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Abstract

It is often observed that stochastic gradient
descent (SGD) and its variants implicitly se-
lect a solution with good generalization per-
formance; such implicit bias is often character-
ized in terms of the sharpness of the minima.
Kleinberg et al. (2018) connected this bias
with the smoothing effect of SGD which elim-
inates sharp local minima by the convolution
using the stochastic gradient noise. We follow
this line of research and study the commonly-
used averaged SGD algorithm, which has
been empirically observed in Izmailov et al.
(2018) to prefer a flat minimum and therefore
achieves better generalization. We prove that
in certain problem settings, averaged SGD
can efficiently optimize the smoothed objec-
tive which avoids sharp local minima. In ex-
periments, we verify our theory and show that
parameter averaging with an appropriate step
size indeed leads to significant improvement
in the performance of SGD.

1 INTRODUCTION

Stochastic gradient descent (SGD) (Robbins and
Monro, 1951) is a powerful learning method for train-
ing deep neural networks. SGD often exhibits higher
generalization performance than many of its variants,
even when they achieve faster convergence with respect
to the training loss (Keskar and Socher, 2017; Wilson
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et al., 2017; Luo et al., 2019). Therefore, the study of
implicit bias to characterize the parameters obtained
by SGD has become an active research topic.

Among such studies, flat minima (Hinton and
Van Camp, 1993; Hochreiter and Schmidhuber, 1997)
has been recognized as an important notion relevant
to the generalization performance of deep neural net-
works. Hochreiter and Schmidhuber (1997); Keskar
et al. (2017) suggested that the flat minima generalize
well compared to sharp minima, and Neyshabur et al.
(2017) rigorously supported this correlation under ℓ2-
regularization by using the PAC-Bayesian framework
(McAllester, 1998, 1999). Jiang et al. (2020) verified
that the flatness measures reliably capture the gener-
alization performance compared to many other com-
plexities. Furthermore, Keskar et al. (2017) empirically
demonstrated that SGD prefers a flat minimum due to
its own stochastic gradient noise and Kleinberg et al.
(2018) proved this implicit bias via the smoothing effect
brought by the noise.

Along this line of research, there have been several at-
tempts to develop optimization methods with stronger
bias than SGD. Especially, stochastic weight averag-
ing (SWA) (Izmailov et al., 2018) and sharpness aware
minimization (SAM) (Foret et al., 2020) achieved signif-
icant improvement in generalization performance over
SGD. SWA is a cyclic averaging scheme for SGD, which
includes the averaged SGD (Ruppert, 1988; Polyak and
Juditsky, 1992) as a special case. It is well known
that averaged SGD with an appropriately small step
size or diminishing step size is a statistically optimal
method for the convex optimization problems (Bach
and Moulines, 2011; Lacoste-Julien et al., 2012; Rakhlin
et al., 2012). On the other hand, Izmailov et al. (2018)
found that an appropriately large step size is rather
preferable to a small step size when training deep neural
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networks with the averaged SGD.

The success of using a large step size can be attributed
to the strong bias towards a flat minimum as discussed
in Izmailov et al. (2018). SGD with a large step size
cannot stay in sharp regions because of the amplified
stochastic gradient noise, and thus it moves to a flatter
region. After a long run, SGD will finally oscillate
according to an invariant distribution. Then, by taking
the average, we can get the mean of this distribution,
which is located inside a flat region. Although this
provides a good insight into how the averaged SGD with
a large step size behaves, the theoretical understanding
remains elusive. Hence, the research problem we aim
to address is

When and why does the averaged SGD converge to a
flat region more stably than SGD?

In our work, we address this question by analyzing
the averaged SGD based on the smoothing effect of
stochastic gradient noise.

1.1 Contributions

We employ the alternative view of SGD (Kleinberg
et al., 2018) that connects SGD for the objective f(w)
with the optimization of the smoothed objective F (v) =
E[f(v − ηϵ′)] through the change of variable w 7→ v =
w− η∇f(w), where ϵ′ is a stochastic gradient noise. In
fact, F is a smoothed function because it is basically
the convolution using the stochastic gradient noise, and
the strength of the smoothness is controlled by the step
size η as seen in the left figures of Figure 1.

Therefore, an optimization method that can minimize
F with a certain accuracy is expected to converge to a
flat region, and our aim is to clarify when the averaged
SGD can get closer to the minimizer of F than SGD
under the same step size. Figures 1 and 2 illustrate
toy examples, respectively, where the averaged SGD
works better in the above sense especially when using
a large step size and where the averaged SGD can
approximately optimize F with η varying.

Our contributions are summarized below:

• We derive the upper and lower bound conditions in
Theorem 3.2 and Eq. (5) for the SGD error: D∞ =

limT→∞

√
1

T+1

∑T
t=0 ∥vt − v∗∥2 such that averaged

SGD gets closer to the minimizer v∗ = argminF (v)
than SGD.

• We estimate the SGD error D∞ in Proposition 3.4
and 3.5 under additional lower bound on the stochas-
tic gradient noise and sort of one-point strong con-
vexity for F , with a specific Example 3.6 satisfying
the required condition.

• We empirically observe that averaged SGD achieves
high test accuracy on image classification tasks when
using a relatively large step size that makes SGD
itself unstable.

2 PRELIMINARY

In this section, we introduce the stochastic gradient
descent (SGD) for general problems including the risk
minimization problems appearing in machine learning,
and introduce the alternative view of SGD developed
by Kleinberg et al. (2018).

2.1 Stochastic gradient descent

Let f : Rd → R be a smooth nonconvex objective
function to be minimized. For simplicity, we assume f
is nonnegative. A stochastic gradient descent, randomly
initialized at w0, for optimizing f is described as follows:
for t = 0, 1, 2, . . .

wt+1 = wt − η (∇f(wt) + ϵt+1(wt)) , (1)

where η > 0 is the step size and ϵt+1 : Rd → Rd is a
random field corresponding to the stochastic gradient
noise i.e., for any w ∈ Rd, {ϵt+1(w)}∞t=0 is a sequence of
zero-mean random variables taking values in Rd. A typ-
ical setup of the above is an empirical risk minimization
in machine learning.

Example 2.1. Let ℓ(w, z) be a loss function where
w ∈ Rd and z ∈ Rp represent the parameter and data
example, respectively, and let r(w) be a regularization
function. Let {zi}ni=1 be training examples. Then, the
regularized empirical risk is defined as follows:

f(w) =
1

n

n∑
i=1

ℓ(w, zi) + λr(w),

where λ > 0 is a regularization coefficient. A stan-
dard stochastic gradient at t-th iterate wt is defined
as ∇wℓ(wt, zit+1) + λ∇r(w) where {it+1}∞t=0 are i.i.d.
random variables following the uniform distribution on
{1, . . . , n}. Hence, the stochastic noise is ϵt+1(w) =
∇wℓ(w, zit+1

) − 1
n

∑n
i=1 ∇wℓ(w, zi). Furthermore, we

note that the above setup can extend to the case in-
volving the data augmentation by replacing the loss
ℓ(w, zi) with E[ℓ(w,Zi)], where Zi is a random variable
of an augmented example, and replacing the stochastic
gradient of the loss ∇wℓ(wt, zit+1

) with ∇wℓ(wt, Zit+1
).

2.2 Alternative view of SGD

An alternative view (Kleinberg et al., 2018) of SGD is
key in our analysis connecting the stochastic gradient
noise with the smoothing for the objective function.
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(a) (smoothed) objective (b) SGD (c) averaged SGD

Figure 1: We run SGD and averaged SGD 500 times with the uniform stochastic gradient noise for two objective
functions (top and bottom). Figure (a) depicts the objective function f (green, η = 0) and smoothed objectives
F (red and blue, η > 0). Figures (b) and (c) plot convergent points by SGD and averaged SGD with histograms,
respectively.

Figure 2: The figure plots the original objective (green),
smoothed objectives (blue, darker is smoother), and
convergent points obtained by the averaged SGD
which is run 500 times for each step size η ∈
{0, 1, 0.3, 0.5, 0.7, 0.9}.

This view of SGD translates {wt}∞t=0 into associated
iterations {vt}∞t=0 and we analyze the update of vt
instead of wt. We define vt as a parameter ob-
tained by the exact gradient descent from wt, that
is, vt = wt − η∇f(wt). Since wt+1 = vt − ηϵt+1(wt),
we get vt+1 = vt − ηϵt+1(wt) − η∇f(vt − ηϵt+1(wt)),
where the notation ∇f(vt − ηϵt+1(wt)) represents
∇f(w)|w=vt−ηϵt+1(wt). As shown in Appendix A.1,
under a specific setting given later, the translation
w 7→ v = w − η∇f(w) is a smooth invertible injection
and its inverse is differentiable. Thus, we can identify
ϵ′t+1(v) with ϵt+1(w) through the map w 7→ v. Then,

we get an update rule of vt:

vt+1 = vt − ηϵ′t+1(vt)− η∇f(vt − ηϵ′t+1(vt)). (2)

For convenience, we refer to the rule (2) as an alter-
native stochastic gradient descent in this paper. Since,
the conditional expectation of ϵ′t+1(vt) at vt is zero,
we expect that the alternative SGD (2) minimizes the
following smoothed objective function:

F (v) = E[f(v − ηϵ′(v))], (3)

where ϵ′ is an independent copy of ϵ′1, ϵ
′
2, . . .. However,

we note that the alternative SGD is a biased SGD
because ∇F (vt) ̸= E[∇f(vt − ηϵ′t+1(vt))] in general 1,
unless ϵ′t+1(v) is free from v.

The function (3) is indeed a smoothed function of f by
the convolution using the stochastic gradient noise ηϵ′,
where the step size η controls the strength of smooth-
ness. Figure 1 depicts how a nonconvex function f is
smoothened. In this figure, we observe that by using
an appropriately large step size, sharp local minima
of f vanishes and the solution of F emerges at the
flat area of f . Moreover, by taking Taylor expansion
of f , we see that F (v) is a regularized objective that
penalizes the high (positive) curvature of f along the

1We see by the chain rule ∇F (v) = E[(I −
ηJ⊤

ϵ′(v)(v))∇f(v−ηϵ′(v))]. Here, the notation∇f(v−ηϵ′(v))

represents ∇f(w)|w=v−ηϵ′(v). Hence, ∇F (v) ̸= E[∇f(v −
ηϵ′(v))] unless J⊤

ϵ′(v)(v) = 0.
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noise direction in expectation:

F (v) = f(v) +
η2

2
Tr

(
∇2f(v)E[ϵ′(v)ϵ′(v)⊤]

)
+O(η3).

Therefore, we can expect that stochastic gradient de-
scent avoids sharp minima and converges to a flat
region.

Kleinberg et al. (2018) showed the convergence to
a point v◦ ∈ Rd under the regularity condition:
E[∇f(v− ηϵ′(v))]⊤(v− v◦) ≥ ∃c∥v− v◦∥2 via the alter-
native view of SGD. Inspired by their work, we analyze
the optimization capability of the averaged SGD for
approximating the minimizer v∗ = argminv∈Rd F (v).

