
Deep anytime-valid hypothesis testing

Teodora Pandeva Patrick Forré Aaditya Ramdas
University of Amsterdam University of Amsterdam Carnegie Mellon University

Shubhanshu Shekhar
Carnegie Mellon University

Abstract

We propose a general framework for con-
structing powerful, sequential hypothesis
tests for a large class of nonparametric test-
ing problems. The null hypothesis for these
problems is defined in an abstract form
using the action of two known operators
on the data distribution. This abstraction
allows for a unified treatment of several
classical tasks, such as two-sample test-
ing, independence testing, and conditional-
independence testing, as well as modern
problems, such as testing for adversarial ro-
bustness of machine learning (ML) models.
Our proposed framework has the following
advantages over classical batch tests: 1) it
continuously monitors online data streams
and efficiently aggregates evidence against
the null, 2) it provides tight control over
the type I error without the need for mul-
tiple testing correction, 3) it adapts the
sample size requirement to the unknown
hardness of the problem. We develop a
principled approach of leveraging the rep-
resentation capability of ML models within
the testing-by-betting framework, a game-
theoretic approach for designing sequential
tests. Empirical results on synthetic and
real-world datasets demonstrate that tests
instantiated using our general framework
are competitive against specialized base-
lines on several tasks.

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

1 INTRODUCTION

We consider an abstract class of nonparametric hy-
pothesis testing problems characterized by the ac-
tion of two known operators (denoted by T1 and T2)
on the data generating distribution. Under the null,
it is assumed that the transformed distributions re-
sulting from the action of these two operators are
the same, while under the alternative, it is assumed
that the two transformed distributions are different.
Formally, suppose the observations Z1, Z2, . . . are
Z-valued observations drawn i.i.d. from PZ , and
Ti : Z → W (for some space W possibly different
from Z) for i = 1, 2 denote a pair of operators acting
on the observation space. Then, we want to test

H0 : T1(Z)
d
= T2(Z) vs. H1 : T1(Z)

d

̸= T2(Z). (1)

This abstract formulation allows for a unified treat-
ment of several classical and modern problems rang-
ing from two-sample and independence testing, to
certifying adversarial robustness and group fairness
of machine learning models (details in Section 2).

In this paper, we propose a deep learning-based
strategy for designing powerful sequential tests
for (1). Compared to classical batch tests, well-
designed sequential tests have several benefits: they
are valid under optional continuation, can consoli-
date evidence from possibly dependent experiments,
and are computationally cheaper than permutation
tests. Our results further enhance these advan-
tages by presenting a principled approach to harness
the representational power of deep neural networks
(DNNs) in the context of sequential testing. As a
result, our tests are particularly well-suited for han-
dling complex data types, such as images and videos.

Contributions. Our main contribution is a uni-
fied data-driven strategy for designing powerful se-

Deep anytime-valid hypothesis testing

quential tests for (1). Since this abstract formulation
models a large class of practical applications, our
approach effectively yields new sequential tests for
all these problems in one shot. This contrasts with
some recent works in this area that propose special-
ized sequential tests for these individual problems.

Our design strategy is guided by the principle of
“testing by betting” (Shafer, 2021). This principle
translates the task of designing sequential tests into
that of increasing the wealth of a fictitious bettor
in repeated betting games that are fair under the
null. Some recent works using this principle (de-
tails in Section 3) decouple this task (of setting
up and betting on fair games) into separate betting
and payoff-design problems, mainly due to analyti-
cal tractability. Our work is motivated by the ob-
servation that this decoupling is unnecessary, and we
instead develop a class of tests based on joint learn-
ing of both the payoff and the bets using deep learn-
ing models. In other words, unlike related sequen-
tial tests, the deep learning models in our framework
are trained to directly optimize the growth rate of
the wealth of the bettor, without the separation into
betting and payoff design.

Building on this basic idea, we develop a general se-
quential test for the abstract testing problem in Sec-
tion 4 and its extension to randomization hypothesis
testing in Section 5. This test relies on incremen-
tally updated DNN (or more generally, any machine
learning) models on batches of observations. We
show in Proposition 4.3 that this test provides tight
non-asymptotic type-I-error control under the null,
and is consistent (i.e., rejects the null almost surely)
against arbitrary fixed alternatives, under very mild
conditions on the learning algorithm.

Finally, in Section 6, we instantiate and empirically
evaluate our general test for several important ap-
plications, such as two-sample testing, conditional
independence testing, group invariance testing and
certifying adversarial robustness. Our empirical re-
sults show that the proposed framework offers tests
that are competitive and often superior to state-of-
the-art tests tailored to the specific tasks.

2 MOTIVATING APPLICATIONS

We now illustrate the utility of studying the abstract
testing problem (1), by showing that it models sev-
eral important applications in a unified manner.

Example 2.1 (Paired Two-sample testing). Given
a stream of paired observations: {(Xt, Yt) : t ≥ 1}
drawn i.i.d. from a distribution PX × PY on a

product space X × X , our goal is to decide be-
tween the null, H0 : PX = PY , against the alter-
native H1 : PX ̸= PY . This is a nonparametric test-
ing problem with a composite null and a compos-
ite alternative. The null hypothesis class, however,
has an interesting symmetry: the joint distribution
of (X,Y) is the same as the joint distribution of

(Y,X). We can formally state this as H0 : (X,Y)
d
=

Tswap((X,Y)), where Tswap : X × X → X × X , and
Tswap((x, y)) = (y, x).

Example 2.2 (Conditional independence testing).
Given observations {(Ut, Vt,Wt) : t ≥ 1} drawn i.i.d.
from PUVW , we want to test whether U ⊥⊥ V |W or
not. This problem is fundamentally impossible with-
out further assumptions (Shah and Peters, 2020),
and a common structural assumption is that the
conditional PU |W is known (the model-X assump-
tion (Candes et al., 2018)). We can now reframe
this problem as follows:

• Given (U, V,W), generate a new Ũ ∼ PU |W (·|W),

and let Z denote
(
(U, V,W), (Ũ , V,W)

)
.

• Let T1 and T2 denote the coordinate projections:
T1(Z) = (U, V,W) and T2(Z) = (Ũ , V,W).

With these definitions, conditional indepen-
dence (CI) testing falls under the abstract frame-
work defined in (1).

Testing for invariance under group actions, such as
rotations, is another instantiation of (1).

Example 2.3 (Rotation invariance testing). Given
a stream of observations {(Xt, Yt) : t ≥ 1}, where the
Xt’s denote images of the (handwritten) digit “6”,
while dataset Yt’s are images that, at a glance, rep-
resent the digit “9”. However, these may essentially
be the digit “6” but rotated. We aim to determine
the statistical relationship between Xt and T180(Yt):
the 180 degree rotations of Yt. Essentially, we want
to decide whether (Yt)t≥1 are merely rotated ver-
sions of “6”, or truly represent the digit “9”. Us-
ing the swap operator from Example 2.1, we define
two distinct operators: T1 = (T180, Tid) ◦ Tswap, and
T2 = (Tid, T180), with Tid being the identity map-
ping. Then, the above-defined test is equivalent to

testing H0 : T1(Z)
d
= T2(Z), where Z = (X,Y).

Our general framework is not restricted to simple op-
erators with closed-form expressions as in the exam-
ples above. In fact, the operators involved can even
be general function approximators, such as large
neural networks.

Teodora Pandeva, Patrick Forré, Aaditya Ramdas, Shubhanshu Shekhar

Example 2.4 (Adversarial Examples). We now
consider the problem of certifying the robustness of
a trained machine learning model h to adversarial
perturbations (Szegedy et al., 2014). In particular,
let Tadv denote the adversarial attack that maps an
input X to its adversarially perturbed version X̃.
Furthermore, let Th denote the output of a specific
layer (for example, a bottleneck layer) of the model.
Then, our goal is to decide if the distributions of
Y = Th(X) and Ỹ = Th(X̃) are equal or not. In
other words, the null states that the distribution of
X after applying Th and Th ◦ Tadv is the same.

Further examples of (1), such as tests for group
fairness and independence, are available in Section 8.

3 RELATED WORK

The abstract testing problem studied in this paper
is motivated by the general task of testing for in-
variance to the action of finite groups, stated as the
randomization hypothesis by Lehmann and Romano
(2022, Definition 17.2.1). In fact, the ideas we de-
velop can also be extended to deal with the formula-
tion of Lehmann and Romano (2022) (See Section 5).

