |x)
pY (yj)

(89)

Now consider the joint density function pY N
2 |{Y1,Up}(y2, . . . , yN |Y1 = y1, Up = 1):

pY N
2 |{Y1,Up}(y2, . . . , yN |Y1 = y1, Up = 1) (90)

=
Pr(Up = 1|Y1 = y1, . . . , YN = yN )pY N

2 |Y1
(yN2 |Y1 = y1)

Pr(Up = 1|Y1 = y1)
(91)

=
Pr(Up = 1|Y1 = y1, . . . , YN = yN )

∏N
j=2 pYj

(yj)

Pr(Up = 1|Y1 = y1)
(92)

=
λ(y1)∑N
j=1 λ(yj)

∏N
j=2 pYj

(yj)

Pr(Up = 1|Y1 = y1)
(93)
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Next we consider the probability Pr(Up = 1|Y1 = y1).

Pr(Up = 1|Y1 = y1) = EY n
2
[Pr(Up = 1|Y1 = y1, Y2 = y2, . . . , YN = yN )] (94)

= EY N
2

[
λ(y1)

λ(y1) +
∑N

j=2 λ(yj)

]
(95)

≥ λ(y1)

λ(y1) + EY N
2
[
∑N

j=2 λ(yj)]
(96)

=
λ(y1)

λ(y1) + (N − 1)
(97)

where we have again used the convexity of f(t) = 1/t and applied Jensen’s inequality.

Thus we can express the following:

EY N
2


(∑N

j=1
qY |X(Yj |x)

pY (Yj)

)
(∑N

j=1
pY |X(Yj |x)

pY (Yj)

)∣∣∣∣Y1 = y1, Up = 1

 (98)

≤ (N − 1 + λ(y1))

∫
yN
2

∑N
j=1 β(yj)

(
∑N

j=1 λ(yj))
2

n∏
j=2

pY (yj)dy2 . . . dyN (99)

= (N − 1 + λ(y1))EY N
2

[ ∑N
j=1 β(Yj)

(
∑N

j=1 λ(Yj))2

∣∣∣∣Y1 = y1

]
(100)

We now establish the following bound:

Proposition 5. For any N ≥ 1 with N̄ = N − 1, we have that:

N̄EY N
2

 ∑N
i=1 β(Yi)(∑N
i=1 λ(Yi)

)2
∣∣∣∣∣Y1 = y1

 ≤
β(y1)
N̄

+ 1(
1 + λ(y1)

N̄

)2 +
1

N̄
K(N̄) +

2ω

N̄
L(N̄)

and in turn using (100), we have

EY N
2


(∑N

j=1
qY |X(Yj |x)

pY (Yj)

)
(∑N

j=1
pY |X(Yj |x)

pY (Yj)

)∣∣∣∣Y1 = y1, Up = 1

 ≤ β(y1) + N̄

λ(y1) + N̄
+

1 + λ(y1)
N̄

N̄
K1(N̄) +

2ω(1 + λ(y1)
N̄

)

N̄
L(N̄). (101)

where K(N̄) is given in (80) and L(N̄) is given in (81).

The proof of Prop. 5 is in rather long and relegated to Section 21. Note that substituting (101) into (84)

Pr(Up ̸= Uq|Y1 = y1, Up = 1) ≤ 1−
(
1 +

λ(y1)

β(y1)

(
β(y1)
N̄

+ 1
λ(y1)
N̄

+ 1
+

1 + λ(y1)
N̄

N̄
K(N̄) +

2ω(1 + λ(y1)
N̄

)

N̄
L(N̄)

))−1

,

(102)

which completes the proof.

13 Alternative Upper Bound in (15) in Theorem 2 in Main Paper

We establish the following upper bound:

Pr(Up ̸= Uq|Y1 = y1, Up = 1) ≤ 1−
(
1 +

λ(y1)

β(y1)
µ′
y1
(N)

)−1

. (103)



Buu Phan∗, Ashish Khisti∗, Christos Louizos

where λ(y1) and β(y1) are defined in (89) and we have

µ′
y1
(N) = (N − 1 + λ(y1))

(
β(y1) + (N − 1)(1 + ϵ)

(λ(y1) + (N − 1)(1− ϵ))2
+

Nω

λ(y1)2
2e−(N−1)ϵ2/ω2

)
(104)

Note that this upper bound requires that λ(y1) > 0, which is a stronger condition than the condition in Theorem 2.
It can also be seen that for sufficiently large N , we can choose ϵ to be arbitrarily small and recover PML.

In order to establish (103), we will show the following:

Proposition 6. For any 0 < ϵ < 1 we have that:

EY N
2

[ ∑N
j=1 β(Yj)

(
∑N

j=1 λ(Yj))2

∣∣∣∣Y1 = y1

]
≤ β(y1) + (N − 1)(1 + ϵ)

(λ(y1) + (N − 1)(1− ϵ))2
+

Nω

λ(y1)2
2e−(N−1)ϵ2/ω2

(105)

and in turn using (100), we have

EY N
2


(∑N

j=1
qY |X(Yj |x)

pY (Yj)

)
(∑N

j=1
pY |X(Yj |x)

pY (Yj)

)∣∣∣∣Y1 = y1, Up = 1

 ≤ µ′
y1
(N) (106)

□

Note that the bound in (103) follows directly by substituting (106) into (84). We relegate the proof of Prop. 6
to Section 22 in this document.

14 Proof of Theorem 3 in Main Paper

We state an expanded version of Theorem 3 in the main paper. We assume that k = 1 without loss of genrality.

Theorem. Let Ω = {y1, . . . , yN}. The error probability satisfies:

Pr (UP ̸= UQ|UP = 1, X = x, Z = z,Ω) ≤ 1−

1 +
pY |X(y1|x)
QY |Z(y1|z)

(
1
N

∑N
j=1

QY |Z(yj |z)
pY (yj)

)
(

1
N

∑N
j=1

pY |X(yj |x)
pY (yj)

)
−1

, (107)

and furthermore,

Pr(Up ̸= Uq|Y1 = y1, Up = k,X = x, Z = z) ≤ 1−
(
1 + µy1(N̄)

pY |X(y1|x)
QY |Z(y1|z)

)−1

. (108)

where

µy1(N) =

(
β(y1)
N̄

+ 1
λ(y1)
N̄

+ 1

)
+

1

N̄

(
1 +

λ(y1)

N̄

)
K(N̄) +

2ω

N̄

(
1 +

λ(y1)

N̄

)
L(N̄)), (109)

where N̄ = N − 1, β(y1) =
QY |Z(y1|z)

pY (y1)
and λ(y1) =

pY |X(y1|x)
pY (y1)

and

K(N̄) = 4
(ω − 1)

(1 + λ(y1)
N̄

)2

(
1 +

N + 1

N̄
ω

)√√√√2 + 4

(
1 + β(y1)

N̄

1 + 2λ(y1)
N̄

)2{(
1 +

N + 1

N̄
ω

)2

+
(ω − 1)

N̄

}
, (110)

L(N̄) =
√
ω − 1

√
(d5(pY (·)||pY |X(·|X = x))− d23(pY (·)||pY |X(·|x))) + (ω − 1)d3(pY (·)||pY |X(·|x)). (111)
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Upon examining (109)-(111), and assuming that d5(pY (·)||pY |X(·|x)) < ∞, see (33), it is clear that there exists
an N1(ϵ) such that

µ(N) ≤ 1 + ϵ, ∀N ≥ N1(ϵ) (112)

We define Ω = {yN1 } and consider:

Pr (UP ̸= UQ|UP = k,X = x, Z = z,Ω) (113)

= Pr

(
min
j ̸=k

Sj

λq
j

≤ Sk

λq
k

∣∣∣∣ Ω, Up = k,X = x, Z = z

)
(114)

= Pr

(
min
j ̸=k

Sj

λq
j

≤ S̃P
λp
k

λq
k

∣∣∣∣ Ω, Up = k,X = x, Z = z

)
(115)

≤ Pr

(
min
j ̸=k

Sj − λp
j S̃P

λq
j

≤ S̃P
λp
k

λq
k

∣∣∣∣ Ω, Up = k,X = x, Z = z

)
(116)

= Pr

(
min
j ̸=k

Sj − λp
j S̃P

λq
j

≤ S̃P
λp
k

λq
k

∣∣∣∣ Ω, Up = k,X = x

)
(117)

≤ 1

1 +
λq
k

λp
k

= 1−
(
1 +

λp
k

λq
k

)−1

(118)

= 1−

1 +

pY |X(yk|x)
pY (yk)

QY |Z(yk|z)
pY (yk)

(∑N
j=1

QY |Z(yj |z)
pY (yj)

)
(∑N

j=1
pY |X(yj |x)

pY (yj)

)
−1

(119)

= 1−

1 +
pY |X(yk|x)
QY |Z(yk|z)

(
1
N

∑N
j=1

QY |Z(yj |z)
pY (yj)

)
(

1
N

∑N
j=1

pY |X(yj |x)
pY (yj)

)
−1

(120)

where (117) follows from the Markov condition (17) and the subsequent stepsilon follows the the analysis done
previously.