3 CONVERGENCE ANALYSIS

Izmailov et al. (2018) empirically demonstrated that
averaged SGD converges to a flat region and achieves
superior generalization when using a relatively large
step size such that SGD oscillates. We theoretically
explain this phenomenon by showing that the averaged
SGD can get closer to v∗ than SGD using the same step
size under certain settings. In the averaged SGD, we
run SGD (1) and take the average as follows: wT+1 =

1
T+1

∑T+1
t=1 wt.

3.1 Analysis of averaged SGD

Our aim is to show limT→∞ wT can be closer to v∗
than {wt}∞t=0 and {vt}∞t=0. Preferably, the alternative
view of SGD (2) is more useful in analyzing the aver-

aged SGD because the average vT = 1
T+1

∑T
t=0 vt is

consistent with wT as confirmed below. By definition,

wT+1 = vT +
η

T + 1

T∑
t=0

ϵt+1(wt),

where the noise term
∑T

t=0 ϵt+1(wt)/(T+1) is zero in ex-
pectation and its variance is upper bounded by σ2

1/(T+1)

under Assumption (A2). Hence, wT+1 − vT converges
to zero in probability by Chebyshev’s inequality; for
any r > 0, P[∥wT+1 − vT ∥ > r] ≤ σ2

1/(T+1)r2 → 0 as
T → ∞, and the analysis of limT→∞ wT reduces to
that of limT→∞ vT .

We can immediately see that the averaged SGD is
always closer to the solution than SGD in average
because of Jensen’s inequality: E[∥vT − v∗∥2] ≤

1
T+1

∑T
t=0 E[∥vt − v∗∥2]. We next present a nontriv-

ial bound on the left-hand side of this inequality (i.e.,
the error achieved by the averaged SGD). To do so,
we make the following assumptions on the objective
function and stochastic gradient noise.

Assumption 3.1.

(A1) f : Rd → R is nonnegative, twice continuously
differentiable, and its Hessian is bounded, i.e.,
there is a constant L > 0 such that for any w ∈ Rd,
−LI ⪯ ∇2f(w) ⪯ LI.

(A2) Random fields {ϵt+1}∞t=0 are independent copies
each other2 and ϵt+1(w) is differentiable in w.
Moreover, for any w ∈ Rd E[ϵt+1(w)] = 0 and
there are σ1, σ2 > 0 such that for any w ∈ Rd,
E[∥ϵt+1(w)∥2] ≤ σ2

1 and E[∥J⊤
ϵt+1

(w)∥2] ≤ σ2,
where Jϵt+1

is Jacobian of ϵt+1.

(A3) Hessian of F at v∗ is positive definite, i.e., there is
a positive constant µ > 0 such that ∇2F (v∗) ⪰ µI.

(A4) There exist positive constants γ and M such that
for any v ∈ Rd, ∥∇F (v) − ∇2F (v∗)(v − v∗)∥ ≤
γ +M∥v − v∗∥2.

The smoothness and boundedness conditions (A1)
on the objective function and the zero-mean and the
bounded variance conditions (A2) on stochastic gra-
dient noise are commonly assumed in the convergence
analysis for the stochastic optimization methods. Stan-
dard stochastic gradient noises {ϵt+1}∞t=0 defined in Ex-
ample 2.1 are independent copies. Moreover, if Hessian
matrix satisfies −LI ⪯ ∇2

wℓ(w, z) ⪯ LI in Example 2.1,
then the last condition on Jϵt+1 also holds with at least
σ2 = 2L because Jϵt+1(w) = ∇2

wℓ(w, zit+1)−∇2f(w).

(A3) and (A4) are assumptions made on the smoothed
objective function and used to connect the error of the
averaged SGD with that of SGD. (A3) ensures the
strict positivity of Hessian ∇2F (v∗). (A4) measures
the linear approximation error of ∇F at v∗. For in-
stance, functions that have bounded third-order deriva-
tives satisfy (A4) with γ = 0, which is also assumed
in Dieuleveut et al. (2020) to show the superiority of
the averaging scheme for strongly convex optimization
problems.

The following theorem describes the relationship be-
tween the errors achieved by SGD and averaged SGD.

Theorem 3.2. Under Assumptions (A1)–(A4), run
the averaged SGD for T -iterations with the step size
η ≤ 1

2L , then vT satisfies the following inequality:

E[∥vT − v∗∥] ≤ min

{
DT , O

(
T− 1

2

)
+

4σ1σ2η
3
2L

1
2

√
3µ

+
2DT+1

ηµ
√
T + 1

+
γ +MD2

T

µ

}
,

where we set DT :=

√
1

T+1E
[∑T

t=0 ∥vt − v∗∥2
]
.

2We suppose {ϵt+1}∞t=0 are independent copies each
other. That is, there is a measurable map from a prob-
ability space: Ω ∋ z 7→ ϵ(w, z) ∈ Rd, and then ϵt+1 can
be written as a measurable map from a product proba-
bility space: ΩZ≥0 ∋ {zs+1}∞s=0 7→ ϵ(w, zt+1) ∈ Rd when
explicitly representing them.
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Proof sketch. We set R(v) = ∇F (v) − ∇2F (v∗)(v −
v∗). Taking average of R(vt) over t ∈ {0, 1, . . . , T},
we get ∇2F (v∗)(vT − v∗) = 1

T+1

∑T
t=0 ∇F (vt) −

1
T+1

∑T
t=0 R(vt). Therefore, by taking the expectation

of the norm of both sides, we obtain

µE [∥vT − v∗∥] ≤
1

T + 1
E

[∥∥∥∥∥
T∑

t=0

∇F (vt)

∥∥∥∥∥
]
+ γ +MD2

T ,

where we applied (A3) and (A4). Since the first term
of the RHS is the norm of the average of gradients
∇F (vt) across all iterations, this term will decrease up
to a small error as the optimization proceeds:

O(T−1/2) +
4√
3
σ1σ2η

3
2L

1
2 +

2DT+1

η
√
T + 1

.

See Lemma A.5 in Appendix for the detailed deriva-
tion of this error. Moreover, Jensen’s inequality yields
E[∥vT − v∗∥] ≤

√
E[∥vT − v∗∥2] ≤ DT .

The term DT =

√
1

T+1E
[∑T

t=0 ∥vt − v∗∥2
]
in Theo-

rem 3.2 is the root mean square of the distances be-
tween v∗ and SGD iterations. Hence DT converges up
to an error depending on η under certain assumptions
as shown in Proposition 3.4 later or at least it is uni-
formly bounded as long as SGD performs in a compact
domain. Hence, we suppose D∞ = limT→∞ DT < ∞
in the following argument.

Let us see the relationship between errors finally
achieved by SGD and averaged SGD. Taking the limit
T → ∞, we get the upper bound on limT→∞ E[∥vT −
v∗∥] as follows:

min

{
D∞,

4σ1σ2η
3
2L

1
2

√
3µ

+
γ +MD2

∞
µ

}
. (4)

The bound (4) shows nontrivial improvement by av-
eraged SGD over SGD in the sense: limT→∞ E[∥vT −
v∗∥] ≪ D∞ when SGD error D∞ satisfies the following
condition:

4σ1σ2η
3
2L

1
2

√
3µ

+
γ

µ
≪ D∞ ≪ µ

M
. (5)

Here, the informal notation a ≪ b (for a, b > 0) is
used for describing the situation where b is sufficiently
large such that a/b approaches 0. To discuss the condi-
tion (5), consider the case where µ, M > 0 satisfying
Assumptions (A3) and (A4) can be uniformly cho-
sen with respect to η → 0 and γ = 0. Then, the
upper bound D∞ ≪ µ/M = O(1) means the conver-
gence of SGD to some extent. And the lower bound
Ω(η3/2) ≪ D∞ is also typically satisfied for mildly
small η because SGD oscillates at least of the order
of η if the stochastic gradient does not vanish (see
Proposition 3.5).

3.2 Evaluation of SGD error D∞

In this section, we estimate the value D∞ under rea-
sonable problem setups. Inspired by Kleinberg et al.
(2018)3, we make the following regularity condition on
the smoothed objective F at v∗.

Assumption 3.3. (A5) There exists c > 0 such that
for any v ∈ Rd, ∇F (v)⊤(v − v∗) ≥ c∥v − v∗∥2.

(A5) is a sort of one-point strong convexity at the solu-
tion v∗, but we note that it allows for the nonconvexity
of F . Under this assumption, we obtain the upper
bound on SGD error DT .

Proposition 3.4. Under Assumptions (A1), (A2),
and (A5), run SGD for T -iterations with the step size
η ≤ 1

2L , then we get

D2
T ≤ O

(
T−1

)
+

2ησ2
1

c
+

8η2σ2
1L

3c

(
1 +

2ησ2
2

c

)
.

Our result allows for a larger step size than that in
Kleinberg et al. (2018) because we do not stick to
the convergence of the last iterate. Proposition 3.4

implies D∞ ≤
√

2ησ2
1

c +
8η2σ2

1L
3c

(
1 +

2ησ2
2

c

)
, meaning

convergence of SGD to a point at least at a distance of
the RHS from the minimizer v∗ of F .

The next proposition provides the lower bound on SGD
error DT under the assumption that the variance of
stochastic gradient noise is uniformly lower bounded.

Proposition 3.5. Suppose that Assumptions (A1)
and (A2) hold, and that there exists σ3 > 0 such that
for any w ∈ Rd, E[∥ϵt+1(w)∥2] ≥ σ2

3. Running SGD

with η ≤ 3σ2
3

32σ2
1L

, we get

η2σ2
3

8
≤ D2

T +O(T−1).

Propositions 3.4 and 3.5 with T → ∞ yield the estima-
tion of D∞. That is, we get that under the assumptions
made in these two propositions,

ησ3

2
√
2
≤ D∞ ≤

√
2ησ2

1

c
+

8η2σ2
1L

3c

(
1 +

2ησ2
2

c

)
. (6)

Summarizing the discussion so far, the averaged SGD
achieves a nontrivial improvement if the above estima-
tion Eq. (6) satisfies the condition Eq. (5).

3(A5) is slightly different from that in Kleinberg et al.
(2018). They assumed E[∇f(v−ηϵ′(v))]⊤(v−v◦) ≥ ∃c∥v−
v◦∥2 with a point v◦ which does not necessarily coincides
with v∗. If Jϵ′ ≡ 0, then v◦ equals v∗ and both assumptions
coincide because ∇F (v) = E[∇f(v − ηϵ′(v))] in this case.
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3.3 Example

As a sanity check, we present examples that satisfy
the improvement condition Eq. (5) by instantiating the
estimation Eq. (6) of SGD error D∞ and we confirm
the certain improvement by the averaged SGD. For a
detailed explanation, see Appendix B and C.

Figure 3: We run SGD and averaged SGD for two
problems corresponding top and bottom figures. For
each case, the left figure depicts the original objective
(blue) f and smoothed objective (orange) F and the
right figure depicts convergent points of SGD (red) and
averaged SGD (blue).

