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Abstract

Many online decision-making problems corre-
spond to maximizing a sequence of submod-
ular functions. In this work, we introduce
sum-max functions, a subclass of monotone
submodular functions capturing several inter-
esting problems, including best-of-K-bandits,
combinatorial bandits, and the bandit ver-
sions on M -medians and hitting sets. We
show that all functions in this class satisfy a
key property that we call pseudo-concavity.
This allows us to prove

(
1 − 1

e

)
-regret bounds

for bandit feedback in the nonstochastic set-
ting of the order of

√
MKT (ignoring log fac-

tors), where T is the time horizon and M is a
cardinality constraint. This bound, attained
by a simple and efficient algorithm, signifi-
cantly improves on the Õ

(
T 2/3) regret bound

for online monotone submodular maximiza-
tion with bandit feedback. We also extend
our results to a bandit version of the facility
location problem.

1 INTRODUCTION

In many concrete settings of sequential decision-making,
decisions are subsets of a finite set [K] (possibly with
cardinality constraints) and utilities, or rewards, are
non-linear set functions over [K]. Although we may
know that utility functions have some specific structure,
e.g., they are submodular, the feedback may not reveal
anything beyond the utility of the current decision. For
example, consider an advertising campaign over [K]
digital channels (e.g., web, apps, and social media).
Due to budget constraints, the campaign can show ads
only on a subset of M channels for every user. If a user
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ends up buying the advertised product, we observe that
a sale occurred, but we may not know which of the M
channels triggered the purchase. The advertiser’s goal
is to choose the subset of channels for each new user
in order to maximize the number of sales.

The same problem was studied (with a different mo-
tivation) by Simchowitz et al. [2016] under stochastic
assumptions on the generation of the Bernoulli random
variables each indicating whether displaying an ad on a
certain channel triggers a purchase for the current user.
In this work, we study the nonstochastic variant of this
problem, where the binary variables associated with
the channels are chosen, for each user, by an oblivious
adversary. Our main result is an efficient algorithm
minimizing regret in a much larger class of problems
containing the multichannel advertising problem as a
special case. In particular, our regret analysis applies
to any sequential decision-making problem where re-
ward functions belong to a subclass of all monotone
submodular functions called sum-max.

A sum-max function is defined by a nonnegative matrix
with K columns and an arbitrary number of rows. The
value of the function evaluated at a subset S ⊂ [K]
of columns is the sum over the rows of the maximum
row element over the subset S of columns. In the
multichannel campaign example, the matrix is binary
with a single row. The j-th entry indicates whether the
current user would buy the product if advertised on
channel j. If the matrix is square and symmetric, then
we recover the non-metric facility location problem as
a special case.

As we said earlier, our analysis of regret for sum-max
functions assumes bandit feedback: at each time t
we only observe the reward rt(At) associated with
our decision At, where rt is the sum-max function
chosen by the adversary at time t. Hence, the reward
rt(S) that we would have obtained by choosing any
S ≠ At remains unknown. We also consider cardinality
constraints, in the form of a parameter M requiring
that the decision At at each time t satisfy

∣∣At

∣∣ ≤ M .
Note that when M = 1 we recover the adversarial
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K-armed bandit problem.

Our main result is an efficient algorithm, MSE3, achiev-
ing a Õ

(√
MKT

)
bound on the γM -regret for γM = 1−(

1−1/M
)M . For comparison, for the class of all mono-

tone submodular functions, Niazadeh et al. [2021] ob-
tain a

(
1− 1

e

)
-regret bound of O

(
(lnK)1/3M(KT )2/3).

As γM > 1 − 1
e for all M > 1, this bound is worse than

ours in both approximation factor and regret.

When M = 1, algorithm MSE3 reduces to the stan-
dard Exp3 algorithm for K-armed bandits and our
result specializes to the standard O

(√
K(lnK)T

)
re-

gret bound of Exp3. This implies that the
√
KT

dependence in the regret bound is not improvable, even
disregarding efficiency. Moreover, we show that improv-
ing on the approximation factor γM with an efficient
algorithm would give an efficient randomized algorithm
for solving set cover on [K] with an approximation
ratio of (1 − ε) lnK, which is NP-hard for any ε > 0
[Dinur and Steurer, 2014].

In many real world problems, including an element i
in the decision At at round t invokes a cost (i.e., a
negative reward) ct,i ≥ 0. When this is the case we
would like to maximize the cumulative reward:∑

t∈[T ]

(
rt(At) −

∑
i∈At

ct,i

)
.

We show that MSE3 can handle this generalized prob-
lem if it receives, at the end of each round t, the values
of ct,i for all i ∈ At. We note that the bandit MSE3
without costs is a special case of MSE3 with costs.

The inclusion of costs creates a tension between includ-
ing arms in At to increase the reward and, simultane-
ously, avoid including too many arms to control the
costs. We address this trade-off in Section 5 by intro-
ducing and analyzing a variant of MSE3 for regret
minimization with costs and bandit feedback where
the rewards are sum-max functions without cardinality
constraints. We call this setting the bandit facility
location problem because it is a bandit version of the
online facility location problem studied by Pasteris
et al. [2021].

For M > 1 and arbitrary costs, MSE3 selects At by
performing M independent draws at,1, . . . , at,M from
a distribution pt =

(
pt,1, . . . , pt,K

)
∈ ∆K . Then, a

reward estimate for each i ∈ [K] is computed using

gt,i = rt(At) − ct,i

pt,i

∑
j∈[M ]

Jat,j = iK , (1)

where, for any statement S, the Iverson bracket nota-
tion J·K is defined as JSK = 1 if S is true and JSK = 0
otherwise. Note that for M = 1 and ct,i = 0 , the above
reduces to the standard reward estimate of Exp3.

We now give an overview of how MSE3 works when
we have no costs (i.e., ct,i = 0). For all set functions r,
we construct a function Φr : RK

+ → R such that for all
q ∈ ∆K we have that Φr(q) is the expected value of
r(A) when A is constructed by drawing M arms i.i.d.
with replacement from q. Specifically, we first show
that there exists a function r̃ : 2[K] → R such that for
all Q ⊆ [K] we have r(Q) =

∑
S⊆[K]JQ ⊆ SKr̃(S). For

all q ∈ RK
+ we then define:

Φr(q) =
∑

S⊆[K]

r̃(S)

∑
i∈[K]

Ji ∈ SKqi

M

.

We learn via online exponentiated gradient ascent us-
ing the unbiased estimates (1) of the gradient of Φrt .
Clearly, for exponentiated gradient ascent to work we
must have that, for all rounds t, our objective function
Φrt is concave over the simplex. We show that a suffi-
cient condition for this to hold is that the function rt

is pseudo-concave, see Section 2 for a formal definition.

Next, we bound the regret with respect to any vector
p∗ ∈ ∆K . Namely, we bound the expected reward of
our algorithm relative to

∑
t∈[T ] Φrt(p∗). By taking

p∗ such that p∗
i = Ji ∈ SK/|S| for some set S we show

that, because rt is submodular, we have Φrt(S) ≥
(1 − αM )rt(S) where α = (|S| − 1)/|S|. By bounding
the variance of the gradient estimate we show that the
regret term is Õ(

√
MKT ).

We have provided an overview of how, when we have
no costs, MSE3 works and why we require rt to be
pseudo-concave and submodular. We now describe how
costs are incorporated. This is done by using, instead
of Φrt , the function Ψt defined by:

Ψt(q) = Φrt(q) −M
∑

i∈[K]

qict,i ,

so that Ψt(pt) lower bounds the expected profit on
trial t. Since Ψt differs from Φrt by a linear function it
is straightforward to extend the above methodology to
this new objective function.

2 SUM-MAX FUNCTIONS

We now introduce sum-max functions and define the
key property of this class that allows us to learn it with
bandit feedback.
Definition 2.1. A set function r : 2[K] → R is sum-
max if and only if there exists some N ∈ N and some
matrix V ∈ RN×K such that for all S ⊆ [K] with
S ≠ ∅ we have:

r(S) =
∑

k∈[N ]

max
i∈S

Vk,i and r(∅) ≤
∑

k∈[N ]

min
i∈[K]

Vk,i
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For example, consider a marketplace with N buyers
and K sellers. The value Vk,i is the combined utility
of buyer k going to seller i. The value r(S) is the
social welfare when a subset S of sellers participate in
the marketplace, and buyers match up with sellers to
optimize their combined utilities. When there is only
one buyer (N = 1), V is a vector (V1, . . . , VK) and we
view each i ∈ [K] as an arm with reward Vi. Then
r(S) = maxi∈S Vi, the maximum reward of an arm in
the chosen set S.

