
Think Global, Adapt Local: Learning Locally Adaptive K-Nearest
Neighbor Kernel Density Estimators

Kenny Falkær Olsen Rasmus Malik Høegh Lindrup Morten Mørup
Technical University of Denmark University of California, Berkeley Technical University of Denmark

Abstract

Kernel density estimation (KDE) is a pow-
erful technique for non-parametric density
estimation, yet practical use of KDE-based
methods remains limited by insufficient rep-
resentational flexibility, especially for higher-
dimensional data. Contrary to KDE, K-
nearest neighbor (KNN) density estimation
procedures locally adapt the density based
on the K-nearest neighborhood, but unfor-
tunately only provide asymptotically cor-
rect density estimates. We present the
KNN-KDE method introducing observation-
specific kernels for KDE that are locally
adapted through priors defined by the covari-
ance of the K-nearest neighborhood, form-
ing a fully Bayesian model with exact den-
sity estimates. We further derive a scalable
inference procedure that infers parameters
through variational inference by optimizing
the predictive likelihood exploiting sparsity,
batched optimization, and parallel compu-
tation for massive inference speedups. We
find that KNN-KDE provides valid density
estimates superior to conventional KDE and
KNN density estimation on both synthetic
and real data sets. We further observe that
the Bayesian KNN-KDE even outperforms
recent neural density estimation procedures
on two of the five considered real data sets.
The KNN-KDE unifies conventional kernel
and KNN density estimation providing a scal-
able, generic and accurate framework for den-
sity estimation. We make our code available
on GitHub1.

1https://github.com/falkaer/lakde

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

1 INTRODUCTION

A key goal of unsupervised learning is to character-
ize the data density thereby providing an accurate ac-
count of where data occur. This has profound appli-
cations for outlier detection (Latecki et al., 2007), in
which outliers can be diagnosed as observations oc-
curring in low-density regions of the inferred density,
to data augmentation, in which surrogate data can be
sampled from the learned density. Importantly, den-
sity estimation also has applications within supervised
learning. Here the class-posterior probability can be
deduced from the learned class specific densities by use
of Bayes’ theorem. Furthermore, density estimation
can be used as a step preceding a supervised procedure
quantifying the validity of the supervised approach, i.e.
increased validity if the predicted data point is well-
supported by the density. Conversely, if the predicted
data point is not well-supported by the density, the
model has weak support for judging the point. Density
estimation is thus at the heart of unsupervised learn-
ing with the aim of quantifying the ability to predict
properties of test data using the predictive likelihood.

Much research in machine learning has focused on
efficient and accurate procedures for density esti-
mation. Ranging from simple linear models for
density estimation based on matrix decompositions
such as probabilistic principal component analysis
(PCA) (Tipping and Bishop, 1999), to non-linear
density estimation approaches using parametric mod-
eling methods such as the Gaussian mixture mod-
els (GMMs) (Bishop, 2006), non-parametric proce-
dures such as Dirichlet process mixtures (Ferguson,
1973; Rasmussen, 2000) and kernel density estimation
(KDE) approaches (Scott, 2015). Recently, deep un-
supervised learning approaches have gained much at-
tention due to their flexible characterizations of the
data density including variational auto-encoders pro-
viding a lower bound of the data likelihood (Kingma
and Welling, 2013) to procedures directly optimizing
the likelihood using autoregressive models, such as
MADE (Germain et al., 2015), or using implicit score-
matching as in DDE (Bigdeli et al., 2020) to obtain an

Think Global, Adapt Local: Learning Locally Adaptive K-Nearest Neighbor Kernel Density Estimators

unnormalized log likelihood. Instead of parameteriz-
ing a distribution directly, density estimation is also
seeing advances through flow procedures that learn
to map from a simple, base distribution to a target,
complex density trained by relying on invertible neu-
ral networks and the change of variable-formula (Dinh
et al., 2014, 2016; Papamakarios et al., 2017; Kingma
and Dhariwal, 2018; De Cao et al., 2020). Extensions
of flows include utilizing ordinary or stochastic differ-
ential equations (Chen et al., 2018; Grathwohl et al.,
2018; Zhang and Chen, 2021) as a way of defining the
mapping between latent variables and data.

KDE is often used for low-dimensional data
sets (Scott, 2015). Typically, a Gaussian kernel is used
and the bandwidth (i.e., variance) of the Gaussian ker-
nel is inferred by optimizing the predictive likelihood
using grid-search within cross-validation (Scott, 2015)
or by use of heuristic plug-in estimators for selecting
the bandwidth parameter (Sheather and Jones, 1991;
Bowman and Azzalini, 1997; Scott, 2015). Unfortu-
nately, cross-validation becomes prohibitively expen-
sive with increasing data dimensionality if the band-
width parameter is defined separately for each di-
mension or a full covariance matrix kernel is invoked.
While brute force evaluation of the KDE density re-
quires evaluating N2 pairwise likelihoods, approximate
techniques may be used, such as the Fast Gauss Trans-
form (Greengard and Strain, 1991) in which the in-
put space is divided into boxes and only neighbor-
ing boxes are used for the evaluation exploiting that
the Gaussian kernel rapidly drops to zero and using
multi-resolution KD-trees (Gray and Moore, 2003) to
bisect the input space. This enables scaling the KDE
to O(N logN) for large scale analyses, see also Lang
et al. (2005) for empirical comparisons of these scaling
strategies. However, these scaling abilities rely on the
assumption that the kernel is shared throughout the
input space or, when using a multi-resolution KD-tree,
that the kernel only changes smoothly.

K-nearest neighbor density estimation procedures are
inherently locally adaptive using nearest neighbor dis-
tances (Loftsgaarden et al., 1965; Devroye and Wag-
ner, 1977) or neighborhood graphs (Von Luxburg and
Alamgir, 2013) to form the density, but provide only
asymptotically correct density estimates, see also Das-
gupta and Kpotufe (2014); Zhao and Lai (2022) and
references therein. Varying the scale of the kernel in
KDE according to the density was proposed in Abram-
son (1982) such that high density regions has smaller
scale by a factor of dividing by the square-root of
the density. This was further investigated in Terrell
and Scott (1992) together with nearest neighbor based
density estimation and it was discussed that a freely
adaptive kernel could be desirable but raises computa-

tional difficulties. In Comaniciu et al. (2001); Comani-
ciu (2003) a locally adaptive KDE was proposed using
variable bandwidth mean shifts to locally adapt the
kernel bandwidth based on estimates of the gradient
of the density. Furthermore, non-stationary adaptive
kernels have also been explored in the context of Gaus-
sian Processes, see also Remes et al. (2017).

We presently integrate KNN and KDE forming the
KNN-KDE framework, a KDE which locally adapts
its density by imposing an observation-specific kernel
defined by the covariance of the K-nearest neighbor-
hood. Inspired by prior work (Zhang et al., 2006;
Zougab et al., 2014; Bäcklin et al., 2018), KNN-KDE
is formulated as a Bayesian learning problem in which
the predictive likelihood is explicitly optimized by use
of variational inference, yielding the VB-KNN-KDE
model which can be further adapted to the local neigh-
borhood through the Bayesian posterior. Whereas the
Bayesian inference provides robustness through the
prior distribution and uncertainty characterization by
the learned posterior distribution, we further obtain
high computational efficiency by exploiting parallelism
and latent parameter sparsity in the variational for-
mulation, allowing efficient scaling to millions of mul-
tivariate data points.

On synthetic and real tabular data sets we demon-
strate the utility of the proposed KNN-KDE frame-
work for density estimation when compare to conven-
tional KNN and KDE estimation procedures as well as
systematic ablations to simpler kernel structures using
our Bayesian formulation. We further compare our ap-
proach to recent neural density estimation methods.

2 RELATED WORK

Recently, Bayesian learning of the kernel bandwidth
has shown promise to address higher dimensional, effi-
cient inference of kernel bandwidths. In Brewer (2000)
and Gangopadhyay and Cheung (2002) Bayesian in-
ference was used to estimate the kernel width in the
univariate case and in Zhang et al. (2006) a shared full
bandwidth matrix kernel was learned using Bayesian
modeling and Markov chain Monte Carlo (MCMC) in-
ference considering the leave-one-out cross-validated
likelihood. This approach was demonstrated superior
to existing heuristic procedures for setting the ker-
nel parameters, admitting analysis beyond two dimen-
sional data (considering up to five dimensional prob-
lems). In Zougab et al. (2014), each observation was
endowed its own full bandwidth matrix imposing a
global prior defined in terms of the empirical covari-
ance, and the posterior covariance was optimized con-
sidering least-squares and cross-entropy losses. The
approach was investigated in a context of up to four

Kenny Falkær Olsen, Rasmus Malik Høegh Lindrup, Morten Mørup

dimensional density estimation. This approach was,
in Ziane et al. (2015), extended to consider asymmetric
kernels and, in Belaid et al. (2018), adapted to count
data. In Bäcklin et al. (2018), Bayesian inference was
further used to learn a locally adaptive KDE consider-
ing the framework of Abramson (1982) using the leave-
one-out cross-validated likelihood to tune how kernel
bandwidth should be weighted by density. These ex-
isting Bayesian procedures for multivariate kernel den-
sity estimation have been limited to low dimensional
data sets (D ≤ 5) and, due to poor scaling by O(N2),
limited numbers of observations (N ≤ 2000).