Example 3.6. We consider two examples of functions
f on R which fall into the setting of γ = 0 or M = 0.
Blue curves in the top and bottom of Figure 3 depict
these functions, respectively. As the stochastic gradient
noises, we take i.i.d. uniform noise on an interval
[−r, r] in both cases. Hence, σ2

1 = σ2
3 = r2/3 and

σ2 = 0. Then, the smoothed objectives F (orange
curves in Figure 3) with an appropriate step size η look
like the quadratic functions that possess the unique
global minimizers v∗. In both cases, we observe the
improved performance of the averaged SGD regarding
the convergence to v∗. We verify the condition Eq. (5)
below. For the details, see Appendix.

1. First case (top of Figure 3): An objective is
f(w) = 0.5(w− 1)2+ gδ(w), where gδ is a downward
bump of width δ and height δ. This bump makes
a local minimum of f around v = 0 and f has
the optimal solution v = 1. Lipschitz constant is
L = 1 +O(1/δ). In this setting, the smoothing only
affects the term gδ, i.e.,

F (v) =
1

2
(v − 1)2 + E[gδ(v − ηϵ′)] + (const).

Then, the local minimum of f around v = 0 is

eliminated by the smoothing with an appropriate η,
and the global solution v∗ = 1 of F only remains.
In fact, if we take η = O(δ/r), we can verify all
assumptions with constants: µ = 1, c = 1/3, γ =
0, M = 8/9. By instantiating Eq. (6), we see

δ ≲ D∞ ≲ δ +
√

δ(1 + r).

Hence, the condition Eq. (5): 0 ≪ D∞ ≪ 9/8
is satisfied under the setting with mildly small δ.
Specifically, we have limT→∞ E[∥vT − v∗∥] ≤ 8

9D
2
∞.

2. Second case (bottom of Figure 3): An objective
is f(w) = 0.5w2 + gδ(w), where gδ is a upward
bump of width δ and height δ2. f has two global
minima beside the bump. Lipschitz constant is O(1)
regardless of δ. As in the previous example, we see

F (v) =
1

2
v2 + E[gδ(v − ηϵ′)] + (const).

Then, two global minima of f are eliminated by the
smoothing with an appropriate η and a unique global
minimum v∗ = 0 of F emerges. In this case, we do
not need to make η small depending on δ. In fact, as
long as ηr greater than δ by a certain amount, we can
verify all assumptions with constants: µ = 1, c =
1/2, γ = ∃Cδ2/(ηr), M = 0. By instantiating
Eq. (6), we obtain the estimation of D∞ as follows.

ηr ≲ D∞ ≲
√
ηr + ηr.

Hence, the condition Eq. (5): Cδ2/(ηr) ≪ D∞ ≪ ∞
is satisfied under the setting δ2 ≪ η2r2. Specifically,
we have limT→∞ E[∥vT − v∗∥] ≤ Cδ2/(ηr).

4 EXPERIMENTS

We evaluate the empirical performance of SGD and
averaged SGD on image classification tasks using CI-
FAR10 and CIFAR100 datasets. To evaluate the useful-
ness of the parameter averaging for the other methods,
we also compare SAM (Foret et al., 2020) with its aver-
aging variant. For the parameter averaging, we employ
the tail-averaging scheme where the average is taken
over the last phase of training.

Table 1: Decay schedules
for (averaged) SGD.

η milestones

s {80,160,240}
m {80,160}
l {300}

We use the CNN ar-
chitectures: ResNet
(He et al., 2016) with
50-layers (ResNet-50),
WideResNet (Zagoruyko
and Komodakis, 2016)
with 28 layers and width
10 (WRN-28-10), and
Pyramid Network (Han
et al., 2017) with 272 layers and widening factor 200.
In all settings, we use the standard data augmentations:



Atsushi Nitanda, Ryuhei Kikuchi, Shugo Maeda, and Denny Wu

horizontal flip, normalization, padding by four pixels,
random crop, and cutout (DeVries and Taylor, 2017),
and we employ the weight decay with the coefficient
0.005. Moreover, we use the multi-step strategy for
the step size, which decays the step size by a factor
once the number of epochs reaches one of the given
milestones. To see the dependence on the step size, we
use two decay schedules for the parameter averaging.

Table 1 summarizes milestones labeled by the symbols:
‘s’, ‘m’, and ‘l’. The initial step size and a decay factor
of the step size are set to 0.1 and 0.2 in all cases. The
averages are taken from 300 epochs for the schedules ‘s’
and ‘l’, and from 160 epochs for the schedule ‘m’. These
hyperparameters were tuned based on the validation
performance.

For a fair comparison, we run (averaged) SGD with 400
epochs and (averaged) SAM with 200 epochs because
SAM requires two gradients per iteration, and thus
the milestones and starting epoch of taking averages
are also halved for (averaged) SAM. We evaluate each
method 5 times for ResNet-50 and WRN-28-10, and 3
times for Pyramid network. The averages of classifica-
tion accuracies are listed in Table 2 with the standard
deviations in brackets. We observe from the table that
the parameter averaging for SGD improves the classifi-
cation accuracies in all cases, especially on CIFAR100
dataset. Eventually, the averaged SGD achieves com-
parable performance with SAM. Moreover, we also
observe improvement by parameter averaging for SAM
in most cases, which is consistent with the observations
in Kaddour et al. (2022). A similar improvement is
also observed for the cosine annealing learning rate (see
Appendix D).

Figure 4: Test accuracies achieved by SGD and aver-
aged SGD on CIFAR100 with ResNet-50 and WRN-
28-10.

Comparing results on CIFAR100 and CIFAR10, the
large step size is better, and the small step size is rela-
tively poor on CIFAR100 dataset, whereas the small
step size generally works on CIFAR10 dataset. If we
use the step-size strategy ‘l’ for CIFAR10, then the
improvement becomes small (see Appendix D for this

result). This is because the strong smoothing brought
by a large step size can be harmful to simple datasets
such that the normal SGD already achieves high ac-
curacies. Moreover, we note that the averaged SGD
on CIFAR100 quite works well with the large step-size
schedule ‘l’, even though SGD itself is unstable and
poorly performs under this schedule as seen in Figure
4. Indeed, the accuracy of SGD temporarily increases
at the 300 epochs because of the decay of the step size,
and it decreases thereafter. However, the parameter
averaging brings significant improvement in accuracy
even under such a situation.

Next, we observe in Figure 5 that the loss landscape
around the convergent point is in better shape and
forms an asymmetric valley as observed by He et al.
(2019). Specifically, Figure 5 depicts the section of train
and test loss functions across parameters obtained by
the averaged SGD and SGD. The middle figure is the
close-up view at the edge and plots each parameter.
The right figure depicts the train and test losses, and
the smoothed train losses with Gaussian noises in log-
scale. We observe in Figure 5 the phenomenon that
SGD converges to an edge and averaged SGD con-
verges to a flat side. Our theory helps explain this
phenomenon because the minimizer of the asymptotic
valley can be shifted to a flat side by the smoothing
as confirmed in the right of Figure 5 as well as a syn-
thetic setting (Figure 2). Moreover, the right figure
indicates the possibility that the smoothed objective
with appropriate stochastic gradient noise well approx-
imates test loss. In fact, we observe that averaged
SGD achieves a lower test loss which makes about 2%
improvement in the classification error on CIFAR100
dataset. These observations are consistent with the
experiments conducted in He et al. (2019).

Finally, to observe the non-trivial bias of the averaged
SGD, we run SGD with the smaller step size from the
parameter obtained by the averaged SGD with 600
epochs. Then, we observe in Figure 6 that the test loss
is gradually getting worse, whereas the training loss is
getting better. This result proves that the averaged
SGD with a large step size does not necessarily converge
to a local minimum of the training loss, but converges
to a parameter achieving a smaller test loss. Moreover,
we confirm that the test accuracy also decreases from
83.35 attained by the averaged SGD to 82.42.

CONCLUSION

Izmailov et al. (2018) observed the averaged SGD with
a large step size finds a flatter solution than SGD and
gave an intuitive explanation of this phenomenon. To
support their observation, we analyzed the convergence
capability of the averaged SGD for the smoothed ob-
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Table 2: Comparison of test classification accuracies on CIFAR100 and CIFAR10 datasets.

CIFAR100 CIFAR10

η ResNet-50 WRN-28-10 Pyramid η ResNet-50 WRN-28-10 Pyramid

SGD s 80.83 (0.21) 81.81 (0.29) 81.43 (0.32) s 95.95 (0.11) 96.85 (0.16) 96.41 (0.22)

Averaged
SGD

s 82.13 (0.22) 83.13 (0.13) 84.23 (0.03) s 96.58 (0.14) 97.24 (0.07) 97.07 (0.08)

l 82.87 (0.13) 84.23 (0.10) 85.12 (0.20) m 96.89 (0.05) 97.44 (0.04) 97.28 (0.13)

SAM s 82.56 (0.14) 83.80 (0.27) 84.59 (0.24) s 96.34 (0.12) 97.14 (0.05) 97.34 (0.03)

Averaged
SAM

s 82.64 (0.12) 84.09 (0.30) 85.40 (0.12) s 96.33 (0.10) 97.21 (0.05) 97.34 (0.03)

l 82.73 (0.28) 84.55 (0.17) 86.00 (0.04) m 96.31 (0.11) 97.20 (0.06) 97.35 (0.06)

Figure 5: Sections of the train (red) and test (blue) loss landscapes across the parameters obtained by averaged
SGD (distance=0) and SGD (distance=1) for ResNet-50 with CIFAR100 dataset. SGD is run with a small step
size after running averaged SGD with a large step size. The middle figure is the close-up view at the edge. The
triangle and circle markers represent convergent parameters by SGD and averaged SGD, respectively. The right
figure plots smoothed train loss functions (green, darker is smoother) with Gaussian noises in addition to train
and test losses. The blank circles are the minimizers of smoothed objectives.

Figure 6: For ResNet-50 with CIFAR100 dataset, we
run SGD for 200 epochs from a parameter obtained by
the averaged SGD with 600 epochs. The figure depicts
training loss (top) and test loss (bottom). The red line
is a change point of the methods. The learning rate
for SGD is eventually annealed to 0 from 0.02 used for
the final phase of averaged SGD.

jective F via the alternative view of SGD (Kleinberg
et al., 2018). Specifically, we derived the upper and
lower bound conditions (Theorem 3.2 and Eq. (5)) for

SGD error D∞ so that the averaged SGD converges
closer to v∗ = argminF (v) than SGD. Furthermore,
to verify these conditions, we estimated D∞ under ad-
ditional lower bound on the stochastic gradient noise
and sort of one-point strong convexity for F . Finally,
we empirically observed that the averaged SGD with a
large step size achieved superior performance on the im-
age classification task and confirmed that the obtained
parameter differs from that of SGD.

Based on our findings, we suggest using large step
sizes for difficult datasets to learn so that SGD itself
oscillates and performs somewhat poorly. Then, by
averaging the parameters, we can expect a significant
improvement in generalization.

One limitation is that to verify the improvement con-
dition: Eq. (5), we imposed a sort of one-point strong
convexity on F in Proposition 3.4, which is difficult to
satisfy for neural networks perfectly. We believe Eq. (5)
is met in a broader problem setting and will help us
understand the actual behavior of averaged SGD in
deep learning. Further exploration of this condition is
left to future work.



