
Training a Tucker Model With Shared Factors: a Riemannian
Optimization Approach

I. Peshekhonov A. Arzhantsev M. Rakhuba
HSE University HSE University HSE University

Abstract

Factorization of a matrix into a product of two
rectangular factors, is a classic tool in various
machine learning applications. Tensor factor-
izations generalize this concept to more than
two dimensions. In applications, where some
of the tensor dimensions have the same size
or encode the same objects (e.g., knowledge
graphs with entity-relation-entity 3D tensors),
it can also be beneficial for the respective fac-
tors to be shared. In this paper, we consider
a well-known Tucker tensor factorization and
study its properties under the shared factor
constraint. We call it a shared-factor Tucker
factorization (SF-Tucker). Since sharing fac-
tors breaks polylinearity of classical tensor
factorizations, common optimization schemes
such as alternating least squares become in-
applicable. Nevertheless, as we show in this
paper, a set of fixed-rank SF-Tucker tensors
preserves a Riemannian manifold structure.
Therefore, we develop efficient algorithms for
the main ingredients of Riemannian optimiza-
tion on the SF-Tucker manifold and imple-
ment a Riemannian optimization method with
momentum. We showcase the benefits of our
approach on several machine learning tasks
including knowledge graph completion and
compression of neural networks.

1 INTRODUCTION

Tensor factorizations generalize low-rank matrix fac-
torizations to multivariate arrays, called tensors. By
analogy with the matrix case, they decompose a tensor
into a set of lower-dimensional tensors with presum-

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

ably much fewer parameters. This allows for efficiently
compressing high-dimensional data, as well as extract-
ing useful latent factors in a wide variety of applica-
tions. Among tensor factorizations, a classic Tucker
decomposition (Tucker, 1963) plays a special role. Its
ease of formulation, availability of reliable SVD-based
procedures for constructing approximations and inter-
pretability of its factors make it a popular choice in
machine learning. For example, it has been used in
recommender systems (Frolov and Oseledets, 2017),
knowledge graphs (Balažević et al., 2019), and for com-
pressing neural networks (Kossaifi et al., 2020).

In this paper, we generalize the Tucker decomposi-
tion by allowing any given number of its factors to be
equal to each other, or, in other words, to be shared.
We refer to such a decomposition as a shared-factor
Tucker (SF-Tucker). Sharing factors appears to be use-
ful in knowledge graphs that store facts in triple form of
entity-relation-entity (Balažević et al., 2019) and, there-
fore, can be naturally represented as three-dimensional
binary tensors with two modes of equal size. Sharing
weights has also been utilized in the end-to-end training
of neural networks with tensor-decomposed weight ma-
trices (Obukhov et al., 2020). Besides applications for
knowledge graphs and neural networks, we also utilize
SF-Tucker decomposition for functions on a grid.

To approximate a tensor in the SF-Tucker format, we
propose to use Riemannian optimization algorithms.
Specifically, we prove that a set of SF-Tucker tensors
with fixed factor sizes forms a smooth manifold and
utilize a Riemannian optimization method with mo-
mentum. To run this method, we derive formulas for
essential steps of optimization on smooth manifolds:
projection to a tangent plane and retraction. A special
care is taken to turn these formulas into efficient al-
gorithms by using numerical linear algebra techniques
and automatic differentiation. The code is available at
https://github.com/johanDDC/tucker_riemopt.

Our contributions are:

• We propose a new factorization, called SF-Tucker,
and study its properties (Section 2). We also

https://github.com/johanDDC/tucker_riemopt

introduce and theoretically justify an algorithm
for approximating tensors in the SF-Tucker format.

• We prove that a set of fixed-rank SF-Tucker ten-
sors forms a smooth embedded submanifold and
derive algorithms for essential tools of Riemannian
optimization: projection to a tangent plane and
retraction to the SF-Tucker manifold (Section 4,5).

• We numerically investigate the benefits of our ap-
proach on two examples: knowledge-base graphs
and compression of neural networks (Section 6).

2 RELATED WORK

Tensor Factorizations And Optimization.
Tucker (1963) proposed a Tucker decomposition,
which by contrast to a CP decomposition (Hitchcock,
1927) can be computed using reliable SVD-based
procedures, but is prone to the curse of dimensionality.
A tensor-train (TT) (Oseledets, 2011) and the
hiearachical Tucker (HT) decompositions (Hackbusch
and Kühn, 2009) overcame this issue. Nevertheless,
Tucker decomposition is often a method of choice
for lower dimensional tensors. For example, in 3D it
coincides with the HT decomposition and contains
fewer parameters than TT.

A popular method for computing a Tucker decomposi-
tion is the higher-order SVD (HOSVD) De Lathauwer
et al. (2000). It produces a quasioptimal approximation
of a tensor by computing SVDs of tensor unfolding ma-
trices. To approximate optimal solution, one may use
iterative alternating-based approaches, such as higher
order orthogonal iteration (HOOI) or alternating least
squares methods (Kolda and Bader, 2009). We also
mention the RESCAL model (Nickel et al., 2011) (re-
laxed version of DEDICOM (Harshman, 1978)) that
imposes equal factors in a Tucker-2 decomposition us-
ing a heuristic approach. Nevertheless, these methods
are only straightforwardly applicable for quadratic func-
tionals to be minimized. By contrast, machine learning
tasks are often formulated using more complicated loss
functions and rely on automatic differentiation tools.
Therefore, Riemannian optimization methods that com-
bine gradient based optimization and take into account
tensor structure are well-suited for these tasks. See, for
example, (Fonarev et al., 2017; Novikov et al., 2016).
We also mention works on matrix and tensor comple-
tion using Riemannian optimization (Vandereycken,
2013; Kressner et al., 2014; Kasai and Mishra, 2016).

Knowledge Graphs. One of the application do-
mains that we consider is knowledge graphs. Tensor-
based models represent the knowledge graph as a three-
dimensional binary tensor and apply various tensor

decompositions in order to learn embeddings for en-
tities and relations. The model based on CP decom-
position was firstly introduced by (Trouillon et al.,
2017). The model SimplE (Kazemi and Poole, 2018)
improved the quality by learning dependent embed-
dings for subjects and objects. CP-N3 (Lacroix et al.,
2018) improved it further by applying regularizer based
on Nuclear p-norm. Another model based on CP de-
composition, MEKER (Chekalina et al., 2022) utilizes
classical CP-ALS algorithm for specifically constructed
loss minimization. TuckER (Balažević et al., 2019)
model utilizes Tucker tensor decomposition to repre-
sent a knowledge graph as a set of factor matrices with
entities and relations embeddings and a core tensor
capturing the interactions between them. Although,
TuckER achieves state-of-the-art results on the link pre-
diction task, it also uses batch normalizations, which
make it is not fully equivalent to a Tucker decomposi-
tion (see Section 6.2).

There exists a number of approaches based on deep
learning, including ConvE (Dettmers et al., 2018)
which utilizes convolutions, GAT (Nathani et al.,
2019) which is a graph neural network enhanced by
an attention mechanism, and the recently proposed
Relphormer (Bi et al., 2023) model, which is a trans-
former adapted for knowledge graphs. Although, these
models achieve high quality in link prediction task, they
also have deep learning-specific disadvantages. They
need more time and memory resources, attention based
models usually need more data and pre-training. In
addition, Sun et al. (2020) has pointed out evaluation
challenges with deep learning-based models.

Tensor Factorizations In Neural Networks.
Many layers of neural networks can be represented
as operations on tensors. Decomposing these tensors
reduce the number of parameters and possibly com-
pute times, while not losing much in accuracy. For
example, tensor decompositions can be used to replace
fully connected layers (Kossaifi et al., 2020; Kolbeins-
son et al., 2019), convolutional layers (Hayashi et al.,
2019; Lebedev et al., 2015; Wang et al., 2018), RNN
layers (Yang et al., 2017). Even if a layer does not
have an obvious tensor structure, it can be reshaped
into a tensor. This approach is called tensorization and
was used in (Novikov et al., 2015; Garipov et al., 2016)
and in (Obukhov et al., 2020) with additional weight
sharing.

3 SF-TUCKER DECOMPOSITION

3.1 Tucker Decomposition And Notation

A d-dimensional tensor X P Rn1ˆ...ˆnd is said to repre-
sented in a Tucker format if it can be written as:

Xi1,...,id “

r1,...,rd
ÿ

j1,...,jd“1

Gj1,...,jdV
p1q

i1,j1
. . . V

pdq

id,jd
, (1)

where G P Rr1ˆ...ˆrd is called the Tucker core and
V pkq P Rrkˆrk are called factors and the set pr1, . . . , rdq

of minimal possible rk is called the Tucker rank. Note
that when d “ 2 it reduces to a skeleton matrix factor-
ization X “ V p1qGV p2q⊺. To simplify notation we will
write (1) as

X “

r
G;V p1q, . . . , V pdq

z
,

where possible. Many properties of the Tucker de-
composition are associated with the so-called unfold-
ing matrices Xpkq P Rnkˆpn1...ndq{nk with the entries
`

Xpkq

˘

ik,j
“ Xi1...id , j “ 1 `

řd
α“1
α­“k

piα ´ 1qnα. For

example, Xpkq can give us Tucker rank components:
rk “ rankpXpkqq (Kolda and Bader, 2009).

Notation. In what follows, we also use the fol-
lowing notation. We use Frobenius norm of X :
}X }2F “

ř

i1,...,id
X 2

i1...id
and Frobenius scalar product:

⟨X ,Y⟩ “
ř

i1,...,id
Xi1,...,idYi1,...,id . Kronecker product

is denoted by b. By

A “
`

A1 A2 . . . AD

˘

P Rmˆpm1`...`mDq

we denote a block-row matrix that consists of subma-
trices Ai P Rmˆmi , i “ 1, . . . , D. A` stands for a
Moore-Penrose pseudoinverse of A.

3.2 SF-Tucker Decomposition

In this section, we describe the proposed Tucker de-
composition with shared factors. Due to factor sharing,
we assume without loss of generality that d “ dt ` ds
are such that n1, . . . , ndt

have arbitrary sizes, while
ndt`1 “ . . . “ nd “ n. The SF-Tucker decomposition
then reads as

X “

r
G;V p1q, . . . , V pdtq, U, . . . , U

z
, (2)

for some core tensor G P Rr1ˆ...ˆrdtˆrsˆ...ˆrs , factor
matrices V piq P Rniˆri for i “ 1, . . . , dt and the shared
factor matrix U P Rnˆrs . Our decomposition differs
from the vanilla Tucker decomposition in the last ds
factors: in SF-Tucker, we force them to be equal to
each other. Note, however, that both X and G do not
require to have any symmetries in the last ds modes.

The set of minimal1 ri such that X has representa-
tion (2) is called shared-factor Tucker rank (SFT rank):

rankds
sftpX q “ pr1, . . . , rdt

, rsq.
1In Appx. A.2 we show that for each i minimal rank

values ri can be attained simultaneously.

Theorem 3.1. The SFT rank of X is equal to r “

pr1, . . . , rdt , rsq, where

ri “ rankpXpiqq, i “ 1, . . . , dt,

and

rs “ rank
`

Xpdt`1q | Xpdt`2q | . . . | Xpdq

˘

.

Proof. See Appx. A.2.

Note that ri, i “ 1, . . . , dt coincide with the classical
multilinear rank in Tucker decomposition, while rs is a
new object, which we refer to as a shared rank. The fol-
lowing proposition suggests that the representation (2)
does not lead to additional restrictions compared with
the Tucker model.

Proposition 3.1. Let X admit a Tucker decomposition
with the Tucker rank pr1, . . . , rdq, then it also admits the
SF-Tucker decomposition with the rank pr1, . . . , rdt

, rsq

satisfying rs ⩽ rdt`1 ` ¨ ¨ ¨ ` rd.

Proof. The proof immediately follows from Theo-
rem 3.1 and the fact that rank

`

Xpdt`1q| . . . |Xpdq

˘

⩽
rankpXpdt`1qq ` ¨ ¨ ¨ ` rankpXpdqq.

Thanks to the rank bound from Prop. 3.1 the number
of parameters in factors of the SF-Tucker does not
exceed that of the classical Tucker decomposition. As
we will see in Section 6 with numerical experiments,
in practice SF-Tucker often wins in terms of the total
number of parameters for large enough values of n.

Remark 3.1. One can explicitly construct SF-Tucker
from the Tucker decomposition by merging respective
factor matrices and padding the core tensor with zeroes.
For example, for d “ 2:

X “ V p1qGV p2q⊺ “ rV p1q|V p2qs

„

0 G
0 0

ȷ

rV p1q|V p2qs⊺.