We will assume that k = 1 without loss of generality. Taking expectation with respect to Ω2 = {Y N
2 } we have

that:

Pr (UP ̸= UQ|UP = 1, X = x, Z = z, Y = y) (121)

= EY N
2

1−
1 +

pY |X(Y1|x)
QY |Z(Y1|z)

(
1
N

∑N
j=1

QY |Z(Yj |z)
pY (Yj)

)
(

1
N

∑N
j=1

pY |X(Yj |x)
pY (Yj)

)
−1 ∣∣∣∣∣UP = 1, X = x, Z = z, Y = y

 (122)

≤ 1−

1 +
pY |X(Y1|x)
QY |Z(Y1|z)

· EY N
2 |{Up,X,Y,Z}


(

1
N

∑N
j=1

QY |Z(Yj |z)
pY (Yj)

)
(

1
N

∑N
j=1

pY |X(Yj |x)
pY (Yj)

) ∣∣∣∣∣UP = 1, X = x, Z = z, Y = y

−1

(123)

= 1−

1 +
pY |X(Y1|x)
QY |Z(Y1|z)

· EY N
2 |{Up,X,Y }


(

1
N

∑N
j=1

QY |Z(Yj |z)
pY (Yj)

)
(

1
N

∑N
j=1

pY |X(Yj |x)
pY (Yj)

) ∣∣∣∣∣UP = 1, X = x, Y = y

−1

(124)

By defining β(Yj) =
QY |Z(Yj |z)

pY (Yj)
and λ(Yj) =

pY |X(Yj |x)
pY (Yj)

and leading to the same sequence of stepsilon that lead

to (101) in Prop. 5 in this document, we can complete the proof.
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15 Proof of Prop. 2 in the Main document

Proposition.

Pr(Up ̸= Uq) ≤ EV,W,T

[
1−

(
1 + (1 + ϵ)L−12i(W ;V |T )

)−1
]

(125)

where iW,V |T (w; v|t) = log
pW |V (w|v)
pW |T (w|t) is the conditional information density.

By application of the conditional IML in Theorem 3 in the main document, and assuming that N is sufficiently
large, as stated in (21), it follows that:

Pr(Up ̸= Uq|Up = k,X = v, Yk = (w, l), Z = (t, l))

≤ 1−
(
1 + (1 + ϵ)

pY |X(w, l|v)
QY |Z(w, l|t, l)

)−1

(126)

= 1−
(
1 + (1 + ϵ)

pW |V (w|v)pl(l)
pW |T (w|t)

)−1

(127)

= 1−
(
1 + (1 + ϵ)L−12iW,V |T (w;v|t)

)−1

(128)

where iW,V |T (w; v|t) = log
pW |V (w|v)
pW |T (w|t) is the conditional information density. It thus follows that

Pr(Up ̸= Uq) ≤ EV,W,T

[
1−

(
1 + (1 + ϵ)L−12i(W ;T |V )

)−1
]
. (129)

16 Bound on the Probability of Excess Distortion

We introduce and prove the following bound on the probability of excess distortion.

Proposition. For a large enough N , the probability of excess distortion Pr(d(V, V̂ ) > D), where V̂ = g̃(WUq
, T )

is the reconstruction output by the decoder, can be bound as follow.

Pe = Pr(d(V, V̂ ) > D) ≤ EW,V,T

{
1−I(d(V, g̃(W,T ))≤D)

(
1 + (1 + ϵ)L−12i(W ;T |V )

)−1
}

(130)

where iW,T |V (w; t|v) = log
pW |V (w|v)
pW |T (w|t) is the conditional information density, d(., .) is the distortion measure.

Proof: We recall that for sufficiently large N , pWUp |V can be arbitrarily close to pW |V . As such:

Pe = 1− Pr(d(V, V̂ ) ≤ D) (131)

(a)

≤ 1− Pr(d(V, V̂ ) ≤ D,WUp
= WUq

) (132)

= 1− Pr(d(V, g̃(WUq
, T )) ≤ D,WUp

= WUq
) (133)

(b)
= 1− Pr(d(V, g̃(WUp , T )) ≤ D,WUp = WUq ) (134)

(c)
= 1− EW,V,T {Pr(d(V, g̃(WUp , T )) ≤ D,WUp=WUq |WUp=W,V, T )} (135)

(d)
= 1− EW,V,T {Pr(d(V, g̃(W,T )) ≤ D|WUp

=WUq
=W,V, T ) Pr{WUp

= WUq
|WUp

= W,V, T )}} (136)

(e)
= 1− EW,V,T {I(d(V, g̃(W,T ))≤D) Pr{WUp

=WUq
|WUp

=W,V, T )}} (137)

(f)

≤ EW,V,T {1−I(d(V, g̃(W,T ))≤D) Pr{Up=Uq|WUp=W,V, T}} (138)

(g)

≤ EW,V,T

{
1−I(d(V, g̃(W,T ))≤D)

(
1 + (1 + ϵ)L−12i(W ;V |T )

)−1
}

(139)
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where (a) is by marginalization, (b) is by WUp = WUq , (c) is by the law of iterated expectation , (d) is by
chain rule for joint probability, (e) the event d(V, g̃(W,T )) ≤ D is a function of the conditioned random vari-
ables and therefore the probability Pr(d(V, g̃(W,T )) ≤ D|WUp

=WUq
=W,V, T ) becomes the indicator function

I(d(V, g̃(W,T ))≤D), (f) the event {WUp
= WUq

} = {Up = Uq} ∪ {Up ̸= Uq and WUp
= WUq

}. For (g), we note
that:

Pr{Up=Uq|WUp
=w, v, t} = Ek,l[Pr{Up=Uq|WUp

=w, v, t, Up = k, lUp
= l}] (140)

= Ek,l[Pr{Up=Uq|Up = k, Yk = (WUp
, lUp

) = (w, l), Z = (t, l)}] (141)

= Ek,l[1− Pr{Up ̸=Uq|Up = k, Yk = (WUp
, lUp

) = (w, l), Z = (t, l)}] (142)

≥ Ek,l

[(
1 + (1 + ϵ)L−12i(w;v|t)

)−1
]

(143)

=
(
1 + (1 + ϵ)L−12i(w;v|t)

)−1

(144)

where the first line (equality) is by the law of iterated expectation over (Up = k, lUp
= l); in the second line

(equality) we rewrite it in the form of Thm. 3 (conditional importance matching lemma); the third line (equality)
is because the two event {Up=Uq} and {Up ̸=Uq} are complementary; the fourth line (inequality) is by applying
Prop. 2; the final line (equality) is because the term inside the bracket does not depend on k and l. Following
this, we arrive at (g) above.

17 Rate Distortion Analysis for Feedback Scheme

We present the rate-distortion analysis for lossy compression with side information with feedback. Recall that
in the feedback scheme, after sending the LSB of size log2(L) of Up to the decoder, the encoder will outputs an
acknowledgement bit of 1 if the feedback signal indicates that the decoder outputs the same index, i.e. Uq = Up.
On the other hand, if the signal indicates Uq ̸= Up, the encoder outputs the MSB of its selection Up to the
decoder. This means that the encoder message will be log2(L) + 1 if the decoder outputs the correct index in
the first try and log2(N) otherwise.

Assuming perfect feedback, the output distribution between the encoder and decoder is the same, i.e. p̃W |V ,
since the decoder always recover the correct WUp

. Here, we note that the output distribution p̃W |V correspond

to the number of samples N , and achieve the expected distortion D = E[d(V, V̂ )]. Since each L yields different
matching probability, the rate R(D) in this case is:

R(D) = min
L

R(D,L) (145)

where:

R(D,L) = [log2(L) + 1][1− Pr(Up ̸= Uq)] + log2(N) Pr(Up ̸= Uq) (146)

= log2(L) + 1 + (log2 N − log2 L− 1)Pr(Up ̸= Uq) (147)

≤ log2(2L) + (log2
N

2L
)EV,W,T

[
1−

(
1 + (1 + ϵ)L−12i(W ;V |T )

)−1
]

(148)

18 Proof of Equation (36) in Section 8.1 in this document

We will show that:

E[logK] ≤ D(ν(·)||µ(·)) + log e

e
+ 1︸ ︷︷ ︸

=δ

. (149)

Our proof directly follows (Li, 2017, Chapter 4) with a change in notation. We note that in Li (2017), ν(·) =
pY |X(·|x) and µ = pY (·). However pY |X(·|x) and pY (·) are treated as arbitrary distributions in the proof and
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fact that pY (·) is related to pY |X(·|x) through marginalization is not required. We thus provide the proof using
the notation in the present paper.

Without loss of generality we assume Ω = {1, 2, . . . , N}.
We introduce:

I = argmin
y∈Ω

Sy

ν(y)
Θ = min

y∈Ω

Sy

ν(y)
(150)

It follows from the exponential-race property (Maddison et al., 2014) that (1) Y = I ∼ ν(·) (2) Θ ∼ Exp(1) and
(3) (1) Y and Θ are mutually independent of each other.

