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Abstract

We analyze the statistical properties of gen-
eralized cross-validation (GCV) and leave-
one-out cross-validation (LOOCV) applied to
early-stopped gradient descent (GD) in high-
dimensional least squares regression. We prove
that GCV is generically inconsistent as an es-
timator of the prediction risk of early-stopped
GD, even for a well-specified linear model with
isotropic features. In contrast, we show that
LOOCV converges uniformly along the GD
trajectory to the prediction risk. Our theory
requires only mild assumptions on the data
distribution and does not require the underly-
ing regression function to be linear. Further-
more, by leveraging the individual LOOCV
errors, we construct consistent estimators for
the entire prediction error distribution along
the GD trajectory and consistent estimators
for a wide class of error functionals. This in
particular enables the construction of path-
wise prediction intervals based on GD iterates
that have asymptotically correct nominal cov-
erage conditional on the training data.

1 INTRODUCTION
Cross-validation (CV) is a widely used tool for assessing
and selecting models in various predictive applications
of statistics and machine learning. It is often used to
tune the level of regularization strength in explicitly
regularized methods, such as ridge regression and lasso.
In general, CV error is based on an iterative scheme
that allows each data sample to play a role in training
and validation in different iterations. Minimizing CV
error helps to identify a trade-off between bias and
variance that favors prediction accuracy (Hastie et al.,
2009).
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Meanwhile, especially in the modern era, techniques
such as gradient descent (GD) and its variants are cen-
tral tools for optimizing the parameters of machine
learning models. Even when applied to models without
explicit regularization, these algorithms are known to
induce what is called implicit regularization in various
settings (Bartlett et al., 2021; Belkin, 2021; Ji and
Telgarsky, 2019; Nacson et al., 2019). For example, in
the simplest case of least squares regression, GD and
stochastic GD iterates bear a close connection to ex-
plicitly regularized ridge regression estimates (Suggala
et al., 2018; Neu and Rosasco, 2018; Ali et al., 2019,
2020).

This naturally leads to the following question:

Can we reliably use CV to assess model performance
along the trajectory of iterative algorithms?

An affirmative answer to this question would enable
the use of cross-validation to determine when to stop
the GD training procedure, preventing overfitting and
appropriately balancing the level of implicit regular-
ization. Motivated by this, we investigate the statisti-
cal properties of two popular CV procedures, namely
generalized cross-validation (GCV) and leave-one-out
cross-validation (LOOCV), along the gradient descent
trajectory in high-dimensional linear regression.

Previously, it has been noted that some common vari-
ants of CV: split-sample validation and K-fold CV with
small K (such as 5 or 10), can suffer from significant
bias when the number of observations and features
scale proportionally (Rad and Maleki, 2020; Rad et al.,
2020). Although LOOCV in most cases mitigates bias
issues, it is typically computationally expensive to im-
plement. Fortunately, for estimators that are linear
smoothers (linear in the response vector), GCV serves
as an efficient approximation to LOOCV in classical
low-dimensional problems (Golub et al., 1979; Jansen
et al., 1997). Furthermore, recent work has shown that
both LOOCV and GCV are consistent for estimating
the out-of-sample prediction risk of ridge regression
in high-dimensional settings (Patil et al., 2021, 2022b;
Wei et al., 2022; Han and Xu, 2023).
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Figure 1: GCV can perform poorly in overparameterized problems, yet LOOCV gives accurate risk estimates.
We investigate the risk of early-stopped gradient descent, applied to the least squares loss, as a function of iteration number.
The left panel shows an underparameterized experiment with n = 3000, p = 1500, and the right panel an overparameterized
experiment with n = 3000, p = 6000. In both cases, the data is generated from a linear model with i.i.d. standard normal
features, a true signal vector with ℓ2 norm of 5, and noise standard deviation of 1. GD uses a constant step size of 0.01. In
the overparameterized case, we can see that the GCV risk estimate deviates wildly from the true risk, whereas LOOCV
remains accurate throughout the entire path.

Noting that for least squares loss the GD iterates are
linear smoothers, and recalling the connection between
ridge regression and early-stopped GD in this problem
setting (Ali et al., 2019), a natural idea would then be
to use GCV to estimate the out-of-sample prediction
risk of early-stopped GD iterates. To our knowledge,
the performance of GCV in this setting has not yet
been studied.

In this work, we derive precise theory for both GCV
and LOOCV applied to the GD iterates from high-
dimensional least squares. Our first and somewhat
surprising result establishes that GCV is generically
inconsistent for the out-of-sample prediction risk of
early-stopped GD, even in the most idealized setting
of a well-specified linear model with isotropic features.
This inconsistency becomes particularly pronounced
in the overparameterized regime, where the number
of features is greater than the number of observations.
In such a case, the gap between GCV and risk can be
substantial, especially as the GD iteration progresses.
This is, of course, problematic for model tuning, as
these are precisely the scenarios in which the optimal
stopping time for GD can occur at a large iteration
that allows for (near) interpolation (for the analogous
theory for ridge regression, see Kobak et al. (2020); Wu
and Xu (2020); Richards et al. (2021)).

Our second result concerns LOOCV and establishes
that it is consistent for the out-of-sample prediction
risk, in a uniform sense over the GD path. For this,
we make only weak assumptions on the feature distri-
bution and do not assume a well-specified model (i.e.,
allowing the true regression function to be nonlinear).
One interpretation this suggests is that the failure of
GCV lies in its ability to approximate LOOCV, and not

with LOOCV itself. Figure 1 showcases an empirical
illustration of our main results, which we summarize
below.

1.1 Summary of Main Results

1. GCV inconsistency. Under a proportional asymp-
totics model where the number of features p and
observations n scale proportionally, and assuming
a well-specified linear model and isotropic features,
we show that GCV is inconsistent for estimating
the prediction risk throughout basically the entire
GD path (Theorem 1). We prove this result by sep-
arately deriving the asymptotic limits for the GCV
estimator and the true risk of early-stopped GD,
and then showing that they do not match.

2. LOOCV consistency. Under a proportional
asymptotics model again, we show that LOOCV
is consistent for estimating the prediction risk of
early-stopped GD, in a uniform sense over the GD
iterations (Theorem 2). Our analysis only requires
the distributions of the features and noise to satisfy
a T2-inequality, which is quite weak. In particular,
we do not assume any specific model for the regres-
sion function. As a consequence of uniformity, we
establish that the risk of the LOOCV-tuned iter-
ate almost surely matches that of the oracle-tuned
iterate. Furthermore, we also propose an implemen-
tation of the LOOCV with lower computational
complexity compared to the naive implementation
(Proposition 7).

3. Functional consistency. Beyond prediction risk,
we propose a natural extension of LOOCV to es-
timate general functionals of the prediction error
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distribution for early-stopped GD, which is a plug-
in approach based on the empirical distribution of
LOOCV errors (Theorem 3). As an application, we
use this to consistently estimate the quantiles of
the prediction error distribution for GD iterates, al-
lowing the construction of prediction intervals with
asymptotically correct nominal coverage conditional
on the training data (Theorem 4).

1.2 Related Work
GD and its variants are central tools for training mod-
ern machine learning models. These methods, especially
stochastic gradient methods, can be highly scalable.
But, somewhat surprisingly, overparameterized models
trained with GD and variants also often generalize well,
even in the absence of explicit regularizers and with
noisy labels (Zhang et al., 2017). This behavior is often
attributed to the fact that the GD iterates are subject
to a kind of implicit regularization (Wilson et al., 2017;
Gunasekar et al., 2018a,b). Implicit regularization has
a rich history in machine learning and has appeared
in some of the first insights into the advantages of
early stopping in neural network training (Morgan and
Bourlard, 1989). A parallel idea in numerical analy-
sis is known as the Landweber iteration (Landweber,
1951; Strand, 1974). There is a rich literature on early
stopping in the context of boosting (Bühlmann and
Yu, 2003; Rosset et al., 2004; Zhang and Yu, 2005; Yao
et al., 2007; Bauer et al., 2007; Raskutti et al., 2014;
Wei et al., 2017). Furthermore, several precise corre-
spondences between GD and ridge penalized estimators
have been established by Suggala et al. (2018); Neu and
Rosasco (2018); Ali et al. (2019, 2020), among others.

CV is a standard approach in statistics for parameter
tuning and model selection. For classic work on CV, see,
e.g., Allen (1974); Stone (1974, 1977); Geisser (1975).
For practical surveys, see Arlot and Celisse (2010);
Zhang and Yang (2015). More recently, there has been
renewed interest in developing a modern theory for
CV, with contributions from Kale et al. (2011); Kumar
et al. (2013); Celisse and Guedj (2016); Austern and
Zhou (2020); Bayle et al. (2020); Lei (2020); Rad et al.
(2020), among others. As LOOCV is, in general, com-
putationally expensive, there has also been recent work
in designing and analyzing approximate leave-one-out
methods to address the computational burden; see, e.g.,
Wang et al. (2018); Stephenson and Broderick (2020);
Wilson et al. (2020); Rad and Maleki (2020); Auddy
et al. (2023).

GCV is an approximation to LOOCV and is closely
connected to what is called the “shortcut” leave-one-
out formula for linear smoothers. The classic work
on GCV includes Craven and Wahba (1979); Golub
et al. (1979); Li (1985, 1986, 1987). Recently, GCV
has garnered significant interest, as it has been found

to be consistent for out-of-sample prediction risk in
various high-dimensional settings; see, e.g., Hastie et al.
(2022); Adlam and Pennington (2020); Patil et al. (2021,
2022b); Wei et al. (2022); Du et al. (2023); Han and
Xu (2023); Patil and LeJeune (2024). While originally
defined for linear smoothers, the idea of using similar
degrees-of-freedom adjustments can be extended be-
yond this original scope to nonlinear predictors; see,
e.g., Bayati and Montanari (2011); Bayati et al. (2013);
Miolane and Montanari (2021); Bellec and Shen (2022);
Bellec (2023).

Most of the aforementioned papers on CV have focused
on estimators that are defined as solutions to empirical
risk minimization problems. There has been little work
that studies CV for iterates of optimization algorithms
like GD, which are commonly used to find solutions
(train models) in practice. Very recently, Luo et al.
(2023) consider approximating LOOCV for iterative
algorithms. They propose an algorithm that is more
efficient than the naive LOOCV when p ≪ n. They also
show that their method approximates LOOCV well. In
our work, we instead focus on analyzing LOOCV itself,
along with GCV, for least squares problems, which
we view as complementary to their work. Moreover,
our analysis is in the proportional asymptotic regime,
where p ≍ n.

2 PRELIMINARIES
In this section, we define the main object of study:
early-stopped GD applied to the least squares loss. We
then precisely define the risk metric of interest and
describe the risk estimators based on LOOCV and
GCV.

2.1 Early-Stopped Gradient Descent
Consider a standard regression setting, where we ob-
serve independent and identically distributed samples
{(xi, yi)} ∈ Rp+1 × R for i ∈ [n]. Here, each xi ∈ Rp+1

denotes a feature vector and yi ∈ R its response value.
The last entry of each xi is set to 1 to accommo-
date an intercept term in the regression model. Let
X ∈ Rn×(p+1) denote the feature matrix whose i-th
row contains x⊤

i , and y ∈ Rn the response vector whose
i-th entry contains yi.

We focus on the ordinary least squares problem:

minimize
β∈Rp+1

1
2n∥y −Xβ∥2

2, (1)

and we study the sequence of estimates defined by
applying gradient descent (GD) to the squared loss in
(1). Specifically, given step sizes δ = (δ0, . . . , δK−1) ∈
RK , and initializing GD at the origin, β̂0 = 0, the GD
iterates are defined recursively as follows:

β̂k = β̂k−1 + δk−1

n
X⊤(y −Xβ̂k−1), k ∈ [K]. (2)
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Let (x0, y0) ∈ Rp+1 × R denote a test point drawn in-
dependently from the same distribution as the training
data. We are interested in estimating the out-of-sample
prediction risk along the GD path. More precisely, we
are interested in estimating the squared prediction error
R(β̂k) achieved by the GD iterate at each step k ∈ [K],
defined as:

R(β̂k) = Ex0,y0

[
(y0 − x⊤

0 β̂k)2 | X, y
]
. (3)

Note that our notion of risk here is conditional on the
training features and responses, X, y.

2.2 GCV and LOOCV
Next, we present an overview of the LOOCV and GCV
estimators associated with GD iterates. First, we de-
scribe the estimators that correspond to the squared
prediction risk. The exact LOOCV estimator for the
squared prediction risk of β̂k is defined as:

R̂loo(β̂k) = 1
n

n∑
i=1

(yi − x⊤
i β̂k,−i)2, (4)

where β̂k,−i denotes the GD iterate after k iterations
trained on the data X−i, y−i, which excludes the i-th
sample from the full data X, y. To be explicit, X−i is
the result of removing the i-th row of X, and y−i is
the result of removing the i-th coordinate of y.

Towards defining GCV, suppose that we have a pre-
dictor f̂ : Rp+1 → R which is a linear smoother, i.e.,
f̂(x) = s⊤

x y for some vector sx ∈ Rn which depends
only on the feature matrix X and the test point x. The
smoothing matrix associated with the predictor f̂ is de-
noted S ∈ Rn×n and defined to have rows s⊤

x1
, . . . , s⊤

xn
.

The GCV estimator of the prediction risk of f̂ is defined
as:

R̂gcv(f̂) = ∥y − Sy∥2
2/n

(1 − tr[S]/n)2 .

The numerator here is the training error, which is
of course typically biased downward, meaning that
it typically underestimates the prediction error. The
denominator corrects for this downward bias, often
referred to as the “optimism” of the training error, with
1 − tr[S]/n acting as a degrees-of-freedom correction,
which is smaller the more complex the model (the larger
the trace of S).

A short calculation shows that each GD iterate can be
represented as a linear smoother, i.e., the in-sample
predictions can be written as Xβ̂k = Hky, where

Hk =
k−1∑
j=0

δj
n
X

k−j−1∏
r=1

(
Ip+1 − δk−rΣ̂

)
X⊤,

and we denote by Σ̂ = X⊤X/n the sample covariance
matrix. This motivates us to estimate its prediction

risk using GCV:

R̂gcv(β̂k) = 1
n

n∑
i=1

(yi − x⊤
i β̂k)2

(1 − tr[Hk]/n)2 . (5)

Perhaps surprisingly, as we will see shortly in Section 3,
GCV does not consistently estimate the prediction risk
for GD iterates, even if we assume a well-specified linear
model. On the other hand, we will show in Section 4
that LOOCV is uniformly consistent along the GD
path. We also later propose a modified “shortcut” in
Section 5 that (1) exactly tracks the LOOCV estimates,
and (2) is computationally more efficient than the naive
implementation of LOOCV.

3 GCV INCONSISTENCY
In this section, we prove that GCV is generically in-
consistent for estimating the squared prediction risk,
even under a well-specified linear model with isotropic
Gaussian features. For simplicity, in this section only,
we consider fixed step sizes δk = δ and omit the inter-
cept term. We impose the following assumptions on
the feature and response distributions.

Assumption A (Feature distribution). Each feature
vector xi ∈ Rp, for i ∈ [n], contains i.i.d. Gaussian
entries with mean 0 and variance 1.

Assumption B (Response distribution). Each re-
sponse variable yi, for i ∈ [n], follows a well-specified lin-
ear model: yi = x⊤

i β0+εi. Here, β0 ∈ Rp is an unknown
signal vector satisfying limp→∞ ∥β0∥2

2 = r2 < ∞, and
εi is a noise variable, independent of xi, drawn from
a Gaussian distribution with mean 0 and variance
σ2 < ∞.

The zero-mean condition for each yi is used only for sim-
plicity. (Accordingly, we do not include an additional
intercept term in the model, implying that xi ∈ Rp.)
Although one could establish the inconsistency of GCV
under more relaxed assumptions, we choose to work
under Assumptions A and B to highlight that GCV
fails even under favorable conditions.

We analyze the behavior of the estimator in the propor-
tional asymptotics regime, where both the number of
samples n and the number of features p tend to infinity,
and their ratio p/n converges to a constant ζ∗ ∈ (0,∞).
This regime has received considerable attention recently
in high-dimensional statistics and machine learning the-
ory.

The dynamics of GD are determined by both the step
size δ and the iterate number k. We study a regime
in which δ → 0 and k → ∞ as n, p → ∞, which
effectively reduces the GD iterates to a continuous-
time gradient flow, as studied in other work (Ali et al.,
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2019; Celentano et al., 2021; Berthier et al., 2023). Our
main negative result, on GCV, is given next.

Theorem 1 (Inconsistency of GCV). Suppose that
(xi, yi), i ∈ [n] are i.i.d., and satisfy both Assump-
tions A and B, where either r2 > 0 or σ2 > 0. As
n, p → ∞, assume p/n → ζ∗, and k → ∞, δ → 0 such
that kδ → T , where T, ζ∗ > 0 are constants. Then, for
every fixed ζ∗ > 0, it holds that for almost all T > 0
(i.e., all T > 0 except for a set of Lebesgue measure
zero), ∣∣∣R̂gcv(β̂k) −R(β̂k)

∣∣∣ ̸ p−→ 0, (6)

where we recall that R̂gcv(β̂k) and R(β̂k) are as defined
in (5) and (3), respectively.

In other words, the theorem says that GCV does not
consistently track the true prediction risk at basically
any point along the GD path (in the sense that GCV
can only possibly be consistent at a Lebesgue mea-
sure zero set of times T ). It is worth noting that
the inconsistency here can be severe especially in
the overparameterized regime, when ζ∗ > 1. In par-
ticular, in this regime, it is easy to show that if
kδ → ∞ (rather than kδ → T for a finite limit T ),
then limk→∞ R̂gcv(β̂k) → ∞, while R(β̂K) → r2 + σ2,
under the assumptions of Theorem 1. This is evident
in Figure 1.

4 LOOCV CONSISTENCY
Despite the inconsistency of GCV, LOOCV remains
consistent for GD. This section establishes a uniform
consistency result for LOOCV along the GD path.

4.1 Squared Risk
We begin by focusing on squared prediction risk. The
technical crux of our analysis revolves around establish-
ing certain concentration properties of the LOOCV es-
timator R̂loo(β̂k), and to do so, we leverage Talagrand’s
T2-inequality (Gozlan, 2009). Specifically, under the
assumption that both the entries of the feature and
noise distributions satisfy the T2-inequality, we show
that R̂loo(β̂k) behaves approximately as a Lipschitz
function of these random variables. Together, these
results enable us to leverage powerful dimension-free
concentration inequalities.

The inspiration for using T2-inequality comes from the
recent work of Avelin and Viitasaari (2022). They as-
sume that the data distribution satisfies the logarithmic
Sobolev inequality (LSI), which is a strictly stronger
condition than what we assume here. Furthermore,
they only consider fixed p and do not consider iterative
algorithms. The extensions we pursue present consider-
able technical challenges and require us to delicately
upper bound the norms of various gradients involved.

Below we give a formal definition of what it means for
a distribution to satisfy the T2-inequality.

Definition 1 (T2-inequality). We say a distribution
µ satisfies the T2-inequality if there exists a constant
σ(µ) ≥ 0, such that for every distribution ν,

W2(µ, ν) ≤
√

2σ2(µ)DKL
(
ν
∥∥µ)

, (7)

where W2(·, ·) is the 2-Wasserstein distance, and
DKL(·∥·) the Kullback-Leibler divergence.

The T2-inequality is, in some sense, a necessary and suf-
ficient condition for dimension-free concentration. We
refer interested readers to Theorem 4.31 in Van Handel
(2014) for more details (see also Appendix S.5.2 for
further facts related to the T2-inequality).

One prominent example of distributions that satisfy
the T2-inequality are distributions that satisfy the log
Sobolev inequality (LSI); Appendix S.5.1 gives more
details. We note that all distributions that are strongly
log-concave satisfy the LSI, as do many non-log-concave
distributions, such as Gaussian convolutions of distribu-
tions with bounded support (Chen et al., 2021). Next,
we formally state our assumptions for this section, start-
ing with the feature distribution.

Assumption C (Feature distribution).

1. Each feature vector xi ∈ Rp+1, for i ∈ [n], decom-
poses as x⊤

i = ((Σ1/2zi)⊤, 1), where zi ∈ Rp has
i.i.d. entries zij drawn from µz.

