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Abstract

We study data corruption robustness in offline
two-player zero-sum Markov games. Given a
dataset of realized trajectories of two players,
an adversary is allowed to modify an ϵ-fraction
of it. The learner’s goal is to identify an ap-
proximate Nash Equilibrium policy pair from
the corrupted data. We consider this prob-
lem in linear Markov games under different
degrees of data coverage and corruption. We
start by providing an information-theoretic
lower bound on the suboptimality gap of any
learner. Next, we propose robust versions
of the Pessimistic Minimax Value Iteration
algorithm (Zhong et al., 2022), both under
coverage on the corrupted data and under cov-
erage only on the clean data, and show that
they achieve (near)-optimal suboptimality gap
bounds with respect to ϵ. We note that we
are the first to provide such a characterization
of the problem of learning approximate Nash
Equilibrium policies in offline two-player zero-
sum Markov games under data corruption.

1 INTRODUCTION

Some of the most successful applications of Multi-agent
Reinforcement Learning (MARL) are in competitive
game-playing (Silver et al., 2017; Berner et al., 2019),
where we have a model of the environment that we can
use for training purposes. Given that many real-world
multi-agent applications, such as autonomous driving
(Pan et al., 2017) or healthcare (Wang et al., 2018), do
not have readily available simulators, there has recently
been a growing interest in studying offline settings,
where offline data is used to derive agents’ policies.
Since a dynamic exploration of the environment is
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impossible, state-of-the-art (SOTA) algorithms use the
paradigm of pessimism in the face of uncertainty to
derive these policies (Jin et al., 2021). Moreover, these
works typically assume that the data is coming from a
latent distribution with “nice” properties.

In practice, however, datasets may be subject to adver-
sarial attacks that corrupt data points and can signifi-
cantly impact the performance of the learning process.
Such security threats have already been explored in
single-agent RL, where prior work has proposed corrup-
tion robust algorithms (Zhang et al., 2022). However,
these results do not directly translate to MARL due to
the intricacies of multi-agent settings. For instance, the
learning objective in these settings requires a more com-
plex solution concept of learning a Nash Equilibrium
(NE) policy pair for agents instead of simply learning
a near-optimal policy for an agent. In this work, we
initiate the study of corruption robust algorithms for
learning equilibrium policies in offline MARL. More
specifically, we focus on two-agent zero-sum Markov
games and consider the following research question:

Can we design algorithms that approximately solve
offline two-player zero-sum Markov games under data
corruption?

To effectively answer this question, we need to account
for another crucial factor in offline learning, that is, the
quality of the collected data, which drastically affects
the quality of the learned policy. It is thus common
practice to assume that the collected data covers at
least some trajectories of interest. It turns out that the
necessary coverage assumptions for solving the offline
single-player problem are not enough to solve the offline
two-player problem (see Figure 1). Thus, stronger as-
sumptions are required, i.e., the so-called Low Relative
Uncertainty (LRU) assumption. This problem is exac-
erbated by the presence of corruption in our setting.
If good coverage in the clean setting seems natural,
supposing that the data has been collected by a good
enough policy, such an assumption is no longer guaran-
teed when a potentially malicious adversary intervenes
in the data.

Motivated by these observations, we study the problem
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Figure 1: Relationship between coverage assumptions. The minimal coverage requirements are single policy coverage
and LRU coverage for the single-player and two-player settings, respectively. Arrows stand for implications. The middle
(dashed) arrow denotes the restriction from the two-player to the single-player setting: when fixing the second player’s
policy, the LRU coverage assumption reduces to the uniform coverage assumption.

of corruption in the offline two-player setting under var-
ious assumptions. First, we tackle corruption under the
minimal LRU coverage and the more relaxed uniform
Σ-coverage (defined in Assumption 2) assumptions on
the corrupted data. Furthermore, we also consider the
more difficult setting where the minimal LRU cover-
age holds only on the clean dataset. We build upon
recent techniques for the offline two-player zero-sum
setting (Zhong et al., 2022) and propose robust versions
of their method. We tackle the corruption problem
by using two setting-specific robust estimators and
carefully designing new bonus terms that capture the
additional estimation errors coming from corruption.
More concretely, our main results and contributions
are summarized below (also, see Table 1):

I. Lower bound. First, we formulate the problem
of data corruption in offline two-player zero-sum
Markov games. We prove an information-theoretic
lower bound of Ω(Hdϵ) on the suboptimality gap of
any algorithm that uses a corrupted dataset where
H is the episode length, d is the dimension, and ϵ
is the corruption level.

II. Uniform Σ and corrupted covariates. Next, we
consider the corruption problem under the Uniform
Σ-coverage assumption on the corrupted data. We
propose R-PMVI that uses a Robust Least Squares
estimator (Zhang et al., 2022) and show that it
incurs a near-optimal bound on the error coming

from corruption with high probability, showing an
improvement on the single-player bounds of Zhang
et al. (2022) by a factor of H.

III. LRU and clean covariates. Furthermore, we
consider the LRU coverage on the corrupted data.
We additionally assume that corruption is done
only on the reward and next state part of the data
tuples, i.e., assuming clean covariates. In this set-
ting, we propose S-PMVI that uses the Spectrally
Regularized Alternating Minimization algorithm
(Chen et al., 2022a) oracle as a robust estimator
and provide a high probability near-optimal bound
on its suboptimality gap. We note that, under no
corruption, we recover the SOTA bounds of Zhong
et al. (2022), while obtaining similar rates of ϵ as
in the single agent SOTA (Zhang et al., 2022).

IV. LRU on the clean data. Finally, we consider
the most restrictive setting where no guarantees
of coverage on the corrupted data are given but
only make the necessary LRU assumption on the
clean data. In this setting, we propose a new bonus
term for the S-PMVI algorithm, that takes into
account the additional error terms. Our method
yields O(d3/2

√
ϵ) bounds on the suboptimality gap,

similar to the single-player setting. Moreover, under
an additional mild assumption on the feature space,
we are able to recover the optimal O(ϵ) rate, at the
cost of an additional O(d3/2) factor.

Coverage Covariates Algorithm Suboptimality Gap Result

Uniform Σ on corrupted data Corrupted R-PMVI Õ
(
H2dϵ+H3/2f(d)K−1/2

)
[Theorem 2]

LRU on corrupted data Clean S-PMVI Õ
(
H2dϵ+H2K−1/2d3/2

)
[Theorem 3]

LRU on clean data Corrupted S-PMVI Õ
(
H2d3/2

√
ϵ+H2K−1/2d3/2

)
[Theorem 4]

LRU on clean data & A.4 Corrupted S-PMVI Õ
(
H2d3ϵ+H2K−1/2d3

)
[Theorem 5]

Table 1: Summary of our results under Low Relative Uncertainty and uniform Σ-coverage assumptions (see Assumptions 2
and 3 for definitions) on clean or corrupted data, and different corruption levels of the feature covariance matrix. Here ϵ
denotes the corruption level, K denotes the number of trajectories contained in the data, and f(x) denotes a polynomial
function of x. The Covariates column refers to whether the state-action part of the data tuple is corrupted or not. We
have omitted linear dependence on noise variance γ2 of the rewards for ease of presentation. We point the reader to the
relevant results for a detailed description. We note that the universal lower bound for the offline two-player zero-sum MG
setting is Ω(Hdϵ).
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Furthermore, we observe that convergence to Nash
equilibria, without knowledge of ϵ and uniform coverage,
is impossible in the offline two-player setting, which is
a direct implication of the single-player setting (Zhang
et al., 2022). Finally, we provide a comprehensive
discussion on the relationship between used coverage
assumptions and other similar assumptions found in
the offline MARL literature and position them relative
to each other.

2 PRELIMINARIES

Notation. We begin this section by introducing the
notation to be used throughout the paper. As usual, I
denotes the identity matrix, ∥·∥2 denotes the Euclidean
norm, ∥·∥A denotes the Mahalanobis norm given square
matrix A, and ∆(X ) denotes the probability simplex on
set X . When Õ is used, any polylogarithmic terms are
omitted. Furthermore, [H] denotes the set of natural
numbers up to and including H, ⟨·, ·⟩ denotes the inner
product, 1{·} denotes the indicator function, and ⪰
denotes the Loewner order, where A ⪰ B is equivalent
to A−B being positive semi-definite. Finally, we define
Πh(x) = min{h,max{x, 0}}.

2.1 Two-player Zero-sum Markov Games

Let G = (S,A,B, p, r,H) be a finite-horizon zero-sum
Markov game between two players, one of which is
trying to maximize the total reward and the other
is trying to minimize it. Here S denotes the state
space with S states1, A is the action space of the first
player with A actions, B is the action space of the
second player with B actions, p = (p1, . . . , pH) where
ph ∈ RSAB×S ∀h ∈ [H] denote the transition kernels,
r = (r1, . . . , rH) where rh ∈ ∆(R)SAB ∀h ∈ [H] are
γ2-subGaussian rewards, and H is the horizon length.
At each time step h and state sh the max player selects
action ah ∈ A and the min player selects action bh ∈ B
and both observe reward rh(sh, ah, bh). Then, the next
state sh+1 is sampled from ph(·|sh, ah, bh).

A strategy pair (π, ν) is comprised of the strategy of
the first player π = (π1, . . . , πH), πh : S → ∆(A) ∀h ∈
[H] and that of the second player ν = (ν1, . . . , νH),
νh : S → ∆(B) ∀h ∈ [H]. Given h ∈ [H], we define the
state-value function and state-action value function as

V π,ν
h (sh) = E

[
H∑
t=h

rh(st, at, bt)|π, ν, sh

]
,

Qπ,ν
h (sh, ah, bh) = E

[
H∑
t=h

rh(st, at, bt)|π, ν, sh, ah, bh

]
.

1We only introduce the state space cardinality notation
for convenience. Note that in linear Markov games, S may
be intractably large.

2.2 Nash Equilibria and Performance Metrics

Let ν be a fixed strategy of the second player. Then,
an optimal policy with respect to the MDP induced by
ν is called the best response of the first player and we
denote it by br(ν). Similarly, for a fixed strategy π of
the first player, the best response of the second player
is denoted by br(π). Further, for any π, ν and h ≤ H,
we define

V π,∗
h (sh) = V

π,br(π)
h (sh) = inf

ν
V π,ν
h (sh) ,

V ∗,ν
h (sh) = V

br(ν),ν
h (sh) = sup

µ
V µ,ν
h (sh) .

Definition 1. A Nash Equilibrium (NE) is a strategy
pair (π∗, ν∗) such that, for all h ∈ [H] and s ∈ S:

sup
π

inf
ν
V π,ν
h (s) = V π∗,ν∗

h (s) = inf
ν
sup
π

V π,ν
h (s) .

It is well-known that the NE of a zero-sum Markov
game with a unique value function exists (Shapley,
1953). We define V ∗

h (sh) = V π∗,ν∗

h (sh), for all h ≤ H.
Then, for all strategy pairs (π, ν), the weak duality
is written as V π,∗

h (sh) ≤ V ∗
h (sh) ≤ V ∗,ν

h (sh),∀h ≤ H.
Consequently, the suboptimality gap of (π, ν) is

SubOpt(π, ν, s) = V ∗,ν
1 (s)− V π,∗

1 (s) .

Note that the duality is always non-negative, and it is
zero only when (π, ν) is a NE strategy. We say that
a strategy (π, ν) is a η-approximate NE if we have
SubOpt(π, ν, s) ≤ η for all s ∈ S.