3.3 SF-HOSVD Approximation Algorithm

Theorem 3.1 suggests that the shared rank is connected
with concatenation of the respective unfolding matrices.
This motivates us to consider left singular values of this
matrix to construct a low-rank approximation of X by
analogy with the classical higher-order SVD (HOSVD)
algorithm (De Lathauwer et al., 2000). We call this
modification SF-HOSVD. The following theorem holds.

Theorem 3.2. For X P Rn1ˆ¨¨¨ˆndtˆnˆ¨¨¨ˆn, let V pkq P

Rnkˆrk be the matrix of first rk left singular vectors
of Xpkq, k “ 1, . . . , dt and U P Rnˆrs be the matrix
of first rs left singular vectors of the concatenation of
unfolding matrices

`

Xpdt`1q | Xpdt`2q | . . . | Xpdq

˘

. Let

also G “ JX ;V p1qT , V p2qT , . . . , V pdtqT , UT , . . . , UT K.
Then

P sf-hosvd
r pX q “ JG;V p1q, . . . , V pdtq, U, . . . , UK

is a quasioptimal approximation of X :∥∥X ´ P sf-hosvd
r pX q

∥∥
F
⩽

?
d inf
rankds

sftpYq≼r
∥X ´ Y∥F ,

where ≼ is a componentwise comparison of two tuples.

Proof. See Appx. A.3.

The SF-HOSVD gives us a constructive way to approx-
imate a given tensor in the SF-Tucker format. On the
other hand, it provides quasioptimal approximation
only in } ¨ }F . Nevertheless, as we will see later, it
can be used as a retraction operation in Riemannian
optimization. To make it efficient as a retraction, we
need to be able to implicitly apply it to SF-Tucker
tensors without forming all of their elements. The
Algorithm 1 summarizes this rank truncation opera-
tion with OpdNr2 ` dsr

d`1q complexity, where r is
maximum input rank and N “ maxni. We assume
that factors of input tensors have orthonormal columns,
which can always be done using QR decompositions.

Algorithm 1 Rank truncation using SF-HOSVD
Require: X “

q
Ḡ; V̄ p1q, . . . , V̄ pdtq, Ū . . . Ū

y
.

Ensure: P sf-hosvd
pr1,...,rdt ,rsq

pX q

for k “ 1, 2, . . . , dt do
Y ΣW ⊺ “ thinSVDpḠpkqq Ź Oprd`1q

V pkq “ V̄ pkqY r:, : rks Ź OpNr2q

C “
`

Ḡpdt`1q

ˇ

ˇ . . .
ˇ

ˇ Ḡpdq

˘

Y ΣWT “ thinSVDpCq Ź Opdsr
d`1q

U “ ŪY r:, : rss Ź OpNr2q

G “

r
Ḡ;V p1qT V̄ p1q, . . . , UT Ū

z
Ź OpdNr2 ` rd`1q

return P sf-hosvd
pr1,...,rdt ,rsq

pX q ”
q
G;V p1q, . . . , U

y

4 FIXED RANK TUCKER
MANIFOLD WITH SHARED
FACTORS

Before we move to algorithms, we need to formulate
key ingredients of Riemannian optimization. Let us
introduce the set of d “ pdt ` dsq-dimensional tensors
of a fixed SFT rank r “ pr1, . . . , rdt

, rsq.:

Ms
r

def
“ tX P Rn1ˆ...ˆndtˆnˆ¨¨¨ˆn

ˇ

ˇ rankds
sftX “ ru.

Theorem 4.1. Ms
r forms a smooth embedded subman-

ifold of Rn1ˆ...ˆndtˆnˆ¨¨¨ˆn of dimension:

dimMs
r “

dt
ÿ

i“1

ripni ´ riq ` rspns ´ rsq ` rds
s

dt
ź

i“1

ri.

Proof. The proof can be found in Appx B.1.

Now, as we know that Ms
r is a smooth manifold, we

may investigate the structure of its tangent spaces.

4.1 Tangent Spaces.

A vector ξ is called a tangent vector of a manifold M at
a point x P M if there exists a smooth curve c : r0, 1s Ñ

M, such that cp0q “ x and c1p0q “ ξ. The set of all
tangent vectors at a point is called the tangent space
at that point and is denoted as TxM. Tangent spaces
play an important role in Riemannian optimization as
they allow for locally replacing a manifold with a linear
space. A tangent space TXMs

r of our manifold Ms
r at

X “
q
G;V p1q, . . . , V pdtq, U, . . . , U

y
is given by:

TXMs
r “

"

ξ “

r
9G;V p1q, . . . , U

z
`

`

r
G; 9V p1q, . . . , U

z
` . . . `

r
G;V p1q, . . . , 9U

z*

,

(3)

parametrized by arbitrary matrices 9Vi P Rniˆri and
9U P Rnˆrs . Similarly to the matrix case (Novikov
et al., 2022), we impose on them gauge conditions:
9V T
i Vi “ 0 and 9UTU “ 0 to remove redundancies (see

Appx B.2). One can straightforwardly verify, that every
tangent vector ξ P TXMs

r can also be represented in
the SF-Tucker form:

ξ “

r
F
´

G, 9G
¯

;W p1q, . . . ,W pdtq, Y, . . . , Y
z

(4)

of rank at most 2r with the factors W piq “
´

V piq
ˇ

ˇ 9V piq
¯

P Rniˆ2ri , Y “

´

U
ˇ

ˇ 9U
¯

P Rnˆ2rs and

the core F
´

G, 9G
¯

P R2r1ˆ...ˆ2rs that is zero except for

F
´

G, 9G
¯

p:r1, . . . , :rsq “ 9G and for i “ 1, . . . , d:

F
´

G, 9G
¯

p:r1, . . . , :ri´1, ri:2ri, :ri`1, . . . , :rsq “ G.

4.2 Projection To The Tangent Tpace

In Riemannian optimization, an important ingredient is
the projection to a tangent space πTXMr : Rn1ˆ¨¨¨ˆn Ñ

TXMs
r. In particular, the projection allows us to com-

pute the key ingredient of Riemannian optimization –
Riemannian gradient

∇Ms
r
f “ πTXMs

r
∇f.

The projection πTXMs
r

is associated with certain scalar
products on TXMs

r ˆ TXMs
r (Absil et al., 2008)

called Riemannian metric. In particular, it will be
used for computing Riemannian gradients of a cer-
tain function. In this paper, we choose a standard

Riemannian metric, which is a restriction of ⟨¨, ¨⟩F to
TXMs

r ˆ TXMs
r. The projection of a tensor Y to

TXMs
r at X “

q
G;V p1q, . . . , V pdtq, U, . . . , U

y
has the

form
ξ “ πTXMrpYq

from (4), where 9V piq, 9U and 9G are given by:

9G “

r
Y;V p1qT , . . . , UT

z
, 9V piq “ PK

V piqYpiqU ­“iG`

piq,

9U “ PK
Upiq

d
ÿ

i“dt`1

YpiqU ­“iGT
piq

˜

d
ÿ

i“dt`1

GpiqGT
piq

¸´1

,

where U ­“i “ U b ¨ ¨ ¨ bV pi`1q b I bV pi´1q b ¨ ¨ ¨ bV p1q

and PK
A “ I ´ AAT .

The derivation of these formulas can be found in Appx
B.2. Note that the formulas for 9G and 9V piq coincide
with the Tucker case (Steinlechner, 2016, p. 48). How-
ever, the 9U part is specific to the SF-Tucker and is not
equivalent to the projection on the tangent space of
Tucker at a point with equal factors (compare formulas
for 9V piq and 9U).

4.3 Retraction.

Let M be some manifold and TM “
␣

px, yq
ˇ

ˇ x P M, y P TxM
(

its tangent bundle. A
smooth mapping R : TM Ñ M such that Rpx, 0q “ x
and d

dtRpx, tξq
ˇ

ˇ

t“0
“ ξ is called a retraction (Stein-

lechner, 2016, p. 24). Retractions are an important
element of Riemannian optimization algorithms, as
they typically allow us to efficiently make a step
along the chosen direction, avoiding computationally
demanding exponential maps. The next theorem
suggests that we can use the SF-HOSVD procedure,
summarized in Section 3.3.
Theorem 4.2. The mapping

R : TMs
r Ñ Ms

r, pX , ξq ÞÑ P sf-hosvd
r pX ` ξq

with P sf-hosvd
r from Theorem 3.2 is a retraction.

Proof. Since SF-HOSVD gives a quasioptimal approx-
imation to a tensor, one may utilize the proof from
(Steinlechner, 2016, p. 50-52).

5 OPTIMIZATION ON THE
MANIFOLD

In this section, we discuss a Riemannian gradient-based
algorithm on SF-Tucker manifold to solve:

min
XPMs

r

fpX q, (5)

where the cost function f : Ms
r Ñ R is a restriction of

some smooth function f̄ : Rn1ˆ...ˆnd Ñ R defined on

the whole Euclidean space Rn1ˆ...ˆnd , with f “ f̄
ˇ

ˇ

Ms
r
.

In particular, we will be interested in loss functions
arising when training neural networks and log-loss from
knowledge graphs (see Section 6.2).

5.1 Gradient Descent With Momentum

Our objective is to apply an algorithm that solves (5)
by producing a sequence of points from the manifold,
which converges to a local or a global minimum of
f . We choose a method that utilizes gradient-based
search direction enhanced by the previous search di-
rection, called momentum. In other words, the new
direction Mk is a linear combination of ∇Ms

r
fpXkq –

the Riemannian gradient of f at the current iterate Xk

and the momentum Mk´1. Considering the fact that
Mk R TXk

Mr, one typically applies the vector trans-
port operation (Absil et al., 2008; Vandereycken, 2013)
τk : TXk´1

Ms
r Ñ TXk

Ms
r to combine them correctly.

Thus,

Mk “ ∇Ms
r
fpXkq ` βτk pMk´1q , β ą 0. (6)

To obtain a new point from the manifold in the itera-
tive process, we use retraction: Xk`1 “ RpXk,´αMkq,
where α ą 0 represents step size and is a hyperparam-
eter of the algorithm. One can also use an adaptive
strategy for choosing α based on line-search schemes,
such as Armijo backtracking (Absil et al., 2008). Note
that for the problems under consideration, it is com-
mon to split the dataset in batches and use stochastic
versions of algorithms. We, therefore, also follow this
approach and call the utilized method Riemannian
SGD with momentum (R-SGD) (Ghadimi et al., 2015).
In the remainder of the section we discuss efficient im-
plementation of the proposed schemes for general f
and summarize the method in 2.

Riemannian Gradient Computation. Since the
Riemannian gradient ∇Ms

r
f “ πTXMs

r
∇f is an ele-

ment of a tangent space TXMk
r , it can be represented

via 9G, 9Vi, 9U from (4) with the rank at most 2r. Since
it has a low-rank structure, one can expect to compute
the Riemannian gradient without forming full-sized
tensors. A naive low-rank approach of computing the
Riemannian gradient is to first compute the Euclidean
gradient ∇fpX q and then project the result to the tan-
gent space using the projection formulas in Section 4.2.
However, even if ∇fpX q admits a low-rank representa-
tion, typically is ranks are substantially larger than r
(Novikov et al., 2022). At the same time the Rie-
mannian gradient is guaranteed to have rank at most
2r. Therefore, we explicitly utilize the tangent vector
representation (3) and use autodiff to avoid forming
the Euclidean gradient and to obtain asymptotically
optimal complexity.

Let us define the mapping h “ f ˝ TX , where
TX

`

S,Bp1q, . . . , Bpdtq, A
˘

“
q
F pG, Sq ;W p1q, . . . , Y

y

with W pkq “
`

V pkq
ˇ

ˇ Bpkq
˘

and Y “
`

U
ˇ

ˇ A
˘

. One
may note that hpG, 0, . . . , 0q “ fpX q. Thus, similarly
to (Novikov et al., 2022), we construct the Rieman-
nian gradient of f at X by automatic differentiation
of h with respect to its arguments. See Appx. C for
a detailed derivation. Here we only state the final ex-
pression for the Riemannian gradient computation as
a ξ from (4):

9G “
Bh

BS
, 9Vi “ PK

V piq

Bh

BBpiq

´

GpiqG
T
piq

¯´1

,

9U “ PK
U

Bh

BA

˜

d
ÿ

γ“dt`1

GpγqG
T
pγq

¸´1

. (7)

The total complexity of the Riemannian gra-
dient and momentum update computation is
O
`

F ` dNr2 ` drd`1
˘

FLOPs, where F is time com-
plexity of computing h.