Similar to Bayesian approaches to KDEs, non-
parametric GMMs shares the merits of being non-
parametric and thereby the ability to adapt complexity
as N increases (Rasmussen, 2000). Importantly, each
cluster has its own covariance matrix thereby—as op-
posed to the shared-kernel KDE—enabling complex
adaptation to the data distribution across the input
space, similar to adaptive Bayesian KDEs. Unfortu-
nately, inference of the non-parametric GMM can be
computationally challenging as the model can be stuck
in suboptimal local minima Relying on advanced in-
ference procedures using birth/death (or, split-merge)
moves (Jain and Neal, 2004; Bryant and Sudderth,
2012) and scalable variational inference, which typ-
ically invokes a finite representation by a truncated
stick breaking construction (Blei and Jordan, 2004)
akin to a parametric model.

Deep learning (DL) approaches for density estima-
tion typically requires large data sets in order to ade-
quately learn the complex model representation having
a high-dimensional parametric representation. How-
ever, when data is plentiful, deep learning approaches
can learn to characterize complex high-dimensional
densities with favorable performance as measured by
predictive likelihood (Dinh et al., 2014; Germain et al.,
2015; Dinh et al., 2016; Papamakarios et al., 2017;
Kingma and Dhariwal, 2018; Chen et al., 2018; Grath-
wohl et al., 2018; De Cao et al., 2020; Bigdeli et al.,
2020; Zhang and Chen, 2021). The training of such
complex densities has been enabled by the ability to
handle large data sets efficiently in particular exploit-
ing parallel computations and stochastic optimization
procedures.

3 METHODS

3.1 Kernel and K-nearest Neighbor Density
Estimation

For data, X ∈ RN×D, with N samples in D-
dimensions, we denote the nth sample xn. Both kernel
and KNN density estimation build on the idea of esti-

mating density at a point using samples from its im-
mediate neighborhood. In KDE, the shape and size of
the neighborhood is implicitly defined by the kernel f
that typically is chosen to be a Gaussian kernel (Scott,
2015),

pf (x) =

N∑
n

f(x− xn), (1)

In K-nearest neighbor (KNN) density estimation the
size of the neighborhood is defined through the param-
eter K based on imposing an apriori defined fixed (typ-
ically Euclidean) distance metric (Devroye and Wag-
ner, 1977),

p̂K(x) =
1

N

K

vD · rK(x)D
, (2)

where vD is the volume of a D-dimensional Euclidean
hypersphere, and rK(x) is the distance from x to its
Kth nearest neighbor in X.

These approaches come with advantages and disad-
vantages; because the KDE uses contributions from
all points (but windowed by the kernel to form a lo-
cal neighborhood), it yields a smoother density than
KNN-based methods, which rely on order statistics
through rK . On the other hand, the KDE kernel does
not vary depending on the location of the neighbor-
hood, and so it cannot adapt to local change in the
scale or shape of the density, which KNN density esti-
mation can through changes in rK . Importantly, the
kernel f can be chosen such that pf (x) forms a valid
density, while p̂K(x) is not a valid density except in
the limit N →∞ (Dasgupta and Kpotufe, 2014; Zhao
and Lai, 2022).

3.2 Bayesian KNN-KDE

We presently formulate a KDE that shares the bene-
ficial properties of both KNN and conventional kernel
density estimation by defining observation-specific ker-
nels in terms of the covariance of the K-nearest neigh-
borhood, and refer to it as KNN-KDE. The simplest
instantiation of this premise is to let the kernel be a
multivariate Gaussian parameterized directly by the
empirical covariance of the K-nearest neighborhood
Σ̂

(K)

n ,

p(x) =
1

N

N∑
n

N (x |xn,Σ
(K)
n), (3)

Σ̂
(K)

n =
1

K

∑
k∈NK(xn)

(xk − xn) (xk − xn)
⊤
, (4)

where NK(xn) is the set of Euclidean K-nearest neigh-
bors of xn. This model only requires specifying the

Think Global, Adapt Local: Learning Locally Adaptive K-Nearest Neighbor Kernel Density Estimators

p(x) Kernel Distance measure
KDE Valid density Fixed (typically Gaussian) Fixed (Mahalanobis for Gaussian)
KNN Rely on asymptotics Locally adapt to neighborhood Fixed (typically Euclidean)
B-KNN-KDE Valid density Locally adapt to neighborhood Learned local Mahalanobis

Table 1: Properties of conventional KDE and KNN density estimation procedures in comparison to B-KNN-
KDE. For Bayesian KNN-KDEs we further devise an efficient variational Bayesian inference procedure exploiting
sparsity for improved scaling.

size of the neighborhood through the K parameter,
and combines properties of both KNN and kernel den-
sity estimation by locally adapting to the K-nearest
neighborhood while admitting a valid density, but still
implicitly relies on a fixed, global metric to define the
K-nearest neighborhood.

Surprisingly, to the best of our knowledge eq. (3) has
not been explored previously. Notably, Breiman et al.
(1977) discussed choosing the length scale of the ker-
nel Σ̂

(K)

n = rK(xn)
2I in KDE to be the distance to

the Kth nearest neighbor, and in Terrell and Scott
(1992) nearest neighbor distance was suggested de-
fined in terms of a fixed Mahalanobis distance. It was
further discussed that a distance metric varying freely
would be desirable but would raise computational diffi-
culties and therefore not pursued. Equation (3) resem-
bles the local likelihood density estimation procedure
of Gao et al. (2017) in which the mean and covariance
of the local likelihood function used for density esti-
mation is defined by weighting samples according to a
Gaussian kernel with length scale defined by rK(xn).

To further enhance the expressiveness of the proposed
KNN-KDE model, we extend it to a fully Bayesian pro-
cedure which we refer to as VB-KNN-KDE generaliz-
ing eq. (3) by parametrizing each observation-specific
kernel in terms of a Wishart-distributed precision ma-
trix Λn with prior distribution

p(Λn) =W
((
ντnΣ̂

(K)

n

)−1
, ν
)
, (5)

p(τn) = Gam(a, b), (6)

such that Ep

[
Λ−1

n

]
= τnΣ̂

(K)

n . The introduction of
the τn parameters allows the model to further vary the
scale of the prior covariance Σ̂

(K)

n . This enables flex-
ible scaling of the K-nearest neighbor covariance ker-
nels also potentially enabling local adaptation of scale
according to density as suggested for KDEs in Abram-
son (1982) and Bäcklin et al. (2018).

Directly optimizing the KNN-KDE likelihood (3)
based on X (i.e., p(X) =

∏N
m p(xm)) would result in

τn, or equivalently the norm of Λ−1
n , collapsing to zero.

Thus, in order to perform generalizable inference over
the per-observation parameters {Λn, τn} we consider

the leave-one-out predictive likelihood also considered
in Zhang et al. (2006); Zougab et al. (2014); Bäcklin
et al. (2018),

p(X |Λ) =

N∏
m

 1

N − 1

N∑
n ̸=m

N (xm |xn,Λ
−1
n)

 . (7)

We can expand the likelihood (7) to that of a latent
variable model by associating every data point xn

with N binary latent variables zn = {znm}Nm where∑N
n znm = 1 and znn = 0, such that each data point

is drawn from one-of-N -minus-one Gaussians,

p(X |Z,Λ) =

N∏
n

N∏
m

N (xm |xn,Λ
−1
n)znm , (8)

p(Z) =

N∏
n

N∏
m

(
1

N − 1

)znm

. (9)

From a generative perspective these latent variables
model which Gaussian was responsible for generating
the observed data point xm, and constraining znn = 0
prevents a data point from being responsible for gener-
ating itself (as defined by the leave-one-out predictive
likelihood). Thus, marginalizing p(X,Z |Λ) over Z re-
covers eq. (7).

To perform inference over the distributions of the la-
tent parameters Z and non-latent parameters Λ =
{Λ1,Λ2, . . . ,ΛN}, τ = {τ1, τ2, . . . , τN}, we turn to
variational Bayesian (VB) inference (Blei et al., 2017;
Bishop, 2006). VB is a well-established method used
to obtain an analytical approximation of the true pos-
terior p(Z,Λ, τ |X) by proposing a family of approxi-
mate distributions q(Z,Λ, τ) and analytically optimiz-
ing the difference between the true and approximate
posteriors, with the measure of dissimilarity typically
being the Kullback-Leibler (KL) divergence. The op-
timal approximate posterior q∗(Z,Λ, τ) is then

q∗(Z,Λ, τ) = argmin
q

DKL (q(Z,Λ, τ) ∥ p(Z,Λ, τ |X)) .