Atsushi Nitanda, Ryuhei Kikuchi, Shugo Maeda, and Denny Wu

References

Ahn, K., Zhang, J., and Sra, S. (2022). Understanding
the unstable convergence of gradient descent. In
Proceedings of the 39th International Conference on
Machine Learning, volume 162, pages 247–257.

Arora, S., Li, Z., and Panigrahi, A. (2022). Understand-
ing gradient descent on the edge of stability in deep
learning. In Proceedings of the 39th International
Conference on Machine Learning, pages 948–1024.

Bach, F. and Moulines, E. (2011). Non-asymptotic
analysis of stochastic approximation algorithms for
machine learning. In Advances in Neural Information
Processing Systems, volume 24, pages 451–459.

Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y.,
Baldassi, C., Borgs, C., Chayes, J., Sagun, L., and
Zecchina, R. (2019). Entropy-sgd: Biasing gradient
descent into wide valleys. Journal of Statistical Me-
chanics: Theory and Experiment, 2019(12):124018.

Cohen, J., Kaur, S., Li, Y., Kolter, J. Z., and Talwalkar,
A. (2021). Gradient descent on neural networks typ-
ically occurs at the edge of stability. In Proceedings
of the 9th International Conference on Learning Rep-
resentations.

Damian, A., Ma, T., and Lee, J. D. (2021). Label noise
sgd provably prefers flat global minimizers. Advances
in Neural Information Processing Systems, 34:27449–
27461.

DeVries, T. and Taylor, G. W. (2017). Improved reg-
ularization of convolutional neural networks with
cutout. arXiv preprint arXiv:1708.04552.

Dieuleveut, A., Durmus, A., and Bach, F. (2020). Bridg-
ing the gap between constant step size stochastic gra-
dient descent and markov chains. Annals of Statistics,
48(3):1348–1382.

Dinh, L., Pascanu, R., Bengio, S., and Bengio, Y.
(2017). Sharp minima can generalize for deep nets.
In Proceedings of the 34th International Conference
on Machine Learning, pages 1019–1028.

Foret, P., Kleiner, A., Mobahi, H., and Neyshabur, B.
(2020). Sharpness-aware minimization for efficiently
improving generalization. In Proceedings of the 8th
International Conference on Learning Representa-
tions.

Han, D., Kim, J., and Kim, J. (2017). Deep pyramidal
residual networks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 5927–5935.

Haruki, K., Suzuki, T., Hamakawa, Y., Toda, T., Sakai,
R., Ozawa, M., and Kimura, M. (2019). Gradi-
ent noise convolution (gnc): Smoothing loss func-
tion for distributed large-batch sgd. arXiv preprint
arXiv:1906.10822.

He, H., Huang, G., and Yuan, Y. (2019). Asymmetric
valleys: beyond sharp and flat local minima. In
Advances in Neural Information Processing Systems,
volume 32, pages 2553–2564.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep
residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and
pattern recognition, pages 770–778.

Hinton, G. E. and Van Camp, D. (1993). Keeping the
neural networks simple by minimizing the description
length of the weights. In Proceedings of the sixth
annual conference on Computational learning theory,
pages 5–13.

Hochreiter, S. and Schmidhuber, J. (1997). Flat min-
ima. Neural computation, 9(1):1–42.

Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D.,
and Wilson, A. G. (2018). Averaging weights leads
to wider optima and better generalization. In 34th
Conference on Uncertainty in Artificial Intelligence,
pages 876–885.

Jiang, Y., Neyshabur, B., Mobahi, H., Krishnan, D.,
and Bengio, S. (2020). Fantastic generalization mea-
sures and where to find them. In Proceedings of the
8th International Conference on Learning Represen-
tations.

Kaddour, J., Liu, L., Silva, R., and Kusner, M. (2022).
When do flat minima optimizers work? Advances in
Neural Information Processing Systems.

Keskar, N. S., Nocedal, J., Tang, P. T. P., Mudigere,
D., and Smelyanskiy, M. (2017). On large-batch
training for deep learning: Generalization gap and
sharp minima. In Proceedings of the 5th International
Conference on Learning Representations.

Keskar, N. S. and Socher, R. (2017). Improving gen-
eralization performance by switching from adam to
sgd. arXiv preprint arXiv:1712.07628.

Kleinberg, B., Li, Y., and Yuan, Y. (2018). An alterna-
tive view: When does sgd escape local minima? In
Proceedings of the 35th International Conference on
Machine Learning, pages 2698–2707.

Lacoste-Julien, S., Schmidt, M., and Bach, F. (2012). A
simpler approach to obtaining an o (1/t) convergence
rate for the projected stochastic subgradient method.
arXiv preprint arXiv:1212.2002.

Lewkowycz, A., Bahri, Y., Dyer, E., Sohl-Dickstein,
J., and Gur-Ari, G. (2020). The large learning rate
phase of deep learning: the catapult mechanism.
arXiv preprint arXiv:2003.02218.

Lin, T., Kong, L., Stich, S., and Jaggi, M. (2020). Ex-
trapolation for large-batch training in deep learning.
In Proceedings of the 37th International Conference
on Machine Learning, pages 6094–6104.



Why is parameter averaging beneficial in SGD? An objective smoothing perspective

Luo, L., Xiong, Y., Liu, Y., and Sun, X. (2019). Adap-
tive gradient methods with dynamic bound of learn-
ing rate. In Proceedings of the 7th International
Conference on Learning Representations.

McAllester, D. A. (1998). Some pac-bayesian theorems.
In Proceedings of the eleventh annual conference on
Computational learning theory, pages 230–234.

McAllester, D. A. (1999). Pac-bayesian model averag-
ing. In Proceedings of the twelfth annual conference
on Computational learning theory, pages 164–170.

Nemirovski, A. S., Juditsky, A., Lan, G., and Shapiro,
A. (2009). Robust stochastic approximation ap-
proach to stochastic programming. SIAM Journal
on Optimization, 19(4):1574–1609.

Nesterov, Y. (2004). Introductory Lectures on Convex
Optimization: A Basic Course. Kluwer Academic
Publishers.

Neyshabur, B., Bhojanapalli, S., McAllester, D., and
Srebro, N. (2017). Exploring generalization in deep
learning. Advances in neural information processing
systems, 30.

Orvieto, A., Raj, A., Kersting, H., and Bach, F. (2022).
Explicit regularization in overparametrized models
via noise injection. arXiv preprint arXiv:2206.04613.

Polyak, B. T. and Juditsky, A. B. (1992). Acceleration
of stochastic approximation by averaging. SIAM
Journal on Control and Optimization, 30(4):838–855.

Rakhlin, A., Shamir, O., and Sridharan, K. (2012).
Making gradient descent optimal for strongly convex
stochastic optimization. In Proceedings of Interna-
tional Conference on Machine Learning 29, pages
1571–1578.

Robbins, H. and Monro, S. (1951). A stochastic ap-
proximation method. The annals of mathematical
statistics, pages 400–407.

Ruppert, D. (1988). Efficient estimations from a slowly
convergent Robbins-Monro process. Technical re-
port, Cornell University Operations Research and
Industrial Engineering.

Smith, S. L., Kindermans, P.-J., Ying, C., and Le, Q. V.
(2017). Don’t decay the learning rate, increase the
batch size. arXiv preprint arXiv:1711.00489.

Wen, W., Wang, Y., Yan, F., Xu, C., Wu, C., Chen, Y.,
and Li, H. (2018). Smoothout: Smoothing out sharp
minima to improve generalization in deep learning.
arXiv preprint arXiv:1805.07898.

Wilson, A. C., Roelofs, R., Stern, M., Srebro, N., and
Recht, B. (2017). The marginal value of adaptive
gradient methods in machine learning. Advances in
neural information processing systems, 30.

Yu, L., Balasubramanian, K., Volgushev, S., and Er-
dogdu, M. A. (2020). An analysis of constant step
size sgd in the non-convex regime: Asymptotic nor-
mality and bias. arXiv preprint arXiv:2006.07904.

Zagoruyko, S. and Komodakis, N. (2016). Wide residual
networks. In British Machine Vision Conference
2016. British Machine Vision Association.

Zhou, P., Feng, J., Ma, C., Xiong, C., Hoi, S. C. H.,
et al. (2020). Towards theoretically understanding
why sgd generalizes better than adam in deep learn-
ing. Advances in Neural Information Processing
Systems, 33:21285–21296.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Not Applicable]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
[Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Not Applicable]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:



Atsushi Nitanda, Ryuhei Kikuchi, Shugo Maeda, and Denny Wu

(a) Citations of the creator If your work uses
existing assets. [Not Applicable]

(b) The license information of the assets, if appli-
cable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]



Why is parameter averaging beneficial in SGD? An objective smoothing perspective

Appendix

A Proofs

A.1 Alternative Stochastic Gradient Descent

Let denote by φ : Rd → Rd a change of variables from w to v introduced in Section 2.2, i.e., v = φ(w) = w−η∇f(w).

Lemma A.1. Under Assumption (A1) and η ≤ 1
2L , the function φ is injective and invertible, and its inverse

φ−1 defined on on Imφ is differentiable.

Proof. For w,w′ ∈ Rd, we suppose φ(w) = φ(w′). Then, it holds that

∥w − w′∥ = η∥∇f(w)−∇f(w′)∥ ≤ ηL∥w − w′∥ ≤ 1

2
∥w − w′∥,

where we used L-Lipschitz continuity of ∇f due to (A1). Therefore, we see w = w′ and φ is an injection.
Moreover, since Jφ(w) = I − η∇2f(w) ⪰ (1− ηL)I ⪰ 1

2I. Thus, φ is invertible and φ−1, which is defined on Imφ,
is differentiable because of the injectivity and the inverse map theorem.

Using φ, we see ϵ′(v) = ϵ(φ−1(v)) for v ∈ Imφ. Let (Ω,F , P ) be a probability space such that ϵ′(v) can be
represented as a measurable map z ∈ Ω 7→ ϵ′(v, z). Note that we use ϵ′(v) and ϵ′(v, z) depending on the situation.
For a function g : Rd → Rd, we denote by Jg(w) Jacobian of g, i.e., Jg(w) = (∂gi(w)/∂wj)

d
i,j=1.

Lemma A.2. Under Assumptions (A1) and (A2), we get for any v ∈ Imφ ⊂ Rd,

∇F (v) = E[∇f(v − ηϵ′(v))]− η

∫
J⊤
ϵ′(·,z)(v)∇f(v − ηϵ′(v, z))dP (z).

Moreover, if η ≤ 1
2L , then

∥∇F (v)− E[∇f(v − ηϵ′(v))]∥ ≤ 2ησ2

√
E [∥∇f(v − ηϵ′(v))∥2].

Proof. The first equality of the statement can be confirmed by the direct calculation as follows:

∇F (v) = ∇E[f(v − ηϵ′(v))]

=

∫
∇(f(v − ηϵ′(v, z)))dP (z)

=

∫
(I − ηJ⊤

ϵ′(·,z)(v))∇f(v − ηϵ′(v, z))dP (z)

= E[∇f(v − ηϵ′(v))]− η

∫
J⊤
ϵ′(·,z)(v)∇f(v − ηϵ′(v, z))dP (z).