Vector Transport. As a vector transport

τk : TXk´1
Ms

r Ñ TXk
Ms

r

we use the projection (Absil et al., 2008) operator:
τpξq ” πTXk

Ms
r
ξ, ξ P TXk´1

Ms
r. The trick to com-

pute the projection using the tools above is as fol-
lows. We define gpX q “ xX ,Mky. Then, ∇Ms

r
gpX q “

πTXk
Ms

r
Mk and it can be computed using the afore-

mentioned autodiff approach. The complexity of gpX q

is OpdNr2 ` drd`1q (Steinlechner, 2016).

Retraction. The final step of the k-th iteration is
the retraction operation Xk`1 “ RpXk,´αMkq. Using
Theorem 4.2, we have Xk`1 “ P sf-hosvd

r pXk ´ αMkq.
Note that Xk ´ αMk is also a vector on the tangent
space and can be computed efficiently using a linear
combination of the respective 9G, 9V p1q, . . . , 9U from (3).
SF-HOSVD of a vector in the SF-Tucker format can
then be computed efficiently using Algorithm 1. The
final algorithm is summarized in Algorithm 2.

Algorithm 2 Riemannian SGD with momentum (R-
SGD)
Require: Initial guess X1 P Ms

r, momentum weight β,
learning rate α.

Ensure: A sequence of iterates tXku

M0 “ 0
for k = 1, 2, . . . do

Define F pX q “ fpX q ` xX ,Mk´1y

Compute Mk “ ∇Ms
r
F pXkq using (4) and (7).

Xk`1 “ P sf-hosvd
r pXk ´ αMkq using Algorithm 1.

0 10000 20000 30000 40000 50000 60000 70000
number of parameters

10−11

10−9

10−7

10−5

10−3

10−1

ap
pr

ox
im

at
io

n
re

la
tiv

e
er

ro
r no shared factors

2 shared factors
3 shared factors

Figure 1: Compressing a 1024 ˆ 1024 ˆ 1024 tensor of
fpx, y, zq “ px ` 2y ` 3zq´1 evaluated at nodes of a
uniform tensor-product grid using SF-Tucker with the
different number of shared factors.

6 NUMERICAL EXPERIMENTS

6.1 Approximating Grid Functions

In this demonstration, we show an example of how SF-
Tucker decomposition can be used for data compression.
We consider three-dimensional function fpx, y, zq “

px ` 2y ` 3zq´1 on p0, 1s3 and represent it on a 1024 ˆ

1024ˆ1024 grid txi “ i{n, i “ 1, 2, . . . , nu3. We employ
the approach described in Appx A.1 to construct the
SF-Tucker representation. In Figure 1, we compare
the total number of unique parameters in Tucker and
SF-Tucker formats with 2 and 3 shared factors. Note,
that the classic Tucker decomposition is equivalent to
the case with no shared factors.

6.2 Knowledge Graphs Link Prediction

A knowledge graph can be represented as a three-
dimensional binary tensor, where each element cor-
responds to a triple, with 1 indicating a true fact
and 0 indicating the unknown. TuckER (Balažević
et al., 2019) is a state-of-the-art method that uses the
Tucker tensor decomposition to solve the link predic-
tion problem. It represents the knowledge graph as
JW;R,E,EK, where R and E are factors with embed-
dings of entities and relations, and the core tensor W
shows the level of interactions between them. TuckER’s
representation can also be viewed as SF-Tucker de-
composition since it does not differentiate between
subject and object embeddings. For a given triple
pr, es, eoq TuckER estimates its score by the score func-
tion: φpes, r, eoq “ JW; es,wr, eoK, where wr, es, eo
are corresponding embeddings stored in factors E and
R. After that logistic sigmoid function is applied to
each φpr, es, eoq to obtain the possibility of triple being
true. We modified the TuckER model training to fit our
framework, called R-TuckER, where R stands for Rie-
mannian. To achieve this, we represent the knowledge

graph as an SF-Tucker decomposition with one regu-
lar factor corresponding to relations, and two shared
factors for subjects and objects. The rank prrel, rentq
of the decomposition also determines the dimension of
the corresponding embedding spaces. Although our ap-
proach inherited the link prediction-related ideas from
TuckER, we do not employ techniques such as dropout
(Srivastava et al. (2014)) and batch normalization (Ioffe
and Szegedy (2015)), which are used in TuckER. We
observe, that selecting a rank can prevent overfitting.

Implementation We use the link prediction data
augmentation technique, formally described by Lacroix
et al. (2018), of adding reciprocal relations for every
triple in the dataset. We also use 1-to-N scoring pro-
cedure introduced by Dettmers et al. (2018), which is
simultaneous score of a given pair pes, rq with all enti-
ties. The log-loss function is utilized to train the model,
where a specific entity-relation pair’s loss component
defined as

l “ ´
1

Ne

Ne
ÿ

i“1

pyi log pi ` p1 ´ yiq logp1 ´ piqq, (8)

where Ne is the total number of entities in the knowl-
edge graph, p P RNe is the vector of predicted proba-
bilities, y P RNe is the binary label vector. To prevent
the norm of the Riemannian gradient from becoming
too low due to the vast number of entities present in
modern knowledge graphs, we normalize it on each
training step. For optimizing (8) we use our R-SGD
with momentum described in Section 5.1. At evalu-
ation time we combine a given pair pes, rq with all
possible entities, generating the scores of the obtained
triple, and rank them. We use the filtered setting from
(Bordes et al., 2013) of removing all the known triples
except the current test one from the candidate set. We
use the same metrics as TuckER: mean reciprocal rank
(MRR) and hits@k, k P t1, 10u.

Experiments. Our method is evaluated using the
standard benchmarks for knowledge graph link predic-
tion, namely FB15k-237 (Toutanova et al., 2015) and
WN18RR (Dettmers et al., 2018). We determined
the rank and learning rate hyperparameters through
grid search on heldout data. For FB15k-237, we set
the rank to p200, 40q, while for WN18RR, we choose
rank be p10, 200q as it contains more entities and only
11 relations. We choose learning rate (lr) within the
range of r100, 2000s due to the difficulty of using lower
values without batch normalization. We also used one
cycle scheduler: Initially, we begin with a lr of 100 and
rapidly increase it to 500{850 for FB15k-237/WN18RR
within the first 100 epochs. Subsequently, we gradu-
ally decrease the lr back to 100 over the following 400
epochs.

Table 1: Link prediction results on WN18RR and
FB15k-237. The best scores are highlighted in bold
font, top-2 scores are underlined.

Model MRR Hits@10 Hits@1

WNRR18

R-TuckERnoBN 47.9˘.2 54.6˘.2 44.6˘.1
TuckERnoBN 45.0˘.3 46.1˘.4 42.4˘.2
TuckER 47.0 52.6 44.3
ConvE 43.0 52.0 40.0
DistMult 43.0 49.0 39.0

FB15k-237

R-TuckERnoBN 32.9˘.2 50.5˘.2 24.2˘.1
TuckERnoBN 32.6˘.4 50.5˘.4 23.7˘.2
TuckER 35.8 54.4 26.6
R-GCN 24.8 41.7 15.1
ConvE 32.5 50.1 23.7
DistMult 24.1 41.9 15.5

The results of our experiments may be found in Table 1.
We compare our results with TuckER, as we basically
adapted this method to our framework. However, we
discovered that the utilization of batch normalization,
which the authors of TuckER employ to speed up the
training process, has an impact on the model, causing
it to deviate from Tucker decomposition-based model.
Therefore, we compare our method with two types of
TuckER models: one with batch normalization enabled
(as provided by the authors), and the other with the
second batch normalization and subsequent dropout
disabled. Although, the second type basically imple-
ments the method described in the paper, we note, that
it achieves worse performance than vanilla TuckER. We
defer the question of the tensor decomposition type of
the TuckER model for future research. We also con-
ducted a comparison between our approach and several
link prediction models we discussed in related works.
See Appx. D for more experiments, hyperparameter
values and comparison with various ranks.

Regularization. As our model does not utilize
dropout, it tends to overfitting on large ranks. To
prevent overfitting, we apply the regularization term,
which is Frobenius norm of the entire knowledge graph
tensor ∥JW;E,R,EK∥F . As we force factors R and E
be orthogonal, the norm of the full tensor is equal to
the norm of the core tensor ∥W∥F . Furthermore, we
incorporate a dynamic regularization coefficient. For
FB15k-237, we initially use a lower value and gradually
increase it until it reaches a threshold. Conversely, for
WN18RR, we start with a larger value and exponen-
tially decrease it. Once the threshold is reached, the

training process moves on with the final regularization
coefficient value.

Discussion. We mostly compare our method R-
TuckER with TuckER model with second batch normal-
ization disabled, as they both implements SF-Tucker
decomposition of knowledge graph tensor. Our method
outperforms both linearized and vanilla TuckER mod-
els on WN18RR dataset over all the metrics we ob-
serve. Our model also contains fewer parameters: rank
p10, 200q leads to 8.6M of parameters for our model
against 9.8M of TuckER with rank p30, 200q.

On FB15k-237 dataset, our model shows comparable
performance to the TuckER model without BN, but
still falls short of the TuckER. We also note that our
choice of model rank is p200, 40q is lower than that
of TuckER: p200, 200q, which leads to a significant
decrease of trainable parameters: 967K for R-TuckER
against 11.3M for TuckER. Furthermore, it should
be noted that our regularization method enhanced
performance, although, it is still unable to prevent
overfitting on large ranks. Also, since the TuckER
model utilizes BN to factor matrices, it introduces a
bias tensor that makes the model different from the
pure Tucker decomposition with shared factors. We
make a conjecture that incorporating the bias into the
model can boost the performance of our model. We
postpone studying how to incorporate bias tensors into
the Riemannian framework for future research.

6.3 Neural Networks

Tucker/SF-Tucker operators Here we apply our
Riemannian framework for neural networks compres-
sion. We define a Tucker linear operator similar to
TT-operator in (Novikov et al., 2015). Let A P RMˆN

and M,N such that M “ m1m2m3, N “ n1n2n3. We
apply the following chain of reshapes and transposes
to represent A as a tensor A P Rm1n1ˆm2n2ˆm3n3 :

pM,Nq ÞÑ pm1,m2,m3, n1, n2, n3q ÞÑ

ÞÑ pm1, n1,m2, n2,m3, n3q ÞÑ pm1n1,m2n2,m3n3q.

Thus, Aij “ Ai1j1,i2j2,i3j3
, where i “ i3 ` pi2 ´

1qm1 ` pi1 ´ 1qm1m2, and i1, j1 “ j1 ` pi1 ´ 1qn1

and similarly for the others. Then we can decompose
the tensor A using either Tucker or SF-Tucker for-
mats: A “ JW ;V p1q, V p2q, V p3qK, G P Rr1ˆr2ˆr3 , V pkq P

Rmkˆnkˆrk , k “ 1, 2, 3. Note, that factors V pkq are
three-dimensional tensors, as they depend on both in-
dices ik, jk. However, they can be stored in memory
as two-dimensional matrices of size mknk ˆ rk. Hence
the proposed approach from Section 4 is applicable.

Let us discuss how a linear layer is applied. If
x P Rn1n2n3 , then it is firstly reshaped to tensor

X P Rn1ˆn2ˆn3 : x “ vecpX q. The matrix-vector
multiplication of y ” vecpYq “ Ax is as follows:

Yi1i2i3 “
ÿ

α1,α2,α3
j1,j2,j3

Gα1α2α3
V

p1q

i1j1α1
V

p2q

i2j2α2
V

p3q

i3j3α3
Xj1j2j3 .

BERT Compression We consider BERT2 (Devlin
et al., 2019) neural network pretrained on sentiment
analysis task on IMDb Movie Reviews (Maas et al.,
2011) dataset. The model has 12 BERT layers, 109M
of trainable parameters and initial accuracy of 91.2%.
Each BERT layer consists of an attention subblock and
MLP subblock, and each attention subblock contains
4 linear layers of size 768 ˆ 768. We compress these
linear layers in the attention subblocks within eight
inner middle BERT blocks. We remain the first and the
last two BERT blocks unchanged, as their compression
noticeably affects accuracy of the model.