Note note with ϕy =
Sy

µ(y) , and since K is the index of ϕY in {ϕy}y∈Y sorted in ascending order:

K = {y′ : ϕy′ < ϕy}+ 1 (151)

E[logK] =
∑
y∈Ω

ν(y)E[logK|Y = y] (152)

=
∑
y∈Ω

ν(y)EΘ[logK|Y = y,Θ = θ] (153)

=
∑
y∈Ω

ν(y)

∫ ∞

θ=0

e−θE[logK|Y = y,Θ = θ]dθ. (154)

Now consider:

E[logK|Y = y,Θ = θ] = E
[
log
∣∣y′ ̸= y : ϕy′ < ϕy

∣∣+ 1|Y = y,Θ = θ
]

(155)

≤ logE
[∣∣y′ ̸= y : ϕy′ < ϕy

∣∣+ 1|Y = y,Θ = θ
]

(156)

= logE

[∣∣∣y′ ̸= y : ϕy′ < θ
ν(y)

µ(y)

∣∣∣+ 1
∣∣∣Y = y,Θ = θ

]
(157)

= logE

[∣∣∣y′ ̸= y : ϕy′ < θ
ν(y)

µ(y)

∣∣∣+ 1
∣∣∣Y = y,

Sy′

ν(y′)
≥ θ,∀y′ ∈ Ω

]
(158)

= logE

∑
y′ ̸=y

I
{
ϕy′ < θ

ν(y)

µ(y)

}
+ 1

∣∣∣∣∣Y = y,
Sy′

ν(y′)
≥ θ,∀y′ ∈ Ω

 (159)

= log

∑
y′ ̸=y

Pr

(
ϕy′ ≤ θ

ν(y)

µ(y)

∣∣∣Y = y,
Sy′

ν(y′)
≥ θ,∀y′ ∈ Ω

)
+ 1

 (160)

= log

∑
y′ ̸=y

Pr

(
Sy′ ≤ θ

ν(y)

µ(y)
µ(y′)

∣∣∣Y = y,
Sy′

ν(y′)
≥ θ,∀y′ ∈ Ω

)
+ 1

 (161)

= log

∑
y′ ̸=y

Pr

(
Sy′ ≤ θ

ν(y)

µ(y)
µ(y′)

∣∣∣ Sy′

ν(y′)
≥ θ

)
+ 1

 (162)

where (157) uses the fact that ϕyµ(y) = θν(y) = Sy and (158) follows form the fact that the event {Y = y,Θ = θ}
is equivalent to the event {Y = y,

Sy′

µ(y′) ≥ θ,∀y′ ∈ Ω} by definition of Θ. Eq. (162) follows from the fact that the

distribution of Sy′ only depends on the event { Sy′

ν(y′) ≥ θ} given the conditioning in (161).

Next we define r(y) = ν(y)/µ(y) for each y ∈ Ω and use the fact that Sy′ ∼ Exp(1) so that:

Pr

(
Sy′ ≤ θ

ν(y)

µ(y)
µ(y′)

∣∣∣ Sy′

ν(y′)
≥ θ

)
≤ I(r(y′) ≤ r(y)) (1− exp(−θµ(y′)(r(y)− r(y′)))) (163)

≤ I(r(y′) ≤ r(y))θµ(y′)(r(y)− r(y′)) (164)

≤ θµ(y′)r(y). (165)
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Thus using (162), we have:

log

∑
y′ ̸=y

Pr

(
Sy′ ≤ θ

ν(y)

µ(y)
µ(y′)

∣∣∣ Sy′

ν(y′)
≥ θ

)
+ 1

 ≤ log(θr(y)
∑
y′

µ(y′) + 1) (166)

= log(θr(y) + 1) (167)

Using (154) we have that:

E[logK] ≤
∑
y∈Ω

ν(y)

∫
θ≥0

e−θ log(θr(y) + 1)dθ (168)

≤
∑
y∈Ω

ν(y) log(r(y) + 1) (169)

=
∑

y∈Ω:r(y)≥1

ν(y) log(r(y) + 1) +
∑

y∈Ω:r(y)≤1

ν(y) log(r(y) + 1) (170)

≤
∑

y∈Ω:r(y)≥1

ν(y) log(r(y) + 1) +
∑

y∈Ω:r(y)≤1

ν(y) (171)

≤
∑

y∈Ω:r(y)≥1

ν(y)(log r(y) + 1) +
∑

y∈Ω:r(y)≤1

ν(y) (172)

=
∑

y∈Ω:r(y)≥1

ν(y) log r(y) + 1 (173)

=
∑
y∈Ω

ν(y) log r(y)−
∑

y∈Ω:r(y)<1

ν(y) log r(y) + 1 (174)

= D(ν(·)||µ(·))−
∑

y∈Ω:r(y)<1

ν(y) log r(y) + 1 (175)

≤ D(ν(·)||µ(·)) + log e

e
+ 1 (176)

where we use Jensen’s inequality in (169) and the following inequality in (Harsha et al., 2007, Appendix A): For
any two distributions P (·) and Q(·) on X and any X ′ ⊂ X

−
∑
x∈X ′

P (x) log
P (x)

Q(x)
≤ log e

e
. (177)

This completes the proof.

19 Proof of Prop. 3 in Section 8.2 in this document

For simplicity in notation we will use pi = pY (Yi) and qi = pY (Yi|X = x). Thus the objective we need to simplify
reduces to

EY N
1

 N∑
i=1

qi
pi

log

(
N

qi
pi∑N

j=1

qj
pj

)
∑N

j=1
qj
pj



= EY N
1

 N∑
i=1

qi
pi

log

(
N∑N

j=1

qj
pj

)
∑N

j=1
qj
pj

+ EY N
1

 N∑
i=1

qi
pi

log
(

qi
pi

)
∑N

j=1
qj
pj

 (178)

= EY N
1

[
log

(
N∑N
j=1

qj
pj

)]
+ EY N

1

 N∑
i=1

qi
pi

log
(

qi
pi

)
∑N

j=1
qj
pj

 (179)
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We will establish an upper bound on each of the two terms in (179) separately. Consider the first term:

EY N
1

[
log

(
N∑N
j=1

qj
pj

)]
≤ log

(
EY N

1

[
N∑N
j=1

qj
pj

])
(180)

which follows from Jensen’s inequality. Now consider:

EY N
1

[
N∑N
i=1

qi
pi

]
− 1 = EY N

1

[
1

1
N

∑N
i=1

qi
pi

− 1

]
(181)

= EY N
1

[
1

1
N

∑N
i=1

qi
pi

(
1− 1

N

N∑
i=1

qi
pi

)]
(182)

= EY N
1

[(
1

1
N

∑N
i=1

qi
pi

− 1

)(
1− 1

N

N∑
i=1

qi
pi

)]
(183)

= EY N
1

( 1
1
N

∑N
i=1

qi
pi

)(
1− 1

N

N∑
i=1

qi
pi

)2
 (184)

(185)

where (183) follows from the fact that EY N
1

[
1− 1

N

∑N
i=1

qi
pi

]
= 0. Next observe that:

EY N
1

( 1
1
N

∑N
i=1

qi
pi

)(
1− 1

N

N∑
i=1

qi
pi

)2


= EY N
1

 1
1
N

∑N
i=1

qi
pi

(
1− 1

N

N∑
i=1

qi
pi

)2

I

(
1

N

N∑
i=1

qi
pi

≥ 1

2

)
+ EY N

1

 1
1
N

∑N
i=1

qi
pi

(
1− 1

N

N∑
i=1

qi
pi

)2

I

(
1

N

N∑
i=1

qi
pi

<
1

2

) (186)

and by using the triangular inequality, we have that:

∣∣∣∣EY N
1

[
N∑N
i=1

qi
pi

]
− 1

∣∣∣∣
≤
∣∣∣∣∣EY N

1

 1
1
N

∑N
i=1

qi
pi

(
1− 1

N

N∑
i=1

qi
pi

)2

I

(
1

N

N∑
i=1

qi
pi

≥ 1

2

) ∣∣∣∣∣
+

∣∣∣∣∣EY N
1

 1
1
N

∑N
i=1

qi
pi

(
1− 1

N

N∑
i=1

qi
pi

)2

I

(
1

N

N∑
i=1

qi
pi

<
1

2

) ∣∣∣∣∣ (187)
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We consider each of the two terms in (187) separately. For the first term:

EY N
1

 1
1
N

∑N
i=1

qi
pi

(
1− 1

N

N∑
i=1

qi
pi

)2

I

(
1

N

N∑
i=1

qi
pi

≥ 1

2

)
≤ 2EY N

1

(1− 1

N

N∑
i=1

qi
pi

)2

I

(
1

N

N∑
i=1

qi
pi

≥ 1

2

) (188)

≤ 2EY N
1

(1− 1

N

N∑
i=1

qi
pi

)2
 (189)

=
2

N

(
EY∼p(Y )

[
q2(Y )

p2(Y )

]
− 1

)
=

2

N
(d2(q||p)− 1) (190)

where d2(q||p) = Eq

[
q
p

]
. We next consider the second term in (187).