From a methodological perspective, our techniques
are related to the growing body of recent work
on safe anytime-valid inference (SAVI), surveyed
by Ramdas et al. (2022). Our design strategy fol-
lows the principle of testing by betting (Shafer, 2021),
which states that the evidence against a null can be
precisely characterized in terms of the gain in wealth
of a (fictitious) bettor, who repeatedly bets on the
observations in betting games with odds that are
fair (or sub-fair) under H0. This principle has been
used by several authors, such as Shekhar and Ram-
das (2023); Podkopaev et al. (2023); Podkopaev and
Ramdas (2023); Shaer et al. (2023), to transform dif-
ferent hypothesis testing problems into that of de-
signing relevant betting strategies and payoff func-
tions. For example, Shekhar and Ramdas (2023)
considered the two-sample testing problem (Exam-
ple 2.1), and defined the wealth process of the bettor
as follows for t ≥ 1:

Wt = Wt−1 ×
(
1 + λt

(
gt(Xt)− gt(Yt)

))
,

for some [−1/2, 1/2]-valued payoff functions (gt)t≥1,
and for bets λt ∈ [−1, 1] and W0 = 1. By construc-
tion, the process (Wt)t≥0 satisfies the requirement
of fair payoffs under the null, as it is a non-negative
martingale. The term λt is a predictable bet, whose
absolute value denotes the fraction of the accumu-
lated wealth that is placed at stake in round t.

Hence, the approach of Shekhar and Ramdas (2023),
reduces the problem of two-sample testing into that
of developing appropriate strategies for selecting
(gt)t≥1 (the prediction strategy) and (λt)t≥1 (the
betting strategy). There exist off-the-shelf betting
strategies in the literature on online learning, such
as the online Newton step (ONS) strategy (Hazan
et al., 2007), that ensure exponential growth of
the wealth process for arbitrary (gt)t≥1 under the
alternative. For the prediction strategy, Shekhar
and Ramdas (2023) suggested selecting (gt)t≥1 that
approximate the witness function (g∗) associated
with statistical distance metrics with variational rep-
resentations (such as Kolmogorov-Smirnov metric,
kernel MMD, f -divergence, etc). A similar approach
was followed by Podkopaev et al. (2023) and Shaer
et al. (2023) for the problems of independence and
conditional independence testing.

Machine learning models (classifiers or regressors)
have proven highly effective in developing tests for
complex data structures; see (Kim et al., 2021) and
references therein for more details. Even within the
SAVI framework, some prior works such as Pod-
kopaev and Ramdas (2023); Pandeva et al. (2022);
Lhéritier and Cazals (2018) propose two-sample and
independence tests based on classifiers. Unlike these
works, our approach is geared towards a general class
of problems modeled by (1) and uses models trained
directly to optimize the statistical test performance.

4 METHODOLOGY

We study the testing problem described in (1), un-
der the assumption that we observe a stream of
datapoints arriving in mini-batches (Bt)t≥1, where
Bt = {Z(t−1)b+1, . . . , Ztb} denotes the t-th mini-
batch consisting of b i.i.d. observations. Our objec-
tive is to design a procedure to continuously monitor
the stream, aggregate evidence against the null, and
stop and reject the null as soon as sufficient evidence
is collected. Formally, such procedures are called se-
quential tests of power one, following Darling and
Robbins (1968), and we state their definition below.

Definition 4.1. Given a significance level
α ∈ (0, 1), and a stream of mini-batches,
{Bt : t ≥ 1}, consisting of i.i.d. samples drawn
from a distribution PZ , consider the testing prob-
lem introduced in (1). A level-α sequential test
of power one for this problem is a stopping time,
γ, adapted to the natural filtration (Ft)t≥0, with
Ft = σ(B1, . . . , Bt), satisfying

PH0
(γ <∞) ≤ α, and PH1

(γ <∞) = 1.

Deep anytime-valid hypothesis testing

In other words, γ denotes a data-driven stopping
rule at which the data-analyst stops collecting more
data, and rejects the null. It is required that if the
null holds, the probability that the test stops, i.e. it
rejects the null, is bounded by α. In contrast, if the
alternative is true this probability should be 1 which
guarantees the consistency of the test.

4.1 Oracle Sequential Test

We begin by formulating an ‘oracle’ sequential test
for (1), that assumes full knowledge of the true dis-
tribution PZ . While this test is impractical, it pro-
vides the template for designing our practical data-
driven sequential test.

Let G = {gθ : θ ∈ Θ} denote a class of machine
learning models parameterized by Θ. For example,
G might represent a class of deep learning models,
with the parameter set Θ specifying the architecture.
We make the following assumptions on this function
class in this paper.

Assumption 1. The parametrized function class
G = {gθ : θ ∈ Θ} satisfies the following properties:

• Every g ∈ G satisfies |g(x)| ≤ q for all x ∈ W,
for some q ∈ (0, 1/2).

• If a function g belongs to G, then so does c · g,
for every c ∈ [−1, 1].

It is easy to verify that both these conditions can be
satisfied by modifying any class of neural networks
by using an appropriate activation function to re-
strict the output values in the required interval.

Since DNNs satisfy the universal approximation
property for sufficiently large choices of the architec-
ture (Hornik, 1991; Cybenko, 1989), for two distinct
distributions P ̸= Q on Z with P ◦ T −1

1 ̸= P ◦ T −1
2 ,

we can infer that

sup
θ∈Θ

E [g̃θ(Z, T1, T2)] > 0, (2)

where g̃θ(z, T1, T2) := gθ ◦ T1(z) − gθ ◦ T2(z). In
other words, if the class of “test-functions” G is rich
enough, we can use it to distinguish between any
two distinct transformed distributions P ◦ T −1

1 and
P ◦T −1

2 . We now record a simple consequence of the
assumptions made on the function class G.
Proposition 4.2. Under Assumption 1, the condi-
tion (2) is equivalent to

sup
θ∈Θ

E [log (1 + g̃θ(Z, T1, T2))] > 0. (3)

This statement is proven in Section 10.1 and is fun-
damental to the construction of the proposed test.

In the sequel, we will drop the T1 and T2 dependence
of g̃, and simply write g̃θ(z) ≡ g̃θ(z, T1, T2). Using
the above proposition, we can define the ‘oracle’ pa-
rameter, θ∗ ≡ θ∗(PZ , T1, T2) as follows:

θ∗ ∈ argmax
θ∈Θ

EPZ
[log (1 + g̃θ(Z))] .

Thus, θ∗ represents the log-optimal function in G,
and we can use it to define an oracle sequential test

γ∗ = inf{t ≥ 1 : W ∗
t ≥ 1/α}, (4)

where W ∗
t =

∏t
l=1

∏
Z∈Bl

(1 + g̃θ∗(Z)). It is easy to
verify that γ∗ is a sequential test according to Def-
inition 4.1. In particular, it ensures the control of
type-I error at level-α under H0, and is finite almost
surely under the alternative.

The test defined above is not practical, as it depends
on the ‘oracle’ parameter θ∗, which is a function of
PZ . To construct a practical test, we instead use
predictable empirical estimates of θ∗1. This is ex-
plained in detail in the following.

4.2 Practical sequential test

For the practical test, we propose to replace (W ∗
t)t≥0

in (4) with a data-driven process (Wt)t≥0, that we
refer to as the wealth process following the standard
convention as discussed in Section 3. We setW0 = 1,
denoting the bettor’s initial investment, and update
Wt to Wt−1 × St for t ≥ 1, with St representing the
gain (or loss) made while betting on the t-th batch
of observations. We refer to this increment St as the
betting score following Shafer (2021).

Algorithm 1 provides a detailed pseudocode describ-
ing the steps involved in the construction of our se-
quential test. The inputs to this algorithm include
the stream of mini-batches (Bt)t≥1, test-specific op-
erators (T1 and T2), significance level α ∈ (0, 1),
the maximum time horizon Tmax, and a deep learn-
ing (or any other machine learning) model initial-
ized at θ0. The algorithm then proceeds by repeat-
ing the following steps for all t ≥ 1: it observes
the next mini-batch Bt, computes the betting score
St by calling the ComputeScore subroutine, and up-
dates the model to θt by calling the UpdateModel

subroutine. The updated wealth Wt is obtained by
using the betting score St, and the algorithm stops

1As a warm-up, we also construct and theoretically
analyze a practical batch test based on sample-splitting
in Section 9 of the appendix.

Teodora Pandeva, Patrick Forré, Aaditya Ramdas, Shubhanshu Shekhar

and rejects the null if Wt exceeds the threshold 1/α.
This general approach is illustrated for two-sample
testing with paired observations in Figure 1.

0 20 40 60 80 100

Paired observations under H1

(Xt)t≥1

(Yt)t≥1

0 20 40 60 80 100

rejection threshold (1/α)

(Wt)t≥1

γ = 100

t (time)

Stopping Rule (γ)

Figure 1: Illustration of our general strategy for the
problem of two-sample testing with paired observa-
tions. The top figure shows the stream of observa-
tions under the alternative, while the bottom figure
plots the variation of the wealth process (Wt)t≥1.
As we can see, after an initial period (≈ t ≤ 50),
the wealth process grows rapidly and exceeds the re-
quired threshold at t = 100, at which point we stop
collecting more observations and reject the null.