Experimental Setups Following the procedure de-
scribed above, we represent linear layers of sizes
768 ˆ 768 as 162 ˆ 162 ˆ 32 tensors. Then we uti-
lize the Tucker model and the SF-Tucker model with
sharing the first two factors. The ranks are hyperpa-
rameters and are chosen so as to Tucker and SF-Tucker
decompositions contain approximately equal amount
of parameters. The same rank is used for all layers
we compress. Once the layers are decomposed using
SF-HOSVD, we fine-tune them for 10 epochs in order
to compensate for performance degradation caused by
compression.

Algorithm 3 Riemannian Adam (R-Adam)
Require: Initial guess X1 P Ms

r, momentum coeffi-
cients β1 and β2, ε “ 10´8, learning rate α, loss
function fpX q.

Ensure: A sequence of iterates tXku

M0 “ 0, v0 “ 1
for k = 1, 2, . . . do

Compute Gk “ ∇Ms
r
fpXkq using (4) and (7).

Compute Mk “ β1τkpMk´1q`p1´β1qGk similarly
to (6).

vk “ β2vk´1 ` p1 ´ β2q∥Gk∥2F
v̂k “

vk
p1´β2q

Xk`1 “ P sf-hosvd
r pXk ´ α vk

p1´β1q
?
v̂k`ε

q using Al-
gorithm 1.

For optimization, we modify the Riemannian Adam
method described in (Li et al., 2019) to our manifold.
We optimize cross entropy loss using our proposed
R-Adam 3 algorithm with lr “ 0.1 and exponential
decay rate of 0.7. The results of the experiments are

2Weights were taken from huggingface.

https://huggingface.co/fabriceyhc/bert-base-uncased-imdb?text=I+like+you.+I+love+you

Table 2: Compressing fully-connected layers in atten-
tion blocks of BERT on IMDb. We provide the number
of parameters per a compressed linear layer, the rank
of the decomposition, and the test accuracy after fine-
tuning using both non-Riemannian and Riemannian
methods. The three-element rank refers to the Tucker
decomposition, while the two-element rank – to the
SF-Tucker decomposition with two shared factors. A
separate line corresponds to the baseline.

Params Rank Acc. p%q Acc. p%q

(non-Riem.) (Riem.)

1K p4, 3q 87.54 ˘ .07 89.17 ˘ .11
1K p2, 2, 3q 88.15 ˘ .09 89.14 ˘ .13

2.2K p8, 3q 88.88˘.52 89.5˘.18
2.2K p4, 4, 3q 88.67˘.64 89.23˘.06

5K p16, 3q 89.31˘.36 89.6˘.07
5K p8, 8, 3q 89.04˘.36 89.3˘.07

20K p50, 3q 89.47˘.17 89.62˘.08
20K p33, 33, 3q 89.4˘.19 89.35˘.08

50K p94, 3q 89.66˘.1 89.65˘.1
50K p70, 70, 3q 89.46˘.09 89.6˘.07

115K p158, 3q 89.69˘.17 89.76˘.17
115K p128, 128, 3q 89.71˘.19 89.48˘.19

590K ´ ´ 91.2

presented in Table 2. For comparison, we also provide
results of fine-tuning, obtained by a non-Riemannian
approach: we use the classic Adam optimizer with lr
of 0.001 and the same decay rate. We optimize over
cores and factors of the obtained Tucker/SF-Tucker
representations of layers.

Discussion Table 2 suggests that in this setting, the
Riemannian approach systematically provides better
quality than the classical optimization methods over
factors of Tucker/SF-Tucker decompositions. We note,
that even with a significantly smaller number of pa-
rameters (2.2K), SF-Tucker with Riemannian training
performs almost on par with the case having 115K
parameters. Conversely, the non-Riemannian approach
with a similar number of parameters demonstrates no-
ticeable accuracy reduction and with higher variance.
Furthermore, the table suggests that SF-Tucker yields
better quality than the Tucker decomposition with ap-
proximately the same number of parameters. This
happens both in Riemannian and non-Riemannian set-
tings.

By reducing the number of trainable parameters we

also decrease both training and inference time. Note
that the inference time is for the whole model. We
summarize the time performance in Table 3. Note
that direct optimization over factors of decomposition
(without Riemannian approach) would be even faster
during training.

Table 3: Comparing the time taken by one training
epoch/inference stage. Baseline time is separated.

params 115K 50K 2.2K 590K

Epoch time 645 s 580 s 516 s 678 s
Inference time 183 s 182 s 178 s 222 s

7 CONCLUSION

We proposed a tensor factorization that generalizes
the classic Tucker decomposition by allowing some of
the factors to be shared. We also develop an efficient
numerical method based on Riemannian optimization
techniques that naturally captures the shared-factor
structure of the decomposition and is applicable to var-
ious problems with loss functions of general form. Nu-
merical experiments suggest that using the SF-Tucker
decomposition is superior to a non-constraint Tucker
decomposition in several machine learning applications.
Preliminary experiments also show benefits of utilizing
SF-Tucker for approximating functions, which can be
useful, e.g., when solving partial differential equations.

8 LIMITATIONS

As any tensor can be transformed into the SF-Tucker
format from its Tucker representation (see Section 3.2),
in practice our approach does not introduce any addi-
tional limitations. It rather inherits the limitations of
the Tucker tensor decomposition.

Acknowledgments

The publication was supported by the grant for re-
search centers in the field of AI provided by the An-
alytical Center for the Government of the Russian
Federation (ACRF) in accordance with the agreement
on the provision of subsidies (identifier of the agreement
000000D730321P5Q0002) and the agreement with HSE
University №70-2021-00139. The calculations were per-
formed in part through the computational resources of
HPC facilities at HSE University (Kostenetskiy et al.,
2021).

References

P.-A. Absil, R. Mahony, and R. Sepulchre. Op-
timization Algorithms on Matrix Manifolds, vol-
ume 78. 12 2008. ISBN 978-0-691-13298-3. doi:
10.1515/9781400830244.

I. Balažević, C. Allen, and T. Hospedales. TuckER:
Tensor factorization for knowledge graph completion.
In Proceedings of the 2019 Conference on Empir-
ical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages 5185–
5194, 2019.

Z. Bi, S. Cheng, J. Chen, X. Liang, N. Zhang, Q. Chen,
F. Xiong, W. Guo, and H. Chen. Relphormer: Rela-
tional graph transformer for knowledge graph repre-
sentations. arXiv preprint arXiv:2205.10852, 2023.

A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston,
and O. Yakhnenko. Translating embeddings for mod-
eling multi-relational data. Advances in neural in-
formation processing systems, 26, 2013.

V. Chekalina, A. Razzhigaev, A. Sayapin, E. Frolov,
and A. Panchenko. MEKER: Memory efficient knowl-
edge embedding representation for link prediction
and question answering. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics: Student Research Workshop, pages 355–
365, 2022.

L. De Lathauwer, B. De Moor, and J. Vandewalle.
A multilinear singular value decomposition. SIAM
journal on Matrix Analysis and Applications, 21(4):
1253–1278, 2000.

T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel.
Convolutional 2D knowledge graph embeddings. In
Proceedings of the AAAI conference on artificial in-
telligence, volume 32, 2018.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova.
BERT: Pre-training of deep bidirectional transform-
ers for language understanding. In J. Burstein,
C. Doran, and T. Solorio, editors, Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long
and Short Papers), pages 4171–4186, Minneapolis,
Minnesota, June 2019. Association for Computa-
tional Linguistics. doi: 10.18653/v1/N19-1423. URL
https://aclanthology.org/N19-1423.

A. Fonarev, O. Hrinchuk, I. Oseledets, G. Gusev, and
P. Serdyukov. Riemannian optimization for skip-
gram negative sampling. In ACL 2017-55th Annual
Meeting of the Association for Computational Lin-
guistics, Proceedings of the Conference (Long Pa-
pers), pages 2028–2036, 2017.

E. Frolov and I. Oseledets. Tensor methods and rec-
ommender systems. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 7(3):e1201,
2017.

T. Garipov, D. Podoprikhin, A. Novikov, and D. Vetrov.
Ultimate tensorization: compressing convolutional
and fc layers alike. arXiv preprint arXiv:1611.03214,
2016.

E. Ghadimi, H. R. Feyzmahdavian, and M. Johans-
son. Global convergence of the heavy-ball method
for convex optimization. In 2015 European control
conference (ECC), pages 310–315. IEEE, 2015.

W. Hackbusch and S. Kühn. A new scheme for the
tensor representation. Journal of Fourier analysis
and applications, 15(5):706–722, 2009.

R. A. Harshman. Models for analysis of asymmet-
rical relationships among n objects or stimuli. In
Paper presented at the First Joint Meeting of the Psy-
chometric Society and the Society of Mathematical
Psychology, Hamilton, 1978.

K. Hayashi, T. Yamaguchi, Y. Sugawara, and S.-i.
Maeda. Exploring unexplored tensor network decom-
positions for convolutional neural networks. Advances
in Neural Information Processing Systems, 32, 2019.

F. L. Hitchcock. The expression of a tensor or a polyadic
as a sum of products. Journal of Mathematics and
Physics, 6:164–189, 1927.

S. Ioffe and C. Szegedy. Batch normalization: Accel-
erating deep network training by reducing internal
covariate shift. In International conference on ma-
chine learning, pages 448–456. pmlr, 2015.

H. Kasai and B. Mishra. Low-rank tensor completion:
a riemannian manifold preconditioning approach. In
International conference on machine learning, pages
1012–1021. PMLR, 2016.

S. M. Kazemi and D. Poole. SimplE embedding for
link prediction in knowledge graphs. Advances in
neural information processing systems, 31, 2018.

A. Kolbeinsson, J. Kossaifi, Y. Panagakis, A. Bulat,
A. Anandkumar, I. Tzoulaki, and P. Matthews. Ro-
bust deep networks with randomized tensor regres-
sion layers. arXiv, 2019.

T. G. Kolda and B. W. Bader. Tensor decompositions
and applications. SIAM review, 51(3):455–500, 2009.

J. Kossaifi, Z. C. Lipton, A. Kolbeinsson, A. Khanna,
T. Furlanello, and A. Anandkumar. Tensor regression
networks. Journal of Machine Learning Research,
21, 07 2020. URL https://www.jmlr.org/papers/
volume21/18-503/18-503.pdf.

P. Kostenetskiy, R. Chulkevich, and V. Kozyrev. HPC
resources of the higher school of economics. In Jour-

https://aclanthology.org/N19-1423
https://www.jmlr.org/papers/volume21/18-503/18-503.pdf
https://www.jmlr.org/papers/volume21/18-503/18-503.pdf

nal of Physics: Conference Series, volume 1740, page
012050, 2021.

D. Kressner, M. Steinlechner, and B. Vandereycken.
Low-rank tensor completion by Riemannian opti-
mization. BIT Numerical Mathematics, 54:447–468,
2014.

T. Lacroix, N. Usunier, and G. Obozinski. Canonical
tensor decomposition for knowledge base comple-
tion. In J. Dy and A. Krause, editors, Proceed-
ings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 2863–2872. PMLR, 10–15
Jul 2018. URL https://proceedings.mlr.press/
v80/lacroix18a.html.

V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and
V. Lempitsky. Speeding-up convolutional neural net-
works using fine-tuned CP-decomposition. In 3rd In-
ternational Conference on Learning Representations,
ICLR 2015-Conference Track Proceedings, 2015.

J. Li, F. Li, and S. Todorovic. Efficient riemannian
optimization on the stiefel manifold via the cayley
transform. In International Conference on Learning
Representations, 2019.

A. L. Maas, R. E. Daly, P. T. Pham, D. Huang,
A. Y. Ng, and C. Potts. Learning word vectors
for sentiment analysis. In Proceedings of the 49th
Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 142–150, Portland, Oregon, USA, June 2011.
Association for Computational Linguistics. URL
https://aclanthology.org/P11-1015.

D. Nathani, J. Chauhan, C. Sharma, and M. Kaul.
Learning attention-based embeddings for relation
prediction in knowledge graphs. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4710–4723, Flo-
rence, Italy, July 2019. Association for Computa-
tional Linguistics. doi: 10.18653/v1/P19-1466. URL
https://aclanthology.org/P19-1466.

M. Nickel, V. Tresp, H.-P. Kriegel, et al. A three-way
model for collective learning on multi-relational data.
In ICML, volume 11, pages 3104482–3104584, 2011.

A. Novikov, D. Podoprikhin, A. Osokin, and D. P.
Vetrov. Tensorizing neural networks. Advances in
neural information processing systems, 28, 2015.