EY N
1

 1
1
N

∑N
i=1

qi
pi

(
1− 1

N

N∑
i=1

qi
pi

)2

I

(
1

N

N∑
i=1

qi
pi

<
1

2

)
≤ EY N

1

[
1

1
N

∑N
i=1

qi
pi

I

(
1

N

N∑
i=1

qi
pi

<
1

2

)]
(191)

We will next use the following key inequality established at the end of this section:

1
1
N

∑N
i=1

qi
pi

≤ 1

N

N∑
i=1

pi
qi

(192)

Also using Ep

[
p
q

]
= d2(p||q), we have

EY N
1

[
1

1
N

∑N
i=1

qi
pi

I

(
1

N

N∑
i=1

qi
pi

<
1

2

)]
≤ EY N

1

[(
1

N

N∑
i=1

pi
qi

)
I

(
1

N

N∑
i=1

qi
pi

<
1

2

)]
(193)

= EY N
1

[(
1

N

N∑
i=1

pi
qi

− d2(p||q)
)
I

(
1

N

N∑
i=1

qi
pi

<
1

2

)]
+ d2(p||q) Pr

(
1

N

N∑
i=1

qi
pi

<
1

2

)
(194)

≤

√√√√√EY N
1

( 1

N

N∑
i=1

pi
qi

− d2(p||q)
)2

√√√√EY N

1

[
I

(
1

N

N∑
i=1

qi
pi

<
1

2

)]
+ d2(p||q) Pr

(
1

N

N∑
i=1

qi
pi

<
1

2

)
(195)

=

√√√√√EY N
1

( 1

N

N∑
i=1

pi
qi

− d2(p||q)
)2

√√√√Pr

(
1

N

N∑
i=1

qi
pi

<
1

2

)
+ d2(p||q) Pr

(
1

N

N∑
i=1

qi
pi

<
1

2

)
(196)

where (195) follows from the Cauchy-Schwartz inequality: E[X · Y ] ≤
√
E[X2]E[Y 2]. Using Chebyshev’s

Inequality, we have the following:

Pr

(
1

N

N∑
i=1

qi
pi

<
1

2

)
≤ Pr

(∣∣∣∣∣ 1N
N∑
i=1

qi
pi

− 1

∣∣∣∣∣ ≥ 1

2

)
(197)

≤
1
NEp

[(
q
p − 1

)2]
1/4

(198)

=
4

N
(d2(q||p)− 1) . (199)
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Finally note that:

EY N
1

( 1

N

N∑
i=1

pi
qi

− d2(p||q)
)2
 =

1

N

(
Ep

[
p2

q2

]
− d22(p||q)

)
=

1

N

(
d3(p||q)− d22(p||q)

)
(200)

where d3(p||q) = Ep

[
p2

q2

]
as in (33). It follows that:

EY N
1

[
1

1
N

∑N
i=1

qi
pi

I

(
1

N

N∑
i=1

qi
pi

<
1

2

)]

≤ 2

N

(
(d3(p||q)− d22(p||q))(d2(q||p)− 1)

) 1
2 +

4

N
(d2(q||p)− 1) d2(p||q) (201)

Collecting all the terms we have that:

EY N
1

[
N∑N
i=1

qi
pi

]
≤ 1 +

2

N
(d2(q||p)− 1)

+
2

N

(
(d3(p||q)− d22(p||q))(d2(q||p)− 1)

) 1
2 +

4

N
(d2(q||p)− 1) d2(p||q) (202)

Finally by using the fact that d2(q||p) ≤ ω and defining

α(p, q) = 2(ω − 1) + 2
√
ω − 1(d3(p||q)− d22(p||q))

1
2 + 4ω · d2(p||q) (203)

we have that:

logEY N
1

[
N∑N
i=1

qi
pi

]
≤ log

(
1 +

α(p, q)

N

)
≤ α(p, q)

N
(204)

We will now consider the second term in (179). Consider the following:

EY N
1

 N∑
i=1

qi
pi

log
(

qi
pi

)
∑N

j=1
qj
pj

−
∑N

i=1
qi
pi

log qi
pi

N

 = EY N
1

[
1
N

∑N
i=1

qi
pi

log qi
pi

1
N

∑N
i=1

qi
pi

(
1−

∑N
i=1

qi
pi

N

)]
(205)

Now we consider the following:

E

[(
1
N

∑N
i=1

qi
pi

log qi
pi

1
N

∑N
i=1

qi
pi

)(
1−

∑N
i=1

qi
pi

N

)]

= E

[(
1
N

∑N
i=1

qi
pi

log qi
pi

1
N

∑N
i=1

qi
pi

−D(q||p)
)(

1−
∑N

i=1
qi
pi

N

)]
(206)

= E

[(
1
N

∑N
i=1

qi
pi

log qi
pi

−D(q||p) 1
N

∑N
i=1

qi
pi

1
N

∑N
i=1

qi
pi

)(
1−

∑N
i=1

qi
pi

N

)]
(207)

= E

[(
1
N

∑N
i=1

qi
pi

log qi
pi

−D(q||p) 1
N

∑N
i=1

qi
pi

1
N

∑N
i=1

qi
pi

)(
1−

∑N
i=1

qi
pi

N

)
I

(
1

N

N∑
i=1

qi
pi

≥ 1

2

)]

+ E

[(
1
N

∑N
i=1

qi
pi

log qi
pi

−D(q||p) 1
N

∑N
i=1

qi
pi

1
N

∑N
i=1

qi
pi

)(
1−

∑N
i=1

qi
pi

N

)
I

(
1

N

N∑
i=1

qi
pi

<
1

2

)]
(208)



Importance Matching Lemma for Lossy Compression with Side Information

Here (206) follows from the fact that E

(
1−

∑N
i=1

qi
pi

N

)
= 0. Using triangular inequality we have that:

∣∣∣∣∣EY N
1

 N∑
i=1

qi
pi

log
(

qi
pi

)
∑N

j=1
qj
pj

−
∑N

i=1
qi
pi

log qi
pi

N

 ∣∣∣∣∣ ≤∣∣∣∣∣E
[(

1
N

∑N
i=1

qi
pi

log qi
pi

−D(q||p) 1
N

∑N
i=1

qi
pi

1
N

∑N
i=1

qi
pi

)(
1−

∑N
i=1

qi
pi

N

)
I

(
1

N

N∑
i=1

qi
pi

≥ 1

2

)] ∣∣∣∣∣
+

∣∣∣∣∣E
[(

1
N

∑N
i=1

qi
pi

log qi
pi

−D(q||p) 1
N

∑N
i=1

qi
pi

1
N

∑N
i=1

qi
pi

)(
1−

∑N
i=1

qi
pi

N

)
I

(
1

N

N∑
i=1

qi
pi

<
1

2

)] ∣∣∣∣∣ (209)

We will bound the two terms above separately. Now note that:∣∣∣∣∣E
[(

1
N

∑N
i=1

qi
pi

log qi
pi

−D(q||p) 1
N

∑N
i=1

qi
pi

1
N

∑N
i=1

qi
pi

)(
1−

∑N
i=1

qi
pi

N

)
I

(
1

N

N∑
i=1

qi
pi

≥ 1

2

)] ∣∣∣∣∣
≤ 2E

[∣∣∣∣∣
(

1

N

N∑
i=1

qi
pi

log
qi
pi

−D(q||p) 1
N

N∑
i=1

qi
pi

)∣∣∣∣∣
∣∣∣∣∣
(
1−

∑N
i=1

qi
pi

N

)∣∣∣∣∣
]

(210)

≤ 2

√√√√√E

( 1

N

N∑
i=1

qi
pi

log
qi
pi

−D(q||p) 1
N

N∑
i=1

qi
pi

)2

√√√√√E

(1− ∑N
i=1

qi
pi

N

)2
 (211)

Here the last step follows from Chebyshev’s inequality. Next note that:

E

(1− ∑N
i=1

qi
pi

N

)2
 =

1

N
(d2(q||p)− 1) (212)

and

E

( 1

N

N∑
i=1

qi
pi

log
qi
pi

−D(q||p) 1
N

N∑
i=1

qi
pi

)2


= E

( 1

N

N∑
i=1

qi
pi

log
qi
pi

−D(q||p) +D(q||p)−D(q||p) 1
N

N∑
i=1

qi
pi

)2
 (213)

≤ 2E

( 1

N

N∑
i=1

qi
pi

log
qi
pi

−D(q||p)
)2
+ 2E

(D(q||p) 1
N

N∑
i=1

qi
pi

−D(q||p)
)2
 (214)

=
2

N

(
Ep

[(
q

p
log

q

p

)2
]
−D2(q||p)

)
+

2

N
D2(q||p)(d2(q||p)− 1) (215)

Thus we have that:∣∣∣∣∣E
[(

1
N

∑N
i=1

qi
pi

log qi
pi

−D(q||p) 1
N

∑N
i=1

qi
pi

1
N

∑N
i=1

qi
pi

)(
1−

∑N
i=1

qi
pi

N

)
I

(
1

N

N∑
i=1

qi
pi

≥ 1

2

)] ∣∣∣∣∣
≤ 2

N

√√√√(2(Ep

[(
q

p
log

q

p

)2
]
−D2(q||p)

)
+ 2D2(q||p)(d2(q||p)− 1)

)
(d2(q||p)− 1) (216)

=
2

N
g(p, q) (217)
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where

g(p, q) =

√√√√(2(Ep

[(
q

p
log

q

p

)2
]
−D2(q||p)

)
+ 2D2(q||p)(d2(q||p)− 1)

)
(d2(q||p)− 1) (218)

Furthermore using the fact that q(y)/p(y) ≤ ω we can show that:

g(p, q) ≤ 2(ω − 1) logω. (219)

In a similar manner consider:∣∣∣∣∣E
[(

1
N

∑N
i=1

qi
pi

log qi
pi

−D(q||p) 1
N

∑N
i=1

qi
pi

1
N

∑N
i=1

qi
pi

)(
1−

∑N
i=1

qi
pi

N

)
I

(
1

N

N∑
i=1

qi
pi

<
1

2

)] ∣∣∣∣∣
≤ (logω)E

[
I

(
1

N

N∑
i=1

qi
pi

<
1

2

)]
(220)

≤ logω

N
(4 (d2(q||p)− 1)) =

h(p, q)

N
(221)

where we used the bound in (199) and define

h(p, q) = logω (4 (d2(q||p)− 1))

≤ 4(ω − 1) logω. (222)

We have established that:

EY N
1

 N∑
i=1

qi
pi

log
(

qi
pi

)
∑N

j=1
qj
pj

 ≤ EY N
1

[∑N
i=1

qi
pi

log qi
pi

N

]
+

6(ω − 1) logω

N
(223)

= EY

[
pY |X(Y |x)
pY (Y )

log
pY |X(Y |x)
pY (Y )

]
+

6(ω − 1) logω

N
(224)

= D(pY |X(·|X = x)||pY (·)) +
6(ω − 1) logω

N
(225)

Thus collecting (179), (204) and (225) we have:

EY N
1

 N∑
i=1

qi
pi

log

(
N

qi
pi∑N

j=1

qj
pj

)
∑N

j=1
qj
pj

 ≤ D(pY |X(·|X = x)||pY (·)) +
6(ω − 1) logω

N
+

α(pY (·), pY |X(·))
N

(226)

where α(·) is defined in (203). It only remains to establish the following inequality stated in (192):

1
1
N

∑N
i=1

qi
pi

≤ 1

N

N∑
i=1

pi
qi
. (227)

Now define βi =
qi
pi

as before. And observe that:

1
1
N

∑N
i=1

qi
pi

=

(∑N
i=1 βi

N

)(∑N
i=1 βi

pi

qi∑N
i=1 βi

)(∑N
i=1 βi

pi

qi∑N
i=1 βi

)
(228)

=

(∑N
i=1 βi

N

)
Eβ

[
p

q

]
Eβ

[
p

q

]
(229)

≤
∑N

i=1 βi

N
Eβ

[(
p

q

)2
]

(230)

=
1

N

N∑
i=1

pi
qi

(231)

where (230) is a consequence of Cauchy-Schwartz inequality.
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20 Proof of Prop. 4 in Section 9 in this document.