To complete the description of our scheme, we now
present the details of the two subroutines.

Compute Betting Score (ComputeScore). In
round t ≥ 1, this subroutine takes the inputs:

• Dt−1 = ∪t−1
i=1Bi: the data observed so far.

• The model θt−1, trained on Dt−1.

• Bt = {Z(t−1)b+1, . . . , Ztb}: the new mini-batch.

• T1, T2: the operators defining the null.

Using these inputs, this subroutine computes and
returns the next multiplicative increment, or betting

score, (St) of the wealth process, which is defined as

St =

b∏
j=1

(
1 + g̃θt−1(Z(t−1)b+j)

)
. (5)

With this, we update the wealth process
Wt ←Wt−1 × St. We reject the null if Wt ≥ α−1,
otherwise, we proceed to the next step:

Model Update (UpdateModel). This subroutine
updates and returns a model θt on the data set
Dt = Dt−1 ∪Bt, i.e. θt maximizes the objective

θt ∈ argmax
θ∈Θ

t∑
l=1

∑
Z∈Bl

log(1 + g̃θ(Z)) (6)

The input training params refers to all training pa-
rameters needed for model refinement. In particu-
lar, this includes parameters that are required for
the optimization (such as the learning rate for the
optimizer) and those that set the criteria for early
stopping to prevent model overfitting. Importantly,
our framework is versatile enough to incorporate
any learning and model selection process, including
methods such as cross-validation. For implementa-
tion details of this step see Sections 6 and 11.

Consistency. The stopping time constructed
by Algorithm 1 can be formally defined as

γ = inf{t ≥ 1 : Wt ≥ 1/α}.

As mentioned earlier, γ represents the time at
which the data-analyst stops collecting more obser-
vations (i.e., mini-batches), and declares the null to
be not true. We now show that γ is finite under
the null with a probability no larger than α, and
under the alternative with probability 1 (assuming
Tmax is large enough). In simpler terms, the follow-
ing theoretical result confirms that the sequential
test from Algorithm 1 is consistent while maintain-
ing non-asymptotic type I error control.

Proposition 4.3. Suppose the learning algorithm
satisfies the condition

lim inf
t→∞

E[log(1 + g̃θt(Z))|Ft]

2c
√
log(t)/t

a.s.
> 1, under H1

for a universal constant c. Then, we have

PH0(γ <∞) ≤ α, and PH1(γ <∞) = 1.

In words, γ is a sequential level-α test of power one.

The proof is provided in the appendix (Section 10.3).

Deep anytime-valid hypothesis testing

Remark 4.4. The condition required of the learn-
ing algorithm by Proposition 4.3 for consistency of
γ under H1 is very mild. Informally, we only require
E[log(1+g̃θt(Z))|Ft] to be larger than 2c

√
log(tb)/tb

for large t, and in particular, this value can even con-
verge to 0. In practice, most models converge to a lo-
cal optimum θ∞ with E[log(1 + g̃θ∞(Z))] > 0, which
is much stronger than the condition required above.
Such strong performance guarantees on learning al-
gorithms can lead to stronger statistical properties
of the test (such as bounds on EH1

[γ]). We leave
such extensions to future work.

Algorithm 1: Sequential Test

Input: {Bt}t≥1 (batch stream), T1, T2
(operators), Tmax (maximum rounds of
observations), α (size of the test), θ0 (a
trainable model).

W0 ← 1, D0 ← ∅.
Initialize the model to an arbitrary value θ0.
for t← 1 to Tmax: do

Observe the next batch
Bt = {Z(t−1)b+1, . . . , Ztb} ;

Compute the multiplicative increment:
St ← ComputeScore (Bt, θt−1, T1, T2, σ) ;

Update the wealth process:
Wt ←Wt−1 × St ;
Check for stopping condition:
if Wt ≥ 1/α then

Stop and reject the null

Increment Data: Dt = Dt−1 ∪Bt;
Update the model: θt ←
UpdateModel(Dt, θt−1, training params);

5 EXTENSION TO
RANDOMIZATION
HYPOTHESIS TESTING

The abstract problem (1) tests whether the data dis-
tributions, after being transformed by operators T1
and T2, are the same or not. We now study a general-
ization of this in which T1 and T2 could be one among
finite disjoint classes of operators. This extension is
motivated by the so-called randomization hypoth-
esis assumption of Lehmann and Romano (2022,
§ 17.2.1). More formally, we consider testing prob-
lems with null defined as

H0 : T1(Z)
d
= T2(Z), ∀T1 ∈ O1,∀T2 ∈ O2 (7)

for finite disjoint sets of operators O1 ⊂ WZ and
O2 ⊂ WZ . This formulation is highly flexible and

covers a wide range of complex hypotheses, from
those testing invariance under permutations to di-
verse group actions, as illustrated in Example 8.4.
By using the general strategy we developed in Sec-
tion 4, we can construct a sequential test for this
problem, by simply modifying the training objective
from (6) of the machine learning model as follows:

θt ∈ argmax
θ∈θ

t∑
l=1

∑
Z∈Bt

log (1 + ET1,T2 [g̃θ(Z, T1, T2)]) ,

ET1,T2
[g̃θ(Z, T1, T2)] =

∑
T1,T2

gθ ◦ T1(Z)− gθ ◦ T2(Z)

|O1||O2|
.

Essentially, the model aims to maximize the growth
rate by calculating the average payoffs across all op-
erator pairs. If there is a noticeable difference in one
of the components gθ ◦T1(Z)−gθ ◦T2(Z) it suggests
the alternative hypothesis might hold. Similar to the
previous section, the model can be incrementally re-
fined with each new data batch. At the same time,
the wealth process can be monitored with betting
scores at time t defined as

St =

b∏
j=1

(1 + ET1,T2

[
g̃θt−1

(Z(t−1)b+j , T1, T2)
]
).

Following the same arguments as Proposition 4.3,
we can show that the resulting sequential test for
(7) provides finite-sample type I error control and
consistency guarantees.

6 EXPERIMENTS

In this section, we instantiate our general strategy,
which we refer to as DAVT, to a wide range of
tasks: two-sample testing, rotation invariance test-
ing, robustness to adversarial attacks, and condi-
tional independence under the model-X assumption.
We compare DAVT to popular nonparametric base-
lines, including sequential methods such as the two-
sample tests: E-C2ST (Lhéritier and Cazals, 2018;
Pandeva et al., 2022) and Seq-IT with a batch-
wise ONS betting strategy (Podkopaev and Ramdas,
2023) and the conditional independence test ECRT
(Shaer et al., 2023). In this group of baselines, we in-
clude permutation-based nonparametric tests such as
the MMD test (Gretton et al., 2012) and the clas-
sifier two-sample test (S-C2ST) (Kim et al., 2021;
Lopez-Paz and Oquab, 2017). The latter two tech-
niques have a “non-sequential” decision rule based
on a p-value computed on a single batch. Although
this approach may not be entirely appropriate, in
our experiments we apply these tests in a sequen-
tial manner. More precisely, with each new batch

Teodora Pandeva, Patrick Forré, Aaditya Ramdas, Shubhanshu Shekhar

Figure 2: Power and type I error analysis for the Blob dataset. We compared three variations of our method
(DAVT (Independence), DAVT (Swap), DAVT (Projection)) to sequential baselines (E-C2ST, Seq-IT) and
non-sequential ones (S-C2ST, MMD Test). We fixed the batch size to be 90. DAVT (our method) with the
projection operators (in green) and E-C2ST show the best performance, followed by Seq-IT. This order in
performance is also confirmed by the histogram of the stopping times.

of data, we calculate a p-value to guide our testing
process. For S-C2ST, this involves retraining the
classifier on the previously collected data. However,
unlike the sequential tests considered, we do not in-
corporate a stopping rule for the non-sequential S-
C2ST and MMD tests.

For a fair comparison, we implement all con-
sidered data-driven tests using the same net ar-
chitectures. Details of the selected DNNs, and
their training procedures can be found in Sec-
tion 11. The code to reproduce the experiments
is provided at https://github.com/tpandeva/

deep-anytime-testing. We evaluate all tests by
monitoring the rejection rates (power and type I er-
ror) over time from 100 independent runs, performed
at a significance level of α = 0.05. In our empirical
evaluation on standard benchmark datasets, DAVT
shows competitive, if not superior, results to its spe-
cialized counterparts.

6.1 Two-Sample Testing

The two-sample testing problem can be modeled
in several ways using distinct operators within our
framework. For instance, in Example 2.1, we mod-
eled it using the operators T1 := Tswap and T2 := Tid.
Alternatively, the operators T1(x, y) = x and
T2(x, y) = y also characterize the two-sample test-
ing problem which we refer to as DAVT-Projection.
Finally, another option is to formulate two-sample
testing as an instance of independence testing. This
is achieved by introducing a binary variable L and
a variable W such that P (W |L = 1) = P (X) and
P (W |L = 0) = P (Y). Then, the two-sample test
transforms into testing the independence of W and
L, using the operator defined in Example 8.1.