A. Novikov, M. Trofimov, and I. Oseledets. Exponential
machines. arXiv preprint arXiv:1605.03795, 2016.

A. Novikov, M. Rakhuba, and I. Oseledets. Auto-
matic differentiation for riemannian optimization on
low-rank matrix and tensor-train manifolds. SIAM
Journal on Scientific Computing, 44(2):A843–A869,
2022.

A. Obukhov, M. Rakhuba, S. Georgoulis, M. Kanakis,
D. Dai, and L. Van Gool. T-basis: a compact rep-
resentation for neural networks. In International
Conference on Machine Learning, pages 7392–7404.
PMLR, 2020.

I. V. Oseledets. Tensor-train decomposition. SIAM
Journal on Scientific Computing, 33(5):2295–2317,
2011.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov. Dropout: A simple way to
prevent neural networks from overfitting. Journal of
Machine Learning Research, 15:1929–1958, 06 2014.

M. M. Steinlechner. Riemannian optimization for solv-
ing high-dimensional problems with low-rank tensor
structure. PhD thesis, EPFL, 2016.

Z. Sun, S. Vashishth, S. Sanyal, P. Talukdar, and
Y. Yang. A re-evaluation of knowledge graph com-
pletion methods. arXiv preprint arXiv:1911.03903,
2020.

K. Toutanova, D. Chen, P. Pantel, H. Poon, P. Choud-
hury, and M. Gamon. Representing text for joint
embedding of text and knowledge bases. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 1499–1509,
Lisbon, Portugal, Sept. 2015. Association for Com-
putational Linguistics. doi: 10.18653/v1/D15-1174.
URL https://aclanthology.org/D15-1174.

T. Trouillon, C. R. Dance, É. Gaussier, J. Welbl,
S. Riedel, and G. Bouchard. Knowledge graph com-
pletion via complex tensor factorization. Journal of
Machine Learning Research, 18(130):1–38, 2017.

L. R. Tucker. Implications of factor analysis of three-
way matrices for measurement of change. Problems
in measuring change, 15(122-137):3, 1963.

B. Vandereycken. Low-rank matrix completion by Rie-
mannian optimization. SIAM Journal on Optimiza-
tion, 23(2):1214–1236, 2013.

N. Vannieuwenhoven, R. Vandebril, and K. Meerbergen.
A new truncation strategy for the higher-order singu-
lar value decomposition. SIAM Journal on Scientific
Computing, 34(2):A1027–A1052, 2012.

W. Wang, Y. Sun, B. Eriksson, W. Wang, and V. Ag-
garwal. Wide compression: Tensor ring nets. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 9329–9338,
2018.

Y. Yang, D. Krompass, and V. Tresp. Tensor-train
recurrent neural networks for video classification.
In International Conference on Machine Learning,
pages 3891–3900. PMLR, 2017.

https://proceedings.mlr.press/v80/lacroix18a.html
https://proceedings.mlr.press/v80/lacroix18a.html
https://aclanthology.org/P11-1015
https://aclanthology.org/P19-1466
https://aclanthology.org/D15-1174

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
Yes.

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
Yes.

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. Yes.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. Yes.

(b) Complete proofs of all theoretical results.
Yes.

(c) Clear explanations of any assumptions. Not
Applicable.

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
Yes.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). Yes.

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). Yes.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). No.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. Yes.

(b) The license information of the assets, if appli-
cable. Yes.

(c) New assets either in the supplemental material
or as a URL, if applicable. Not Applicable.

(d) Information about consent from data
providers/curators. Not Applicable.

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. Not Applicable.

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. Not Applicable.

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. Not Applicable.

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. Not Applicable.

A SF-Tucker decomposition

A.1 Existence of SF-Tucker decomposition

To provide some intuition we firstly describe the form of ST-Tucker decomposition in the matrix case. Therefore,
we need to find U P Rnˆr̃, G P Rr̃ˆr̃ with some r̃, such that any matrix A P Rnˆn of rank r is represented as

A “ UGUT .

Let A “ Y ΣW , where Y,W P Rnˆr,Σ P Rrˆr be a compact SVD of A. By introducing Ū “
`

Y
ˇ

ˇ W
˘

Rnˆ2r, we
have

A “
`

Y
ˇ

ˇ W
˘

ˆ

0 Σ
0 0

˙

`

Y
ˇ

ˇ W
˘T

“ ŪḠŪT , Ḡ P R2rˆ2r.

We can always impose additional orthogonality constraint on Ū by performing the following reorthogonarization
trick. Let Ū “ QRP be the rank-revealing QR decomposition, where Q P Rnˆr̃ has orthonormal columns,
R P Rr̃ˆ2r, r̃ “ rank

`

Ū
˘

– upper triangular and P P R2rˆ2r – a permutation matrix. Then, we obtain SF-Tucker
matrix decomposition of A as

A “ ŪḠŪT “ QRPḠPTRTQT “ UGUT , U “ Q, G “ RPḠPTRT .

By construnction, r̃ “ rank
`

Y
ˇ

ˇ W
˘

“ rank
`

A
ˇ

ˇ AT
˘

“ rank
`

Ap1q

ˇ

ˇ Ap2q

˘

.

Now we are in the position to describe an existence of SF-Tucker decomposition in the general case. The proof
contains explicit formulas for the representation.

Proposition A.1. Let d P N and ds ⩽ d be such that d “ dt`ds. Consider a d-dimensional tensor X P Rn1ˆ...ˆnd

where ndt`1 “ . . . “ nd ” n. Then there exist matrices V pkq P Rnkˆrk for k “ 1, . . . , dt, a matrix U P Rndˆrs ,
and a tensor G P Rr1ˆ...ˆrdtˆrsˆ...ˆrs , rs ⩽ n such that V pkqTV pkq “ Irk , UTU “ Irs , and X can be represented
in the SF-Tucker format:

X “

r
G;V p1q, . . . , V pdtq, U, . . . , U

z
,

with the SF-Tucker rank equal to pr1, . . . , rdt
, rsq.

Proof. Consider the classic Tucker decomposition of X :

X “

r
Ḡ;V p1q, . . . , V pdq

z
, Ḡ P Rr1ˆ...ˆrd , pr1, . . . , rdq “ rankMLX .

Let Ū “
`

V pdt`1q
ˇ

ˇ . . .
ˇ

ˇ V pdq
˘

P RndˆR, where R “ rdt`1 ` . . . ` rd. Let also G̃ P Rr1ˆ...ˆrdtˆRˆ...ˆR be such
that

X “

r
G̃;V p1q, . . . , V pdtq, Ū , . . . , Ū

z
.

Now, we perform the reorthogonalization trick that we discussed for the matrix case: Ū “ QRP , Q P Rndˆrs ,
R P RrsˆR and P P RRˆR. Now, let G “

r
G̃; In1

, . . . , Indt
, RP, . . . , RP

z
P Rr1ˆ...ˆrdtˆrsˆ...ˆrs . Thus, we obtain

the SF-Tucker decomposition of X :

X “

r
G;V p1q, . . . , V pdtq, U, . . . , U

z
, U “ Q.

Finally, let Rk “ rdt`1 ` . . . ` rdt`k. Then G̃ can be constructed as a tensor that is zero everywhere except for:

G̃p1:r1, 1:r2, . . . , 1:rdt
, 1:R1, 1 ` R1:R2, . . . , 1 ` Rds´1:Rds

q “ Ḡ.

As an illustration, we provide two examples for G̃ from the proof in the three-dimensional case.

Figure 2: Block structure of the core tensor G̃ in Example 1 (left) and Example 2 (right). Transparent blocks
consist of zeros.

Example 1. Let X P Rn1ˆnˆn We want to obtain SF-Tucker decomposition of the form X “
q
Ḡ;V,U, U

y
. Let

V p1q P Rn1ˆr1 , V p2q P Rnˆr2 , V p3q P Rnˆr3 and G P Rr1ˆr2ˆr3 be such that

X “

r
G;V p1q, V p2q, V p3q

z
.

Following the proof above, we construct Ū “
`

V p2q
ˇ

ˇ V p3q
˘

, and G̃, which is zero everywhere except for
G̃p1:r1, 1:r2, r3`1:2r3q “ G. See Figure 2 (left). Further, we can apply the reorthogonalization trick and obtain
the SF-Tucker form with orthogonal factors.
Example 2. Let X P Rnˆnˆn. We want to obtain a decomposition of the following form: X “

q
Ḡ;U,U, U

y
.

Again, let V p1q P Rnˆr1 , V p2q P Rnˆr2 , V p3q P Rnˆr3 and G P Rr1ˆr2ˆr3 be such that

X “

r
G;V p1q, V p2q, V p3q

z

is a Tucker decomposition of X . Combining its factors we obtain Ū “
`

V p1q
ˇ

ˇ V p2q
ˇ

ˇ V p3q
˘

and G̃ that is zero
except for

G̃p1:r1, 1 ` r1:r1 ` r2, 1 ` r1 ` r2`1:r1 ` r2 ` r3q “ G.
The structure of G̃ is presented in Figure 2 (right).

A.2 SF-Tucker rank (Proof of Theorem 3.1)

To prove Theorem 3.1 and show that the rank is defined correctly, we need the fact we that if X admits the
Tucker representation:

X “

r
G;V p1q, . . . , V pdq

z
,

then its k-th unfolding can be obtained as (Kolda and Bader, 2009):

Xpkq “ V pkqGpkq

´

V pdq b . . . b V pk`1q b V pk´1q b . . . b V p1q
¯T

. (9)

Considering the fact that SF-Tucker can be viewed as a form of Tucker decomposition, the k-th unfolding of the
tensor of SF-Tucker form is defined similarly. For non-shared modes, we have

Xpkq “ V pkqGpkq

´

U b U b . . . b U b V pdtq b . . . b V pk`1q b V pk´1q b . . . b V p2q b V p1q
¯T

Since it is written in the form of skeleton matrix decomposition, we have rk ⩾ rankXpkq for 1 ⩽ k ⩽ dt. For
shared modes (dt ă k ⩽ d):

Xpkq “ UGpkq

´

U b . . . b U b V pdtq b . . . b V p1q
¯T

.

For simplicity, let us denote Mk “ Gpkq

`

U b ¨ ¨ ¨ b U b V pdtq b ¨ ¨ ¨ b V p1q
˘T

and let us concatenate all these
unfolding matrices into a single one:

`

Xpdt`1q Xpdt`2q . . . Xpdq

˘

“ U
`

Mdt`1 Mdt`2 . . . Md

˘

.

As a result, we get rs ⩾ rank
`

Xpdt`1q Xpdt`2q . . . Xpdq

˘

.

We have just obtained the lower bounds for our ranks. It remains to show that a decomposition with such ranks
exists. Let the matrices V p1q, . . . , V pdtq be assembled from the columns forming the basis of the image of the
respective unfolding matrices and the concatenation of unfoldings in the case of the shared factor U . We set:

G “ JX ;V p1qT , V p2qT , . . . , V pdtqT , UT , . . . , UT K.

Then the resulting tensor is equal to

JG;V p1q, . . . , V pdtq, U, . . . , UK “ JX ;V p1qV p1qT , . . . , V pdqV pdtqT , UUT , . . . , UUT K.

Note, that multiplication by V piqV piqT or UUT for each mode corresponds to the projection onto the linear span
of the columns of the respective matrices. However, since these columns are chosen to form a basis of the image
of the unfolding, each projection will act identically. Hence, the resulting tensor will be equal to X .

A.3 Quasi-optimality of SF-HOSVD (Proof of Theorem 3.2)

Let T˚ “ JG˚;V
p1q

˚ , . . . , V
pdtq

˚ , U˚, . . . , U˚K be the optimal approximation with a rank not larger than a given rank.
Let T “ JG;V p1q, . . . , V pdtq, U, . . . , UK be the decomposition obtained using SF-HOSVD.

It can be shown (De Lathauwer et al., 2000), that for fixed V
p1q

˚ , . . . , V
pdtq

˚ and U˚ the core tensor G˚ can be
obtained as follows:

G˚ “ JX ;V
p1q

˚

T
, V

p2q
˚

T
, . . . , V

pdtq
˚

T
, UT

˚ , . . . , UT
˚ K,

and therefore

T˚ “ JX ;V
p1q

˚ V
p1q

˚

T
, . . . , V

pdtq
˚ V

pdtq
˚

T
, U˚U

T
˚ , . . . , U˚U

T
˚ K.