As sum-max functions are sums of monotone submodu-
lar functions, they are monotone submodular. We now
list a number of sequential decision-making problems
that can be expressed as regret minimization of specific
sum-max functions under bandit feedback.

The multichannel campaign problem. This is our
nonstochastic variant of the best-of-k bandit problem
of Simchowitz et al. [2016]. To view it as an instance of
sum-max optimization, set N = 1 and let Vi ∈ {0, 1}
indicate whether a user makes a purchase when the ad
is displayed on channel i. Then (V1, . . . , VK) can be
viewed as the incidence vector of a subset D ⊆ [K] of
channels, and the reward is defined by r(S) = JS ∩D ≠
∅K. The feedback is bandit because we do not know
what channel triggered the sale for that user.

Bandit hitting sets. This is a generalization of the
previous example where N ≥ 1 and V is a boolean
matrix. Each row of V denotes a subset Ck of [K]
and Vk,i indicates whether i ∈ Ck. The value r(S) then
counts how many sets Ck have a non-empty intersection
with S. Bandit setting occurs when the sets remain
unknown and each time we only observe the number
of intersected sets.

Combinatorial bandits. Another important special
case is when we receive the sum of the rewards ri of the
arms i ∈ S. In this case N = K and Vk,i = Jk = iKri.
The problem is then equivalent to a combinatorial
bandit (with full bandit feedback) over the class of
M -sized subsets [Cesa-Bianchi and Lugosi, 2012].

Bandit k-medians. Given x1, . . . ,xN points in a met-
ric space (X , d), consider the version of the k-medians
problem (for k = M) where the M centroids have to
be chosen in the given set of points. The value of the
objective function at a candidate solution S ⊂ [K] with
|S| ≤ M can be written as

r(S) = −
∑

k∈[N ]

min
i∈S

d(xk,xi) .

Clearly, this is a sum-max function for V with elements
Vk,i := −d(xk,xi). The feedback is bandit when we
do not know the metric, but we can observe the value
of the objective function.

Next, we introduce an important property of sum-max
functions.
Definition 2.2. Suppose we have a set function r :
2[K] → R. For any S ⊆ [K] define the matrix U r,S ∈
RK×K such that Ur,S

i,j = r(S ∪ {i, j}) for all i, j ∈ [K].
We call the function r pseudo-concave if and only if
x⊤U r,Sx ≤ 0 for all S ⊆ [K] and all x ∈ RK with
x · 1 = 0.

In Appendix C, we show that there are monotone sub-
modular functions that are not pseudo-concave. As a
consequence, sum-max functions are indeed a proper
subset of the class of monotone submodular functions.
The following theorem confirms that all sum-max func-
tions are pseudo-concave:
Theorem 2.3. Any sum-max set function is pseudo-
concave.

Proof. Suppose we have some sum-max function r :
2[K] → [0, 1]. Let V be as in Definition 2.1. Without
loss of generality, we will assume that all components
of V are non-negative and r(∅) = 0 (since any sum-
max function can be transformed into this form by the
addition of a constant).
Define, for any Q ⊆ [K], the set function rQ : 2[K] →
[0, 1] such that for all S ⊆ [K] we have

rQ(S) := JS ∩ Q ̸= ∅K.

We shall now show that for all such Q we have that rQ

is pseudo-concave. Choose any x ∈ RK with x · 1 = 0
and any S ⊆ [K]. We have two cases:

1. If S ∩ Q ≠ ∅, for all i, j ∈ [K] we have rQ(S ∪
{i, j}) = 1, this implies U rQ,S = 11⊤ and hence
x⊤U rQ,Sx = 0.
2. If S ∩ Q = ∅ then for all i, j ∈ [K] we have

rQ(S ∪ {i, j}) = J(i ∈ Q) ∨ (j ∈ Q)K.

Let z ∈ {0, 1}K be such that for all k ∈ [K] we have
zk := Jk /∈ QK. Then for all i, j ∈ [K] we have

J(i ∈ Q) ∨ (j ∈ Q)K = 1 − zizj ,

so that, by above, we have U rQ,S = 11⊤ − zz⊤ This
implies that: x⊤U rQ,Sx = −(x · z)2 ≤ 0.

And therefore, rQ is pseudo-concave.

Now suppose we have a vector v ∈ RK
+ and define the

set function rv : 2[K] → R+ such that for all S ⊆ [K]
we have

rv(S) := max
i∈S

vi ,

where the maximum of the empty set is defined as equal
to zero. We can order the set [K] into the sequence
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⟨ji | i ∈ [K]⟩ = [K] where vji+1 ≤ vji for all i ∈ [K − 1].
For all i ∈ [K] we can define Qi := {jk | k ≤ i}. Now
note then that for all S ⊆ [K] the set function rv(S)
can be expressed as∑

i∈[K−1]

(vji
− vji+1)JS ∩ Qi ̸= ∅K + vjK

JS ∩ QK ̸= ∅K

=
∑

i∈[K−1]

(vji
− vji+1)rQi(S) + vjK

rQK (S) ,

so, by above, rv is a positive sum of pseudo-concave
functions and is hence itself pseudo-concave. Note
also that rv is clearly submodular. Noting that r is a
positive sum of functions of the form rv we have now
shown that it is both pseudo-concave and submodular
as required.

3 ADDITIONAL RELATED WORK

The work closest to ours is Pasteris et al. [2021], where
they study online facility location with full informa-
tion feedback. Our work improves on theirs in many
respects: First, we solve the problem with bandit feed-
back, which requires designing an entirely different
algorithm based on our discovery of an unbiased es-
timator for the gradient of our expected reward (we
find it remarkable that such an estimator exists). As
a consequence, our algorithm is also applicable to the
full-information setting, where we obtain a per-trial
running time of O(MK) when given an oracle for the
reward function. When considering general sum-max
functions, the methodology of Pasteris et al. [2021]
would instead require a per-trial running time exponen-
tial in K1. Second, our algorithm can efficiently learn
classes that are even more general than sum-max func-
tions. Third, we obtain tighter approximation ratios
and show optimality for the multichannel campaign
problem (and thus optimality in general).

Sum-max functions are a special case of linear submodu-
lar functions [Yue and Guestrin, 2011], which are of the
form r(S) =

∑
i∈[N ] wiFi(S) for F1, . . . , FN monotone

submodular functions and w1, . . . , wN non-negative co-
efficients. However, linear submodular functions have
been only studied in stochastic settings, assuming pre-
liminary knowledge of F1, . . . , FN , and using a feedback
model more informative than our bandit feedback.

Click-models [Lattimore and Szepesvári, 2020, Latti-
more et al., 2018, Kveton et al., 2015] provide a different
stochastic formalization of the best-of-k bandit prob-
lem. Here the user is presented with an ordered list of
items, and the learner receives a positive reward if the

1The work of Pasteris et al. [2021] only considered single-
user cases, but it is straightforward to extend their method-
ology to general sum-max functions.

Algorithm 1 MSE3
Set η := ln(K)/R and p1,i := 1/K for i ∈ [K]
for t = 1, 2, . . . , T do:
1. For all j ∈ [M ] draw at,j ∈ [K] from distribution pt

2. Define At := {at,j | j ∈ [M ]}
3. Receive rt(At) and {ct,i | i ∈ At}
4. For all i ∈ [K] set

gt,i := rt(At) − ct,i

pt,i

∑
j∈[M ]

Jat,j = iK

5. For all i ∈ [K] define p̃t,i := pt,i exp(ηgt,i)
6. Define pt+1 := p̃t/∥p̃t∥1

user clicks on one of the presented items. The differ-
ence with our multichannel campaign problem is that
the items are ordered, and the likelihood of clicking an
item is also affected by the position of the item within
the list.