Next, we evaluate the last term below. By the chain rule and inverse map theory,

Jϵ′(·,z)(v) = Jϵ(ϕ−1(·),z)(v) = Jϵ(·,z)(ϕ
−1(v))Jϕ−1(v) = Jϵ(·,z)(φ

−1(v))J−1
φ (φ−1(v)).

Note that from assumption for any w ∈ Rd, Jφ(w) = I − η∇2f(w) ⪰ (1− ηL)I ⪰ 1
2I. Hence,

∥J⊤
ϵ′(·,z)(v)∥2 ≤ ∥J−1

φ (φ−1(v))∥2∥J⊤
ϵ(·,z)(φ

−1(v))∥2 ≤ 2σ2.
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Finally, we get ∥∥∥∥∫ J⊤
ϵ′(·,z)(v)∇f(v − ηϵ′(v, z))dP (z)

∥∥∥∥
≤

√∫
∥J⊤

ϵ′(·,z)(v)∥
2
2∥∇f(v − ηϵ′(v, z))∥2dP (z)

≤ 2σ2

√∫
∥∇f(v − ηϵ′(v, z))∥2dP (z)

≤ 2σ2

√
E [∥∇f(v − ηϵ′(v))∥2].

This finishes the proof.

The following proposition is the restatement of the well-known convergence result to a stationary point using the
coordinate v.

Proposition A.3. Under Assumptions (A1), (A2), and η ≤ 1
2L , we get

T∑
t=0

E
[
∥∇f(vt − ηϵ′t+1(vt))∥2

]
≤ 4

3η
E[f(w0)] +

2

3
ησ2

1L(T + 2). (7)

Proof. It is known that (A1) derives the following (Nesterov, 2004): for any w,w′ ∈ Rd,

f(w′) ≤ f(w) +∇f(w)⊤(w′ − w) +
L

2
∥w′ − w∥2. (8)

Substituting the update Eq. (1) into this inequality with w′ = wt+1 and w = wt, and taking the conditional
expectation E[·|Ft], we get

E[f(wt+1)|Ft] ≤ f(wt)− η∥∇f(wt)∥2 +
η2L

2
E
[
∥∇f(wt) + ϵt+1(wt)∥2|Ft

]
= f(wt)− η

(
1− ηL

2

)
∥∇f(wt)∥2 +

η2L

2
E
[
∥ϵt+1(wt)∥2|Ft

]
≤ f(wt)−

3η

4
∥∇f(wt)∥2 +

η2σ2
1L

2
.

Thus, we have E[f(wt+1)] ≤ E[f(wt)]− 3η
4 E[∥∇f(wt)∥2] + η2σ2

1L
2 . By summing up this inequality, we get

T+1∑
t=0

E[∥∇f(wt)∥2] ≤
4

3η
E[f(w0)] +

2

3
ησ2

1L(T + 2),

where we used the nonnegativity of f . By dropping the term with t = 0 of the sum in the left hand side and
using wt+1 = vt − ηϵ′t+1(vt), we finally get

T∑
t=0

E[∥∇f(vt − ηϵ′t+1(vt))∥2] ≤
4

3η
E[f(w0)] +

2

3
ησ2

1L(T + 2).

A.2 Proof of Theorem 3.2

We give technical lemmas for proving Theorem 3.2.



Why is parameter averaging beneficial in SGD? An objective smoothing perspective

Lemma A.4. Under Assumptions (A1) and (A2), run the stochastic gradient descent with T -iterations with the
step size η ≤ 1

2L , then the alternative SGD satisfies the following inequality:

E

[∥∥∥∥∥
T∑

t=0

∇f(vt − ηϵ′t+1(vt))

∥∥∥∥∥
]
≤ σ1

√
T +

1

η

√√√√2

T+1∑
t=0

E
[
∥vt − v∗∥2

]
,

E

[∥∥∥∥∥
T∑

t=0

(
∇F (vt)− E

[
∇f(vt − ηϵ′t+1(vt))|Ft

])∥∥∥∥∥
]
≤ 2σ2η

1
2O(T

1
2 ) + 2σ1σ2η

3
2

√
2

3
L(T + 1)(T + 2).

Proof of Lemma A.4. By the simple calculation, we get

E

[∥∥∥∥∥
T∑

t=0

∇f(vt − ηϵ′t+1(vt))

∥∥∥∥∥
]
≤ E

[∥∥∥∥∥
T∑

t=0

(
∇f(vt − ηϵ′t+1(vt)) + ϵ′t+1(vt)

)∥∥∥∥∥
]
+ E

[∥∥∥∥∥
T∑

t=0

ϵ′t+1(vt)

∥∥∥∥∥
]

≤ 1

η
E [∥v0 − vT+1∥] + E

[∥∥∥∥∥
T∑

t=0

ϵ′t+1(vt)

∥∥∥∥∥
]
.

Each term in the right-hand side can be evaluated as follows:

1

η
E [∥v0 − vT+1∥] ≤

1

η

√
E
[
∥v0 − vT+1∥2

]
≤ 1

η

√
2E

[
∥v0 − v∗∥2 + ∥vT+1 − v∗∥2

]
≤ 1

η

√√√√2

T+1∑
t=0

E
[
∥vt − v∗∥2

]
.

E

[∥∥∥∥∥
T∑

t=0

ϵ′t+1(vt)

∥∥∥∥∥
]
≤

√√√√√E

∥∥∥∥∥
T∑

t=0

ϵ′t+1(vt)

∥∥∥∥∥
2


=

√√√√E

[
T∑

t=0

∥∥ϵ′t+1(vt)
∥∥2]

≤ σ1

√
T ,

where we used that for s < t, E[ϵ′s+1(vs)
⊤ϵ′t+1(vt)] = E[ϵ′s+1(vs)

⊤E[ϵ′t+1(vt)|Ft]] = 0.

Next, we show the second statement by using Lemma A.2 and Proposition A.3 as follows:

E

[∥∥∥∥∥
T∑

t=0

(
∇F (vt)− E

[
∇f(vt − ηϵ′t+1(vt))|Ft

])∥∥∥∥∥
]

≤ E

[
T∑

t=0

∥∥∇F (vt)− E
[
∇f(vt − ηϵ′t+1(vt))|Ft

]∥∥]

≤ E

[
T∑

t=0

2ησ2

√
E
[
∥∇f(vt − ηϵ′t+1(vt))∥2|Ft

]]

≤ 2ησ2

T∑
t=0

√
E
[
∥∇f(vt − ηϵ′t+1(vt))∥2

]

≤ 2ησ2

√√√√(T + 1)

T∑
t=0

E
[
∥∇f(vt − ηϵ′t+1(vt))∥2

]
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≤ 2ησ2

√
1

η
O(T ) +

2

3
ησ2

1L(T + 1)(T + 2)

≤ 2σ2η
1
2O(T

1
2 ) + 2σ1σ2η

3
2

√
2

3
L(T + 1)(T + 2).

Lemma A.5. Under Assumptions (A1) and (A2), run the stochastic gradient descent with T -iterations with the
step size η ≤ 1

2L , then the alternative SGD satisfies the following inequality:

1

T + 1
E

[∥∥∥∥∥
T∑

t=0

∇F (vt)

∥∥∥∥∥
]
≤ O(T− 1

2 ) +
1

η(T + 1)

√√√√2

T+1∑
t=0

E
[
∥vt − v∗∥2

]
+

4√
3
σ1σ2η

3
2L

1
2 .

Proof of Lemma A.5. We consider the following decomposition:

1

T + 1
E

[∥∥∥∥∥
T∑

t=0

∇F (vt)

∥∥∥∥∥
]
≤ 1

T + 1
E

[∥∥∥∥∥
T∑

t=0

(
∇F (vt)− E

[
∇f(vt − ηϵ′t+1(vt))|Ft

])∥∥∥∥∥
]

+
1

T + 1
E

[∥∥∥∥∥
T∑

t=0

(
E
[
∇f(vt − ηϵ′t+1(vt))|Ft

]
−∇f(vt − ηϵ′t+1(vt))

)∥∥∥∥∥
]

+
1

T + 1
E

[∥∥∥∥∥
T∑

t=0

∇f(vt − ηϵ′t+1(vt))

∥∥∥∥∥
]
.

The first and last terms of the right-hand side can be upper bounded by Lemma A.4. The second term can be
evaluated as follows:

E

[∥∥∥∥∥
T∑

t=0

(
E
[
∇f(vt − ηϵ′t+1(vt))|Ft

]
−∇f(vt − ηϵ′t+1(vt))

)∥∥∥∥∥
]

≤

√√√√√E

∥∥∥∥∥
T∑

t=0

(
E
[
∇f(vt − ηϵ′t+1(vt))|Ft

]
−∇f(vt − ηϵ′t+1(vt))

)∥∥∥∥∥
2


=

√√√√E

[
T∑

t=0

∥∥(E [
∇f(vt − ηϵ′t+1(vt))|Ft

]
−∇f(vt − ηϵ′t+1(vt))

)∥∥2]

≤

√√√√E

[
4η2L2

T∑
t=0

E
[∥∥ϵ′t+1(vt))

∥∥2 |Ft

]]
≤ 2ηLσ1

√
T ,

where we used that for Xt := E
[
∇f(vt − ηϵ′t+1(vt))|Ft

]
− ∇f(vt − ηϵ′t+1(vt)) and s < t, E[XsXt] =

E[XsE[Xt|Ft]] = 0. Therefore, we eventually obtain the statement of the proposition.

We here prove Theorem 3.2 which is restated below.

Theorem A.6. Under Assumptions (A1)–(A4), run the averaged SGD for T -iterations with the step size
η ≤ 1

2L , then the average vT satisfies the following inequality:

E[∥vT − v∗∥] ≤ O
(
T− 1

2

)
+

4σ1σ2η
3
2L

1
2

√
3µ

+
DT

ηµ

√
2

T + 1
+

γ +MD2
T

µ
,

where we set DT :=

√
1

T+1E
[∑T

t=0 ∥vt − v∗∥2
]
.



Why is parameter averaging beneficial in SGD? An objective smoothing perspective

Proof. We define R(v) = ∇F (v)−∇2F (v∗)(v− v∗). Then, by (A4), we see ∥R(v)∥ ≤ γ+M∥v− v∗∥2. By taking
average of R(vt) over t ∈ {0, 1, . . . , T} and rearranging terms, we get

∇2F (v∗)(vT − v∗) =
1

T + 1

T∑
t=0

∇F (vt)−
1

T + 1

T∑
t=0

R(vt).

Using the positivity of ∇2F (v∗) and taking the expectation, we get

µE[∥vT − v∗∥] ≤ E[∥∇2F (v∗)(vT − v∗)∥]

≤ 1

T + 1
E

[∥∥∥∥∥
T∑

t=0

∇F (vt)

∥∥∥∥∥
]
+

1

T + 1
E

[∥∥∥∥∥
T∑

t=0

R(vt)

∥∥∥∥∥
]

≤ 1

T + 1
E

[∥∥∥∥∥
T∑

t=0

∇F (vt)

∥∥∥∥∥
]
+ γ +

M

T + 1
E

[
T∑

t=0

∥vt − v∗∥2
]
.