We also introduce the tensor times matrix multiplication along the k-th mode:

pX ˆk Mqi1...ik´1jkik`1...id
“

nk
ÿ

ik“1

Xi1,...,idMjkik .

and the respective orthogonal projection operators (Vannieuwenhoven et al., 2012):

πiA ” A ˆi V
piqV piqT , π˚

i A ” A ˆi V
piq

˚ V
piq

˚

T
.

If i ą dt, then πi ” A ˆi UUT . And rewrite T , T˚ using the introduced notation:

T “ π1π2 . . . πdX , T˚ “ π˚
1 π

˚
2 . . . π˚

dX .

Firstly, since π˚
i and π˚

j commute, we have

∥X ´ π˚
1 π

˚
2 . . . π˚

dX∥2F “ ∥X ´ π˚
i X ` π˚

i X ´ π˚
i pπ˚

1 . . . π˚
dX q∥2F “

∥X ´ π˚
i X∥2F ` ∥π˚

i X ´ π˚
i pπ˚

1 . . . π˚
dX q∥2F ⩾ ∥X ´ π˚

i X∥2F

Therefore,

d∥X ´ T ˚∥2F “ d∥X ´ π˚
1 π

˚
2 . . . π˚

dX∥2F ⩾ ∥X ´ π˚
1X∥2F ` . . . ` ∥X ´ π˚

dX∥2F “

d
ÿ

i“1

∥X ´ π˚
i X∥2F .

Now we rewrite the resulting expression using unfolding matrices and concatenate all expressions for the shared

factor:
d
ÿ

i“1

∥X ´ π˚
i X∥2F “

dt
ÿ

i“1

∥∥∥∥Xpiq ´ V
piq

˚ V
piq

˚

T
Xpiq

∥∥∥∥2
F

`

d
ÿ

i“dt`1

∥∥Xpiq ´ U˚U
T
˚ Xpiq

∥∥2
F

“

dt
ÿ

i“1

∥∥∥∥Xpiq ´ V
piq

˚ V
piq

˚

T
Xpiq

∥∥∥∥2
F

`

`
∥∥`Xpdt`1q

ˇ

ˇ Xpdt`2q

ˇ

ˇ . . .
ˇ

ˇ Xpdq

˘

´ U˚U
T
˚

`

Xpdt`1q

ˇ

ˇ Xpdt`2q

ˇ

ˇ . . .
ˇ

ˇ Xpdq

˘
∥∥2
F
⩾

dt
ÿ

i“1

∥∥∥Xpiq ´ V piqV piqTXpiq

∥∥∥2
F

`

`
∥∥`Xpdt`1q

ˇ

ˇ Xpdt`2q

ˇ

ˇ . . .
ˇ

ˇ Xpdq

˘

´ U˚U
T
˚

`

Xpdt`1q

ˇ

ˇ Xpdt`2q

ˇ

ˇ . . .
ˇ

ˇ Xpdq

˘
∥∥2
F
⩾

dt
ÿ

i“1

∥∥∥Xpiq ´ V piqV piqTXpiq

∥∥∥2
F

`

`

dt
ÿ

i“dt`1

∥∥Xpiq ´ UUTXpiq

∥∥2
F
.

Here we used that
∥∥∥∥Xpiq ´ V

piq
˚ V

piq
˚

T
Xpiq

∥∥∥∥ ⩾
∥∥∥Xpiq ´ V piqV piqTXpiq

∥∥∥, as each πi is selected independently of the

others πj , j ‰ i, in order to solve
min

πi : dim Imπi“ri

∥∥Xpiq ´ πiXpiq

∥∥2
F
.

Conversely, the choice of π˚
i is dependent on the choices of the other π˚

j , j ‰ i. Similarly for the shared factor
terms. Finally, using the fact that the use of a projector does not increase the norm of the matrix, we have:

dt
ÿ

i“1

∥∥∥Xpiq ´ V piqV piqTXpiq

∥∥∥2
F

`

dt
ÿ

i“dt`1

∥∥Xpiq ´ UUTXpiq

∥∥2
F

“

d
ÿ

i“1

∥X ´ πiX∥2F ⩾ ∥X ´ π1X∥2F `

` ∥π1X ´ π1π2X∥2F ` . . . ` ∥π1π2 . . . πd´1X ´ π1π2 . . . πdX∥2F ⩾

⩾ ∥X ´ π1X ` π1X ´ π1π2X ` . . . ` π1π2 . . . πd´1X ´ π1π2 . . . πdX∥2F ⩾

⩾ ∥X ´ π1π2 . . . πdX∥2F “ ∥X ´ T ∥2F ,

and as a result,
}X ´ T }2F ⩽ d}X ´ T ˚}2F ,

which completes the proof.

B Riemannian optimization on the manifold of fixed SF-rank tensors

B.1 SF-Tucker manifold (Proof of Theorem 4.1)

We follow the proof for the Tucker manifold (Steinlechner, 2016, Theorem 3.6) and modify it for the shared mode.
From the proof, we know that the set

M1,...,dt
r1,...,rdt

“
␣

X P Rn1ˆ¨¨¨ˆnd |rankpXpiqq “ ri, i ⩽ dtq
(

forms a smooth manifold. Now we need to show that

Ms
r “

!

X P M1,...,dt
r1,...,rdt

ˇ

ˇrank
``

Xpdt`1q Xpdt`2q . . . Xpdq

˘˘

“ rs

)

forms a smooth embedded submanifold of M1,...,dt
r1,...,rdt

. Any X P M1,...,dt
r1,...,rdt

can be represented as

X “ Y
dt
ą

i“1

V piq,

where V piq P Rniˆri have full column rank and Y P Rr1ˆ¨¨¨ˆrdtˆnˆ¨¨¨ˆn. Similarly to the proof for a regular Tucker,
Y and V piq can be chosen to depend smoothly on X , and Y has the same SFT rank as X .

Let us say Y can be represented in SF-Tucker format with a shared factor U :

Y “

r
G;V p1q, . . . , V pdtq, U, . . . , U

z
.

Since U is of full rank, by rearranging the fibers of Y, we can write U “
`

UT
1 UT

2

˘T
, U1 P Rrsˆrs ,detpU1q ‰ 0.

We know that the shared rank of Y is

rs “ rank
`

Ypdt`1q

ˇ

ˇ Ypdt`2q

ˇ

ˇ . . .
ˇ

ˇ Ypdq

˘

“ rank
´

U
`

Gpdt`1q Gpdt`2q . . . Gpdq

˘

pU b ¨ ¨ ¨ b V p1qqT
¯

.

Let us denote this matrix as Y “
`

Ypdt`1q

ˇ

ˇ Ypdt`2q

ˇ

ˇ . . .
ˇ

ˇ Ypdq

˘

. Now we replace U with U1 in the right bracket
and introduce the notation for a matrix of subcolumns of Y :

Y1 “ U
`

Gpdt`1q Gpdt`2q . . . Gpdq

˘

pU1 b ¨ ¨ ¨ b V p1qqT .

However, since both U and U1 both have full column rank, the rank of U1 b ¨ ¨ ¨ b V p1q is also full and
rs “ rankpY q “ rankpY1q. Hence any basis Y1 columns space will also be a basis for Y . Let us assemble matrix
W P Rnˆrs from basis columns of Y1. We can choose W such that W “

`

WT
1 WT

2

˘T
,W1 P Rrsˆrs ,detpW1q ‰ 0.

From Appendix A.2, we know that any matrix consisting of basis columns can be used as a shared factor. Let us
denote this representation as Y “

q
G1;V p1q, . . . , V pdtq,W, . . . ,W

y
. Let us also denote by T its subtensor:

T “ Y:,...,:,:rs,...,:rs “

r
G1;V p1q, . . . , V pdtq,W1, . . . ,W1

z
.

We note that columns of W1 are fibers of T . Finally, we have

Y “ T ˆdt`1 WW´1
1 ˆdt`2 . . . ˆd WW´1

1 . (10)

This is a formula for reconstructing the tensor Y by using rds
s ` rspn ´ rsq of its elements. In terms of unfoldings

it can be written as follows:
`

Ypdt`1q

ˇ

ˇ Ypdt`2q

ˇ

ˇ . . .
ˇ

ˇ Ypdq

˘

“ WW´1
1

`

Tpdt`1q Tpdt`2q . . . Tpdq

˘ `

pWW´1
1 q b ¨ ¨ ¨ b In1

˘T
.

This formula is correct if and only if rankp
`

Xpdt`1q Xpdt`2q . . . Xpdq

˘

q “ rs. Indeed, on the one hand, if the
rank is rs, we can choose T and W so that the formula is satisfied. On the other hand, as detpW1q ‰ 0, the
matrix WW´1

1 has full column rank and rankp
`

Tpdt`1q Tpdt`2q . . . Tpdq

˘

q “ rs. As a result, we have that
rankp

`

Xpdt`1q Xpdt`2q . . . Xpdq

˘

q “ rs. Let us use this formula to apply the submersion theorem. Consider
an open set

S “

!

X P M1,...,dt
r1,...,rdt

|X “

r
T ;V p1q, . . . , V pdtq,WW´1

1 , . . . ,WW´1
1

z
, detpW1q ‰ 0

)

,

where Y is smoothly obtained from X , and T and W are assembled from elements of Y as described above. We
can describe S X dimMr by the level set of

Φ: S Ñ Rr1r2...rdtn
ds
s ´r1r2...rdtr

ds
s ´rspn´rsq, ΦpX q “ PpY ´ T ˆdt`1 WW´1

1 ˆdt`2 . . . ˆd WW´1
1 q,

where P is any bijection that represents as a column vector all elements of Y that were not used to construct T
and are not contained in W . Now we need to show that DΦ is a surjection. Firstly, note that because Y, T and
W are smoothly obtained from X , Φ is smooth. Now consider

γ : R Ñ S, γptq “ pY ` tEq ˆ1 U1 ˆ2 U2 ˆ ¨ ¨ ¨ ˆdt Udt ,

where E P Rn1ˆ¨¨¨ˆnd has zeros on all positions that were used to construct T and W . We have,

DΦpX qrγ1p0qs “
d

dt
pΦ ˝ γqptq

ˇ

ˇ

t“0
“

d

dt

`

P pY ` tE ´ T ˆdt`1 WW´1
1 ˆ . . . ˆd WW´1

1 q
˘
ˇ

ˇ

t“0
“

d

dt
ptP pEqq|t“0 “ P pEq.

By choosing E we can get any desired value of P pEq and hence DΦ is a surjection. By the submersion theorem
(Steinlechner, 2016, Prop. 2.10) we have that Ms

r is a smooth manifold of the dimension:

dimMr “ dimkerΦ “ dimS ´ dimRr1r2...rdtn
ds
s ´r1r2...rdtr

ds
s ´rspn´rsq “ r1r2 . . . rdt

nds
s `

dt
ÿ

i“1

pniri ´ r2i q ´ r1r2 . . . rdtn
ds
s ` r1r2 . . . rdtr

ds
s ` rspn ´ rsq “ r1r2 . . . rdtr

ds
s `

dt
ÿ

i“1

pniri ´ r2i q ` pnrs ´ r2sq.

B.2 Projection onto the tangent space

Firstly, let us introduce several notions of subspaces, which are related to a fixed X “
q
G;V p1q, . . . , V pdtq, U, . . . , U

y
.

The first one is

L0 “

!

ξ P Rn1ˆ...ˆn
ˇ

ˇ ξ “

r
9G;V p1q, V p2q, . . . , V pdtq, U, . . . , U

z
, 9G P Rr1ˆ...ˆrs

)

.

Next, for 1 ⩽ i ⩽ dt we have, dt subspaces of the form

Li “

!

ξ P Rn1ˆ...ˆn
ˇ

ˇ ξ “ JG;V p1q, V p2q, . . . , 9V piq, . . . , UK, 9V piq P Rniˆri , 9V piqT V piq “ 0
)

.

And the final one:

Ls “

!

ξ P Rn1ˆ...ˆndtˆnˆ...ˆn
ˇ

ˇ ξ “ JG;V p1q, . . . , V pdt´1q, V pdtq, 9U, . . . , UK ` . . .

. . . ` JG;V p1q, . . . , V pdt´1q, V pdtq, U, . . . , 9UK, 9U P Rnˆrs , 9UTU “ 0
)

.

Proposition B.1. The tangent space TXMs
r can be decomposed as

TXMs
r “ L0 ‘ L1 ‘ . . . ‘ Ldt

‘ Ls.

Moreover, for i, j P t0, 1, . . . , dt, su, i ‰ j it follows Li K Lj.