Building on this observation, we evaluate the above
two-sample tests along with the baselines on the
Blob dataset (Chwialkowski et al., 2015). This
dataset contains two classes of data, X and Y , both
representing nine Gaussians on a two-dimensional
grid that differ in their variances (see Figure 7).
The results, summarized in Figure 2, show the supe-
rior performance of DAVT-Projection (our method)
(shown in green), closely followed by the sequen-
tial methods E-C2ST and Seq-IT. Conversely, other
DAVT variants did not deliver comparable perfor-
mance. For example, using only the swap operator
(DAVT-Swap) results in poor test performance. One
possible explanation of this could be the inherent
attempt of the neural network to find correlations
between X and Y , which contradicts the problem
setup that X and Y are independent. We explore
the test performance for dependent X and Y in Sec-
tion 11.3.3. Moreover, DAVT-Independence is not
as powerful as the top sequential methods on this
task, but it achieves maximum power faster than
the non-sequential methods.

Overall, our two-sample experiment highlights the
strengths of sequential methods over batch tests. By
construction, well-designed sequential tests continu-
ously monitor the data stream to accumulate evi-
dence against the null. Thus, instead of setting a
fixed sample size, using sequential methods allows
for dynamically tailoring the sample size to the com-
plexity of the task in a data-driven manner. This
adaptability is illustrated in Figure 2, showing the
stopping times distribution of the top three per-
formers from the power experiment. Here, DAVT-
Projection and E-C2ST reject the null more quickly
than Seq-IT, indicating a more efficient use of data.

https://github.com/tpandeva/deep-anytime-testing
https://github.com/tpandeva/deep-anytime-testing

Deep anytime-valid hypothesis testing

Figure 3: CIT Power and Type I error control.
DAVT-CIT (ours) increases power faster than ECRT
while keeping a very low Type I error.

6.2 Conditional Independence Testing
under Model-X Assumption

We use the synthetic example of (Shaer et al., 2023)
with the following data generation model. We
construct mini-batches containing 100 observations
of the random variables U, V,W for which we test
H0 : V ⊥⊥ U |W . These triples come from the
model W ∼ N (0, Id) and U |W = w ∼ N (a⊤w, 1),
where under the alternative hypothesis, we
use V |W = w,U = u ∼ N ((b⊤w)2 + 3w, 1),
while under the null hypothesis we use
V |W = w,U = u ∼ N ((b⊤w)2, 1). We recall
that the model-X assumption implies that at
testing time t, we have access to the true data
distribution U |W .

We instantiate our conditional independence
test (called the DAVT-CIT) using the operators
defined in Example 2.2, and benchmark its perfor-
mance against the sequential method ECRT (Shaer
et al., 2023). Note that we have tailored ECRT
to fit our framework, that is, both ECRT and
DAVT-CIT employ the same network architecture
for model fitting and use a single sample of Ũ , at
each step t to estimate the betting scores St.

The type-I error and power of these two tests over
100 trials is plotted in Figure 3. While both methods
control type-I error at the required level α = 0.05,
our test (DAVT-CIT) requires significantly fewer ob-
servations (on average) to reject the null under H1.
The histograms of the two stopping times in Figure 3
further demonstrate the better sample efficiency of
DAVT-CIT compared to ECRT.

6.3 Adversarial Attacks on ResNet50

In this experiment, we evaluate the robustness of
a ResNet50 model (He et al., 2016), refined on the

Figure 4: Power analysis for testing the adversarial
robustness of ResNet50 trained on CIFAR-10. While
S-C2ST initially outperforms in scenarios with lim-
ited data, DAVT-Adv (our method) and Seq-IT
catch up and accelerate to reach maximum perfor-
mance at a faster rate, leaving DAVT-Adv as the
second best-performing method.

CIFAR-10 dataset (Krizhevsky and Hinton, 2009),
against adversarial attacks as explained in Exam-
ple 2.4. We employ the Fast Gradient Sign Method
(FGSM) (Goodfellow et al., 2014) for generating ad-
versarial samples. Within this context, let X rep-
resent the true CIFAR-10 images and Tadv(X) the
biased ones produced with FGSM. Moreover, let the
operator Th : X → R10 map an image to ResNet50
last layer2. In this example, we consider ResNet50
to be robust against FGSM adversarial attacks if
Th(X) and Th ◦ Tadv(X) have the same distribution.
In other words, we will test:

H0 : Th(Xt)
d
= Th ◦ Tadv(X).

We run 100 power experiments on batches of paired
original and FGSM-altered images, with a sample
size of 64. We compare DAVT-Adv with the two-
sample test baselines: E-C2ST, Seq-IT, S-C2ST,
and the MMD test. Figure 4 shows that of the se-
quential methods, DAVT-Adv (ours) outperforms E-
C2ST and Seq-IT until it reaches 60% power. After
that, Seq-IT achieves maximum power faster, leav-
ing our method as the second best. Nevertheless, the
non-sequential S-C2ST initially shows greater power
than all other methods, but this advantage declines
with increasing sample size.

6.4 Rotation Invariance Testing

Here, we consider a test similar to Example 2.3 and
extend it to the more general setting described in

2Any intermediate layer of the network can be con-
sidered while defining an adversarial operator.

Teodora Pandeva, Patrick Forré, Aaditya Ramdas, Shubhanshu Shekhar

Section 5. More precisely, we consider that at each
time t we are given batches of rotated images X fol-
lowing the generative model PX = 0.5p·P90+0.5(1−
p) ·P180+0.5p ·P270+0.5(1−p) ·P360, where p is the
mixing weight. Here the distributions P90, P180, P270

and P360 represent the distribution of the randomly
rotated “6” at angles in the set {90, 180, 270, 360}
degrees. This generative model is initially unknown
to the practitioner, who wants to determine whether
the distribution of X is invariant to rotations of 90,
180, or 270 degrees. Thus, by applying ideas from
Section 5 we can form the null hypothesis:

H0 : Ti(X)
d
= X for all i ∈ {90, 180, 270}

where the operators correspond to the specified rota-
tions. This test can be easily adapted to our frame-
work by specifying Z := X and defining the operator
set O := {Ti : i ∈ {90, 180, 270, 360}}.

For constructing the two distributions, we use the
MNIST dataset (LeCun et al., 2010). We conduct
experiments for p = 0.3, 0.4, and 0.5 in batches of
32 samples each. Figure 5 presents the power results
for p = 0.3 and p = 0.4, and the type I error rate
when p = 0.5. The test successfully controls the
type I error and shows reduced power in the more
challenging case of p = 0.4, compared to p = 0.3.

We create a baseline test by applying S-C2ST to
each hypothesis, each based on a single operator.
This process involves training a different neural net
for every hypothesis and then computing its asso-
ciated p-value during testing. We then consolidate
the three derived p-values using the Bonferroni cor-
rection. Figure 5 shows the rejection rates of this
method for p = 0.3, 0.4, 0.5 over time and highlights
the lack of power of the method. This is a common
effect when multiple correction procedures are used
which vindicates the use of sequential tests.

7 DISCUSSION

In this paper, we developed a unified deep learning-
based approach for constructing sequential tests for
an abstract class of nonparametric testing problems.
This class of problems includes various important
applications ranging from two-sample testing and in-
dependence testing to certifying adversarial robust-
ness and group fairness of machine learning models.
Our sequential test provides tight control over the
type-I error, and is consistent under very mild condi-
tions on the learning algorithm. Through extensive
empirical evaluation, we show that our general test-
ing strategy, when instantiated to several practical

Figure 5: Power/Type I error analysis for the ro-
tated 6 MNIST images for different mixing propor-
tions p = 0.3, 0.4, 0.5. DAVT(ours) shows better
power performance than the baseline S-C2ST com-
bined with multiple testing corrections.

applications, performs competitively with existing
sequential tests specifically designed for those tasks.

Our work opens up several interesting directions for
future work. For example, from a theoretical per-
spective, obtaining stronger guarantees on the per-
formance of our test, perhaps by leveraging recent
advances in deep learning theory (Jacot et al., 2018),
is an important question. On the practical front,
some interesting topics include designing improved
rules for computing the mini-batch betting scores
(see Section 12 for more details), and identifying
appropriate regularizations or modifications of the
training objective functions to learn better joint bet-
ting and payoff strategies. Furthermore, our experi-
ments suggest that an important direction for future
research is to develop principled strategies for in-
tegrating network architecture search, operator de-
sign, and hyperparameter tuning schemes into our
general sequential testing framework.

Deep anytime-valid hypothesis testing

References

E. Candes, Y. Fan, L. Janson, and J. Lv. Panning
for Gold: ‘Model-X’ Knockoffs for High Dimen-
sional Controlled Variable Selection. Journal of
the Royal Statistical Society Series B: Statistical
Methodology, 80(3):551–577, 2018.