2. The distribution µz has mean 0, variance 1, and
satisfies the T2-inequality with constant σz.

3. There covariance matrix satisfies ∥Σ∥op ≤ σΣ for a
constant σΣ.

To be clear, in the above σz, σΣ are constants that are
not allowed to change with n, p. It is worth emphasiz-
ing that we do not require the smallest eigenvalue of
Σ in Assumption C to be bounded away from 0. This
is possible because the iterates along the GD path are
implicitly regularized. This is similar to not requiring a
lower bound on the smallest eigenvalue for ridge regres-
sion when λ > 0 (as opposed to ridgeless regression,
where we do need such an assumption); see Dobriban
and Wager (2018); Patil et al. (2021). We also impose
the following assumptions on the response distribution.

Assumption D (Response distribution).

1. Each yi = f(xi) + εi, for i ∈ [n],1 where εi is
independent of xi and drawn from µε.

2. The distribution µε has mean 0 and satisfies the
T2-inequality with constant σε.

3. The regression function f is Lf -Lipschitz continuous,
where without loss of generality, Lf ≤ 1.
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Figure 2: LOOCV provides (asymptotically) valid prediction intervals, for various nominal coverage levels.
We investigate the empirical coverage and length of LOOCV prediction intervals along the GD path, at varying coverage
levels. We consider an overparameterized regime with n = 2500 and p = 5000. The features are drawn from a Gaussian
distribution with a covariance structure: Σij = ρ|i−j| for all i, j and ρ = 0.25. The response is generated from a nonlinear
model with heavy-tailed noise: t-distribution with 5 degrees of freedom. The linear component of E[yi | xi = x] is aligned
with the top eigenvector of Σ. GD is run with a constant step size of 0.01. We can see that the prediction intervals generally
have excellent finite-sample coverage along the entire path (left), and the smallest prediction length is typically obtained
at a large iteration of GD (right).

4. Finally, E[y8
i ] ≤ m8, E[y4

i ] ≤ m4, and E[y2
i ] ≤ m2.

In the above σε,m2,m4,m8 are constants that are not
allowed to change with n, p. We note that the assump-
tions we impose in this section are strictly weaker than
those in Section 3. In particular, it is notable that we
do not require E[yi |xi = x] to be linear in x. We are
ready to give our first main positive result, on LOOCV
for squared risk.

Theorem 2 (Squared risk consistency of LOOCV).
Suppose that (xi, yi), i ∈ [n] are i.i.d., and satisfy
both Assumptions C and D. In addition, assume that
there are constants ∆, B0, ζL, ζU (independent of n, p)
such that: (1)

∑K
k=1 δk−1 ≤ ∆, (2) ∥β̂0∥2 ≤ B0, and

(3) 0 < ζL ≤ p/n ≤ ζU < ∞. Furthermore, let
K = o(n · (logn)−3/2). Then, as n, p → ∞,

max
k∈[K]

∣∣∣R̂loo(β̂k) −R(β̂k)
∣∣∣ a.s.−−→ 0, (8)

where we recall that R̂loo(β̂k) and R(β̂k) are as defined
in (4) and (3), respectively.

The convergence guarantee in Theorem 2 is strong in
the sense that it is uniform across the entire GD path,
and convergence occurs conditional on the training data.
Uniformity in particular allows us to argue that tuning
based on LOOCV guarantees asymptotically optimal
risk. We cover this next, where we also generalize our
study from squared error to general error functionals.

1Our result holds under a more general setting where
yi = f(xi, εi), with f being Lf -Lipschitz continuous. In the
appendix, we provide the proof under this more general
condition.

4.2 General Risk Functionals
We now extend our theory from the last subsection to
cover general risk functionals, subject to only mild reg-
ularity conditions. Let ψ : R2 → R be an error function,
which takes as input the predictand (first argument)
and prediction (second argument). We define a corre-
sponding risk functional as:

Ψ(β̂k) = Ex0,y0

[
ψ(y0, x

⊤
0 β̂k) | X, y

]
. (9)

One can naturally define an estimator for Ψ(β̂k) based
on LOOCV using the “plug-in” principle:

Ψ̂loo(β̂k) = 1
n

n∑
i=1

ψ(yi, x⊤
i β̂k,−i). (10)

Our second main positive result shows that this
LOOCV plug-in estimator is uniformly consistent along
the GD path.

Theorem 3 (Functional consistency of LOOCV).
Under the conditions of Theorem 2, suppose that
ψ : R2 → R is differentiable and satisfies
∥∇ψ(u)∥2 ≤ Cψ∥u∥2 + C̄ψ for all u ∈ R2 and for con-
stants Cψ, C̄ψ ≥ 0. Then, as n, p → ∞,

max
k∈[K]

∣∣Ψ̂loo(β̂k) − Ψ(β̂k)
∣∣ a.s.−−→ 0. (11)

where we recall that R̂loo(β̂k) and R(β̂k) are as defined
in (10) and (9), respectively.

As consequence of (11), LOOCV can be used
to tune early stopping. Specifically, if we define
k∗ = arg mink∈[K] Ψ̂loo(β̂k), then as n, p → ∞,∣∣Ψ(β̂k∗) − min

k∈[K]
Ψ(β̂k)

∣∣ a.s.−−→ 0. (12)
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Figure 3: Empirical distribution of LOOCV errors tracks the true test error distribution along the entire
GD trajectory. We consider the same setup as in Figure 2 with an overparameterized regime of n = 2500 and p = 5000.
The blue curve in each panel represents a histogram of true prediction error errors (computed via Monte Carlo), while
the yellow curve represents a histogram of the LOOCV errors. Each panel represents a given GD iteration, and we see
strong agreement in the histograms throughout. Furthermore, due to the structure of the simulation setup, the test error
distribution begins to exhibit lower variance as the iterations proceed.

Thanks to Theorem 3, we can consistently estimate the
quantiles of the prediction error distribution using the
empirical quantiles of the distribution that puts 1/n
mass at each LOOCV residual.

Theorem 4 (Coverage guarantee). Under the con-
ditions of Theorem 3, assume further that the dis-
tribution of the noise εi is continuous with density
bounded by κpdf . Denote by α̂k(q) the q-quantile of
{yi − x⊤

i β̂k,−i : i ∈ [n]}. Then, for any quantile levels
0 ≤ q1 ≤ q2 ≤ 1, letting Ik = [α̂k(q1), α̂k(q2)], we have
as n, p → ∞,

max
k∈[K]

P(x0,y0)
(
y0−x⊤

0 β̂k ∈ Ik | X, y
) a.s.−−→ q2−q1. (13)

Note that Theorem 4 provides conditional rather than
marginal coverage guarantees for the specific data X, y
that we observe. Figure 2 provides an example. Fi-
nally, we remark that the empirical distribution of the
LOOCV errors can be shown to weakly converge to the
true error distribution, almost surely. This is illustrated
in Figure 3.

5 DISCUSSION
In the paper, we establish a significant discrepancy
between LOOCV and GCV when it comes to estimat-
ing the prediction risk of early-stopped GD for least

squares regression in high dimensions. While LOOCV
is consistent in a strong uniform sense, GCV fails along
essentially the entire path. This is especially curious
considering that both LOOCV and GCV are uniformly
consistent for the risk of explicitly regularized estima-
tors such as ridge regression (Patil et al., 2021, 2022b).
Therefore, this discrepancy also highlights a difference
between GD and ridge regression, which is interesting
in light of all of the existing work that establishes simi-
larities between the two (Suggala et al., 2018; Neu and
Rosasco, 2018; Ali et al., 2019).

Recall that GCV is generally tied to the “shortcut”
formula for the leave-one-out (LOO) predictions in
linear smoothers, where we adjust the training error
for the i-th sample by 1 − tr[S]/n (GCV), in place of
1 − Sii/n (shortcut formula). A key part of the failure
of GCV for GD is that its LOO predictions behave
differently than those in ridge regression, as we discuss
in what follows.

5.1 LOO Predictions in Ridge Regression
versus Gradient Descent

For ridge regression, the LOO predictions, and hence
LOOCV residuals, can be computed directly from the
residuals of the full model (the model fit on the full
data X, y) using a shortcut formula (Golub et al., 1979;
Hastie, 2020). This is computationally important since
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Figure 4: Illustrations of the differences between the LOO systems for ridge regression (left) and GD (right).

it means we can compute LOOCV without any refitting.

An elegant way to verify this shortcut formula involves
creating an augmented system that allows us to identify
the LOO prediction, which we briefly describe here. (We
omit the intercept in the model, for simplicity.) For a
given data point (xi, yi) that is to be left out, we seek
to solve the problem:

minimize
β∈Rp

∥y−i −X−iβ∥2
2 + λ∥β∥2

2. (14)

Denoting its solution by β̂λ,−i, the corresponding LOO
prediction is therefore x⊤

i β̂λ,−i. Let us now imagine
that we “augment” the dataset X−i, y−i by adding the
pair (xi, x⊤

i β̂λ,−i) in place of the i-th sample. Denote
by ỹ−i ∈ Rn the response vector in the augmented data
set, and X the feature matrix (it is unchanged from the
original data set). Denote by β̃λ,−i the ridge estimator
fit on the augmented data set X, ỹ−i, which solves:

minimize
β∈Rp

∥ỹ−i −Xβ∥2
2 + λ∥β∥2

2. (15)

Problems (14) and (15) admit the same solution, be-
cause in the latter we have only added a single sample
x⊤
i β̂λ,−i and this attains zero loss at the solution in the

former. Thus, we have β̃λ,−i = β̂λ,−i, and we can write
the predicted value for the i-th observation as follows:

x⊤
i β̂λ,−i =

∑
j ̸=i

[Hλ]ijyj + [Hλ]ii(x⊤
i β̂λ,−i),

where Hλ ∈ Rn×n is the ridge smoothing matrix associ-
ated with full feature matrix X at regularization level
λ. Rearranging, we have:

x⊤
i β̂λ,−i =

∑
j ̸=i[Hλ]ijyj
1 − [Hλ]ii

,

or equivalently, in terms of residuals:

yi − x⊤
i β̂λ,−i =

yi −
∑
j [Hλ]ijyj

1 − [Hλ]ii
= yi − x⊤

i β̂λ
1 − [Hλ]ii

. (16)

Meanwhile, for the GD path, the analogous construc-
tion does not reproduce the LOO predictions. More
precisely, let β̂k,−i be the GD iterate at step k, run on
the LOO data set X−i, y−i. As before, imagine that
we augment this data set with the pair (xi, x⊤

i β̂k,−i).
Denote again by X the feature matrix and ỹ−i ∈ Rn
the response vector in the augmented data set, and
denote by β̃k,−i the result of running k iterations of
GD on X, ỹ−i. In general, we will have β̂k,−i ̸= β̃k,−i.

The underlying reason for this is that, even though the
GD iterates can be written as a solution to a regularized
least squares problem, the regularizer in this problem
depends on the data (which is not true in ridge). For
constant step sizes all equal to δ, the GD iterate (2)
can be shown to solve:

minimize
β∈Rp

∥y −Xβ∥2
2/2n+ β⊤Qkβ,

where Qk = X⊤X/n((Ip − δX⊤X/n)k − Ip)−1. The
regularization term is not only a function of δ and k,
but also of X. This complicates the LOO predictions.

5.2 Modified Augmented System for LOO in
GD

Identifying this failure of GD, as summarized in Fig-
ure 4, also helps us modify the augmentation trick so
that we can recover the LOO predictions. Precisely, for
k ∈ [K] and i, j ∈ [n], let

(ỹk,−i)j =

yj , j ̸= i

x⊤
i β̂k,−i, j = i.

Define the vector ỹk,−i = (ỹk,−i)j≤n, and let β̃k,−i be
the iterate obtained by running GD for k steps where
at each step ℓ ≤ k, the augmented response vector
ỹℓ,−i is used in the gradient update. See Figure 5 for an
illustration. Next, we show that this scheme recovers
the LOO coefficients along the GD path.
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Figure 5: Illustration of the modified augmented system for LOO in GD.

Proposition 5 (Correctness of the modified aug-
mented system). For all k ∈ [K] and i ∈ [n], it holds
that β̃k,−i = β̂k,−i.

In other words, to recreate LOO coefficients from k-step
GD, we must use an augmented response vector not
only at step k but at every iteration before k as well.
With this insight, we can represent the LOO predictions
in a certain linear smoother form.

Proposition 6 (Smoother representation for the mod-
ified augmented system). For all k ∈ [K] and i ∈ [n],
there is a vector (h(k)

ij )j≤n and scalar b(k)
i depending

δ = (δ0, . . . δk−1) and X such that:

x⊤
i β̂k,−i = x⊤

i β̃k,−i =
n∑
j=1

h
(k)
ij yj + b

(k)
i .

5.3 Towards Exact and Efficient LOOCV for
GD?

We can unravel the relationships in LOO coefficients
between iterations of the modified augmented system
to arrive at explicit recursive forms for (h(k)

ij )j≤n and
b

(k)
i in Proposition 6, given next.

Proposition 7 (Recursive shortcut formula for LOO
predictions in GD). For all k ∈ [K] and i ∈ [n],

x⊤
i β̂k,−i = x⊤

i β̂k +Ai,k∥xi∥2
2 +

k−1∑
j=1

B
(j)
i,kx

⊤
i (X⊤X)jxi,

where

Ai,k+1 = Ai,k + 2δkAi,k∥xi∥2
2

n

+
k−1∑
j=1

2δkB(j)
i,kx

⊤
i (X⊤X)jxi
n

+ 2δk+1(x⊤
i β̂k − yi)
n

,

B
(1)
i,k+1 = B

(1)
i,k − 2δkAi,k

n
,

B
(j)
i,k+1 = B

(j)
i,k −

2δkB(j−1)
i,k

n
, 2 ≤ j ≤ k,

and we make the convention that B(k)
i,k = 0.

Using this proposition, we can estimate generic
prediction risk functionals as follows. Abbreviating
Hij = x⊤

i (X⊤X)jxi, to estimate the risk functional
(9), we use:

Ψloo(β̂k) = 1
n

n∑
i=1

ψ

(
yi, x

⊤
i β̂k+Ai,k∥xi∥2

2+
k−1∑
j=1

B
(j)
i,kHij

)
.

To be clear, this is an exact shortcut formula for (10).

In the p ≍ n regime, the computational cost of a naive
implementation of LOOCV for k-step GD is O(n3k).
(Each GD step costs O(n2), as we must compute p
inner products, each of length n; then multiply this
by k steps and n LOO predictions). In comparison,
the shortcut formula given above can be shown to
require O(n3 + n2k + nk2) operations using a spectral
decomposition of X. If k is large, say, itself proportional
to n, then we can see that the shortcut formula is more
efficient.

This is certainly not meant to be the final word on effi-
cient LOOCV along the GD path. For one, a spectral
decomposition is prohibitive for large problems (more
expensive than solving the original least squares prob-
lem (1)), and there may be alternative perspectives
on the shortcut formula given in Proposition 7 that
lead to faster implementation. Further, if n is large
enough, then stochastic variants of GD would be pre-
ferred in place of batch GD. All that said, the above
analysis should be seen as a demonstration that exact
shortcuts for LOO predictions in GD are possible, and
may inspire others to develop more practical exact or
approximate LOO methods.
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This document serves as a supplement to the paper “Failures and Successes of Cross-Validation for Early-Stopped
Gradient Descent.” The structure of the supplement is outlined below, followed by a summary of the notation and
conventions used in both the main paper and this supplement. The section and figure numbers in this supplement
begin with the letter “S” and the equation numbers begin with the letter “E” to differentiate them from those
appearing in the main paper.

Organization
• Appendix S.1 provides the main steps involved in the proofs of Theorem 1.

Section Content Purpose
Appendix S.1.1 Lemmas 8 and 9 Equivalences between gradient descent and flow for risk and GCV
Appendix S.1.2 Lemmas 10 and 11 Asymptotics of risk and GCV for gradient flow
Appendix S.1.3 Lemma 12 Mismatch of risk and GCV asymptotics for gradient flow

• Appendix S.2 contains supporting lemmas that are used in the proof of Theorem 1.

Section Content Purpose
Appendix S.2.1 Lemma 13 Closeness between gradient descent and flow
Appendix S.2.2 Lemmas 14 and 15 Statements of concentration results for linear and quadratic forms

• Appendix S.3 contains the proof of Theorem 1.

Section Content Purpose
Appendix S.3.1 Proof of Lemma 8
Appendix S.3.2 Proof of Lemma 9
Appendix S.3.3 Proof of Lemma 10
Appendix S.3.4 Proof of Lemma 11
Appendix S.3.5 Proof of Lemma 12
Appendix S.3.6 A helper lemma related to the Marchenko-Pastur law

• Appendix S.4 provides the main steps involved in the proofs of Theorem 2.

Section Content Purpose
Appendix S.4.1 Lemmas 22 and 23 Concentration of the LOOCV estimator
Appendix S.4.2 Lemma 24 Concentration of the risk
Appendix S.4.3 Lemmas 25 and 26 LOOCV bias analysis
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• Appendix S.5 contains supporting lemmas that are used in the proofs of Theorems 2 to 4.

Section Content Purpose
Appendix S.5.1 Definition 2 Technical preliminaries
Appendix S.5.2 Proposition 27 Useful property of the T2-inequality
Appendix S.5.3 Lemma 28 Dimension-free concentration inequality
Appendix S.5.4 Lemmas 29 and 30 Upper bounds on operator norm of Σ̂ and ∥y∥2
Appendix S.5.5 Lemmas 31 and 32 Upper bounds on ∥E[y0x0]∥ and sub-exponential of ∥Σ̂∥op
Appendix S.5.6 Lemma 33 and Corollary 34 Upper bounds on ∥β̂k∥2 and ∥β̂k,−i∥2
Appendix S.5.7 Lemma 35 Upper bounds on LOOCV residuals {|yi − x⊤

i β̂k,−i|}i∈[n]

• Appendix S.6 contains the proof of Theorem 2.

Section Content Purpose
Appendix S.6.1 Proof of Lemma 23
Appendix S.6.2 Proof of Lemma 24
Appendix S.6.3 Proof of Lemma 25
Appendix S.6.4 Proof of Lemma 26

• Appendix S.7 contains the proof of Lemma 22 that forms a key component in the proof of Theorem 2.

Section Contents Purpose
Appendix S.7.1 Lemmas 36 to 38 Upper bounding norm of the gradient with respect to the features
Appendix S.7.2 Lemma 39 Upper bounding norm of the gradient with respect to the response

• Appendix S.8 contains the proof of Theorem 3 for general risk functionals.

Section Contents Purpose
Appendix S.8.1 Lemma 40 Concentration analysis for LOOCV estimator and prediction risk
Appendix S.8.2 Lemma 41 Demonstrating that projection has little effect on quantities of interest

• Appendix S.9 contains the proof of Theorem 4. The proof uses the component Lemma 42.

• Appendix S.10 provides proofs of results related to the naive and modified augmentation systems (Propositions 5
and 7 and Proposition 6) for LOOCV along the gradient path in Section 5.

Section Content Purpose
Appendix S.10.1 Proof of Proposition 5
Appendix S.10.2 Proof of Proposition 6
Appendix S.10.3 Proof of Proposition 7

Conventions
• Throughout, C and C ′ (not to be confused with derivative) denote positive absolute constants.

• If no subscript is specified for the norm ∥x∥ of a vector x, then it is assumed to be the ℓ2 norm.

• If a proof of a statement is separated from the statement, the statement is restated (while keeping the original
numbering) along with the proof for the reader’s convenience.



Failures and Successes of Cross-Validation for Early-Stopped Gradient Descent

S.1 Proof Sketch for Theorem 1
In this section, we outline the idea behind the proof of Theorem 1. The detailed proof can be found in Appendix S.3.

S.1.1 Step 1: Closeness between Gradient Descent and Gradient Flow
This step involves establishing equivalences between gradient descent and gradient flow, specifically for the
downstream analysis of risk and generalized cross-validation.

