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Abstract

Reinforcement learning (RL) folklore suggests
that methods of function approximation based
on history, such as recurrent neural networks
or state abstractions that include past inform-
ation, outperform those without memory, be-
cause function approximation in Markov de-
cision processes (MDP) can lead to a scenario
akin to dealing with a partially observable
MDP (POMDP). However, formal analysis
of history-based algorithms has been limited,
with most existing frameworks concentrating
on features without historical context. In this
paper, we introduce a theoretical framework
to examine the behaviour of RL algorithms
that control an MDP using feature abstraction
mappings based on historical data. Addition-
ally, we leverage this framework to develop
a practical RL algorithm and assess its per-
formance across various continuous control
tasks.

1 Introduction

State abstraction and function approximation are vital
components used by reinforcement learning (RL) al-
gorithms to efficiently solve complex control problems
when exact computations are intractable due to the size
of the state and action spaces. Over the past few dec-
ades, state abstraction in RL has evolved from the use
of pre-determined and problem-specific features Crites
and Barto [1995], Tsitsiklis and Roy [1996], Bertsekas
and Tsitsiklis [1996], Sutton and Barto [1998], Singh
et al. [2002], Kwok and Fox [2004], Proper and Tadepalli
[2006] to adaptive basis functions learnt by solving an
isolated regression problem [Ormoneit and Sen, 2002,
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Menache et al., 2005, Keller et al., 2006, Petrik, 2007],
and more recently to neural network-based Deep-RL
algorithms that compute state embeddings using suc-
cessive layers of a neural network [Barto et al., 2004,
Bellemare et al., 2019].

There has also been a renewed interest in using history-
based feature abstraction methods, as growing empir-
ical evidence suggests that such methods are beneficial
in practice [OpenAI et al., 2019]. However, a theoretical
characterisation of history-based Deep-RL algorithms
for fully observable Markov Decision Processes (MDPs)
is largely absent from the literature.

In this paper, we bridge this gap between theory and
practice by providing a theoretical analysis of history-
based RL agents acting in a MDP.

Our approach adapts the notion of approximate inform-
ation state (AIS) for Partially Observable Markov De-
cision Processes (POMDPs) proposed in Subramanian
et al. [2020], Subramanian and Mahajan [2019] to fea-
ture abstraction in MDPs. We also develop a theoretic-
ally grounded policy search algorithm for history-based
feature abstractions and policies, which we evaluate
empirically.

The rest of the paper is organised as follows: In Sec-
tion 2, following a brief review of feature-based abstrac-
tion, we motivate the need for using history-based fea-
ture abstractions. In Section 3, we present a AIS-based
model for the co-design of the feature abstraction and
control policy, and derive its corresponding dynamic
programming decomposition. We also derive bounds
on the quality of approximate solutions to this dynamic
program. In Section 4 we build on these approxima-
tion bounds to develop an RL algorithm for learning a
history-based state representation and control policy.
In Section 5, we present an empirical evaluation of our
proposed algorithm on continuous control tasks. Fi-
nally, we discuss related work in Section 6 and conclude
with future research directions in Section 7.
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2 Background and Motivation

Consider an MDPM = ⟨S,A, P, r, γ⟩ where S denotes
the state space, A denotes the action space, P denotes
the controlled transition matrix, r : S×A → R denotes
the per-step reward, and γ ∈ (0, 1) denotes the discount
factor.

The performance of a randomised (and possibly history-
dependent) policy π starting from a start state s0 is
measured by the value function, defined as:

V π(s0) = Eπ

[ ∞∑
t=1

γt−1r(St, At)

∣∣∣∣S0 = s0

]
. (1)

A policy maximising V π(s0) over all (randomised and
possibly history dependent) policies is called an optimal
policy with respect to initial state s0 and is denoted
by π⋆.

In many applications, S and A are combinatorially
large or uncountable, which makes it intractable to
compute the optimal policy.

Most practical RL algorithms overcome this hurdle
by using function approximation where the state is
mapped to a feature space Z using a state abstraction
function ϕ : S → Z. In Deep-RL algorithms, the last
layer of the network is often viewed as a feature vector.
These feature vectors are then used as an approximate
state for approximating the value function V̂ : Z → R
and/or computing an approximately optimal policy
µ : Z → Ω(A) [Sutton and Barto, 1998] (where Ω(A)
denotes the set of probability distribution over actions).
Therefore, the mapping from state to distribution of
actions is given by the “flattened” policy µ̃ = µ◦ϕ i.e.,
µ̃ = µ(ϕ(·)).

A well known fact about function approximation is
that the features that are used as an approximate state
may not satisfy the controlled Markov property i.e., in
general,

P(Zt+1 | Z1:t, A1:t) ̸= P(Zt+1 | Zt, At).

To see the implications of this fact, consider the toy
MDP depicted in Figures 1a to 1c, with S = {0, 1, 2, 3},
A = {0, 1, 2}, {Ps,s′(a)}a∈A, and r(0) = r(1) = −1,
r(2) = 1, r(3) = −K, where K is a large positive
number. Given the reward structure the objective of
the policy is to try to avoid state 3 and keep the agent
at state 2 as much as possible. It is easy to see that
the optimal policy is

π⋆(0) = 0, π⋆(1) = 0, π⋆(2) = 1, and π⋆(3) = 2.

Note that if the initial state is not state 3 then an
agent will never visit that state under the optimal
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Figure 1: The transition probability for an example
MDP

policy. Furthermore, any policy which cannot prevent
the agent from visiting state 3 will have a large negative
value and, therefore, cannot be optimal.

Now suppose the feature space Z = {0, 1}. It is easy to
see that for any Markovian feature-abstraction ϕ : S →
Z, no policy π̂ : Z → A can prevent the agent from
visiting state 3. Thus, the best policy when using
Markovian feature abstraction will perform significantly
worse than the optimal policy (which has direct access
to the state).

However, it is possible to construct a history-based
feature-abstraction ϕ and a history-based control policy
π̂ that works with ϕ and is of the same quality as π⋆.
For this, consider the following codebooks (where the
entries denoted by a dot do not matter):

Now define

D(0) =


0 1
1 2
2 3
3 0

 , F (0) =


0 1 · ·
· 0 1 ·
· · 0 1
1 · · 0

 ,

D(1) =


3 0
0 1
1 2
2 3

 , F (1) =


1 · · 0
0 1 · ·
· 0 1 ·
· · 0 1

 ,

D(2) =


1 3
0 2
1 3
0 2

 , F (2) =


· 0 · 1
0 · 1 ·
· 0 · 1
0 · 1 ·

 ,

and consider the feature-abstraction policy Zt =
FSt−1,St(At−1) and a control policy µ which is a fi-
nite state machine with memory, where the memory
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Mt that is updated as Mt = DMt−1,Zt(At−1) and the
action At is chosen as At = π(Mt), where π : S → Ω(A)
is any pre-specified reference policy. It can be verified
that if the system starts from a known initial state
then µ ◦ ϕ = π. Thus, if we choose the reference policy
π = π⋆, then the agent will never visit state 3 under
µ ◦ ϕ, in contrast to Markovian feature-abstraction
policies where (as we argued before) state 3 is always
visited.

In the above example, we used the properties of the
system dynamics and the reward function to design a
history-based feature abstraction which outperforms
memoryless feature abstractions. We are interested
in developing such history-based feature abstractions
using a learning framework when the system model is
not known. We present such a construction in the next
section.

3 Approximation bounds for
history-based feature abstraction

The approximation results in this work depend on the
properties of metrics on probability spaces. There-
fore, we will first provide a brief overview of a general
class of metrics known as Integral Probability Metrics
(IPMs) [Müller, 1997]. Note that many commonly used
metrics on probability spaces, such as total variation
(TV) distance, Wasserstein distance, and maximum-
mean discrepancy (MMD), are instances of IPMs.