Applying Hoeffding’s Inequality we get that:

Pr

 1

N − 1

N∑
j=2

pY |X(Yj |x)
pY (Yj)

≤ 1− ϵ

 ≤ exp
(
−2(N − 1)ϵ2/ω2

)
. (232)

Equivalently, if

Ω =

yN2 :
1

N − 1

N∑
j=2

pY |X(yj |x)
pY (yj)

≤ 1− ϵ


then Pr(Ω) ≤ exp

(
−2(N − 1)ϵ2/ω2

)
.

Now revisiting (41) we have

EY N
1
[Nλ1 log(Nλ1)] = EY N

1
[Nλ1 log(Nλ1)|Ω]Pr(Ω) + EY N

1
[Nλ1 log(Nλ1)|Ωc] Pr(Ωc) (233)

≤ EY N
1
[Nλ1 log(Nλ1)|Ω] exp

(
−2(N − 1)ϵ2/ω2

)
+ EY N

1
[Nλ1 log(Nλ1)|Ωc] (234)

We bound each of the two terms in (234). First consider

EY N
1
[Nλ1 log(Nλ1)|Ω] = E

N pY |X(Y1|x)
pY (Y1)∑N

j=1
pY |X(Yj |x)

pY (Yj)

log

N

pY |X(Y1|x)
pY (Y1)∑N

j=1
pY |X(Yj |x)

pY (Yj)

∣∣∣∣∣ Ω
 (235)

≤ N logN, (236)

where the second step uses the fact that
PY |X(y|x)

PY (y) ≥ 0. Furthermore we have that

EY N
1
[Nλ1 log(Nλ1)|Ωc] = E

N pY |X(Y1|x)
pY (Y1)∑N

j=1
pY |X(Yj |x)

pY (Yj)

log

N

pY |X(Y1|x)
pY (Y1)∑N

j=1
pY |X(Yj |x)

pY (Yj)

∣∣∣∣∣ Ωc

 (237)

≤ EY1∼PY (·)

[
N

(N − 1)(1− ϵ)

pY |X(Y1|x)
pY (Y1)

log
N

(N − 1)(1− ϵ)

pY |X(Y1|x)
pY (Y1)

]
(238)

=
N

(N − 1)(1− ϵ)
D(pY |X(·|x)||pY (·)) +

N

(N − 1)(1− ϵ)
log

N

(N − 1)(1− ϵ)
(239)

21 Proof of Prop. 5 in this document

For simplicity we will denote λi = λ(Yi) =
pY |X(Yi|X)

pY (Yi)
and βi = β(Yi) =

qY |X(Yi|X=x)

qY (Yi)
. For simplicity, we keep the

conditioning on Y1 = y1 implicit. For convenience, we define N̄ = N−1 and consider the following normalization:

EY N
2

 1
N̄

∑N
i=1 βi(

1
N̄

∑N
i=1 λi

)2
 (240)

and let us define:

Ω1 = EY N
2

[
1

N̄

N∑
i=1

βi

]
=

β1

N̄
+ 1 (241)
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as well as

Ω2 = EY N
2

( 1

N̄

N∑
i=1

λi

)2
 (242)

=
1

N̄2
EY N

2

λ2
1 +

N∑
i=2

λ2
i + 2λ1

N∑
j=2

λj + 2

N∑
i=2

N∑
j=i+1

λiλj

 (243)

=
λ2
1

N̄2
+

d2(q||p)
N̄

+
2λ1

N̄
+

N̄ − 1

N̄
(244)

=

(
1 +

λ1

N̄

)2

+
d2(q||p)− 1

N̄
(245)

= 1 +
γ

N̄
(246)

where we use the fact that EYi
[λi] = 1 and EYi

[λ2
i ] = d2(q||p) and define

γ = 2λ1 + d2(q||p)− 1 +
λ2
1

N̄
. (247)

Next we consider the following:

EY N
2

 1
N̄

∑N
i=1 βi(

1
N̄

∑N
i=1 λi

)2
− Ω1

Ω2
(248)

= EY N
2

 1(
1
N̄

∑N
i=1 λi

)2
 1

N̄

N∑
i=1

βi −
Ω1

Ω2

(
1

N̄

N∑
i=1

λi

)2

 (249)

Now note that:

EY N
2

 1

N̄

N∑
i=1

βi −
Ω1

Ω2

(
1

N̄

N∑
i=1

λi

)2
 = 0. (250)

Thus (249) is equivalent to:

EY N
2


 1(

1
N̄

∑N
i=1 λi

)2 − 1

c2


 1

N̄

N∑
i=1

βi −
Ω1

Ω2

(
1

N̄

N∑
i=1

λi

)2

 (251)

for any constant c ̸= 0. We select

c = EY N
2

[
1

N̄

N∑
i=1

λi

]
=

λ1

N̄
+ 1 (252)

We can express (251) as follows:

EY N
2

 1(
1
N̄

∑N
i=1 λi

)2
1−

(
1
N̄

∑N
i=1 λi

)2
c2


 1

N̄

N∑
i=1

βi −
Ω1

Ω2

(
1

N̄

N∑
i=1

λi

)2



= EY N
2

 1(
1
N̄

∑N
i=1 λi

)2
1−

(
1
N̄

∑N
i=1 λi

)2
c2


 1

N̄

N∑
i=1

βi −
Ω1

Ω2

(
1

N̄

N∑
i=1

λi

)2
 I

 1

N̄

N̄∑
i=2

λi ≥
1

2




+ EY N
2

 1(
1
N̄

∑N
i=1 λi

)2
1−

(
1
N̄

∑N
i=1 λi

)2
c2


 1

N̄

N∑
i=1

βi −
Ω1

Ω2

(
1

N̄

N∑
i=1

λi

)2
 I

 1

N̄

N̄∑
i=2

λi <
1

2


 (253)
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Now consider make use of the triangular inequality:

∣∣∣∣∣∣∣EY N
2

 1
N̄

∑N
i=1 βi(

1
N̄

∑N
i=1 λi

)2
− Ω1

Ω2

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣EY N
2

 1(
1
N̄

∑N
i=1 λi

)2
1−

(
1
N̄

∑N
i=1 λi

)2
c2


 1

N̄

N∑
i=1

βi −
Ω1

Ω2

(
1

N̄

N∑
i=1

λi

)2
 I

 1

N̄

N̄∑
i=2

λi ≥
1

2



∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣EY N
2

 1(
1
N̄

∑N
i=1 λi

)2
1−

(
1
N̄

∑N
i=1 λi

)2
c2


 1

N̄

N∑
i=1

βi −
Ω1

Ω2

(
1

N̄

N∑
i=1

λi

)2
 I

 1

N̄

N̄∑
i=2

λi <
1

2



∣∣∣∣∣∣∣ (254)

We now consider each of the two terms in (254) separately:

∣∣∣∣∣∣∣EY N
2

 1(
1
N̄

∑N
i=1 λi

)2
1−

(
1
N̄

∑N
i=1 λi

)2
c2


 1

N̄

N∑
i=1

βi −
Ω1

Ω2

(
1

N̄

N∑
i=1

λi

)2
 I

 1

N̄

N̄∑
i=2

λi ≥
1

2



∣∣∣∣∣∣∣

≤ 4

c2

∣∣∣∣∣∣EY N
2

c2 −
(

1

N̄

N∑
i=1

λi

)2
 1

N̄

N∑
i=1

βi −
Ω1

Ω2

(
1

N̄

N∑
i=1

λi

)2
 I

 1

N̄

N̄∑
i=2

λi ≥
1

2

∣∣∣∣∣∣ (255)

≤ 4

c2
EY N

2

∣∣∣∣∣∣
c2 −

(
1

N̄

N∑
i=1

λi

)2
∣∣∣∣∣∣
∣∣∣∣∣∣
 1

N̄

N∑
i=1

βi −
Ω1

Ω2

(
1

N̄

N∑
i=1

λi

)2
∣∣∣∣∣∣ I

 1

N̄

N̄∑
i=2

λi ≥
1

2

 (256)

≤ 4

c2
EY N

2

∣∣∣∣∣∣
c2 −

(
1

N̄

N∑
i=1

λi

)2
∣∣∣∣∣∣
∣∣∣∣∣∣
 1

N̄

N∑
i=1

βi −
Ω1

Ω2

(
1

N̄

N∑
i=1

λi

)2
∣∣∣∣∣∣
 (257)

≤ 4

c2

√√√√√√EY N
2


c2 −

(
1

N̄

N∑
i=1

λi

)2
2

√√√√√√EY N

2


 1

N̄

N∑
i=1

βi −
Ω1

Ω2

(
1

N̄

N∑
i=1

λi

)2
2
 (258)

We now consider each of the two terms above separately.