The first term of the right-hand side can be bounded by Lemma A.5. Thus, we finally get

µE[∥vT − v∗∥] ≤ O
(
T− 1

2

)
+

4σ1σ2η
3
2L

1
2

√
3

+
1

η(T + 1)

√√√√2

T+1∑
t=0

E
[
∥vt − v∗∥2

]
+ γ +

M

T + 1
E

[
T∑

t=0

∥vt − v∗∥2
]
.

Moreover, Jensen’s inequality yields E[∥vT − v∗∥] ≤
√

E[∥vT − v∗∥2] ≤ DT . This concludes the proof.

A.3 Proof of Propositions 3.4 and 3.5

We prove Proposition 3.4, which is restated below.

Proposition A.7. Under Assumptions (A1), (A2), and (A5), run SGD for T -iterations with the step size
η ≤ 1

2L , then we get

D2
T ≤ O

(
T−1

)
+

2ησ2
1

c
+

8η2σ2
1L

3c

(
1 +

2ησ2
2

c

)
.

Proof. To evaluate ∥vt+1−v∗∥2 for the alternative SGD (2), we first give several bounds as follows. By Assumption
(A3), Young’s inequality, and Lemma A.2, we get

− 2(vt − v∗)
⊤E[∇f(vt − ηϵ′t+1(vt))|Ft]

= −2(vt − v∗)
⊤∇F (vt) + 2(vt − v∗)

⊤(∇F (vt)− E[∇f(vt − ηϵ′t+1(vt))|Ft])

≤ −2c∥vt − v∗∥2 + c∥vt − v∗∥2 +
1

c
∥∇F (vt)− E[∇f(vt − ηϵ′t+1(vt))|Ft]∥2

≤ −c∥vt − v∗∥2 +
4η2σ2

2

c
E
[
∥∇f(vt − ηϵ′t+1(vt))∥2|Ft

]
.

By Assumption (A2) and Young’s inequality again, we get

E[∥ϵ′t+1(vt) +∇f(vt − ηϵ′t+1(vt))∥2|Ft]

≤ 2E[∥ϵ′t+1(vt)∥2|Ft] + 2E[∥∇f(vt − ηϵ′t+1(vt))∥2|Ft]

≤ 2σ2
1 + 2E[∥∇f(vt − ηϵ′t+1(vt))∥2|Ft].

Combining the above two inequalities, we get

E[∥vt+1 − v∗∥2|Ft] = E[∥vt − ηϵ′t+1(vt)− η∇f(vt − ηϵ′t+1(vt))− v∗∥2|Ft]

= ∥vt − v∗∥2 − 2η(vt − v∗)
⊤E[∇f(vt − ηϵ′t+1(vt))|Ft]

+ η2E[∥ϵ′t+1(vt) +∇f(vt − ηϵ′t+1(vt))∥2|Ft]

≤ (1− cη)∥vt − v∗∥2 + 2η2σ2
1

+ 2η2
(
1 +

2ησ2
2

c

)
E
[
∥∇f(vt − ηϵ′t+1(vt))∥2|Ft

]
.
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Taking the expectation regarding all histories and summing up over t = 0, 1, . . . , T , we get

cη

T∑
t=0

E[∥vt − v∗∥2] ≤ E[∥v0 − v∗∥2]− E[∥vT+1 − v∗∥2] + 2η2σ2
1(T + 1)

+ 2η2
(
1 +

2ησ2
2

c

) T∑
t=0

E
[
∥∇f(vt − ηϵ′t+1(vt))∥2

]
≤ E[∥v0 − v∗∥2]− E[∥vT+1 − v∗∥2] + 2η2σ2

1(T + 1)

+
8

3
η

(
1 +

2ησ2
2

c

)
E[f(w0)] +

4

3
η3

(
1 +

2ησ2
2

c

)
σ2
1L(T + 2),

where we used Proposition A.3. Therefore, we conclude

1

T + 1

T∑
t=0

E[∥vt − v∗∥2] ≤
1

cη(T + 1)
E[∥v0 − v∗∥2] +

8

3c(T + 1)

(
1 +

2ησ2
2

c

)
E[f(w0)]

+
2ησ2

1

c
+

8η2

3c

(
1 +

2ησ2
2

c

)
σ2
1L

= O
(
T−1

)
+

2ησ2
1

c
+

8η2

3c

(
1 +

2ησ2
2

c

)
σ2
1L.

We prove Proposition 3.5, which is restated below.

Proposition A.8. Suppose that Assumptions (A1) and (A2) hold, and that there exists σ3 > 0 such that for

any w ∈ Rd, E[∥ϵt+1(w)∥2] ≥ σ2
3. Running SGD with η ≤ 3σ2

3

32σ2
1L

, we get

η2σ2
3

8
≤ D2

T +O(T−1).

Proof. Let us evaluate the term E[∥wt − v∗∥2] as follows. On one hand, by using the update rule of SGD, for
t ≥ 1,

E
[
∥wt − v∗∥2

]
= E

[
∥wt−1 − η∇f(wt−1)− ηϵt(wt−1)− v∗∥2

]
= E

[
∥wt−1 − η∇f(wt−1)− v∗∥2 − 2ηϵt(wt−1)

⊤(wt−1 − η∇f(wt−1)− v∗) + η2∥ϵt(wt−1)∥2
]

= E
[
∥wt−1 − η∇f(wt−1)− v∗∥2 + η2∥ϵt(wt−1)∥2

]
≥ η2σ2

3 ,

where we used E[ϵt(wt−1)
⊤(wt−1 − η∇f(wt−1)− v∗)] = E[E[ϵt(wt−1)|Ft−1]

⊤(wt−1 − η∇f(wt−1)− v∗)] = 0. On
the other hand, by using vt = wt − η∇f(wt),

E
[
∥wt − v∗∥2

]
= E

[
∥vt + η∇f(wt)− v∗∥2

]
≤ 2E

[
∥vt − v∗∥2 + η2∥∇f(wt)∥2

]
.

Hence, by taking the sum over t ∈ {0, 1, . . . , T}, we have

1

2
∥w0 − v∗∥2 +

1

2
η2σ2

3T ≤
T∑

t=0

E
[
∥vt − v∗∥2

]
+ η2

T∑
t=0

E
[
∥∇f(wt)∥2

]
≤

T∑
t=0

E
[
∥vt − v∗∥2

]
+ η2

T∑
t=0

E
[
∥∇f(wt+1)∥2

]
+ η2∥∇f(w0)∥2.

Since wt+1 = vt − ηϵt+1(wt), we get by apply Proposition A.3,

1

2
∥w0 − v∗∥2 +

1

2
η2σ2

3T ≤
T∑

t=0

E
[
∥vt − v∗∥2

]
+

4

3
ηE[f(w0)] +

2

3
η3σ2

1L(T + 2) + η2∥∇f(w0)∥2.
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Figure 7: The left figure plots the mollifier gδ (blue) and smoothed mollifier Gδ (orange), and the right figure
plots the objective f (blue) and smoothed objective F (orange). Hyperparameters are set to δ = 0.3, r = 1, and
η = 0.3.

Therefore, we have

1

4
η2σ2

3 −
4

3
η3σ2

1L ≤ 1

T + 1

T∑
t=0

E
[
∥vt − v∗∥2

]
+

1

T + 1

(
4

3
ηE[f(w0)] + η2∥∇f(w0)∥2 −

1

2
∥w0 − v∗∥2

)

=
1

T + 1

T∑
t=0

E
[
∥vt − v∗∥2

]
+O(T−1).

Since η ≤ 3σ2
3

32σ2
1L

, we have 1
8η

2σ2
3 ≤ 1

4η
2σ2

3 − 4
3η

3σ2
1L. Therefore, the above inequality concludes the proof.

B Motivating Example 1

We present an example that demonstrates the implicit bias of SGD and averaged SGD. Moreover, we theoretically
and empirically verify that averaged SGD can get closer to a flat minimum than SGD.

B.1 Problem Setup

In this section, we present a motivating example that verifies the convergence to a flat minimum and a certain
separation between SGD and averaged SGD. We consider a one-dimensional objective function f : R → R defined
below: for δ > 0,

f(w) =
1

2
(w − 1)2 + gδ(w), (9)

where gδ : R → R is a scaled mollifier:

gδ(w) =

 −δ exp

(
1− 1

1−(w
δ )

2

)
(|w| < δ),

0 (|w| ≥ δ).

gδ(w) = δg1(w/δ) is a scaling of the well-known mollifier of g1 which is an infinitely differentiable function with a
compact support. That is, gδ is a smooth function whose support is [−δ, δ]. Note that the function f(w) has a
local minimum in [−δ, δ], which becomes sharp when δ is small. See Figure 7 which depicts graphs of gδ, Gδ, f,
and F .

The maximum values of the first and second derivatives of g1 are bounded. Thus, we define constants C1, C2 by

C1 = max
{
1,max

w
|g′1(w)|

}
, C2 = max

w
|g′′1 (w)|.
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Since g′′δ (w) =
1
δ g

′′
1 (w/δ), we see the second derivative of gδ is bounded by C2δ

−1. Hence, Lipschitz smoothness
(boundedness of Hessian) L of f is 1 + C2δ

−1.

Next, we consider the uniform noise on the interval [−r, r] for r > 0, i.e., ϵ ∼ U [−r, r] and suppose ϵ(w, z) =
ϵ(z)(= ϵ′(v, z)) where Ω ∋ z 7→ ϵ(w, z) is an explicit representation of the random noise. In other words, noise

distribution does not change in w. In this case, we see σ2
1 = σ2

3 = E[ϵ2] ≤ r2

3 and σ2 = 0. The smoothed objective
F with the noise ϵ′ and step-size η is

F (v) = E[f(v − ηϵ′)]

=
1

2
(v − 1)2 + η2σ2

1 + E[gδ(v − ηϵ′)]

∼ 1

2
(v − 1)2 + E[gδ(v − ηϵ′)].

We consider the following problem setup:

δ ≤ 1

4(1 + 2C1)
, (10)

r ≥ 64

3
C1(δ + C2). (11)

Note that we can choose arbitrarily small δ > 0 and large r which satisfy the above inequalities. Under these
conditions, we can choose the following step size η for appropriate smoothing.

2C1δ

r
≤ η ≤ min

{
1

4r
− δ

r
,

3δ

32(δ + C2)

}
. (12)

We note that the above step size satisfies η ≤ min
{

1
2L ,

3σ2
3

32σ2
1L

}
required in Propositions 3.4 and 3.5 since

3δ
32(δ+C2)

= 3
32L =

3σ2
3

32σ2
1L

< 1
2L .

B.2 Evaluation of SGD and Averaged SGD

Under the above setup (10)–(12), we can estimate constants appearing in the convergence results of SGD and
averaged SGD as follows (for the detail see the next subsection):

L = 1 +
C2

δ
, σ2

1 = σ2
3 =

r2

3
, σ2 = 0, µ = 1, c =

1

3
, γ = 0, M =

8

9
. (13)

Moreover, the minimum of the smoothed objective is v∗ = 1, and a sharp minimum (∼ 0) can be eliminated by
smoothing.