K. P. Chwialkowski, A. Ramdas, D. Sejdinovic, and
A. Gretton. Fast Two-Sample Testing with An-
alytic Representations of Probability Measures.
Advances in Neural Information Processing Sys-
tems, 28, 2015.

G. Cybenko. Approximation by superpositions of a
sigmoidal function. Mathematics of control, sig-
nals and systems, 2(4):303–314, 1989.

D. A. Darling and H. Robbins. Some nonparametric
sequential tests with power one. Proceedings of
the National Academy of Sciences, 61(3):804–809,
1968.

I. J. Goodfellow, J. Shlens, and C. Szegedy. Explain-
ing and Harnessing Adversarial Examples. arXiv
preprint arXiv:1412.6572, 2014.

A. Gretton, K. M. Borgwardt, M. J. Rasch,
B. Schölkopf, and A. Smola. A Kernel Two-
Sample Test. The Journal of Machine Learning
Research, 13(1):723–773, 2012.

P. Grünwald, R. de Heide, and W. M. Koolen. Safe
Testing. Journal of the Royal Statistical Society:
Series B (to appear with discussion), 2023.

E. Hazan, A. Agarwal, and S. Kale. Logarithmic
regret algorithms for online convex optimization.
Machine Learning, 69:169–192, 2007.

K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual
Learning for Image Recognition. In Proceedings
of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

K. Hornik. Approximation capabilities of multilayer
feedforward networks. Neural networks, 4(2):251–
257, 1991.

A. Jacot, F. Gabriel, and C. Hongler. Neural Tan-
gent Kernel: Convergence and Generalization in
Neural Networks. Advances in neural information
processing systems, 31, 2018.

I. Kim, A. Ramdas, A. Singh, and L. Wasserman.
Classification accuracy as a proxy for two-sample
testing. The Annals of Statistics, 49(1):411–434,
2021.

A. Krizhevsky and G. Hinton. Learning Multiple
Layers of Features from Tiny Images. Master’s
thesis, Department of Computer Science, Univer-
sity of Toronto, 2009.

Y. LeCun, C. Cortes, and C. Burges. MNIST hand-
written digit database. ATT Labs [Online]. Avail-
able: http://yann.lecun.com/exdb/mnist, 2, 2010.

E. L. Lehmann and J. P. Romano. Testing Statistical
Hypotheses. Springer, 4th edition, 2022.

A. Lhéritier and F. Cazals. A Sequential Non-
Parametric Multivariate Two-Sample Test. IEEE
Transactions on Information Theory, 64(5):3361–
3370, 2018.

D. Lopez-Paz and M. Oquab. Revisiting Classifier
Two-Sample Tests. In International Conference
on Learning Representations, 2017.

T. Pandeva, T. Bakker, C. A. Naesseth, and
P. Forré. E-Valuating Classifier Two-Sample
Tests. arXiv preprint arXiv:2210.13027, 2022.

A. Podkopaev and A. Ramdas. Sequential Predictive
Two-Sample and Independence Testing. Advances
in neural information processing systems, 2023.

A. Podkopaev, P. Blöbaum, S. Kasiviswanathan,
and A. Ramdas. Sequential Kernelized Indepen-
dence Testing. In International Conference on
Machine Learning, pages 27957–27993. PMLR,
2023.

A. Ramdas, P. Grünwald, V. Vovk, and G. Shafer.
Game-Theoretic Statistics and Safe Anytime-
Valid Inference. arXiv preprint arXiv:2210.01948,
2022.

S. Shaer, G. Maman, and Y. Romano. Model-X
Sequential Testing for Conditional Independence
via Testing by Betting. In International Confer-
ence on Artificial Intelligence and Statistics, pages
2054–2086. PMLR, 2023.

G. Shafer. Testing by betting: A strategy for sta-
tistical and scientific communication. Journal of
the Royal Statistical Society Series A: Statistics in
Society, 184(2):407–431, 2021.

R. D. Shah and J. Peters. The hardness of con-
ditional independence testing and the generalised
covariance measure. The Annals of Statistics, 48
(3):1514–1538, 2020.

S. Shekhar and A. Ramdas. Nonparametric two-
sample testing by betting. IEEE Transactions on
Information Theory, 2023.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna,
D. Erhan, I. Goodfellow, and R. Fergus. Intrigu-
ing properties of neural networks. In 2nd Inter-
national Conference on Learning Representations,
ICLR 2014, 2014.

J. Ville. Etude Critique de la Notion de Collectif.
Gauthier-Villars, Paris., 1939.

Teodora Pandeva, Patrick Forré, Aaditya Ramdas, Shubhanshu Shekhar

Checklist

1. For all models and algorithms presented, check
if you include:

(a) A clear description of the mathematical
setting, assumptions, algorithm, and/or
model. [Yes, the details of our methodol-
ogy are in Section 4]

(b) An analysis of the properties and complex-
ity (time, space, sample size) of any algo-
rithm. [Yes, empirical evaluation of the
sample size efficiency is provided for every
experiment in Section 6, the other require-
ments are not applicable because they are
linked to the complexity of the task not the
testing procedure.]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes, we provide a link to
the code https://github.com/tpandeva/
deep-anytime-testing.]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes, the proofs are in Section 10 of the
Appendix.]

(c) Clear explanations of any assumptions.
[Yes, see Remark 4.4.]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed
to reproduce the main experimental results
(either in the supplemental material or as a
URL). [Yes, the code is available as a URL.]

(b) All the training details (e.g., data splits,
hyperparameters, how they were chosen).
[Yes it is provided in Section 11 in the ap-
pendix]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect
to the random seed after running experi-
ments multiple times). [Yes, it is explained
in Sections 6 and 11)]

(d) A description of the computing infrastruc-
ture used. (e.g., type of GPUs, internal
cluster, or cloud provider). [Yes, available
in the Appendix (Section 11)]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check
if you include:

(a) Citations of the creator If your work uses
existing assets. [Yes]

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental ma-
terial or as a URL, if applicable. [Not Ap-
plicable]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or
offensive content. [Not Applicable]

5. If you used crowdsourcing or conducted re-
search with human subjects, check if you in-
clude:

(a) The full text of instructions given to par-
ticipants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partic-
ipants and the total amount spent on par-
ticipant compensation. [Not Applicable]

https://github.com/tpandeva/deep-anytime-testing
https://github.com/tpandeva/deep-anytime-testing

Deep anytime-valid hypothesis testing

Deep anytime-valid hypothesis testing:
Supplementary Materials

8 MORE EXAMPLES

Example 8.1 (Independence Testing). Independence testing is another well-studied problem in statistics,
where given observations {(Xi, Yi) : 1 ≤ i ≤ n} drawn i.i.d. from a distribution PXY on a product space
X × Y, we want to test whether PXY = PX × PY or not. By working with two pairs of observations at a
time, we can again describe the null as being invariant to an operator. In particular, let given Z1 = (X1, Y1)
and Z2 = (X2, Y2), let T denote the operator that maps (Z1, Z2) to (Z ′

1, Z
′
2), with Z ′

1 = (X1, Y2) and
Z ′
2 = (X2, Y1). Clearly, the distribution of (Z1, Z2) is the same as that of (Z ′

1, Z
′
2) under the null, while this

invariance to T is broken under the alternative.

Example 8.2 (Symmetry testing). In the simplest version of this problem, we consider real-valued obser-
vations (that is, Z = R), and the operators T2 = Tid, and T1 = Tflip, where the operator Tflip simply flips
the observations about the origin; that is, Tflip(x) = −x. The resulting null hypothesis asserts that PZ is
symmetric about the origin. The same formulation also covers other kinds of symmetry, such as rotational
invariance, or invariance to horizontal or vertical flips in the case of images.

Example 8.3 (Group Fairness). Group fairness, sometimes referred to as demographic or statistical fairness,
is a research area in machine learning that focuses on how machine learning models perform across different
demographic groups. The main goal is to ensure that a model’s performance is consistent across predefined
groups, avoiding situations where the model may disproportionately benefit or harm a particular group.

A typical application in this context would be testing whether an ML model is racially biased. For example,
suppose a trained ML recommendation model h is used to predict which candidates are most likely to succeed
in a job. The company running this model wants to ensure that it is not racially biased. To achieve this,
they categorize applicants into p ethnic groups and then evaluate whether the model h produces consistent
results across all p groups. Let Y be the categorical random variable indicating the demographic group and
X be a random vector collecting the rest of the applicant’s covariates. The associated statistical test is

H0 : h(X) ⊥⊥ Y

Thus, by using Example 8.1, we can design a test with respect to the defined null based on our framework.