3.1 Integral Probability Metrics (IPM)

Definition 3.1 ( [Müller, 1997]). Let (E ,G) be a meas-
urable space and let F denote a class of uniformly
bounded measurable functions on (E ,G) such that the
set F is convex and balanced. The Integral Probability
Metric (IPM) between two probability distributions
ν1, ν2 ∈ P(E) with respect to the function class F is
defined as:

dF(ν1, ν2) ≜ sup
f∈F

∣∣∣∣ ∫
E
fdν1 −

∫
E
fdν2

∣∣∣∣. (2)

For any function f (not necessarily in F), the Minkowski
functional ρF associated with the metric dF is defined
as:

ρF(f) ≜ inf{ρ ∈ R≥0 : ρ−1f ∈ F}. (3)

Eq. (3), implies that for any function f :∣∣∣∣ ∫
E
fdν1 −

∫
E
fdν2

∣∣∣∣ ≤ ρF(f)dF(ν1, ν2). (4)

In this paper, we use the following IPMs:

1. Total Variation Distance: The IPM is Total
Variation Distance when F = FTV ≜ {f : ∥f∥∞ ≤
1}. The Minkowski functional associated with dF,
denoted as ρFTV(f) given as ρFTV(f) = 1

2 span(f),

where 1
2 span(f) ≜

1
2 (max(f)−min(f)) .

2. Wasserstein/Kantorovich-Rubinstein Dis-
tance: The IPM is the Wasserstein or the Kan-
torovich distance, when F = FW ≜ {f : Lf ≤ 1}
(where Lf denotes the Lipschitz constant of f with
respect to the metric on some metric space E). The
Minkowski function for the Wasserstein distance
is ρFW (f) = Lf .

3. Maximum Mean Discrepancy (MMD) Dis-
tance: The IPM is a Maximum Mean Discrepancy
distance when F is FMMD ≜ {f ∈ U : ∥f∥U ≤ 1}
where U is a reproducing kernel Hilbert space
(RKHS) of real-valued functions on E , and ∥·∥U de-
notes the associated RKHS norm. The Minkowski
functional is associated with MMD is ρFMMD(f) =
∥f∥U .

3.2 Approximate information state

Given an MDPM and a feature space Z, let Ht = S×
A denote the space of all histories (S1:t, A1:t−1) up to
time t. Here S1:t is a concise notation for the history of
states (S1, . . . , St), and a similar interpretation applies
to A1:t. Our objective is to learn history-based feature
abstraction functions {σt : Ht → Z}t≥1 along with a
time homogeneous policy µ : Z → Ω(A) such that the
flattened policy π = {πt}t≥1, where πt = µ ◦ σt, is
approximately optimal.

Definition 3.2. A family of history-based feature ab-
straction functions {σt : Ht → Z}t≥1 are said to be
recursively updatable if there exists an update function
f̂ : Z × S × A → Z such that the process {Zt}t≥1,
where Zt = σt(S1:t, A1:t−1), satisfies the following:

Zt+1 = f̂(Zt, St+1, At). t ≥ 1 (5)

Since the feature abstraction approximates the state,
its quality depends on how well it can be used to
approximate the per step reward and predict the next
state. The definition below formalises this intuition.

Definition 3.3. Given a family of recursively up-
datable history based feature abstraction functions
{σt : Ht → Z}t≥1, the features Zt = σt(S1:t, A1:t−1)
are said to be (ϵ, δ)-approximate information state
(AIS) with respect to a function space F if there exist:
(i) a reward approximation function r̂ : Z×A → R, and
(ii) an approximate transition kernel P̂ : Z×A → Ω(S)
such that Z satisfies the following properties:
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(P1) Sufficient for approximate performance evalu-
ation: for all t,

|r(St, At)− r̂(Zt, At)| ≤ ϵ. (6)

(P2) Sufficient for predicting future states approxim-
ately: for all t

dF(P (·|St, At), P̂ (·|Zt, At)) ≤ δ. (7)

We call the tuple (r̂, P̂ ) as an (ϵ, δ)- AIS approximator.
Note that similar definitions have appeared in other
works e.g., latent state [Gelada et al., 2019], and approx-
imate information state for POMDPs [Subramanian
et al., 2020, Subramanian and Mahajan, 2019]. How-
ever, in [Gelada et al., 2019] it is assumed that the
feature abstractions are memoryless and the discussion
is restricted to Wasserstein distance.

The main difference from the POMDP model in
[Subramanian et al., 2020, Subramanian and Mahajan,
2019] is that, in POMDPs the observation Zt is a pre-
specified function of the state while in the proposed
model Zt depends on our choice of feature abstraction.

As such, the key insight presented in this paper is that
an AIS-approximator of a recursively updatable history-
based feature abstraction can be used to define a dy-
namic program. In particular, given a history-based
abstraction function {σt : Ht → Z}t≥1 which is recurs-

ively updatable using f̂ and an (ϵ, δ) AIS-approximator
(P̂ , r̂), we can define the following dynamic program-
ming decomposition:

For any zt ∈ Z, at ∈ A

Q̂(zt, at) = r̂(zt, at)

+ γ
∑

st+1∈S
P̂ (st+1|zt, at)V̂ (f̂(zt, st+1, at))

(8)

V̂ (zt) = max
at∈A

Q̂(zt, at), ∀zt ∈ Z (9)

Definition 3.4. Define µ : Z → ∆(A) be any policy
such that for any z ∈ Z,

Supp(µ(z)) ⊆ argmax
a∈A

Q̂(z, a). (10)

Since µ is a policy that maps from the feature space
to actions, we can use it to define a policy that maps
from the history of state action pairs to actions as:

πt(s1:t, a1:t−1) ≜ µ(σt(s1:t, a1:t−1)) (11)

Therefore, the dynamic program defined in (9) indir-
ectly defines a history-based policy π = (π1, π2, . . . ).
The performance of any such history-based policy is
given by the following dynamic program:

For any ht ∈ H, at ∈ A

Qπ
t (ht, at)

1 = r(st, at)+

γ
∑

st+1∈S
P (st+1|st, at)V π

t+1(ht+1), (12)

V π
t (ht) =

∑
at∈A

π(at|ht)Q
π
t (ht, at), ∀ht ∈ H (13)

We are interested in quantifying the loss in perform-
ance when such a history-based policy is used to control
the MDP. Note that since V π

t is not time-homogeneous,
we need to compute the worst-case difference between
V ⋆ and V π

t , which is given by:

∆ ≜ sup
t≥0

sup
ht=(s1:t,a1:t)∈Ht

|V ⋆(st)− V π
t (ht)|, (14)

Our main approximation result is the following:

Theorem 3.5. The worst case difference between V ⋆

and V π
t is bounded by

∆ ≤ 2
ε+ γδκF(V̂ , f̂)

1− γ
, (15)

where κF(V̂ , f̂) = supz,a ρF(V̂ (f̂(·, z, a))), ρF(·) is the
Minkowski functional associated with the IPM dF as
defined in (3).