EY N
2


c2 −

(
1

N̄

N∑
i=1

λi

)2
2
 = EY N

2

(c−( 1

N̄

N∑
i=1

λi

))2(
c+

(
1

N̄

N∑
i=1

λi

))2
 (259)

= EY N
2

(1−( 1

N̄

N∑
i=2

λi

))2(
c+

(
1

N̄

N∑
i=1

λi

))2
 (260)

≤
(
1 +

N + 1

N̄
ω

)2

EY N
2

(1−( 1

N̄

N∑
i=2

λi

))2
 (261)

=

(
1 +

N + 1

N̄
ω

)2
1

N̄
Ep

[
q2

p2
− 1

]
(262)

=
1

N̄

(
1 +

N + 1

N̄
ω

)2

(d2(q||p)− 1) . (263)
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We now consider the second term in (258).

EY N
2


 1

N̄

N∑
i=1

βi −
Ω1

Ω2

(
1

N̄

N∑
i=1

λi

)2
2


= EY N
2


 1

N̄

N∑
i=1

βi − Ω1 +Ω1 −
Ω1

Ω2

(
1

N̄

N∑
i=1

λi

)2
2
 (264)

≤ 2EY N
2

( 1

N̄

N∑
i=1

βi − Ω1

)2
+ 2

(
Ω1

Ω2

)2

EY N
2


( 1

N̄

N∑
i=1

λi

)2

− Ω2

2
 (265)

We consider each term in (265) separately.

EY N
2

( 1

N̄

N∑
i=1

βi − Ω1

)2
 = EY N

2

( 1

N̄

N∑
i=2

βi − 1

)2
 (266)

=
1

N̄
Ep

[(
r

p

)2

− 1

]
(267)

=
1

N̄
(d2(r||p)− 1) (268)

Next consider

EY N
2


( 1

N̄

N∑
i=1

λi

)2

− Ω2

2
 = EY N

2


( 1

N̄

N∑
i=1

λi

)2

−
(
1 +

λ1

N̄

)2

− d2(q||p)− 1

N̄

2
 (269)

≤ 2EY N
2


( 1

N̄

N∑
i=1

λi

)2

−
(
1 +

λ1

N̄

)2
2
+ 2

(
d2(q||p)− 1

N̄

)2

(270)

Now we can upper bound the first term as follows:

EY N
2


( 1

N̄

N∑
i=1

λi

)2

−
(
1 +

λ1

N̄

)2
2
 (271)

= EY N
2

(( 1

N̄

N∑
i=1

λi

)
−
(
1 +

λ1

N̄

))2((
1

N̄

N∑
i=1

λi

)
+

(
1 +

λ1

N̄

))2
 (272)

≤
(
1 +

N + 1

N̄
ω

)2

EY N
2

(1−( 1

N̄

N∑
i=2

λi

))2
 (273)

=
1

N̄

(
1 +

N + 1

N̄
ω

)2

(d2(q||p)− 1) (274)

As a result, using (265), (268) and (274) we have:

EY N
2


 1

N̄

N∑
i=1

βi −
Ω1

Ω2

(
1

N̄

N∑
i=1

λi

)2
2
 (275)

≤ 2

N̄
(d2(r||p)− 1) +

4

N̄

(
Ω1

Ω2

)2
{(

1 +
N + 1

N̄
ω

)2

(d2(q||p)− 1) +
(d2(q||p)− 1)2

N̄

}
(276)
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Consequently using (258), (263) and (276), we can show that:

∣∣∣∣∣∣∣EY N
2

 1(
1
N̄

∑N
i=1 λi

)2
1−

(
1
N̄

∑N
i=1 λi

)2
c2


 1

N̄

N∑
i=1

βi −
Ω1

Ω2

(
1

N̄

N∑
i=1

λi

)2
 I

 1

N̄

N̄∑
i=2

λi ≥
1

2



∣∣∣∣∣∣∣

≤ 4

N̄c2

√(
1 +

N + 1

N̄
ω

)2

(d2(q||p)− 1)

×

√√√√2 (d2(p||r)− 1) + 4

(
Ω1

Ω2

)2
{(

1 +
N + 1

N̄
ω

)2

(d2(p||q)− 1) +
(d2(q||p)− 1)2

N̄

}
(277)

≤ 4
(ω − 1)

N̄c2

(
1 +

N + 1

N̄
ω

)√√√√2 + 4

(
Ω1

Ω2

)2
{(

1 +
N + 1

N̄
ω

)2

+
(ω − 1)

N̄

}
(278)

=
1

N̄
K1(N̄) (279)

where we repeatedly use the fact that d2(q||p) ≤ ω and d2(r||p) ≤ ω. Here we have introduced:

K1(N̄) = 4
(ω − 1)

(1 + λ1

N̄
)2

(
1 +

N + 1

N̄
ω

)√√√√2 + 4

(
1 + β1

N̄

1 + γ1

N̄

)2{(
1 +

N + 1

N̄
ω

)2

+
(ω − 1)

N̄

}
(280)

≤ 4
(ω − 1)

(1 + λ1

N̄
)2

(
1 +

N + 1

N̄
ω

)√√√√2 + 4

(
1 + β1

N̄

1 + 2λ1

N̄

)2{(
1 +

N + 1

N̄
ω

)2

+
(ω − 1)

N̄

}
, (281)

where we use the fact that γ1 ≥ 2λ1 following (247). Note that K1(N̄) = Θ(1).

Now consider the other term in (254):

∣∣∣∣∣∣∣EY N
2

 1(
1
N̄

∑N
i=1 λi

)2
1−

(
1
N̄

∑N
i=1 λi

)2
c2


 1

N̄

N∑
i=1

βi −
Ω1

Ω2

(
1

N̄

N∑
i=1

λi

)2
 I

 1

N̄

N̄∑
i=2

λi <
1

2



∣∣∣∣∣∣∣ (282)

≤

∣∣∣∣∣∣∣EY N
2

 1(
1
N̄

∑N
i=1 λi

)2
 1

N̄

N∑
i=1

βi −
Ω1

Ω2

(
1

N̄

N∑
i=1

λi

)2
 I

 1

N̄

N̄∑
i=2

λi <
1

2



∣∣∣∣∣∣∣ (283)

≤

∣∣∣∣∣∣∣ωEY N
2

 1(
1
N̄

∑N
i=1 λi

)2 I
 1

N̄

N̄∑
i=2

λi <
1

2



∣∣∣∣∣∣∣ (284)

Next, we can show that:

1(
1
N̄

∑N
i=1 λi

)2 ≤ 1(
1
N̄

∑N
i=2 λi

)2 (285)

≤ 1

N̄

N∑
i=2

(
pi
qi

)2

(286)

The proof of (286) will be shown at the end of this section. Furthermore note that Ep[p
2/q2] = d3(p||q). Thus
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we can upper-bound (284) as:

≤

∣∣∣∣∣∣ωEY N
2

 1

N̄

N̄∑
i=2

p2i
q2i

 I

 1

N̄

N̄∑
i=2

λi <
1

2

∣∣∣∣∣∣ (287)

= ω

∣∣∣∣∣∣EY N
2

 1

N̄

N̄∑
i=2

p2i
q2i

− d3(p||q) + d3(p||q)

 I

 1

N̄

N̄∑
i=2

λi <
1

2

∣∣∣∣∣∣ (288)

≤ ω

∣∣∣∣∣∣EY N
2

 1

N̄

N̄∑
i=2

p2i
q2i

− d3(p||q)

 I

 1

N̄

N̄∑
i=2

λi <
1

2

∣∣∣∣∣∣+ ω (d3(p||q))E

I
 1

N̄

N̄∑
i=2

λi <
1

2

 (289)

≤ ω

∣∣∣∣∣∣EY N
2

 1

N̄

N̄∑
i=2

p2i
q2i

− d3(p||q)

 I

 1

N̄

N̄∑
i=2

λi <
1

2

∣∣∣∣∣∣+ ω (d3(p||q))
4

N̄
(d2(q||p)− 1) (290)

The first term above can be upper bounded using Cauchy-schwartz as follows:∣∣∣∣∣∣EY N
2

 1

N̄

N̄∑
i=1

p2i
q2i

− d3(p||q)

 I

 1

N̄

N̄∑
i=2

λi <
1

2

∣∣∣∣∣∣ (291)

≤

√√√√√√EY N
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N̄

N̄∑
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p2i
q2i

− d3(p||q)
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
√√√√√E
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N̄
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λi <
1

2

 (292)

≤
√

1

N̄
(d5(p||q)− d3(p||q)2)

√
4

N̄
(d2(q||p)− 1) (293)

It thus follows that we can express:∣∣∣∣∣∣∣EY N
2
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∑N
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≤ 2ω

N̄
L(N̄) (294)

where

L(N̄) =
√
(d5(p||q)− d3(p||q)2)

√
d2(q||p)− 1 + (d3(p||q)) (d2(q||p)− 1) (295)

≤
√
ω − 1

√
(d5(p||q)− d3(p||q)2) + (ω − 1)d3(p||q) (296)

Thus using (254), (281) and (296) it follows that:

N̄EY N
2

 ∑N
i=1 βi(∑N
i=1 λi

)2
 ≤

β1
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N̄
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It remains to show

1(
1
N̄
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qi
pi

)2 ≤ 1

N̄

N∑
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(
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qi

)2

(297)
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Note that:

1(
1
N̄

∑N
i=2

qi
pi

)2 =

∑N̄
i=2

qi
pi

N̄

∑N̄
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=
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N̄

(
Eλ

[
p

q
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(299)

≤
∑N̄

i=2
qi
pi

N̄
Eλ

[
p3

q3

]
(300)

=

∑N̄
i=2

qi
pi

N̄

∑N̄
i=2

qi
pi

p3
i

q3i∑N̄
i=2

qi
pi

 (301)

=
1

N̄

N̄∑
i=2

p2i
q2i

. (302)

In (299) we define λ to be probability vector which select index i with probability proportional to qi/pi. We use
Jensen’s inequality in (300) since the function f(x) = x3 is convex on x ≥ 0.