Smoothers for gradient descent and flow. We start by rearranging the terms in (2) in the form of a first-order
difference equation:

β̂k − β̂k−1

δ
= 1
n
X⊤(y −Xβ̂k−1). (E.1)

(Recall we are considering a fixed step size of δ and initialization at the origin β̂0 = 0.) To consider a continuous
time analog of (E.1), we imagine the interval (0, t) is divided into k pieces each of size δ. Letting β̂gf

t = β̂k at
time t = kδ and taking the limit δ → 0, we arrive at an ordinary differential equation:

∂

∂t
β̂gf
t = 1

n
X⊤(y −Xβ̂gf

t ), (E.2)

with the initial condition β̂gf
0 = 0. We refer to (E.2) as the gradient flow differential equation. The gradient flow

(GF) estimate has a closed-form solution:

β̂gf
t = Σ̂†(

Ip − exp(−tΣ̂)
)

· 1
n
X⊤y, (E.3)

where Σ̂† stands for the Moore-Penrose generalized inverse of Σ̂, which we recall is X⊤X/n. Also, recall from
Section 2.2 that by rolling out the iterations, the gradient descent iterate at step k can be expressed as:

β̂k =
k−1∑
j=0

δ
(
Ip − δΣ̂

)k−j−1 · 1
n
X⊤y. (E.4)

We can define the corresponding GCV estimates for the squared risk as follows:

R̂gcv(β̂k) = 1
n

∥y −Xβ̂k∥2
2

(1 − tr(Hk)/n)2 and R̂gcv(β̂gf
t ) = 1

n

∥y −Xβ̂gf
t ∥2

2

(1 − tr(Hgf
t )/n)2

,

where

Hk =
k−1∑
j=0

δ

n
X

(
Ip − δΣ̂

)k−j−1
X⊤ and Hgf

t = 1
n
X(Σ̂)†(

Ip − exp(−tΣ̂)
)
X⊤. (E.5)

We first show that under the conditions of Theorem 1, estimates obtained from GD are in some sense asymptotically
equivalent to that obtained from gradient flow (GF), which we define below.

Lemma 8 (Prediction risks are asymptotically equivalent). Under the assumptions of Theorem 1, we have

|R(β̂k) −R(β̂gf
T )| a.s.−−→ 0.

Lemma 9 (GCV risk estimates are asymptotically equivalent). Under the assumptions of Theorem 1, we have∣∣R̂gcv(β̂k) − R̂gcv(β̂gf
T )

∣∣ a.s.−−→ 0.

The proofs of these equivalences in Lemmas 8 and 9 are provided in Appendices S.3.1 and S.3.2, respectively.
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S.1.2 Step 2: Limiting Risk and GCV
This step focuses on obtaining asymptotics (limiting behaviors) for risk and GCV when using gradient flow.

According to Lemmas 8 and 9, to show that the GCV estimator is inconsistent for the GD risk, it suffices to
show that it is inconsistent for the GF risk. We next separately derive the limiting expressions for R(β̂gf

T ) and
R̂gcv(β̂gf

T ), respectively.

Let Fζ∗(s) denote the Marchenko-Pastur law:

• Underparameterized. For ζ∗ ≤ 1, the density is given by:

dFζ∗(s)
ds = 1

2πζ∗s

√
(b− s)(s− a) · 1[a,b](s). (E.6)

The density is supported on [a, b], where a = (1 −
√
ζ∗)2 and b = (1 +

√
ζ∗)2.

• Overparameterized. For ζ∗ > 1, the law Fζ∗ has an additional point mass at 0 of probability 1 − 1/ζ∗. In
other words,

dFζ∗(s)
ds =

(
1 − 1

ζ∗

)
δ0(s) + 1

2πζ∗s

√
(b− s)(s− a) · 1[a,b](s). (E.7)

Here, δ0 is the Dirac delta function at 0.

Lemma 10 (Risk limit for gradient flow). Under the assumptions of Theorem 1,

R(β̂gf
T ) a.s.−−→ r2

∫
exp(−2Tz) dFζ∗(z) + ζ∗σ

2
∫
z−1(1 − exp(−Tz))2 dFζ∗(z) + σ2.

Lemma 11 (GCV limit for gradient flow). Under the assumptions of Theorem 1,

R̂gcv(β̂k) a.s.−−→
r2

∫
z exp(−2Tz)dFζ∗(z) + σ2(1 − ζ∗) + σ2ζ∗

∫
exp(−2Tz) dFζ∗(z)(

1 − ζ∗

∫
(1 − exp(−Tz)) dFζ∗(z)

)2 .

The proofs of these asymptotic limits in Lemmas 10 and 11 are provided in Appendices S.3.3 and S.3.4, respectively.

S.1.3 Step 3: Limits Mismatch
The final step involves showing a mismatch between the asymptotics of risk and GCV for gradient flow.

Lemma 12 (Limits mismatch). Let Fζ∗ be the Marchenko-Pastur law. Then, assuming either r2 > 0 or σ2 > 0,
for all T > 0, except for a set of Lebesgue measure zero,

r2
∫

exp(−2Tz) dFζ∗(z) + ζ∗σ
2

∫
z−1(1 − exp(−Tz))2 dFζ∗(z) + σ2

̸=
r2

∫
z exp(−2Tz)dFζ∗(z) + σ2(1 − ζ∗)+ + σ2ζ∗

∫
exp(−2Tz) dFζ∗(z)(

1 − ζ∗

∫
(1 − exp(−Tz)) dFζ∗(z)

)2 . (E.8)

The proof of this asymptotic mismatch in Lemma 12 is provided in Appendix S.3.5.

S.2 Supporting Lemmas for the Proof of Theorem 1
S.2.1 Connections between Gradient Descent and Gradient Flow
We first show that under the conditions of Theorem 1, estimates obtained from gradient descent (GD) are in
some sense asymptotically equivalent to that obtained from gradient flow (GF).

We next establish connections between GD and GF. This step is achieved by showing that the hat matrices as
defined in Equation (E.5) when k → ∞ and kδ → T (for Hk) and when t = T (for Ht) get closer under the
matrix operator norm.
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Observe that the two matrices in Equation (E.5) share a common set of eigenvectors, and the eigenvalues are
obtained by applying separate scalar transformations to the eigenvalues of Σ̂. Hence, to show that Hk and Hgf

T

are close in terms of operator norm, a natural first step is to show that the scalar transformations are uniformly
close to each other. We characterize such closeness in Lemma 13 below.

Let gδ,k(x) =
∑k−1
j=0 δx(1 − δx)k−j−1 and gT (x) = 1 − exp(−tx), which are exactly the scalar transformations of

the hat matrices in Equation (E.5). Our next lemma says that as k → ∞ and δ → 0 with kδ → T , gδ,k uniformly
approximates gT on a compact interval.

Lemma 13 (Scalar uniform approximation for GD and GF smoothing functions). We assume k → ∞, δ → 0,
and kδ → T . Here, T is a fixed positive constant. Then it holds that

sup
0≤x≤ζ∗+2

√
ζ∗+2

∣∣∣gδ,k(x) − gT (x)
∣∣∣ → 0,

where we recall that ζ∗ is the limit of the aspect ratio.

Proof. For notational simplicity, we let Jζ∗ = [ 0, ζ∗ + 2
√
ζ∗ + 2 ]. We will first show that

sup
x∈Jζ∗

∣∣∣k log(1 − δx) + kδx
∣∣∣ → 0. (E.9)

To this end, we consider the first-order derivatives of the function inside the above absolute value sign with
respect to x, which gives −δk/(1 − δx) + kδ. This quantity under the current conditions goes to zero uniformly
for all x ∈ Jζ∗ , thus proving Equation (E.9). This further implies the following uniform convergence result:

sup
x∈Jζ∗ ,j+1∈[k]

∣∣∣(k − j − 1) log(1 − δx) + (k − j − 1)δ
∣∣∣ → 0.

As a direct consequence of the above equation, we obtain

sup
x∈Jζ∗ ,j+1∈[k]

∣∣∣(1 − δx)k−j−1 − exp(−δ(k − j − 1)x)
∣∣∣ → 0,

which further gives

sup
x∈Jζ∗

∣∣∣ k−1∑
j=0

δx(1 − δx)k−j−1 −
k−1∑
j=0

δx exp(−δ(k − j − 1)x)
∣∣∣ → 0

as
∑k−1
j=0 δx is uniformly upper bounded for all x ∈ Jζ∗ .

Considering the derivative of an exponential function, it is not hard to see that

sup
j+1∈[k]

sup
(k−j−1)δ≤z≤(k−j)δ

∣∣∣ exp(−δ(k − j − 1)x) − exp(−zx)
∣∣∣ → 0.

Therefore,

sup
x∈Jζ∗

∣∣∣ k−1∑
j=0

δx exp(−δ(k − j − 1)x) −
∫ kδ

0
x exp(−zx) dz

∣∣∣ → 0.

Further, we note that

sup
x∈Jζ∗

∣∣∣ ∫ kδ

0
x exp(−zx) dz −

∫ T

0
x exp(−zx) dz

∣∣∣ → 0

and ∫ T

0
x exp(−zx) dz = 1 − exp(−Tx).

This completes the proof.

We can apply Lemma 13 to establish several useful connections between GD and GF, which we state as Lemmas 8
and 9. The proof of these two lemmas can be found in Appendices S.3.2 and S.3.1, respectively.
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S.2.2 Useful Concentration Results
The following lemma provides the concentration of a linear form of a random vector with independent components.
It follows from a moment bound from Lemma 7.8 of Erdos and Yau (2017), along with the Borel-Cantelli lemma
and is adapted from Lemma S.8.5 of Patil et al. (2022a).

Lemma 14 (Concentration of linear form with independent components). Let zp ∈ Rp be a sequence of random
vector with i.i.d. entries zpi, i = 1, . . . , p such that for each i, E[zpi] = 0, E[z2

pi] = 1, E[|zpi|4+α] ≤ Mα for
some α > 0 and constant Mα < ∞. Let ap ∈ Rp be a sequence of random vectors independent of zp such that
lim supp ∥ap∥2

2/p ≤ M0 almost surely for a constant M0 < ∞. Then a⊤
p zp/p → 0 almost surely as p → ∞.

The following lemma provides the concentration of a quadratic form of a random vector with independent
components. It follows from a moment bound from Lemma B.26 of Bai and Silverstein (2010), along with the
Borel-Cantelli lemma and is adapted from Lemma S.8.6 of Patil et al. (2022a).

Lemma 15 (Concentration of quadratic form with independent components). Let zp ∈ Rp be a sequence of
random vector with i.i.d. entries zpi, i = 1, . . . , p such that for each i, E[zpi] = 0, E[z2

pi] = 1, E[|zpi|4+α] ≤ Mα for
some α > 0 and constant Mα < ∞. Let Dp ∈ Rp×p be a sequence of random matrix such that lim sup ∥Dp∥op ≤ M0
almost surely as p → ∞ for some constant M0 < ∞. Then z⊤

p Dpzp/p− tr[Dp]/p → 0 almost surely as p → ∞.

S.3 Proof of Theorem 1
Theorem 1 (Inconsistency of GCV). Suppose that (xi, yi), i ∈ [n] are i.i.d., and satisfy both Assumptions A
and B, where either r2 > 0 or σ2 > 0. As n, p → ∞, assume p/n → ζ∗, and k → ∞, δ → 0 such that kδ → T ,
where T, ζ∗ > 0 are constants. Then, for every fixed ζ∗ > 0, it holds that for almost all T > 0 (i.e., all T > 0
except for a set of Lebesgue measure zero), ∣∣∣R̂gcv(β̂k) −R(β̂k)

∣∣∣ ̸ p−→ 0, (6)

where we recall that R̂gcv(β̂k) and R(β̂k) are as defined in (5) and (3), respectively.

S.3.1 Proof of Lemma 8
Lemma 8 (Prediction risks are asymptotically equivalent). Under the assumptions of Theorem 1, we have

|R(β̂k) −R(β̂gf
T )| a.s.−−→ 0.

Proof. Note that the prediction risks admit the following expressions:

R(β̂k) = ∥β0 − β̂k∥2
2 + σ2 and R(β̂gf

T ) = ∥β0 − β̂gf
T ∥2

2 + σ2.

We define ḡδ,k(x) =
∑k−1
j=0 δ(1 − δx)k−j−1 and ḡT (x) = x−1(1 − exp(−Tx)). We claim that

∥x1/2(ḡδ,k(x) − ḡT (x))1x∈Jζ∗
∥∞ → 0 (E.10)

under the asymptotics k → ∞, δ → 0, and kδ → T . Proof for this claim is similar to that for Lemma 13, and we
skip it for the compactness of presentation.

We note that

β̂k − β̂gf
T = 1√

n
V ⊤

(
ḡδ,k(Λ⊤Λ) − ḡT (Λ⊤Λ)

)
Λ⊤U⊤y, (E.11)

where we recall that X/
√
n = V ΛU is the spectral decomposition. It is straightforward to obtain the following

upper bound: ∥∥∥(
ḡδ,k(Λ⊤Λ) − ḡT (Λ⊤Λ)

)
Λ⊤

∥∥∥
op

≤ sup
i∈[n]

∣∣λ1/2
i (ḡδ,k(λi) − ḡT (λi))

∣∣.
Recall that maxi∈[n] λi

a.s.−−→ (1 +
√
ζ∗)2, hence the right-hand side of the above equation converges to zero almost

surely (using Equation (E.10)). By the law of large numbers, we obtain ∥y∥2/
√
n

a.s.−−→ E[y2
1 ]1/2. Plugging these



Failures and Successes of Cross-Validation for Early-Stopped Gradient Descent

results into Equation (E.11) gives ∥β̂k − β̂gf
T ∥2

a.s.−−→ 0 as n, p → ∞. Furthermore, by Equations (E.3) and (E.4),
we have ∥∥β̂gf

T

∥∥
2 ≤ max

i∈[n]
λ

1/2
i · ḡT

(
max
i∈[n]

λi

)
· 1√

n
∥y∥2,

∥β̂k∥2 ≤ max
i∈[n]

λ
1/2
i · ḡδ,k

(
max
i∈[n]

λi

)
· 1√

n
∥y∥2.

(E.12)

Standard analysis implies that supx∈Jζ∗

√
xḡT (x) < ∞ and lim supk→∞,δ→0 supx∈Jζ∗

√
xḡδ,k(x) < ∞.

Finally, combining all these results we have obtained, we conclude that∣∣∣∥β0 − β̂k∥2
2 − ∥β0 − β̂gf

T ∥2
2

∣∣∣ a.s.−−→ 0

as n, p → ∞. This is equivalent to saying

|R(β̂k) −R(β̂gf
T )| a.s.−−→ 0

as n, p → ∞.

S.3.2 Proof of Lemma 9
Lemma 9 (GCV risk estimates are asymptotically equivalent). Under the assumptions of Theorem 1, we have∣∣R̂gcv(β̂k) − R̂gcv(β̂gf

T )
∣∣ a.s.−−→ 0.

Proof. In the sequel, we will apply Lemma 13 to prove closeness between R̂gcv(β̂k) and R̂gcv(β̂gf
T ). This consists

of proving the following three pairs of quantities are close:

(1) (1 − tr(Hk)/n)−2 and (1 − tr(Hgf
T )/n)−2.

(2) β̂⊤
k Σ̂β̂k and (β̂gf

T )⊤Σ̂β̂gf
T .

(3) y⊤Xβ̂k/n and y⊤Xβ̂gf
T /n.

In what follows, we shall separately justify each of these closeness results.

Closeness result (1)
We denote by {λi}i≤n the top n eigenvalues of Σ̂. From Bai and Silverstein (2010, Theorem 5.8), we know that
maxi∈[n] λi

a.s.−−→ (1 +
√
ζ∗)2. Note that

1
n

tr(Hk) = 1
n

n∑
i=1

gδ,k(λi) and 1
n

tr(Hgf
T ) = 1

n

n∑
i=1

gT (λi).

Invoking Lemma 13, we obtain that with probability one

lim sup
n,p→∞

1
n

∣∣∣tr(Hk) − tr(Hgf
T )

∣∣∣ ≤ sup
0≤x≤ζ∗+2

√
ζ∗+2

∣∣∣gδ,k(x) − gT (x)
∣∣∣,

which vanishes as n, p → ∞. As a result, we derive that | tr(Hk) − tr(Hgf
T )|/n a.s.−−→ 0 as n, p → ∞.

Let Fζ∗(s) denote the Marchenko-Pasture law as defined in (E.6) and (E.6). Standard results in random matrix
theory (Bai and Silverstein, 2010) tell us that the empirical spectral distribution of Σ̂ almost surely converges in
distribution to Fζ∗ . Note that gT is a bounded continuous function on [0, ζ∗ + 2

√
ζ∗ + 2], thus

1
n

n∑
i=1

gT (λi)
a.s.−−→

∫ (
1 − exp(−Tz)

)
dFζ∗(z),

which one can verify is strictly smaller than 1 for all ζ∗ ∈ (0,∞). Putting together the above analysis, we can
deduce that both (1 − tr(Hk)/n)−2 and (1 − tr(Hgf

T )/n)−2 converge almost surely to one finite constant, hence
concluding the proof for this part.
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Closeness result (2)
We denote by X/

√
n = UΛV the singular value decomposition of X/

√
n, where U ∈ Rn×n and V ∈ Rp×p are

orthogonal matrices. Combining Equations (E.3) and (E.4), we arrive at the following equation:

β̂⊤
k Σ̂β̂k − (β̂gf

T )⊤Σ̂β̂gf
T = y⊤U⊤ ·

{
gδ,k(ΛΛ⊤)2 − gT (ΛΛ⊤)2}

· Uy/n. (E.13)

By the strong law of large numbers, we have ∥y∥2
2/n

a.s.−−→ E[y2
1 ]. By Lemma 13 and the fact that maxi∈[n] λi

a.s.−−→
(1 +

√
ζ∗)2, we conclude that ∥∥gδ,k(ΛΛ⊤)2 − gT (ΛΛ⊤)2∥∥

op
a.s.−−→ 0.

Plugging these arguments into Equation (E.13), we obtain∣∣∣β̂⊤
k Σ̂β̂k − (β̂gf

T )⊤Σ̂β̂gf
T

∣∣∣ a.s.−−→ 0,

which concludes the proof of closeness result (2).

Closeness result (3)
Finally, we show one more closeness result (3). We note that

1
n

(
y⊤Xβ̂k − y⊤Xβ̂gf

T

)
= y⊤U⊤ ·

{
gδ,k(ΛΛ⊤) − gT (ΛΛ⊤)

}
· Uy/n,

which by the same argument as that we used to derive result (2) almost surely converges to zero as n, p → ∞.

Putting together (1), (2), and (3), we conclude the proof of the lemma.

S.3.3 Proof of Lemma 10
Lemma 10 (Risk limit for gradient flow). Under the assumptions of Theorem 1,

R(β̂gf
T ) a.s.−−→ r2

∫
exp(−2Tz) dFζ∗(z) + ζ∗σ

2
∫
z−1(1 − exp(−Tz))2 dFζ∗(z) + σ2.

Proof. Applying Equation (E.3) and the risk decomposition formula, we obtain

R(β̂gf
T ) =β⊤

0 exp(−2T Σ̂)β0 − 2
n
β⊤

0 exp(−T Σ̂)Σ̂†(Ip − exp(−T Σ̂))X⊤ε

+ 1
n2 ε

⊤X(Ip − exp(−T Σ̂))(Σ̂†)2(Ip − exp(−T Σ̂))X⊤ε+ σ2.

Note that

2√
n

∥∥β⊤
0 exp(−T Σ̂)Σ̂†(Ip − exp(−T Σ̂))X⊤∥∥

2 ≤ 2∥β0∥2 · sup
i∈[n]

exp(−Tλi)(1 − exp(−Tλi))
λ

1/2
i

,

where it is understood that λ−1/2e−Tλ(1 − e−Tλ) |λ=0= 0. Recall that maxi λi
a.s.−−→ (1 +

√
ζ∗)2 and ∥β0∥2

2 → r2.
Hence, there exists a constant M0 such that almost surely

lim sup
n,p→∞

∥β⊤
0 exp(−T Σ̂)Σ̂†(Ip − exp(−T Σ̂))X⊤∥2

2/n ≤ M0.

Therefore, we can apply Lemma 14 and deduce that

2
n
β⊤

0 exp(−T Σ̂)Σ̂†(Ip − exp(−T Σ̂))X⊤ε
a.s.−−→ 0. (E.14)

By Lemma 15, we have∣∣∣n−2ε⊤X(Ip − exp(−T Σ̂))(Σ̂†)2(Ip − exp(−T Σ̂))X⊤ε
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−n−2σ2 tr(X(Ip − exp(−T Σ̂))(Σ̂†)2(Ip − exp(−T Σ̂))X⊤)
∣∣∣ a.s.−−→ 0.