Example 8.4 (Group invariance testing). Suppose we have a collection of images Z containing equilateral
triangles. Each edge of these triangles is colored either blue or green. A practitioner would like to find
out if the edges of the triangles are colored without any particular pattern, or if some hidden rule controls
their coloring. To do this, we will examine whether the triangles remain the same when rotated 120 or 240
degrees. We will therefore introduce a set of operators that represent the aforementioned rotations: T120
and T240. Next, we formulate the following composite null hypothesis:

H0 : T120(Z) = Z and T240(Z) = Z

Thus, we want to test whether the distribution of Z remains invariant with respect to the two operators T120
and T240.

Teodora Pandeva, Patrick Forré, Aaditya Ramdas, Shubhanshu Shekhar

(Ω,F ,P) Z W

ω

Z(ω)

T1 ◦ Z(ω)

T2 ◦ Z(ω)

Z
T1

T2

t

Figure 6: Let Z denote a Z-valued random variable on an underlying probability space (Ω,F ,P). By
definition, the distribution of the Z is equal to PZ = P ◦ Z−1. The two black curved lines from Z to W
denote the operators Ti for i ∈ {1, 2}, used to characterize the class of null distributions. In particular, the
distribution of the resulting W-valued random variables are P ◦ (Ti ◦Z)−1 = P ◦Z−1 ◦ T −1

i = PZ ◦ T −1
i , and

the null hypothesis of our abstract testing problem states that the two distributions, PZ ◦T −1
1 and PZ ◦T −1

2 ,
are the same.

9 BATCH TEST BASED ON SAMPLE-SPLITTING

We can also construct a batch test (also called a fixed sample-size test) for the abstract testing problem (1)
using the idea of sample splitting. In particular, let D = {Zi : 1 ≤ i ≤ n} denote the set of observations,
which are then split into two equal halves, D1 = {Z1, . . . , Zn/2} and D2 = {Zn/2+1, . . . , Zn}. We use the
first split, D1, to train an ML model (usually a DNN) with the objective of maximizing the growth rate:

θ̂ ∈ argmin
θ∈Θ

− 2

n

∑
Zi∈D1

log (1 + g̃θ(Zi)) .

Next, we use the learned parameter on the second split to construct the test statistic

En =
∏

Zi∈D2

(
1 + g̃θ̂(Zi)

)
.

We expect this statistic En to be small under the null, and thus we can use it to define a test for (1) that
rejects the null for large values of En. Our next result analyzes the performance of such a test.

Proposition 9.1. Suppose the learning algorithm ensures that

lim inf
n→∞

E[log(1 + g̃θ̂(Z))|D1]

4c
√
log n/n

a.s.
> 1, under H1,

where c is a universal constant. Then, the test Ψ(Zn) = 1En≥1/α, that rejects the null if En exceeds 1/α,
satisfies the following properties:

EH0
[Ψ(Zn)] ≤ α, and lim

n→∞
EH1

[Ψ(Zn)] = 1.

That is, Ψ is a consistent, level-α test for (1).

The proof of this result is in Section 10.2 of the appendix.

Note that the test statistic En is an e-variable (Grünwald et al., 2023); which is a nonnegative random
variable with an expected value no larger than 1 under the null. As a result, the test Ψ is valid under
optional continuation. That is, suppose we compute En using a dataset D, and its value turns out to
be smaller than 1/α. Since the test Ψ based on D is inconclusive, we may decide to collect m further
observations, D′, and use it to compute E′

m. We can combine the evidence from the two experiments easily
by simply rejecting the null if En × E′

m exceeds 1/α, without violating type-I error guarantees. This is a
simple consequence of the fact that E[EnE

′
m] = E[EnE[E′

m|D]] ≤ E[En] ≤ 1.

Deep anytime-valid hypothesis testing

10 DEFERRED PROOFS

In this section, we present the proofs of Proposition 4.2, along with the two results analyzing the performance
of our batch-test Ψ (Proposition 9.1), and the sequential test γ (Proposition 4.3).

10.1 Proof of Proposition 4.2

We need to prove that (2) ⇐⇒ (3); that is,

A := sup
θ∈Θ

E [g̃θ(Z)] > 0 ⇐⇒ B := sup
θ∈Θ

E [log (1 + g̃θ(Z))] > 0.

Proof of (⇒). Consider any ϵ such that 0 < ϵ < A. Then, by the definition of supremum, there exists a
θ ∈ Θ such that E[g̃θ(Z)] ≥ ϵ. Now, due to the second part of Assumption 1, we have

B ≥ sup
c∈[−1,1]

E [log (1 + c g̃θ(Z))] .

The first part of Assumption 1 implies that |cg̃θ(z)| < 1 for all z ∈ Z. Furthermore, for x ≤ 0.68, we know
that log(1 + x) ≥ x− x2/2. Using these facts, we obtain

B ≥ sup
c∈[−1,1]

E [log (1 + c g̃θ(Z))]

≥ sup
c∈[−0.68,0.68]

E [c g̃θ(Z)]− 1

2
E
[(
c g̃θ(Z)

)2]
≥ sup

c∈[−0.68,0.68]

cϵ− bc2

2
,

where b = E
[(
g̃θ(Z)

)2]
. If b = 0, then we trivially have B ≥ 0.68ϵ > 0. Now, if b > 0, the function f(c) =

cϵ− c2b/2 has two real roots at c = 0 and c = ϵ/b > 0, which implies that there exists a c ∈ [0,min{0.68, ϵ/b]
at which f(c) > 0. In other words, there exists a function g ∈ G such that E[log(1 + g̃(Z))] > 0, as required.

Proof of (⇐). Consider any ϵ such that 0 < ϵ < B. Then, by the definition of supremum, there exists a
θ ∈ Θ such that E[log(1 + g̃θ(Z))] ≥ ϵ. This implies that

ϵ ≤ E [log (1 + g̃θ(Z))]
(i)

≤ log (1 + E[g̃θ(Z)]) .

The inequality (i) above follows from an application of Jensen’s inequality due to the concavity of the log(·)
function. From the above inequality, we can obtain the required result as follows:

0 < eϵ − 1 ≤ E[g̃θ(Z)] ≤ sup
θ

E[g̃θ(Z)] = A.

10.2 Proof of Proposition 9.1

Type-I error control. The proof of the type-I error control follows from an application of Markov’s
inequality. More specifically, the expected value of En can be expressed as follows:

E[En] = E[E[En|D1]] = E

[
E

[∏
Zi∈D2

(
1 + g̃θ̂(Zi)

)
| D1

]]

= E

[∏
Zi∈D2

(
1 + E

[
g̃θ̂(Zi) | D1

])]
, (8)

Teodora Pandeva, Patrick Forré, Aaditya Ramdas, Shubhanshu Shekhar

where D1 and D2 denote the two splits of the dataset D. Recall that the parameter θ̂ trained on the first split
D1, and thus g̃θ̂ can be treated as a constant function in the conditional expectation above. The equality
in (8) uses the fact that dataset D, and hence the split D2 consists of i.i.d. data-points. Finally, we have

E
[
g̃θ̂(Zi) | D1

]
= 0,

under H0 for any Zi ∈ D2, which implies that

E[En] = 1, under H0.

This immediately implies the type-I error guarantee of our test Ψ, since

PH0
(Ψ(Zn) = 1) = PH0

(En ≥ 1/α) ≤ EH0
[En]

1/α
=

1

1/α
= α.

The inequality above is due to Markov’s inequality.

Consistency. For proving the consistency of our test, we need some additional notation:

vi = log
(
1 + g̃θ̂(Zn/2+i)

)
, for i ∈ {1, . . . , n/2}, and An := E

[
g̃θ̂(Z)|D1

]
,

where Z ∼ PZ is independent of D1. Now, observe the following

P (Ψ(Zn) = 1) = P
(
2 logEn

n
≥ 2 log(1/α)

n

)
= P

 2

n

n/2∑
i=1

vi ≥
2 log(1/α)

n


= P

An +
2

n

n/2∑
i=1

(vi −An) ≥
2 log(1/α)

n

 . (9)

Now, we introduce the event Gn = {|(2/n)
∑n/2

i=1 vi − An| ≤ c
√
4 log n/n}, for c = 2 log(1/(1 − 2q)) and

q ∈ (0, 1/2) is the upper bound on |gθ(x)| for all x, θ assumed in Section 4. Note that for each i, the random
variable vi − An is bounded in [−c/2, c/2], with mean 0. This means that, by an application of Hoeffding’s
inequality, we get

P (Gc
n) ≤

2

n2
, which implies that

∞∑
n=2

P(Gc
n) <∞. (10)

Returning to (9), we now get

P (Ψ(Zn) = 1) ≥ P

An +
2

n

n/2∑
i=1

(vi −An) ≥
2 log(1/α)

n

 ∩Gn


≥ P

({
An ≥

2 log(1/α)

n
+ 2c

√
log n

n

}
∩Gn

)
.