22 Proof of Prop. 6 in this document

For 0 < ϵ < 1, define

E =

(Yj)
N
j=2 :

1

N − 1

N∑
j=2

λ(Yj) ≥ 1− ϵ,
1

N − 1

N∑
j=2

β(Yj) ≤ 1 + ϵ

 , (303)

then using Hoeffding’s inequality and the union bound, we have that:

Pr (Ec) ≤ 2 exp
(
−2(N − 1)ϵ2/ω2

)
. (304)

Now observe that:

EY N
2

[ ∑N
j=1 β(Yj)

(
∑N

j=1 λ(Yj))2

∣∣∣∣Y1 = y1

]
(305)

= EY N
2

[ ∑N
j=1 β(Yj)

(
∑N

j=1 λ(Yj))2

∣∣∣∣Y1 = y1, E
]

(306)

+ EY N
2

[ ∑N
j=1 β(Yj)

(
∑N

j=1 λ(Yj))2

∣∣∣∣Y1 = y1, Ec

]
Pr(Ec) (307)

≤ β(y1) + (N − 1)(1 + ϵ)

(λ(y1) + (N − 1)(1− ϵ))2
+

Nω

λ(y1)2
2e−(N−1)ϵ2/ω2

(308)

Collecting all the terms we have that:

EY N
2


(∑N

j=1
qY |X(Yj |x)

pY (Yj)

)
(∑N

j=1
pY |X(Yj |x)

pY (Yj)

)∣∣∣∣Y1 = y1, Up = 1


≤ (N − 1 + λ(y1))

(
β(y1) + (N − 1)(1 + ϵ)

(λ(y1) + (N − 1)(1− ϵ))2
+

Nω

λ(y1)2
2e−(N−1)ϵ2/ω2

)
(309)
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23 Decoding with Neural Estimator

We recall that in the problem of lossy compression with side information at the decoder, the random variables
V,W and T follow the Markov chain T − V −W . Following the setup and algorithm in Section 2 in the main
paper, the encoding step is relatively straightforward, given that pW |V (.|.) and pW (.) can be predefined. On the
other hand, during the decoding step, the decoder needs to compute the following quantity:

Uq = arg min
1≤i≤N

Si

QY |Z(Yi|t,lUp )

pY (Yi)

= arg min
1≤i≤N

Si

pW |T (Wi|t)I(li=lUp )

pW (Wi)pl(li)

,

which can be hard to compute due to the presence of pW |T (Wi|t), especially when the distribution is unknown

and complicated. As a result, the quantity log pW (Wi)
pW |T (Wi|t) has to be learned from the training dataset. We note

that while techniques like Markov Chain Monte Carlo (MCMC) or variational inference can be employed, their
usage may lead to significant time complexity or sub optimal performance due to the inherent limitations in
expressing complex distributions accurately.

Instead, we construct and train a neural network Γ: W×T → [0, 1] to directly estimate the above ratio (Hermans
et al., 2020; Cranmer et al., 2015), by classifying whether W,T ∼ pW,T (.) (positive samples) or W,T ∼ pW (.)pT (.)
(negative samples). Following the Markov chain T−V −W , one can construct a positive sample by first sampling
from the training set a pair of {T, V } and then get W ∼ pW |V (.) where pW |V (.) is predefined. On the other hand,
to obtain negative samples, we sample {T, V } from the training set and W ∼ pW (.). Note that ratio between
positive and negative samples should be 1. Furthermore, we define Γ(W,T ) = σ(hγ(W,T )) where hγ is a neural
networks with parameters γ and σ is the sigmoid activation:

σ(x) =
1

1 + exp(−x)

Hermans et al. (2020) shows that the logit values of the optimal classifier can be then used as a log-likelihood
estimator, that is:

hγ∗(W,T ) ≈ − log
pW (W )pT (T )

pW,T (W,T )
= − log

pW (W )

pW |T (W |T ) . (310)

which is the quantity we would like to estimate. We train our classifier using the standard cross-entropy loss with
Adam optimizer. For details about the neural network architecture of each experiment (MNIST and CIFAR-10),
refer Section 24 below.

24 ADDITIONAL EXPERIMENT RESULTS

24.1 Synthetic Gaussian Case

We provide details of how we compute the conditional distribution pW |T (.), inverse variance weighting and
additional experimental results

Calculating pW |T . We recall the setup we are following. Assume that the source V∼N (0, σ2
V =1.0) and the side

information T = V + ζT |V where ζT |V ∼N (0, 0.01), i.e pT |V (.|v)=N (v, σ2
T |V = 0.01). Furthermore, the encoder

and decoder have access to the shared randomness (Si, Yi, ℓi)
N
i as described previously. The decoder must ideally

output W ∼ pW |V , where pW |V (·|v)=N (v, σ2
W |V ). We start with the joint distribution of V and T , which can

be expressed as: (
V
T

)
∼ N

([
0
0

]
,

[
σ2
V σ2

V

σ2
V σ2

T

])
,



Importance Matching Lemma for Lossy Compression with Side Information

where σ2
T = σ2

V + σ2
T |V . Following this, we have the conditional probability of V given T as:

pV |T (.|T = t) = N
(
σ2
V

σ2
T

t,

(
1− σ2

V

σ2
T

)
σ2
V

)
,

Using the Markov chain T − V −W , we have:

pW |T (w|t) =
∫ ∞

−∞
pW |V (w|v, t)pV |T (v|t)dv

=

∫ ∞

−∞
pW |V (w|v)pV |T (v|t)dv

As pW |V (.) and pV |T (.) are two Gaussians with fix variance, we obtain:

pW |T (.|t) = N
(
σ2
V

σ2
T

t, σ2
W − σ4

V

σ2
T

)
where σ2

W = σ2
V + σ2

W |V . We then use this quantity to compute the decoder index as explained in the main
paper.

Inverse Variance Weighting. We combine the decoder output WUq
with the side information T ∼ pT |V to

obtain a lower variance estimator V̂ of V by applying the inverse variance weighting fusion method proposed by
(Graybill and Deal, 1959), which we show its effectiveness in Figure 10. We note that in the case without feedback,
the decoder’s output WUq might not closely follow the target Gaussian distribution due to mismatching error,
and applying inverse variance weighting might yield suboptimal results, i.e. its distortion is higher than that of
using side-information alone, which is also demonstrated in Figure 10. As such, in the main paper, when this
situation happens, we simply ignore the information from the source and only consider the side information for
reconstruction. In the case where feedback is used, our inverse variance weighting estimator performs consistently
well since WUq now follows more closely to the target Gaussian distribution.

1 2 3 4
R
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Asymptotic No Side Info
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1D-No Feedback-No Fusion
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1D-Feedback-No Fusion

1D-Feedback-Fusion

Figure 10: Effects of inverse variance weighting (fusion) on improving the estimator accuracy.

Simulation Parameters. For all the experiments where we only compress 1 sample, we set N = 215 and use
grid-search on L ∈ {2, 4, 6, 8, 10}, σ2

W |V ∈ {0.01, 0.008, 0.006, 0.005, 0.003, 0.002, 0.001}. For the 5D case, we set

N = 227, use grid-search on L ∈ {25, 26, 27, 28, 29, 210, 211, 212, 213, 214}. We note that if the encoder detects a
mismatch between the two indices, it can send either the rest or a part of the MSB of its index, which we refer
to as L2. For reference, we provide some optimal parameters we found in Table 1. Results in the main paper
are averaged over 10 runs.

Additional Results.

Matching Probability and Side Information Quality. We show in Figure 11 the matching probability as a function
of side-information quality ∆ for different σ2

W |V and L, where we measure the side-information quality by its
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Table 1: Rate-Distortion Parameters for 5D Gaussian Compression with Perfect Feedback.

Dimension L L2 σ2
W |V Rate Distortion (dB)

1 2 3 0.01 2.133 -20.61
1 2 6 0.008 2.35 -21.10
1 2 8 0.005 2.625 -22.36
1 2 12 0.003 2.966 -23.46
1 2 16 0.001 3.425 -24.41
5 25 22 0.01 1.18 -21.78
5 28 25 0.008 1.33 -22.33
5 25 214 0.005 1.88 -24.49
5 212 28 0.003 2.65 -27.04
5 214 26 0.001 3.06 -28.84

associated distance to the source, i.e ∆ = |t − v|. To obtain the matching probability, for each ∆, we sample
V ∼ pV (.), send the side information T = V ± ∆ to the decoder and compare Uq and Up. This process is
simulated and averaged over 1000 runs to obtain the matching probability. We observe that the matching
probability decrease with ∆ and increasing σ2

W |V and L consistently improves the matching rate for all ∆.
Finally, we note that the matching probability is not 1.0 for ∆ = 0 due to the distribution mismatch between
pW |V (.|v) and pW |T (.|t).
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Figure 11: Matching Probability w.r.t side information quality. We use the distance ∆ = |t − v| to quantify the side
information quality, lower ∆ correspond to better quality.