Standard random matrix theory result implies that almost surely the empirical spectral distribution of Σ̂
converges in distribution to Fζ∗ , which is the Marchenko-Pastur law defined in (E.6) and (E.7). Furthermore,
∥Σ̂∥op

a.s.−−→ (1 +
√
ζ∗)2. Therefore, we conclude that

n−2σ2 tr(X(Ip − exp(−T Σ̂))(Σ̂†)2(Ip − exp(−T Σ̂))X⊤)
a.s.−−→ ζ∗σ

2
∫
z−1(1 − exp(−Tz))2 dFζ∗(z). (E.15)

Finally, we study the limit of β⊤
0 exp(−2T Σ̂)β0. Let Ω ∈ Rp×p be a uniformly distributed orthogonal matrix that

is independent of anything else. Since by assumption ∥β0∥2 → r, we can then couple Ωβ0 with g ∼ N (0, Ip),
so that (1) g is independent of Σ̂, and (2) ∥Ωβ0 − rg/

√
p∥2

a.s.−−→ 0. Note that all eigenvalues of exp(−2T Σ̂) are
between 0 and 1, hence ∣∣∣∣β⊤

0 exp(−2T Σ̂)β0 − r2

p
g⊤ exp(−2T Σ̂)g

∣∣∣∣ a.s.−−→ 0.

Leveraging Lemma 15, we obtain

r2g⊤ exp(−2T Σ̂)g/p a.s.−−→ r2
∫

exp(−2Tz) dFζ∗(z).

Combining this with (E.14) and (E.15), we finish the proof.

S.3.4 Proof of Lemma 11
Lemma 11 (GCV limit for gradient flow). Under the assumptions of Theorem 1,

R̂gcv(β̂k) a.s.−−→
r2

∫
z exp(−2Tz)dFζ∗(z) + σ2(1 − ζ∗) + σ2ζ∗

∫
exp(−2Tz) dFζ∗(z)(

1 − ζ∗

∫
(1 − exp(−Tz)) dFζ∗(z)

)2 .

Proof. We separately discuss the numerator and the denominator. We start with the denominator. Recall that
the empirical spectral distribution of Σ̂ almost surely converges to Fζ∗ and ∥Σ̂∥op

a.s.−−→ (1 +
√
ζ∗)2. Hence,

(1 − tr(Hgf
T )/n)−2 a.s.−−→

(
1 − ζ∗

∫
(1 − exp(−Tz)) dFζ∗(z)

)−2
. (E.16)

Next, we consider the numerator. Straightforward computation implies that
1
n

∥y −Xβ̂gf
T ∥2

2 =β⊤
0 exp(−T Σ̂)Σ̂ exp(−T Σ̂)β0 + 1

n

∥∥(
In − 1

n
XΣ̂†(Ip − exp(−T Σ̂))X⊤)

ε
∥∥2

2

+ 2
n

〈
β0, exp(−T Σ̂)X⊤(

In − 1
n
XΣ̂†(Ip − exp(−T Σ̂))X⊤)

ε
〉
.

Since ∥Σ̂∥op
a.s.−−→ (1 +

√
ζ∗)2, we then obtain almost surely

lim sup
n,p→∞

∥∥ exp(−T Σ̂)X⊤(
In − 1

n
XΣ̂†(Ip − exp(−T Σ̂))X⊤)∥∥

op ≤ G(ζ∗) < ∞,

where G(ζ∗) is a function of ζ∗. Therefore, by Lemma 14, we obtain

2
n

〈
β0, exp(−T Σ̂)X⊤(

In − 1
n
XΣ̂†(Ip − exp(−T Σ̂))X⊤)

ε
〉 a.s.−−→ 0. (E.17)

Using the same argument that we used to compute the limiting expression of β⊤
0 exp(−T Σ̂)β0, we conclude that

β⊤
0 exp(−T Σ̂)Σ̂ exp(−T Σ̂)β0

a.s.−−→ r2
∫
z exp(−2Tz) dFζ∗(z). (E.18)
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In addition, by Lemma 15, we have

1
n

∥∥(
In − 1

n
XΣ̂†(Ip − exp(−T Σ̂))X⊤)

ε
∥∥2

2
a.s.−−→ σ2(1 − ζ∗) + σ2ζ∗

∫
exp(−2Tz) dFζ∗(z). (E.19)

To see the limit in (E.19), we expand the matrix of the quadratic form as follows:

(In − 1
n
XΣ̂†(Ip − exp(−T Σ̂))X⊤)(In − 1

n
XΣ̂†(Ip − exp(−T Σ̂))X⊤)

= (In − 1
n
XΣ̂†(Ip − exp(−T Σ̂))X⊤) − 1

n
XΣ̂†(Ip − exp(−T Σ̂)X⊤)(In − 1

n
XΣ̂†(Ip − exp(−T Σ̂))X⊤)

= (In − 1
n
XΣ̂†(Ip − exp(−T Σ̂))X⊤) − 1

n
XΣ̂†(Ip − exp(−T Σ̂))(Ip − Σ̂Σ̂†(Ip − exp(−T Σ̂)))X⊤.

The normalized (by n) trace of the matrix above is

1 − ζ∗ tr[(Ip − exp(−T Σ̂))]/p− ζ∗ tr[(Ip − exp(−T Σ̂)) exp(−T Σ̂)]/p
= 1 − ζ∗ + ζ∗ tr[exp(−2T Σ̂)]/p.

In the above simplification, we used the fact that

Σ̂Σ̂†(Ip − exp(−T Σ̂)) = (Ip − exp(−T Σ̂)).

This fact follows because Σ̂†Σ̂ is the projection onto the row space of X. But the image of Ip − exp(−tΣ̂) is
already in the row space. The limit for (E.19) therefore is

σ2(1 − ζ∗) + σ2ζ∗

∫
exp(−2Tz) dFζ∗(z).

We can do quick sanity checks for this limit:

• When T = 0, we should get σ2 irrespective of ζ∗ because we start with a null model.

• When T = ∞, we should get the training error of the least squares or ridgeless estimator due to noise. There
are two cases:

– When ζ∗ < 1: this is the variance component of the residual of least squares. This should be σ2(1 − ζ∗).

– When ζ∗ > 1: this is the variance component of the training error of the ridgeless interpolator, which
should be zero.

To check the last point, it is worth noting that

lim
T→∞

∫
exp(−2Tz) dFζ∗(z) =


0 ζ∗ < 1

1 − 1
ζ∗

ζ∗ > 1.

Now, Equations (E.16) to (E.19) together imply the stated result.

S.3.5 Proof of Lemma 12
Lemma 12 (Limits mismatch). Let Fζ∗ be the Marchenko-Pastur law. Then, assuming either r2 > 0 or σ2 > 0,
for all T > 0, except for a set of Lebesgue measure zero,

r2
∫

exp(−2Tz) dFζ∗(z) + ζ∗σ
2

∫
z−1(1 − exp(−Tz))2 dFζ∗(z) + σ2

̸=
r2

∫
z exp(−2Tz)dFζ∗(z) + σ2(1 − ζ∗)+ + σ2ζ∗

∫
exp(−2Tz) dFζ∗(z)(

1 − ζ∗

∫
(1 − exp(−Tz)) dFζ∗(z)

)2 . (E.8)
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Proof. Recall the asymptotics of the risk from Lemma 10:

R(β̂gf
T ) (E.20)

a.s.−−→ r2
∫

exp(−2Tz) dFζ∗(z) + ζ∗σ
2

∫
z−1(1 − exp(−Tz))2 dFζ∗(z) + σ2

= r2
{∫

exp(−2Tz) dFζ∗(z)
}

+ σ2
{

1 + ζ∗

∫
z−1(1 − exp(−Tz))2 dFζ∗(z)

}
. (E.21)

Recall also the asymptotics of GCV from Lemma 11:

R̂gcv(β̂k) (E.22)

a.s.−−→
r2

∫
z exp(−2Tz) dFζ∗(z) + σ2(1 − ζ∗) + σ2ζ∗

∫
exp(−2Tz) dFζ∗(z)(

1 − ζ∗

∫
(1 − exp(−Tz)) dFζ∗(z)

)2

= r2

∫
z exp(−2Tz) dFζ∗(z)(

1 − ζ∗

∫
(1 − exp(−Tz)) dFζ∗(z)

)2 + σ2
(1 − ζ∗) + ζ∗

∫
exp(−2Tz) dFζ∗(z)(

1 − ζ∗

∫
(1 − exp(−Tz)) dFζ∗(z)

)2 . (E.23)

Here, Fζ∗ is the Marchenko-Pasture law, as defined in (E.6) and (E.7). Observe that both functions (E.21) and
(E.23) are analytic (i.e., they can be represented by a convergent power series in a neighborhood of every point in
their domain). From the identity theorem for analytic functions (see, e.g., Chapter 1 of Krantz and Parks (2002)),
it suffices to show that the functions do not agree in a neighborhood of a point inside the domain. We will do this
in the neighborhood of t = 0. The function value and the derivatives match, but the second derivatives mismatch.
This is shown in Appendices S.3.5.2 and S.3.5.3. This supplies us with the desired function disagreement and
concludes the proof.

A remark on the proof of Lemma 12: Observe that both the risk and the GCV asymptotics in (E.21) and (E.23)
split into bias or bias-like and variance or variance-like components, respectively. The bias or bias-like component
is scaled by the signal energy, and the variance or variance-like component is scaled by the noise energy. We can
also show that except for a set of Lebesgue measure 0, we have

∫
exp(−2Ts) dFζ∗(s) ̸=

∫
s exp(−2Ts) dFζ∗(s)(

1 − ζ∗

∫
(1 − exp(−Ts)) dFζ∗(s)

)2 , (E.24)

1 + ζ∗

∫ (1 − exp(−Ts))2

s
dFζ∗(s) ̸=

(1 − ζ∗) + ζ∗

∫
exp(−2Ts) dFζ∗(s)(

1 − ζ∗

∫
(1 − exp(−Ts)) dFζ∗(s)

)2 . (E.25)

In the following, we will refer to (E.24) as the signal component mismatch and (E.25) as the noise component
mismatch. The functions on both sides of (E.24) and (E.25) are again analytic in T . The mismatch of the second
derivatives for the sum above in fact is a consequence of mismatches for the individual signal and noise component.
This is shown in Appendices S.3.5.2 and S.3.5.3.

S.3.5.1 Combined Sum Mismatch
Our goal is to show that the two limiting functions (of T ) in (E.21) and (E.23) differ on a neighborhood of T = 0.
Since the common denominator in the two terms in Equation (E.23) are away from 0, it suffices to show that in
the neighborhood around T = 0, the following function is not identically zero:

D(T ) =r2

{∫
exp(−2Tz) dFζ∗(z)

(
1 − ζ∗

∫
(1 − exp(−Tz)) dFζ∗(z)

)2
−

∫
z exp(−2Tz) dFζ∗(z)

}
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+ σ2

{(
1 + ζ∗

∫
z−1(1 − exp(−Tz))2 dFζ∗(z)

) (
1 − ζ∗

∫
(1 − exp(−Tz)) dFζ∗(z)

)2

−(1 − ζ∗) − ζ∗

∫
exp(−2Tz) dFζ∗(z)

}
. (E.26)

As argued in the proof of Lemma 12, the function D is analytic and it suffices to examine the Taylor coefficients.
Both D(0) and D′(0) are 0 but it turns out that D′′(0) ̸= 0 for ζ∗ > 0. Thus, our subsequent goal will be to
compute D′′(T ) and evaluate it at T = 0. We will make use of double derivative calculations in Appendices S.3.5.2
and S.3.5.3 for this purpose, as summarized below.

Claim 16 (Second derivatives mismatch for combined sum). For the function D as defined in (E.26), we have
D′′(T ) = −2ζ∗(2r2 + σ2). Thus, when ζ∗ > 0 and either r2 > 0 or σ2 > 0, we have D′′(0) ̸= 0.

Proof. The calculation follows from Claims 17 and 19. Specifically, using the notation defined in these claims, we
have

D′′(T ) = r2(B′′
ℓ (T ) − B′′

r (T )) − σ2(V ′′
ℓ (T ) − V ′′

r (T )). (E.27)

Evaluating (E.27) at T = 0 yields

D′′(0) = r2(4 + 12ζ∗ + 4ζ2
∗) − r2(4 + 14ζ∗ + 4ζ2

∗) − σ2(4ζ2
∗) + σ2(4ζ∗ + 4ζ2

∗). (E.28)

Simplifying (E.28), we obtain the desired conclusion.

S.3.5.2 Signal Component Mismatch
Claim 17 (Second derivatives mismatch for signal component). Let Fζ∗ be the Marchenko-Pasture law as defined
in (E.6) and (E.7). Let Bℓ and Br be two functions defined as follows:

Bℓ(T ) =
(

1 − ζ∗

∫
(1 − exp(−Ts)) dFζ∗(s)

)2 ∫
exp(−2Ts) dFζ∗(s),

Br(T ) =
∫
s exp(−2Ts) dFζ∗(s).

We have B′′
ℓ (0) = 4 + 12ζ∗ + 4ζ2

∗ and B′′
r (0) = 4 + 14ζ∗ + 4ζ2

∗ , and hence B′′
ℓ (0) ̸= B′′

r (0).

Proof. For ease of notation, define the functions w, v, and u as follows:

w(T ) =
(

1 − ζ∗

∫
(1 − exp(−Ts)) dFζ∗(s)

)2
,

v(T ) =
∫

exp(−2Ts) dFζ∗(s),

u(T ) =
∫
s exp(−2Ts) dFζ∗(s).

Then we have Bℓ(T ) = w(T )v(T ) and Br(T ) = u(T ). The first-order derivatives are B′
ℓ(T ) = w′(T )v(T )+w(T )v′(T )

and B′
r(T ) = u′(T ). The second-order derivatives are B′′

ℓ (T ) = w′′(T ) + 2w′(T )v′(T ) + v′′(T ) and B′′
r (T ) = u′′(T ).

From Claim 18, we obtain

B′′
ℓ (0) = 2ζ∗(1 + 2ζ∗) + 8ζ∗ + 4(1 + ζ∗) = 4 + 14ζ∗ + 4ζ2

∗ .

On the other hand, from Claim 18 again, we have

B′
r(0) = 4(1 + 3ζ∗ + ζ2

∗) = 4 + 12ζ∗ + 4ζ2
∗ .

Thus, for any ζ∗ > 0, we have that B′′
ℓ (0) ̸= B′′

r (0), as desired.

Claim 18 (Second derivatives of various parts signal component). Let w, v, and u be functions defined in the
proof of Claim 17. Then the following claims hold.
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• w(0) = 1, w′(0) = −2ζ∗, and w′′(0) = 2ζ∗(1 + 2ζ∗).

• v(0) = 1, v′(0) = −2, and v′′(0) = 4(1 + ζ∗).

• u(0) = 1, u′(0) = −2(1 + ζ∗), and u′′(0) = 4(1 + 3ζ∗ + ζ2
∗).

Proof. The functional evaluations are straightforward. We will split the first- and second-order derivative
calculations into separate parts below. For k ≥ 0, let Mk =

∫
sk dFζ∗(s) be the k-th moment of the Marchenko-

Pastur law.

Part 1. Denote the inner integral by

I(T ) = ζ∗

∫
(1 − exp(−Ts)) dFζ∗(s).

Then, w(T ) = (1 − I(T ))2. The first derivative of w(T ) is

w′(T ) = −2(1 − I(T )) · I ′(T ) with I ′(T ) = ζ∗

∫
s exp(−Ts) dFζ∗(s).

The second derivative of w(T ) is

w′′(T ) = 2(I ′(T ))2 − 2(1 − I(T )) · I ′′(T ) with I ′′(T ) = −ζ∗

∫
s2 exp(−Ts) dFζ∗(s).

From (E.29), note that I(0) = 0, I ′(0) = ζ∗M1 = ζ∗, and I ′′(0) = −ζ∗M2 = −ζ∗ − ζ2
∗ . Thus, we have

w′(0) = −2ζ∗M1 = −2ζ∗ and w′′(0) = 2ζ2
∗ + 2ζ∗ + 2ζ2

∗ = 2ζ∗ + 4ζ2
∗ .

Part 2. For v(T ), the derivatives are straightforward. The first derivative is

v′(T ) = −2
∫
s exp(−2Ts) dFζ∗(s).

The second derivative is
v′′(T ) = 4

∫
s2 exp(−2Ts) dFζ∗(s).

Hence, from (E.29), we then get v′(0) = −2M1 = −2 and v′′(0) = 4M2 = 4 + 4ζ∗.

Part 3. For u(T ), the derivatives are similarly straightforward. The first derivative is

u′(T ) = −2
∫
s2 exp(−2Ts) dFζ∗(s).

The second derivative is
u′′(T ) = 4

∫
s3 exp(−2Ts) dFζ∗(s).

From Equation (E.29) again, we obtain that u′(0) = −2M2 = −2(1 + ζ∗) and u′′(0) = 4M3 = 4(1 + 3ζ∗ + ζ∗).

S.3.5.3 Noise Component Mismatch
Claim 19 (Second derivatives mismatch for noise component). Let Fζ∗ be the Marchenko-Pasture law as defined
in (E.6) and (E.7). Let Vℓ and Vr be two functions defined as follows:

Vℓ(T ) =
(

1 + ζ∗

∫ (1 − exp(−Ts))2

s
dFζ∗(s)

) (
1 − ζ∗

∫
(1 − exp(−Ts)) dFζ∗(s)

)2

Vr(T ) = (1 − ζ∗) + ζ∗

∫
exp(−2Ts) dFζ∗(s).

We have V ′′
ℓ (0) = 4ζ2

∗ and V ′′
r (0) = 4ζ∗ + 4ζ2

∗ , and hence V ′′
ℓ (0) ̸= V ′′

r (0) for ζ∗ > 0.
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Proof. For ease of notation, define the functions w, ṽ, and ũ such that

w(T ) =
(

1 − ζ∗

∫
(1 − exp(−Ts)) dFζ∗(s)

)2
,

ṽ(T ) = 1 + ζ∗

∫ (1 − exp(−Ts))2

s
dFζ∗(s),

ũ(T ) = (1 − ζ∗) + ζ∗

∫
exp(−2Ts) dFζ∗(s).

(Note that the function w is the same function as defined in Claim 18.) Then we have Vℓ(T ) = w(T )ṽ(T )
and Vr(T ) = ũ(T ). The first-order derivatives are V ′

ℓ(T ) = w′(T )ṽ(T ) + w(T )ṽ′(T ) and V ′
r(T ) = ũ′(T ). The

second-order derivatives are V ′′
ℓ (T ) = w′′(T ) + 2w′(T )ṽ′(T ) + ṽ′′(T ) and V ′′

r (T ) = ũ′′(T ). From Claim 20, we
obtain

V ′′
ℓ (0) = 2ζ∗(1 + 2ζ∗) − 2ζ∗ = 4ζ2

∗ .

On the other hand, from Claim 20 again, we have

V ′′
r (0) = 4ζ∗ + 4ζ2

∗ .

Thus, we have that V ′′
ℓ (0) ̸= V ′′

r (0) for any ζ∗ > 0. This concludes the proof.

Claim 20 (Second derivatives of various parts of noise component). Let w, ṽ, and ũ be functions defined in the
proof of Claim 19. Then the following claims hold.

• w(0) = 1, w′(0) = −2ζ∗, and w′′(0) = 2ζ∗(1 + 2ζ∗).

• ṽ(0) = 1, ṽ′(0) = 0, and ṽ′′(0) = −2ζ∗.

• ũ(0) = 1, ũ′(0) = −2, and ũ′′(0) = 4(1 + ζ∗).

Proof. The functional evaluations are straightforward. We will split the first- and second-order derivative
calculations into separate parts below. Recall that for k ≥ 0, we denote by Mk =

∫
sk dFζ∗(s), the k-th moment

of the Marchenko-Pastur law.

Part 1. This part is the same as Part 1 of Claim 18.

Part 2. We start by computing the derivative of the integrand.
∂

∂T

(
(1 − exp(−Ts))2

s

)
= 2(1 − exp(−Ts)) · (− exp(−Ts)) · (−s) · 1

s
= 2(1 − exp(−Ts)) exp(−Ts)

For the second derivative, note that
∂2

∂T 2

(
(1 − exp(−Ts))2

s

)
= ∂

∂T
(2(1 − exp(−Ts)) exp(−Ts)) = −2s exp(−Ts) + 4s exp(−2Ts).

Therefore, we have
ṽ′(T ) = 2ζ∗

∫
(1 − exp(−Ts)) exp(−Ts) dFζ∗(s)

and
ṽ′′(T ) = 2ζ∗

∫
s exp(−Ts)(1 − 2 exp(−Ts)) dFζ∗(s).

Thus, ṽ′(0) = 0 and ṽ′′(0) = −2ζ∗M1 = −2ζ∗.

Part 3. For ũ(T ), the derivatives are straightforward. The first derivative is

ũ′(T ) = −2ζ∗

∫
s exp(−2Ts) dFζ∗(s).