4 MAIN RESULT

Our learning problem is formally defined as follows.
The values M,K ∈ N and C ∈ R+ are all preliminarily
known to the learner. Hidden from the learner, the
adversary selects a sequence of set functions ⟨rt | t ∈
[T ]⟩, each with domain 2[K] and a sequence of vectors
⟨ct | t ∈ [T ]⟩ each in [0, C]K . On each trial t ∈ [T ]:

1. The learner chooses some At ⊆ [K] with |At| ≤ M .
2. The value rt(At) is revealed.
3. For all i ∈ At the value ct,i is also revealed.

The learner maintains a probability vector pt ∈ ∆K ,
and behaves as described in Algorithm 1.

To aid our theorem statement we add the following
definitions. For all t ∈ [T ] and Q ⊆ [K] we define
r̂t(Q) := rt(Q) − rt(∅), which is the difference be-
tween the learner’s profit on trial t and that which
it would have obtained by selecting the empty set,
ψt := r̂t(At) − γt(At), and γt(Q) :=

∑
i∈Q ct,i. We

note that by considering r̂t instead of rt our bounds do
not change when rt is shifted by an additive constant
(which can be different for different trials t) as long
as the range of rt falls within the bounds described as
follows.

We assume that the learner knows upper and lower
bounds on the range rt for all trials t. Hence, without
loss of generality, assume that rt(Q) ∈ [−1, 0] for all
t ∈ [T ] and Q \ [K] (otherwise scale and shift rt and
C). Let

R := (1 + C)
√

2 ln(K)M(K +M − 1)T .

Our results hold for a relaxed notion of submodularity,
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which we call pseudo-submodularity.
Definition 4.1. A set function r : 2[K] → R is pseudo-
submodular if and only if for every set S ⊆ [K] with
S ̸= ∅ there exists some i ∈ S such that for all Q ⊆
S \ {i} we have r(Q ∪ {i}) − r(Q) ≥ r(S) − r(S \ {i}).

Note that all pseudo-submodular set functions are also
submodular. We now present our main result.
Theorem 4.2. Given rt is pseudo-concave and pseudo-
submodular for all t ∈ [T ] , then for any set S ⊆ [K]
with S ≠ ∅ we have∑
t∈[T ]

E[ψt] ≥
(
1 − αM

) ∑
t∈[T ]

r̂t(S)− M

|S|
∑

t∈[T ]

γt(S)−R ,

where
α := 1 − 1

|S|
.

Proof. See Section 6

We note that both the standard facility location and
k-medians problems are often phrased as the minimiza-
tion of a loss rather than a maximization of a profit.
Our results easily capture this by considering the re-
ward as a negative loss.

We now show that the approximation ratio 1−αM is not
improvable in general in the class of sum-max functions.
In particular, we show that obtaining an efficient online
learning algorithm for the multichannel advertising
problem with a sublinear γ-regret with γ < 1 − αM

would give an efficient randomized algorithm for solving
set cover on [K] with an approximation better than
lnK. As shown in [Dinur and Steurer, 2014], obtaining
an approximation of (1−ε) lnK for set cover is NP-hard
for any ε > 0.

Recall that an instance of the multichannel campaign
problem over K ads is defined by a sequence ⟨rt | t ∈
[T ]⟩ of set functions over [K] such that for all t ∈ [T ]
there exists some Dt ⊆ [K] with rt(Q) = JQ ∩ Dt ̸= ∅K
for all Q ⊆ [K].
Theorem 4.3. Suppose that there exists some d ∈ N,
s ∈ (0, 1), γ > 1, and a randomized polynomial time
algorithm for the learner such that for all K,M ∈ N
and for any instance of the multichannel advertising
problem, it holds that

∣∣At

∣∣ ≤ M for all t = 1, . . . , T
and, for any subset S ⊆ [K],

E

∑
t∈[T ]

rt(At)

 ≥
(
1 − αγM

) ∑
t∈[T ]

rt(S) −R′ ,

where R′ ∈ O(KdT s) and α := 1 − 1
|S| . Then, for all

ε ∈
(
0, 1 − 1/γ

)
and B > 41/((1−ε)γ−1), there exists a

Algorithm 2 FLE3
Run MSE3 with L = 2K arms and M := K

2 ln(T/K2).
On each trial t ∈ [T ]:

1. Let A′
t be the output of MSE3

2. Output At := A′
t ∩ [K]

3. Receive rt(At) and {ct,i | i ∈ [K]}
4. For all i ∈ [L] \ [K] set ct,i := 0
5. Feed rt(At) and {ct,i | i ∈ [L]} back to MSE3

randomized polynomial-time algorithm for the set cover
problem on [B] that, with probability at least 1

2 , achieves
approximation ratio at least (1 − ε) ln(B).

The proof can be found in Appendix B.

5 BANDIT FACILITY LOCATION

We can view this setting as a generalization of the
marketplace example where sellers pay a known cost to
enter the market. At each round, the platform admits
a subset At of sellers and only observes the resulting
social welfare (bandit feedback).

In this application, there are no restrictions on the
set of arms At that we choose. We seek to maximize
r(At) − γ(At) where r is the sum-max reward function
and γ is the linear and positive cost function.

For the facility location problem we must choose M ,
noting that although a high value of M increases the
approximation ratio on the reward, it also increases
that on the costs. To decrease the potentially large ap-
proximation ratio on the costs, we borrow from Pasteris
et al. [2021] the idea of dummy arms and the tuning
of M . This leads to our algorithm FLE3 described in
Algorithm 2. The bound on the total profit of FLE3 is
given in the following theorem.
Theorem 5.1. Given that C = 1 and rt : 2K →
[−1, 0] is pseudo-concave and pseudo-submodular for
all t ∈ [T ] , we have that the algorithm FLE3 obtains
the following bound for all S ⊆ [K] with S ≠ ∅:

∑
t∈[T ]

E[ψt] ≥
∑

t∈[T ]

r̂t(S) − 1
2 ln

(
T

K2

) ∑
t∈[T ]

γt(S) −R′′ ,

where R′′ ∈ Õ(K
√
T ).

Proof. For all t ∈ [T ] define the set function r′
t : 2L →

[0, 1] such that for all Q ⊆ [L], r′
t(Q) := rt(Q ∩ [K])

and, as consequence, r̂′
t(Q) := r′

t(Q) − r′
t(∅). Now

taking into consideration any possible comparator set
S ⊆ [K], we define

S ′ := S ∪ {K + i | i ∈ [K − |S|]} ,
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noting that |S ′| = K. Note that r′
t is sum-max and

hence, by Theorem 2.3, is pseudo-concave and submod-
ular for all t ∈ [T ]. This allows us to apply Theorem
4.2, that gives us:∑
t∈[T ]

E[ψt] ≥
(
1 − αM

) ∑
t∈[T ]

r̂′
t(S ′) − M

|S ′|
∑

t∈[T ]

γt(S ′) −R

=
(
1 − αM

) ∑
t∈[T ]

r̂t(S) − M

|S ′|
∑

t∈[T ]

γt(S) −R (2)

=
(
1 − αM

) ∑
t∈[T ]

r̂t(S) − 1
2 ln T

K2

∑
t∈[T ]

γt(S) −R ,

(3)

where equation (2) comes from the contribution of the
dummy arms and equation (3) from the definition of
M . Given that

α := |S ′| − 1
|S ′|

= K − 1
K

≤ exp (−1/K) ,

we can therefore see that

αM
∑

t∈[T ]

r̂t(S) ≤ αMT = exp(−M/K)T

= 1√
T/K2

T =
√
TK2 , (4)

where we used the definition of M given in Algorithm 2.
Putting together (3) and (4) gives us the result, where
R′′ = R+

√
TK2.

6 ANALYSIS

We now give an overview of the proof of Theorem 4.2.

We first consider the case that we have no costs (i.e.
ct = 0). MSE3 works by maintaining a probability
distribution over the set of arms. Specifically, pt ∈ ∆K

is the vector whose components are the probabilities of
drawing the actions on trial t. On trial t the algorithm
constructs the set At by drawing a sequence ⟨at,j | j ∈
[M ]⟩ of arms i.i.d. with replacement from pt and then
setting At := {at,j | j ∈ [M ]}.