On Feedback Error. We provide the feedback error (collision) due to hashing during the feedback step in
Table 2. Specifically, we define feedback error as the probability that the encoder index and decoder index are
different but have the same hash value. Also, when their hash values are different, the two indices must be
different. In general, we observe that this error depends on multiple factors, such as the number of samples we
are compressing, the matching probability in the first round (which depends on L), the number of proposals, and
σ2
W |V . As a simple illustrative example, consider the case when we compress 5 samples jointly with the number

of proposals N = 225, then using 4 bits feedback is sufficient for the encoder to obtain the exact position when
L = 221 but it is not the case when L = 210. Overall, we found that we can adjust the parameters to obtain low
feedback error in most of the cases.

24.2 Distributed Image Compression

We provide details on the network architecture and additional results for the distributed lossy image compression
experiment on MNIST dataset (Lecun et al., 1998).
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Table 2: Feedback error with different parameters. The first column represents the feedback rate for the encoder to
recover the full index. The second column represents the (hashed) non-ideal feedback rate. We measure feedback rate by
bits.

Feedback Rate (Ideal) Feedback Rate (non-ideal) Dimension L N σ2
W |V Error Probability

11 1 1 21 212 0.01 13.1%
11 1 1 21 212 0.008 16.1%
9 1 1 23 212 0.004 7.21%
22 1 5 25 227 0.01 12.36%
20 1 5 27 227 0.01 4.14%
19 1 5 28 227 0.005 4.88%
17 1 5 210 227 0.005 2.48%
13 1 5 214 227 0.001 1.39%
22 5 5 25 227 0.01 1.09%
17 5 5 210 227 0.005 0.09%
13 5 5 214 227 0.001 0.03%

24.2.1 Network Architecture

Encoder-Decoder Network. We show the architecture our β−VAE network, including the encoder network
fe(v), the projection network h(t), and the decoder g(w, t) in the Table.3. Convolutional and transposed convo-
lutional layers are denoted as “conv” and “upconv” respectively, which are accompanied by a number of filters,
kernel size, stride, and padding. For “upconv”, we have an additional parameter which is the output padding at
the end. The encoder network maps an image into 2 vectors of size 4 (total 8D output), where the first vector
represents the output mean fe(v)

(1) and the second vector fe(v)
(2) represents the output variance. Specifically,

we define pW |V (.) = N (fe(v)
(1), fe(v)

(2)) and use the prior distribution pW (.) = N (0, 1).

At the decoder side, a projection network h(t) first maps the side information image T to a vector of size 128,
which is then combined with a vector of size 4 from the encoder, resulting in a 132D vector. This 132D vector
is then fed into a decoder network g(w, t) that outputs a reconstruction of size 28× 28, which we denote as V̂ .

Loss Function We train our β−VAE network by optimize the following rate-distortion loss:

L = β(V − V̂ )2 − EV [DKL(pW |V (.|v)||pW (.))] (311)

where we vary β for different rate-distortion tradeoff. We train each model for 30 epochs on an NVIDIA-RTX
A4500, which takes 30 minutes per model.

Table 3: Encoder, project network, and decoder for MNIST distributed image compression.

(a)Encoder fe(v)
Input 28× 28× 1

conv (128:3:1:1), ReLU
conv (128:3:2:1), ReLU
conv (128:3:2:1), ReLU

Flatten
Linear (6272, 512), ReLU

Linear (512, 8)

(b)Projection Network h(t)
Input 14× 14× 1

conv (32:3:1:1), ReLU
conv (64:3:2:1), ReLU
conv (128:3:2:1), ReLU

Flatten
Linear (2048, 512), ReLU

Linear (512, 128)

(c)Decoder Network g(w, t)
Input-(4+128)

Linear-(132, 512), ReLU
upconv (64:3:2:1:1), ReLU
upconv (32:3:2:1:1), ReLU
upconv (1:3:1:1), Tanh

Neural Estimator Network. The neural estimator network in this case consists of two subnetworks. The first
subnetwork will project the side-information into an embedding of size 128 and the second subnetwork combines
that 128D embedding with the 4D embedding, either from pW |V or pW , and outputs the probability of whether
T,W are from the joint or from the marginal distributions. We note that the projection network architecture is
the same as the one in our β-VAE network. Finally, we note that this model is trained with 100 epochs.

Simulation Parameters. To train our network, we varies β ∈ {0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95}.
For one sample compression, we perform grid search on N ∈ {27, 28, 29, 210, 211}, L ∈ {24, 25, 26, 27, 28}. For
two sample compression, we use N ∈ {220, 221, 222, 223, 224, 225} and L ∈ {215, 216, 217, 218, 219, 220}. In both
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Table 4: Neural Estimator Networks for Distributed Image Compression.

(a)Projection Network
Input 14× 14× 1

conv (32:3:1:1), ReLU
conv (64:3:2:1), ReLU
conv (128:3:2:1), ReLU

Flatten
Linear (2048, 512), ReLU

Linear (512, 128)

(b) Combine and Classify
Input 128 + 4

Linear (132, 128), l-ReLU
Linear (128,128), l-ReLU
Linear (128,128), l-ReLU

Linear (128, 1)

Table 5: Rate-Distortion Parameters for MNIST Compression with Feedback.

Number of Samples L N β Rate Distortion (MSE)

1 210 215 0.95 11.96 0.0488
1 27 212 0.75 8.64 0.0566
1 23 28 0.25 6.865 0.0635
2 220 225 0.95 11.01 0.0489
2 215 220 0.75 7.79 0.0565
2 210 215 0.35 6.2 0.0618

cases, we send the full MSB index in the second transmission. We provide some optimal values shown in Table
5. Results in the main paper are averaged over 10 runs.

24.2.2 Additional Examples

We provide additional examples where the decoder outputs correct/incorrect reconstructions during the first
transmission. This again confirms that our neural estimator selects a semantically meaningful message from the
encoder’s output.
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Figure 12: Distributed Image Compression without Feedback. Additional Results.

24.2.3 Compression with limited Feedback

We provide a new experiment R-D plot for our feedback-free scheme (compressing 3 samples together) for the
MNIST experiment in Sec. 5.2 in Fig. 13. We also include the case where the feedback signal is imperfect.
Although slightly worse than the NDIC baseline, the latter requires engineering neural networks, involving
complex loss function with several hyper-parameters.
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Figure 13: MNIST Distributed Compression with Different Feedback Rates. Here, 2.5 bits feedback/sample is sufficient
to recover the index when two samples are jointly compressed.

24.3 Vertical Federated Learning - CIFAR 10

We provide details on network architecture and simulation parameters in the vertical federated learning experi-
ment with CIFAR-10 (Krizhevsky et al., 2009).

Network Architecture We present our networks, including the model at each party, the server model, and the
neural estimator module in the Table 6. We use the “residual block” which is shown in Figure 14. Each party
model in this case will project its quadrant to a 4D embedding and send them to the server model, which will
output the prediction. We train the model for 100 epochs on an NVIDIA-RTX A4500, which converges after 2
hours training.

3x3 Conv

ReLU

Batch Norm

3x3 Conv

Batch Norm

1x1 Conv

ReLU

Figure 14: Residual Block. In our description, each “residual block” is described by number of filters and stride of the
3x3 convolution operator, which we set the value of padding to 1.

Loss Function. We train our network end-to-end with a standard cross-entropy loss. We augment the dataset
by applying horizontal flip and random cropping to the original image, before cropping the two quadrants
(bottom-left and top-right), that would be then distributed to both parties.

Simulation Parameters. We perform grid-search and show the optimal parameters in Table 7. Results in
the main paper are averaged over 10 runs.

24.4 Breast Cancer Dataset

The parameters for IML is shown in Table 8. We note that in this experiment, there is no neural network at the
encoder side and we aim to lossily transmit the features to the decoder.
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Table 6: Party Model, Server Model, and Neural Estimator.

(a)Party Model
Input

conv (64:3:1:1), BatchNorm2D, l-ReLU
residual block (64:1)
residual block (128:2)
residual block (256:2)
residual block (512:2)

Linear (2048, 4)

(b)Server Module
Input 4× 2

Linear (8, 128)
Linear (128, 10)

(c)Neural Estimator
Input-(4× 2)

Linear (8, 128), l-ReLU
Linear (128, 128), l-ReLU
Linear (128, 128), l-ReLU
Linear (128, 128), l-ReLU

Linear (128, 1)

Table 7: Parameters for C-VFL experiments with CIFAR-10.

L N σ2
W |V Rate Accuracy

23 26 0.07 4.96 0.764
24 28 0.06 6.5 0.789
25 29 0.04 7.4 0.798
29 213 0.005 11.41 0.811

Table 8: Parameters for C-VFL experiments with Breast Cancer Dataset (Our method).

L N σ2
W |V Rate Accuracy

23 26 0.07 4.8 0.9
25 29 0.04 7.3 0.93
26 210 0.01 8.6 0.95
29 212 0.005 10.48 0.97