Therefore, for SGD we obtain by Proposition 3.4,

D2
T =

1

T + 1

T∑
t=0

E[∥vt − v∗∥2]

≤ O
(
T−1

)
+

2ησ2
1

c
+

8η2σ2
1L

3c

(
1 +

2ησ2
2

c

)
≤ O

(
T−1

)
+ 6ηr2 + 8η2r2

(
1 +

C2

δ

)
.

We see from this inequality, η∗ = 2C1δ
r is the best choice of the step-size, resulting in

DT ≤ O
(
T−1/2

)
+

√
12C1δr + 32C2

1δ (δ + C2),

and
C1δ√
6

≤ D∞ ≤ 2
√

(3r + 8C1C2)C1δ + 4
√
2C1δ,
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Figure 8: The figures plot the convergent points of SGD and averaged SGD for the problem (9). For the left case,
we set δ = 0.1, r = 1, η = δ/r = 0.1 and for the right case, we set δ = 0.3, r = 1, η = δ/r = 0.3.

where we applied Proposition 3.5 for the lower bound. This result means SGD avoids a sharp minimum (i.e.,
v ∼ 0 under small δ > 0) and converges to a flat minimum v∗ = 1, and a too large noise will affect the convergence
to v∗.

Hence, Eq. (5): 0 ≪ D∞ ≪ 9/8 is satisfied under the above setting with mildly small δ, meaning that the error of
averaged SGD is strictly smaller than that of SGD since limT→∞ E[∥vT − v∗∥] ≤ 8

9D
2
∞ by Eq. (4). We empirically

observed this phenomenon in Figure 8 in which we run SGD and averaged SGD for problems with small δ = 0.1
and relatively large δ = 0.3.

B.3 Estimation of Constants

We verify the estimations of constants in (13). L, σ2
1 , and σ2 are already obtained, thus, µ, c, and M remain.

Minimum and estimation of µ. We first see that under our problem setting, the local minimum around the
origin is eliminated and 1 is the optimal solution of F , i.e., v∗ = 1.

The smoothed function Gδ(v)
def
= E[gδ(v − ηϵ′)] and its derivative G′

δ(v) are calculated as follows:

Gδ(v) =

∫ r

−r

gδ(v − ηt)
1

2r
dt,

G′
δ(v) =

∫ r

−r

g′δ(v − ηt)
1

2r
dt.

By taking into account supp(gδ) = [−δ, δ], the smoothed objective Gδ(v) is constant on {|v| ≤ ηr − δ} ∪ {|v| ≥
ηr + δ}, and thus, G′

δ is non-zero only on supp(G′
δ) = [−ηr − δ,−ηr + δ] ∪ [ηr − δ, ηr + δ]. For graphs of gδ and

Gδ, see Figure 7 (left). Since ηr+ δ < 1/4 under (12), Gδ is a constant around v = 1, that is, v = 1 is still a local
minimum of F .

We evaluate the bound on G′
δ on supp(G′

δ) below. For v ∈ [ηr − δ, ηr + δ] the support of g′δ(v − ηt) in t ∈ R is
[(v − δ)/η, (v + δ)/η], we get

0 ≤ G′
δ(v) =

∫ r

−r

g′δ(v − ηt)
1

2r
dt

≤
∫ ∞

−∞
|g′δ(v − ηt)| 1

2r
dt

=

∫ v+δ
η

v−δ
η

|g′δ(v − ηt)| 1
2r

dt
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≤ C1

∫ v+δ
η

v−δ
η

1

2r
dt =

C1δ

ηr
,

where we used |g′δ(v)| = |g′1(v/δ)| ≤ C1. A bound on [−ηr − δ,−ηr + δ] is also obtained in the same way. Thus,
we see 

−C1δ
ηr ≤ G′

δ(v) ≤ 0 (v ∈ [−ηr − δ,−ηr + δ]),

0 ≤ G′
δ(v) ≤

C1δ
ηr (v ∈ [ηr − δ, ηr + δ]),

G′
δ(v) = 0 (else).

If there are additional stationary points of F , they should exist in [ηr− δ, ηr+ δ] = supp(G′
δ) \ [−ηr− δ,−ηr+ δ]

because of the sign of G′
δ and supp(G′

δ) ⊂ (−∞, 1/4). However, since ηr+ δ ≤ 1/4 and C1δ
ηr ≤ 1/2 under (12), we

see

max
v∈[ηr−δ,ηr+δ]

F ′(v) ≤ (ηr + δ)− 1 +
C1δ

ηr
≤ 1

4
− 1 +

1

2
= −1

4
.

Hence, v∗ = 1 is the unique local minimum (i.e., optimal solution) of F and we can conclude µ = 1.

Estimation of c. From the above argument, we get

F ′(v)(v − 1) = (v − 1)2 +G′
δ(v)(v − 1)

≥


(v − 1)2 (v ∈ [−ηr − δ,−ηr + δ]),

(v − 1)2 + C1δ
ηr (v − 1) ≥ (v − 1)2 + 1

2 (v − 1) (v ∈ [ηr − δ, ηr + δ]),

(v − 1)2 (else).

Clearly, 1/2 ≤ 2(1− v)/3 for v ≤ ηr + δ ≤ 1/4. Thus, F ′(v)(v − 1) ≥ (v − 1)2/3 on v ∈ [ηr − δ, ηr + δ] and we
conclude c = 1/3.

Estimation of γ and M . Noting v∗ = 1 and F ′′(1) = 1, we have

|F ′(v)− F ′′(v∗)(v − v∗)| = |(v − 1) +G′
δ(v)− (v − 1)| = |G′

δ(v)|.

Because of the problem setup, it is enough to verify γ = 0, M = 8
9 satisfy |G′

δ(v)| ≤ M |v−1|2 on v ∈ [ηr−δ, ηr+δ].
Since |G′

δ(v)| ≤ 1/2 and v ≤ 1/4 for v in this interval, we have

|G′
δ(v)| ≤

1

2
≤ M

9

16
≤ M(v − 1)2.

This concludes γ = 0, M = 8
9 .

C Motivating Example 2

We provide an example for which SGD and averaged SGD behave in significantly different ways. For this example,
the convergence of SGD cannot be guaranteed whereas averaged SGD can converge.

C.1 Problem Setup

We consider a one-dimensional objective function f : R → R defined below: for δ > 0,

f(w) =
1

2
w2 + gδ(w), (14)

where gδ : R → R is a scaled mollifier:

gδ(w) =

 δ2 exp

(
1− 1

1−(w
δ )

2

)
(|w| < δ),

0 (|w| ≥ δ).
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Figure 9: The left figure plots the mollifier gδ (blue) and smoothed mollifier Gδ (orange), and the right figure
plots the objective f (blue) and smoothed objective F (orange). Hyperparameters are set to δ = 0.2, r = 1, and
η = 0.2.

The function f is symmetry and has two local minima. Taking the derivative at v = αδ (α > 0), we see

f ′(αδ) = αδ

(
1− 2

(1− α2)2
exp

(
1− 1

1− α2

))
.

Therefore, the value of α > 0 such that f ′(αδ) = 0 is independent of δ, meaning optimal solutions of f are O(δ).

Let ϵ ∼ U [−r, r] be the uniform distribution as in Section B. Then, the smoothed objective F with the noise ϵ′

and step-size η is

F (v) =
1

2
v2 + η2σ2

1 + E[gδ(v − ηϵ′)]

∼ 1

2
v2 + E[gδ(v − ηϵ′)].

Figure 9 depicts the above functions. We note that gδ is slightly different from that in the previous section.

We define constants C1, C2 as follows:

C1 = max
w

|g′1(w)|, C2 = max{1,max
w

|g′′1 (w)|}.

For sufficient smoothing, we consider the following problem setup:

C1δ
2 ≤ ηr

2
(ηr − δ), (15)

C2δ ≤ ηr

2
. (16)

Note that for a given ηr > 0, the above conditions can be satisfied if δ > 0 is sufficiently small.

Lipschitz smoothness L of f is L = 1 + C2, and hence η should satisfy η ≤ min
{

3σ2
3

32σ2
1L

, 1
2L

}
= 3

32L = 3
32(1+C2)

.

We note contrary to the case in the previous section, L does not suffer from δ. Hence we do not need to make η
small depending on δ.

C.2 Evaluation of SGD and Averaged SGD

Under conditions (15) and (16), we can estimates constants appearing in the convergence results of SGD and
averaged SGD as follows (for the detail see the next subsection):
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L = 1 + C2, σ2
1 = σ2

3 =
r2

3
, σ2 = 0, µ = 1, c =

1

2
, γ =

C1δ
2

ηr
, M = 0. (17)

Moreover, the smoothed objective F has a unique solution v∗ = 0 as shown in the next subsection.

Therefore, for SGD we obtain by Proposition 3.4,

D2
T =

1

T + 1

T∑
t=0

E[∥vt − v∗∥2]

≤ O
(
T−1

)
+

2ησ2
1

c
+

8η2σ2
1L

3c

(
1 +

2ησ2
2

c

)
≤ O

(
T−1

)
+ 4ηr2 +

16

3
η2r2(1 + C2).

That is,

DT ≤ O
(
T−1/2

)
+ 2

√
ηr2 +

4

3
η2r2(1 + C2), (18)

and
ηr

2
√
6
≤ D∞ ≤ 2

√
ηr + 4ηr

√
1 + C2

3
,

where we applied Proposition 3.5 for the lower bound. Taking into account (16), we see the right hand side of
this bound is Ω(δ). Then, since the optimal solution of f is also O(δ), we can see that upper-bound (18) on SGD
cannot distinguish solutions of the original function f and the smoothed objective F .

On the other hand, the condition Eq. (5): C1δ
2/(ηr) ≪ D∞ ≪ ∞ is satisfied under the setting δ2 ≪ η2r2. Then,

we have limT→∞ E[∥vT − v∗∥] ≤ C1δ
2/(ηr) by by Eq. (4). Since, δ can be small independent of η and r, averaged

SGD can approach a solution v∗ = 0 of F up to O(δ2).

This difference between SGD and averaged SGD is intuitively understandable. In the case of using a large step
size compared to δ (i.e., δ2 ≪ η2r2), SGD does not converge to a point and hence oscillates in the valley. Then,
its mean should be located almost at the origin (i.e., v∗), meaning the convergence of averaged SGD. In the case
of using a small step size, both SGD and averaged SGD do not converge to v∗ but converge to a minimizer of f .
Indeed, we empirically observed this phenomenon in Figure 10. Both SGD and averaged SGD using small step
size η = 0.01 compared to δ converge to the solutions of f because of the weakened bias and precise optimization.
On the other hand, when using a relatively large step size η = 0.2, SGD cannot converge, whereas averaged SGD
converges to the solution v∗ = 0 of F very accurately.