The second inequality above uses the fact that under the event Gn, the term (2/n)
(∑n/2

i=1 vi −An

)
is lower

bounded by −2c
√
log n/n.

For large enough values of n, the term 2 log(1/α)/n is smaller than 2c
√
log n/n. Using this fact, we obtain

P(Ψ(Zn) = 1) ≥ P (Hn ∩Gn) = E[1Hn 1Gn], with Hn :=

{
Bn ≥ 4c

√
log n

n

}
. (11)

Now, taking the limiting value of the probability of detection, we get

1 ≥ lim inf
n→∞

P (Ψ(Zn) = 1) ≥ lim inf
n→∞

E[1Hn
1Gn

] ≥ E[lim inf
n→∞

1Hn
1Gn

],

Deep anytime-valid hypothesis testing

where the last inequality follows by an application of Fatou’s Lemma.

To complete the proof, it suffices to show that 1Hn
1Gn

a.s.−→ 1, which would imply that
limn→∞ P (Ψ(Zn) = 1) = 1. We show this in two steps:

• From (10), and an application of (the first) Borel-Cantelli Lemma, we know that

P (Gc
ninfinitely often) = P (∩∞n=1 ∪m≥n Gc

m) = 0.

On taking the complement of the event above, we get

P (∪n≥1 ∩m≥n Gn) = 1, which implies that 1Gn

a.s.−→ 1. (12)

• For the final step, we use the assumption about the learning algorithm made in Proposition 9.1. In
particular, the assumption that

lim inf
n→∞

An

4c
√
log n/n

a.s.
> 1 implies 1Hn

a.s.−→ 1.

Together, (11) and (12) imply the required condition that 1Gn
1Hn

a.s.−→ 1. This completes the proof.

10.3 Proof of Proposition 4.3

Type-I error control. The type-I error control is a consequence of the fact that the process {Wt : t ≥ 1}
is a non-negative martingale with an initial value of 1. As a result, we have

P(γ <∞) = P (∃t ≥ 1 : Wt ≥ 1/α) ≤ E[W0]

1/α
= α,

due to an application of Ville’s inequality (Ville, 1939).

Consistency. Recall that we use t to denote the mini-batch counter, and b to denote the size of each
mini-batch. To prove the consistency of this test, we begin by observing that

P(γ =∞) = P (∩t≥1{γ > t}) ≤ P (γ > t) ,

for any arbitrary t. Taking the limit, this implies that

P (γ =∞) ≤ lim sup
t→∞

P (γ > t) .

To complete the proof, we will show that the RHS above is equal to 0. As in the proof of Proposition 9.1,
we introduce the notation

vi =
∑
Z∈Bi

log
(
1 + g̃θi−1

(Z)
)
, and Ai = E [vi|Fi−1] = b× E[log(1 + g̃θi−1

(Z))|Fi−1],

where Fi−1 = σ
(
∪i−1
j=1Bj

)
is the σ-algebra generated by the first i − 1 batches of observations. Then, we

have

P (γ > t) ≤ P
(
logWt

t
<

log(1/α)

t

)
= P

(
1

t

t∑
i=1

vi −Ai +
1

t

t∑
i=1

Ai <
log(1/α)

t

)
. (13)

Now, observe that the process {vi − Ai : i ≥ 1} is a bounded martingale difference sequence. Hence, an
application of Azuma’s inequality gives us

P (Gc
t) ≤

2

t2
, with Gt :=

{∣∣∣∣∣1t
t∑

i=1

vi −Ai

∣∣∣∣∣ ≤ cb

√
log t

t

}
,

Teodora Pandeva, Patrick Forré, Aaditya Ramdas, Shubhanshu Shekhar

where we have c = 2 log(1/(1 − 2q)), and q ∈ (0, 1/2) is the upper bound on |gθ(x)| for all x, θ assumed
in Section 4. Combining the above result with (13), we get

P (γ > t) ≤ P

({
1

t

t∑
i=1

Ai <
log(1/α)

t
+

∣∣∣∣∣1t
t∑

i=1

vi −Ai

∣∣∣∣∣
}
∩Gt

)
+ P (Gc

t)

≤ P

({
1

t

t∑
i=1

Ai <
log(1/α)

t
+ cb

√
log t

t

}
∩Gt

)
+ P (Gc

t)

≤ P

(
1

t

t∑
i=1

Ai < 2cb

√
log t

t

)
+

2

t2
. (14)

In the last inequality, we used the fact that for sufficiently large t, the term log(1/α)/t is smaller than
c
√

log t/t, and that P(Gc
t) ≤ 2/t2. By taking the limit in (14), we obtain

P(γ =∞) ≤ lim sup
t→∞

P (γ > t) ≤ lim sup
t→∞

E [1Ht
] , where Ht :=

{
1

t

t∑
i=1

Ai < 2cb

√
log t

t

}
.

From the properties of Cesaro means, we know that

lim inf
n→∞

1

n

n∑
i=1

Ai

a.s.
≥ lim inf

n→∞
An,

which implies

lim inf
t→∞

1
t

∑t
i=1 Ai

2cb
√
log t/t

a.s.
≥ lim inf

t→∞

(At/b)

2c
√
log t/t

a.s.
> 1.

The last (strict) inequality is due to the assumption on the learning algorithm and noting that

limt→∞

(√
log t/t

)
/
(√

log(t− 1)/(t− 1)
)

= 1. This condition implies that 1Hn

a.s.−→ 0, which by the

Bounded convergence theorem (or the continuity of probability) leads to

P(τ =∞) ≤ lim sup
t→∞

E[1Ht] = 0,

under the alternative. Hence we have proved the required statement that P(τ <∞) = 1 under the alternative.

Deep anytime-valid hypothesis testing

Figure 7: Blob Dataset

11 EXPERIMENTAL DETAILS

We implemented our and the baseline models in pytorch, and the chosen optimizer was Adam. All calcula-
tions were performed on a local computing cluster offering 8 TitanX GPU nodes. The average time for each
run is 6 min. Thus, the total compute time for the DNN experiments in the main paper is approximately
6 · 33 · 100 minutes or 330 GPU hours.

In our experiments, we draw mini-batches with consistent sample sizes and then apply Algorithm 1. We
trained all models with early stopping coupled with a low patience threshold as a safeguard against potential
model overfitting. In this section, we will explain the implementation and training procedure in detail for
each experiment: two-sample testing in Section 11.3, adversarial robustness in Section 11.4, group invariance
in Section 11.5, CIT in Section 11.6. The hyperparameters are generally selected so the resulting tests have
small stopping times. The search space for the learning rate is: {0.0005, 0.0001, 0.005, 0.001} and for the
patience: {2, 5, 10}.

11.1 Implementation of DAVT

The training procedure with early stopping always uses the last batch as a validation set. Note that at
the beginning of the procedure, the first batches B1 and B2 are used for training and validation. We also
implement a variation of the loss function that is used for optimization, i.e.

θt ∈ argmax
θ∈Θ

t∑
l=1

∑
Z∈Bl

log (1 + σ (gθ ◦ T1(Z)− gθ ◦ T2(Z))) ,

where σ : R→ [−1, 1] is an monotone increasing function with σ(−x) = −σ(x).

11.2 Baselines

Here, we provide an overview of the implemented baseline methods.

• E-C2ST (Lhéritier and Cazals, 2018; Pandeva et al., 2022) is a sequential two-sample test based on the
M-split likelihood ratio testing where the trained DNN maximizes the data log-likelihood of the previous
batches under the alternative.

• Seq-IT (Podkopaev and Ramdas, 2023) extends E-C2ST by formalizing the test in the “testing by
betting” framework and thus coupling the payoff to a betting strategy such as ONS. The ONS betting
strategy λt is computed samplewise in the original paper. To make Seq-IT comparable to our framework,
we update the betting strategy batch-wise, resulting in a constant λb for the entire batch.

• S-C2ST (Lopez-Paz and Oquab, 2017; Kim et al., 2021) is a non-sequential classifier two-sample test
that uses permutation testing for constructing the p-value.

Teodora Pandeva, Patrick Forré, Aaditya Ramdas, Shubhanshu Shekhar

Figure 9: Blob Experiments with lower capacity DNN.

• MMD Test (Gretton et al., 2012) is a kernel-based test utilizing permutation testing. To adapt MMD for
testing image data we can use the capabilities of a trained neural network to act as a feature extractor.
We then use the extracted features to perform a kernel MMD test.

• ECRT (Shaer et al., 2023) is the only conditional independent test on the list. It is also based on the
“testing by betting” paradigm. The difference between DAVT-CIT and ECRT is the presence of a
betting strategy linked to the universal portfolio optimization paradigm.

11.3 Two-Sample Testing

The Blob dataset is a synthetic benchmark dataset for two sample tests. It is a challenging dataset due to
the overlapping modes of the two classes. Figure 7 provides a visualization of the class distributions.