(10)

Utilizing a family of variational posteriors which
is fully factorized in the parameters, i.e. with

Kenny Falkær Olsen, Rasmus Malik Høegh Lindrup, Morten Mørup

q(Z,Λ, τ) = q(Z) q(Λ) q(τ), and applying coordinate
ascent optimization rules to derive variational distribu-
tions optimizing the KL divergence yields the following
variational distribution over Z,

q∗(Z) =

N∏
n

N∏
m

rznm
nm , (11)

rnm ≜ Eq [znm] =

{
0 for n = m

exp ρnm∑N
i ̸=n exp ρim

otherwise
, (12)

ρnm ≜ Eq

[
lnN (xm |xn,Λ

−1
n)
]

(13)

∝ 1

2

[
Eq [ln |Λn|]− (xm − xn)

⊤ Eq [Λn] (xm − xn)
]
.

The variational posterior q∗(Λ) takes the same form
as its prior due to conjugacy, with new variational pa-
rameters (marked by tildes),

q∗(Λ) =

N∏
n

W(Λn |W̃n, ν̃n), (14)

W̃
−1

n = ν Eq [τn] Σ̂
(K)

n +Rn, (15)

Rn =

N∑
m

rnm (xm − xn) (xm − xn)
⊤
, (16)

ν̃n = ν +

N∑
m

rnm, (17)

and so does the variational posterior q∗(τ),

q∗(τ) =

N∏
n

Gam(τn | ã, b̃n), (18)

ã = a+
νD

2
, b̃n = b+

ν

2
Tr

[
Σ̂

(K)

n Eq [Λn]

]
. (19)

These update rules provide interlocked sets of vari-
ables which are continually re-estimated until con-
vergence. Convergence may be monitored by the
evidence lower bound (ELBO) (Blei et al., 2017)
of the marginalized predictive likelihood (8), i.e.∫
p(X |Z,Λ, τ) p(Z) p(Λ) p(τ) dZ dΛ dτ ≥ ELBO,

which can be evaluated directly from expectations of
the variational factors (see supplementary material for
further details).

The variational distributions optimizing eq. (10) effec-
tively construct posterior KNN covariances through
eq. (15) with each contribution in the sum (16) be-
ing weighted by a learned, implicit distance metric
through eq. (13) (being proportional to an exponen-
tiated Mahalanobis distance in which Eq [Λn] defines
the inverse covariance). Importantly, this enables the
posterior to adapt the kernel to be defined in terms of a

learned neighborhood given by the learned normalized
log-likelihoods (12) as opposed to being strictly formed
by the K-nearest neighbors as defined from the prior
using the Euclidean neighborhood, see also table 1.
This supports a freely varying Mahalanobis distance as
discussed but not pursued in Terrell and Scott (1992),
providing a computationally feasible framework for re-
alizing such a property.

3.3 Batched Variational Updates

As the kernels within the KNN-KDE likelihood are
observation-specific and do not necessarily change
smoothly across the input space existing procedures to
scale KDE (i.e., using multi-resolution KD-trees and
the Fast Gauss Transform) cannot be applied. How-
ever, the structure of the variational update rules af-
ford several opportunities for efficient implementation.

Firstly, the variational parameters are interlocked in
such a way that it is sufficient to store either {W̃n}Nn
or {rnm}Nn,m in memory at any point, and as each rnm
is proportional to exp ρnm, i.e. a Gaussian likelihood,
we can expect high sparsity in the latent variables rnm
as the likelihood of faraway points under each Gaus-
sian kernel rapidly drops to zero. Storing only the
sparsified latent variables leads to significant compute
and memory savings.

Secondly, updates to the variational parameters may
be computed in a batched fashion and interleaved such
that low memory requirements can be maintained dur-
ing training. Given a batch of indices B the parame-
ters of Λn∈B can be estimated by eqs. (15) and (17)
using a B×N “slice” of the latent variables, {rnm}n∈B,
where B = |B|. These parameters can in turn be used
to update the variational parameters of Λn∈B, and to
produce new unnormalized log-likelihoods {ρ′nm}n∈B,
which may be normalized using eq. (12).

To correctly normalize the new {ρ′nm}n∈B and renor-
malize the now invalidated {rnm}n ̸∈B we maintain
the normalization constants needed in eq. (12) de-
fined as cm =

∑N
n exp ρnm, such that after producing

{ρ′nm}n∈B the updated normalization constants can be
obtained by adding the new contributions and sub-
tracting {ρnm}n∈B, which are recovered by unnormal-
izing {rnm}n∈B, c′m = cm +

∑
n∈B(exp ρ

′
nm − cmrnm).

The correctly normalized r′nm is thereby obtained as,

r′nm =

{
1
c′m

exp ρ′nm for n ∈ B
cm
c′m

rnm for n ̸∈ B
. (20)

The procedure is shown in fig. 1.

Think Global, Adapt Local: Learning Locally Adaptive K-Nearest Neighbor Kernel Density Estimators

Figure 1: Diagram of the batched update rules. Step
1: A row of rnm blocks is used to produce a block of
Λn parameters. Step 2: The Λn parameters are used
to produce an updated non-sparse ρ′nm block and nor-
malization constants c′m. Step 3: The updated block
and the invalidated column are renormalized using cm
and c′m from the previous and current iterations.

3.4 Predictive Density

In order to perform inference on previously unobserved
data points x̂ and latent variables ẑ that accurately re-
flects the uncertainty in the parameters, we consider
the posterior predictive density, that is, the distribu-
tion of unobserved data points conditioned on the ob-
served data,

p(x̂ |X) =
∑
ẑ

∫
p(x̂ | ẑ,X,Λ) p(ẑ) p(Λ |X) dΛ

≈
∑
ẑ

∫
p(x̂ | ẑ,X,Λ) p(ẑ) q∗(Λ |X) dΛ

=
1

N

N∑
n

St(x̂ |xn, (ν̃n + 1−D)W̃n, ν̃n + 1−D),

where we use the learned tractable posterior q∗(Λ |X),
and St(·) is the multivariate Student’s t-distribution.

4 RESULTS AND DISCUSSION

We perform experiments comparing our proposed VB-
KNN-KDE methods with existing kernel and KNN
density estimators, as well as mixture-models and neu-
ral density estimators on both real and synthetic data
sets. Throughout our experiments we set the hyper-
parameters of the scale parameter τn ∼ Gam(a, b) to
be non-informative (a = b = 10−8) and set other hy-
perparameters such as ν and K using Bayesian black-
box optimization (BO) where not otherwise noted, see
supplementary for details. We initialize the latent vari-
ables rnm in VB-KNN-KDE to 1

K for each point’s Eu-
clidean K-nearest neighbors.

4.1 Synthetic Data

Comparing our methods to KNN density estimation is
complicated by the inexact density estimates provided
by the KNN estimator. While KNN density estima-
tion converges to a valid density in the limit of large
data N →∞, it is otherwise biased, see Zhao and Lai
(2022) for a thorough analysis. A less biased estima-
tor is also proposed in Loftsgaarden et al. (1965); Zhao
and Lai (2022), multiplying by K − 1 in place of K in
eq. (2).

To facilitate comparison and quantize the bias of KNN
density estimates we consider synthetic 2-dimensional
data sets and numerically integrate the inexact KNN
density estimates to obtain the normalization constant
required to form a valid density. Specifically, we con-
sider 3 data sets “pinwheel”, “2spirals”, and “checker-
board”, some of which are also considered in Grath-
wohl et al. (2018)2.

In order to compare to conventional shared-kernel
KDEs we also implement variants parametrized by
a single scalar bandwidth, a diagonal precision ma-
trix, and a full precision matrix using VB and denote
them VB-Scalar-KDE, VB-Diag-KDE, and VB-Full-
KDE, respectively. The shared-kernel KDEs behave
identically on the synthetic 2-dimensional data sets so
we omit VB-Scalar-KDE and VB-Diag-KDE results
for these, but we report their performance on tabular
data.

In fig. 2 (left panel) we plot the log-likelihood esti-
mates for VB-KNN-KDE, VB-Full-KDE and (numeri-
cally normalized) KNN density estimators on the three
synthetic data sets as a function of data set size, N ,
having grid-searched the optimal value of K separately
for each estimator and data set size. VB-KNN-KDE
consistently outperforms the numerically normalized
KNN density.