The second derivative is
ũ′′(T ) = 4ζ∗

∫
s2 exp(−2Ts) dFζ∗(s).

From Equation (E.29) again, we obtain that ũ′(0) = −2ζ∗M1 = −2ζ∗ and ũ′′(0) = 4ζ∗M2 = 4ζ∗(1 + ζ∗).
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S.3.6 A Helper Lemma related to the Marchenko-Pastur Law
Lemma 21 (Moments of the Marchenko-Pasture distribution). Let Fζ∗ be the Marchenko-Pasture law as defined
in (E.6) and (E.7). For k ≥ 1, we have

∫
sk dFζ∗(s) =

k−1∑
i=0

1
i+ 1

(
k

i

)(
k − 1
i

)
ζi∗.

The explicit moment formula in Lemma 21 is well-known. See, for example, Lemma 3.1 of Bai and Silverstein
(2010). It can be derived using the Chu-Vandermonde identity, also known as Vandermonde’s convolutional
formula for binomial coefficients (Koepf, 1998, Chapter 3).

We will use Lemma 21 to obtain the following moments explicitly. Let Mk denote the k-th moment
∫
sk dFζ∗(s)

of the Marchenko-Pastur distribution. We have

M0 = 1, M1 = 1, M2 = 1 + ζ∗, M3 = 1 + 3ζ∗ + ζ2
∗ , M4 = 1 + 6ζ∗ + 6ζ2

∗ + ζ3
∗ . (E.29)

S.4 Proof Sketch for Theorem 2
In this section, we outline the proof idea of Theorem 2. The extension to general test functionals can be found in
Appendix S.8. We will prove both the theorems for a general starting estimator β̂0.

S.4.1 Step 1: LOO Concentration
The most challenging part of our proof is establishing concentration for R̂loo(β̂k). This is achieved by upper
bounding the norm of the gradient of the mapping (w1, · · · , wn) 7→ R̂loo(β̂k), where wi = (xi, yi). Although this
mapping is not exactly Lipschitz, it is approximately Lipschitz in the sense that its gradient is bounded on a set
that occurs with high probability.

For k ∈ {0} ∪ [K], we define fk : Rn(p+2) 7→ R as fk(w1, · · · , wn) = R̂loo(β̂k). Our goal is to upper bound ∥∇fk∥2.
It will become clear that fk is Lipschitz continuous on a closed convex set Ω. We define Ω as follows:

Ω =
{

∥Σ̂∥op ≤ CΣ,ζ , ∥y∥2
2 ≤ n(m+ logn)

}
, (E.30)

where CΣ,ζ = 2C0σΣ(1 + ζ) + 1, m = m2, and C0 > 0 is a numerical constant. It can be verified that Ω is a convex
set of the data. Standard concentration results (see Lemma 29 and Lemma 30) imply that with an appropriately
selected C0, we have P(Ω) ≥ 1 − 2(n+ p)−4 − n−1m4 log−2 n. In other words, for large (n, p), the input samples
will fall inside Ω with high probability.

In the following, we establish the Lipschitz continuity of fk when restricted to Ω, which is a closed convex set.
This can be equivalently stated as the Lipschitz continuity of the composition of the projection onto Ω and fk. To
prove this, we upper bound the Euclidean norm of the gradient, as detailed in Lemma 22. The proof of Lemma 22
can be found in Appendix S.7.

Lemma 22 (Gradient upper bound). There exists a constant ξ(CΣ,ζ ,∆,m,B0) > 0 that depends only on
(CΣ,ζ ,∆,m,B0), such that on the set Ω, it holds that

∥∇W fk(W )∥F ≤ Kξ(CΣ,ζ ,∆,m,B0) · logn√
n

for all k ∈ {0} ∪ [K]. In the above display, we define W = (w1, · · · , wn) and K, we recall, is the total number of
GD iterations.

We define h : Rn(p+2) 7→ Rn(p+2) as the projection that projects its inputs onto Ω. Define f̃k = fk ◦ h. Lemma 22
implies that f̃k is a Lipschitz continuous mapping with a Lipschitz constant as stated in Lemma 22. By assumption,
the input data distribution satisfies a T2-inequality, allowing us to apply a powerful concentration inequality
stated in Proposition 27 to obtain the desired concentration result. We state this result as Lemma 23 below, and
its proof can be found in Appendix S.6.1.
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Lemma 23 (LOO concentration). We assume the assumptions of Theorem 2. Then with probability at least
1 − 2(n+ p)−4 − (n log2 n)−1m4 − 2(K + 1)CT2n

−2, it holds that for all k ∈ {0} ∪ [K]∣∣∣R̂loo(β̂k) − E[f̃k(w1, · · · , wn)]
∣∣∣ ≤ 2σT2LKξ(CΣ,ζ ,∆,m,B0) · (logn)3/2

√
n

,

where we let L = (L2
fσΣ + L2

f + σΣ)1/2, σ2
T2

= σ2
z ∨ σ2

ε , and CT2 is a positive numerical constant that appears in
Proposition 27.

S.4.2 Step 2: Risk Concentration
In the second part, we provide concentration bounds for the prediction risk R(β̂k). We follow a similar approach
as in Step 1, establishing that R(β̂k) is a Lipschitz function of the input data with high probability. Leveraging
the assumption of a T2-inequality in the data distribution, we apply Proposition 27 to derive a concentration
result. The proof of this result is presented in Appendix S.6.2. We state the concentration result as Lemma 24.

Lemma 24 (Risk concentration). We write R(β̂k) = rk(w1, · · · , wn) and define r̃k(w1, · · · , wn) =
rk(h(w1, · · · , wn)). Then under the assumptions of Theorem 2, with probability at least 1 − 2(n + p)−4 −
(n log2 n)−1m4 − 2(K + 1)CT2n

−2, for all k ∈ {0} ∪ [K] we have∣∣∣R(β̂k) − E[r̃k(w1, · · · , wn)]
∣∣∣ ≤ 2σT2Lξ̄(CΣ,ζ ,∆,m,B0)(logn)3/2

√
n

,

where ξ̄(CΣ,ζ ,∆,m,B0) > 0 depends uniquely on (CΣ,ζ ,∆,m,B0).

S.4.3 Step 3: LOO Bias Analysis
In Steps 1 and 2, we have proven concentration results for both R(β̂k) and R̂loo(β̂k). Specifically, we have shown
that R(β̂k) concentrates around E[r̃k(w1, · · · , wn)] and R̂loo(β̂k) concentrates around E[f̃k(w1, · · · , wn)]. These
expectations represent the target functionals composed with the projection h.

Next, we demonstrate that incorporating the projection h into the expectation does not significantly alter the
quantities of interest. This result is presented as Lemma 25 below.

Lemma 25 (Projection effects). Under the assumptions of Theorem 2, it holds that

sup
k∈{0}∪[K]

|E[r̃k(w1, · · · , wn)] − E[rk(w1, · · · , wn)]| = on(1),

sup
k∈{0}∪[K]

∣∣∣E[f̃k(w1, · · · , wn)] − E[fk(w1, · · · , wn)]
∣∣∣ = on(1).

(E.31)

Finally, we aim to establish a result showing that the prediction risk is stable with respect to the sample size.
Specifically, we seek to demonstrate that E[R(β̂k)] is approximately equal to E[R(β̂k,−1)], which is equivalent to
E[rk(w1, · · · , wn)] ≈ E[fk(w1, · · · , wn)].

Formally speaking, we prove the following lemma.

Lemma 26 (LOO bias). Under the assumptions of Theorem 2, it holds that

sup
k∈{0}∪[K]

∣∣E[R(β̂k)] − E[R(β̂k,−1)]
∣∣ = on(1).

This is equivalently saying

sup
k∈{0}∪[K]

∣∣E[rk(w1, · · · , wn)] − E[fk(w1, · · · , wn)]
∣∣ = on(1).

We defer the proofs of Lemma 25 and Lemma 26 to Sections S.6.3 and S.6.4, respectively.

Theorem 2 then follows from these three steps. To be precise, by putting together Lemmas 23 to 26, we obtain
that with probability at least 1 − 4(n+ p)−4 − 2(n log2 n)−1m4 − 4(K + 1)CT2n

−2, for all k ∈ {0} ∪ [K], we have

sup
k∈{0}∪[K]

∣∣∣R(β̂k) − R̂loo(β̂k)
∣∣∣



Failures and Successes of Cross-Validation for Early-Stopped Gradient Descent

≤ 2σT2LKξ(CΣ,ζ ,∆,m,B0) · (logn)3/2 + 2σT2Lξ̄(CΣ,ζ ,∆,m,B0)(logn)3/2
√
n

. (E.32)

Since ζ = p/n is both lower and upper bounded, thus we can conclude that
∞∑
n=1

{
4(n+ p)−4 + 2(n log2 n)−1m4 + 4(K + 1)CT2n

−2}
< ∞.

Hence, Theorem 2 follows immediately by applying the first Borel–Cantelli lemma. More precisely, we prove that
almost surely the event depicted in (E.32) occurs only finitely many times.

S.5 Supporting Lemmas for the Proofs of Theorems 2 to 4
We present in this section several supporting lemmas that are useful for the analysis presented in Appendix S.6
and Appendix S.7. Without any loss of generality, in this section, we always assume n ≥ 3, thus logn ≥ 1.

S.5.1 Technical Preliminaries
We define below what it means for a distribution to satisfy log Sobolev inequality (LSI).

Definition 2 (LSI). We say a distribution µ satisfies LSI if there exists a constant σ(µ) ≥ 0 such that for all
smooth function f , it holds that

Entw∼µ[f(w)2] ≤ 2σ2(µ)Ew∼µ
[
∥∇f(w)∥2

2
]
, (E.33)

where the entropy of a non-negative random variable Z is defined as

Ent[Z] = E[Z logZ] − E[Z] logE[Z].

S.5.2 Concentration Based on T2-inequality
In this section, we discuss useful properties of the T2-inequality. An important result that will be applied multiple
times throughout the proof is Theorem 4.31 of Van Handel (2014), which we include below for the convenience of
the readers. See also Gozlan (2009).

Proposition 27 (Equivalent characterizations of T2-inequality). Let µ be a probability measure on a Polish space
(X , d), and let {Xi}i≤n be i.i.d. ∼ µ. Denote by dn(x, y) = [

∑n
i=1 d(xi, yi)2]1/2. Then the following are equivalent:

1. µ satisfies the T2-inequality:

W2(µ, ν) ≤
√

2σ2DKL(ν ||µ) for all ν.

2. µ⊗n satisfies the T1-inequality for every n ≥ 1:

W1(µ⊗n, ν) ≤
√

2σ2DKL(ν ||µ⊗n) for all ν and n ≥ 1.

3. There is an absolute constant CT2 , such that

P (f(X1, · · · , Xn) − E[f(X1, · · · , Xn)] ≥ t) ≤ CT2e
−t2/2σ2

(E.34)

for every n ≥ 1, t ≥ 0 and 1-Lipschitz function f .

S.5.3 Dimension-Free Concentration
Define wi = (xi, yi). The following lemma is a straightforward consequence of the assumptions and the T2-
inequality.

Lemma 28 (Dimension-free concentration). We let σ2
T2

= σ2
z ∨ σ2

ε , and L = (L2
fσΣ + L2

f + σΣ)1/2. Then for any
n ≥ 1, t ≥ 0, and 1-Lipschitz function f , it holds that

P (f(w1, · · · , wn) − E[f(w1, · · · , wn)] ≥ Lt) ≤ CT2e
−t2/2σ2

T2 ,

where we recall that CT2 > 0 is an absolute constant introduced in Proposition 27.
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Proof. Since f is 1-Lipschitz, for any wi, w̃i ∈ Rp

|f(w1, · · · , wn) − f(w̃1, · · · , w̃n)| ≤

√√√√ n∑
i=1

∥wi − w̃i∥2
2

=

√√√√ n∑
i=1

∥xi − x̃i∥2
2 +

n∑
i=1

|yi − ỹi|2

≤

√√√√ n∑
i=1

σΣ(L2
f + 1)∥zi − z̃i∥2

2 +
n∑
i=1

L2
f |εi − ε̃i|2

≤L

√√√√ n∑
i=1

∥zi − z̃i∥2
2 +

n∑
i=1

|εi − ε̃i|2.

Invoking Corollary 4.16 of Van Handel (2014), we obtain that

W1(µ⊗n
z ⊗ µ⊗n

ε , ν) ≤
√

2σ2
T2

DKL(ν ||µ⊗n
z ⊗ µ⊗n

ε )

for all ν. We then see that the desired concentration inequality is a straightforward consequence of Proposition
27.

S.5.4 Upper Bounding Operator Norms and Response Energy
We then state several technical lemmas required for our analysis. Recall that Σ̂ = X⊤X/n. Our first lemma upper
bounds the operator norm of Σ̂.

Lemma 29. We assume the assumptions of Theorem 2. Then there exists a numerical constant C0 > 0, such
that with probability at least 1 − (n+ p)−4

∥Σ̂∥op ≤ 2C0σΣ(1 + ζ) + 1.

Proof. Note that the operator norm of Σ̂ is equal to the operator norm of ZΣZ⊤/n+ 1n×n/n ∈ Rn×n.

To proceed, we will utilize a canonical concentration inequality that bounds the operator norm of random matrices
with sub-Gaussian entries. This further requires the introduction of several related concepts.

To be specific, we say a random variable R is sub-Gaussian if and only if there exists KR > 0 such that
∥R∥Ld ≤ KR

√
d for all d ≥ 1. Proposition 2.5.2 of Vershynin (2018) tells us that when such upper bound is

satisfied, the sub-Gaussian norm of this random variable ∥Z∥Ψ2 is no larger than 4KR.

By Assumption C and Proposition 27, it holds that

P (|z11| ≥ t) ≤ 2CT2e
−t2/2σ2

z .

Leveraging the above upper bound and applying an appropriate integral inequality, we can conclude that for all
d ≥ 1,

E[|z11|d] ≤ CT2d(d/2)d/2,

hence ∥z11∥Ψ2 ≤ 8 + 8CT2 . By Theorem 4.4.5 of Vershynin (2010), we see that for all t ≥ 0, with probability at
least 1 − 2 exp(−t2)

∥Z∥op ≤ C ′(8 + 8CT2)(
√
n+ √

p+ t), (E.35)

where C ′ > 0 is a numerical constant. Taking t = 2
√

log(p+ n), we conclude that ∥Z∥op ≤ C ′(8 + 8CT2)(
√
n+

√
p+ 2

√
log(n+ p)) with probability at least 1 − 2(p+ n)−4. When this occurs, a straightforward consequence is

that

n∥Σ̂∥op ≤ ∥Z∥2
op∥Σ∥op + n ≤ C0σΣ(n+ p+ log(n+ p)) + n

for some positive numerical constant C0, thus completing the proof of the lemma.
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Our next lemma upper bounds ∥y∥2
2/n. This lemma is a direct consequence of Chebyshev’s inequality, and we

skip the proof for the compactness of the presentation.

Lemma 30. We assume the assumptions of Theorem 2. Then with probability at least 1 − n−1m4 log−2 n, we
have ∥y∥2

2/n ≤ m2 + logn.

S.5.5 Other Useful Norm Bounds
Our next lemma upper bounds the Euclidean norm of θ = E[y0x0] ∈ Rp+1, where we recall that (x0, y0) d= (x1, y1).

Lemma 31. Under the assumptions of Theorem 2, we have ∥θ∥2 ≤ (σ1/2
Σ + 1)m1/2

2 .

Proof. We notice that

θ =
(

Σ1/2E[y0z0]
E[y0]

)
.

We let x⊤
0 = (z⊤

0 Σ1/2, 1). By assumption, z0 is isotropic. Hence, y0 admits the following decomposition:

y0 =
p∑
i=1

E[y0z0,i]z0,i + ω, E[ωz0,i] = 0 for all i ∈ [n].

In addition, E[y2
0 ] = E[w2] +

∑
i∈[p] E[y0z0,i]2. As a result, we are able to deduce that ∥E[y0z0]∥2 ≤ m

1/2
2 , where

we recall that m2 = E[y2
0 ]. This further tells us ∥θ∥2 ≤ ∥Σ∥1/2

op × ∥E[y0z0]∥2 + m
1/2
2 ≤ (σ1/2

Σ + 1)m1/2
2 , thus

completing the proof of the lemma.

We next prove that ∥Σ̂∥op is sub-exponential.

Lemma 32. We define C̃0 = C ′σΣ(8 + 8CT2), where we recall that C ′ is a positive numerical constant that
appears in Equation (E.35). Under the assumptions of Theorem 2, for all λ ≥ 0 and n ≥ λC̃2

0 + 1, there exists a
constant E(C̃0, ζ, λ) > 0 that depends only on (C̃0, ζ, λ), such that

E[exp(λ∥Σ̂∥op)] ≤ E(C̃0, ζ, λ).

Proof. By Equation (E.35), for all t ≥ 0, with probability at least 1 − 2 exp(−nt2)

∥Σ̂∥1/2
op = n−1/2∥X∥op ≤ C̃0(1 + ζ1/2 + t).

As a result, for all λ ≥ 0,

E[exp(λ∥Σ̂∥op)]

≤ 1 +
∫ ∞

0
2λseλs

2
P

(
∥Σ̂∥1/2

op ≥ s
)

ds

≤ 1 + 2λC̃2
0 (1 + ζ1/2)2eλC̃

2
0 (1+ζ1/2)2

+
∫
C̃0(1+ζ1/2)

2λseλs
2
P

(
∥Σ̂∥1/2

op ≥ s
)

ds

≤ 1 + 2λC̃2
0 (1 + ζ1/2)2eλC̃

2
0 (1+ζ1/2)2

+
∫ ∞

0
4λC̃2

0 (1 + ζ1/2 + t)eλC̃
2
0 (1+ζ1/2+t)2−nt2dt ≤ E(C̃0, ζ, λ),

thus completing the proof of the lemma.

S.5.6 Upper Bounding ∥β̂k∥2 and ∥β̂k,−i∥2

We then prove that on Ω, the Euclidean norm of the coefficient estimates {β̂k, β̂k,−i : k ∈ [K], i ∈ [n]} are
uniformly upper bounded. In addition, apart from a logarithmic factor, this upper bound depends only on the
constants from our assumptions and in particular is independent of (n, p).
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Lemma 33. For the sake of simplicity, we let

B∗ = (B0 + ∆C1/2
Σ,ζ

√
m+ 1) · eCΣ,ζ∆. (E.36)

Then on the set Ω, for all k ∈ {0} ∪ [K] and i ∈ [n], it holds that

∥β̂k∥2 ≤ B∗
√

logn, ∥β̂k,i∥2 ≤ B∗
√

logn.

Proof. By definition,

β̂k+1 =β̂k + δk
n

n∑
i=1

(yi − x⊤
i β̂k)xi

=β̂k − δkΣ̂β̂k + δk
n
X⊤y.

Applying the triangle inequality, we obtain the following upper bound:

∥β̂k+1∥2 ≤∥β̂k∥2 + δk∥Σ̂∥op · ∥β̂k∥2 + δk · ∥Σ̂∥1/2
op · ∥y/

√
n∥2

≤ (1 + δkCΣ,ζ) · ∥β̂k∥2 + δkC
1/2
Σ,ζ

√
m+ logn.

By induction, we see that on Ω

∥β̂k∥2 ≤
(
B0 + ∆C1/2

Σ,ζ
√
m+ logn

)
· eCΣ,ζ∆

for all k ∈ [K]. The upper bound for ∥β̂k,−i∥2 follows using exactly the same argument. We complete the proof of
the lemma as logn ≥ 1.

The following corollary is a straightforward consequence of Lemma 33 and the Cauchy-Schwartz inequality.

Corollary 34. On the set Ω, it holds that

1
n

∥y −Xβ̂k,−i∥2
2 ≤

(
2m+ 2 + 2CΣ,ζB

2
∗

)
· logn,

1
n

∥y −Xβ̂k∥2
2 ≤

(
2m+ 2 + 2CΣ,ζB

2
∗

)
· logn

for all k ∈ {0} ∪ [K] and i ∈ [n].

For the compactness of future presentation, we define

B̄∗ = (2m+ 2 + 2CΣ,ζB
2
∗)1/2 (E.37)

We comment that both B∗ and B̄∗ depend only on (CΣ,ζ ,∆,m,B0).