This stochastic draw of a sequence and set from a
probability vector will be represented by the following
notation.
Definition 6.1. For all q ∈ ∆K let ⟨bj(q) | j ∈ [M ]⟩
be a sequence of stochastic quantities drawn i.i.d. at
random from (the probability distribution characterised
by) q. In addition, let B(q) := {bj(q) | j ∈ [M ]}.

Note that our expected reward on trial t is E[rt(B(pt))]
and hence, for all set functions r we shall construct
a differentiable function Φr : RK → R such that for

all q ∈ ∆K we have Φr(q) = E[r(B(q))]. This con-
struction is based on the following notion of a subset
decomposition.
Definition 6.2. Given a function r : 2[K] → R , we
call a function r̃ : 2[K] → R a subset decomposition of
r if and only if for all Q ⊆ [K] we have

r(Q) =
∑

S⊆[K]

JQ ⊆ SKr̃(S) .

The following lemma confirms that every set function
has a unique subset decomposition.
Lemma 6.3. Given a function r : 2[K] → R there
exists a unique subset decomposition r̃ of r.

Proof. See Appendix A.1.

Now we can define our function Φr.
Definition 6.4. For all r : 2K → R and all q ∈ RK

define

Φr(q) :=
∑

S⊆[K]

r̃(S)

∑
i∈[K]

Ji ∈ SKqi

M

,

where, by Lemma 6.3, r̃ is the unique subset decompo-
sition of r.

The following lemma confirms that our function Φr

indeed satisfies our condition.
Lemma 6.5. For all r : 2K → R and all q ∈ ∆K we
have Φr(q) = E[r(B(q))].

Proof. See Appendix A.2.

Drawing inspiration from Auer et al. [2001] we will
learn via online exponentiated gradient ascent with the
functions Φrt using unbiased gradient estimates. Of
course, this means that we must be able to construct
unbiased gradient estimates. Remarkably, we now show
that we can use our sequence ⟨at,j | j ∈ [M ]⟩ and the
observed reward rt(At) to construct an unbiased gradi-
ent estimate gt defined in Algorithm 1 of the function
Φrt at pt.
Lemma 6.6. For all r : 2K → R, all q ∈ ∆K and all
i ∈ [K] we have

∂iΦr(q) = E

r(B(q))
qi

∑
j∈[M ]

Jbj(q) = iK

 .
Proof. See Appendix A.3.
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For exponentiated gradient ascent to work, we must
have that, for all trials t, our objective function Φrt

is concave over the simplex. We now show that a
sufficient condition for this to hold is that the function
rt is pseudo-concave.
Lemma 6.7. For all pseudo-concave set functions
r : 2K → R we have that Φr is concave over the simplex
∆K .

Proof. See Appendix A.4.

Now that we have all the underpinnings for exponen-
tiated gradient ascent to function properly, we can
establish a bound on the regret relative to any vector
p∗ ∈ ∆K via the following classic result.
Lemma 6.8. For any vector p∗ ∈ ∆K we have∑

t∈[T ]

(p∗ − pt) · gt ≤ 1
η

∑
i∈[K]

p∗
i ln(Kp∗

i )

+ η
∑

t∈[T ]

∑
i∈[K]

pt,ig
2
t,i .

Proof. A classic result from the analysis of Hedge.

This lemma gives a bound on the regret since, because
we have shown that gt is an unbiased estimate of the
gradient and the objective function is concave over the
simplex, the term (p∗ − pt) · gt is bounded below by
Φrt(p∗)−Φrt(pt). Note that we have shown above that
Φrt(pt) is equal to E[rt(At)].

We will later discuss the bounding of the regret itself,
but first we shall show how to choose p∗ such that
we can bound Φrt(p∗) relative to rt(S) for some set
S ⊆ [K]. Specifically, we will choose p∗ equal to pS in
the following definition.
Definition 6.9. For all S ⊆ [K] with S ̸= ∅ define
pS ∈ ∆K such that for all i ∈ [K] we have

pS
i := Ji ∈ SK

|S|
.

We use the following lemma will to bound Φrt(pS), and
it explains why we require rt to be pseudo-submodular.
Lemma 6.10. Let S ⊆ [K] with S ≠ ∅, r : 2[K] → R
be a pseudo-submodular function, and Z ⊆ [K] be a set
formed by drawing M elements uniformly at random
(with replacement) from S. Then we have

E[r(Z) − r(∅)] ≥

(
1 −

(
|S| − 1

|S|

)M
)

(r(S) − r(∅)) .

Proof. See Appendix A.5

With this lemma in hand, we can now bound Φrt(pS).
Lemma 6.11. Given any S ⊆ [K] and any pseudo-
submodular set function r : 2[K] → R we have

Φr(pS) ≥ r(∅) +
(

1 −
(

|S| − 1
|S|

)M
)

(r(S) − r(∅)) .

Proof. See Appendix A.6.

Before we bound the regret term, we show how to in-
corporate the costs, so that ct can be non-zero. This is
done by choosing, instead of Φrt , the objective function
Ψt defined as follows.
Definition 6.12. For all trials t ∈ [T ] define Ψt :
RK → R such that for all q ∈ RK we have

Ψt(q) := Φrt(q) −Mq · ct .

Note that by Lemma 6.5 we have that Ψt(pt) is a lower
bound on the expected profit and by Lemma 6.7 Ψt

is concave over the simplex. It can hence serve as a
surrogate concave objective function.

Lemma 6.6 leads to the following lemma, which con-
firms that gt is an unbiased gradient estimate of Ψt at
pt.
Lemma 6.13. For all trials t ∈ [T ] and Ψt as defined
in Definition 6.12, we have

∇Ψt(pt) = E[gt | pt] ,

Proof. See Appendix A.7.

Now we have shown that our results carry over to the
case of non-zero costs, we can finally bound the regret
via Lemma 6.8 and the following lemma.
Lemma 6.14. For all trials t ∈ [T ] we have

E

∑
i∈[K]

pt,ig
2
t,i

 ≤ (1 + C)2M(K +M − 1) .

Proof. See Appendix A.8.

This completes the analysis. Although discussed here,
Appendix A.9 formally shows how to piece the lemmas
together in order to prove Theorem 4.2.

7 EXPERIMENTS

We experimentally evaluated the performance of our
method by comparing it against two baselines: Cas-
cadeBandit from Kveton et al. [2015] (in both the
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Figure 1: Cumulative reward over time in the three environment settings is described. The results also display
the 95% confidence intervals over 35 runs with an Intel Xeon Gold 6312U, calculated using the standard error
multiplied by the z-score of 1.96.

UCB and KL settings) and Comband from Cesa-
Bianchi and Lugosi [2012] for M -sized subsets, whose
efficient implementation is described in Appendix D.
We conducted our experiments in various synthetic set-
tings. In each of these environments, a hidden vector
θ ∈ RK is maintained. For each k ∈ [K], the entry θk

represents the probability of obtaining a unit reward.
These values can be viewed as attraction probabilities:
the probability that a user clicks on the specific item.
After presenting a subset of M elements, the learner
gets a unit reward if any of the selected items returns
a 1, and 0 otherwise. It is worth emphasizing that our
model does not necessitate binary rewards; it offers the
flexibility to accommodate any sum-max reward func-
tion (as discussed in Section 2). The use of a binary
reward model is specifically required for comparisons
with click models such as CascadeBandit.

Environments for the experiments. We experi-
mentally evaluated our method in three different syn-
thetic environments. We conducted experiments across
a wide range of values for K, M , T , and for the proba-
bilities associated with both optimal and suboptimal
arms. In Figure 1, we display the cumulative reward
over time obtained with T = 105, K = 20, M = 3
when the environments are set as follows:

1. Stochastic (Figure 1(a)): we randomly select M
good actions to which we assign a reward probability of
0.3. The reward probabilities of the remaining k −M
arms are set to 0.1.

2. Stochastic with adversarial corruptions (Fig-
ure 1(b)): the rewards are generated as in the stochas-
tic setting. However, in the first

√
T rounds all good

actions have a deterministic reward of 0.

3. Worst-case stochastic (Figure 1(c)): this setting

is inspired by the lower bound of Cohen et al. [2017].
Here the set M ⊂ [K] of M good actions is drawn
uniformly at random. Then, for each k ∈ [K], the
probabilities are assigned as follows:

θk =
{
Xk + ϵ if k ∈ M
Xk otherwise ,

where Xk ∼ N

(
1
2 , σ

2
)
,

σ2 = 1
192 + 96 log T and ϵ = σ

√
KM

8T .