Proof in Appendix A

Some salient features of the bound are as follows: First,
the bound depends on the choice of metric on probabil-
ity spaces. Different IPMs will result in a different value
of δ and also a different value of κF(V̂ , f̂). Second, the
bound depends on the properties of V̂ . For this reason
we call it an instance dependent bound. Sometimes,
it is desirable to have bounds which do not require
solving the dynamic program in (9). We present such
bounds as below, note that these “instance independent”
bounds are the derived by upper bounding κF(V̂ , f̂).
Therefore, these are looser than the upper bound in
Theorem 3.5

Corollary 3.6. If the function class F is FTV, then ∆
as defined in (14) is upper bounded as:

∆ ≤ 2ϵ

(1− γ)
+

γδ span(r̂)

(1− γ)2
. (16)

Proof in Appendix B

Corollary 3.7. Let Lr̂ and LP̂ denote the Lipschitz
constants of the approximate reward function r̂ and
approximate transition function P̂ respectively, and Lf̂

is the uniform bound on the Lipschitz constant of f̂

1We have dropped the time index from the policy to
reduce clutter
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GRU: 𝜎̂(⋅; 𝜁)
𝜇(⋅; 𝜉)

𝑟(⋅; 𝜁), 𝑃̂(⋅; 𝜁)

State: 𝑍𝑡−1

𝑆𝑡

𝐴𝑡−1

𝑍𝑡

𝐴𝑡

To environment

𝑟𝑡

𝜈𝑡+1

History compressor Policy network Reward and
next-state predictor

Figure 2: AIS approximator block

with respect to the state St. If γLP̂Lf̂ ≤ 1 and the

function class F is FW, then ∆ as defined in (14) is
upper bounded as:

∆ ≤ 2ϵ

(1− γ)
+

2γδLr̂

(1− γ)(1− γLf̂LP̂ )
. (17)

Proof in Appendix C

Corollary 3.8. If the function class F is FMMD, then
∆ as defined in (14) is upper bounded as:

∆ ≤ 2
ϵ+ γδκU (V̂ , f̂)

(1− γ)
, (18)

where U is a RKHS space, ∥ · ∥U its associated norm

and κU (V̂ , f̂) = supz,a ∥(V̂ (f̂(·, z, a)))∥U .

Proof. The proof follows from the properties of MMD
described previously.

In the following section we will show how one can
use these theoretical insights to design a policy search
algorithm.

4 Reinforcement learning with
history-based feature abstraction

In this section, we will use the ideas presented in the
previous section to develop a computational framework
that utilizes a reinforcement learning (RL) algorithm
to simultaneously learn an Abstract Information State
(AIS) and a policy.

The previous section helps us establish two results. The
first result indicates that a history-based representation
can be considered an AIS if it is capable of evolving
like a state and can approximately predict the instant-
aneous reward and state transition. The second result
suggests that if a policy is derived using an AIS, then
its performance loss is bounded by the approximation
error as in (15). To ensure that the implementation
meets the definition of the AIS, the main idea is to
represent both the AIS generator and the policy using a
parametric family of functions/distributions and train
them using a multi-timescale optimization algorithm.

According to Definition 3.3, the AIS generator con-
sists of four components: a compression function σt,
the update function f̂ , an approximate reward pre-
dictor r̂, and a transition kernel P̂ . We can repres-
ent the history compression function using any time
series approximators, such as LSTMs or GRUs. An ad-
vantage of such memory-based neural networks is that
their internal layers are updated in a state-like manner.
Therefore, we can satisfy Definition 3.2 since Zt evolves
according to the RNN’s state update function such that
f̂ : Z × S ×A → Z.

The main function of r̂ and P̂ is to ensure that Zt

satisfies properties P1 and P2 (in Definition 3.3), i.e.,
prediction of the instantaneous reward with a bounded
error ϵ and approximation of the ground MDP’s trans-
ition function with a bounded error δ. One way in
which the computational framework can satisfy these
conditions is by explicitly optimising the AIS gener-
ator for the constants ϵ and δ. We can achieve this by
modelling the reward predictor r̂ using a multilayered
perceptron (MLP) layer which uses the representation
Zt and action At to predict the reward r̂t. In the same
way, we can model the approximate transition kernel
P̂ using an appropriate class of stochastic kernel ap-
proximators e.g., a softmax function or a mixture of
Gaussian’s to learn a parametric approximation of P .
We can then train the AIS generator by minimising an
appropriate objective function.

To make things more concrete, let us denote
the AIS generator as the following collection:
{σt(·; ζ), f̂(·; ζ), fr̂(·; ζ), fP̂ (· : ζ)} where fr̂(·; ζ) : Z ×
A → R and fP̂ (·; ζ) : Z × A → Ω(S) are the reward
and transition approximators, and ζ are the parameters
of the respective sub- components. Instead of optim-
ising the reward prediction loss and the transition loss
separately, we can combine them in a single objective
function objective function as follows:

LAIS(ζ) =
1

T

T∑
t=0

(
λ (r̂(Zt, At; ζ)− r(St, At))

2︸ ︷︷ ︸
LR̂(·;ζ)

+ (1− λ) · dF(P̂ (Zt, At ; ζ), P )2︸ ︷︷ ︸
LP̂ (·;ζ)

)
, (19)

where, T is the length of the episode or the rollout
length, λ ∈ [0, 1] is a hyper-parameter, reward pre-
diction loss LR̂(; ζ) is simply the mean-squared er-
ror between the predicted and the observed reward,
whereas the transition prediction loss LP̂ (·; ζ) is the
distance between predicted and observed transition dis-
tributions P̂ and P . To compute LP̂ (·; ζ), we need to
choose an IPM. In principle we can pick any IPM, but
we would want to use an IPM using which the distance
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dF can be efficiently computed.

4.1 Choice of an IPM

To compute the IPM dF we need to know the probab-
ility density functions P̂ and P . As we assume that
P̂ belongs to a parametric family, we know its density
function in closed form. However, since we are in the
learning setup, we can only access samples from P . For
a function a f ∈ F, and probability density functions
P and P̂ such that, ν1 = P , and ν2 = P̂ , we can es-
timate the IPM dF between a distribution and samples
using the duality |

∫
Z fdν1 −

∫
Z fdν2|. In this paper,

we use two forms of IPMs, the MMD distance and the
Wasserstein/Kantorovich–Rubinstein distance.

4.1.1 MMD Distance:

Let mζ denote the mean of the distribution P̂ (·; ζ).
Then, the AIS-loss when MMD is used as an IPM is
given by

LAIS(ζ) =
1

T

T∑
t=0

(
λ(r̂(Zt, At; ζ)− r(St, At))

2

+ (1− λ)(mSt

ζ − 2St)
⊤mSt

ζ

)
, (20)

where mSt

ζ is obtained using the from the transition

approximator, i.e., the mapping P̂ (ζ) : Z × A →
R. For the detailed derivation of the above loss see
Appendix D.1.1

4.1.2 Wasserstein/Kantorovich–Rubinstein
distance:

In principle, the Wasserstein/Kantorovich distance can
be computed by solving a linear program [Sriperum-
budur et al., 2012], but doing at every episode can be
computationally expensive.

Therefore, we propose to approximate the Wasserstein
distance using a KL-divergence [Kullback and Leibler,
1951] based upper-bound. The simplified-KL diver-
gence based AIS loss is given as:

LAIS(ζ) =
1

T

T∑
t=0

(
λ(r̂(Zt, At; ζ)− r(St, At))

2

+ (1− λ) log(P̂ (St; ζ))

)
, (21)

where after dropping the terms which do not depend on
ζ, we get d2FW(P, P̂ ) ≤ log(P̂ (St; ζ)) is the simplified-
KL- divergence based upper bound. For the details of
this derivation see Appendix D.1.2.

4.2 Policy gradient algorithm

Algorithm 1: Policy Search with AIS

Input : ι0: Initial state distribution,
ζ0: Ais parameters,
ξ0: Actor parameters,
a0: Initial action,
D = ∅: Replay buffer,
Ncomp: Computation budget,
Nep: Episode length,
Ngrad: Gradient steps

1 for iterations i = 0 : Ncomp do
2 Sample start state s0 ∼ ι0;
3 for iterations j = 0 : Nep do
4 zj = σζ(s1:j , a1:j−1);
5 aj = µξ(zj);
6 sj+1 = P (sj , aj);
7 D ←− {zj , aj , sj , sj+1};
8 aj−1 = aj ;
9 sj = sj+1;

10 end
11 for every batch b ∈ D do
12 for gradient step t = 0 : Ngrad do
13 ζt+1,b = ζt,b + b∇ζLAIS(ζt,b);

14 ξt+1,b = ξt,b + d∇̂ξJ(ξt,b, ζt,b)

15 end

16 end

17 end

Following the design of the AIS block, we now provide
a policy- gradient algorithm for learning both the AIS
and the policy. The schematic of our agent architec-
ture is given in Figure 2, and pseudo-code is given in
Algorithm 1. Given a feature space Z, we can sim-
ultaneously learn the AIS- generator and the policy
using a multi-timescale stochastic gradient ascent al-
gorithm [Borkar, 2008]. Let µ(·; ξ) : Z → ∆(A) be a
parameterised stochastic policy with parameters ξ. Let
J(ξ, ζ) denote the performance of the policy µ(·; ξ).
The policy gradient theorem [Sutton et al., 1999, Wil-
liams, 2004, Baxter and Bartlett, 2001] states that:

For a rollout horizon T , we can estimate ∇ξJ as:

∇̂ξJ(ξt, ζt) =

T∑
t=1

γt−1rt

( t∑
τ=1

∇ξ log(µ(At|Zt; ξt))

)
.