2.3 Linear Markov Games

We consider linear two-player zero-sum Markov games
G = (S,A,B, p, r,H). Here, we formally state the
linearity assumption for Markov games, standard in
the literature (Xie et al., 2020).
Definition 2 (Linear Markov games). For each
(s, a, b) ∈ S ×A× B we have

rh(s, a, b) = ϕ(s, a, b)⊤θh + ζ and

ph(·|s, a, b) = ϕ(s, a, b)⊤µh(·) ,

where ϕ : S × A × B → Rd is a known feature map,
θh ∈ Rd is an unknown vector, ζ is zero-mean γ2-
subGaussian noise, and µh = (µ

(i)
h )i∈[d] is a vector of

d unknown signed measures on S. We assume that
∥ϕ(·, ·, ·)∥2 ≤ 1, ∥θh∥2 ≤

√
d, and ∥µh(S)∥2 ≤

√
d for

all h ∈ [H].

As previously observed (Zhong et al., 2022), given a
policy pair (π, ν) and time-step h, there exists a d-
dimensional weight vector ωπ,ν

h , with ∥ωπ,ν
h ∥2 ≤ H

√
d,

such that Qπ,ν
h (s, a, b) = ϕ(s, a, b)⊤ωπ,ν

h for any (s, a, b)
tuple.
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2.4 Offline Data Collection

In offline RL, the objective is to learn an optimal
policy from data that has already been collected be-
forehand (Levine et al., 2020). Similarly, in offline
Markov Games, the objective is to learn an approxi-
mate NE strategy based on a given dataset. Formally,
we are given a dataset D = {(sτh, aτh, bτh, rτh, sτh+1)}

τ∈[K]
h∈[H]

of K trajectories, gathered from a behavioral policy
ρ = (ρ1, . . . , ρH), ρh : S → ∆(A× B), ∀h ∈ [H].2

Given h ∈ [H], a strategy pair (π, ν), and a tu-
ple (s, a, b), we denote by dπ,νh (s, a, b) the prob-
ability that the state-action tuple (s, a, b) is tra-
versed in time step h by (π, ν), i.e., dπ,νh (s, a, b) =
P (sh = s, ah = a, bh = b|π, ν). If dπ,νh (s, a, b) > 0, for
all h ∈ [H], we say that state-action tuple (s, a, b) is
covered by policy pair (π, ν).

Next, we formally define the compliance of a given
offline dataset with an underlying Markov game, which
basically implies that the clean collected data follows
the same dynamics as the environment. We will assume
later on that the clean dataset is in compliance with
the underlying Markov game.
Definition 3 (Compliance of dataset). Given a
Markov game G = (S,A,B, p, r,H) and a dataset
D = {(sτh, aτh, bτh, rτh, sτh+1)}

τ∈[K]
h∈[H] , we say the dataset

D is compliant with G if, for all h ∈ [H] and s ∈ S,

P
(
rτh = r, sτh+1 = s|{(sih, aih, bih)}τi=1, {(rih, sih+1)}τ−1

i=1

)
= Ph (rh = r, sh+1 = s|sh = sτh, ah = aτh, bh = bτh) ,

where P is with respect to D and Ph is the probability
measure taken with respect to the underlying Markov
game G.

2.5 Corruption Robust Estimation

The standard assumption in statistical estimation is
that the samples we are given come from a fixed dis-
tribution, allowing one to directly use probability laws
to obtain unbiased estimates of interest. However, it is
usually the case that outliers are present in the data
that do not belong to the underlying distribution, or
that an adversary can arbitrarily corrupt the data.
Only one outlier is enough to arbitrarily shift the em-
pirical mean of the data, and therefore acquiring robust
estimators for the moments of the distribution is im-
portant. We will use the Huber contamination model,
akin to the corruption model in single-player offline RL
(Zhang et al., 2022).
Assumption 1 (ϵ-contamination in offline Markov
games). Given ϵ ∈ [0, 1] and a set of clean tuples D̃ =

2The behavioral policy can be thought of as a product
of a min and max policy.

{(s̃i, ãi, b̃i, r̃i, s̃′i)}Ni=1, an adversary is allowed to inspect
the tuples and replace any ϵN of them with arbitrary
contaminated tuples (s, a, b, r, s′) ∈ S × A × B × R ×
S. The resulting set D = {(si, ai, bi, ri, s′i)}Ni=1 is then
revealed to the learner.

We say that a set of samples is ϵ-corrupted if it is
generated by the above process. Given an ϵ-corrupted
set of data points, the goal of robust statistics is to
compute accurate estimates of the first and second
moments. In (Diakonikolas et al., 2017), the authors
provide efficient and nearly sample-optimal filtering
algorithms for mean and covariance estimation.

For the linear regression problem, different robust es-
timators require different coverage assumptions. For
instance, SCRAM (Chen et al., 2022a) does not make
strong coverage assumptions but assumes clean covari-
ates, while Robust Least Squares (RLS) (Bakshi and
Prasad, 2021; Pensia et al., 2020; Zhang et al., 2022)
needs stronger coverage while allowing for corrupted
covariates. We will use both aforementioned methods
as robust estimator oracles under different coverage
assumptions and corruption models.

3 PROBLEM FORMULATION

We assume that an unknown experimenter collects
a dataset D̃ = {(s̃τh, ãτh, b̃τh, r̃τh, s̃τh+1)}

K,H
τ=1,h=1of K tra-

jectories, in compliance with G. We assume that
{(s̃τh, ãτh, b̃τh, r̃τh, s̃τh+1)}

K,H
τ=1,h=1is collected from behav-

ioral policy ρ = (ρ1, ρ2). Formally, for any h ∈ [H],
we have (s̃h, ãh, b̃h) ∼ dρh and s̃h+1 ∼ ph(·|s̃h, ãh, b̃h)
for any (s̃h, ãh, b̃h, r̃h, s̃h+1) ∈ D̃. Subsequently, an
adversary contaminates an ϵ-fraction of all tuples
of D̃ and provides us with the corrupted dataset
D ={(sτh, aτh, bτh, rτh, sτh+1)}

K,H
τ=1,h=1.

The learner’s objective is, given access to an ϵ-corrupted
dataset D, to be able to compute an approximate Nash
equilibrium policy pair. In the clean offline setting,
this is usually done by leveraging pessimism in order
to penalize samples that were not sufficiently covered.
However, if the dataset does not cover state actions of
interest, i.e., those traversed by equilibrium policies,
then learning becomes impossible, even in the clean
setting. First, we formally define what we mean by
coverage.

Definition 4. A strategy pair (π, ν) is covered by the
dataset generated by behavioral policy ρ if and only
if every tuple (s, a, b) that is covered by (π, ν) is also
covered by ρ. In other words, we have

dπ,νh (s, a, b)

dρh(s, a, b)
<∞,∀(s, a, b) ∈ S ×A× B, h ∈ [H] .
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For the offline single-player setting, it has been estab-
lished that coverage of the optimal (or any target policy
used as reference) policy is necessary to achieve con-
vergence. For the two-player zero-sum Markov game
setting, Zhong et al. (2022) show that coverage of a
Nash equilibrium policy pair and its neighbors across
each player is necessary for learning, as we will see
in the next section.3 We will consider the corruption
problem under different coverage assumptions, start-
ing from strong assumptions on the corrupted data,
and ending with the setting where minimal coverage
assumptions hold only on the clean dataset.

4 RESULTS UNDER COVERAGE
ON CORRUPTED DATA

Recall from Section 2.3 that, given (π, ν), (s, a, b) ∈
S × A × B, and h ∈ [H], Definition 2 implies that
Qπ,ν

h (s, a, b) = ϕ(s, a, b)⊤ωπ,ν
h , for some ωπ,ν

h ∈ Rd.
Thus, learning the action value function Q∗

h that cor-
responds to a Nash equilibrium (NE) pair reduces to
learning the optimal weights, which we denote by ω∗

h.
For that, we will rely on Pessimistic Minimax Value
Iteration (PMVI) (Zhong et al., 2022), which computes
an approximate NE pair using offline data. However,
PMVI computes estimates of ω∗

h by solving regular-
ized least-squares on the Bellman operator. We cannot
directly use those estimates since our data contains
corrupted samples. Instead, we use a robust estimator
to tackle the corruption problem. Let R-EST denote a
generic robust estimator.

First, we randomly split the data into H batches Dh

and set V H+1(·) = V H+1(·) = 0. Then, for each time
step h = H,H − 1, . . . , 1, we obtain

ωh ← R-EST
(
{ϕ(sτh, aτh, bτh), rτh + V h+1(s

τ
h+1)}Kτ=1

)
,

ωh ← R-EST
(
{ϕ(sτh, aτh, bτh), rτh + V h+1(s

τ
h+1)}Kτ=1

)
.

Once we have estimates of the optimal weights, the
algorithm proceeds to construct estimates of the Q-
values for both players, which depend on carefully
constructed bonus terms Γh – we provide different
bonus terms depending on the robust estimators we
use and other characteristics of corruption.

Next, we compute a Nash equilibrium corresponding
to payoffs Q(·, ·, ·) and Q(·, ·, ·), and obtain (π̂h, ν

′
h)

and (π′, ν̂h), as solutions corresponding to Q(·, ·, ·) and
Q(·, ·, ·), respectively.

Finally, the algorithm estimates the value functions for
both players based on the computed policy pairs. After
H steps, the algorithm terminates and outputs the

3Formal definitions are given in the next section.

estimated pairs of strategies (π̂, ν̂). The pseudocode of
the described method is given in Algorithm 1.

Algorithm 1 Robust PMVI
1: Input: Dataset D, failure probability δ, robust

estimator R-EST, bonus functions Γh(·, ·, ·).
2: Initialize: Randomly split dataset D into H

subsets Dh of cardinality K; set V H+1(s) =

V H+1(s) = 0, for all s ∈ S.
3: for h = H,H − 1, . . . , 1 do:
4: Compute estimates ωh and ωh via R-EST.
5: Q

h
(·, ·, ·)← ΠH−h+1

(
ϕ(·, ·, ·)⊤ωh − Γh(·, ·, ·)

)
.

6: Qh(·, ·, ·)← ΠH−h+1

(
ϕ(·, ·, ·)⊤ωh + Γh(·, ·, ·)

)
.

7: Compute (π̂h, ν
′
h) and (π′

h, ν̂h) as NE solutions
to Q

h
(·, ·, ·) and Qh(·, ·, ·), respectively.

8: V h(·)← Ea∼π̂h,b∼ν′
h
[Q

h
(·, a, b)].

9: V h(·)← Ea∼π′
h,b∼ν̂h

[Qh(·, a, b)].
10: end for
11: Output: π̂ = (π̂h)

H
h=1, ν̂ = (ν̂h)

H
h=1.

In the following sections, we will introduce different
estimators that compute the Bellman operator weights
under different coverage assumptions. Depending on
which estimator we use, we also get the corresponding
convergence guarantees. Intuitively, the error of esti-
mating the Bellman operator is inflated by an extra
term coming from data corruption. To have a sense of
the strength of such guarantees in terms of ϵ, we now
present our first contribution, a result that states an
algorithm-independent minimax lower bound for the
corruption problem in the offline two-player zero-sum
setting.

Theorem 1. For every algorithm L, there exists a
Markov game G, an instance of the corrupted dataset,
corruption level ϵ, and a data collecting distribution
ρ, such that, with probability at least 1/4, L will find
a no-better than Ω(Hdϵ)-approximate NE policy pair
(π̃, ν̃). That is, with a probability of at least 1/4, we
have, for every s ∈ S:

SubOpt(π̃, ν̃, s) = Ω(Hdϵ) .

4.1 Uniform Σ-Coverage and Corrupted
Covariates

We start by considering the strongest coverage assump-
tion first. Throughout Section 4.1, we assume that the
corrupted data D satisfies the following.

Assumption 2 (Uniform Σ-coverage). For all h ∈ [H]
and s ∈ S, Eρ [Σh|s1 = s] ⪰ κI for some κ > 0, where
Σh = ϕ(sh, ah, bh)ϕ(sh, ah, bh)

⊤.
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Assumption 2 implies that every state-action tuple in
the support of the behavioral policy ρ is covered by
the offline data. In Section 6 we further discuss the
strength of this assumption relative to other coverage
assumptions studied in the literature.