S.5.7 Upper Bounding |yi − x⊤
i βk,−i|

We next upper bound |yi − x⊤
i β̂k,−i| on Ω. More precisely, we shall upper bound collectively the Frobenius norms

of

ak = (yi − x⊤
i β̂k,−i)ni=1 ∈ Rn and

Ek =
[
X(β̂k − β̂k,−1) | · · · | X(β̂k − β̂k,−n)

]
∈ Rn×n

respectively and recursively. For the base case k = 0, we have

∥a0∥2
2 ≤ B̄2

∗n logn, ∥E0∥2
F = 0,

where the first upper bound follows from Corollary 34.

Our lemma for this part can be formally stated as follows:
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Lemma 35. We define

G1(CΣ,ζ ,∆,m,B0) = B̄∗

√
e3∆CΣ,ζ+2∆2C2

Σ,ζ (∆CΣ,ζ + 2∆2C2
Σ,ζ), (E.38)

G2(CΣ,ζ ,∆,m,B0) = B̄∗ + ∆CΣ,ζ

√
8B̄2

∗ + 2G1(CΣ,ζ ,∆,m,B0)2. (E.39)

Then on the set Ω, for all k ∈ {0} ∪ [K] we have

1√
n

∥Ek∥F ≤ G1(CΣ,ζ ,∆,m,B0) ·
√

logn, (E.40)

1√
n

∥ak∥2 ≤ G2(CΣ,ζ ,∆,m,B0) ·
√

logn. (E.41)

Proof. We first prove Equation (E.40). We denote by X−i ∈ R(n−1)×(p+1) the matrix obtained by deleting the
i-th row from X. By definition,

X(β̂k+1 − β̂k+1,−i) =X(β̂k − β̂k,−i) + δk(yi − x⊤
i β̂k)

n
Xxi − δk

n
X

∑
j ̸=i

xjx
⊤
j (β̂k − β̂k,−i)

=X(β̂k − β̂k,−i) + δk(yi − x⊤
i β̂k)

n
Xxi − δk

n
XX⊤

−iX−i(β̂k − β̂k,−i),

which further implies

∥X(β̂k+1 − β̂k+1,−i)∥2
2

≤ (1 + δkCΣ,ζ)2 ∥X(β̂k − β̂k,−i)∥2
2 + δ2

k(yi − x⊤
i β̂k)2

n2 ∥Xxi∥2
2

+ 2δk(1 + δkCΣ,ζ) · |yi − x⊤
i β̂k|

n
∥X(β̂k − β̂k,−i)∥2 · ∥Xxi∥2

≤ (1 + δkCΣ,ζ)2 ∥X(β̂k − β̂k,−i)∥2
2 + δ2

kC
2
Σ,ζ(yi − x⊤

i β̂k)2

+ δkCΣ,ζ(1 + δkCΣ,ζ) ·
{

(yi − x⊤
i β̂k)2 + ∥X(β̂k − β̂k,−i)∥2

2
}

≤
(
1 + 3δkCΣ,ζ + 2δ2

kC
2
Σ,ζ

)
· ∥X(β̂k − β̂k,−i)∥2

2 +
(
δkCΣ,ζ + 2δ2

kC
2
Σ,ζ

)
· (yi − x⊤

i β̂k)2,

where we make use of the fact that ∥Xxi∥2/n ≤ CΣ,ζ on Ω. Putting together the above upper bound and Corollary
34, then summing over i ∈ [n], we obtain the following inequality:

∥Ek+1∥2
F ≤

(
1 + 3δkCΣ,ζ + 2δ2

kC
2
Σ,ζ

)
· ∥Ek∥2

F +
(
δkCΣ,ζ + 2δ2

kC
2
Σ,ζ

)
· B̄2

∗ logn.

Employing the standard induction argument, we can conclude that

1
n

∥Ek∥2
F ≤ e3∆CΣ,ζ+2∆2C2

Σ,ζ (∆CΣ,ζ + 2∆2C2
Σ,ζ) · B̄2

∗ logn = G1(CΣ,ζ ,∆,m,B0)2 logn

for all k ∈ {0} ∪ [K]. This completes the proof of Equation (E.40).

Next, we prove Equation (E.41). By definition,

yi − x⊤
i β̂k+1,−i = yi − x⊤

i β̂k,−i − δk
n

∑
j ̸=i

(yj − x⊤
j β̂k,−i)x⊤

i xj

= yi − x⊤
i β̂k,−i − δk

n

∑
j ̸=i

(yj − x⊤
j β̂k)x⊤

i xj − δk
n

∑
j ̸=i

x⊤
i xjx

⊤
j (β̂k − β̂k,−i).

We let D = diag{(∥xi∥2
2/n)ni=1} ∈ Rn×n. We denote by ak,i the i-th entry of ak. From the above equality, we can

deduce that

(ak+1,i − ak,i)2 ≤ 2δ2
k

n2

( ∑
j ̸=i

(yj − x⊤
j β̂k)x⊤

i xj

)2
+ 2δ2

k

n2

( ∑
j ̸=i

x⊤
i xjx

⊤
j (β̂k − β̂k,−i)

)2
.
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Summing over i ∈ [n], we obtain

∥ak+1 − ak∥2
2

≤ 2δ2
k

n2

∥∥(XX⊤ − nD)(y −Xβ̂k)
∥∥2

2 + 2δ2
k

n2

n∑
i=1

( ∑
j ̸=i

(x⊤
i xj)2

)
·
( ∑
j ̸=i

(
x⊤
j (β̂k − β̂k,−i)

)2
)

(i)
≤ 8nδ2

kC
2
Σ,ζ · B̄2

∗ logn+ 2δ2
kC

2
Σ,ζ

n∑
i=1

∥X(β̂k − β̂k,−i)∥2
2

(ii)
≤ 8nδ2

kC
2
Σ,ζ · B̄2

∗ logn+ 2nδ2
kC

2
Σ,ζG1(CΣ,ζ ,∆,m,B0)2 · logn

= nδ2
k · G′(CΣ,ζ ,∆,m,B0)2 · logn,

where to derive (i), we employ the following established results: (1) On Ω we have ∥nD∥op ≤ nCΣ,ζ and
∥XX⊤∥op ≤ nCΣ,ζ . (2) By Corollary 34, on Ω we have ∥y − Xβ̂k∥2

2/n ≤ B̄2
∗ · logn. To derive (ii), we simply

apply Equation (E.40), which we have already proved. Therefore, by triangle inequality

1√
n

∥ak+1∥2 ≤ 1√
n

∥ak∥2 + 1√
n

∥ak+1 − ak∥2 ≤ 1√
n

∥ak∥2 + δkG′(CΣ,ζ ,∆,m,B0) ·
√

logn.

By standard induction argument, we see that for all k ∈ {0} ∪ [K],

1√
n

∥ak∥2 ≤ B̄∗
√

logn+ ∆G′(CΣ,ζ ,∆,m,B0)
√

logn = G2(CΣ,ζ ,∆,m,B0) ·
√

logn,

which concludes the proof of Equation (E.41).

S.6 Proof of Theorem 2
Theorem 2 (Squared risk consistency of LOOCV). Suppose that (xi, yi), i ∈ [n] are i.i.d., and satisfy both
Assumptions C and D. In addition, assume that there are constants ∆, B0, ζL, ζU (independent of n, p) such that:
(1)

∑K
k=1 δk−1 ≤ ∆, (2) ∥β̂0∥2 ≤ B0, and (3) 0 < ζL ≤ p/n ≤ ζU < ∞. Furthermore, let K = o(n · (logn)−3/2).

Then, as n, p → ∞,
max
k∈[K]

∣∣∣R̂loo(β̂k) −R(β̂k)
∣∣∣ a.s.−−→ 0, (8)

where we recall that R̂loo(β̂k) and R(β̂k) are as defined in (4) and (3), respectively.

To better present our proof idea, we consider in this section the quadratic functional ψ(y, u) = (y − u)2. A
compact version of proof for general functional estimation can be found in Appendix S.8.

S.6.1 Proof of Lemma 23
Lemma 23 (LOO concentration). We assume the assumptions of Theorem 2. Then with probability at least
1 − 2(n+ p)−4 − (n log2 n)−1m4 − 2(K + 1)CT2n

−2, it holds that for all k ∈ {0} ∪ [K]∣∣∣R̂loo(β̂k) − E[f̃k(w1, · · · , wn)]
∣∣∣ ≤ 2σT2LKξ(CΣ,ζ ,∆,m,B0) · (logn)3/2

√
n

,

where we let L = (L2
fσΣ + L2

f + σΣ)1/2, σ2
T2

= σ2
z ∨ σ2

ε , and CT2 is a positive numerical constant that appears in
Proposition 27.

Proof. We claim that Lemma 22 can be used to show f̃k is Lipschitz continuous. More precisely, for W,W ′ ∈
Rn(p+2), it holds that ∣∣∣f̃k(W ) − f̃k(W ′)

∣∣∣ = |fk(h(W )) − fk(h(W ′))|

≤Kξ(CΣ,ζ ,∆,m,B0) · logn√
n

· ∥h(W ) − h(W ′)∥F

≤Kξ(CΣ,ζ ,∆,m,B0) · logn√
n

· ∥W −W ′∥F .
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Namely, f̃k is n−1/2Kξ(CΣ,ζ ,∆,m,B0) · logn-Lipschitz continuous for all k ∈ {0} ∪ [K]. Applying Lemma 28, we
conclude that

P
(∣∣∣f̃k(w1, · · · , wn) − E[f̃k(w1, · · · , wn)]

∣∣∣ ≥ 2σT2LKξ(CΣ,ζ ,∆,m,B0) · (logn)3/2
√
n

)
≤ 2CT2n

−2.

Note that on the set Ω we have f̃k(w1, · · · , wn) = fk(w1, · · · , wn) = R̂loo(β̂k) for all k ∈ {0} ∪ [K]. This completes
the proof of the lemma.

S.6.2 Proof of Lemma 24
Lemma 24 (Risk concentration). We write R(β̂k) = rk(w1, · · · , wn) and define r̃k(w1, · · · , wn) =
rk(h(w1, · · · , wn)). Then under the assumptions of Theorem 2, with probability at least 1 − 2(n + p)−4 −
(n log2 n)−1m4 − 2(K + 1)CT2n

−2, for all k ∈ {0} ∪ [K] we have∣∣∣R(β̂k) − E[r̃k(w1, · · · , wn)]
∣∣∣ ≤ 2σT2Lξ̄(CΣ,ζ ,∆,m,B0)(logn)3/2

√
n

,

where ξ̄(CΣ,ζ ,∆,m,B0) > 0 depends uniquely on (CΣ,ζ ,∆,m,B0).

Proof. For s ∈ [n], direct computation gives

∇xs
R(β̂k) = 2β̂⊤

k Σ̃∇xs
β̂k − 2θ̂⊤∇xs

β̂k,

∂

∂ys

R(β̂k) = 2β̂⊤
k Σ̃ ∂

∂ys

β̂k − 2θ⊤ ∂

∂ys

β̂k,

where

θ = E[y0x0] ∈ Rp+1, Σ̃ =
[

Σ 0p
0⊤
p 1

]
∈ R(p+1)×(p+1).

By definition,

∇xs
β̂k+1 = ∇xs

β̂k − δkΣ̂ · ∇xs
β̂k + δk

n
(ys − x⊤

s β̂k)Ip+1 − δk
n
xsβ̂

⊤
k ,

∂

∂ys

β̂k+1 = ∂

∂ys

β̂k − δkΣ̂ ∂

∂ys

β̂k + δk
n
xs.

Standard induction argument leads to the following decomposition:

∇xs
β̂k+1 =

k∑
k′=1

Hk′,k ·
(δk′

n
(ys − x⊤

s β̂k′)Ip+1 − δk′

n
xsβ̂

⊤
k′

)
,

∂

∂ys

β̂k+1 =
k∑

k′=1
Hk′,k · δk

′

n
xs,

where Hk′,r =
∏r
j=k′+1 Mk′+1+r−j and Mj = Ip+1 −δjΣ̂ are defined in Lemma 37. Combining all these arguments,

we arrive at the following equations:

v⊤∇xs
β̂k+1 =

k∑
k′=1

v⊤Hk′,k · δk
′

n
(ys − x⊤

s β̂k′) −
k∑

k′=1

δk′

n
x⊤
s Hk′,kvβ̂

⊤
k′ ,

v⊤ ∂

∂ys

β̂k+1 =
k∑

k′=1

δk′

n
x⊤
s Hk′,kv.

The above equations hold for all v ∈ {θ, Σ̃β̂k+1}. Recall that θ = E[y0x0]. This further implies that

∇XR(β̂k+1)
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=
k∑

k′=1

2δk′

n
·
{

(y −Xβ̂k′)β̂⊤
k+1Σ̃Hk′,k −XHk,k′Σ̃β̂k+1β̂

⊤
k′ − (y −Xβ̂k′)θ⊤Hk′,k +XHk,k′θβ̂⊤

k′

}
,

∇yR(β̂k+1) =
k∑

k′=1

2δk′

n
·
{
XHk,k′Σ̃β̂k+1 −XHk,k′θ

}
.

Recall that B∗ is defined in Equation (E.36). Invoking triangle inequality, we obtain that on Ω,

∥∇XR(β̂k+1)∥F ≤
k∑

k′=1

2δk′

n
·
{

∥y −Xβ̂k′∥2 · (∥β̂k+1∥2∥Σ̃∥op + ∥θ∥2) · ∥Hk′,k∥op

+∥X∥op · ∥Hk,k′∥op · (∥β̂k+1∥2∥Σ̃∥op + ∥θ∥2) · ∥β̂k′∥2

}
≤2∆e∆CΣ,ζ ·

√
logn√

n
·
(
B̄∗ + C

1/2
Σ,ζB∗

)(
B∗(σΣ + 1) ·

√
logn+ (σ1/2

Σ + 1)m1/2
2

)
,

where the inequality follows by invoking Lemma 31 to upper bound ∥θ∥2. Also, by Lemma 37 we know that
∥Hk′,r∥op ≤ e∆CΣ,ζ . Similarly, we obtain

∥∇yR(β̂k+1)∥2 ≤
k∑

k′=1

2δk′

n
·
{

∥X∥op · ∥Hk,k′∥op · ∥Σ̃∥op · ∥βk+1∥ + ∥X∥op · ∥Hk,k′∥op · ∥θ∥2

}

≤
2∆e∆CΣ,ζC

1/2
Σ,ζ√

n
·
(
B∗(σΣ + 1) + (σ1/2

Σ + 1)m1/2
2

)
·
√

logn.

The above inequalities give an upper bound for ∥∇WR(β̂k+1)∥2 on Ω. The rest parts of the proof are similar to
the proof of Lemma 23 given Lemma 22.

S.6.3 Proof of Lemma 25
Lemma 25 (Projection effects). Under the assumptions of Theorem 2, it holds that

sup
k∈{0}∪[K]

|E[r̃k(w1, · · · , wn)] − E[rk(w1, · · · , wn)]| = on(1),

sup
k∈{0}∪[K]

∣∣∣E[f̃k(w1, · · · , wn)] − E[fk(w1, · · · , wn)]
∣∣∣ = on(1).

(E.31)

Proof. We shall first upper bound the fourth moments E[(y0 − x⊤
0 β̂k,−1)4] and E[(y0 − x⊤

0 β̂k)4]. By standard
induction, it is not hard to see that for all 0 ≤ k ≤ K and i ∈ [n],

∥β̂k∥2 ≤ exp(∆∥Σ̂∥op) ·
(
B0 + ∆n−1∥X∥op · ∥y∥2

)
, (E.42)

∥β̂k,−i∥2 ≤ exp(∆∥Σ̂∥op) ·
(
B0 + ∆n−1∥X∥op · ∥y∥2

)
. (E.43)

For technical reasons that will become clear soon, we need to upper bound the expectations of ∥β̂k∥2 and ∥β̂k,−i∥2.
To this end, we find it useful to show ∥Σ̂∥1/2

op is sub-Gaussian. Next, we will employ Lemma 32 to upper bound
E[(y0 − x⊤

0 βk,−1)4] and E[(y0 − x⊤
0 βk)4]. Invoking the Cauchy-Schwartz inequality and triangle inequality, we

obtain that for n ≥ N(σΣ, ζ, B0,m8,∆),

E[(y0 − x⊤
0 β̂k,−1)4] ≤ E[∥(y0, x

⊤
0 β̂k,−1)∥4

2]
≤ 8E[y4

1 ] + 8E[(x⊤
1 β̂k,−1)4] = 8m4 + 8E[((z⊤

1 , 1)Σ̃1/2β̂k,−1)4]
(i)
≤ 8m4 + CzE[∥Σ̃1/2β̂k,−1∥4

2]
(ii)
≤ H(σΣ, ζ, B0,m8,∆)2
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where Cz > 0 is a constant that depends only on µz, H(σΣ, ζ, B0,m8,∆) ∈ R+ and N(σΣ, ζ, B0,m8,∆) ∈ N+
depend only on (σΣ, ζ, B0,m8,∆). To derive (i) we use the following facts: (1) µz has zero expectation; (2) z1 is
independent of Σ̃1/2βk,−1. To derive (ii) we apply Equation (E.43) and Lemma 32. Similarly, we can show that
for n ≥ N(σΣ, ζ, B0,m8,∆),

E[(y0 − x⊤
0 βk)4] ≤ E[∥(y0, x

⊤
0 βk)∥4

2] ≤H(σΣ, ζ, B0,m8,∆)2. (E.44)

Finally, we are ready to establish Equation (E.31). By the Cauchy-Schwartz inequality,∣∣∣E[rk(w1, · · · , wn)] − E[r̃k(w1, · · · , wn)]
∣∣∣ ≤ P(Ωc)1/2E[(y0 − x⊤

0 β̂k)4]1/2,∣∣∣E[fk(w1, · · · , wn)] − E[f̃k(w1, · · · , wn)]
∣∣∣ ≤ P(Ωc)1/2E[(y1 − x⊤

1 β̂k,−1)4]1/2,

which for n ≥ N(σΣ, ζ, B0,m8,∆) are upper bounded by(
2(n+ p)−1 + n−1m4 + 2CT2n

−2)1/2 H(σΣ, ζ, B0,m8,∆).

The above upper bound goes to zero as n, p → ∞, thus completing the proof of the lemma.

S.6.4 Proof of Lemma 26
Lemma 26 (LOO bias). Under the assumptions of Theorem 2, it holds that

sup
k∈{0}∪[K]

∣∣E[R(β̂k)] − E[R(β̂k,−1)]
∣∣ = on(1).

This is equivalently saying

sup
k∈{0}∪[K]

∣∣E[rk(w1, · · · , wn)] − E[fk(w1, · · · , wn)]
∣∣ = on(1).

Proof. By Equation (E.42), Equation (E.43), and Lemma 32, we know that there exists a constant C ′′ that
depends only on (σΣ, ζ,∆, B0,m2), such that

max
{
E[∥βk∥2

2]1/2,E[∥βk,−i∥2
2]1/2

}
≤ C ′′. (E.45)

To show this result, we first prove that β̂k ≈ β̂k,−i. By definition,

β̂k+1 − β̂k+1,−i =
(
Ip − δkΣ̂

)
·
(
β̂k − β̂k,−i

)
+ δk
n
yixi − δk

n
xix

⊤
i β̂k,−i.

Invoking the triangle and Cauchy-Schwartz inequalities, we conclude that

∥β̂k+1 − β̂k+1,−i∥2
2

≤ (1 + δk∥Σ̂∥op)2∥β̂k − β̂k,−i∥2
2 + δ2

k

n2 (yi − x⊤
i β̂k,−i)2 · ∥xi∥2

2

+ 2δk(1 + δk∥Σ̂∥op)
n

· ∥β̂k − β̂k,−i∥2 · |yi − x⊤
i β̂k,−i| · ∥xi∥2

≤ (1 + δk∥Σ̂∥op)(1 + 2δk∥Σ̂∥op)∥β̂k − β̂k,−i∥2
2 + δk(1 + δk + δk∥Σ̂∥op)

n2 (yi − x⊤
i β̂k,−i)2 · ∥xi∥2

2.

By induction,

∥β̂k+1 − β̂k+1,−i∥2
2 ≤

k∑
j=1

δj exp(3∆∥Σ̂∥op + ∆)
n2 · (yi − x⊤

i β̂k,−i)2 · ∥xi∥2
2.
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By the Hölder’s inequality and Lemma 32, we see that for n ≥ 12∆C̃2
0 + 1

E
[
∥β̂k+1 − β̂k+1,−i∥2

2

]
≤

k∑
j=1

δj
n2 · E[(yi − x⊤

i β̂k,−i)4]1/2 · E[∥xi∥8
2]1/4 · E[exp(12∆∥Σ̂∥op + 4∆)]1/4

≤ ∆e∆σΣH(σΣ, ζ, B0,m8,∆)
n

· E(C̃0, ζ, 12∆)1/4.