In Appendix E we present also results obtained varying
the subset size M .

Results As expected, our most compelling results
were achieved in the adversarial setting, where our
approach demonstrated its superiority. In the two
stochastic settings, we observed results that were on
par with the established baseline methods, affirming
the competitiveness of our proposed approach. These
findings collectively underscore the effectiveness of our
method, particularly in the challenging adversarial con-
text, while also highlighting its versatility in stochastic
scenarios. We emphasize that our method is the most
efficient one, as each prediction only requires sampling
M times from a probability distribution over the K
available actions.

8 FUTURE WORK

In this work we gave a (1 − 1/e)-regret bound of
O(

√
T ) for a specific class of functions which inter-

sects with monotone submodular set-functions. Can
we achieve such a bound for all monotone submod-
ular set-functions? A crucial property used in this
work is that of pseudo-concavity. Can we characterize
other classes of submodular pseudo-concave functions?
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For instance, are all budget-additive functions pseudo-
concave? Since the standard adversarial bandit prob-
lem is a special case of our problem, we know that a
regret of Ω(

√
KT ) is required. Can we prove that a

regret of Ω(
√
MKT ) is required?
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A ANALYSIS PROOFS (PROOF OF THEOREM 4.2)

A.1 Lemma 6.3

Lemma 6.3. Given a function r : 2[K] → R there exists a unique subset decomposition r̃ of r.

Proof. For all k ∈ [K] ∪ {0} define Vk := {S ∈ 2[K] | k ≤ |S|}. We take the inductive hypothesis that for all
k ∈ [K] ∪ {0} there exists a unique function r̃k : Vk → R such that for all Q ∈ Vk we have

r(Q) =
∑

S∈Vk

JQ ⊆ SKr̃k(S) .

We will prove the inductive hypothesis via reverse induction on k (i.e. from k = K to k = 0).

The inductive hypothesis holds for k = K since the only element of VK is [K] so we must have r̃K([K]) := r([K])

Now suppose, for some i ∈ [K] , the inductive hypothesis holds when k = i. Now consider the case that k = i− 1.
Note that for all Q ∈ Vi and S ∈ Vi−1 \ Vi we must have that Q ̸⊆ S and hence we must have that:

r(Q) =
∑

S∈Vi

JQ ⊆ SKr̃i−1(S) ,

so, by the inductive hypothesis, the restriction of r̃i−1 to Vi is equal to r̃i. Now choose some arbitrary Q ∈ Vi−1 \Vi

and define:
v(Q) :=

∑
S∈Vi

JQ ⊆ SKr̃i−1(S)

which, by above, is uniquely defined. Note that for all S ∈ Vi−1 \ Vi we have that Q ⊆ S if and only if S = Q
and hence we must have that:

r(Q) =
∑

S∈Vi

JQ ⊆ SKr̃i−1(S) + r̃i−1(Q) = v(Q) + r̃i−1(Q) ,

so that r̃i−1(Q) = r(Q) − v(Q) which is unique.

We have hence shown that the inductive hypothesis holds for k = i − 1 and hence holds always. Noting that
V0 = 2[K] we then get the result by necessarily setting r̃ = r̃0.

A.2 Lemma 6.5

Lemma 6.5. For all r : 2K → R and all q ∈ ∆K we have Φr(q) = E[r(B(q))].

Proof. Let r̃ be a subset decomposition of r. We have

E[r(B(q))] =
∑

S⊆[K]

r̃(S)P[B(q) ⊆ S]

=
∑

S⊆[K]

r̃(S)
∏

j∈[M ]

P[bj(q) ∈ S]

=
∑

S⊆[K]

r̃(S)
∏

j∈[M ]

∑
i∈[K]

Ji ∈ SKqi

=
∑

S⊆[K]

r̃(S)

∑
i∈[K]

Ji ∈ SKqi

M

= Φr(q)

as required.
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A.3 Lemma 6.6

Lemma 6.6. For all r : 2K → R, all q ∈ ∆K and all i ∈ [K] we have

∂iΦr(q) = E

r(B(q))
qi

∑
j∈[M ]

Jbj(q) = iK

 .
Proof. Let r̃ be a subset decomposition of r. For all q′ ∈ RK and S ⊆ [K] define

ΛS(q′) :=

 ∑
k∈[K]

Jk ∈ SKq′
k

M

.

Fix some j ∈ [M ]. Note that

∂iΛS(q) = MJi ∈ SK

 ∑
k∈[K]

Jk ∈ SKqk

M−1

= MJi ∈ SK
∏

j′∈[M ]\{j}

∑
k∈[K]

Jk ∈ SKqk

= MJi ∈ SK
∏

j′∈[M ]\{j}

P[bj′(q) ∈ S]

= M

qi
P[bj(q) = i]Ji ∈ SK

∏
j′∈[M ]\{j}

P[bj′(q) ∈ S]

= M

qi
P[(bj(q) = i) ∧ (i ∈ S)]

∏
j′∈[M ]\{j}

P[bj′(q) ∈ S]

= M

qi
P[(bj(q) = i) ∧ (bj(q) ∈ S)]

∏
j′∈[M ]\{j}

P[bj′(q) ∈ S]

= M

qi
P[(bj(q) = i) ∧ (∀j′ ∈ [M ] , bj′(q) ∈ S)]

= M

qi
P[(bj(q) = i) ∧ (B(q) ⊆ S)]

= M

qi
E[Jbj(q) = iKJB(q) ⊆ SK] ,

so since:
Φr(q) =

∑
S⊆[K]

r̃(S)ΛS(q) ,

we have

∂iΦr(q) =
∑

S⊆[K]

r̃(S)∂iΛS(q)

= M

qi

∑
S⊆[K]

r̃(S)E[Jbj(q) = iKJB(q) ⊆ SK]

= M

qi
E

Jbj(q) = iK
∑

S⊆[K]

r̃(S)JB(q) ⊆ SK


= M

qi
E[Jbj(q) = iKr(B(q))] .
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Summing over all j ∈ [M ] and dividing by M then gives us

∂iΦr(q) = E

r(B(q))
qi

∑
j∈[M ]

Jbj(q) = iK


as required.

A.4 Lemma 6.7

Lemma 6.7. For all pseudo-concave set functions r : 2K → R we have that Φr is concave over the simplex ∆K .

Proof. Choose any q ∈ ∆K . Define ⟨b′
j(q) | j ∈ [M − 2]⟩ to be a sequence of stochastic quantities drawn i.i.d. at

random from (the probability distribution characterised by) q. In addition, let:

B′(q) := {b′
j(q) | j ∈ [M − 2]} .

Direct from the definition of Φr we have, for all i, i′ ∈ [K], that

∂i∂i′Φr =
∑

S⊆[K]

r̃(S)Ji ∈ SKJi′ ∈ SK

 ∑
k∈[K]

Jk ∈ SKqk

M−2

=
∑

S⊆[K]

r̃(S)Ji ∈ SKJi′ ∈ SK
∏

j∈[M−2]

∑
k∈[K]

Jk ∈ SKqk

=
∑

S⊆[K]

r̃(S)Ji ∈ SKJi′ ∈ SK
∏

j∈[M−2]

P[b′
j(q) ∈ S]

=
∑

S⊆[K]

r̃(S)Ji ∈ SKJi′ ∈ SKP[B′(q) ⊆ S]

=
∑

S⊆[K]

r̃(S)P[B′(q) ∪ {i, i′} ⊆ S]

= E

 ∑
S⊆[K]

r̃(S)JB′(q) ∪ {i, i′} ⊆ SK


= E[r(B′(q) ∪ {i, i′})]

=
∑

S⊆[K]

P[B′(q) = S]r(S ∪ {i, i′})

=
∑

S⊆[K]

P[B′(q) = S]Ur,S
i,i′ .