Inspired by the Robust Value Iteration algorithm
(Zhang et al., 2022) that uses a Robust Least Squares
(RLS) oracle as a subroutine for estimating the weights
of the value function, we propose RLS-PMVI, which
uses a similar oracle that relies on Assumption 2. How-
ever, it allows for an arbitrary corruption model, where
an ϵ-fraction of the dataset can be arbitrarily corrupted,
that is, any component of the data samples can be modi-
fied arbitrarily. RLS-PMVI returns an approximate NE
policy pair that incurs the following bounds on the gap.
Theorem 2. Suppose that Assumption 2 holds on an
ϵ-corrupted dataset D corresponding to a linear Markov
game. Then, given δ > 0, with probability at least 1− δ,
RLS-PMVI with bonus term Γh(s, a, b) = 0 achieves
suboptimality gap upper bounded by

Õ

(√
H(H + γ)2poly(d)

κ2K
+

H(H + γ)

κ
ϵ

)
.

The proof of Theorem 2 is based on similar ideas to
those used in the single-player setting. We provide the
full proof in Appendix for completion. The following
remarks are in order.
Remark 1. Note that the order of ϵ is optimal. Fur-
thermore, since the bonus term is 0, the algorithm does
not require knowledge of ϵ. Thus, if we have uniform
coverage, under a stricter corruption model, i.e., the
features can also be corrupted, and without knowledge of
ϵ, RLS-PMVI incurs a suboptimality gap with optimal
dependence on ϵ.
Remark 2. Note that the coverage constant κ is in
the order of 1/d, since ∥ϕ∥2 ≤ 1. Thus, the bound
corresponding to the corruption error becomes O(H2dϵ).

4.2 LRU Coverage and Clean Covariates

As mentioned in the previous section, Assumption 2 is
a very strong requirement to make on the data. Thus,
we now focus our attention on a relaxed scenario, where
the observed data covers only policies of interest. In the
two-player zero-sum setting, it turns out that coverage
of the NE policy pair alone is not enough to efficiently
compute an approximate solution. We state such an
assumption below. Given dataset D of K trajectories,
let us denote by

Λh =

K∑
τ=1

ϕ(sτh, a
τ
h, b

τ
h)ϕ(s

τ
h, a

τ
h, b

τ
h)

⊤ + I (1)

the regularized sample covariance with respect to D.

Assumption 3 (Low relative uncertainty). There ex-
ists a constant c1 > 0 such that, for all x ∈ S:

Λh ⪰ I + c1Kmax

{
sup
ν

Eπ∗,ν [ϕhϕ
⊤
h |s1 = x],

sup
π

Eπ,ν∗ [ϕhϕ
⊤
h |s1 = x]

}
,

where ϕh = ϕ(sh, ah, bh), for any h ∈ [H].

As shown in (Zhong et al., 2022) (and (Cui and Du,
2022) for tabular settings), Assumption 3 (and Assump-
tion 6 for tabular settings4) is necessary for learning
NE policies in two-player settings. Thus, the focus
of Section 4.2 will be on data that satisfies such an
assumption. An immediate problem that naturally fol-
lows is choosing the right robust estimator. The RLS
estimator, described in the previous section, provides
nice guarantees but it relies on Assumption 2. If we
are to assume only LRU coverage on the data, then we
need a different estimator.

To that end, we utilize a result by Chen et al. (2022a)
that does not require Assumption 2 to hold. Their
algorithm, SCRAM, utilizes an alternating minimiza-
tion scheme to compute first-order stationary points.
However, the utilization of such an oracle relies on the
assumption that the covariates of the dataset are not
corrupted. Translated into our setting, this assumption
requires the features ϕ(s, a, b), and, as a consequence,
tuples (s, a, b) ∈ D to be clean, i.e., only an ϵ-fraction
of the rewards and the next states are allowed to be
arbitrarily corrupted. Below, we state the conditions
of SCRAM and its guarantee. A detailed version can
be found in Appendix.

Lemma 1 (Chen et al. (2022a)). Given a dataset
D = {xi, yi}i∈[K], which is an ϵ-corrupted version of
dataset D̃ = {xi, ỹi}, where ỹi = ⟨ω∗

i , xi⟩+ξi, ϵ < 0.499,
∥xi∥2 ≤ 1 and ξi are conditionally zero-mean γ2 sub-
Gaussian, then SCRAM returns estimators (ωk)k∈[K],
such that

∥ω − ω∗∥Σ ≤ O(ϵγ + γd1/2K−1/4) , (2)

omitting poly-log factors, where Σ = (1/K)
∑K

k=1 xkx
⊤
k

is the sample covariance.5

In Section 4.2, we use SCRAM as a robust estimator
with bonus term defined as

Γh(s, a, b) =
(√

KE + 2H
√
d
)
∥ϕ(s, a, b)∥Λ−1

h
,

where Λh is defined in Equation 1 and E denotes the
upper bound in Equation (2).

4See Section 6.
5For explicit bounds, see Appendix.
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We are now ready to state the main result of Section
4.2, which gives an upper bound on the suboptimality
gap of the policy pair returned by SCRAM-PMVI.
Theorem 3. Suppose that Assumption 3 holds with
given constant c1. Let δ > 0, ϵ < 1/2 and let D be the
ϵ-corrupted version of the dataset D̃ comprised of K
trajectories of length H, where K ≥ log(min(K, d))/ϵ

and (s̃τh, ã
τ
h, b̃

τ
h) = (sτh, a

τ
h, b

τ
h), for all τ ∈ [K], h ∈ [H].

Then, with probability at least 1 − δ, SCRAM-PMVI
outputs (π̂, ν̂) that satisfy, for every s ∈ S:

SubOpt(π̂, ν̂, s) ≤ Õ

(
1
√
c1

(γ +H)H
√
dϵ+

H2d√
c1K

)
.

Note the
√
d factor in the term coming from the

corruption error. This might seem contradictory to
our lower bound of Theorem 1 at first. However, there
is a hidden dependence on d in the c1 constant, since
c1 cannot be arbitrarily large. By Assumption 3, first
one can easily see that 0 < c1 ≤ 1. Moreover, as shown
in the proof of Proposition 1 (see Appendix), c1 can be
O(1/d), in which case the bounds would be written as

SubOpt(π̂, ν̂, s) ≤ Õ
(
(γ +H)Hdϵ+H2d3/2K−1/2

)
.

Note that one can always construct other examples
in which the dependence of the gap on d is looser.
However, here we are interested in showing that there is
an explicit dependence in order to confirm the matching
order.

It is worth mentioning that knowledge of ϵ is required
by both SCRAM and RLS oracles. Moreover, agnostic
learning without knowledge of ϵ is impossible for lin-
ear Markov games, without uniform data coverage, as
the next result shows. The proof follows immediately
from that of Theorem 3.4 of (Zhang et al., 2022), by
restricting the second player’s action space to a single
action and observing that the LRU coverage reduces
to their finite relative condition number assumption.
Corollary 1. Under Assumption 3, for every algorithm
L that achieves a diminishing suboptimality gap in a
clean environment, there exist linear Markov games G1
and G2, an instance of corrupted data, and a data col-
lecting distribution ρ, such that, for every ϵ ∈ (0, 1/2],
L achieves SubOpt(π̂, ν̂, s) ≥ 1/2, for any s ∈ S, with
probability at least 1/4, on at least one of the games.

With this result, we end our discussion under corrupted
data coverage assumptions. In order to give a formal
characterization of the used coverage assumptions and
other similar ones in the literature, we provide a formal
discussion in Section 6. In the next section, we turn our
attention to the more difficult setting where coverage
guarantees are no longer present in the corrupted data

and provide near-optimal bounds on the suboptimality
of SCRAM-PMVI with novel bonus terms designed to
account for this corrupted coverage.

5 RESULTS UNDER COVERAGE
ON CLEAN DATA

In previous sections, we considered the problem of cor-
ruption in the linear setting, under the assumption that
the corrupted data preserves the coverage that is nec-
essary to solve the underlying Markov game. However,
this might be too restrictive of an assumption since,
in the worst case, the attacker would corrupt precisely
those state-action tuples that belong to trajectories
covered by LRU policies. Thus, the next natural ques-
tion is whether we can approximately solve the problem
given that we are not guaranteed that the available
corrupted data satisfies the LRU coverage assumption.

Apart from not assuming any guarantees on coverage,
we also assume fully arbitrary corruption, in the sense
that the attacker can arbitrarily corrupt an ϵ-fraction
of both covariates and observations. If we are to apply
SCRAM in this setting, we would expect an additional
error coming from the corruption of covariates, and
another one coming from the corrupted coverage.

We find that by carefully designing a bonus term that
also takes into account these two additional errors, we
are able to approximately solve the corruption robust
offline two-player zero-sum game, as the following
result states.
Theorem 4. Suppose that the condition of Assump-
tion 3 is satisfied only on the clean dataset D̃, for a
given constant c1, that is, assume that the clean sam-
ple covariance matrix

∑K
τ=1 ϕ̃

τ
h(ϕ̃

τ
h)

⊤ + I, where ϕ̃τ
h

denotes the clean feature of the sample at time-step h
of episode τ , satisfies Assumption 3. Furthermore, let
δ > 0, ϵ ∈ (0, 1/2), and K ≥ log(min{K, d})/ϵ. Then,
under Assumption 1, with probability at least 1 − δ,
SCRAM-PMVI with bonus defined as

Γh(·) =
(√

(1− ϵ)KE + (
√
ϵK + 2)H

√
d
)
∥ϕ(·)∥Λ−1

h

returns (π̂, ν̂) that satisfy, for every s ∈ S:

SubOpt(π̂, ν̂, s) ≤ O

(
1
√
c1

(γ +H)Hd
√
ϵ+

H2d√
c1K

)
.

Note that we incur an additional
√
d factor in the

corruption error and that the order of ϵ is not optimal.
This is due to both the error from corrupted covariates
and the one from the corrupted coverage. Thus, the
next natural question is whether these bounds can be
improved, at least in terms of the dependence on ϵ.
We answer this question in the affirmative. We show
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that, under a mild assumption on the feature space, we
can improve the order of ϵ at the cost of an extra d3/2

factor, thus recovering the optimal dependency on the
corruption level. First, we state the assumption.

Assumption 4. Given a linear Markov game as
in Definition 2, we assume that the features satisfy
mins,a,b ∥ϕ(s, a, b)∥2 ≥ c2, for some c2 > 0.

We emphasize that such an assumption is not restrictive
and that c2 is in the order of 1/

√
d under various feature

constructions, such as random Fourier features (Rahimi
and Recht, 2007). We find that Assumption 4 is enough
to obtain order-optimal bounds in terms of ϵ, albeit
having an additional O(d) term when comparing with
Theorem 4 coming from the constant c2.

Theorem 5. Suppose that the conditions of Theorem
4 and Assumption 4 hold. Then, with probability at
least 1− δ, SCRAM-PMVI with bonus Γh(·) defined as(

2(1− ϵ)KE + ϵKH
√
d+H

√
Kd
)∥∥ϕ(·)⊤Λ−1

h

∥∥
2
,

returns (π̂, ν̂) that satisfy, for every s ∈ S:

SubOpt(π̂, ν̂, s) ≤ Õ

(
1

c1c2
H2d3/2ϵ+

H2d3/2

c1c2
√
K

)
.

This improvement comes as a result of a novel bonus
term and a different style of analysis based on an ap-
plication of the Woodbury matrix identity to account
for the extra terms coming from corruption.

6 DISCUSSION ON MARL
COVERAGE ASSUMPTIONS

In this section, we discuss the relationship between
various coverage assumptions used in the literature.
First, we state three additional assumptions, apart
from Assumption 2 and 3.