Following a rollout of length T , we can then update
the parameters {(ζi, ξi)}i≥1 as follows:

ζi+1 = ζi + bi∇ζLAIS(ζi), (22)

ξi+1 = ξi + di∇̂ξJ(ξi, ζi) (23)

where the step-size {bi}i≥0 and {di}i≥0 satisfy the
standard conditions

∑
i bi = ∞,

∑
i b

2
i < ∞,

∑
i di =
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∞ and
∑

i d
2
i <∞ respectively. Moreover, one can en-

sure that the AIS generator converges faster by choosing
an appropriate learning rates such that, limi→∞

di

bi
= 0.

4.3 Actor Critic Algorithm

We can also use the aforementioned ideas to design
an AIS based actor-critic algorithm. In addition
to a parameterised policy π(·; ξ) and AIS generator

(σt(·; ζ), f̂ , r̂, P̂ ) the actor-critic algorithm uses a para-
meterised critic V̂ (·;ϑ) : Z → R, where ϑ are the
parameters for the critic. The performance of policy
µ(·; ξ) is then given by J(ξ, ζ, ϑ). According to policy
gradient theorem [Sutton et al., 1999, Baxter and Bart-
lett, 2001] the gradient of J(ξ, ζ, ϑ), is given as:

∇ξJ(ξ, ζ, ϑ) = E
[
∇ξ log(µ(·; ξ))V̂ (·;ϑ)

]
. (24)

And for a trajectory of length T , we approximate it as:

∇̂ξJ(ξ, ζ, ϑ) =
1

T

T∑
t=1

[
∇ξ log(µ(·; ξ))V̂ (·;ϑ)

]
. (25)

The parameters ϑ can be learnt by optimising the
temporal difference loss given as:

LTD(ξ, ζ, ϑ) =
1

T

T∑
t=0

smoothL1(V̂ (Zt;ϑ) (26)

− r(Zt, At)− γV̂ (Zt+1;ϑ)). (27)

The parameters {(ζi, ξi, ϑi)}i≥1 can be updated using
a multi-timescale stochastic approximation algorithm
as follows:

ζi+1 = ζi + bi∇ζLAIS(ζi), (28a)

ϑi+1 = ϑi + ci∇ϑLTD(ξi, ζi, ϑi), (28b)

ξi+1 = ξi + di∇̂ξJ(ξi, ζi, ϑ), (28c)

where the step-size {bi}i≥0, {ci}i≥0 and {di}i≥0 sat-
isfy the standard conditions

∑
i bi = ∞,

∑
i b

2
i < ∞,∑

i ci = ∞,
∑

i c
2
i < ∞,

∑
i di = ∞ and

∑
i d

2
i < ∞

respectively. Moreover, one can ensure that the AIS
generator converges first, followed by the critic and the
actor by choosing an appropriate step-sizes such that,
limi→∞

di

bi
= 0 and limi→∞

ci
di

= 0.

We elaborate more on convergence of both the methods
in Appendix E.

5 Empirical evaluation

Through our experiments, we seek to answer the fol-
lowing questions:

(1) Can history-based feature representations policies
help improve the quality of solution found by memory-
less RL algorithms? (2) In terms of the solution quality
how does the proposed method compare with other
methods which use memory augmented policies as well
as reward and transition predictors? (3) How does the
choice of IPM affect the algorithms performance?

We answer question (1) by comparing our approach
with the proximal policy gradient (PPO) [Schulman
et al., 2017] and the policy-gradient version of Deep-
MDP framework [Gelada et al., 2019]. For question
(2) we compare our approach with modified versions
of PlaNet [Hafner et al., 2019], Dreamer [Hafner et al.,
2020].

For question (3) we compare the performance of
our method using different MMD kernels and KL-
divergence based approximation of Wasserstein dis-
tance (included in Appendices F.4 and F.5). All the
approaches are evaluated on six continuous control
tasks from the MuJoCo [Todorov et al., 2012] OpenAI-
Gym suite. To ensure a fair comparison, the baselines
and their respective hyper-parameter settings are taken
from well tested stand-alone implementations provided
by Dhariwal et al. [2017].

From an implementation perspective, our framework
can be used to modify any off-the-shelf policy-gradient
algorithm by simply replacing (or augmenting) the fea-
ture abstraction layers of the policy and/or value net-
works with recurrent neural networks (RNNs), trained
with the appropriate losses, as outlined previously. In
these experiments, we replace the fully connected layers
in PPO’s architecture with a Gated Recurrent Unit
(GRU). For all the implementations, we initialise the
hidden state of the GRU to zero at the beginning of the
trajectory. This strategy simplifies the implementation
and also allows for independent decorrelated sampling
of sequences, therefore ensuring robust optimisation of
the networks [Hausknecht and Stone, 2015].

The results are summarised in Figure 3 (mean return
with interquantile range (shaded region) estimated over
50 independent runs). The proposed algorithm consist-
ently learns faster and achieves higher final performance
than the baselines. We note that as reported in the
Appendix F, MMD is a better kernel to use.

It is important to note that we can extend our
framework to other policy gradient methods such as
SAC [Haarnoja et al., 2018], TD3 [Fujimoto et al.,
2018] or DDPG [Lillicrap et al., 2016], after satisfying
certain technical conditions. However, we leave these
extensions for future work. Additional experimental
details and results on different IPMs can be found in
Appendix F.
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Figure 3: Empirical results averaged over 50 Monte Carlo runs with shaded regions representing the quantiles.

6 Related Work

The development of RL algorithms with memory-based
feature abstractions has been a active area of research.
Most existing algorithms have approached this chal-
lenge using non-parametric methods, such as Nearest
Neighbor [Bentley, 1975, Friedman et al., 1977, Peng,
1995], Locally-weighted Regression [Baird and Klopf,
1993, Atkeson et al., 1997, Moore et al., 1997], and
Kernel-based Regression [Connell and Utgoff, 1987, Di-
etterich and Wang, 2001, Ormoneit and Sen, 2002, Xu
et al., 2006, Bhat et al., 2012, Barreto et al., 2016]. Des-
pite their robust theoretical foundations, these meth-
ods have limited applicability due to their scalability
challenges in high-dimensional state and action spaces.
More recently, several methods employing recurrent
neural networks (RNNs) for learning history-based
abstractions have demonstrated significant success in
complex computer games [Hausknecht and Stone, 2015,
Jaderberg et al., 2017, Espeholt et al., 2018, Gruslys
et al., 2018, Ha and Schmidhuber, 2018]. However,
most of these methods were designed for partially ob-
servable environments where the use of history-based
methods is often essential. To the best of our know-
ledge, the only other work that applies a history-based
RL algorithm for controlling a Markov Decision Process
(MDP) is presented by OpenAI et al. [2019], where the
authors illustrate that an LSTM-based agent architec-
ture yields superior performance in object reorientation
tasks using robotic arms. Nevertheless, they do not of-
fer a theoretical analysis of their approach. In a recent
contribution, Bolland et al. [2023] introduce optimisa-
tion by continuation, demonstrating that the incorpor-
ation of historical information can also enhance the

convergence properties of policy optimisation methods.
Establishing concrete connection between optimisation
by continuation framework and the ideas in this paper
is an intersting future research direction.