So for all x ∈ RK with x · 1 = 0 we have

x⊤(∇2Φr(q))x =
∑

i,i′∈[K]

xi(∂i∂i′Φr)xi′

=
∑

i,i′∈[K]

xixi′

∑
S⊆[K]

P[B′(q) = S]Ur,S
i,i′

=
∑

S⊆[K]

P[B′(q) = S]
∑

i,i′∈[K]

xiU
r,S
i,i′ xi

=
∑

S⊆[K]

P[B′(q) = S](x⊤U r,Sx)

≤ 0 ,

which means that Φr is concave on ∆K as required.
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A.5 Lemma 6.10

Lemma 6.10. Let S ⊆ [K] with S ≠ ∅, r : 2[K] → R be a pseudo-submodular function, and Z ⊆ [K] be a set
formed by drawing M elements uniformly at random (with replacement) from S. Then we have

E[r(Z) − r(∅)] ≥

(
1 −

(
|S| − 1

|S|

)M
)

(r(S) − r(∅)) .

Proof. Without loss of generality assume that r(∅) = 0.

We prove by induction on m that the lemma holds whenever M ≤ m. In the case that m = 0 we have
E[r(Z)] = r(∅) = 0 and M = 0 so the result holds. Now assume that it holds for all M ≤ m and consider the
case that M = m+ 1.

Since r is pseudo-submodular choose i ∈ S such that

r(Q ∪ {i}) − r(Q) ≥ r(S) − r(S \ {i}) (5)

for all Q ⊆ S \ {i}. Define σ := |S| and
ϕ := r(S) − r(S \ {i}) . (6)

Let ⟨zs | s ∈ [M ]⟩ be a sequence of M elements drawn uniformly at random from S such that Z = {zs | s ∈ [M ]}.
Define

µ :=
∑

s∈[M ]

Jzs ̸= iK .

For all j ∈ [M ] ∪ {0} let Zj be a set formed by sampling j actions independently and uniformly at random from
S \ {i}.

Note that by the inductive hypothesis, we have

E[Ji /∈ ZKr(Z)] = P[i /∈ Z]E[r(Z) | i /∈ Z]

= P[i /∈ Z]
(

1 −
(

|S \ {i}| − 1
|S \ {i}|

)M
)
r(S \ {i})

= P[i /∈ Z]
(

1 −
(
σ − 2
σ − 1

)M
)
r(S \ {i})

= P[µ = M ]
(

1 −
(
σ − 2
σ − 1

)M
)
r(S \ {i}) . (7)

Note also that
E[Ji ∈ ZKr(Z)] =

∑
j∈[m]∪{0}

P[µ = j]E[r(Zj ∪ {i})] . (8)

By equations (5) and (6) and the inductive hypothesis we have, for all j ∈ [m] ∪ {0}, that

E[r(Zj ∪ {i})] ≥ E[ϕ+ r(Zj)]
= ϕ+ E[r(Zj)]

≥ ϕ+
(

1 −
(

|S \ {i}| − 1
|S \ {i}|

)j
)
r(S \ {i})

= ϕ+
(

1 −
(
σ − 2
σ − 1

)j
)
r(S \ {i}) . (9)

We also have that ∑
j∈[m]∪{0}

P[µ = j] = P[i ∈ Z] . (10)
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Substituting equations (9) and (10) into Equation (8) gives us

E[Ji ∈ ZKr(Z)] = P[i ∈ Z]ϕ+
∑

j∈[m]∪{0}

P[µ = j]
(

1 −
(
σ − 2
σ − 1

)j
)
r(S \ {i}) .

Adding this equation to Equation (7) gives us

E[r(Z)] = P[i ∈ Z]ϕ+
∑

j∈[M ]∪{0}

P[µ = j]
(

1 −
(
σ − 2
σ − 1

)j
)
r(S \ {i}) . (11)

Take any k ∈ S \ {i}. Note that

1 −
(
σ − 2
σ − 1

)j

= 1 − (1 − 1/(σ − 1))j = 1 − P[k /∈ Zj ] = P[k ∈ Zj ] ,

so that

∑
j∈[M ]∪{0}

P[µ = j]
(

1 −
(
σ − 2
σ − 1

)j
)

=
∑

j∈[M ]∪{0}

P[µ = j]P[k ∈ Zj ]

=
∑

j∈[M ]∪{0}

P[µ = j]P[k ∈ Z \ {i} |µ = j]

=
∑

j∈[M ]∪{0}

P[µ = j]P[k ∈ Z |µ = j]

= P[k ∈ Z] .

Substituting into Equation (11) gives us:

E[r(Z)] ≥ P[i ∈ Z]ϕ+ P[k ∈ Z]r(S \ {i})
= P[i ∈ Z](ϕ+ r(S \ {i}))
= P[i ∈ Z]r(S)
= (1 − P[i /∈ Z])r(S)
= (1 − (1 − 1/σ)M )r(S)

=
(

1 −
(

|S| − 1
|S|

)M
)
r(S) .

So the inductive hypothesis holds for all M ∈ [m+ 1] and hence holds always.

A.6 Lemma 6.11

Lemma 6.11. Given any S ⊆ [K] and any pseudo-submodular set function r : 2[K] → R we have

Φr(pS) ≥ r(∅) +
(

1 −
(

|S| − 1
|S|

)M
)

(r(S) − r(∅)) .

Proof. Let Z be a set formed by drawing M elements i.i.d. with replacement from S. Let z be an element drawn
i.i.d. from S. Let r̃ be a subset-decomposition of r. Note that for all i ∈ [K] we have

pS
i = P[z = i] .
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Hence, we have

Φr(pS) =
∑

Q⊆[K]

r̃(Q)

∑
i∈[K]

Ji ∈ QKpS
i

M

=
∑

Q⊆[K]

r̃(Q)

∑
i∈[K]

Ji ∈ QKP[z = i]

M

=
∑

Q⊆[K]

r̃(Q)P[z ∈ Q]M

=
∑

Q⊆[K]

r̃(Q)P[Z ⊆ Q]

=
∑

Q⊆[K]

r̃(Q)E[JZ ⊆ QK]

= E

 ∑
Q⊆[K]

r̃(Q)JZ ⊆ QK


= E[r(Z)] .

So
Φr(pS) − r(∅) = E[r(Z) − r(∅)] ,

Lemma 6.10 then gives us the result.

A.7 Lemma 6.13

Lemma 6.13. For all trials t ∈ [T ] and Ψt as defined in Definition 6.12, we have

∇Ψt(pt) = E[gt | pt] ,

Proof. Take any i ∈ [K]. For any j ∈ [M ] we have

ct,i = pt,ict,i/pt,i

= P[at,j = i | pt]ct,i/pt,i

= E[Jat,j = iKct,i/pt,i | pt] .

So:

Mct,i =
∑

j∈[M ]

E[Jat,j = iKct,i/pt,i | pt]

= E

ct,j

pt,i

∑
j∈[M ]

Jat,j = iK
∣∣∣∣pt

 .
Hence, by Lemma 6.6, we have

∂iΨt(pt) = ∂iΦrt(pt) −Mct,i

= E

rt(B(pt))
pt,i

∑
j∈[M ]

Jbj(pt) = iK

−Mct,i

= E

rt(At)
pt,i

∑
j∈[M ]

Jat,j = iK
∣∣∣∣pt

−Mct,i

= E[gt,i | pt]

as required.
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A.8 Lemma 6.14

Lemma 6.14. For all trials t ∈ [T ] we have

E

∑
i∈[K]

pt,ig
2
t,i

 ≤ (1 + C)2M(K +M − 1) .

Proof. Given i ∈ [K] we have that

E[g2
t,i]

(1 + C)2 = 1
(1 + C)2E

(rt(At) − ct,i)2
∑

j,j′∈[M ]

Jat,j = iKJat,j′ = iK
p2

t,i


≤

∑
j,j′∈[M ]

E

[
Jat,j = iKJat,j′ = iK

p2
t,i

]

=
∑

j∈[M ]

E

[
Jat,j = iK
p2

t,i

]
+

∑
j,j′∈[M ]

Jj ̸= j′KE

[
Jat,j = iKJat,j′ = iK

p2
t,i

]

=
∑

j∈[M ]

P[at,j = i]
p2

t,i

+
∑

j,j′∈[M ]

Jj ̸= j′K
P[at,j = i]P[at,j′ = i]

p2
t,i

=
∑

j∈[M ]

1
pt,i

+
∑

j,j′∈[M ]

Jj ̸= j′K

= M

pt,i
+M(M − 1) ,

and hence

E

∑
i∈[K]

pt,ig
2
t,i

 =
∑

i∈[K]

pt,iE[g2
t,i] ≤ (1 + C)2M(K +M − 1)

as required.