(E.46)

In addition, direct computation gives

E[rk(w1, · · · , wn)] = m2 + E[β̂⊤
k Σβ̂k] + 2⟨E[β̂k], θ⟩,

E[fk(w1, · · · , wn)] = m2 + E[β̂⊤
k,−iΣβ̂k,−i] + 2⟨E[β̂k,−i], θ⟩,

where we recall that θ = E[y0x0]. By Lemma 31 we know that ∥θ∥2 ≤ (σ1/2
Σ + 1)m1/2

2 . Therefore,

|E[rk(w1, · · · , wn)] − E[fk(w1, · · · , wn)]|

≤ 2∥θ∥2 · E
[
∥β̂k+1 − β̂k+1,−i∥2

2

]1/2
+ σΣE

[
∥β̂k − β̂k,−i∥2

2

]1/2
·
(
E

[
∥β̂k∥2

2
]1/2 + E

[
∥β̂k,−i∥2

2
]1/2

)
,

which by Equations (E.45) and (E.46) goes to zero as n, p → ∞. Furthermore, the convergence is uniform for all
k ∈ {0} ∪ [K]. This completes the proof of the lemma.

S.7 Proof of Lemma 22
Lemma 22 (Gradient upper bound). There exists a constant ξ(CΣ,ζ ,∆,m,B0) > 0 that depends only on
(CΣ,ζ ,∆,m,B0), such that on the set Ω, it holds that

∥∇W fk(W )∥F ≤ Kξ(CΣ,ζ ,∆,m,B0) · logn√
n

for all k ∈ {0} ∪ [K]. In the above display, we define W = (w1, · · · , wn) and K, we recall, is the total number of
GD iterations.

We divide the proof of the lemma into two parts: upper bounding ∥∇XR̂
loo(β̂k)∥F and ∥∇XR̂

loo(β̂k)∥F .

S.7.1 Upper Bounding ∥∇XR̂
loo(β̂k)∥F

We start with the most challenging part, namely, upper bounding ∥∇XR̂
loo(β̂k)∥F . We will show the following:

Lemma 36 (Bounding norm of gradient with respect to features). On the set Ω, for all k ∈ {0} ∪ [K],

∥∇XR̂
loo(β̂k)∥F ≤ 2B∗G2(CΣ,ζ ,∆,m,B0) logn√

n
+ 2∆Ke2∆CΣ,ζCΣ,ζB∗ logn√

n
· G2(CΣ,ζ ,∆,m,B0)

+
2∆Ke2∆CΣ,ζC

1/2
Σ,ζ B̄∗ logn

√
n

· G2(CΣ,ζ ,∆,m,B0).

In the above equation, we recall that B∗ is defined in Equation (E.36), B̄∗ is defined in Equation (E.37), and
G2(CΣ,ζ ,∆,m,B0) is defined in Equation (E.39).

Proof. We prove Lemma 36 in the remainder of this section. For s ∈ [n] and k ∈ [K], we can compute ∇xs
R̂loo(β̂k),

which takes the following form:

∇xs
R̂loo(β̂k) = − 2

n
(ys − x⊤

s β̂k,−s)β̂⊤
k,−s − 2

n

n∑
i=1

(yi − x⊤
i β̂k,−i)x⊤

i ∇xs
β̂k,−i. (E.47)
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The above formula suggests that we should analyze the Jacobian matrix ∇xs β̂k,−i, which can be done recursively.
More precisely, the following update rule is a direct consequence of the gradient descent update rule:

∇xs
β̂k+1,−i

= ∇xs
β̂k,−i + δk1{i ̸= s}

n
(ys − x⊤

s β̂k,−i)Ip+1 − δk1{i ̸= s}
n

xsβ̂
⊤
k,−i − δk

n

∑
j ̸=i

xjx
⊤
j ∇xs

β̂k,−i

=
(
Ip+1 − δkΣ̂

)
· ∇xs β̂k,−i + δk

n
xix

⊤
i ∇xs β̂k,−i + 1{i ̸= s} ·

{
δk
n

(ys − x⊤
s β̂k,−i)Ip+1 − δk

n
xsβ̂

⊤
k,−i

}
.

Note that the above process is initialized at ∇xs β̂0,−i = 0(p+1)×(p+1). Clearly when i = s, the Jacobian ∇xs β̂k,−i

remains zero for all k that is concerned, and we automatically get an upper bound for ∥∇xs β̂k,−i∥2.

In what follows, we focus on the non-trivial case i ̸= s. For this part, we will mostly fix i and s, and ignore the
dependency on (i, s) when there is no confusion. Note that we can reformulate the Jacobian update rule as follows:

∇xs
β̂k+1,−i = Mk∇xs

β̂k,−i +Mk,i∇xs
β̂k,−i + δk

n
(ys − x⊤

s β̂k,−i)Ip+1 − δk
n
xsβ̂

⊤
k,−i, (E.48)

where Mk = Ip+1 − δkΣ̂ and Mk,i = δkxix
⊤
i /n. By induction, it is not hard to see that for all 0 ≤ k ≤ K − 1, the

matrix ∇xs
β̂k+1,−i −R

(k)
0 can be expressed as the sum of terms that take the formk−k′∏

j=1
Rk+1−j

R
(k′)
0 ,

where k′ ∈ {0} ∪ [k − 1], R(k′)
0 = δk′

n (ys − x⊤
s β̂k′,−i)Ip+1 − δk′

n xsβ̂
⊤
k′,−i, and Rj is either Mj or Mj,i.

To put it formally, we summarize this result as the following lemma:

Lemma 37. For i, s ∈ [n] with i ̸= s and all k ∈ {0} ∪ [K − 1], it holds that

x⊤
i ∇xs

β̂k+1,−i =
k∑

k′=0

k∑
r=k′

ci,k,k′,rx
⊤
i Hk′,r ·

(
δk′

n
(ys − x⊤

s β̂k′,−i)Ip+1 − δk′

n
xsβ̂

⊤
k′,−i

)
,

where ci,k,k′,r ∈ R and Hk′,r =
∏r
j=k′+1 Mk′+1+r−j. We adopt the convention that Hk′,k′ = Ip+1. Furthermore,

on the set Ω, it holds that

∥Hk′,r∥op ≤ e∆CΣ,ζ , ∥ci,k,k′,rHk′,r∥op ≤ e2∆CΣ,ζ . (E.49)

Proof of Lemma 37. To derive the first inequality in Equation (E.49), we simply notice that

∥Hk′,r∥op ≤
r∏

j=k′+1
∥Mk′+1+r−j∥op ≤

r∏
j=k′+1

(1 + δk′+1+r−jCΣ,ζ) ≤ e∆CΣ,ζ .

We next prove the second inequality in Equation (E.49). As discussed before, x⊤
i ∇xsβk+1,−i − x⊤

i R
(k)
0 can be

expressed as the sum of terms that take the form

x⊤
i

k−k′∏
j=1

Rk+1−j

R
(k′)
0 ,

with k′ ranging from 0 to k − 1. The subtracting x⊤
i R

(k)
0 part implies that we should set ci,k,k,k = 1 and

Hk,k = Ip+1.
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We then study ci,k,k′,r in general. For this purpose, we analyze each summand. Without loss, we let Rj∗ be the
last matrix in the sequence (Rk+1−j)k−k′

j=1 that takes the form Mj∗,i. Then

x⊤
i

k−k′∏
j=1

Rk+1−j

R
(k′)
0 = x⊤

i

k−j∗∏
j=1

Rk+1−j

 · δj∗

n
xix

⊤
i ·

 k−k′∏
j=k−j∗+2

Rk+1−j

R
(k′)
0

= δj∗

n
x⊤
i

k−j∗∏
j=1

Rk+1−j

xix
⊤
i Hk′,j∗−1R

(k′)
0 .

This implies that

ci,k,k′,j∗−1 =
∑

Rk+1−j∈{Mk+1−j ,Mk+1−j,i},1≤j≤k−j∗

δj∗

n
x⊤
i

k−j∗∏
j=1

Rk+1−j

xi,

which further tells us

∥ci,k,k′,j∗−1Hk′,j∗−1∥op

=

∥∥∥∥∥∥
∑

Rk+1−j∈{Mk+1−j ,Mk+1−j,i},1≤j≤k−j∗

δj∗

n
x⊤
i

k−j∗∏
j=1

Rk+1−j

xi ·Hk′,j∗−1

∥∥∥∥∥∥
op

≤
K−1∏
k=0

(1 + ∥Mk∥op + ∥Mk,i∥op)

≤
K−1∏
k=0

(1 + δkCΣ,ζ + δkCΣ,ζ) ≤ e2∆CΣ,ζ .

This completes the proof.

As a consequence of Lemma 37, we can write

2
n

n∑
i=1

(yi − x⊤
i β̂k+1,−i)x⊤

i ∇xs
β̂k+1,−i

= 2
n

n∑
i=1

k∑
k′=0

k∑
r=k′

ci,k,k′,r(yi − x⊤
i β̂k+1,−i)x⊤

i Hk′,r ·
(
δk′

n
(ys − x⊤

s β̂k′,−i)Ip+1 − δk′

n
xsβ̂

⊤
k′,−i

)

=
k∑

k′=0

k∑
r=k′

(gk,k′,r,s + ḡk,k′,r,s) ,

where we define

gk,k′,r,s = 2δk′

n2

n∑
i=1

ci,k,k′,r(yi − x⊤
i β̂k+1,−i)(ys − x⊤

s β̂k′,−i)x⊤
i Hk′,r,

ḡk,k′,r,s = −2δk′

n2

n∑
i=1

ci,k,k′,r(yi − x⊤
i β̂k+1,−i)x⊤

i Hk′,rxsβ̂
⊤
k′,−i.

We define Vk,k′,r, V̄k,k′,r ∈ R(p+1)×n such that the s-th columns correspond to g⊤
k,k′,r,s and ḡ⊤

k,k′,r,s, respectively.
We also define Ṽk ∈ R(p+1)×n such that the s-th column of this matrix corresponds to 2(ys−x⊤

s β̂k+1,−s)β̂k+1,−s/n.
Inspecting Equation (E.47), we see that to upper bound the Frobenius norm of ∇XR̂

loo(β̂k+1), it suffices to upper
bound the Frobenius norms of matrices Vk,k′,r, V̄k,k′,r, and Ṽk, which we analyze in the lemma below.
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Lemma 38. On the set Ω, we have

∥Vk,k′,r∥2
F ≤ 4δ2

k′e4∆CΣ,ζCΣ,ζ

n
· B̄2

∗ · G2(CΣ,ζ ,∆,m,B0)2 · (logn)2, (E.50)

∥V̄k,k′,r∥2
F ≤

4δ2
k′e4∆CΣ,ζC2

Σ,ζB
2
∗

n
· G2(CΣ,ζ ,∆,m,B0)2 · (logn)2, (E.51)

∥Ṽk∥2
F ≤ 4B2

∗
n

· G2(CΣ,ζ ,∆,m,B0)2 · (logn)2. (E.52)

Proof of Lemma 38. We observe that

Vk,k′,r = 2δk′

n2 Hk′,rX
⊤Ak,k′,r,

where Ak,k′,r ∈ Rn×n, and (Ak,k′,r)is = ci,k,k′,r(yi − x⊤
i β̂k+1,−i)(ys − x⊤

s β̂k′,−i). Note that on Ω, by Corollary 34
and Lemma 35, we have

1
n

∥y −Xβ̂k′,−i∥2
2 ≤ B̄2

∗ · logn,
1
n

∥ak+1∥2
2 ≤ G2(CΣ,ζ ,∆,m,B0)2 · logn.

This further implies that

∥Ak,k′,r∥2
F ≤ n2 sup

i∈[n]
|ci,k,k′,r|2 · B̄2

∗ · G2(CΣ,ζ ,∆,m,B0)2 · (logn)2.

As a result,

∥Vk,k′,r∥2
F ≤4δ2

k′

n4 · ∥Hk′,r∥2
op · ∥X∥2

op · ∥Ak,k′,r∥2
F

≤4δ2
k′e4∆CΣ,ζCΣ,ζ

n
· B̄2

∗ · G2(CΣ,ζ ,∆,m,B0)2 · (logn)2,

which concludes the proof for the first inequality.

We then consider upper bounding ∥V̄k,k′,r∥F . Note that

V̄k,k′,r = −2δk′

n2 Qk,k′,rXHk′,rX
⊤,

Qk,k′,r =
[
β̂k,−1 | · · · | β̂k,−n

]
· diag{(ci,k,k′,r(yi − x⊤

i β̂k+1,−i))ni=1} ∈ R(p+1)×n.

Therefore,

∥V̄k,k′,r∥2
F ≤ 4δ2

k′

n4 · ∥Qk,k′,r∥2
F · ∥XX⊤∥2

op · ∥Hk′,r∥2
op

≤
4δ2
k′e4∆CΣ,ζC2

Σ,ζB
2
∗

n
· G2(CΣ,ζ ,∆,m,B0)2 · (logn)2.

This completes the proof of Equation (E.51). Finally, we prove Equation (E.52). By Lemma 33 and Lemma 35,
we obtain

∥Ṽk∥2
F ≤ 4B2

∗(logn)2

n
· G2(CΣ,ζ ,∆,m,B0)2 · (logn)2.

This is exactly what we aim to prove.

By triangle inequality,

∥∇XR̂
loo(β̂k)∥F ≤ ∥Ṽk∥F +

k∑
k′=0

k∑
r=k′

(
∥V̄k,k′,r∥F + ∥Vk,k′,r∥F

)
.

The proof of Lemma 36 now follows by putting together the above upper bound and Lemma 38.
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S.7.2 Upper Bounding ∇yR̂
loo(β̂k)

Next, we upper bound the Euclidean norm of ∇yR̂
loo(β̂k). This part is in spirit similar to the upper bounding of

the Euclidean norm of ∇XR̂
loo(β̂k) that we discussed in the previous section.

More precisely, we will show the following:

Lemma 39 (Bounding norm of gradient with respect to response). On the set Ω,

∥∇yR̂
loo(β̂k)∥2

≤ 2G2(CΣ,ζ ,∆,m,B0)√
n

·
√

logn+ 2∆KCΣ,ζe
2∆CΣ,ζ

√
n

· G2(CΣ,ζ ,∆,m,B0) ·
√

logn.
(E.53)

Proof. For s ∈ [n], we note that

∂

∂ys
R̂loo(β̂k) = 2

n
(ys − x⊤

s β̂k,−s) − 2
n

n∑
i=1

(yi − x⊤
i β̂k,−i)x⊤

i

∂

∂ys
β̂k,−i. (E.54)

If i = s, then ∂
∂ys

β̂k,−i = 0 for all k ∈ {0} ∪ [K]. Moving forward, we focus on the more interesting case i ̸= s. We
also have

∂

∂ys
β̂k+1,−i = ∂

∂ys
β̂k,−i + δk

n
xs − δk

n

∑
j ̸=i

xjx
⊤
j

∂

∂ys
β̂k,−i

=Mk
∂

∂ys
β̂k,−i +Mk,i

∂

∂ys
β̂k,−i + δk

n
xs,

where we recall that Mk = (Ip+1 − δkΣ̂) and Mk,i = δkxix
⊤
i /n. Invoking the same argument that we employed to

derive Lemma 37, we can conclude that

∂

∂ys
x⊤
i β̂k+1,−i =

k∑
k′=0

k∑
r=k′

ci,k,k′,rx
⊤
i Hk′,r · δk

′

n
xs.

Plugging this into Equation (E.54) leads to the following equality:

∂

∂ys
R̂loo(β̂k+1) = 2

n
(ys − x⊤

s β̂k+1,−s) −
k∑

k′=0

k∑
r=k′

ηk,k′,r,s,

where

ηk,k′,r,s = 2
n

n∑
i=1

(yi − x⊤
i β̂k+1,−i)ci,k,k′,rx

⊤
i Hk′,r · δk

′

n
xs.

We define ηk,k′,r = (ηk,k′,r,s)ns=1 ∈ Rn. It then holds that

ηk,k′,r = 2δk′

n2 XHk′,rX
⊤qk,k′,r,

qk,k′,r =
(
ci,k,k′,r(yi − x⊤

i β̂k+1,−i)
)n
i=1 ∈ Rn.

We can upper bound the Euclidean norm of ηk,k′,r using Lemma 35 and 37. More precisely,

∥ηk,k′,r∥2 ≤ 2δk′

n2 ∥X⊤X∥op · ∥Hk′,r∥op · ∥qk,k′,r∥2 ≤ 2δk′CΣ,ζe
2∆CΣ,ζ

√
n

· G2(CΣ,ζ ,∆,m,B0) ·
√

logn.

Note that

∇yR̂
loo(β̂k) = 2

n
ak −

k∑
k′=0

k∑
r=k′

ηk,k′,r.
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Invoking triangle inequality and Lemma 35, we obtain

∥∇yR̂
loo(β̂k)∥2

≤2G2(CΣ,ζ ,∆,m,B0)√
n

·
√

logn+ 2∆KCΣ,ζe
2∆CΣ,ζ

√
n

· G2(CΣ,ζ ,∆,m,B0) ·
√

logn.
(E.55)

This completes the proof.

S.8 Proof of Theorem 3
Theorem 3 (Functional consistency of LOOCV). Under the conditions of Theorem 2, suppose that ψ : R2 → R
is differentiable and satisfies ∥∇ψ(u)∥2 ≤ Cψ∥u∥2 + C̄ψ for all u ∈ R2 and for constants Cψ, C̄ψ ≥ 0. Then, as
n, p → ∞,

max
k∈[K]

∣∣Ψ̂loo(β̂k) − Ψ(β̂k)
∣∣ a.s.−−→ 0. (11)

where we recall that R̂loo(β̂k) and R(β̂k) are as defined in (10) and (9), respectively.

As consequence of (11), LOOCV can be used to tune early stopping. Specifically, if we define
k∗ = arg mink∈[K] Ψ̂loo(β̂k), then as n, p → ∞,∣∣Ψ(β̂k∗) − min

k∈[K]
Ψ(β̂k)

∣∣ a.s.−−→ 0. (12)

Once again, we will work on the set Ω, which we recall is defined in Equation (E.30). The proof idea is similar to
that for the squared loss. More precisely, if we can prove Equations (E.59) to (E.61) listed below, then once again
can add up the probabilities and show that the sum is finite. Next, we just apply the first Borel–Cantelli lemma,
which leads to the following uniform consistency result:

sup
k∈{0}∪[K]

∣∣∣Ψ̂loo(β̂k) − Ψ(β̂k)
∣∣∣ a.s.−−→ 0.

S.8.1 Concentration Analysis
As before, we will first prove that both Ψ̂loo(β̂k+1) and Ψ(β̂k+1) concentrate. To this end, we shall again analyze
the gradients and show that they are Lipschitz functions of the input data. The proof for this part is similar to
the proof of Lemmas 23 and 24.

We define

• fψk+1(w1, · · · , wn) = Ψ̂loo(β̂k+1)

• f̃ψk+1 = fψk+1 ◦ h

• rψk (w1, · · · , wn) = Ψ(β̂k)

• r̃ψk = rk ◦ h

Our formal statement then is as follows.

Lemma 40 (LOO and risk concentration analysis). Under the assumptions of Theorem 3, with probability at
least 1 − 2(n+ p)−4 − (n log2 n)−1m4 − 2(K + 1)CT2n

−2, for all k ∈ {0} ∪ [K]∣∣∣Ψ̂loo(β̂k) − E[f̃ψk (w1, · · · , wn)]
∣∣∣ ≤ 2σT2LKξ

ψ(CΣ,ζ ,∆,m,B0) · (logn)3/2
√
n

,∣∣∣Ψ(β̂k) − E[r̃ψk (w1, · · · , wn)]
∣∣∣ ≤ 2σT2Lξ̄

ψ(CΣ,ζ ,∆,m,B0)(logn)3/2
√
n

.

In the above display, ξψ(CΣ,ζ ,∆,m,B0) and ξ̄ψ(CΣ,ζ ,∆,m,B0) are positive constants that depend only on
(CΣ,ζ ,∆,m,B0).