In fig. 2 (right panel) we plot the densities for N =
1000 training observations. The estimated densities
are used to highlight the qualitative difference be-
tween the proposed VB-KNN-KDE and conventional
KNN density estimation and shared-covariance ker-
nel KDE (VB-Full-KDE). Notably, it can here be ob-
served that the conventional KNN density estimation
approach provides overly fine-grained densities result-
ing in low density estimates inside the pinwheels, spi-
rals and checkerboards which explains the inferior pre-
dictive performance observed in the left panel when
comparing the correctly normalized KNN estimator to
VB-KNN-KDE and VB-Full-KDE. In contrast, the

2We use the same data generation scripts as in
the FFJORD repository: https://github.com/rtqichen/
ffjord.

Kenny Falkær Olsen, Rasmus Malik Høegh Lindrup, Morten Mørup

Figure 2: Left panel: Average estimated test log-likelihood on synthetic data sets (higher is better) over 5 runs
with varying number of observations N for VB-KNN-KDE, VB-Full-KDE and KNN density estimator. The
KNN density estimator given is numerically normalized to be correct and we observe that the true normalized
density is significantly overestimated with both K and K − 1 normalizations for the finite samples considered,
and consistently outperformed by VB-KNN-KDE. Right panel: Examples of estimated density for N = 1000
training observations on synthetic data sets (from the top: “pinwheel”, “2spirals”, and “checkerboard”).

VB-Full-KDE is overly smooth resulting in blurred
characterizations of the three densities. VB-KNN-
KDE strikes a balance between the two other methods
providing a smoother density than conventional KNN
density estimation, without over-smoothing as seen
with the conventional shared-kernel VB-Full-KDE.

4.2 Tabular Data

We also consider the tabular data sets studied in Pa-
pamakarios et al. (2017), available in their prepro-
cessed format from Papamakarios (2018) and com-
pare VB-KNN-KDE to standard KDEs with shared-
covariance kernels (VB-Scalar-KDE, VB-Diag-KDE,
and VB-Full-KDE), a non-parametric GMM denoted
DP-GMM of Hughes and Sudderth (2013)3, as well as
recent neural density estimators on tabular data sets.
For completeness we also included the conventional
Parzen KDE as implemented in scikit-learn (Pedregosa

3Available from https://github.com/bnpy/bnpy.

et al., 2011), where the bandwidth is decided using
grid-search on validation data. Results are shown
in Table 2, with standard deviation estimated over 3
runs due to shuffling data prior to using batched opti-
mization steps.

To validate our KNN-informed prior we also imple-
ment a version of VB-KNN-KDE where the prior of
each observation-specific kernel is based on the global
empirical covariance, as also considered in Zougab
et al. (2014) (referred to as VB-LA-KDE), and also
consider simplifications of VB-KNN-KDE such as not
adapting the scale of the K-nearest covariance (VB-
KNN-KDEτn=1), not adapting the posterior distribu-
tions of Λn (VB-KNN-KDEν→∞), and not allowing
any posterior adaptation (VB-KNN-KDEτn=1

ν→∞), which
corresponds directly to eq. (3).

We also compare to prominent neural density estima-
tion works, including FFJORD, MAF, MADE, DDE,
B-NAF, and DiffFlow. The results are also shown

Think Global, Adapt Local: Learning Locally Adaptive K-Nearest Neighbor Kernel Density Estimators

POWER GAS HEPMASS MINIBOONE BSDS300
#dimensions 6 8 21 43 63
#train/val./test 1660k/184k/205k 852k/95k/105k 315k/65k/175k 30k/3k/4k 1000k/50k/250k

Parzen −0.59 6.08 −25.574 −35.16 104.71
DP-GMM −0.07± 0.01 8.11± 0.37 −21.45± 0.14 −16.86± 0.04 161.50± 0.87

VB-Scalar-KDE −0.59± 0.001 4.23± 1.47 −25.63± 0.01 −37.04± 0.04 97.93± 0.01
VB-Diag-KDE −0.14± 0.001 10.10± 0.38 −24.17± 0.02 −34.56± 0.01 97.95± 0.26
VB-Full-KDE −0.10± 0.001 10.85± 0.12 −23.28± 0.02 −28.16± 0.01 112.87± 0.29
VB-LA-KDE 0.06± 0.001 12.61± 0.05 −23.96± 0.02 −25.73± 0.01 156.30± 0.21
VB-KNN-KDEτn=1

ν→∞ 0.12 12.49 −22.70 −15.63 151.21
VB-KNN-KDEν→∞ 0.19± 0.001 12.71± 0.01 −23.31± 0.01 −20.60± 0.01 154.35± 0.08
VB-KNN-KDEτn=1 0.17± 0.001 12.74± 0.01 −23.23± 0.01 −19.06± 0.01 165.07± 0.02
VB-KNN-KDE 0.22± 0.01 12.86± 0.02 −23.17± 0.01 −18.52± 0.01 165.29± 0.08

FFJORD† 0.46± 0.01 8.59± 0.12 −14.92± 0.08 −10.43± 0.04 157.40± 0.19
MAF† 0.24± 0.01 10.08± 0.02 −17.70± 0.02 −11.75± 0.44 155.69± 0.28
MADE† −3.08± 0.03 3.56± 0.04 −20.98± 0.02 −15.59± 0.50 148.85± 0.28
MADE MoG† 0.40 8.47 −15.15 −12.27 153.71
DDE 0.97± 0.18 9.73± 1.14 −11.30± 0.16 −6.94± 1.81 −
B-NAF 0.61 12.06 −14.71 −8.95 157.36
DiffFlow 0.62 11.96 −15.09 −8.86 157.73

Table 2: Results of density estimation reported as log-likelihoods (in nats, higher is better) on validation sets for
tabular data. †Results for FFJORD (Grathwohl et al., 2018), MAF (Papamakarios et al., 2017) and MADE (Ger-
main et al., 2015) are from Grathwohl et al. (2018). Data set highest log-likelihood in green and lowest in red.

in Table 2. We note that DDE obtains the highest log-
likelihoods on the test data for 3 of the 5 considered
data sets (POWER, HEPMASS and MINIBOONE),
whereas VB-KNN-KDE performs best on GAS and
BSDS300. Neither the dimensionality nor data set size
indicate whether neural density estimators or KNN-
KDE approaches will perform best. We further ob-
serve that VB-KNN-KDE generally outperforms VB-
KNN-KDEν→∞ and VB-KNN-KDEτn=1 and that it
outperforms VB-LA-KDE. Notably, the VB-KNN-
KDEτn=1

ν→∞ that defines the KNN covariance kernel with
no posterior adaptation is despite its simplicity also
performing well. For all data sets we observe inferior
performances when using shared-kernel KDEs.

When scaling to larger data sets maintaining suffi-
cient sparsity in the latent variables rnm becomes cru-
cial. For all considered data sets we found that set-
ting a sparsity cutoff of 10−7 was sufficient to perform
tractable inference, and did not impact the final log-
likelihood for all N ≤ 50 000. We find that the result-
ing amount of non-zero rnm becomes log-linear in the
size of data, N , see fig. 3.

While the developed VB-KNN-KDE procedure favor-
ably scales in memory in terms of the sparsity of the
responsibilities (substantially reducing the O(N2)),
the procedure does, however, require estimating the
observation-specific parameter W̃n from its inverse
which scales byO

(
D3
)

in computation using Cholesky
decomposition. We presently exploited parallel com-
putations on GPUs but for large dimensional analyses

the scaling in D may become prohibitive. In the very
large D setting, we note that PCA can be used as
a preprocessing step to reduce dimensionality exploit-
ing that the density estimation can still be established
in the high-dimensional space using that the change of
variable to the representation induced by PCA decom-
poses into a product of the density of the signal space
(preserved PCA components) and residual space (re-
moved components) as described in Moghaddam and
Pentland (1997).

A benefit of the present framework is that the ap-
proach can be used without careful tuning of network
architecture as in neural density estimation. The only
hyperparameters to tune in the VB-KNN-KDE are
the number of neighbors K and degrees of freedom ν.
These parameter can either be set as low as possible to
the dimensionality of the data or optimized (i.e., using
Bayesian optimization) in terms of the value providing
best predictions.

We presently used VB inference to account for uncer-
tainty while still providing efficient and scalable in-
ference. However, other inference procedures could
be readily invoked such as sampling from the poste-
rior distributions as opposed to taking expectations or
maximizing the posterior distribution (MAP). Impor-
tantly, as the procedure is based on an objective op-
timizing the predictive likelihood we can expect over-
fitting to be less of an issue and therefore even MAP
inference as opposed to VB or MCMC sampling pro-
cedures to work well.

Kenny Falkær Olsen, Rasmus Malik Høegh Lindrup, Morten Mørup

Figure 3: Amount of non-zero latent variables rnm as
a function of data set size N . We observe log-linear
(≈ O(N logN)) scaling in memory use when pruning
near-zero latent variables.