6.1 Bisimulation metrics

On the theoretical front, our work is closely related
to state aggregation techniques based on bisimulation
metrics, as proposed by Givan et al. [2003], Ferns et al.
[2004, 2011]. The bisimulation metric represents the
fixed point of an operator within the space of semi-
metrics over the state space of an MDP, characterised
by Lipschitz continuity in value functions. Beyond
state aggregation, bisimulation metrics have found ap-
plications in feature discovery [Comanici and Precup,
2011, Ruan et al., 2015] and transfer learning [Castro
and Precup, 2010]. Despite their potential, computa-
tional challenges have hindered widespread adoption.
Our contribution can be seen as offering an alternat-
ive to bisimulation for analysing history-based state
abstractions and deep RL methods. Furthermore, our
work extends the DeepMDP framework [Gelada et al.,
2019], adapting it for history-based policies and direct
policy search methods.

6.2 AIS and Agent state

The notion of AIS is closely related to the epistemic
state recently proposed by Lu et al. [2021]. An epi-
stemic state is a bounded representation of the history.
It is updated recursively as the agent collects more in-
formation, and is represented as an environment proxy
Υ which is learnt by optimising a target/objective func-
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tion χ. Since Υ is a random variable, its entropy H(Υ)
is used to represent system’s uncertainty about the
environment. The framework proposed in this paper
can considered as a practical way of constructing the
system epistemic state where, the AIS Zt represents
both the epistemic state and the environment proxy
Υ, LAIS represents χ, and instead of entropy, the con-
stants ϵ, and δ represent the systems uncertainty about
the environment. Studying the AIS framework in the
regret minimisation paradigm is an interesting research
direction as it can help establish concrete links between
ϵ, δ, and H(Υ). This exploration has the potential
to guide designers in developing principled algorithms
that integrate concepts such as information-directed
sampling into direct policy search algorithms.

6.3 Analysis of RL algorithms with attention
mechanism

Recently, there has been considerable interest in de-
veloping RL algorithms which use attention mechan-
ism/transformer architectures [Bahdanau et al., 2015,
Xu et al., 2015] for learning feature abstractions [Zam-
baldi et al., 2019, Mott et al., 2019, Sorokin et al., 2015,
Oh and Kaneko, 2018, Ritter et al., 2021, Parisotto
et al., 2020, Chen et al., 2021, Loynd et al., 2020, Tang
et al., 2020, Pritzel et al., 2017]. Attention mechan-
ism extract task relevant information from historical
observations and can be used instead of RNNs for pro-
cessing sequential data [Vaswani et al., 2017]. As we
do not impose a functional from on the history com-
pression function σt(·) in Definition 3.3, any attention
mechanism can be interpreted as history compression
function, and one can construct a valid information
state by ensuring that the output of the attention mech-
anism satisfies (P1) and (P2). That being said, even
without optimising LAIS, the approximation bound in
Theorem 3.5 still applies for RL algorithms with atten-
tion mechanisms, with the caveat that the constants ϵ,
and δ may be arbitrarily large. A thorough empirical
analysis of the effect of different attention mechanisms,
and the AIS loss on the on the error constants ϵ, and δ
could help us gain a better understanding of the way in
which such design choices could influence the learning
process.

6.4 AIS for POMDPs

The concept of an AIS used in this paper is similar
to the idea of AIS for POMDPs [Subramanian and
Mahajan, 2019, Subramanian et al., 2020]. Moreover,
the literature also contains several other methods which
have enjoyed empirical success in using history-based
policies for controlling POMDPs [Holmes and Jr., 2006,
Daswani et al., 2013, Hutter, 2014, Schaefer et al., 2007,
Hafner et al., 2020, 2019, Lambrechts et al., 2023].

In principle, one can use any of these methods for
controlling MDPs. However, this does not immediately
provide a tight bound for the approximation error. The
MDP model has more structure than POMDPs, and
our goal in this paper is to use this fact to present a
tighter analysis of the approximation error.

7 Conclusion and future work

We developed and analysed a principled approach for
learning history-based policies for controlling MDPs.
Such policies are useful when using function approxim-
ation, as it introduces partial observability. We believe
that our approximation bounds can be helpful for prac-
titioners to study the effect of some of their design
choices on the solution quality. On the practical side,
the proposed algorithm shows favourable results on
high-dimensional control tasks. Note that one can also
use the bounds in Theorem 3.5 to analyse the approx-
imation error of other history-based methods. However,
since some of these algorithms do not satisfy Defini-
tion 3.3, the resulting approximation error might be
arbitrarily large. Such blow-ups in the approximation
error could be due to the bound itself being loose or
to the optimality gap being large. A sharper analysis
of the approximation error by considering the specific
design choices of other methods is an interesting direc-
tion for future research. Another interesting direction
would be to conduct a further empirical evaluation
exploring the design choices of history compression
functions.
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Checklist

1. For all models and algorithms presented, check if you include:

(a) A clear description of the mathematical setting, assumptions, algorithm, and/or model. [Yes]

(b) An analysis of the properties and complexity (time, space, sample size) of any algorithm. [Not Applicable]

(c) (Optional) Anonymized source code, with specification of all dependencies, including external libraries.
[Not Applicable]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of all theoretical results. [Yes]

(b) Complete proofs of all theoretical results. [Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical results, check if you include:

(a) The code, data, and instructions needed to reproduce the main experimental results (either in the
supplemental material or as a URL). [Not Applicable]

(b) All the training details (e.g., data splits, hyperparameters, how they were chosen). [Not Applicable]

(c) A clear definition of the specific measure or statistics and error bars (e.g., with respect to the random
seed after running experiments multiple times). [Yes]

(d) A description of the computing infrastructure used. (e.g., type of GPUs, internal cluster, or cloud
provider). [Not Applicable]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets, check if you
include:

(a) Citations of the creator If your work uses existing assets. [Yes]

(b) The license information of the assets, if applicable. [Not Applicable]

(c) New assets either in the supplemental material or as a URL, if applicable. Not Applicable]

(d) Information about consent from data providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable, e.g., personally identifiable information or offensive content.
[Not Applicable]

5. If you used crowdsourcing or conducted research with human subjects, check if you include:

(a) The full text of instructions given to participants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks, with links to Institutional Review Board (IRB) approvals if
applicable. [Not Applicable]

(c) The estimated hourly wage paid to participants and the total amount spent on participant compensation.
[Not Applicable]
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Appendix

A Proof for Theorem 3.5

For readability we will restate the theorem statement

Theorem A.1. For any time t, any realisation st of St, at of At, let ht = (s1:t, a1:t−1), and zt = σt(ht).

The worst case difference between V ⋆ and V π
t is bounded as:

∆ ≤ 2
ε+ γδκF(V̂ , f̂)

1− γ
, (29)

where, κF(V̂ , f̂) = supz,a ρF(V̂ (f̂(·, z, a))). and ρF(·) is the Minkowski functional associated with the IPM dF as
defined in (3).

Proof. For this proof we will use the following convention: For a generic history ht ∈ Ht, we assume that
ht = (s1:t, a1:t−1), moreover, note that zt = σt(ht).

Now from (3.1), and Definition 3.3 for any at, st, zt:

max
h∈Ht,at∈A

∣∣∣∣r(st, at)− r̂(zt, at)

∣∣∣∣ ≤ ϵ.

max
h∈Ht,at∈A

∣∣∣∣ ∑
st+1∈S

(
P (st+1|st, at)V̂ (f̂(s

t+1, zt, at))− P̂ (st+1|zt, at)V̂ (f̂(st+1, zt, at))

)∣∣∣∣ ≤ δρF(V̂ (f̂(·, zt, at))).