Assumption 5 (Single-policy coverage). The NE strat-
egy pair (π∗, ν∗) is covered by the dataset D.

Assumption 6 (Unilateral coverage). For all strategies
π : S → ∆(A) and ν : S → ∆(B), the strategy pairs
(π∗, ν) and (π, ν∗) are covered by D.

Assumption 7 (Uniform coverage). For all h ∈ [H]
and (s, a, b) ∈ S ×A×B, the tuple (s, a, b) at time step
h is covered by D.

Note that Assumption 5 is the weakest assumption.
Moreover, it is a direct extension of Assumption 3.2 of
(Zhang et al., 2022), while Assumption 7 is an exten-
sion of the uniform policy coverage in the single-player
setting (Cai et al., 2020). We show that Assumption
6 implies Assumption 3 with high probability, when
the feature matrix has full rank, and that, for tabular

Markov games,6 these two assumptions are equivalent.
All proofs of our results can be found in the Appendix.

Proposition 1. Let Φ ∈ RSAB×d denote the feature
matrix. Assume Φ has full rank and let δ ∈ (0, 1).
Then, if Assumption 6 holds, there exists a positive
constant that depends on δ for which Assumption 3
holds, with probability at least 1− δ. Moreover, in the
tabular Markov game setting, these two assumptions
are equivalent.

Furthermore, it is obvious that uniform coverage is
stronger than unilateral coverage. The relation between
Assumption 2 and Assumption 7 is given as follows.

Proposition 2. Assume that Φ has full rank. Then,
if Assumption 2 holds, Assumption 7 holds. Moreover,
in the tabular MG setting, these two assumptions are
equivalent.

As already shown in (Zhong et al., 2022), assuming
that the collected data covers only the NE strategy pair
π∗ = (µ∗, ν∗) is not enough to learn an approximate
NE policy pair. Indeed, Assumption 3 is necessary for
solving offline two-player zero-sum Markov games, even
in clean environments.

Remark 3. Note that, under the assumption that Φ
is full rank (if not, orthogonalization can be applied),
the given coverage assumptions are listed according to
their strength. With high probability, we have

A.2⇒ A.7⇒ A.6⇒ A.3⇒ A.5 .

Moreover, for the tabular setting, Assumption 2 is equiv-
alent to 7 and Assumption 6 is equivalent to 3.

7 RELATED WORK

Offline RL. Our work is related to the offline RL
literature, where there have been substantial devel-
opments in recent years, both on the empirical front
(Jaques et al., 2019; Laroche et al., 2019; Fujimoto
et al., 2019; Kumar et al., 2020; Agarwal et al., 2020;
Kidambi et al., 2020) and the theoretical front (Jin
et al., 2021; Xie et al., 2021; Rashidinejad et al., 2021;
Uehara and Sun, 2021; Zanette et al., 2021b). As pre-
viously mentioned, coverage assumptions on the data
are key in this setting, and there has been a variety
of different assumptions in the single-player setting,
starting from the all-policy coverage ∥dπ/dρ∥∞ ≤ B,
for all π (Munos and Szepesvári, 2008), to optimal
policy coverage ∥d∗/dρ∥∞ ≤ B (Xie et al., 2021), and
α-regularized optimal policy coverage ∥d∗α/dρ∥∞ ≤ B
(Zhan et al., 2022). First, all of these assumptions are

6For tabular Markov games, we have ϕ(s, a, b) = es,a,b,
where es,a,b is the SAB-dimensional zero vector with 1 in
the (s, a, b) entry.
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with respect to the original data-collecting distribu-
tion dρ, while our weakest assumption (LRU coverage)
relies only upon the sample covariance matrix of the
data. Second, note that the weakest of the assumptions
above (α-regularized optimal policy coverage) requires
coverage of only the optimal solution to the regular-
ized LP problem, while coverage of the NE policy pair
and its unilateral neighbors is necessary for finding NE
policy pairs in our setting (Zhong et al., 2022). This is
arguably due to the higher complexity of the problem
compared to the single-player setting.

Adversarial attacks in RL. Our work also adds
to the vast literature on adversarial attacks in ML
(Szegedy et al., 2013; Biggio et al., 2013; Nguyen et al.,
2015; Papernot et al., 2017; Biggio et al., 2012; Li et al.,
2016; Xiao et al., 2012) and the existing body of work
on adversarial attacks in RL and MARL (Huang et al.,
2017; Lin et al., 2017; Wu et al., 2022; Gleave et al.,
2020; Sun et al., 2020a,b; Ma et al., 2019; Rakhsha et al.,
2021; Everitt et al., 2017; Huang and Zhu, 2019; Rangi
et al., 2022; Mohammadi et al., 2023). Specifically, we
consider the problem of robustness to data corruption,
which is a type of training-time attack (Mei and Zhu,
2015; Xiao et al., 2015; Rakhsha et al., 2020). Popular
types of defense against such attacks include random-
ized smoothing (Cohen et al., 2019; Wu et al., 2021),
outlier detection (Diakonikolas et al., 2019) and robust
estimator methods (Chen et al., 2022a; Diakonikolas
et al., 2017; Banihashem et al., 2023). In this work,
we use the latter methods, for both weight estimation
in linear games and mean estimation in tabular ones.
Arguably, the closest work to ours is (Zhang et al.,
2022), which studies the corruption problem in single-
agent RL. On the other hand, while our analysis of the
lower bounds is inspired by their work, our analysis
leads to tighter upper bounds in terms of ϵ and H for
two-player zero-sum Markov games. Yang et al. (2022)
also study the robustness problem in the offline RL set-
ting. However, their attack model assumes observation
perturbations of bounded radius. Our attack model is
stronger since it allows for the arbitrary perturbation
of the tuples. Recently, adversarial corruption in the
online setting has been studied in linear contextual
bandits (He et al., 2022) and more generally in MDPs
with general function approximation (Ye et al., 2023).
These works also broadly relate to corruption-robust
approaches in distributed RL (Chen et al., 2022b; Fan
et al., 2021), that focus on MDP settings.

Reward perturbation in MARL. Ma et al. (2022)
study the problem of reward design in online systems
with no-regret learners. Their goal is to modify the util-
ity function iteratively so that the agents converge to a
desired action profile, while maintaining low cost of per-
turbation. While we also consider multi-agent systems

subject to a third-party intervention, our focus is in the
offline setting with an adversarial corruption framework,
with an emphasis on the defense front. On the other
hand, Wu et al. (2023) is more closely related to ours.
They also study an offline corruption model, where
the attacker can perturb the reward signal in order to
enforce a particular policy, while at the same time main-
taining a low perturbation cost. While their focus in on
designing cost-efficient attacks of that form, our work
studies defenses against a broad class of data poisoning
attacks, defined by the Huber contamination model.

Learning in Markov games. Finally, our work also
relates to the research area of learning in Markov games
(Vrancx et al., 2008; Littman, 1994, 2001; Tian et al.,
2021; Wang and Sandholm, 2002; Sayin et al., 2021;
Xie et al., 2020). In particular, we consider offline
two-player zero-sum games, which have been recently
considered in (Cui and Du, 2022) for tabular settings
and (Zhong et al., 2022) for linear settings. While
they solve the offline problem by assuming that the
collected data is sampled from a benign behavioral
policy, we consider the problem of robustness of their
proposed methods to data corruption. More specifically,
we assume that an ϵ fraction of collected data has been
corrupted, and our aim is to learn NE strategy pairs
under such an assumption. When ϵ = 0, we recover
the same bounds as theirs on the suboptimality gap.

8 CONCLUSION

We considered the problem of data corruption in offline
two-player zero-sum Markov games. Our contribution
was to provide an extensive characterization of the
problem under various coverage assumptions on both
the clean and corrupted data. To the best of our knowl-
edge, we are the first to provide such a characterization
for the problem of corruption in offline Markov games.
For the hardest setting where minimal coverage is guar-
anteed only on the clean data, we are able to match the
optimal order of ϵ under mild structural assumptions,
thus providing a full picture of this setting. There
are many interesting future directions to pursue: i)
studying robustness under adversarial corruption in
Markov games with general function approximation; ii)
extending the two-player zero-sum Markov game set-
ting to online data corruption, where, in each round the
reward/transition data is corrupted with probability
ϵ; iii) studying robustness to adversarial corruption in
larger structured games (e.g. Markov potential games).
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A Proofs of Section 4

In this section, we derive the proofs of the results in Section 4.

A.1 Proof of Theorem 1

We first restate the result.

Statement. For every algorithm L, there exists a Markov game G, an instance of the corrupted dataset, corruption
level ϵ, and a data collecting distribution ρ, such that, with probability at least 1/4, L will find a no-better than
Ω(Hdϵ)-approximate NE policy pair (π̃, ν̃). That is, with a probability of at least 1/4, we have, for every s ∈ S:

SubOpt(π̃, ν̃, s) = Ω(Hdϵ) .

Proof. We will construct an example to prove our statement. Consider the following Markov game G =
(S,A,B, P,H, r, γ, s0), with |S| = S, |A| = A, |B| = B, deterministic transitions, episode length H and initial
state s0, with S ≤ (AB)H/2. Note that, in this case, we have d = SAB. Here r denotes the reward with respect
to the max player. Assume that the transition dynamics follow a tree structure, that is, let T be a tree with
nodes represented by states s ∈ S and edges represented by action tuples (a, b) ∈ A× B, with root node s0, such
that, for every (s, a, b) ∈ S ×A×B, node s is parent to node argmaxs′ P (s′|s, a, b). We denote by p(s) the parent
of node s. Moreover, assume that all states represented by the leaf nodes are self-absorbing states, i.e. the state
does not change, no matter what action is taken. Let q denote the depth of T . Note that we have

q = O(⌈(logAB(S(AB − 1) + 1)− 1⌉) .

Now let us denote by Li the subset of S containing the states represented by nodes in level i of T , for all
i ∈ {0} ∪ [q], and let sji enumerate the states in level Li, for j ∈ [(AB)i−1]. Let us define the reward function as
follows. Fix a sequence of states (s∗0, s

∗
1, . . . , s

∗
q) ∈ L0 × . . .× Lq, where s∗0 = s0 and s∗i is a node in the ith level

of T such that P (s∗i | s∗i−1, a, b1) = 1, for all i ∈ [q] and a ∈ A. Furthermore, for all s ̸= s∗i−1 and (a, b) ∈ A× B,
we have P (s∗i |s, a, b) = 0, for all i ∈ [q]. Let α ∈ (0, 1/3) and assume (s∗q , a1, b1) is the least represented state
according to data collecting distribution dρ.
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Then, for all i ∈ {0, 1, . . . , q − 1}, we define

r(s∗i , a, b) =


α if a = a1, b = b1

2α if a = a1, b ̸= b1

0 otherwise
and r(s∗q , a, b) =


α if a = a1, b = b1

X if a = a1, b = b2

3α if a = a1, b ∈ B \ {b1, b2}
0 otherwise

where X is a Bernoulli random variable with parameter 2α. On the other hand, for all s ∈ S \ {s∗0, . . . , s∗q}, let

r(s, a, b) =

{
1 if a = a1

0 otherwise

Let us determine the value of the game in each state, using the method of backward induction. Set V ∗
H+1(s) = 0,

for all s ∈ S. Then, for all s ∈ Lq \ {s∗q}, we have

Q∗
H(s, ·, ·) b1 b2 . . . bB
a1 1 1 . . . 1
a2 0 0 . . . 0
...

...
...

. . .
...

aA 0 0 . . . 0

and

Q∗
H(s∗q , ·, ·) b1 b2 b3 . . . bB

a1 α 2α 3α . . . 3α
a2 0 0 0 . . . 0
...

...
...

...
. . .