All trained DNN models follow the network architecture in Table 1. The net contains three linear layers
alternating with a LayerNorm and ReLU activation function. All models are trained for a maximum of 500
with early stopping with respect to the loss on the validation set with patience ten and a learning rate of
0.0005. The MMD test bandwidth is set to 0.4.

11.3.1 Type I Error

Figure 8: Type I error rate for the Blob dataset.

In this experiment, we demonstrate a scenario where
the type I error rate on the two-sample testing with
Blob data reaches the chosen significance level of 0.05
(see Figure 8). For this experiment, we fixed the batch
size to 36. All other training parameters remain the
same as for the experiment showcased in Section 6.

11.3.2 Lower Capacity DNNs

We also performed additional experiments where the
chosen DNN has a lower capacity, i.e. the size of the
hidden layers is 10 instead of 30 as in Table 1. The
results presented in Figure 9 show that the tests’ ten-
dencies and ranking in terms of their performance are

maintained. Interestingly, the independence test performs better here than in the previous experiments.
However, all methods need twice as many samples to achieve maximum power. This illustrates the role of
the DNN in the performance of all tests.

11.3.3 Two-sample Test for Dependent X and Y

In the main paper, we compared two different two-sample test operators, and we established that
when the samples X and Y are independent, using the swap operator is not very beneficial for

Deep anytime-valid hypothesis testing

the task. In this experiment, we demonstrate the increasing power of DAVT-Swap as soon as
the X and Y become more dependent. We revisit the Blob experiment where we model X1 and
Y1 (the first dimensions of the dataset) to be dependent and have corr(X,Y) = ρ. We con-
duct experiments for ρ = 0.1, 0.2, 1 and we visualize the results in Figure 10. We can infer
that it is easier for DAVT-Swap to reject null the stronger the dependency between X and Y .

Figure 10: Rejection rate for the Blob two-sample test
with swap operator. Here, ρ is the correlation between
the first dimensions of X and Y . The stronger the de-
pendence between X and Y the easier it is for DAVT-
Swap to reject the null.

11.4 Adversarial Robustness

The output of the trained ResNet50 is an input to
a DNN model with the architecture shown in Ta-
ble 2. It is similar to the one of the Blob data with
the difference that the hidden layer size is 32. We
trained the models for a maximum of 1000 epochs
with a learning rate of 0.0005 with early stopping
with patience 5. We normalize the images at the
time of loading. The MMD test bandwidth is set
to 1.

11.5 Rotated MNIST

The DNN network used here is given in Table 3.
The images are normalized before feeding into the
network. We traine with l1 (λ1 = 0.005) and l2 (λ1 = 0.005) regularization on the weights. As before, our
training procedure is with early stopping with patience 5, learning rate 0.0005, and maximum number of
epochs 1000.

11.6 Conditional Independence Testing under Model-X assumption

The trained DNN models follow the network architecture in Table 4. The network includes two linear layers
with a dropout(p=0.3) layer and a ReLU activation function between them. All models are trained for up
to 500 epochs using early stopping based on validation set loss with a patience of 10 and a learning rate of
0.0005.

Teodora Pandeva, Patrick Forré, Aaditya Ramdas, Shubhanshu Shekhar

Layer (type) Output Shape
Linear-1 [batch size, 30]

LayerNorm-2 [batch size, 30]
ReLU-3 [batch size, 30]
Linear-4 [batch size, 30]

LayerNorm-5 [batch size, 30]
ReLU-6 [batch size, 30]
Linear-7 [batch size, output size]

Table 1: The network architecture employed in the Blob experiments for all baselines with output size = 2
for S-C2ST and E-C2ST.

Layer (type) Output Shape
Linear-1 [batch size, 32]

LayerNorm-2 [batch size, 32]
ReLU-3 [batch size, 32]
Linear-4 [batch size, 32]

LayerNorm-5 [batch size, 32]
ReLU-6 [batch size, 32]
Linear-7 [batch size, output size]

Table 2: The network architecture employed in the CIFAR-10 experiments for all baselines with output size
= 2 for S-C2ST and E-C2ST.

Layer (type) Output Shape
Linear-1 [batch size, 128]
ReLU-2 [batch size, 128]

Dropout(p=0.5)-3 [batch size, 128]
Linear-4 [batch size, 64]
ReLU-5 [batch size, 64]

Dropout(p=0.5)-6 [batch size, 64]
Linear-7 [batch size, output size]

Table 3: The network architecture employed in the MNIST experiments.

Layer (type) Output Shape
Linear-1 [batch size, 128]
ReLU-2 [batch size, 128]

Dropout(p=0.3)-3 [batch size, 128]
Linear-4 [batch size, output size]

Table 4: The network architecture employed in the CIT experiments.

Deep anytime-valid hypothesis testing

12 PRACTICAL CONSIDERATIONS

The model training and architecture. Different architectures, from convolutional to recurrent models,
can affect the performance of all data-driven tests, a discussion alluded to in Section 11.3.2. Therefore, ap-
propriate DNN selection becomes critical to ensure the reliability and robustness of conclusions derived from
these tests. While all the considered sequential data-driven statistical tests have a finite-sample type I error
control, unlike most classical testing procedures, researchers must be familiar with the specific requirements
of their statistical tests in order to select a DNN that maximizes power for a given sample size.

There is another dimension of DNN training worth exploring. Unlike traditional batch mode training, online
training is designed for continuous data streams, allowing DNNs to adapt and evolve in real-time. This
procedure allows to disregard previous data batches and to update the DNN only from a single batch. This
can make sequential testing methods even more appealing for a wide range of applications.

Alternative computation of the betting score. In Section 4, we defined the betting score St in (5) by
taking the product of (1 + g̃θt−1(Z)) over all Z in the mini-batch Bt. An alternative, and equally valid, way
of defining the wealth process is by taking the average; that is,

St =
1

b

(∑
Z∈Bt

1 + g̃θt−1(Z)

)
= 1 +

1

b

∑
Z∈Bt

g̃θt−1(Z). (15)

The resulting wealth process has a smaller variance than our proposal, but this comes at the cost of power
for very large mini-batches. This suggests that the optimal betting score construction should lie somewhere
in between these two extremes to achieve the best bias-variance trade-off. For example, at test time, a mini-
batch can be partitioned into sufficiently small ones for which we compute the increments using the new
proposed updating scheme. A thorough exploration of the design of optimal betting scores is an interesting
question for future work.

Unpaired Data. In the main paper, we mostly presented scenarios where the samples of Xt and Yt are
observed simultaneously. However, our framework is not only limited to paired data. It can also be applied
in a more general setting when this assumption does not hold.

This scenario has been discussed in Shekhar and Ramdas (2023). There, the authors propose to use betting
scores that align with the proposal in the previous point. More precisely, consider a two-sample test for
batches Bt = {Xtb+j}bt1j=1 ∪ {Ytb+j}bt2j=1 consisting of bt1 + bt2 observations of X and Y . Then, we can define
the increments as

St = 1 +
1

bt1

bt1∑
j=1

gθt−1(Xtb+j)−
1

bt2

bt2∑
j=1

gθt−1(Ytb+j)

or

St = 1 + σ(

bt1∑
j=1

gθt−1
(Xtb+j)−

bt2∑
j=1

gθt−1
(Ytb+j))

where σ : R → [−1, 1] is an monotone increasing function with σ(−x) = −σ(x). While this does not quite
match our framework, it is a way to model unpaired data.

We can fit this problem into our formalism by considering random variable L ∈ {−1, 1} and W such that
P (W |L = 1) = P (X) and P (W |L = −1) = P (Y). We can test whether W and L are independent instead of
considering the classical two-sample test. If the samples Xt and Yt are somewhat dependent, we can apply
averaging to obtain the increments (see (15)); otherwise, we can stick to our proposal.

	INTRODUCTION
	MOTIVATING APPLICATIONS
	RELATED WORK
	METHODOLOGY
	Oracle Sequential Test
	Practical sequential test

	EXTENSION TO RANDOMIZATION HYPOTHESIS TESTING
	EXPERIMENTS
	Two-Sample Testing
	Conditional Independence Testing under Model-X Assumption
	Adversarial Attacks on ResNet50
	Rotation Invariance Testing

	DISCUSSION
	MORE EXAMPLES
	BATCH TEST BASED ON SAMPLE-SPLITTING
	DEFERRED PROOFS
	Proof of Proposition 4.2
	Proof of Proposition 9.1
	Proof of Proposition 4.3

	EXPERIMENTAL DETAILS
	Implementation of DAVT
	Baselines
	Two-Sample Testing
	Type I Error
	Lower Capacity DNNs
	Two-sample Test for Dependent X and Y

	Adversarial Robustness
	Rotated MNIST
	Conditional Independence Testing under Model-X assumption

	PRACTICAL CONSIDERATIONS