(30)

Now using triangle inequality we get:

∥V ⋆(st)− V π
t (ht)∥∞ ≤ ∥V ⋆(st)− V̂ (zt)∥∞︸ ︷︷ ︸

term 1

+ ∥V π
t (ht)− V̂ (zt)∥∞︸ ︷︷ ︸

term 2

, (31)

We will now proceed by bounding terms 1 and 2 separately

Bounding term 1:

∥V ⋆(st)− V̂ (zt)∥∞ ≤ max
h∈Ht

∣∣∣∣max
at∈A

[
Q⋆(st, at)− Q̂(zt, at)

]∣∣∣∣, (32)

For any action at we have:

max
h∈Ht

∣∣∣∣max
at∈A

[
Q⋆(st, at)− Q̂(zt, at)

]∣∣∣∣ = max
h∈Ht

∣∣∣∣max
at∈A

[
r(st, at)+γ

∑
st+1∈S

P (st+1|st, at)V ⋆(st+1)

−r̂(zt, at)− γ
∑

st+1∈S
P̂ (st+1|zt, at)V̂ (f̂(st+1, zt, at))

]∣∣∣∣
(a)

≤ ϵ+ max
h∈Ht,at∈A

∣∣∣∣γ ∑
st+1∈S

P (st+1|st, at)V ⋆(st+1)−γ
∑

st+1∈S
P (st+1|st, at)V̂ (f̂(st+1, zt, at))

∣∣∣∣
+ max

h∈Ht,at∈A

∣∣∣∣γ ∑
st+1∈S

P (st+1|st, at)V̂ (f̂(st+1, zt, at))−γ
∑

st+1∈S
P̂ (st+1|zt, at)V̂ (f̂(st+1, zt, at))

∣∣∣∣
(b)

≤ ϵ+ γ∥(V ⋆(st)− V̂ (zt))∥∞+γδρF(V̂ (f̂(·, zt, at))),

where (a) from triangle inequality and (b) is due to (30). Now defining κF(V̂ , f̂) = supz,a ρF(V̂ (f̂(·, z, a))), and
substituting the above result in (32) we get

|V ⋆(st)− V̂ (zt)| ≤
ε+ γδκF(V̂ , f̂)

1− γ
. (33)
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Bounding term 2:

∥V π
t (ht)− V̂ (zt)∥∞ ≤ max

h∈Ht

∣∣∣∣max
at∈A

[
Qπ

t (ht, at)− Q̂(zt, at)

]∣∣∣∣, (34)

For any action at, we have:

max
h∈Ht

∣∣∣∣max
at∈A

[
Qπ(ht, at)− Q̂(zt, at)

]∣∣∣∣ = max
h∈Ht

∣∣∣∣max
at∈A

[
r(st, at) + γ

∑
st+1∈S

P (st+1|st, at)V π
t+1(ht+1)− (r̂(zt, at)

+ γ
∑

st+1∈S
P̂ (st+1|zt, at)V̂ (f̂(st+1, zt, at))

]∣∣∣∣,
(a)

≤ ϵ+ max
h∈Ht,at∈A

∣∣∣∣γ ∑
st+1∈S

P (st+1|st, at)V π
t+1(ht+1)− γ

∑
st+1∈S

P (st+1|st, at)V̂ (f̂(st+1, zt, at))

∣∣∣∣
+ max

h∈Ht,at∈A

∣∣∣∣γ ∑
st+1∈S

P (st+1|st, at)V̂ (f̂(st+1, zt, at))− γ
∑

st+1∈S
P̂ (st+1|zt, at)V̂ (f̂(st+1, zt, at))

∣∣∣∣,
(b)

≤ ϵ+ γ∥(V π(ht)− V̂ (zt))∥∞ + γδρF(V̂ (f̂(·, zt, at))),

where (a) is from triangle inequality, (b) is due to (30), with κF(V̂ , f̂) = supz,a ρF(V̂ (f̂(·, z, a))), and substituting
the above result in (34) we get

∥V π
t (ht)− V̂ (zt)∥∞ ≤

ε+ γδκF(V̂ , f̂)

1− γ
. (35)

The final result follows by adding (33) and (35).

B Proof for Corollary 3.6

Lemma B.1. If V̂ is the optimal value function of the MDP M̂ induced by the process {Zt}t≥0, then

span(V̂ ) ≤ span(r̂)

1− γ
. (36)

Proof. The result follows by observing that the per-step reward r̂(Zt, At) ∈ [min(r̂),max(r̂)]. Therefore max(V̂ ) ≤
max(r̂) and min(V̂ ) ≥ min(r̂).

Corollary B.2. If the function class F is FTV, then ∆ defined in (14) is upper bounded as:

∆ ≤ 2ϵ

1− γ
+

γδ span(r̂)

(1− γ)2
, (37)

Proof. From Section 3.1 we know that for the Total variation distance ρFTV(V̂ ) = span(V̂ ) and κ(f̂) = 1. The
result in the corollary then follows from Lemma B.1.

C Proof for Corollary 3.7

Definition C.1. For any Lipschitz function f : (Z, dZ) → (R, | · |), and probability measures ν1, and ν2 on
(Z, dZ) ∣∣∣∣ ∫

Z
fdν1 −

∫
Z
fdν2

∣∣∣∣ ≤ ∥f∥L.dFW(ν1, ν2) ≤ LfdFW(ν1, ν2), (38)

where Lf is the Lipschitz constant of f and dFW is the Wasserstein distance.



Gandharv Patil, Aditya Mahajan, Doina Precup

Definition C.2. Let d be a metric on the AIS/Feature space Z. The MDP M̂ induced by the process {Zt}t≥0

is said to be (Lr̂, LP̂ ) - Lipschitz if for any Z1, Z2 ∈ Z, the reward r̂ and transition P̂ of M̂ satisfy the following:∣∣∣∣r(Z1, A)− r(Z2, A)

∣∣∣∣ ≤ Lr̂d(Z1, Z2), (39)

dFW(P̂ (·|Z1, A), P̂ (·|Z2, A) ≤ LP̂ d(Z1, Z2), (40)

where dFW is the Wasserstein or the Kantorovitch-Rubinstein distance.

Lemma C.3. Let V̂ : Z → R be LV̂ continuous. Define:

Q̂(z, a) = r̂(z, a) + γ
∑
s′

P̂ (s′|z, a)V̂ (f̂(s′, z, a).

Then Q̂ is (Lr̂ + γLV̂ Lf̂LP̂ )-Lipschitz continuous.

Proof. For any action a∣∣∣∣Q̂(z1, a)− Q̂(z2, a)

∣∣∣∣ (a)

≤
∣∣∣∣r̂(z1, a)− r̂(z2, a)

∣∣∣∣+ γ

∣∣∣∣∑
s′

P̂ (s′|z1, a)V̂ (f̂(s′, z1, a))− P̂ (s′|z2, a)V̂ (f̂(s′, z2, a))

∣∣∣∣, (41)

(b)

≤ (Lr̂ + γLV̂ Lf̂LP̂ )d(z1, z2), (42)

where (a) due to triangle inequality, and (b) follows from Definition C.1, Definition C.2, and because ∥a ◦ b∥L ≤
∥a∥L · ∥b∥L.

Lemma C.4. Let Q̂ : Z ×A → R be LQ̂- Lipschitz continuous, Define

V̂ (z) = max
at∈A

Q̂(z, a).

Then V̂ is LQ̂ Lipschitz

Proof. Consider z1, z2 ∈ Z, and let a1 and a2 denote the corresponding optimal action. Then,

V̂ (z1)− V̂ (z2) = Q̂(z1, a1)− Q̂(z2, a2), (43)

(a)

≤ Q̂(z1, a2)− Q̂(z2, a2), (44)

(b)

≤ LQ̂d(z1, z2), (45)

By symmetry,

V̂ (z2)− V̂ (z1) ≤ LQ̂d(z1, z2).

Therefore, ∣∣∣∣V̂ (z1)− V̂ (z2)

∣∣∣∣ ≤ LQ̂d(z1, z2).