A.9 Theorem 4.2

Theorem 4.2. Given rt is pseudo-concave and pseudo-submodular for all t ∈ [T ] , then for any set S ⊆ [K] with
S ≠ ∅ we have ∑

t∈[T ]

E[ψt] ≥
(
1 − αM

) ∑
t∈[T ]

r̂t(S) − M

|S|
∑

t∈[T ]

γt(S) −R ,

where
α := 1 − 1

|S|
.

Proof. Consider some trial t ∈ [T ]. By Lemma 6.7 and the definition of Ψt we have that Ψt is concave over ∆K .
Hence, by Lemma 6.13, we have

E[(pS − pt) · gt | pt] = (pS − pt) · E[gt | pt]
= (pS − pt) · ∇Ψt(pt)
≥ Ψt(pS) − Ψt(pt) . (12)

Lemma 6.11 gives us:

Ψt(pS) = Φrt(pS) −M
∑

i∈[K]

pS
i ct,i

≥ r(∅) +
(

1 −
(

|S| − 1
|S|

)M
)

(r(S) − r(∅)) − M

|S|
∑
i∈S

ct,i (13)
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and Lemma 6.5 gives us:

Ψt(pt) = Φrt(pt) −M
∑

i∈[K]

pt,ict,i

= E[rt(B(pt))] −M
∑

i∈[K]

pt,ict,i

= E[rt(At) | pt] −M
∑

i∈[K]

pt,ict,i

= E[rt(At) | pt] −
∑

j∈[M ]

∑
i∈[K]

P[at,j = i | pt]ct,i

= E[rt(At) | pt] −
∑

j∈[M ]

E[ct,at,j
| pt]

= E[rt(At) | pt] − E

 ∑
j∈[M ]

ct,at,j

∣∣∣∣pt


≤ E[rt(At) | pt] − E

[∑
i∈At

ct,at,j

∣∣∣∣pt

]
= E[ψt | pt] + rt(∅) . (14)

Substituting equations (13) and (14) into Equation (12) gives us:

E[(pS − pt) · gt | pt] ≥ −E[ψt | pt] +
(

1 −
(

|S| − 1
|S|

)M
)
r̂t(S) − M

|S|
∑
i∈S

ct,i

and hence:

E[(pS − pt) · gt] ≥ −E[ψt] +
(

1 −
(

|S| − 1
|S|

)M
)
r̂t(S) − M

|S|
∑
i∈S

ct,i . (15)

Lemma 6.14 gives us:

E

∑
i∈[K]

pt,ig
2
t,i

 ≤ R2

T
, (16)

Lemma 6.8 gives us: ∑
t∈[T ]

E[(pS − pt) · gt] ≤ ln(K)
η

+ η
∑

t∈[T ]

E

∑
i∈[K]

pt,ig
2
t,i

 . (17)

Substituting equations (15) and (16) into Equation (17) gives us:

−
∑

t∈[T ]

E[ψt] +
(

1 −
(

|S| − 1
|S|

)M
) ∑

t∈[T ]

r̂t(S) − M

|S|
∑

t∈[T ]

∑
i∈S

ct,i ≤ ln(K)
η

+ ηR2 .

Since η = ln(K)/R this implies the result.

B PROOF OF THEOREM 4.3

Theorem 4.3. Suppose that there exists some d ∈ N, s ∈ (0, 1), γ > 1, and a randomized polynomial time
algorithm for the learner such that for all K,M ∈ N and for any instance of the multichannel advertising problem,
it holds that

∣∣At

∣∣ ≤ M for all t = 1, . . . , T and, for any subset S ⊆ [K],

E

∑
t∈[T ]

rt(At)

 ≥
(
1 − αγM

) ∑
t∈[T ]

rt(S) −R′ ,
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where R′ ∈ O(KdT s) and α := 1 − 1
|S| . Then, for all ε ∈

(
0, 1 − 1/γ

)
and B > 41/((1−ε)γ−1), there exists a

randomized polynomial-time algorithm for the set cover problem on [B] that, with probability at least 1
2 , achieves

approximation ratio at least (1 − ε) ln(B).

Proof. Suppose we have such an algorithm. Let c > 0 and γ > 1 be such that

E

∑
t∈[T ]

rt(At)

 ≥

(
1 −

(
|S| − 1

|S|

)γM
) ∑

t∈[T ]

rt(S) − cKdT s . (18)

Choose any ρ ∈ (1/γ, 1) and then consider any B ∈ N such that B > 41/(ργ−1). Consider also any collection of
sets {Ck | k ∈ [K]} ⊆ 2[B] such that ⋃

k∈[K]

Ck = [B] .

Let S be a subset of [K] of minimum cardinality such that⋃
k∈S

Ck = [B] .

Now choose
T :=

⌈
(4cKdB)1/(1−s)

⌉
.

and choose any M ∈ N such that M ≥ ρ ln(B)|S|. For all t ∈ [T ] draw Dt randomly as follows. First draw βt

uniformly at random from [B] and then define

Dt := {k ∈ [K] | βt ∈ Ck} .

It is a classic result that (
|S| − 1

|S|

)|S|

≤ e−1 .

so by the conditions on B and M we have(
|S| − 1

|S|

)γM

≤ exp(−γM/|S|) = B−ργ = B1−ργ

B
<

1
4B . (19)

By definition of S we have, for all t ∈ [T ], that there exists some k ∈ S such that βt ∈ Ck so that Dt ∩ S ̸= ∅.
This implies ∑

t∈[T ]

rt(S) = T ,

and hence, by (18) and (19), we have

E

∑
t∈[T ]

(1 − rt(At))

 ≤ T − T + T

4B + cKdT s ≤ T

4B + TcKd

T 1−s
≤ T

2B . (20)

Fix t and a realization of At. If we have ⋃
k∈At

Ck ̸= [B] ,

then we must also have that

E[1 − rt(At) | At] = P[At ∩ Dt = ∅ | At]
= P[∀ k ∈ At , βt /∈ Ck | At]

= P

[
βt /∈

⋃
k∈At

Ck

∣∣∣∣∣ At

]
≥ 1
B
.
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Hence, by taking the randomness of A1, . . . ,AT into account,

P

∑
t∈[T ]

J
⋃

k∈At

Ck ̸= [B]K = T


≤ P

E
 ∑

t∈[T ]

(
1 − rt(At)

) ∣∣∣∣∣∣ A1, . . . ,AT

 ≥ T

n

 ≤ 1
2

by (20). Since T is polynomial in KB and |At| ≤ M , we have a randomized polynomial-time algorithm that,
with probability at least 1

2 , solves the set cover problem on [B] with approximation ratio (1 − ε) ln(B) for
ε = 1 − ρ ∈

(
0, 1 − 1/γ

)
.

C SUBMODULAR MONOTONE NON-PSEUDOCONCAVE FUNCTIONS

We provide a function counterexample to show that there are submodular monotone functions which are not
pseudoconcave.

Let K = 8, P = 2[K], S = {K}, and α > 0. We define Ur,S as follows:

Ur,S :=



1 2 2 2 1 + α 1 + α 1 + α 1
2 1 2 2 1 + α 1 + α 1 + α 1
2 2 1 2 1 + α 1 + α 1 + α 1
2 2 2 1 1 + α 1 + α 1 + α 1

1 + α 1 + α 1 + α 1 + α 1 2 2 1
1 + α 1 + α 1 + α 1 + α 2 1 2 1
1 + α 1 + α 1 + α 1 + α 2 2 1 1

1 1 1 1 1 1 1 0


.

Now, let x = (1, 1, 1, 1,−1,−1,−1,−1)⊤. Note that we have ⟨x,1⟩ = 0 as required by the pseudoconcavity
definition, and x⊤Ur,Sx = 17 − 24α, which is positive for α ∈

(
0, 17

24
)
, implying therefore the non-pseudoconcavity

of r for such values of α.

We now show how to define r starting from Ur,S in such a way that it is both monotone and submodular while
being therefore also non-pseudoconcave.