...
aA 0 0 0 . . . 0

Thus, we obtain V ∗
H(s) = 1, for all s ∈ Ld \ {s∗q} and V ∗

H(s∗q) = α. Moreover, note that, for all s ∈ Ld−1 \ {s∗q−1},
we have

Q∗
H−1(s, ·, ·) b1 b2 . . . bB

a1 2 2 . . . 2
a2 0 0 . . . 0
...

...
...

. . .
...

aA 0 0 . . . 0

and

Q∗
H−1(s

∗
q , ·, ·) b1 b2 b3 . . . bB

a1 2α 3α 4α . . . 4α
a2 0 0 0 . . . 0
...

...
...

...
. . .

...
aA 0 0 0 . . . 0

and thus V ∗
H−1(s

∗
q) = 2α. Continuing in this fashion, we obtain

V ∗
1 (s0) = Hα,

where the first q steps come from the trajectory (s∗0, . . . , s
∗
q), and the rest of the H − q steps come from staying in

state s∗q .

Now let G′ be a Markov game that is identical to G, except for one difference. Let r′ denote the reward function
of G′. Then r′(s∗q , a1, b1) = r(s∗q , a1, b1) + Ber(2α), and r′(s, a, b) = r(s, a, b), for all other state-action tuples.
Then for G′ we have

Q̃∗
H(s, ·, ·) b1 . . . bB
a1 1 . . . 1
a2 0 . . . 0
...

...
. . .

...
aA 0 . . . 0

and

Q̃∗
H(s∗q , ·, ·) b1 b2 b3 . . . bB

a1 3α 2α 2α . . . 2α
a2 0 0 0 . . . 0
...

...
...

...
. . .

...
aA 0 0 0 . . . 0

where Q̃(·, ·, ·) denotes the matrices of Q-values of NE policies for G′. Note that the trajectory traversed by the
NE policy pair in G′ is still (s∗0, . . . , s∗q−1, s

∗
q). However, when at state s∗q , the NE policy is (a1, b2), instead of

(a1, b1). Thus, we have

Ṽ ∗
1 (s0) = (2H − d)α,
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since the system will stay in state s∗q for H − q steps, until the episode ends. Note that no policy pair can
be simultaneously optimal in both games. In the worst case, a policy pair which is a NE in G′ will incur a
suboptimality gap of

(H − q)α = (H − ⌈(logAB(S(AB − 1) + 1)− 1⌉)α ≥ Ω(Hα),

in G, where the second inequality follows from the fact that S ≤ (AB)H/2.

Now, let α = SABϵ/2. Since (s∗q , a1, b1) is the least represented state with respect to dρ, by pigeon-hole principle,
we must have dρ(s∗d, a1, b1) ≤ 1/SAB. Assume the adversary uses all its budget only to perturb the reward of
this state-action tuple. Concretely, if the game is G, then the adversary perturbs it into G′ by adding Ber(SABϵ)
to r(s∗q , a1, b1).

With probability at least 1/2, the number of times (s∗q , a1, b1) is counted in a dataset with KH tuples is no more
than KH/SAB, since (s∗q , a1, b1) is the least represented tuple. Conditioned on this, with probability at least
1/2, the reward seen from (s∗q , a1, b1) is 2SABϵ. Thus, perturbing the reward of (s∗q , a1, b1) at least KHϵ times is
enough to make one of the games indistinguishable from the other one. Thus, the agent will inevitably incur

SubOpt(π, ν, s) ≥ Ω(HSABϵ).

A.2 Proof of Theorem 2

The main result of this section relies on the RLS oracle guarantee stated below.

Theorem 6. (Zhang et al., 2022) Given an ϵ-corrupted dataset D = {xi, yi}i∈[n], where the clean data is generated
as x̃i ∼ β, P(∥x̃i∥ ≤ 1) = 1, ỹi = x̃⊤

i ω
∗ + ξi, where ξi is zero-mean σ2-variance sub-Gaussian random noise,

then a robust least square estimator returns an estimator ω such that, if Eβ [xx
⊤] ⪰ κI, for some strictly positive

constant κ, then with probability at least 1− δ, we have

• If Eβ [xx
⊤] ⪰ κI, then with probability at least 1− δ, we have

∥ω∗ − ω∥2 ≤ c1(δ) ·

(√
σ2poly(d)

κ2n
+

σ

κ
ϵ

)
;

• With probability at least 1− δ, we have

E
[∥∥x̃⊤(ω∗ − ω)

∥∥2
2

]
≤ c2(δ) ·

(
σ2poly(d)

n
+ σ2ϵ

)
,

where c1 and c2 hide constants and polylog(1/δ) terms.

Using the above guarantee, we are now ready to prove Theorem 2. First, we recall its statement.

Statement. Suppose that Assumption 2 holds on an ϵ-corrupted dataset D corresponding to a linear Markov
game. Then, given δ > 0, with probability at least 1 − δ, RLS-PMVI with bonus term Γh(s, a, b) = 0 achieves
suboptimality gap upper bounded by

Õ

(√
H(H + γ)2poly(d)

κ2K
+

H(H + γ)

κ
ϵ

)
.

Proof. Let us define the error in Theorem 6 as

E1(ϵ,K,D,H, σ) = c1(δ) ·

(√
σ2poly(d)

κ2K
+

σ

κ
ϵ

)
. (3)

First, we provide upper and lower bounds on the Bellman error.
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Lemma 2. Given the tuple (s, a, b), let us define the Bellman error as

ιh(s, a, b) = (BhV h+1)(s, a, b)−Q
h
(s, a, b) ,

ιh(s, a, b) = (BhV h+1)(s, a, b)−Qh(s, a, b) ,

for all h ∈ [H]. Then, with probability at least 1− δ, we have

−E1(ϵ,K,D,H, σ) ≤ ιh(s, a, b) ≤ E1(ϵ,K,D,H, σ) ,

−E1(ϵ,K,D,H, σ) ≤ −ιh(s, a, b) ≤ E1(ϵ,K,D,H, σ) ,

for all (s, a, b) ∈ S ×A× B and h ∈ [H].

Proof. We start by deriving upper bounds on the Bellman error. Note that, with probability at least 1 − δ,
Theorem 6 and Assumption 2 imply

|ϕ⊤ωh − (BhV h+1)(s, a, b)| ≤ ∥ϕ(s, a, b)∥2 ∥ωh − ω∗
h∥2 ≤ E1(ϵ,K,D,H, σ) (4)

We show the first case. Note that we have

Q
h
(s, a, b) = max{0, ϕ⊤ωh} ≥ ϕ⊤ωh,

which, together with Equation (4), imply

ιh(s, a, b) = (BhV h+1)(s, a, b)−Q
h
(s, a, b)

≤ (BhV h+1)(s, a, b)− ϕ⊤ωh

≤ E1(ϵ,K,D,H, σ) .

For the lower bound, consider two cases. First, if ϕ⊤ωh ≤ 0, then we have

ιh(s, a, b) = (BhV h+1)(s, a, b)−Q
h
(s, a, b)

= (BhV h+1)(s, a, b)− 0

≥ 0.

On the other hand, if ϕ⊤ωh ≥ 0, then we have

ιh(s, a, b) = (BhV h+1)(s, a, b)−Q
h
(s, a, b)

= (BhV h+1)(s, a, b)− ϕ⊤ωh

≥ −E1(ϵ,K,D,H, σ) .

Next, we consider the relationship between the estimated value function and the true ones based on the best
responses.

Lemma 3. If the bounds on the Bellman error given above hold, then, for any s ∈ S, we have

V h(s) ≤ V π̂,∗
h (s) + E1 and V ∗,ν̂

h (s)− E1 ≤ V h(s) ,

where we omit the dependence of E1 on the relevant variables for brevity.

Proof. We prove the left inequality. The right follows similar arguments. We use backward induction. For
h = H + 1, we have V h(s) = V π̂,∗

h (s) = 0. We assume the inequality hold for h+ 1 and prove it for h. We have

V π̂,∗
h (s)− V h(s) = Ea∼π̂,b∼∗

[
Qπ̂,∗

h (s, a, b)
]
− Ea∼π̂,b∼ν̂

[
Q

h
(s, a, b)

]
= Ea∼π̂,b∼∗

[
Qπ̂,∗

h (s, a, b)−Q
h
(s, a, b)

]
+
(
Ea∼π̂,b∼∗

[
Q

h
(s, a, b)

]
− Ea∼π̂,b∼ν̂

[
Q

h
(s, a, b)

])
.
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First, note that

Qπ̂,∗
h (s, a, b)−Q

h
(s, a, b) = Bh

(
V π̂,∗
h+1(s, a, b)− V h+1(s, a, b)

)
+ ιh(s, a, b) ≥ −E1 ,

where the second inequality follows from Lemma 2 and the induction assumption. Furthermore, by the NE value
property, we have

Ea∼π̂,b∼∗

[
Q

h
(s, a, b)

]
− Ea∼π̂,b∼ν̂

[
Q

h
(s, a, b)

]
≥ 0 .

Thus, we obtain V h(s) ≤ V π̂,∗
h (s) + E1.

Next, we prove a result that gives us an upper bound on σ2 in terms of the reward variance and H.

Lemma 4. We have V ar(ξτh|sτh, aτh, bτh) = σ2 ≤ (H + γ)2.

Proof. We consider V h+1. The case for V h+1 is similar. We have

V ar(ξτh|sτh, aτh, bτh) = E
[
(rτh + V h+1(s

τ
h+1)− (BhV h+1)(s

τ
h, a

τ
h, b

τ
h))

2|sτh, aτh, bτh
]

= E
[
(rτh + V h+1(s

τ
h+1)− E[rτh + V h+1(s

τ
h+1)|sτh, aτh, bτh])2|sτh, aτh, bτh

]
= E

[
(rτh − E[rτh|sτh, aτh, bτh])2|sτh, aτh, bτh

]
+ E

[
(V h+1(s

τ
h+1)− E[V h+1(s

τ
h+1)|sτh, aτh, bτh])2|sτh, aτh, bτh

]
+ 2E

[
(rτh − E[rτh|sτh, aτh, bτh])(V h+1(s

τ
h+1)− E[V h+1(s

τ
h+1)|sτh, aτh, bτh])

]
= V ar(rτh|sτh, aτh, bτh) + V ar(V h+1(s

τ
h+1)|sτh, aτh, bτh)

+ 2
√

E [(rτh − E[rτh|sτh, aτh, bτh])2]E
[
(V h+1(s

τ
h+1)− E[V h+1(s

τ
h+1)|sτh, aτh, bτh])2

]
≤ V ar(rτh|sτh, aτh, bτh) + V ar(V h+1(s

τ
h+1)|sτh, aτh, bτh)

+ 2
√

V ar(rτh|sτh, aτh, bτh)V ar(V h+1(s
τ
h+1)|sτh, aτh, bτh)

=

(√
V ar(rτh|sτh, aτh, bτh) +

√
V ar(V h+1(s

τ
h+1)|sτh, aτh, bτh)

)2

≤ (γ +H)2 ,

where the fourth equality uses Cauchy-Schwarz and the last one uses the fact that 0 ≤ V h+1(s) ≤ H, for all
h ∈ [H], s ∈ S.

Next, we state the following well-known result which will help us express the suboptimality gap in terms of
quantities that we can control. For a proof, see (Cai et al., 2020).

Lemma 5. (Value difference lemma) Given an MG (S,A,B, r,H), let π̂⊗ ν̂ = {π̂h⊗ ν̂h : S → ∆(A)×∆(B)}h∈[H]

be a product policy, (π, ν) be a policy pair, and (Q̂h)h∈[H] be any estimated Q-functions. For any h ∈ [H] we
define the estimated value function V̂h : S → R by setting V̂h(s) = ⟨Q̂h(s, ·, ·), π̂h(·|s)⊗ ν̂(·|s)⟩, for all s ∈ S. Then,
for all s ∈ S, we have

V̂1(s)− V π,ν
1 (s) =

H∑
h=1

Eπ,ν

[
⟨Q̂h(s, ·, ·), π̂h(·|s)⊗ ν̂(·|s)− π(·|s)⊗ ν(·|s)⟩|s1 = s

]
+

H∑
h=1

Eπ,ν

[
Q̂h(sh, ah, bh)− (BhVh+1)(sh, ah, bh)|s1 = s

]
.