We presently evaluated our density estimators in terms
of (predictive) log-likelihood. However, as discussed
in Theis et al. (2016) there are other relevant evalu-
ation metrics, including performance in downstream
tasks and evaluating the quality of generated sam-
ples. Interestingly, for generative modeling approaches
that do not warrant log-likelihood estimates directly,
a strategy is to generate samples and use Parzen win-
dow KDE, typically relying on a Gaussian kernel which
is known to perform poorly facing high-dimensional
data (Theis et al., 2016). We also observed poor
performance of Parzen-based KDE when exploring
our scalable variational inference procedure (i.e., VB-
Scalar-KDE) and the extensions to diagonal and full
covariance kernels (i.e., VB-Diag-KDE and VB-Full-
KDE). Thus, the proposed VB-KNN-KDE framework
forms a promising alternative providing more accurate
characterizations of the data density.

Additionally, while we considered only the leave-one-
out data likelihood our approach could be readily ex-
tended to using the leave-K-out data likelihood by

forcing appropriate latent variables znm to zero in
eq. (12). Whereas leave-one-out likelihood is the least
biased estimator we note that variance introduced by
changing training data can be better accounted for
using five or ten fold cross-validation (Hastie et al.,
2009), implying that leaving more samples out of the
data likelihood may improve generalization as well.

While we used the KNN neighborhood directly to form
Σ(K)

n and then use Bayesian modeling for further adap-
tation through the posterior, other approaches could
be used to obtain observation-specific covariance ma-
trices based on the KNN neighborhood, such as av-
eraging over the KNN covariance matrices for several
values of K, or directly modeling the distribution of
KNN covariances using Wishart processes (Wilson and
Ghahramani, 2010).

Compared to the VB-LA-KDE specifications consid-
ering a fixed prior for the kernel (Zougab et al., 2014),
we found the proposed VB-KNN-KDE procedure to
perform the best. We attribute this to the impor-
tance of adapting the prior to the input space and
thereby enhancing the flexibility of the VB-KNN-KDE
procedure. Notably, we systematically contrasted the
VB-KNN-KDE to the corresponding procedure fixing
the kernel structure to the neighborhood (VB-KNN-
KDEν→∞) as well as fixing the scale of the KNN
covariance prior (VB-KNN-KDEτn=1 and VB-KNN-
KDEν→∞

τn=1). Whereas these procedures also performed
well they were in general inferior to the VB-KNN-
KDE. This points to the importance of the posterior
adaptation of the KNN covariance prior both in terms
of scale and structure of the covariance.

5 CONCLUSION

We proposed the KNN-KDE framework parametrizing
KDE in terms of the K-nearest neighbor covariance,
and extend it to the VB-KNN-KDE procedure, which
further locally adapts observation-specific kernels to
a learned Mahalanobis distance of the local neighbor-
hood. We further devised a scalable O(N logN) in-
ference procedure exploring sparsity of the learned la-
tent variables. We contrasted the procedure to conven-
tional KNN and KDE procedures, as well as other ker-
nel specifications formulated using VB inference, and
found that VB-KNN-KDE exhibited favorable perfor-
mance. We further contrasted the approach to recent
neural density estimation procedures finding that the
VB-KNN performed best on two of the considered real
data sets. The developed VB-KNN-KDE serves as an
easy to use, flexible KDE approach that admits con-
siderably more flexible density estimation than con-
ventional KNN- and kernel-based density estimation
while retaining favorable scaling properties.

Think Global, Adapt Local: Learning Locally Adaptive K-Nearest Neighbor Kernel Density Estimators

Acknowledgements

This work is partly funded by WS Audiology and the
Innovation Fund Denmark (IFD) under File No. 3129-
00075B.

References

Abramson, I. S. (1982). On bandwidth variation in
kernel estimates-a square root law. The annals of
Statistics, pages 1217–1223.

Bäcklin, C. L., Andersson, C., and Gustafsson, M. G.
(2018). Self-tuning density estimation based on
bayesian averaging of adaptive kernel density esti-
mations yields state-of-the-art performance. Pattern
Recognition, 78:133–143.

Bakshy, E., Dworkin, L., Karrer, B., Kashin, K.,
Letham, B., Murthy, A., and Singh, S. (2018). Ae: A
domain-agnostic platform for adaptive experimenta-
tion. In Conference on Neural Information Process-
ing Systems, pages 1–8.

Belaid, N., Adjabi, S., Kokonendji, C. C., and
Zougab, N. (2018). Bayesian adaptive bandwidth
selector for multivariate discrete kernel estimator.
Communications in Statistics-Theory and Methods,
47(12):2988–3001.

Bigdeli, S. A., Lin, G., Portenier, T., Dunbar, L. A.,
and Zwicker, M. (2020). Learning generative models
using denoising density estimators. arXiv preprint
arXiv:2001.02728.

Bishop, C. M. (2006). Pattern Recognition and Ma-
chine Learning. Springer-Verlag, Berlin, Heidelberg.

Blei, D. M. and Jordan, M. I. (2004). Variational
methods for the dirichlet process. In Proceedings
of the twenty-first international conference on Ma-
chine learning, page 12.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D.
(2017). Variational inference: A review for statis-
ticians. Journal of the American statistical Associ-
ation, 112(518):859–877.

Bowman, A. W. and Azzalini, A. (1997). Applied
smoothing techniques for data analysis: the kernel
approach with S-Plus illustrations, volume 18. OUP
Oxford.

Breiman, L., Meisel, W., and Purcell, E. (1977). Vari-
able kernel estimates of multivariate densities. Tech-
nometrics, 19(2):135–144.

Brewer, M. J. (2000). A bayesian model for local
smoothing in kernel density estimation. Statistics
and Computing, 10(4):299–309.

Bryant, M. and Sudderth, E. B. (2012). Truly non-
parametric online variational inference for hierarchi-

cal dirichlet processes. In Advances in Neural Infor-
mation Processing Systems, pages 2699–2707.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Du-
venaud, D. K. (2018). Neural ordinary differential
equations. In Advances in neural information pro-
cessing systems, pages 6571–6583.

Comaniciu, D. (2003). An algorithm for data-driven
bandwidth selection. IEEE Transactions on pattern
analysis and machine intelligence, 25(2):281–288.

Comaniciu, D., Ramesh, V., and Meer, P. (2001). The
variable bandwidth mean shift and data-driven scale
selection. In Proceedings Eighth IEEE International
Conference on Computer Vision. ICCV 2001, vol-
ume 1, pages 438–445. IEEE.

Dasgupta, S. and Kpotufe, S. (2014). Optimal rates
for k-nn density and mode estimation. In NIPS,
volume 27, pages 2555–2563.

De Cao, N., Aziz, W., and Titov, I. (2020). Block neu-
ral autoregressive flow. In Uncertainty in artificial
intelligence, pages 1263–1273. PMLR.

Devroye, L. P. and Wagner, T. J. (1977). The strong
uniform consistency of nearest neighbor density es-
timates. The Annals of Statistics, pages 536–540.

Dinh, L., Krueger, D., and Bengio, Y. (2014).
Nice: Non-linear independent components estima-
tion. arXiv preprint arXiv:1410.8516.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2016).
Density estimation using real nvp. arXiv preprint
arXiv:1605.08803.

Ferguson, T. S. (1973). A bayesian analysis of some
nonparametric problems. The annals of statistics,
pages 209–230.

Gangopadhyay, A. and Cheung, K. (2002). Bayesian
approach to the choice of smoothing parameter in
kernel density estimation. Journal of nonparametric
statistics, 14(6):655–664.

Gao, W., Oh, S., and Viswanath, P. (2017). Density
functional estimators with k-nearest neighbor band-
widths. In 2017 IEEE International Symposium on
Information Theory (ISIT), pages 1351–1355. IEEE.

Genz, A. and Bretz, F. (2009). Computation of mul-
tivariate normal and t probabilities, volume 195.
Springer Science & Business Media.

Germain, M., Gregor, K., Murray, I., and Larochelle,
H. (2015). Made: Masked autoencoder for distri-
bution estimation. In International Conference on
Machine Learning, pages 881–889.

Grathwohl, W., Chen, R. T., Bettencourt, J.,
Sutskever, I., and Duvenaud, D. (2018). Ffjord:
Free-form continuous dynamics for scalable re-
versible generative models. arXiv preprint
arXiv:1810.01367.

Kenny Falkær Olsen, Rasmus Malik Høegh Lindrup, Morten Mørup

Gray, A. G. and Moore, A. W. (2003). Nonpara-
metric density estimation: Toward computational
tractability. In Proceedings of the 2003 SIAM In-
ternational Conference on Data Mining, pages 203–
211. SIAM.

Greengard, L. and Strain, J. (1991). The fast gauss
transform. SIAM Journal on Scientific and Statis-
tical Computing, 12(1):79–94.