Pratik Patil, Yuchen Wu, Ryan J. Tibshirani

Proof. We start by writing down the gradient. For all s ∈ [n], note that

∇xs
Ψ̂loo(β̂k+1) = − 1

n
∂2ψ(ys, x⊤

s β̂k+1,−s)β̂⊤
k+1,−s − 1

n

n∑
i=1

∂2ψ(yi, x⊤
i β̂k+1,−i)x⊤

i ∇xs
β̂k+1,−i,

where ∂i stands for taking the partial derivative with respect to the i-th input. Here, i ∈ {1, 2}. By Lemma 37,
on Ω we have

1
n

n∑
i=1

∂2ψ(yi, x⊤
i β̂k+1,−i)x⊤

i ∇xs
β̂k+1,−i

=
k∑

k′=0

k∑
r=k′

ci,k,k′,r
1
n

n∑
i=1

∂2ψ(yi, x⊤
i β̂k+1,−i)x⊤

i Hk′,r ·
(
δk′

n
(ys − x⊤

s β̂k′,−i)Ip+1 − δk′

n
xsβ̂

⊤
k′,−i

)

=
k∑

k′=0

k∑
r=k′

(
gψk,k′,r,s + ḡψk,k′,r,s

)
,

where

gψk,k′,r,s = δk′

n2

n∑
i=1

ci,k,k′,r∂2ψ(yi, x⊤
i β̂k+1,−i)(ys − x⊤

s β̂k′,−i)x⊤
i Hk′,r,

ḡψk,k′,r,s = −δk′

n2

n∑
i=1

ci,k,k′,r∂2ψ(yi, x⊤
i β̂k+1,−i)x⊤

i Hk′,rxsβ̂
⊤
k′,−i.

We let V ψk,k′,r, V̄
ψ
k,k′,r ∈ R(p+1)×n, such that the s-th columns are set to be (gψk,k′,r,s)⊤ and (ḡψk,k′,r,s)⊤,

respectively. We also define Ṽ ψk ∈ R(p+1)×n such that the s-th column of this matrix corresponds to
∂2ψ(ys, x⊤

s β̂k+1,−s)β̂k+1,−s/n. Using triangle inequality, we immediately obtain that

∥∇XΨ̂loo(β̂k+1)∥F ≤ ∥Ṽ ψk ∥F +
k∑

k′=0

k∑
r=k′

{
∥V ψk,k′,r∥F + ∥V̄ ψk,k′,r∥F

}
. (E.56)

Next, we upper bound ∥V ψk,k′,r∥F , ∥V̄ ψk,k′,r∥F , and ∥Ṽ ψk ∥F . We observe that

V ψk,k′,r = δk′

n2 Hk′,rX
⊤Aψk,k′,r, V̄ ψk,k′,r = −δk′

n2 Q
ψ
k,k′,rXHk′,rX

⊤,

where

Qψk,k′,r = [βk,−1 | · · · | βk,−n] · diag{(ci,k,k′,r∂2ψ(yi, x⊤
i β̂k+1,−i))ni=1} ∈ R(p+1)×n,

(Aψk,k′,r)is = ci,k,k′,r∂2ψ(yi, x⊤
i β̂k+1,−i)(ys − x⊤

s β̂k′,−i).

We let aψk+1 = (∂2ψ(yi, x⊤
i β̂k+1,−i))ni=1. Recall that ak+1 = (yi − x⊤

i βk+1,−i)ni=1. Using triangle inequality, we
obtain that

∥aψk+1∥2 ≤ 3Cψ(∥ak+1∥2 + ∥y∥2) +
√

2nC̄ψ.

Invoking Lemma 35, we know that on Ω, ∥ak+1∥2 ≤
√
nG2(CΣ,ζ ,∆,m,B0) ·

√
logn. Furthermore, by definition

we know that on Ω, ∥y∥2 ≤
√
n(m+ logn). By Corollary 34 we see that ∥y − Xβk,−i∥2 ≤

√
nB̄∗ ·

√
logn. By

Lemma 37, we have ∥ci,k,k′,rHk′,r∥op ≤ e2∆CΣ,ζ . Putting together all these results, we conclude that

∥V ψk,k′,r∥F ≤δk′

n2 · ∥Hk′,r∥op · ∥X∥op · ∥Aψk,k′,r∥F

≤
δk′e2∆CΣ,ζC

1/2
Σ,ζ B̄∗ · (3CψG2(CΣ,ζ ,∆,m,B0) + 3Cψ

√
m+

√
2C̄ψ) · logn

√
n

.

(E.57)
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Applying Lemma 33, we deduce that

∥Qψk,k′,r∥F ≤
√
nB∗ sup

i∈[n]
|ci,k,k′,r| · (3CψG2(CΣ,ζ ,∆,m,B0) + 3Cψm1/2 +

√
2C̄ψ) · logn.

Therefore,

∥V̄ ψk,k′,r∥F ≤ δk′

n2 · ∥Qψk,k′,r∥ · ∥X∥2
op · ∥Hk′,r∥op

≤ δk′B∗e
2∆CΣ,ζCΣ,ζ · (3CψG2(CΣ,ζ ,∆,m,B0) + 3Cψ

√
m+

√
2C̄ψ) · logn√

n
,

∥Ṽ ψk ∥F ≤ 1
n

∥aψk+1∥2 · ∥β̂k+1,−s∥2 ≤ B∗(3CψG2(CΣ,ζ ,∆,m,B0) + 3Cψ
√
m+

√
2C̄ψ) · logn√

n
.

(E.58)

Combining Equations (E.56) to (E.58), we see that there exists a constant ξψ1 (CΣ,ζ ,∆,m,B0) that depends only
on (CΣ,ζ ,∆,m,B0), such that on Ω, for all k ∈ {0} ∪ [K] we have

∥∇XΨ̂loo(β̂k+1)∥F ≤ Kξψ1 (CΣ,ζ ,∆,m,B0) · logn√
n

.

Analogously, we can conclude the existence of a non-negative constant ξψ2 (CΣ,ζ ,∆,m,B0), such that on Ω, it
holds that

∥∇yΨ̂loo(β̂k+1)∥F ≤ Kξψ2 (CΣ,ζ ,∆,m,B0) · logn√
n

.

Hence, we know that
∥∇W Ψ̂loo(β̂k+1)∥F ≤ Kξψ(CΣ,ζ ,∆,m,B0) · logn

if we set ξψ(CΣ,ζ ,∆,m,B0) = ξψ1 (CΣ,ζ ,∆,m,B0) + ξψ2 (CΣ,ζ ,∆,m,B0). Following the same steps that we used to
derive Lemma 23, we deduce that with probability at least 1 − 2(n+ p)−4 − (n log2 n)−1m4 − 2(K + 1)CT2n

−2,∣∣∣Ψ̂loo(β̂k) − E[f̃ψk (w1, · · · , wn)]
∣∣∣ ≤ 2σLKξψ(CΣ,ζ ,∆,m,B0) · (logn)3/2

√
n

. (E.59)

Similarly, we can prove that with probability at least 1 − 2(n+ p)−4 − (n log2 n)−1m4 − 2(K + 1)CT2n
−2, for all

k ∈ {0} ∪ [K], ∣∣∣Ψ(β̂k) − E[r̃ψk (w1, · · · , wn)]
∣∣∣ ≤ 2σLξ̄ψ(CΣ,ζ ,∆,m,B0)(logn)3/2

√
n

. (E.60)

for some constant ξ̄ψ(CΣ,ζ ,∆,m,B0) that depends only on (CΣ,ζ ,∆,m,B0).

S.8.2 Uniform Consistency
Next, we shall prove that projection has little effect on the expected risk.

Lemma 41 (LOO and risk bias analysis). On the set Ω, it holds that

sup
k∈{0}∪[K]

∣∣∣E[r̃ψk (w1, · · · , wn)] − E[rψk (w1, · · · , wn)]
∣∣∣ = on(1),

sup
k∈{0}∪[K]

∣∣∣E[f̃ψk (w1, · · · , wn)] − E[fψk (w1, · · · , wn)]
∣∣∣ = on(1).

(E.61)

Proof. Using the Cauchy-Schwartz inequality, we obtain∣∣∣E[rψk (w1, · · · , wn)] − E[r̃ψk (w1, · · · , wn)]
∣∣∣ ≤ P(Ωc)1/2E[ψ(y0, x

⊤
0 β̂k)2]1/2,∣∣∣E[fψk (w1, · · · , wn)] − E[f̃ψk (w1, · · · , wn)]

∣∣∣ ≤ P(Ωc)1/2E[ψ(y1, x
⊤
1 β̂k,−1)2]1/2.

(E.62)
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Since ∥∇ψ(x)∥2 ≤ Cψ∥x∥2 + C̄ψ, we are able to conclude that there exist constants ϕψ, ϕ̄ψ that depend only on
ψ(·), such that ∥ψ(x)∥2

2 ≤ ϕψ∥x∥4
2 + ϕ̄ψ for all x ∈ R2. Putting this and Equation (E.44) together, we obtain that

E[ψ(y1, x
⊤
1 β̂k,−1)2] ≤ ϕψE[∥(y1, x

⊤
1 β̂k,−1)∥4

2] + ϕ̄ψ ≤ ϕψH(σΣ, ζ, B0,m8,∆)2 + ϕ̄ψ. (E.63)

Recall that P(Ωc) ≤ 2(n + p)−4 + n−1m4. Combining this, Equations (E.62) and (E.63), we can establish
Equation (E.61).

To derive uniform consistency, we also need to show that the expected prediction risk is robust to the sample size.
Namely, we will prove E[Ψ(β̂k)] ≈ E[Ψ(β̂k,−1)].

Since ∥∇ψ(x)∥2 ≤ Cψ∥x∥2 + C̄ψ, we see that there exist constants φψ ∈ R, such that for all x, y ∈ R2,

|ψ(x) − ψ(y)| ≤ φψ∥x− y∥2 · (1 + ∥x∥2
2 + ∥y∥2

2).

Therefore, ∣∣∣E[Ψ(β̂k)] − E[Ψ(β̂k,−1)]
∣∣∣

=
∣∣∣E[rψk (w1, · · · , wn)] − E[fψk (w1, · · · , wn)]

∣∣∣
=

∣∣∣E[ψ(y0, x
⊤
0 β̂k)] − E[ψ(y0, x

⊤
0 β̂k,−1)]

∣∣∣
≤ φψE

[(
1 + ∥(y0, x

⊤
0 β̂k)∥2

2 + ∥(y0, x
⊤
0 β̂k,−1)∥2

2
)

· |x⊤
0 (β̂k − β̂k,−1)|

]
≤ 3φψE

[
(x⊤

0 (β̂k − β̂k,−1))2
]1/2

· E
[
1 + ∥(y0, x

⊤
0 β̂k)∥4

2 + ∥(y0, x
⊤
0 β̂k,−1)∥4

2

]
≤ 3φψ(σΣ + 1)1/2E

[
∥β̂k − β̂k,−1∥2

2

]1/2
· E

[
1 + ∥(y0, x

⊤
0 β̂k)∥4

2 + ∥(y0, x
⊤
0 β̂k,−1)∥4

2

]
,

which by Equations (E.44) and (E.46) goes to zero as n, p → ∞.

S.9 Proof of Theorem 4
Theorem 4 (Coverage guarantee). Under the conditions of Theorem 3, assume further that the distribution of
the noise εi is continuous with density bounded by κpdf . Denote by α̂k(q) the q-quantile of {yi − x⊤

i β̂k,−i : i ∈ [n]}.
Then, for any quantile levels 0 ≤ q1 ≤ q2 ≤ 1, letting Ik = [α̂k(q1), α̂k(q2)], we have as n, p → ∞,

max
k∈[K]

P(x0,y0)
(
y0 − x⊤

0 β̂k ∈ Ik | X, y
) a.s.−−→ q2 − q1. (13)

Proof. For z ∈ R, we define Iz(y, u) = 1{y − u ≤ z}. We first prove that if we replace ψ(y, u) by Iz(y, u) in
Theorem 3, then as n, p → ∞ we still have

sup
k∈{0}∪[K]

|Ψ̂loo(β̂k) − Ψ(β̂k)| a.s.−−→ 0. (E.64)

This step is achieved via uniformly approximating Iz using Lipschitz functions. To be specific, we let {gj}j∈N+ be
a sequence of Lipschitz functions satisfying ∥gj − Iz∥∞ ≤ 2−j . We define

Ψ̂loo
j (β̂k) = 1

n

n∑
i=1

gj(yi − x⊤
i β̂k,−i) and Ψj(β̂k) = E[gj(y0 − x⊤

0 β̂k) | X, y].

By Theorem 3, we know that for every j,

sup
k∈{0}∪[K]

|Ψ̂loo
j (β̂k) − Ψj(β̂k)| a.s.−−→ 0.

Furthermore, notice that

|Ψ̂loo
j (β̂k) − Ψ̂loo(β̂k)| ≤ 2−j and |Ψj(β̂k) − Ψ(β̂k)| ≤ 2−j ,
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and j is arbitrary, thus completing the proof of Equation (E.64).

We denote by F̂k the cumulative distribution function (CDF) of the uniform distribution over {yi − x⊤
i β̂k,−i : i ∈

[n]}, and denote by Fk the CDF of y0 − x⊤
0 β̂k conditioning on (X, y). We emphasize that both Fk and F̂k are

random distributions that depend on (X, y). Next, we prove that Fk is Lipschitz continuous.

Lemma 42. Under the conditions of Theorem 4, Fk is κpdf-Lipschitz continuous.

Proof of Lemma 42. Note that y0 − x⊤
0 β̂k = f(x0) − x⊤

0 β̂k + ε0, where ε0 is independent of f(x0) − x⊤
0 β̂k. Since

ε0 has a probability density function (PDF), we see that y0 − x⊤
0 β̂k also has a PDF, and we denote it by h. We

denote by hε the PDF of ε0 and denote by G the CDF of f(x0) − x⊤
0 β̂k, then we have

h(x) =
∫
hε(x− z)dG(z),

which is uniformly upper bounded by κpdf for all x ∈ R.

As a consequence of Lemma 42 and the fact that y0 − x⊤
0 β̂k has bounded fourth moment (see Equation (E.44) for

derivation), we immediately obtain that supk∈{0}∪[K] ∥F̂k − Fk∥∞
a.s.−−→ 0 as n, p → ∞.

In addition, it is not hard to see that ∣∣∣F̂k(α̂k(qi)) − qi

∣∣∣ ≤ n−1

for all i ∈ {1, 2} and k ∈ {0} ∪ [K]. Therefore,

sup
k∈{0}∪[K]

|Fk(α̂k(qi)) − qi| ≤ sup
k∈{0}∪[K]

∣∣∣F̂k(α̂k(qi)) − qi

∣∣∣ + sup
k∈{0}∪[K]

∥F̂k − Fk∥∞
a.s.−−→ 0

as n, p → ∞, thus completing the proof of the theorem.

S.10 Proofs in Section 5
S.10.1 Proof of Proposition 5
Proposition 5 (Correctness of the modified augmented system). For all k ∈ [K] and i ∈ [n], it holds that
β̃k,−i = β̂k,−i.

Proof. We prove the lemma through induction on k. For k = 0, by definition β̃0,−i = β̂0,−i = β0 for all i ∈ [n].
Suppose that we have β̃k,−i = β̂k,−i iteration k and all i ∈ [n], we then prove that it also holds for iteration k + 1
via induction. Using its definition, we see that

β̃k+1,−i = β̃k,−i − 2δk
n
X⊤X β̃k,−i + 2δk

n
X⊤ỹk,−i

= β̃k,−i − 2δk
n
X⊤

−iX−i β̃k,−i + 2δk
n
X⊤

−iy−i − 2δk
n
xi

(
x⊤
i β̃k,−i − x⊤

i β̂k,−i
)

= β̂k,−i − 2δk
n
X⊤

−iX−i β̂k,−i + 2δk
n
X⊤

−iy−i

= β̂k+1,−i,

thus completing the proof of the lemma by induction.
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S.10.2 Proof of Proposition 6
Proposition 6 (Smoother representation for the modified augmented system). For all k ∈ [K] and i ∈ [n], there
is a vector (h(k)

ij )j≤n and scalar b(k)
i depending δ = (δ0, . . . δk−1) and X such that:

x⊤
i β̂k,−i = x⊤

i β̃k,−i =
n∑
j=1

h
(k)
ij yj + b

(k)
i .

Proof. We prove this lemma by induction over k. For the base case k = 0, the requirement of the lemma can be
satisfied by setting

h
(0)
ij = 0, b

(0)
i = x⊤

i β0, i, j ∈ [n].

Suppose we can find (h(k)
ij )i,j≤n and (b(k)

i )i≤n for iteration k, we next show that the counterpart quantities also
exist for iteration k+ 1. We define H(k) ∈ Rn×n, b(k) ∈ Rn, such that H(k)

ij = h
(k)
ij and b(k)

i = b
(k)
i . Using induction

hypothesis and Proposition 5, we have

x⊤
i β̂k+1,−i

= x⊤
i β̃k,−i

= x⊤
i

(
β̃k,−i − 2δk

n
X⊤Xβ̃k,−i + 2δk

n
X⊤ỹk,−i

)
= x⊤

i

(
β̂k,−i − 2δk

n
X⊤Xβ̂k,−i + 2δk

n
X⊤

−iy−i + 2δk+1

n
xix

⊤
i β̂k,−i

)

=
n∑
j=1

h
(k)
ij yj + b

(k)
i − 2δk

n
x⊤
i X

⊤(H(k)y + b(k)) + 2δk
n
x⊤
i X

⊤
−iy−i + 2δk+1

n
∥xi∥2

2

 n∑
j=1

h
(k)
ij yj + b

(k)
i

 .

Note that the right-hand of the display above is affine in y, which completes the proof for iteration k + 1. This
completes our induction proof.

S.10.3 Proof of Proposition 7
Proposition 7 (Recursive shortcut formula for LOO predictions in GD). For all k ∈ [K] and i ∈ [n],

x⊤
i β̂k,−i = x⊤

i β̂k +Ai,k∥xi∥2
2 +

k−1∑
j=1

B
(j)
i,kx

⊤
i (X⊤X)jxi,

where

Ai,k+1 = Ai,k + 2δkAi,k∥xi∥2
2

n

+
k−1∑
j=1

2δkB(j)
i,kx

⊤
i (X⊤X)jxi
n

+ 2δk+1(x⊤
i β̂k − yi)
n

,

B
(1)
i,k+1 = B

(1)
i,k − 2δkAi,k

n
,

B
(j)
i,k+1 = B

(j)
i,k −

2δkB(j−1)
i,k

n
, 2 ≤ j ≤ k,

and we make the convention that B(k)
i,k = 0.

Proof. By definition, β̂0,−i = β̂0 for all i ∈ [n]. After implementing the first step of gradient descent, we have

β̂1,−i = β̂0,−i − 2δ1

n
X⊤

−iX−iβ̂0,−i + 2δ1

n
X⊤

−iy−i
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= β̂1 + 2δ1

n
xix

⊤
i β̂0 − 2δ1

n
yixi.

We define Ai,1 = 2δ1(x⊤
i β̂0 − yi)/n, then β̂1,−i = β̂1 +Ai,1xi. Now suppose β̂k,−i admits the decomposition

β̂k,−i = β̂k +Ai,kxi +
k−1∑
j=1

B
(j)
i,k (X⊤X)jxi

for some Ai,k, B(j)
i,k ∈ R. Then, in the next step of gradient descent, by definition we have

β̂k+1,−i = β̂k,−i − 2δk
n
X⊤

−iX−iβ̂k,−i + 2δk
n
X⊤

−iy−i

= β̂k+1 +Ai,kxi +
k−1∑
j=1

B
(j)
i,k (X⊤X)jxi − 2δkAi,k

n
X⊤X xi −

k−1∑
j=1

2δkB(j)
i,k

n
(X⊤X)j+1xi

+ 2δkAi,k∥xi∥2
2

n
xi +

k−1∑
j=1

2δkB(j)
i,kx

⊤
i (X⊤X)jxi
n

xi + 2δk+1(x⊤
i β̂k − yi)
n

xi.

As a result, we obtain the following update equations:

Ai,k+1 = Ai,k + 2δkAi,k∥xi∥2
2

n
+
k−1∑
j=1

2δkB(j)
i,kx

⊤
i (X⊤X)jxi
n

+ 2δk+1(x⊤
i β̂k − yi)
n

,

B
(1)
i,k+1 = B

(1)
i,k − 2δkAi,k

n
,

B
(j)
i,k+1 = B

(j)
i,k −

2δkB(j−1)
i,k

n
, 2 ≤ j ≤ k,

where we make the convention that B(k)
i,k = 0.
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