Lemma C.5. Consider the following dynamic program defined in (9):2

Q̂t(zt, at) = r̂(zt, at) + γ
∑
st∈S

P̂ (st|zt, at)V̂ (f̂(zt, st, at)), ∀z ∈ Z, a ∈ A

V̂t(zt) = max
a∈A

Q̂t(zt, at), ∀z ∈ Z

Then at any time t, we have:

LV̂t+1
= Lr̂ + γLP̂Lf̂LV̂t

.
2We have added t as a subscript to denote the computation time i.e., the time at which the respective function is

updated.
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Proof. We prove this by induction. At time t = 1 Q̂1(z, a) = r̂(z, a), therefore LQ̂1
= Lr̂. Then according to

Lemma C.4, V̂1 is Lipschitz with Lipschitz constant LV̂1
= LQ̂1

= Lr̂. This forms the basis of induction. Now

assume that at time t, V̂t is LV̂t
- Lipschitz. By Lemma C.3 Q̂t+1 is Lr̂ + γLf̂ , LP̂LV̂t

. Therefore by Lemma C.4,

V̂(t+1) is Lipschitz with constant:

LV̂t+1
= Lr̂ + γLf̂LP̂LV̂t

.

Theorem C.6. Given any (Lr̂, LP̂ )- Lipschitz MDP, if γLP̂Lf̂ ≤ 1, then the infinite horizon γ-discounted value

function V̂ is Lipschitz continuous with Lipschitz constant

LV̂ =
Lr̂

1− γLf̂LP̂

.

Proof. Consider the sequence of Lt = LV̂t
values. For simplicity write α = γLP̂Lf̂ . Then the sequence {Lt}t≥1 is

given by : L1 = Lr̂ and for t ≥ 1,

Lt+1 = Lr̂ + αLt,

Therefore,

Lt = Lr̂ + αLr̂ + . . .+ αt+1 =
1− αt

1− α
Lr̂.

This sequence converges if |α| ≤ 1. Since α is non-negative, this is equivalent to α ≤ 1, which is true by hypothesis.
Hence Lt is a convergent sequence. At convergence, the limit LV̂ must satisfy the fixed point of the recursion
relationship introduced in Lemma C.5, hence,

LV̂ = Lr̂ + γLf̂LP̂LV̂ .

Consequently, the limit is equal to,

LV̂ =
Lr̂

1− γLf̂LP̂

.

Corollary C.7. If γLP̂Lf̂ ≤ 1 and the function class F is FW, then ∆ as defined in (14) is upper bounded as:

∆ ≤ 2ϵ

(1− γ)
+

2γδLr̂

(1− γ)(1− γLf̂LP̂ )
, (46)

Proof. The proof follows from the observation that for dFW , ρFW = LV̂ , and then using the result from Theorem C.6.

D Algorithmic Details

D.1 Choice of an IPM:

D.1.1 MMD

One advantage of choosing dF as the MMD distance is that unlike the Wasserstein distance, its computation does
not require solving an optimisation problem. Another advantage is that we can leverage some of their properties
to further simplify our computation, as follows:

Proposition D.1 (Theorem 22 [Sejdinovic et al., 2013]). Let X ⊆ Rm, and dX ,p : X × X → R be a metric
given by dX ,p(x, x

′) = ∥x− x′∥p2, for p ∈ (0, 2]. Let kp : X × X → R be any kernel given:

kp(x, x
′) =

1

2
(dX ,p(x, x0) + dX ,p(x

′, x0)− dX ,p(x, x
′)), (47)
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where x0 ∈ X is arbitrary, and let Up be a RKHS kernel with kernel kp and Fp = {f ∈ Up : ∥f∥Up ≥ 1}. Then for
any distributions ν1, ν2 ∈ ∆X , the IPM can be expressed as:

dF(ν1, ν2) =

(
E[dX ,p(X1,W1)]−

1

2
E[dX ,p(X1, X2)]−

1

2
E[dX ,p(W1,W2)]

) 1
2

, (48)

where X1, X2, and W1,W2 are i.i.d. samples from ν1 and ν2 respectively.

The main implication of Proposition D.1 is that, instead of using (48), for p ∈ (0, 2] we can use the following as a
surrogate for dFp

: ∫
X

∫
X
∥x1 − w1∥p2ν1(dx1)ν2(dw1)−

1

2

∫
X

∫
X
∥w1 − w2∥p2ν2(dw1)ν2(dw1). (49)

Moreover, according to Sriperumbudur et al. [2012] for n identically and independently distributed (i.i.d) samples
{Xi}ni=0 ∼ ν1 an unbiased estimator of (49) is given as:

1

n

n∑
i=1

∫
X
∥Xi − w1∥p2ν1d(w1)−

1

2

∫
X

∫
X
∥w1 − w2∥p2ν1(dw1)ν2(dw2). (50)

We implement a simplified version of the surrogate loss in (50) as follows:

Proposition D.2 ( [Subramanian et al., 2020]). Given the setup in Proposition D.1 and p = 2, Let ν2(ζ) be
a parametric distribution with mean m and let X ∼ ν1, then the gradient ∇ζ(mζ − 2X)⊤mζ is an unbiased
estimator of ∇ζdF2

(α, νζ)
2

Proof. Let X1, X2 ∼ ν1, and W1,W2 ∼ ν2(ζ)

∴ ∇ζdF2(ν1, ν2(ζ))
2 = ∇ζ

[
E∥X1 −W1∥22 −

1

2
E∥X1 −X2∥22 −

1

2
E∥W1 −W2∥22

]
, (51)

(a)
= ∇ζ

[
E∥W1∥22 − 2E∥X1∥⊤E∥W1∥

]
, (52)

where (a) follows from the fact that X does not depend on ζ, which simplifies the implementation of the MMD
distance.

In this way we can simplify the computation of dF using a parametric stochastic kernel approximator and MMD
metric.

Note that when are trying to approximate a continuous distribution we can readily use the loss function (52) as
long as the mean mζ of ν2(ζ) is given in closed form. The AIS loss is then given as:

LAIS(ζ) =
1

T

T∑
t=0

(
λ(fr̂(Zt, At; ζ)− r(St, At))

2 + (1− λ)(mSt

ζ − 2St)
⊤mSt

ζ

)
, (53)

where mSt

ζ is obtained using the from the transition approximator, i.e., the mapping fP̂ (ζ) : Z ×A → R.

D.1.2 Wasserstein Distance

The the KL-divergence between two densities ν1 and ν2 on for any X ∈ X ⊂ Rm is defined as:

dKL(ν1∥ν2) =
∫
X
log(ν1(x))ν1(dx)−

∫
X
log(ν2(x))ν1(dx) (54)

Moreover, if X is bounded space with diameter D, then the relation between the Wasserstein distance dFW , Total
variation distance dFTV , and the KL divergence is given as :

dFW(ν1, ν2) ≤ DdFTV(ν1, ν2)
(a)

≤
√

2dKL(ν1∥ν2), (55)
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where, (a) follows from the Pinsker’s inequality. Note that in (19) we use d2F. Therefore, we can use a (simplified)
KL-divergence based surrogate objective given as:∫

X
log(ν2(x; ζ))ν1(dx), (56)

where we have dropped the terms which do not depend on ζ. Note that the above expression is same as the
cross entropy between ν1 and ν2 which can be effectively computed using samples. In particular, if we get T i.i.d
samples from ν1, then,

1

T

T∑
i=0

log(ν2(xi; ζ)) (57)

is an unbiased estimator of
∫
X log(ν2(x; ζ))ν1(dx).

The KL divergence based AIS loss is then given as:

LAIS(ζ) =
1

T

T∑
t=0

(
λ(fr̂(Zt, At; ζ)− r(St, At))

2 + (1− λ) log(P̂ (St; ζ))

)
, (58)

E Convergence Analysis

In this section we will discuss the convergence of the AIS-based policy gradient in Section 4.2 as well as Actor-Critic
algorithm presented in the previous subsection. The proof of convergence relies on multi-timescale stochastic
approximation Borkar [2008] under conditions similar to the standard conditions for convergence of policy gradient
algorithms with function approximation stated below, therefore it would suffice to provide a proof sketch.