Hastie, T., Tibshirani, R., and Friedman, J. (2009).
The elements of statistical learning: data mining,
inference, and prediction. Springer Science & Busi-
ness Media.

Hughes, M. C. and Sudderth, E. B. (2013). Memo-
ized online variational inference for Dirichlet process
mixture models. In Neural Information Processing
Systems (NIPS).

Jain, S. and Neal, R. M. (2004). A split-merge markov
chain monte carlo procedure for the dirichlet pro-
cess mixture model. Journal of computational and
Graphical Statistics, 13(1):158–182.

Kingma, D. P. and Dhariwal, P. (2018). Glow: Gen-
erative flow with invertible 1x1 convolutions. In
Advances in neural information processing systems,
pages 10215–10224.

Kingma, D. P. and Welling, M. (2013). Auto-encoding
variational bayes. arXiv preprint arXiv:1312.6114.

Lang, D., Klaas, M., and de Freitas, N. (2005). Em-
pirical testing of fast kernel density estimation algo-
rithms.

Latecki, L. J., Lazarevic, A., and Pokrajac, D. (2007).
Outlier detection with kernel density functions. In
International Workshop on Machine Learning and
Data Mining in Pattern Recognition, pages 61–75.
Springer.

Loftsgaarden, D. O., Quesenberry, C. P., et al. (1965).
A nonparametric estimate of a multivariate density
function. The Annals of Mathematical Statistics,
36(3):1049–1051.

Moghaddam, B. and Pentland, A. (1997). Probabilis-
tic visual learning for object representation. IEEE
Transactions on pattern analysis and machine intel-
ligence, 19(7):696–710.

Papamakarios, G. (2018). Preprocessed datasets for
maf experiments.

Papamakarios, G., Pavlakou, T., and Murray, I.
(2017). Masked autoregressive flow for density es-
timation. In Advances in Neural Information Pro-
cessing Systems, pages 2338–2347.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel,
V., Thirion, B., Grisel, O., Blondel, M., Pretten-
hofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,

Passos, A., Cournapeau, D., Brucher, M., Perrot,
M., and Duchesnay, E. (2011). Scikit-learn: Machine
learning in Python. Journal of Machine Learning
Research, 12:2825–2830.

Rasmussen, C. E. (2000). The infinite gaussian mix-
ture model. In Advances in neural information pro-
cessing systems, pages 554–560.

Remes, S., Heinonen, M., and Kaski, S. (2017). Non-
stationary spectral kernels. In Guyon, I., Luxburg,
U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., and Garnett, R., editors, Advances in
Neural Information Processing Systems, volume 30,
pages 4642–4651. Curran Associates, Inc.

Scott, D. W. (2015). Multivariate density estimation:
theory, practice, and visualization. John Wiley &
Sons.

Sheather, S. J. and Jones, M. C. (1991). A reliable
data-based bandwidth selection method for kernel
density estimation. Journal of the Royal Statistical
Society: Series B (Methodological), 53(3):683–690.

Terrell, G. R. and Scott, D. W. (1992). Variable kernel
density estimation. The Annals of Statistics, pages
1236–1265.

Theis, L., van den Oord, A., and Bethge, M. (2016).
A note on the evaluation of generative models. In
International Conference on Learning Representa-
tions.

Tipping, M. E. and Bishop, C. M. (1999). Probabilistic
principal component analysis. Journal of the Royal
Statistical Society: Series B (Statistical Methodol-
ogy), 61(3):611–622.

Von Luxburg, U. and Alamgir, M. (2013). Density esti-
mation from unweighted k-nearest neighbor graphs:
a roadmap. In Advances in Neural Information Pro-
cessing Systems, pages 225–233.

Wang, Z. and Jegelka, S. (2017). Max-value entropy
search for efficient bayesian optimization. In In-
ternational Conference on Machine Learning, pages
3627–3635. PMLR.

Wilson, A. G. and Ghahramani, Z. (2010). Generalised
wishart processes. arXiv preprint arXiv:1101.0240.

Zhang, Q. and Chen, Y. (2021). Diffusion normalizing
flow. Advances in Neural Information Processing
Systems, 34:16280–16291.

Zhang, X., King, M. L., and Hyndman, R. J. (2006). A
bayesian approach to bandwidth selection for mul-
tivariate kernel density estimation. Computational
Statistics & Data Analysis, 50(11):3009–3031.

Zhao, P. and Lai, L. (2022). Analysis of knn den-
sity estimation. IEEE Transactions on Information
Theory, 68(12):7971–7995.

Think Global, Adapt Local: Learning Locally Adaptive K-Nearest Neighbor Kernel Density Estimators

Ziane, Y., Adjabi, S., and Zougab, N. (2015). Adaptive
bayesian bandwidth selection in asymmetric ker-
nel density estimation for nonnegative heavy-tailed
data. Journal of Applied Statistics, 42(8):1645–1658.

Zougab, N., Adjabi, S., and Kokonendji, C. C. (2014).
Bayesian estimation of adaptive bandwidth matrices
in multivariate kernel density estimation. Computa-
tional Statistics & Data Analysis, 75:28–38.

Kenny Falkær Olsen, Rasmus Malik Høegh Lindrup, Morten Mørup

Checklist

1. For all models and algorithms presented, check if you include:

(a) A clear description of the mathematical setting, assumptions, algorithm, and/or model. [Yes]
(b) An analysis of the properties and complexity (time, space, sample size) of any algorithm. [Yes]
(c) (Optional) Anonymized source code, with specification of all dependencies, including external libraries.

[Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of all theoretical results. [Not Applicable]
(b) Complete proofs of all theoretical results. [Not Applicable]
(c) Clear explanations of any assumptions. [Not Applicable]

3. For all figures and tables that present empirical results, check if you include:

(a) The code, data, and instructions needed to reproduce the main experimental results (either in the
supplemental material or as a URL). [Yes]

(b) All the training details (e.g., data splits, hyperparameters, how they were chosen). [Yes]
(c) A clear definition of the specific measure or statistics and error bars (e.g., with respect to the random

seed after running experiments multiple times). [Yes]
(d) A description of the computing infrastructure used. (e.g., type of GPUs, internal cluster, or cloud

provider). [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets, check if you
include:

(a) Citations of the creator If your work uses existing assets. [Yes]
(b) The license information of the assets, if applicable. [Yes]
(c) New assets either in the supplemental material or as a URL, if applicable. [Not Applicable]
(d) Information about consent from data providers/curators. [Not Applicable]
(e) Discussion of sensible content if applicable, e.g., personally identifiable information or offensive content.

[Not Applicable]

5. If you used crowdsourcing or conducted research with human subjects, check if you include:

(a) The full text of instructions given to participants and screenshots. [Not Applicable]
(b) Descriptions of potential participant risks, with links to Institutional Review Board (IRB) approvals if

applicable. [Not Applicable]
(c) The estimated hourly wage paid to participants and the total amount spent on participant compensa-

tion. [Not Applicable]

Think Global, Adapt Local: Learning Locally Adaptive K-Nearest Neighbor Kernel Density Estimators

Supplementary Materials

6 EXPERIMENTAL DETAILS

All our experiments are implemented in PyTorch and run on a single NVIDIA A100 40GB GPU. When training
our models we monitor the predictive log-likelihood on validation data sets, and stop training when the validation
log-likelihood decreases or plateaus. We use a batch size of B = 50 000 on all data sets except for BSDS300
where we use a smaller batch size of B = 10 000. While the batch size does influence the optimization procedure,
we did not observe the final converged solution to be significantly affected by the choice of batch size.

6.1 Data Availability

The five considered tabular data sets are the same pre-processed data sets as considered in Grathwohl et al.
(2018) and Papamakarios et al. (2017), which are available from https://zenodo.org/records/1161203#
.Wmtf_XVl8eN and licensed under CC BY 4.0. The synthetic data sets are also from Grathwohl et al. (2018),
and the code to generate these is MIT licensed.

6.2 Efficient Hyperparameter Tuning by Bayesian Optimization

When scaling to very large data sets, it can become prohibitively expensive to exhaustively search for hyperpa-
rameters using grid search. To avoid this, we use Bayesian optimization (BO) with the Ax4 (Bakshy et al., 2018)
framework to search for hyperparameters on subsets of the larger data sets that are then used as hyperparameters
on the full-size data sets. We find this approach to be robust to the noise introduced by subsampling, and that
optimal hyperparameters do not change drastically as the size of subsets increases. The BO loop uses the max-
value entropy search (MES) (Wang and Jegelka, 2017) acquisition function to propose trial hyperparameters,
which are used to fit and evaluate model on random subsets of the data.

We use BO to select hyperparameters for all considered models (KNN-KDE, VB-KNN-KDE, VB-LA-KDE, etc.)
which include the size of the KNN neighborhood K, and the degrees-of-freedom ν for the Bayesian models.