Proof. Following the technique from (Steinlechner, 2016), we firstly show, that L0 and L1 are orthogonal, which
means, that for any pair ξ P L0, , η P L1 holds that xξ, ηy “ 0:

xξ, ηy “

Ar
9G;V p1q, V p2q, . . . , U

z
,
r
G; 9V p1q, V p2q, . . . , U

zE
“

Ar
9G; I, V p2q, . . . , U

z
,
r
G;V p1qT 9V p1q, V p2q, . . . , U

zE
“

“

Ar
9G; I, V p2q, . . . , U

z
,
r
G; 0, V p2q, . . . , U

zE
“ 0.

Now, we show, that for any i, j P t1, . . . , dtu, i ‰ j holds that Li K Lj . Again, let ξ P Li, η P Lj , then

xξ, ηy “

Ar
G;V p1q, . . . , 9V piq, . . . , U

z
,
r
G;V p1q, . . . , 9V pjq, . . . , U

zE
“

“

Cr
G;V p1q, . . . , V pi´1q, I, . . . , U

z
,

t

G;V p1q, . . . , 9V piqT V piq
loooomoooon

0

, . . . , 9V pjq, . . . , U

|G

“ 0.

Finally, we show that subspaces L1 and Ls are orthogonal. Let ξ P Li, η P Lj , and η “ η1 ` . . . ` ηds
, where

each ηk “ JG;V p1q, . . . , V pdtq, U, . . . , 9U
loomoon

k-th

, . . . , UK. We show that ξ and ηk are orthogonal for each k “ 1, . . . , ds,

which implies orthogonality of ξ and η:

xξ, ηky “

Ar
G; 9V p1q, . . . , U

z
,
r
G;V p1q, . . . , V pdtq, U, . . . , 9U, . . . , U

zE
“

“

Cr
G;V p1q, . . . , V pdtq, U, . . . , I, . . . , U

z
,

t

G;V p1q, . . . , V pdtq, U, . . . , 9U, . . . , 9UTU
loomoon

0

|G

“ 0.

Now we are ready to derive formulas for projection onto the tangent space from Section 4.

Proposition B.2. For any Y P Rn1ˆ...ˆndtˆnˆ...ˆn, the orthogonal projection onto the tangent space of Ms
r at

X “
q
G;V p1q, . . . , V pdtq, U, . . . , U

y
P Ms

r is given by

PTXMs
r
: Rn1ˆ...ˆndtˆnˆ...ˆn Ñ TXMs

r, Y ÞÑ

r
F
´

G, 9G
¯

;W p1q, . . . ,W pdtq, Y, . . . , Y
z

r
F
´

G, 9G
¯

;W p1q, . . . ,W pdtq, Y, . . . , Y
z

“

r
G; 9V p1q, V p2q, . . . , U

z
` . . . `

r
G;V p1q, . . . , U, 9U

z
`

r
9G;V p1q, . . . , U

z
,

where the components 9G, 9V pkq and 9U are determined by

9G “

r
Y;V p1qT , . . . , UT

z
,

9V piq “

´

I ´ V piqV piqT
¯

u

vY;V p1qT , . . . , I
loomoon

i-th

, . . . , V pdtq, UT , . . . , UT

}

~

piq

G`

piq,

9U “
`

I ´ UUT
˘

¨

˚

˝

d
ÿ

i“dt`1

u

vY;V p1qT , . . . , V pdtqT , UT , . . . , I
loomoon

i-th

, . . . , UT

}

~

piq

GT
piq

˛

‹

‚

˜

d
ÿ

i“dt`1

GpiqGT
piq

¸´1

,

where G`

piq “ GT
piq

´

GpiqGT
piq

¯´1

— Moore-Penrose pseudo-inverse of Gpiq.

Proof. Since TXMs
r “ L0 ‘L1 ‘ . . .‘Ldt

‘Ls, it follows, that there exists a set of unique ηk, k P t0, 1, . . . , dt, su,
such that PTXMs

r
pYq “ η0 ` η1 ` . . . ` ηdt

` ηs. Now, let PLk
— orthoprojector onto Lk. Then, ηk may be

obtained as PLk
pYq. Therefore, we can consider each PLk

separately and then combine them to construct the
projection onto the entire tangent space.

The formulas for PLk
, k P t0, 1, . . . , dtu coincide with the classic Tucker decomposition (Steinlechner, 2016). We

therefore omit them and consider only derive the projection formula for Ls. As an orthoprojector, PLs
has to

satisfy
xPLs

pYq , ξky “ xY, ξsy (11)

for any ξs P Ls. Let PLs
pYq “

r
G;V p1q, . . . , V pdtq, 9U,U, . . . , U

z
` . . . `

r
G;V p1q, . . . , V pdtq, U, . . . , U, 9U

z
. We

introduce the projector PK
U “ I ´ UUT onto the orthogonal complement of the image of U . Using PK

U we
can represent ξs P Ls as

q
G;V p1q, . . . , V pdtq, PK

U W,U, . . . , U
y

` . . . `
q
G;V p1q, . . . , V pdtq, U, . . . , U, PK

U W
y
, as PK

U

preserves gauge conditions of shared factor for any arbitrary matrix W P Rniˆri . Utilizing this representation of
ξs we determine 9U such that (11) holds:

xPLs
pYq , ξky “

A

PLs
pYq ,

r
G;V p1q, . . . , V pdtq, PK

U W,U, . . . , U
z

` . . . `

r
G;V p1q, . . . , V pdtq, U, . . . , U, PK

U W
zE

.

Using linearity of the scalar product by the second argument, we rewrite the expression as

xPLs
pYq , ξky “

ds
ÿ

i“1

A

PLs
pYq ,

r
G;V p1q, . . . , V pdtq, U, . . . , PK

U W, . . . , U
zE

.

Now we utilize the fact, that if U and PK
U W are at different positions then the scalar products of corresponding

terms is 0. For example:
Ar

G;V p1q, . . . , V pdtq, 9U,U, . . . , U
z
,
r
G;V p1q, . . . , V pdtq, U, PK

U W, . . . , U
zE

“

Ar
G;V p1q, . . . , V pdtq, 9U,PK

U U, . . . , U
z
,
r
G;V p1q, . . . , V pdtq, U,W, . . . , U

zE
“ 0,

as
`

PK
U

˘T
“ PK

U and PK
U U “ 0.

Therefore, the expression is further simplified as

xPLs
pYq , ξky “

ds
ÿ

i“1

Ar
G;V p1q, . . . , V pdtq, U, . . . , 9U, . . . , U

z
,
r
G;V p1q, . . . , V pdtq, U, . . . , PK

U W, . . . , U
zE

,

where in the k-th term 9U and πKW stand on the same position of the dt ` k-th mode. We can further drop all
other factors (both non-shared and shared) due to orthogonality of their columns:

xPLs
pYq , ξky “

ds
ÿ

i“1

Ar
G; I, . . . , 9U, . . . , I

z
,
q
G; I, . . . , PK

U W, . . . , I
yE

.

Now we rewrite this expression in terms of unfolding matrices:
ds
ÿ

i“1

Ar
G; I, . . . , 9U, . . . , I

z
,
q
G; I, . . . , PK

U W, . . . , I
yE

“

d
ÿ

i“dt`1

A

9UGpiq, P
K
U WGpiq

E

“

C

d
ÿ

i“dt`1

9UGpiqGT
piq,W

G

,

as PK
U

9U “ 9U . On the other hand, we know that xPLs
pYq , ξky “ xY, ξsy. Considering the expression for xY, ξsy,

we obtain

xY, ξsy “

ds
ÿ

i“1

A

Y,
r
G;V p1q, . . . , V pdtq, U, . . . , PK

U W, . . . , U
zE

,

which we rephrase in terms of unflodings:

xY, ξsy “

ds
ÿ

i“dt`1

B

Ypiq, P
K
U WGpiq

´

U b . . . b U b V pdtq b . . . b V p1q
¯T

F

“

“

ds
ÿ

i“dt`1

A

PK
U Ypiq

´

U b . . . b U b V pdtq b . . . b V p1q
¯

GT
piq,W

E

.

Finally, combining both expressions we obtain the following sequence of equalities:

xPLs
pYq , ξky “ xY, ξsy

C

d
ÿ

i“dt`1

9UGpiqGT
piq,W

G

“

ds
ÿ

i“dt`1

A

PK
U Ypiq

´

U b . . . b U b V pdtq b . . . b V p1q
¯

GT
piq,W

E

d
ÿ

i“dt`1

9UGpiqGT
piq “

ds
ÿ

i“dt`1

PK
U Ypiq

´

U b . . . b U b V pdtq b . . . b V p1q
¯

GT
piq

9U

˜

d
ÿ

i“dt`1

GpiqGT
piq

¸

“ PK
U

˜

ds
ÿ

i“dt`1

Ypiq

´

U b . . . b U b V pdtq b . . . b V p1q
¯

GT
piq

¸

9U “
`

I ´ UUT
˘

˜

ds
ÿ

i“dt`1

Ypiq

´

U b . . . b U b V pdtq b . . . b V p1q
¯

GT
piq

¸˜

d
ÿ

i“dt`1

GpiqGT
piq

¸´1

.

Finally, using square brackets we write:

9U “
`

I ´ UUT
˘

¨

˚

˝

d
ÿ

i“dt`1

u

vY;V p1qT , . . . , V pdtqT , UT , . . . , I
loomoon

i-th

, . . . , UT

}

~

piq

GT
piq

˛

‹

‚

˜

d
ÿ

i“dt`1

GpiqGT
piq

¸´1

.

B.3 Computing retraction

Here we discuss the deriviation of the Algorithm 1. Suppose, we are given a tensor X of the SF-Tucker formq
Ḡ; V̄ p1q, . . . , V̄ pdtq, Ū , . . . , Ū

y
after applying the reorthogonalization procedure. We are also given the desired SFT

rank r “ pr1, . . . , rdt
, rsq. Additionally, we suppose that V̄ pkq has r̄k columns, k “ 1, . . . , dt; Ū has r̄s columns,

and Ḡ has size r̄1 ˆ . . . ˆ r̄dt
ˆ r̄s ˆ . . . ˆ r̄s.

The algorithm of rank truncation can be summarized as follows: 1) Utilize the SF-HOSVD algorithm to obtain a
valid SF-Tucker decomposition; 2) Perform rank truncation by retaining the first rk columns from the respective
factors, and also keeping the corresponding “corner” subtensor of the size r1 ˆ . . . ˆ rdt

ˆ rs ˆ . . . ˆ rs from the
core.

Next we discuss how to perform these steps efficiently. Firstly, we need to obtain a valid SF-Tucker decomposition
of X . Following the algorithm of SF-HOSVD quasioptimality (Theorem 3.2), we should obtain factors V pkq which
are rk left singular vectors of Xpkq, k “ 1, . . . , dt. Considering,

Xpkq “ V̄ pkqḠpkq

´

Ū b . . . b Ū b V̄ pdtq b . . . b V̄ p1q
¯T

we note that taking thin SVD of Ḡpkq leads us to thin SVD of Xpkq since other matrices are already orthogonal.
Therefore, let Y ΣWT , Y P Rr̄kˆr̄k ,Σ P Rr̄kˆr̄k ,W P Rr̄kˆpr̄1¨...¨r̄dq{r̄k be thin SVD of Ḡpkq. Then we construct V pkq

as V̄ pkqY r:, : rks, where Y r:, : rks stands for first rk columns of Y .

We also need to obtain a new factor U which is the matrix of first rs left singular vectors of the concatenation of
unfolding matrices

`

Xpdt`1q

ˇ

ˇ . . .
ˇ

ˇ Xpdq

˘

. Considering the expression for α-th unfolding of X (α “ dt ` 1, . . . , d)

Xpαq “ Ū Ḡpαq

´

Ū b . . . b Ū b V̄ pdtq b . . . b V̄ p1q
¯

looooooooooooooooooooooomooooooooooooooooooooooon

Ω

T

,

we note, that only the middle matrix changes depending on α, while the other matrices remain fixed. Utilizing
this fact, we acquire a concatenation matrix in the following form:

`

Xpdt`1q

ˇ

ˇ . . .
ˇ

ˇ Xpdq

˘

“
`

Ū
ˇ

ˇ . . .
ˇ

ˇ Ū
˘

Diag
`

Gpdt`1q, . . . ,Gpdq

˘

Diag pΩ, . . . ,Ωq
T
,

which can be simplified as
`

Xpdt`1q

ˇ

ˇ . . .
ˇ

ˇ Xpdq

˘

“ Ū
`

Gpdt`1q

ˇ

ˇ . . .
ˇ

ˇ Gpdq

˘

Diag pΩ, . . . ,Ωq
T
.