Now, the first term in the lemma above can be bounded by 0 (see Lemma A.3 of (Zhong et al., 2022)). Thus, we
obtain

V̂1(s)− V π,ν
1 (s) ≤

H∑
h=1

Eπ,ν

[
Q̂h(sh, ah, bh)− (BhVh+1)(sh, ah, bh)|s1 = s

]
. (5)
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Now we write the suboptimality gap as:

SubOpt(π̂, ν̂, s) = V ∗,ν̂
1 (s)− V π̂,∗

1 (s) =
(
V ∗,ν̂
1 (s)− V ∗

1 (s)
)
+
(
V ∗
1 (s)− V π̂,∗

1 (s)
)

. (6)

For the first term, we have

V ∗,ν̂
1 (s)− V ∗

1 (s) ≤ V 1(s)− V ∗
1 (s) + E1 ≤ V 1(s)− V π′,ν∗

1 (s) + E1 ,

for some π′, where the first inequality follows from Lemma 3 and the second inequality follows from the fact that
(π∗, ν∗) is an NE policy. Similarly, we have that V ∗

1 (s)− V π̂,∗
1 (s) ≤ V π∗,ν′

1 (s)− V 1(s) + E1, for some ν′. Then,
Equation (5), Lemma 2 and Lemma 5 imply

V ∗,ν̂
1 (s)− V ∗

1 (s) ≤ V 1(s)− V π′,ν̂
1 (s) + E1(ϵ,K,H, d, σ)

≤
H∑

h=1

Eπ′,ν∗ [−ιh(sh, ah, bh)] +HE1(ϵ,K,H, d, σ)

≤ 2HEπ′,ν∗ [E1(ϵ,K,H, d, σ)|s1 = s]

≤ 2Hc1(δ) ·

(√
σ2poly(d)

κ2K
+

σ

κ
ϵ

)

≤ 2Hc1(δ) ·

(√
(H + γ)poly(d)

κ2K
+

H + γ

κ
ϵ

)
,

where the last inequality follows from Lemma 4. Similarly, we have

V ∗
1 (s)− V π̂,∗

1 (s) ≤ 2Hc1(δ) ·

(√
(H + γ)poly(d)

κ2K
+

H + γ

κ
ϵ

)
.

Finally, we obtain

SubOpt(π̂, ν̂, s) ≤ O

(√
H(H + γ)2poly(d)

κ2K
+

H(H + γ)

κ
ϵ

)
.

A.3 Proof of Theorem 3

Given clean dataset D̃ = {(x̃1, ỹ1), . . . , (x̃K , ỹK)}, consider the observation model

ỹi = ⟨ω∗, x̃i⟩+ ξi ,

where ξi are γ2-sub-Gaussian independent noise variables and ω∗ is the true regressor with ∥ω∗∥ ≤ R, for some
R < ∞, and ∥x̃i∥2 ≤ 1, for i ∈ [K]. Furthermore, given ϵ < 1/2, assume that ϵ-fraction of the outcomes in D̃
are corrupted and let D = {(x1, y1), . . . , (xK , yK)} denote the corrupted dataset. Formally, we assume that the
covariates remain clean, that is, xi = x̃i, for i ∈ [K], and that, for any i ∈ [K], a coin is flipped with success rate
ϵ to determine whether ỹi is corrupted into yi or not.

Furthermore, let

Σ =
1

K

K∑
k=1

xkx
T
k

denote the covariance matrix of D. The following result (Chen et al., 2022a) provides error norm bounds of the
regressor estimated using the SCRAM method on the corrupted dataset D.
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Theorem 7. Let 0 < ϵ < 0.5 be an upper bound on the contamination level, and suppose K satisfies K ≥
O(log(min{K, d})/ϵ). Then, given δ ∈ (0, 1), there exists a poly(K, d) algorithm which takes as input the dataset
D and, with probability at least 1− δ, outputs a vector ω that satisfies

∥ω∗ − ω∥Σ ≤ O

(
ϵγ log(1/ϵ) + min

{
γ

√
d+ log(1/δ)

K
, (Rγ)1/2

4

√
log(1/δ)

K

})
.

For every h ∈ [H], we define the datasets

D̃min(h) = {ϕ(s̃τh, ãτh, b̃τh)︸ ︷︷ ︸
covariates

, r̃τh + V h+1(s̃
τ
h+1)︸ ︷︷ ︸

clean obs.

}Kτ=1

and

D̃max(h) = {ϕ(s̃τh, ãτh, b̃τh), r̃τh + V h+1(s̃
τ
h+1))}Kτ=1 .

Similarly, the partitions of the corrupted data are defined as

Dmin(h) = {ϕ(sτh, aτh, bτh)︸ ︷︷ ︸
covariates

, rτh + V h+1(s
τ
h+1)︸ ︷︷ ︸

ϵ-corrupted obs.

)}Kτ=1

and

Dmax(h) = {ϕ(sτh, aτh, bτh), rτh + V h+1(s
τ
h+1))}Kτ=1 .

Note that we assume ϕ(s̃τh, ã
τ
h, b̃

τ
h) = ϕ(sτh, a

τ
h, b

τ
h), for all τ ∈ [K]. Assumption 2 implies that there exist weight

vectors ω∗
h, ω

∗
h ∈ Rd such that we have

ϕ(sτh, a
τ
h, b

τ
h)

⊤ω∗
h + ξτh = (BhV h+1)(s

τ
h, a

τ
h, b

τ
h) + ξτh =

(
r̃τh + V h+1(s̃

τ
h+1)

)
(7)

and

ϕ(sτh, a
τ
h, b

τ
h)

⊤ω∗
h + ξτh = (BhV h+1)(s

τ
h, a

τ
h, b

τ
h) + ξτh =

(
r̃τh + V h+1(s̃

τ
h+1)

)
, (8)

where ξτh are zero-mean γ2-subGaussian random variables.

Now, let us define the covariance matrices, for all h ∈ [H], as:

Σh =
1

K

K∑
τ=1

ϕ(sτh, a
τ
h, b

τ
h)ϕ(s

τ
h, a

τ
h, b

τ
h)

⊤ .

Note that Σh depend on the triples (sτh, a
τ
h, b

τ
h), τ ∈ [K], which are not changed under corruption. Thus, the

covariance matrices are clean. However, the observations on both D̃min(h) and D̃max(h), for all h ∈ [H], are
ϵ-corrupted. Then, Theorem 7 implies the following result.

Corollary 2. Under the conditions of Theorem 7, there exist a poly(K, d) algorithm that returns a sequence
of estimators (ωh, ωh)

H
h=1 such that, given δ > 0, the following inequalities are satisfied, for all h ∈ [H], with

probability at least 1− δ/2:

∥ω∗
h − ωh∥Σh

≤ O

(
γϵ log(1/ϵ) + min

{
γ

√
d+ log(8H/δ)

K
,
√
Hγ

4

√
d log(8H/δ)

K

})
, (9)

∥ω∗
h − ωh∥Σh

≤ O

(
γϵ log(1/ϵ) + min

{
γ

√
d+ log(8H/δ)

K
,
√
Hγ

4

√
d log(8H/δ)

K

})
. (10)

We will denote the right-hand side bound on the errors of norms by E(ϵ,K,H, d), as shorthand notation.
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Proof. The result follows immediately from Theorem 7 by applying the union bound over 2H events, and also by
noting that ∥ω∗

h∥ , ∥ω∗
h∥ ≤ H

√
d, for all h ∈ [H], by Lemma E.1 of (Zhong et al., 2022).

Next, we prove the upper bounds on the Bellman error in terms of corruption level and bonus term. Given
(s, a, b) ∈ S ×A× B and h ∈ [H], recall that the bonus term is defined as

Γh(s, a, b) =
(√

KE(ϵ,K,H, d) + 2H
√
d
)
∥ϕ(s, a, b)∥Λ−1

h
,

where

Λh =

K∑
τ=1

ϕ(sτh, a
τ
h, b

τ
h)ϕ(s

τ
h, a

τ
h, b

τ
h)

⊤ + I .

Note that Λh is positive definite, and hence, invertible, since Σh is positive semi-definite.

From here on, let us use the following notation for ease of presentation. For a given (s, a, b) and h ∈ [H], let

ϕ := ϕ(s, a, b), and ϕh := ϕ(sh, ah, bh) .

Lemma 6. Given tuple (s, a, b), let ιh(s, a, b) and ιh(s, a, b) be defined as in Lemma 2. Then, with probability at
least 1− δ, we have

0 ≤ ιh(s, a, b) ≤ 2Γh(s, a, b) , (11)
0 ≤ −ιh(s, a, b) ≤ 2Γh(s, a, b) , (12)

for all (s, a, b) ∈ S ×A× B.

Proof. We will prove the first inequality, and the second will follow by symmetry of argument. Let ω∗
h be defined

as in Equation 7. First, note that Corollary 2 implies

∥ωh − ω∗
h∥

2
Λh

= (ωh − ω∗
h)

⊤Λh(ωh − ω∗
h)

= (ωh − ω∗
h)

⊤(KΣh + I)(ωh − ω∗
h)

= K(ωh − ω∗
h)

⊤Σh(ωh − ω∗
h) + (ωh − ω∗

h)
⊤I(ωh − ω∗

h)

≤ K ∥ωh − ω∗
h∥

2
Σh

+ 4H2d

≤ KE(ϵ,K,H, d)2 + 4H2d

where the first inequality comes from the fact that ∥ω∗
h∥2 ≤ H

√
d, from Lemma E.1 of (Zhong et al., 2022) and

also ∥ωh∥2 ≤ H
√
d, by design of SCRAM (Chen et al., 2022a). Thus, taking the square roots of both sides, we

obtain

∥ωh − ω∗
h∥Λh

≤
√
KE(ϵ,K,H, d)2 + 4H2d ≤

√
KE(ϵ,K,H, d) + 2H

√
d . (13)

Then, with probability at least 1− δ, we have

|ϕ⊤ωh − (BhV h+1)(s, a, b)| = |ϕ⊤(ωh − ω∗
h)| ≤ ∥ωh − ω∗

h∥Λh
∥ϕ∥Λ−1

h
≤
(√

KE(ϵ,K,H, d) + 2H
√
d
)
∥ϕ∥Λ−1

h
,

where the first inequality follows from extended Cauchy-Schwarz.

Note that each of the bounds on the right-hand side of the last inequality holds with probability at least 1− δ/2,
thus, by union bound, the inequality above holds with probability at least 1− δ. Therefore, we obtain

ϕ⊤ωh − Γh(s, a, b) ≤ BhV h+1 ≤ H − h+ 1 ,

where in the last inequality we have used the fact that |rh| ≤ 1 and |V h+1(s)| ≤ H − h. Furthermore,

Q
h
(s, a, b) = max{0, ϕ⊤ωh − Γh(s, a, b)} ≥ ϕ⊤ωh − Γh(s, a, b) .
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Thus, we have

ιh(s, a, b) = (BhV h+1)(s, a, b)−Q
h
(s, a, b)

≤ (BhV h+1)(s, a, b)− ϕ⊤ωh + Γh(s, a, b)

≤ 2Γh(s, a, b) .