C.3 Estimation of Constants

Minimum and estimation of µ. In a similar way to Section B, the smoothed function Gδ(v) = E[gδ(v − ηt)]
and its derivative G′

δ satisfy the following. By taking into account supp(gδ) = [−δ, δ], the smoothed objective
Gδ(v) is constant on {|v| ≤ ηr− δ}∪ {|v| ≥ ηr+ δ}, and thus, G′

δ is non-zero only on supp(G′
δ) = [−ηr− δ,−ηr+

δ] ∪ [ηr − δ, ηr + δ]. Specifically, we obtain
0 ≤ G′

δ(v) ≤
C1δ

2

ηr (v ∈ [−ηr − δ,−ηr + δ]),

−C1δ
2

ηr ≤ G′
δ(v) ≤ 0 (v ∈ [ηr − δ, ηr + δ]),

G′
δ(v) = 0 (else).

It is verified that the derivative of F vanishes only at v = 0 as follows. If there is a point so that F ′(v) = 0 other
than v ̸= 0, v should be in supp(Gδ). For v ∈ [ηr − δ, ηr + δ], we get

F ′(v) = v +G′
δ(v) ≥ ηr − δ − C1δ

2

ηr
> 0,
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Figure 10: The figures plot the convergent points of SGD and averaged SGD using small step size η = 0.01 (left)
and appropriately large η = 0.2 (right). For both cases, we set δ = 0.2 and r = 1.

where we used (15). In a similar way, we have F ′(v) < 0 on v ∈ [−ηr − δ,−ηr + δ]. Moreover, F ′(0) = 0 clearly
holds. Thus, v∗ = 0 is a unique solution.

Since Gδ is constant on [−ηr+ δ, ηr− δ] under the condition (16), we see G′′
δ (0) = 0. Therefore, we get F ′′(0) = v,

and hence µ = 1.

Estimation of c. From the above argument, we get

F ′(v)v = v2 +G′
δ(v)v

≥


v2 + C1δ

2

ηr v (v ∈ [−ηr − δ,−ηr + δ]),

v2 − C1δ
2

ηr v (v ∈ [ηr − δ, ηr + δ]),

v2 (else).

Since C1δ
2

ηr ≤ ηr−δ
2 ≤ −v

2 on [−ηr − δ,−ηr + δ] and C1δ
2

ηr ≤ ηr−δ
2 ≤ v

2 on [ηr − δ, ηr + δ], we have F ′(v)v ≥ v2

2 .

Thus, c = 1
2 .

Estimation of γ and M . Since G′′
δ (0) = 0, we have F ′(v) − F ′′(0)v = G′

δ(v) for any v ∈ R, leading to

|F ′(v)− F ′′(0)v| = |G′
δ(v)| ≤

C1δ
2

ηr . Hence, γ = C1δ
2

ηr and M = 0.

D Additional Experiments

Table 3: Comparison of test classification accuracies on CIFAR10 dataset. All methods adopt the multi-step
strategy for the step size schedule.

CIFAR10

η ResNet-50 WRN-28-10

SGD s 95.95 (0.10) 96.85 (0.16)

Averaged
SGD

s 96.58 (0.14) 97.24 (0.07)

m 96.89 (0.05) 97.44 (0.04)

l 96.27 (0.16) 97.05 (0.09)

We run SGD and averaged SGD on CIFAR10 dataset with the step size strategy ‘l’ under the same settings as
in Section 4. Table 3 lists the results including this case. We observe that the large step size ‘l’ does not work
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Figure 11: The figure depicts the curve of the trace of Hessian ∇2f(w) and test loss functions achieved by SGD,
SGD with large step size, and averaged SGD. Each algorithm is run to train the standard convolutional neural
network on Fashion MNIST dataset.

so well on CIFAR10 dataset compared to other schedules. We hypothesize this is because CIFAR10 is not so
difficult dataset and does not require stronger bias induced by a larger step size.

We also validate the cosine annealing strategy for the step size, which is frequently used due to its excellent
performance. We used the symbols ‘s’, ‘m’, and ‘l’ for the cosine annealing depending on the last step sizes
which are set to 0, 0.004, and 0.02, respectively. The parameter averaging for averaged SGD is taken over the last
quarter of the training. From the table, we observe the usefulness of parameter averaging for the cosine annealing
schedule as well.

Table 4: Comparison of test classification accuracies on CIFAR100 and CIFAR10 datasets. All methods adopt
cosine annealing for the step-size schedule.

CIFAR100 CIFAR10

η ResNet-50 WRN-28-10 Pyramid η ResNet-50 WRN-28-10 Pyramid

SGD s 82.26 82.68 82.97 s 96.58 97.00 96.66

Averaged
SGD

s 83.89 84.28 85.14 s 97.01 97.28 97.07
l 83.21 84.49 85.47 m 96.86 97.51 97.32

SAM s 83.35 84.64 86.24 s 96.40 96.89 97.61

Averaged
SAM

s 83.18 84.94 86.79 s 96.56 97.14 97.55
l 83.58 85.26 86.84 m 96.51 97.19 97.48

Finally, we run SGD, SGD with a large step size, and averaged SGD to train the standard convolutional neural
network on Fashion MNIST dataset to confirm how efficiently sharpness and classification accuracy can be
optimized by each method. We note the large step size used for SGD is the same as that for averaged SGD. We
plot the trace of Hessian ∇2f(w) and test loss functions in Figure 11. From this figure, we observe that the
averaged SGD converges to a flatter region and achieves the highest classification accuracy on the test dataset as
expected in our theory.

E Related Literature and Discussion

Flat Minimum. Keskar et al. (2017) and Hochreiter and Schmidhuber (1997) showed a flat minimum generalizes
well and a sharp minimum generalizes poorly. However, Dinh et al. (2017) pointed out that the flatness solely
cannot explain generalization because it can be easily manipulated. Neyshabur et al. (2017) rigorously proved
the sharpness combined with ℓ2-norm provides a generalization bound and Jiang et al. (2020) confirmed this
strong correlation through large scale experiments. Keskar et al. (2017) also argued that SGD converges to a flat
minimum and He et al. (2019) argued that the averaged SGD tends to converge to an asymmetric valley due to
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the stochastic gradient noise. Indeed, several works (Kleinberg et al., 2018; Zhou et al., 2020) justified the implicit
bias of SGD towards a flat region or asymmetric valley. Moreover, Izmailov et al. (2018); Foret et al. (2020);
Damian et al. (2021); Orvieto et al. (2022); Kaddour et al. (2022) studied the techniques to further bring out the
bias of SGD with improved performance. In particular, SAM and SWA achieved a significant improvement in
generalization. In our paper, we show that parameter averaging stabilizes the convergence to a flat region or
asymmetric valley, and suggest the usefulness of the combination with the large step size for the difficult dataset
which needs a stronger regularization. Besides, several authors proposed methods that explicitly inject noise for
improving generalization (Chaudhari et al., 2019), in particular for the large batch setting (Wen et al., 2018;
Haruki et al., 2019; Lin et al., 2020).

Markov Chain Interpretation of SGD. Dieuleveut et al. (2020); Yu et al. (2020) provided the Markov
chain interpretation of SGD. They showed the marginal distribution of the parameter of SGD converges to an
invariant distribution for convex and nonconvex optimization problems, respectively. Moreover, Dieuleveut et al.
(2020) showed the mean of the invariant distribution, attained by the averaged SGD, is at distance O(η) from the
minimizer of the objective function, whereas SGD itself oscillates at distance O(

√
η) in the convex optimization

settings. Izmailov et al. (2018) also attributed the success of SWA to such a phenomenon. That is, Izmailov et al.
(2018) explained that SGD travels on the hypersphere because of the convergence to Gaussian distribution and
the concentration on the sphere under a simplified setting, and thus averaging scheme allows us to go inside of
the sphere which may be flat. We can say our contribution is to theoretically justify this intuition by extending
the result obtained by Dieuleveut et al. (2020) to a nonconvex optimization setting. In the proof, we utilize
the alternative view of SGD (Kleinberg et al., 2018) in a non-asymptotic way under some conditions not on
the original objective but on the smoothed objective function. Combination with the Markov chain view for
nonconvex objective (Yu et al., 2020) may be helpful in more detailed analyses.

Step size and Minibatch. SGD with a large step size often suffers from stochastic gradient noise and becomes
unstable. This is the reason why we should take a smaller step size so that SGD converges. In this sense, the
minibatching of stochastic gradients clearly plays the same role as the step size and sometimes brings additional
gains. For instance, Smith et al. (2017) empirically demonstrated that the number of parameter updates can be
reduced, maintaining the learning curves on both training and test datasets by increasing minibatch size instead
of decreasing step size. We remark that our analysis can incorporate the minibatch by dividing σ2

1 and σ2
2 in

Proposition 3.4 and 3.2 by the minibatch size, and we can see certain improvements of optimization accuracy as
well.

Edge of Stability. Recently, Cohen et al. (2021) showed the deterministic gradient descent for deep neural
networks enters Edge of Stability phase. In the traditional optimization theory, the step size is set to be smaller
than 1/L to ensure stable convergence and we also make such a restriction. On the other hand, the Edge
of Stability phase appears when using a higher step size than 2/L. In this phase, the training loss behaves
non-monotonically and the sharpness finally stabilizes around 2/η. This can be explained as follows (Lewkowycz
et al., 2020); if the sharpness around the current parameter is large compared to the step size, then gradient
descent cannot stay in such a region and goes to a flatter region that can accommodate the large step size. There
are works (Arora et al., 2022; Ahn et al., 2022) which attempted to rigorously justify the Edge of Stability phase.
Interestingly, their analyses are based on a similar intuition to ours, but we consider a different regime of step
sizes and a different factor (stochastic noise or larger step size than 2/L) brings the implicit bias towards flat
regions. We believe establishing a unified theory is interesting future research.

Averaged SGD. The averaged SGD (Ruppert, 1988; Polyak and Juditsky, 1992) is a popular variant of
SGD, which returns the average of parameters obtained by SGD aiming at stabilizing the convergence. Because
of the better generalization performance, many works conducted convergence rate analysis in the expected
risk minimization setting and derived the asymptotically optimal rates O(1/

√
T ) and O(1/T ) for non-strongly

convex and strongly convex problems (Nemirovski et al., 2009; Bach and Moulines, 2011; Rakhlin et al., 2012;
Lacoste-Julien et al., 2012). However, the schedule of step size is basically designed to optimize the original
objective function, and hence the implicit bias coming from the large step size will eventually disappear. When
applying a non-diminishing step size schedule, the non-zero optimization error basically remains. What we do in
this paper is to characterize it as the implicit bias toward a flat region.
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E.1 Technical difference.

The proof idea of Proposition 3.4 relies on the alternative view of SGD (Kleinberg et al., 2018) which shows the
existence of an associated SGD for the smoothed objective. However, since its stochastic gradient is a biased
estimator, they showed the convergence not to the solution but to a point at which a sort of one-point strong
convexity holds, and avoid the treatment of a biased estimator. Hence, the optimization of the smoothed objective
is not guaranteed in their theory. On the other hand, optimization accuracy is the key in our theory, thus we
need nontrivial refinement of the proof under a normal one-point strong convexity at the solution.
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