In fig. 4, all three runs sample subsets with N = 50 000 observations and shows that BO consistently finds the
same optima even when trial evaluations are noisy due to initialization of the BO procedure and sampling of
subsets. In fig. 5, BO is used with subsets of N = {10 000, 50 000, 100 000} observations (increasing from top to
bottom), and shows that the optimal hyperparameters do not change drastically as the training set size increases.

4https://ax.dev

Kenny Falkær Olsen, Rasmus Malik Høegh Lindrup, Morten Mørup

Figure 4: Estimated hyperparameter landscape of GAS based on 3 separate runs of Bayesian optimization using
the MES acquisition function. In each trial a VB-KNN-KDE model is fitted to a new N = 50 000 subset
— differences between runs are due to data subsampling and sampling of the acquisition function. Left: The
estimated final average log-likelihood of a VB-KNN-KDE model given hyperparameters K and ν. Right: The
standard deviation of the estimate.

Think Global, Adapt Local: Learning Locally Adaptive K-Nearest Neighbor Kernel Density Estimators

Figure 5: Estimated hyperparameter landscape of GAS as in fig. 4, but for increasing (top to bottom) sizes of data
subsets N = {10 000, 50 000, 100 000}. While the estimates of the hyperparameter landscapes vary away from
the optima, the locations of the optima remain largely stationary as the size of the sampled subsets increases.

Kenny Falkær Olsen, Rasmus Malik Høegh Lindrup, Morten Mørup

7 ADDITIONAL DERIVATIONS

The variational update rules for the shared covariance models (VB-Full-KDE, VB-Diag-KDE, and VB-Scalar-
KDE) are given in Section 7.1, and the predictive likelihoods are given in Section 7.2. Detailed descriptions of
the computation of the associated evidence lower bounds (ELBO) are given in Section 7.3.

7.1 Update Rules for Alternative KDEs Specifications

The model proposed in Zougab et al. (2014) specifies the same data likelihood as VB-KNN-KDE, but parame-
terizes each Λn in terms of the empirical covariance,

p(Λn) =W
((
νΣ̂
)−1

, ν
)

(21)

where Σ̂ is the empirical covariance matrix. Since the purpose of comparing to this model is to validate the
effect of the KNN-based prior, we augment this model by imposing observation-specific scale parameters τn as
in VB-KNN-KDE, and impose a learned shared covariance matrix instead of estimating it empirically.

These modifications bring the representational capacity of the model closer to that of VB-KNN-KDE, such that
the most significant difference between the two becomes whether the prior covariance structure is locally adaptive
or not. We refer to the resulting model as VB-LA-KDE, which is specified as

p(Σ) =W
(
ν−1Σ̂, ν

)
, p(τn) = Gam(a, b), (22)

p(Λn) =W
((
ντnΣ

)−1
, ν
)
. (23)

The variational posterior distributions become

q∗(Z) =

N∏
n

N∏
m

rznm
nm , rnm ≜ Eq [znm] =

exp ρnm∑N
i exp ρim

, (24)

ρnm ∝ Eq [ln |Λn|]− (xm − xn)
⊤ Eq [Λn] (xm − xn) , (25)

q∗(Σ) =W(Σ |W̃, ν̃), (26)

q∗(Λ) =

N∏
n

W(Λn |W̃n, ν̃n), (27)

q∗(τ) =

N∏
n

Gam(τn | ã, b̃n), (28)

(29)

with corresponding update rules,

W̃
−1

n = ν Eq [τn]Eq

[
Σ
]
+Rn, ν̃n = ν +

N∑
m

rnm, (30)

W̃
−1

= νΣ̂
−1

+ ν

N∑
n

Eq [τn]Eq [Λn] , ν̃ = ν +Nν, (31)

ã = a+
νD

2
, b̃n = b+

ν

2
Tr
[
Eq

[
Σ
]
Eq [Λn]

]
. (32)

For VB-Full-KDE a single covariance matrix parameterizes the KDE,

p(Λ) =W(
(
νΣ̂
)−1

, ν), (33)

p(X |Z,Λ) =

N∏
n

N∏
m

N (xm |xn,Λ
−1)znm (34)

Think Global, Adapt Local: Learning Locally Adaptive K-Nearest Neighbor Kernel Density Estimators

and we obtain the following variational distributions and update rules

q∗(Z) =

N∏
n

N∏
m

rznm
nm , rnm ≜ E [znm] =

exp ρnm∑N
i exp ρim

, (35)

ρnm ∝ Eq [ln |Λ|]− (xm − xn)
⊤ Eq [Λ] (xm − xn) , (36)

q∗(Λ) =W(Λ |W̃, ν̃), (37)

W̃
−1

= νΣ̂+

N∑
n

N∑
m

rnm(xm − xn)(xm − xn)
⊤, ν̃ = ν +N. (38)

For VB-Diag-KDE the covariance is restricted to a diagonal matrix with each diagonal entry λ2
i modelled as a

gamma distribution with prior variance σ2
i ,

Λ = diag(λ2), p(λ2
i) = Gam(ν, νσ2

i) (39)

p(X |Z,Λ) =

N∏
n

N∏
m

N (xm |xn,Λ
−1)znm =

N∏
n

N∏
m

D∏
i

N (xmi |xni, λ
−2
i)znm . (40)

The variational distributions and update rules are

q∗(Z) =

N∏
n

N∏
m

rznm
nm , rnm ≜ E [znm] =

exp ρnm∑N
i exp ρim

, (41)

ρnm ∝
D∑
i

Eq

[
lnλ2

i

]
− (xmi − xni)

2 Eq

[
λ2
i

]
, (42)

q∗(λ2
i) = Gam(λ2

i | ν̃, w̃i), (43)

ν̃ = ν +
N

2
, w̃i = νσ2

i +
1

2

N∑
n

N∑
m

rnm (xmi − xni)
2
. (44)

VB-Scalar-KDE restricts VB-Diag-KDE to a shared distribution along the diagonal,

Λ = diag(λ2), p(λ2) = Gam(ν, νσ2), (45)

p(X |Z,Λ) =

N∏
n

N∏
m

N (xm |xn,Λ
−1)znm =

N∏
n

N∏
m

D∏
i

N (xmi |xni, λ
−2)znm . (46)

The variational distributions and update rules are

q∗(Z) =

N∏
n

N∏
m

rznm
nm , rnm ≜ E [znm] =

exp ρnm∑N
i exp ρim

, (47)

ρnm ∝ DEq

[
lnλ2

]
− Eq

[
λ2
] D∑

i

(xmi − xni)
2
, (48)

q∗(λ2) = Gam(λ2 | ν̃, w̃), (49)

ν̃ = ν +
ND

2
, w̃ = νσ2 +

1

2

D∑
i

N∑
n

N∑
m

rnm (xmi − xni)
2
. (50)

7.2 Predictive Likelihoods for Alternative KDEs Specifications

The predictive likelihood for VB-LA-KDE is identical to that of VB-KNN-KDE, as they share the same posterior
distributions.

For VB-Full-KDE the predictive likelihood is a mixture of multivariate Student’s t-distributions with a shared
covariance,

p(x̂ |X) =
1

N

N∑
n

St(x̂ |xn, (ν̃ + 1−D)W̃, ν̃ + 1−D). (51)

Kenny Falkær Olsen, Rasmus Malik Høegh Lindrup, Morten Mørup

VB-Diag-KDE becomes a mixture of products of independent univariate Student’s t-distributions,

p(x̂ |X) =
1

N

N∑
n

D∏
i

St(x̂i |xni,
ν̃i
w̃i

, 2ν̃). (52)

VB-Scalar-KDE becomes a mixture of multivariate Student’s t-distributions with a diagonal covariance matrix
of identical elements,

p(x̂ |X) =
1

N

N∑
n

St(x̂ |xn, diag(

√
ν̃

w̃
), 2ν̃). (53)

7.3 Lower Bound on Marginal Likelihood

A lower bound on the marginal likelihood (evidence), the ELBO, can be evaluated directly from expectations with
respect to the variational factors and used to monitor for convergence during model fitting. These expectations
are given below for the three considered KDE models.

Let ΓD (x) = π
D(D−1)

4

∏D
i=1 Γ

(
x+ 1−i

2

)
be the multivariate gamma function and H [·] the entropy operator. Any

unevaluated expectations are standard results for normal, Wishart and gamma distributions explicitly given in
Appendix B of Bishop (2006).