To prove the non-negativity of ιh(s, a, b), we consider two cases. First, if ϕ⊤ωh − Γh(s, a, b) ≥ 0, then we have

ιh(s, a, b) = (BhV h+1)(s, a, b)−Q
h
(s, a, b)

= (BhV h+1)(s, a, b)− 0 ≥ 0 ,

since V h+1(s) ∈ [0, H] and r(s, a, b) ∈ [0, 1]. On the other hand, if ϕ⊤ωh − Γh(s, a, b) ≤ 0, we have

ιh(s, a, b) = (BhV h+1)(s, a, b)−Q
h
(s, a, b)

= (BhV h+1)(s, a, b)− ϕ⊤ωh + Γh(s, a, b) ≥ 0 .

Next, we give bounds on the best response values in terms of the estimated value functions.
Lemma 7. If Equations (11) and (12) in Lemma 6 hold, then, for any s ∈ S, we have

V h(s) ≤ V π̂,∗
h (s), and V ∗,ν̂

h (s) ≤ V h(s) .

Proof. This is an immediate implication of Lemma A.2 of (Zhong et al., 2022).

The next result provides upper bounds on the expected values of the feature norms, for all the trajectories
followed by the policy pairs in the unilateral set of the NE policy pair. This result is based on the Low Relative
Uncertainty assumption.
Lemma 8. Assume that Assumption 3 holds, that is, assume that there exists a constant c1 > 0 such that, for all
h ∈ [H], we have

Λh ⪰ I + c1Kmax

{
sup
ν

Eπ∗,ν [ϕhϕ
⊤
h |s1 = x], sup

π
Eπ,ν∗ [ϕhϕ

⊤
h |s1 = x]

}
.

Then, for all h ∈ [H], with probability at least 1− δ, we have

Eπ∗,ν′

[
∥ϕ(s, a, b)∥Λ−1

h

]
+ Eπ′,ν∗

[
∥ϕ(s, a, b)∥Λ−1

h

]
≤ 2

√
d

c1K
.

Proof. We derive an upper bound for the first expectation. The argument is identical to the second one. Let

Σh(x) = Eπ∗,ν′
[
ϕ(sh, ah, bh)

⊤ϕ(sh, ah, bh)|s1 = x
]
. (14)

First, note that, given two matrices A,B ∈ Rn×n such that A ⪯ B, then, for any x ∈ Rn
+, we have ∥x∥A ≤ ∥x∥B .

This follows immediately by observing that, since A−B ⪰ 0, which means that A−B is positive semi-definite,
we obtain xT (A−B)x ≥ 0, which implies the desired result. Now, for any h ∈ [H], we have

Eπ∗,ν′

[
∥ϕ(sh, ah, bh)∥Λ−1

h

]
= Eπ∗,ν′

[√
ϕ⊤
hΛ

−1
h ϕh

]
≤ Eπ∗,ν′

[√
ϕ⊤
h

(
c1KΣh(x) + I

)−1
ϕh

∣∣s1 = x

]
≤

√
Eπ∗,ν′

[
Tr
((

c1KΣh(x) + I
)−1

ϕhϕ⊤
h

) ∣∣∣∣s1 = x

]
=

√
Tr
((

c1KΣh(x) + I
)−1 Eπ∗,ν′

[
ϕhϕ⊤

h

∣∣s1 = x
])
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=

√
Tr
((

c1KΣh(x) + I
)−1

Σh(x)
)

=

√
1

c1K
Tr
((

c1KΣh(x) + I
)−1 ((

c1KΣh(x) + I
)
− I
))

=

√
1

c1K

√
Tr
(
I −

(
c1KΣh(x) + I

)−1
)

≤
√

d

c1K
,

where the first inequality follows by assumption; the second inequality follows from Jensen; the second equality
follows from the fact that Tr(EX) = E[Tr(X)], for a given random matrix X; for the fourth equality, we have
used the observation that Tr(I −A) ≤ dim(A), for a positive definite matrix A.

Now we are ready to prove Theorem 3. We restate it below for convenience.

Statement. Suppose that Assumption 3 holds with given constant c1. Let δ > 0, ϵ < 1/2 and let D be the
ϵ-corrupted version of the dataset D̃ comprised of K trajectories of length H, where K ≥ log(min(K, d))/ϵ and
(s̃τh, ã

τ
h, b̃

τ
h) = (sτh, a

τ
h, b

τ
h), for all τ ∈ [K], h ∈ [H]. Then, with probability at least 1− δ, SCRAM-PMVI outputs

(π̂, ν̂) that satisfy, for every s ∈ S:

SubOpt(π̂, ν̂, s) ≤ Õ

(
1
√
c1

(γ +H)H
√
dϵ+

H2d√
c1K

)
.

We decompose the suboptimality gap as in Equation (6):

SubOpt(π̂, ν̂, s) = V ∗,ν̂
1 (s)− V π̂,∗

1 (s) =
(
V ∗,ν̂
1 (s)− V ∗

1 (s)
)
+
(
V ∗
1 (s)− V π̂,∗

1 (s)
)

.

First, we bound the left difference.

V ∗,ν̂
1 (s)− V ∗

1 (s) ≤ V 1(s)− V ∗
1 (s) ≤ V 1(s)− V π′,ν∗

1 (s) ,

for some π′, where the first inequality follows from Lemma 7 and the second inequality follows from the fact that
(π∗, ν∗) is an NE policy. Similarly, we have that V ∗

1 (s)− V π̂,∗
1 (s) ≤ V π∗,ν′

1 (s)− V 1(s), for some ν′. Then, similar
to the proof of Theorem 2, we have

V ∗,ν̂
1 (s)− V ∗

1 (s) ≤ V 1(s)− V π′,ν̂
1 (s)

≤
H∑

h=1

Eπ′,ν∗ [−ιh(sh, ah, bh)]

≤ 2

H∑
h=1

Eπ′,ν∗ [Γh(sh, ah, bh)|s1 = s]

≤ 2
(√

KE(ϵ,K,H, d) + 2H
√
d
) H∑

h=1

Eπ′,ν∗

[
∥ϕ(s, a, b)∥Λ−1

h

]
Similarly, we have

V ∗
1 (s)− V π̂,∗

1 (s) ≤ 2
(√

KE(ϵ,K,H, d) + 2H
√
d
) H∑

h=1

Eπ∗,ν′

[
∥ϕ(s, a, b)∥Λ−1

h

]
.

Finally, applying Lemma 8, we obtain

SubOpt(π̂, ν̂, s) ≤ 2
(√

KE(ϵ,K,H, d) + 2H
√
d
) H∑

h=1

(
Eπ′,ν∗

[
∥ϕ(s, a, b)∥Λ−1

h

]
+ Eπ∗,ν′

[
∥ϕ(s, a, b)∥Λ−1

h

])
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≤ 4
(√

KE(ϵ,K,H, d) + 2H
√
d
) H∑

h=1

√
d

c1K

= O

(
γ

c1
H
√
dϵ+H2K−1/2d

)
≤ O

(
1

c1
(γ +H)H

√
dϵ+

H2d

c1
√
K

)
,

where the last inequality follows from Lemma 4.

B Proofs of Section 5

In this section, we derive the proofs of the results in Section 5.

B.1 Proof of Theorem 4

For this section, we prove a similar result which gives us general bounds when no coverage is guaranteed on the
corrupted dataset, but the underlying clean data has LRU coverage.

First, since we assume corrupted covariates, we rewrite the overall covariance as

Λh = Λ̃h + Λ̂h =
∑

clean τ

ϕ̃τ
h

(
ϕ̃τ
h

)⊤
+

∑
corrupted τ

ϕ̂τ
h

(
ϕ̂τ
h

)⊤
+ I = (1− ϵ)

(
KΣ̃h + I

)
+ ϵ
(
KΣ̂h + I

)
(15)

We start by deriving upper bounds on the Bellman error.

Lemma 9. With probability at least 1− δ, we have

0 ≤ ιh(s, a, b) ≤ 2Γ̂h(s, a, b) ,

0 ≤ −ιh(s, a, b) ≤ 2Γ̂h(s, a, b) ,

where

Γ̂h(s, a, b) =
(√

(1− ϵ)KE + (
√
ϵK + 2)H

√
d
)
∥ϕ(s, a, b)∥Λ−1

h

Proof. Let us consider the first part. The second part will follow by a similar argument. Similar to the argument
of Lemma 6, we have

∥ωh − ω∗
h∥

2
Λh

= (ωh − ω∗
h)

⊤Λh(ωh − ω∗
h)

= (ωh − ω∗
h)

⊤
(
(1− ϵ)

(
KΣ̃h + I

)
+ ϵ
(
KΣ̂h + I

))
(ωh − ω∗

h)

= (1− ϵ)K ∥ωh − ω∗
h∥

2
Σ̃h

+ ϵK ∥ωh − ω∗
h∥

2
Σ̂h

+H2d

≤ (1− ϵ)KE2 + ϵK
∥∥∥Σ̂h

∥∥∥
2
H2d+ 4H2d

≤ (1− ϵ)KE2 + ϵKH2d+ 4H2d .

Thus, we obtain

∥ωh − ω∗
h∥Λh

≤
√

(1− ϵ)KE + (
√
ϵK + 2)H

√
d .

Then, similar to Lemma 6, with probability at least 1− δ, we have

|ϕ⊤ωh − (BhV h+1)(s, a, b)| = |ϕ⊤(ωh − ω∗
h)| ≤ ∥ωh − ω∗

h∥Λh
∥ϕ∥Λ−1

h
≤
(√

(1− ϵ)KE + (
√
ϵK + 2)H

√
d
)
∥ϕ∥Λ−1

h
.

The rest of the proof follows similar arguments to Lemma 6.
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Next, we derive upper bounds on the additional error term coming from the damage on coverage.

Lemma 10. Assume that the condition of Lemma 8 holds only for the underlying clean data, but not for the
corrupted dataset. Then, we have

Eπ∗,ν′

[
∥ϕ(s, a, b)∥Λ−1

h

]
+ Eπ′,ν∗

[
∥ϕ(s, a, b)∥Λ−1

h

]
≤ 2

(√
d

c1K
+

√
dϵ

c1K(1− ϵ)

)
.

Proof. First, using the definition of Λh, we can equivalently write Λh = Sh −∆h, where

Sh =

K∑
τ=1

ϕ̃τ
h

(
ϕ̃τ
h

)⊤
+ I (16)

is the clean sample covariance matrix coming from D̃, and ∆h is defined as

∆h =
∑

corrupted τ

ϕ̃τ
hϕ̃

τ⊤

h − ϕτ
hϕ

τ⊤

h . (17)

Since ∆h is a symmetric matrix, we can write ∆h = UhEhU
⊤
h , where Eh is a diagonal matrix composed of the

eigenvalues of ∆h. Note that the absolute value of each entry of Eh is at most ϵK. We will use the following
formula for the inverse of a sum of two matrices (Henderson and Searle, 1981):

(A+ UBV )−1 = A−1 −A−1U(I +BV A−1U)−1BV A−1 ,

provided that I +BV A−1U is non-singular. In contrast to the Woodbury matrix identity, the matrix B here can
be non-invertible. Using A = Sh and UBV = −UhEhU

⊤
h we get the following identity.

Λ−1
h = (Sh −∆h)

−1
=
(
Sh − UhEhU

⊤
h

)−1
= S−1

h + S−1
h Uh

(
I − EhU

⊤
h S−1

h Uh

)−1
EhU

⊤
h︸ ︷︷ ︸

:=Mh

S−1
h . (18)

This identity gives us the following bound on the bonus term with respect to π∗ and ν′.

Eπ∗,ν′

[
∥ϕ(sh, ah, bh)∥Λ−1

h

]
= Eπ∗,ν′

[√
ϕ⊤
hΛ

−1
h ϕh

]
≤ Eπ∗,ν′

[√
ϕ⊤
h S

−1
h ϕh

]
+ Eπ∗,ν′

[√∣∣ϕ⊤
h S

−1
h MhS

−1
h ϕh

∣∣] (19)

The first term can be bounded by
√

d
c1K

by Lemma 8, since it depends on the clean covariance matrix. For the
second term, we first upper bound the maximum eigenvalue of the inverse of the middle expression in Mh. For
that, we make use of the following Lemma.