We have |P| = 2K = 256 possible subsets as the arguments of r, 29 of which are already defined by the above
matrix Ur,S :

• 1 subset ({K}) with cardinality 1,

• 7 subsets ({j,K}j∈[K−1]) with cardinality 2,

• 21 subsets ({i, j,K}1≤j<i≤K−1) with cardinality 3.

For any i ∈ [K], let δi and ∆i be equal respectively to the minimum and the maximum difference (gain) over
all values of r for subsets with cardinality i and all the ones for subsets with cardinality i − 1. As previously
anticipated, we construct function r starting from the above matrix Ur,S in such a way that for all i ∈ [K − 1],
we have

δi ≥ ∆i+1 ,

which is a sufficient condition for submodularity because, for all i ∈ [K], each subset Si ∈ P with cardinality i
can be generated by adding one of its element only from a subset Si−1 ⊂ Si with cardinality i− 1.

We set α = 2
3 <

17
24 , which guarantees the non-pseudoconcavity of r. To ensure monotonicity and submodularity,

we define
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• r(S1) := 0 for all subsets S1 ∈ P with |S1| = 1 (consistently with Ur,S
K,K);

• r(S2) := 1 for all subsets S2 ∈ P with |S2| = 2 (consistently with Ur,S
K,j , U

r,S
j,j , U

r,S
j,1 for all j ∈ [K − 1]);

• r(S3) := 1 + 2
3 = 5

3 for all subsets S3 ∈ P with |S3| = 3 that are not already defined by Ur,S ;

• r(S4) := r(S3) + 1
2 = 5

3 + 1
2 = 2 + 1

6 > maxi,j U
r,S
i,j = 2 for all subsets S4 ∈ P with |S4| = 4;

• r(S5) := r(S4) + 1
6 = 2 + 2

6 ,
r(S6) := r(S5) + 1

6 = 2 + 3
6 ,

r(S7) := r(S6) + 1
6 = 2 + 4

6 ,
r(S8) := r(S7) + 1

6 = 2 + 5
6

for all subsets S5, S6, S7, S8 ∈ P such that |S5| = 5, |S6| = 6, |S7| = 7, |S8| = 8.

Finally, we also set r(∅) = −1. Note that, to ensure that submodularity is not violated, for each subset SU
3 with

|SU
3 | = 3 defined by Ur,S , we have that the difference r(SU

3 ) − r(S2) for any subset S2 ⊂ SU
3 with |S2| = 2 is

either equal to α = 2
3 or 1, that is not smaller than the maximum difference r(S4) − r(S3) over all S3, S4 ∈ P

with |S3| = 3 and |S4| = 4, which in turn is equal to 1
2 <

2
3 . Furthermore, r(S4) = 2 + 1

6 is never smaller than
any values of r(SU

3 ) for all subsets SU
3 ∈ P with |S3| = 3 that are already defined by Ur,S , because we have

r(SU
3 ) ≤ 2, thereby preserving monotonicity for all subsets in P with cardinality smaller or equal to 4.

Now, we recall that for any i ∈ [K], δi and ∆i are defined to be respectively equal to the minimum and the
maximum difference (gain) over all values of r for subsets with cardinality i and all the ones for subsets with
cardinality i− 1. Since we have

• δ1,∆1, δ2,∆2 = 1 (which immediately implies ∆2 ≤ δ1),

• δ3 = 2
3 ; ∆3 = 1 ≤ δ2,

• δ4 = 1
6 ; ∆4 = 1

2 ≤ δ3,

• δ5,∆5, δ6,∆6, δ7,∆7, δ8,∆8 = 1
6 ≤ δ4,

then δi ≥ ∆i+1 for all i ∈ [K − 1] which guarantees the submodularity of r. Finally, it is immediate to verify that
r is monotone also for all subsets in P with cardinality larger than 4. Hence, we conclude that r is monotone
submodular and non-pseudoconcave.

D EFFICIENT IMPLEMENTATION OF COMBAND

To implement the algorithm the ComBand presented in Cesa-Bianchi and Lugosi [2012], it is necessary to devise
an efficient method for sampling from a set whose size can be exponential in K. In fact, at each trial, given a set
S of positive real numbers, we need to select any of the subsets S with a given size m from S with a probability
proportional to the product of the elements contained in S itself.

To be consistent with the notation used in Cesa-Bianchi and Lugosi [2012], henceforth we use the symbol d in
place of K.

Given a set S = {q1, q2, . . . , qd} of real positive numbers, we now show how to select a m-sized subset of indices
{u1, . . . , um} from [d] with a probability proportional to Πm

i=1qui
by using dynamic programming. The running

time of this sampling method is always linear2 in m · d.

For each sampling operation, consider the sequence of element indices u1, u2, . . . , um ordered according to the
elements in [d], i.e., ui < ui+1 for all i ∈ [m− 1].

2We assume that multiplying two numbers requires a constant time. Removing this assumption, since it is known that
it is possible to multiply two numbers represented by at most m bits in time equal to Õ(m) when m ≫ 1 Harvey and Van
Der Hoeven [2021], the total sampling time would be Õ(m2d) instead of O(md).
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The main idea of this method is to sample first um, and then um−1, . . . , u1 (i.e., in reverse order) having derived
in a preliminary phase via dynamic programming all the probabilities that um = j for all m ≤ j ≤ d, and the
conditional probabilities that um′ = j given that um′+1 = j′, for all m′ ∈ [m− 1] and m′ ≤ j < j′ ≤ d−m+m′.

We denote the conditional probability that um′ = j given that um′+1 = j′, where m′ ∈ [m − 1] and m′ ≤ j <
j′ ≤ d−m+m′ by

Pm′,j|j′ := P(um′ = j|um′+1 = j′) ,

and, for the selection of um, we define for all j ∈ [d]

Pm,j := P(um = j) ,

because there is no element uj′ > um (with j′ > m) in the sequence of selected indices from [d]. We clearly have∑j′−1
j=m′ Pm′,j|j′ = 1 and

∑d
j=m Pm,j = 1.

For each m′ ∈ [m] and m′ ≤ j ≤ d−m+m′ let zm′,j , be the the sum of the products of numbers of S with indices
u1, u2, . . . , um′ contained in each m′-sized subset of [j] such that um′ = j. We define Zm′,k :=

∑k
i=m′ zm′,i for

any integer k such that m′ ≤ k ≤ d−m+m′. Thus, for all m′ ∈ [m− 1] and m′ ≤ j < j′ ≤ d−m+m′ we have

Pm′,j|j′ = zm′,j

Zm′,j′−1
.

Analogously, for the selection of um, for all m ≤ j ≤ d we can write

Pm,j = zm,j

Zm,d
.

Hence, once we obtain zm′,j and Zm′,j′−1 for all m′ ∈ [m − 1] and m′ ≤ j < j′ ≤ d − m + m′, zm,j for all
m ≤ j ≤ d, and Zm,d, we can immediately compute the desired probabilities to sample um, um−1, . . . , u1 in this
(reverse) order.

We now show how to calculate these values. To this goal, since Zm′,k :=
∑k

i=m′ zm′,i, we only need to show how
to compute the values appearing at the numerator in the above probability formulas.

The possibility to efficiently the above probabilities is given by the following observation:

zm′,j = Zm′−1,j−1 · qj .

Note that Zm′−1,j−1 can be in turn defined in terms of zm′−1,m′−1, zm′−1,m′ , zm′−1,m′+1, . . . , zm′−1,j−2, zm′−1,j−1.
This recurrence relation allows us to compute all these values once we know z1,1, z1,2, . . . , z1,d. Since we clearly
have z1,j = qj for all j ∈ [d], we can therefore compute all these values and the above probabilities to efficiently
accomplish this sampling operation by finding the indices um, um−1, . . . , u1 in this order. It is immediate to verify
that both the number of sum and multiplication operations are equal to Θ(md).

E ADDITIONAL EXPERIMENTAL RESULTS
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Figure 2: Stochastic environment, cumulative reward with respect to the M parameter
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Figure 3: Stochastic with adversarial corruptions environment, cumulative reward with respect to the M parameter
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Figure 4: Worst case stochastic environment, cumulative reward with respect to the M parameter
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