Assumption E.1. 1. The values of step-size parameters b, d and c (for the actor critic algorithm) are set such
that the timescales of the updates for ζ, ξ, and ϑ (for Actor-Critic algorithm) are separated, i.e., bt ≫ dt,
and for the Actor-Critic algorithm bt ≫ ct ≫ dt,

∑
i bi =∞,

∑
i b

2
i <∞,

∑
i ci =∞,

∑
i c

2
i <∞,

∑
i di =∞

and
∑

i d
2
i <∞, limi→∞

di

bi
= 0 and limi→∞

ci
di

= 0,

2. The parameters ζ, ξ and ϑ (for Actor-Critic algorithm) lie in a convex, compact and closed subset of Euclidean
spaces.

3. The gradient ∇ζLAIS is Lipschitz in ζt, and ∇̂ξJ(ξ, ζ) is Lipschitz in ξt, and ζt. Whereas for the Actor-

Critic algorithm the gradient of the TD loss ∇ϑLTD(ζ, ξ, ϑ) and the policy gradient ∇̂ξJ(ζ, ξ, ϑ) is Lipschitz
in (ζt, ξt, ϑt).

4. All the estimates of all the gradients ∇ζLAIS, ∇ξJ(ξ, ζ), ∇ϑLTD(ζ, ξ, ϑ) and are unbiased with bounded
variance3.

Assumption E.2. 1. The ordinary differential equation (ODE) corresponding to (23) is locally asymptotically
stable.

2. The ODEs corresponding to (22) is globally asymptotically stable.

3. For the Actor-Critic algorithm, the ODE corresponding to (28b) is globally asymptotically stable and has a
fixed point which is Lipschitz in ξ.

Theorem E.3. Under assumption E.1 and E.2, along any sample path, almost surely we have the following:

1. The iteration for ζ in (22) converges to an AIS generator that minimises the LAIS.

2. The iteration for ξ in (23) converges to a local maximum of the performance J(ζ⋆, ξ) where ζ⋆, and ϑ⋆ (for
Actor Critic) are the converged value of ζ, ϑ.

3. For the Actor-Critic algorithm the iteration for ϑ in (28b) converges to critic that minimises the error with
respect to the true value function.

3This assumption is only satisfied in tabular MDPs.
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Proof. The proof for this theorem follows the technique used in [Leslie, 2004, Borkar, 2008]. Due to the specific
choice of learning rate the AIS-generator is updated at a faster time-scale than the actor, therefore it is “quasi
static” with respect to the actor while the actor observes a “nearly equilibriated” AIS generator. Similarly in the
case of the Actor-Critic algorithm the AIS generator observes a stationary critic and actor, whereas the critic
and actor see “nearly equilibriated” AIS generator. The Martingale difference condition (A3) of Borkar [2008] is
satisfied due to Item 4 in assumption E.1. As such since our algorithm satisfies all the four conditions by [Leslie,
2004, page35], [Borkar, 1997, Theorem 23], the result then follows by combining the theorem on [Leslie, 2004,
page 35][Borkar, 2008, Theorem 23] and [Borkar, 1997, Theorem 2.2].

F Experimental Details

Common

Optimiser Adam
Discount Factor γ 0.99
Inital standard deviation for the policy 0.0
PPO-Epochs 12
Clipping Coefficient 0.2
Entropy-Regulariser 0
Batch Size 512
Episode Length 2048

AIS generator
History Compressor GRU
Hidden layer dimension 256
Step size 1.5e-3
λ 0.3

Actor
Step size 3.5e-4
No of hidden layers 1
Hidden layer Dimension 32

Table 1: Hyperparameters

F.1 Environments

Our algorithms are evaluated on MuJoCo [Todorov et al., 2012, mujoco-py version 2.0.2.9 ] via OpenAI gym [Brock-
man et al., 2016, version 0.17.1] interface, using the v2 environments. The environment, state-space, action space,
and reward function are not modified or pre-processed in any way for easy reproducibility and fair comparison
with previous results. Each environment runs for a maximum of 2048 time steps or until some termination
condition and has a multi-dimensional action space with values in the range of (-1, 1), except for Humanoid
which uses the range of (-0.4, 0.4).

F.2 Hyper-parameters

Table 1 contains all the hyper-parameters used in our experiments. Both the policy and AIS networks are
trained with Adam optimiser [Kingma and Ba, 2015], with a batch size of 512. We follow Raichuk et al. [2021]’s
recommended protocol for training on-policy policy based methods, and perform 12 PPO updates after every
policy evaluation subroutine. To ensure separation of time-scales the step size of the AIS generator and the policy
network is set to 1.5e−3 and 3.5e−4 respectively. Hyper-parameters of our approach are searched over a grid of
values, but an exhaustive grid search is not carried out due to prohibitive computational cost. We start with the
recommended hyper-parameters for the baseline implementations and tune them further around promising values
by an iterative process of performing experiments and observing results.

For the state-based RNN baseline we have tuned the learning rate over a grid of values starting from 1e-4 to
4e-4 and settled on 3.5e-4 as it achieved the best performance. Similarly the hidden layer size set to 256 as it
is observed to achieve best performance. For the feed-forward baselines we use the implementation by OpenAI
baselines [Dhariwal et al., 2017] with their default hyper-parameters.
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F.3 Modifications to baselines and their hyper-parameters

Note that the methods in [Hafner et al., 2020, 2019] are designed for pixel-based control tasks and cannot be
readily used for continuous control tasks in this paper. To help them process real-valued state vectors, we replace
the convolutional and deconvolutional layers in their architectures by fully connected layers. We observed that
feed-forward layers of size 256 for PlaNET [Hafner et al., 2019], and 300 for Dreamer [Hafner et al., 2020] produced
the best results for both the methods. For PlaNET [Hafner et al., 2019] we used the default hyper-parameters
and varied the learning rate over a grid of values starting from 1e-4 to 4e-4. We observed that this method
achieved best performance at the learning rate of 3e-3. For Dreamer [Hafner et al., 2020] we used the default
hyper-parameters and varied the learning rate over a grid of values starting from 6e-4, 6e-5 and 6e-5 respectively
to 1e-3, 1e-4, 1e-4 respectively. We observed that this method achieved the best performance at 7.5e-4, 9e-5 and
8.5e-5 respectively.

F.4 Type of MMDs

The MMD distance given by (52) in Appendix D.1.1, can be computed using different types of characteristic
kernels (for a detailed review see [Sriperumbudur et al., 2012, Fukumizu et al., 2009, Sejdinovic et al., 2013]). In
this paper we consider computing (52) using the Laplace, Gaussian and energy distance kernels. The performance
of the proposed approach under different kernels is shown in Figure 4. It can be observed that for the continuous
control tasks in the MuJoCo suite, the energy distance yields better performance, and therefore we implement
Equation (52) using the energy distance for all the experiments.

0.0 0.2 0.4 0.6 0.8 1.0

Number of episodes ×106

0

2000

4000

6000

8000

A
ve

ra
g

e
Re

tu
rn

(a) Half Cheetah

0.0 0.2 0.4 0.6 0.8 1.0

Number of episodes ×106

0

2000

4000

6000

8000

A
ve

ra
g

e
Re

tu
rn

(b) Walker

0.0 0.2 0.4 0.6 0.8 1.0

Number of episodes ×106

0

2000

4000

6000

8000

A
ve

ra
g

e
Re

tu
rn

(c) Ant

Legend Title
Laplace
Gaussian
Energy

Figure 4: Comparison of different MMDs, averaged over 50 runs with shaded regions representing the quantiles

F.5 MMD vs KL

Next, we compare the performance of our method under MMD (energy distance)-based AIS loss in (20) and
KL-based AIS loss given in (21). From Figure 5, one can observe that for the Mujoco tasks, MMD-based loss
leads to better performance.
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Figure 5: Comparison of Wasserstein vs MMDs, averaged over 50 runs with shaded regions representing the
quantiles