7.3.1 ELBO for VB-KNN-KDE

L = Eq [ln p(X |Z,Λ)] + Eq [ln p(Z)] + Eq [ln p(Λ | τ)] + Eq [ln p(τ)] (54)
− Eq [ln q

∗(Z)]− Eq [ln q
∗(Λ)]− Eq [ln q

∗(τ)]

Eq [ln p(X |Z,Λ)] = − ND

2
ln (2π) +

N∑
n

N∑
m

rnm ln ρnm (55)

= − ND

2
ln (2π) +

N∑
m

ln cm +

N∑
n

rnm ln rnm (56)

Eq [ln p(Z)] = −N ln (N − 1) (57)

Eq [ln p(Λ | τ)] =
N∑
n

Eq

[
lnB

((
τnνΣ̂

(K)

n

)−1

, ν

)]
+

ν −D − 1

2
Eq [ln |Λn|] (58)

− ν

2
Eq [τn] Tr

[
Σ̂

(K)

n Eq [Λn]

]
Eq

[
lnB

((
τnνΣ̂

(K)

n

)−1

, ν

)]
=

ν

2

(
ln

∣∣∣∣Σ̂(K)

n

∣∣∣∣+DEq [ln τn] +D ln ν −D ln 2

)
(59)

− ln ΓD

(ν
2

)
Eq [ln p(τ)] =

N∑
n

− ln Γ (an) + an ln bn + (an − 1)Eq [ln τn]− bn Eq [τn] (60)

Eq [ln q
∗(Z)] =

N∑
n

N∑
m

rnm ln rnm (61)

Eq [ln q
∗(Λ)] =

N∑
n

−Hq [Λn] (62)

Eq [ln q
∗(τ)] =

N∑
n

−Hq [τn] (63)

Think Global, Adapt Local: Learning Locally Adaptive K-Nearest Neighbor Kernel Density Estimators

7.3.2 ELBO for VB-LA-KDE

L = Eq [ln p(X |Z,Λ)] + Eq [ln p(Z)] + Eq

[
ln p(Λ |Σ, τ)

]
+ Eq

[
ln p(Σ)

]
+ Eq [ln p(τ)] (64)

− Eq [ln q
∗(Z)]− Eq [ln q

∗(Λ)]− Eq

[
ln q∗(Σ)

]
− Eq [ln q

∗(τ)]

Eq [ln p(X |Z,Λ)] = − ND

2
ln (2π) +

N∑
n

N∑
m

rnm ln ρnm (65)

= − ND

2
ln (2π) +

N∑
m

ln cm +

N∑
n

rnm ln rnm (66)

Eq [ln p(Z)] = −N ln (N − 1) (67)

Eq

[
ln p(Λ |Σ, τ)

]
=

N∑
n

Eq

[
lnB

((
τnνΣ

)−1

, ν

)]
+

ν −D − 1

2
Eq [ln |Λn|] (68)

− ν

2
Eq [τn] Tr

[
Eq

[
Σ
]
Eq [Λn]

]
Eq

[
lnB

((
τnνΣ

)−1

, ν

)]
= − ν

2

(
D ln 2− Eq

[
ln
∣∣∣Σ∣∣∣]−DEq [ln τn]−D ln ν

)
(69)

− ln ΓD

(ν
2

)
Eq [ln p(Σ)] = Eq

[
lnB

(
ν−1Σ̂, ν

)]
+

ν −D − 1

2
Eq

[
ln
∣∣∣Σ∣∣∣] (70)

− ν

2
Tr
[
Σ̂

−1
Eq

[
Σ
]]

Eq

[
lnB

(
ν−1Σ̂, ν

)]
= − ν

2

(
D ln 2 + ln

∣∣∣Σ̂∣∣∣−D ln ν
)
− ln ΓD

(
ν

2

)
(71)

Eq [ln p(τ)] =

N∑
n

− ln Γ (an) + an ln bn + (an − 1)Eq [ln τn]− bn Eq [τn] (72)

Eq [ln q
∗(Z)] =

N∑
n

N∑
m

rnm ln rnm (73)

Eq [ln q
∗(Λ)] =

N∑
n

−Hq [Λn] (74)

Eq

[
ln q∗(Σ)

]
= −Hq

[
Σ
]

(75)

Eq [ln q
∗(τ)] =

N∑
n

−Hq [τn] (76)

Kenny Falkær Olsen, Rasmus Malik Høegh Lindrup, Morten Mørup

7.3.3 ELBO for VB-Full-KDE

L = Eq [ln p(X |Z,Λ)] + Eq [ln p(Z)] + Eq [ln p(Λ)] (77)
− Eq [ln q

∗(Z)]− Eq [ln q
∗(Λ)]

Eq [ln p(X |Z,Λ)] = − ND

2
ln (2π) +

N∑
n

N∑
m

rnm ln ρnm (78)

= − ND

2
ln (2π) +

N∑
m

ln cm +

N∑
n

rnm ln rnm (79)

Eq [ln p(Z)] = −N ln (N − 1) (80)

Eq [ln p(Λ)] = Eq

[
lnB

((
νΣ̂
)−1

, ν

)]
+

ν −D − 1

2
Eq [ln |Λ|] (81)

− ν

2
Tr
[
Σ̂Eq [Λ]

]
Eq

[
lnB

((
νΣ̂
)−1

, ν

)]
= − ν

2

(
D ln 2− ln

∣∣∣Σ̂∣∣∣−D ln ν
)
− ln ΓD

(ν
2

)
(82)

Eq [ln q
∗(Z)] =

N∑
n

N∑
m

rnm ln rnm (83)

Eq [ln q
∗(Λ)] = −Hq [Λ] (84)

7.3.4 ELBO for VB-Diag-KDE

L = Eq [ln p(X |Z,Λ)] + Eq [ln p(Z)] + Eq [ln p(Λ)] (85)
− Eq [ln q

∗(Z)]− Eq [ln q
∗(Λ)]

Eq [ln p(X |Z,Λ)] = − ND

2
ln (2π) +

N∑
n

N∑
m

rnm ln ρnm (86)

= − ND

2
ln (2π) +

N∑
m

ln cm +

N∑
n

rnm ln rnm (87)

Eq [ln p(Z)] = −N ln (N − 1) (88)

Eq [ln p(Λ)] =

D∑
i

− ln Γ(ν) + ν
(
ln ν + lnσ2

i

)
+ (ν − 1)Eq

[
lnλ2

i

]
(89)

− νσ2
i Eq

[
λ2
i

]
Eq [ln q

∗(Z)] =

N∑
n

N∑
m

rnm ln rnm (90)

Eq [ln q
∗(Λ)] = −Hq [Λ] (91)

Think Global, Adapt Local: Learning Locally Adaptive K-Nearest Neighbor Kernel Density Estimators

7.3.5 ELBO for VB-Scalar-KDE

L = Eq [ln p(X |Z,Λ)] + Eq [ln p(Z)] + Eq [ln p(Λ)] (92)
− Eq [ln q

∗(Z)]− Eq [ln q
∗(Λ)]

Eq [ln p(X |Z,Λ)] = − ND

2
ln (2π) +

N∑
n

N∑
m

rnm ln ρnm (93)

= − ND

2
ln (2π) +

N∑
m

ln cm +

N∑
n

rnm ln rnm (94)

Eq [ln p(Z)] = −N ln (N − 1) (95)
Eq [ln p(Λ)] = − ln Γ(ν) + ν

(
ln ν + lnσ2

)
+ (ν − 1)Eq

[
lnλ2

]
(96)

− νσ2 Eq

[
λ2
]

Eq [ln q
∗(Z)] =

N∑
n

N∑
m

rnm ln rnm (97)

Eq [ln q
∗(Λ)] = −Hq [Λ] (98)

7.4 Sampling the Posterior Predictive Likelihood

The posterior predictive likelihood for the VB-KNN-KDE model takes the form of a mixture of multivariate
Student’s t-distributions, which may be sampled by first picking a component in the mixture uniformly at
random, and then sampling that component through computing (Genz and Bretz, 2009)

x̂← xn +

√
u

ν̃n + 1−D
y, (99)

where

y ∼ N (0, (ν̃n + 1−D)W̃n), u ∼ χ2(ν̃n + 1−D). (100)

8 ASYMPTOTIC COMPLEXITY

Time-complexity: For a data set of N samples in D dimensions the inversion of each observation-specific
kernel relies on the Cholesky factorization with O(D3) time complexity, while the evaluation of a latent variable
rnm between the n’th and m’th data points involves evaluating a quadratic form taking O(D2) time. Thus
the evaluation of all pairs of latent variables and Cholesky factorization of all kernels takes O(N2D2 + ND3)
time corresponding to one complete pass over the training data. However, these computations are embarrassingly
parallel across N and the Cholesky factorization and quadratic form computations are implemented using parallel
GPU algorithms, yielding further parallellization.

Space-complexity: Naïve implementation requires a space complexity of either O(N2) by storing all responsi-
bilities or alternatively O(ND2) by storing all observation-specific precision matrices. By exploiting sparsity in
the responsibilities we in our experiments empirically observe log-linear scaling (≈ O(N logN)) in memory for
all considered data sets.