Here we denote block-diagonal matrix with blocks A1, . . . , Am on the diagonal as Diag pA1, . . . , Amq. Analogously
to the previous case, the matrices Ū and Diag pΩ, . . . ,Ωq

T (which is pIds
b Ωq

T) are already orthogonal. Thus,
we only need to take thin SVD of

`

Gpdt`1q

ˇ

ˇ . . .
ˇ

ˇ Gpdq

˘

and to obtain the factor U .

Finally, for the obtained factors V pkq, k “ 1, . . . , dt and U we should derive new core tensor G by performing the
following contraction:

G “

r
X ;V p1qT , . . . , V pdtqT , UT , . . . , UT

z
“

r
Ḡ;V p1qT V̄ p1q, . . . , V pdtqT V̄ pdtq, UT Ū , . . . , UT Ū

z
.

C Riemannian autodiff

Let us introduce new notation for this section. In the cases where we perform tensor-matrix multiplication across
all modes except one, we use the following notation:

X
d

ą

k“1
k‰j

V pkq.

If X admits the SF-Tucker decomposition X “
q
G;V p1q, . . . , V pdtq, U, . . . , U

y
, then we also write it as

X “ G
dt
ą

i“1

V piq
d

ą

j“dt`1

U.

In the following derivation, we will also require an elementwise representation of the SF-Tucker:

Xi1,...,id “

r1,...,rdt ,rs,...,rs
ÿ

j1,...,jd“1

Gj1,...,jdV
p1q

i1j1
. . . V

pdtq

idt jdt
Uidt`1jdt`1

. . . Uidjd . (12)

We are given a mapping from Section 5:

TX :
´

S,Bp1q, . . . , Bpdtq, A
¯

ÞÑ F pG, Sq

dt
ą

i“1

´

V piq
ˇ

ˇ Bpiq
¯

d
ą

j“dt`1

`

U
ˇ

ˇ A
˘

,

and the corresponding mapping h “ f ˝ TX . One may note that hpG, 0, . . . , 0q “ fpX q. Thus, we will
construct the Riemannian gradient of f at X by differentiating h with respect to its arguments. Let
T “ TX

`

S,Bp1q, . . . , Bpdtq, A
˘

. Then its partial derivative with respect to S is

BTi1,...id

BSq1,...,qd

“
B

BSq1,...,qd

˜

S
dt
ą

α“1

V pαq

d
ą

β“dt`1

U

¸

i1,...id

.

Applying (12) and taking partial derivatives we obtain

BTi1,...id

BSq1,...,qd

“ V
p1q

i1q1
, . . . , V

pdtq

idtqdt
Uidt`1qdt`1

. . . Uidqd .

Therefore, the partial derivative of h at pG, 0, . . . , 0q is

Bh

BSq1,...,qd

ˇ

ˇ

ˇ

ˇ

ˇS“G
A“0
Bi“0

“
ÿ

i1,...,id

Bf

BTi1,...id

ˇ

ˇ

ˇ

ˇ

ˇ

T“X

BTi1,...id

BSq1,...,qd

“
ÿ

i1,...,id

Bf

BXi1,...id

V
p1q

i1q1
, . . . , V

pdtq

idtqdt
Uidt`1qdt`1

. . . Uidqd ,

hence,
Bh

BS
“ ∇fpXq

dt
ą

i“1

V piqT
d

ą

j“dt`1

UT

To obtain the partial derivative of h with respect to Bpiq we firstly again need to take the derivative of T :

BTi1,...,id

BB
pjq
pq

“
B

BB
pjq
pq

¨

˚

˚

˝

dt
ÿ

α“1

G ˆα Bpαq

dt
ą

β“1
β‰α

V pβq

d
ą

dt`1

U

˛

‹

‹

‚

i1,...,id

.

Applying (12) we obtain

B

BB
pjq
pq

¨

˚

˚

˝

dt
ÿ

α“1

ÿ

γ1,...,γd

Gγ1,...,γd
B

pαq

iαγα

dt
ź

β“1
β‰α

V
pβq

iβγβ

d
ź

ξ“dt`1

Uiξγξ

˛

‹

‹

‚

“

“ δpij

ÿ

γ1,...,γj´1,γj`1,...,γd

Gγ1,...,γj´1,q,γj`1,...,γd

dt
ź

β“1
β‰α

V
pβq

iβγβ

d
ź

ξ“dt`1

Uiξγξ
,

where δba is the Kronecker delta, is equal 1 if a “ b and 0 otherwise. Now, deriving the partial derivative of h at
pG, 0, . . . , 0q:

Bh

BB
pjq
pq

ˇ

ˇ

ˇ

ˇ

ˇS“G
A“0
Bi“0

“
ÿ

i1,...,id

Bf

BTi1,...id

ˇ

ˇ

ˇ

ˇ

ˇ

T“X

BTi1,...id

BSq1,...,qd

“

“
ÿ

ti1,...,idu{tiju

∇fpX qi1,...p...,id

ÿ

tγ1,...,γdu{tγju

Gγ1,...,q,...,γd

dt
ź

β“1
β‰α

V
pβq

iβγβ

d
ź

ξ“dt`1

Uiξγξ
“

“
ÿ

tγ1,...,γdu{tγju

Gγ1,...,q,...,γd

¨

˚

˚

˝

∇fpX q

dt
ą

β“1
β‰j

V pβqT
d

ą

ξ“dt`1

UT

˛

‹

‹

‚

γ1,...,p,...,γd

,

hence,

Bh

BBpjq
“

»

—

—

–

∇fpX q

dt
ą

β“1
β‰j

V pβqT
d

ą

ξ“dt`1

UT

fi

ffi

ffi

fl

pjq

GT
pjq,

where
ř

ti1,...,idu{tiju

means there is summation over all indices from i1 to id except ij . By a similar procedure, we

obtain the partial derivative of T with respect to A:

BTi1,...,id

BApq
“

d
ÿ

α“dt`1

δpiα

ÿ

tγ1,...,γdu{tγju

Gγ1,...,q,...,γd

dt
ź

β“1

V
pβq

iβγβ

ź

ξ“1
ξ‰α

Uiξγξ
.

Table 4: Extended results of experiments on the link prediction problem on FB15k-237 and WN18RR datasets.
The best scores for each dataset are highlighted in bold font. Top-2 scores are underlined.

Model Rank MRR Hits@10 Hits@3 Hits@1

WNRR18

R-TuckERnoBN p10, 200q 47.9˘.2 54.9˘.2 49.2˘.3 44.6˘.1
R-TuckERnoBN p10, 200, 200q 44.0˘.4 47.6˘.5 45.1˘.3 41.7˘.2
TuckERnoBN p30, 200q 45.0˘.3 46.1˘.4 46.7˘.3 42.4˘.2
TuckER p30, 200q 47.0 52.6 48.2 44.3
ConvE ´ 43.0 52.0 44.0 40.0
DistMult ´ 43.0 49.0 44.0 39.0

FB15k-237

R-TuckERnoBN p200, 40q 32.9˘.2 50.5˘.2 35.9˘.2 24.2˘.1
R-TuckERnoBN p200, 40, 40q 31.2˘.4 47.6˘.4 33.9˘.3 23.1˘.2
R-TuckERnoBN p200, 200q 27.8˘.4 44.3˘.3 30.5˘.3 19.3˘.3
TuckERnoBN p200, 200q 32.6˘.4 50.5˘.4 35.3˘.2 23.7˘.2
TuckER p200, 200q 35.8 54.4 39.4 26.6
R-GCN ´ 24.8 41.7 26.4 15.1
ConvE ´ 32.5 50.1 35.6 23.7
DistMult ´ 24.1 41.9 26.3 15.5

Table 5: Best performing hyperparameter values for R-TuckER across both datasets.

Dataset lr dr reg_init reg_finish reg_steps beta ls num_epochs

WN18RR 2000 .9981 1e ´ 4 1e ´ 9 350 0.8 0.1 1450
FB15k-237 2000 .9981 1e ´ 4 1e ´ 10 100 0.8 0.1 500

The partial derivative of h at pG, 0, . . . , 0q:

Bh

BA
“

d
ÿ

αdt`1“1

¨

˚

˚

˝

∇fpX q

dt
ą

β“1

V pβqT
d

ą

ξ“1
ξ‰α

UT

˛

‹

‹

‚

pαq

GT
pαq.

Finally, we construct the Riemannian gradient:

∇Mk
r
fpX q “ F

´

G, 9G
¯

dt
ą

i“1

´

V piq
ˇ

ˇ 9V piq
¯

d
ą

j“dt`1

´

U piq
ˇ

ˇ 9U piq
¯

,

9G “
Bh

BS
, 9Vi “

´

Ini
´ V piqV piqT

¯

Bh

BBpiq

´

GpiqGT
piq

¯´1

, 9U “
`

Ind
´ UUT

˘ Bh

BA

˜

d
ÿ

γ“dt`1

GpγqGT
pγq

¸´1

.

D More experiments for link prediction

Here we provide more detailed results of experiments for the link prediction problem. In particular, we add hits@3
evaluation metric for both datasets and include experiments with more configurations for both datasets.

Table 4 includes the experiments from Table 1 in Section 6.2, along with an additional experiment for the
WN18RR dataset and two additional experiments for the FB15k-237 dataset. In these experiments, we did
not use shared embeddings for subjects and objects. This means that we essentially utilize standard Tucker
decomposition instead of SF-Tucker. These models were trained using the same hyperparameters and optimization

0 5000 10000 15000
Wall clock time (s)

0.0

0.1

0.2

0.3

0.4

HI
TS

@
1

WN18RR HITS@1

RTuckER (200, 10)
TuckER (200, 30)
TuckER (200, 10)

0 2000 4000 6000 8000
Wall clock time (s)

0.00

0.05

0.10

0.15

0.20

0.25

HI
TS

@
1

FB15k-237 HITS@1

RTuckER (200, 40)
TuckER (200, 200)
TuckER (200, 40)

Figure 3: Comparing our R-TuckER model to the original TuckER model and TuckER model with a comparable
number of parameters based on the Hits@1 metric, against the training time.

method as the models with shared factors. However, we observed that despite having a noticeably larger number
of parameters, these models performed worse than the models with shared factors across all the metrics. We
do not report the standard deviation for vanilla TuckER with or for Deep Learning-based model, as we take
the best published results from the corresponding papers. In Figure 3, we also compare time performance of
our R-TuckER model with the original TuckER in two settings: with the same and higher rank values. We
provide Hits@1 metric values against wall clock time during training. It is clear, that our model achieves better
metric value within comparable amount of run time on WN18RR dataset. In the case of FB15k-237 dataset, we
outperform the TuckER model on the same rank value, but obtain worse metrics than TuckER with the larger
rank value. As a potential direction for research it would be interesting to try different regularization strategies
to avoid overfitting in regimes with large ranks on FB15k-237 dataset.

Table 5 shows best performing hyperparameters for R-TuckER across both datasets, where lr denotes learning
rate, dr — exponential decay rate, reg_init and reg_finish are initial and final values of regularization coefficient,
reg_steps is amount of regularization coefficient decay steps, beta is momentum beta parameter, ls is label
smoothing and num_epochs is number of epochs that model was trained.

	INTRODUCTION
	RELATED WORK
	SF-TUCKER DECOMPOSITION
	Tucker Decomposition And Notation
	SF-Tucker Decomposition
	SF-HOSVD Approximation Algorithm

	FIXED RANK TUCKER MANIFOLD WITH SHARED FACTORS
	Tangent Spaces.
	Projection To The Tangent Tpace
	Retraction.

	OPTIMIZATION ON THE MANIFOLD
	Gradient Descent With Momentum

	NUMERICAL EXPERIMENTS
	Approximating Grid Functions
	Knowledge Graphs Link Prediction
	Neural Networks

	CONCLUSION
	LIMITATIONS
	SF-Tucker decomposition
	Existence of SF-Tucker decomposition
	SF-Tucker rank (Proof of Theorem 3.1)
	Quasi-optimality of SF-HOSVD (Proof of Theorem 3.2)

	Riemannian optimization on the manifold of fixed SF-rank tensors
	SF-Tucker manifold (Proof of Theorem 4.1)
	Projection onto the tangent space
	Computing retraction

	Riemannian autodiff
	More experiments for link prediction