Lemma 11. Given Σh(x) as defined in Equation (14), Sh as defined in Equation (16), ∆h = UhShU
⊤
h as defined

in Equation (17), and Mh as in Equation (18), we have

Tr
(
S−1
h MhS

−1
h Σh(x)

)
≤ dϵ

c1K(1− ϵ)
.

Proof. First, note that, since Uh is an orthonormal matrix, we can write

EhU
⊤
h S−1

h Uh = EhU
−1
h S−1

h Uh = Eh (ShUh)
−1

Uh .

Next, observe that

∥ShUh∥2 = max
x ̸=0

∥∥∥Uhx+
∑K

τ=1 ϕ̃
τ
h(ϕ̃

τ
h)

⊤Uhx
∥∥∥
2

∥x∥2

≤ max
x ̸=0

∥Uhx∥2 +
∥∥∥∑K

τ=1 ϕ̃
τ
h(ϕ̃

τ
h)

⊤
∥∥∥
2
∥Uhx∥2

∥x∥2
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≤ max
x ̸=0

∥x∥2 +K ∥x∥2
∥x∥2

= 1 +K ,

where the first inequality follows by the triangle inequality and matrix norm properties, and for the second
inequality we have used the fact that the maximum eigenvalue of the clean covariance matrix does not exceed
1 +K. This implies that

(ShUh)
−1 ≽

1

1 +K
Id

and, consequently,

I − EhU
⊤
h S−1

h Uh ≽

(
1− ϵK

1 +K

)
Id , (20)

since the minimum eigenvalue of −Eh is at least −ϵK. Thus, we obtain(
I − EhU

⊤
h S−1

h Uh

)−1 ⪯ 1

1− ϵK
1+K

Id ⪯
1

1− ϵ
Id .

Using the argument above, we have

Tr
(
S−1
h MhS

−1
h Σh(x)

)
= Tr

(
S−1
h Uh

(
I − EhU

⊤
h S−1

h Uh

)−1
EhU

⊤
h S−1

h UhU
⊤
h Σh(x)

)
= Tr

S−1
h Uh

(I − EhU
⊤
h S−1

h Uh

)−1︸ ︷︷ ︸
A

−I

U⊤
h Σh(x)


≤ 1

c1K
Tr

Uh (A− I)U⊤
h (c1KΣh(x) + I − I) (c1KΣh(x) + I)

−1︸ ︷︷ ︸
B


=

1

c1K
Tr
(
Uh (A− I)U⊤

h (I −B)
)

≤ d

c1K

∥∥Uh (A− I)U⊤
h (I −B)

∥∥
2

≤ d

c1K
∥A− I∥2 ∥I −B∥2

≤ d

c1K

(
1

1− ϵ
− 1

)
=

dϵ

c1K(1− ϵ)
,

where the first inequality uses Assumption 3 and the fact that S−1
h is symmetric; the second inequality uses

the fact that Tr(A) ≤ d ∥A∥2; the third inequality uses the property ∥AB∥2 ≤ ∥A∥2 ∥B∥2, and the fact that,
for orthonormal matrices, we have ∥Uh∥2 ≤ 1. Thus, by putting everything together, we obtain the desired
bounds.

Now, note that

Eπ∗,ν′

[√
ϕ⊤S−1

h MhS
−1
h ϕh

]
≤
√
Tr
(
S−1
h MhS

−1
h Σh(x)

)
≤

√
dϵ

c1K(1− ϵ)
,

by Lemma 11. Thus, by putting everything together, we obtain

Eπ∗,ν′

[
∥ϕ(sh, ah, bh)∥Λ−1

h

]
≤
√

d

c1K
+

√
dϵ

c1K(1− ϵ)
.
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Now we are ready to prove the main result of this section. We restate the result for convenience.
Statement. Suppose that the condition of Assumption 3 is satisfied only on the clean dataset D̃, for a given
constant c1, and that an ϵ-fraction of tuples in D is arbitrarily corrupted. Furthermore, let δ > 0 and ϵ ∈ (0, 1/2),
and K ≥ log(min{K, d})/ϵ. Then, with probability at least 1− δ, S − PMV I returns (π̂, ν̂) that satisfy, for any
s ∈ S

SubOpt(π̂, ν̂, s) ≤ O


1√
c1K

H2d︸ ︷︷ ︸
clean signal

& clean covariates
& LRU coverage

+
1
√
c1

H2
√
dϵ︸ ︷︷ ︸

corrupted signal
& clean covariates
& LRU coverage

+
1
√
c1

H2d
√
ϵ︸ ︷︷ ︸

corrupted signal
& corrupted covariates

& LRU coverage

+
1√

c1(1− ϵ)
H2d3/2ϵ︸ ︷︷ ︸

corrupted signal
& corrupted covariates
& corrupted coverage


Proof. As in the proof of Theorem 3, we have, for some policies π′ and ν′:

SubOpt(π̂, ν̂, s) = V ∗,ν̂
1 (s)− V π̂,∗

1 (s) =
(
V ∗,ν̂
1 (s)− V ∗

1 (s)
)
+
(
V ∗
1 (s)− V π̂,∗

1 (s)
)

≤
(
V 1(s)− V π′,ν∗

1 (s)
)
+
(
V π∗,ν′

1 (s)− V 1(s)
)

(21)

≤
H∑

h=1

(
Eπ′,ν∗ [−ιh(sh, ah, bh)] + Eπ∗,ν′ [ιh(sh, ah, bh)]

)
(22)

≤ 2

H∑
h=1

(
Eπ′,ν∗

[
Γ̂h(s, a, b)|s1 = s

]
+ Eπ∗,ν′

[
Γ̂h(s, a, b)|s1 = s

])
(23)

≤ 2
(√

(1− ϵ)KE + (
√
ϵK + 2)H

√
d
) H∑

h=1

(
Eπ′,ν∗

[
∥ϕ(s, a, b)∥Λ−1

h

]
+ Eπ∗,ν′

[
∥ϕ(s, a, b)∥Λ−1

h

])
≤ 4H

(√
(1− ϵ)KE +

√
ϵKdH + 2H

√
d
)(√ d

c1K
+

√
dϵ

c1K(1− ϵ)

)
(24)

≤ O


1√
c1K

H2d︸ ︷︷ ︸
clean signal

& clean covariates
& LRU coverage

+
1
√
c1

H2
√
dϵ︸ ︷︷ ︸

corrupted signal
& clean covariates
& LRU coverage

+
1
√
c1

H2d
√
ϵ︸ ︷︷ ︸

corrupted signal
& corrupted covariates

& LRU coverage

+
1√

c1(1− ϵ)
H2dϵ︸ ︷︷ ︸

corrupted signal
& corrupted covariates
& corrupted coverage


≤ O

(
H2d3/2K−1/2 +H2d3/2

√
ϵ
)

, (25)

where (21) follows from Lemma 3; (21) follows from Equation (5); (23) follows from Lemma 6; (24) follows from
Lemma 10 and (25) follows from the fact that, for ϵ ∈ (0, 1/2), we have that ϵ/

√
1− ϵ ≤

√
ϵ.

B.2 Proof of Theorem 5

In this section, we improve the order of ϵ in Theorem 4 under an additional assumption on the feature space
(Assumption 4. We start by proving upper bounds on the Bellman error in terms of the bonus term.
Lemma 12. With probability at least 1− δ, we have

0 ≤ ιh(s, a, b) ≤ 2Γ̂h(s, a, b) ,

0 ≤ −ιh(s, a, b) ≤ 2Γ̂h(s, a, b) ,

for all (s, a, b) ∈ S ×A× B and h ∈ [H], where

Γ̂h(s, a, b) =
(
2(1− ϵ)KE + ϵKH

√
d+H

√
Kd
)∥∥ϕ(s, a, b)⊤Λ−1

h

∥∥
2
.
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Proof. First, we express the Bellman error of any given (s, a, b) tuple at time-step h as∣∣Qh(s, a, b)− (BhV h+1)(s, a, b)
∣∣ = ∣∣ϕ⊤

h (ωh − ω∗
h)
∣∣ = ∣∣ϕ⊤

hΛ
−1
h Λh (ωh − ω∗

h)
∣∣ ≤ ∥∥ϕ⊤

hΛ
−1
h

∥∥
2
∥Λh (ωh − ω∗

h)∥2 .

The error coming from the second player is similarly bounded. Note that we have

∥Λh (ωh − ω∗
h)∥

2
2 =

∣∣∣∣(ωh − ω∗
h)

⊤
(
Λ̃h + Λ̂h

)2
(ωh − ω∗

h)

∣∣∣∣
=
∣∣∣(ωh − ω∗

h)
⊤
(
Λ̃2
h + Λ̃hΛ̂h + Λ̂hΛ̃h + Λ̂2

h

)
(ωh − ω∗

h)
∣∣∣

≤
∣∣∣(ωh − ω∗

h)
⊤
Λ̃2
h (ωh − ω∗

h)
∣∣∣︸ ︷︷ ︸

P1

+
∣∣∣(ωh − ω∗

h)
⊤
(
Λ̃hΛ̂h + Λ̂hΛ̃h

)
(ωh − ω∗

h)
∣∣∣︸ ︷︷ ︸

P2

+
∣∣∣(ωh − ω∗

h)
⊤
Λ̂2
h (ωh − ω∗

h)
∣∣∣︸ ︷︷ ︸

P3

We derive upper bounds for the three terms above separately. First, we have

P1 = (1− ϵ)
∣∣∣(ωh − ω∗

h)
⊤
(
KΣ̃h + I

)
Λ̃h (ωh − ω∗

h)
∣∣∣

≤ (1− ϵ)
∥∥∥Λ̃h

∥∥∥
2

(
K ∥ωh − ω∗

h∥
2
Σ̃h

+H2d
)

≤ (1− ϵ)2K2E2 + (1− ϵ)2KH2d ,

where the first equality follows from Equation (15), the first inequality follows from the fact that ⟨x,Ax⟩ ≤
∥A∥2 ∥x∥

2
2 and the last inequality follows from the fact that the maximum eigenvalue of Λ̃h is at most (1− ϵ)K,

the fact that ∥ω∗
h∥2 ≤ H

√
d (Lemma E.1 of Zhong et al. (2022)) and Corollary 2, where we deliberately omit the

dependencies of E for brevity.

Next, we have

P2 ≤
∣∣∣(ωh − ω∗

h)
⊤
Λ̃hΛ̂h (ωh − ω∗

h)
∣∣∣+ ∣∣∣(ωh − ω∗

h)
⊤
Λ̂hΛ̃h (ωh − ω∗

h)
⊤
∣∣∣

≤ 2
∥∥∥Λ̂h

∥∥∥
2
(ωh − ω∗

h)
⊤
Λ̃h (ωh − ω∗

h)

≤ 2ϵK
(
K ∥ωh − ω∗

h∥
2
Σ̃h

+H2d
)

= 2ϵ(1− ϵ)K2E2 + 2ϵ(1− ϵ)KH2d ,

where we have used the fact that the maximum eigenvalue of Λ̂h is at most ϵK and applied similar arguments as
for P1. For the last term, we have

P3 = ϵ
∣∣∣(ωh − ω∗

h)
⊤
(
KΣ̂h + I

)
Λ̂h (ωh − ω∗

h)
∣∣∣

≤ ϵ
∥∥∥Λ̂h

∥∥∥
2

(
K ∥ωh − ω∗

h∥
2
2

∥∥∥Σ̂h

∥∥∥
2
+H2d

)
≤ ϵ2K

(
KH2d+H2d

)
= ϵ2K2H2d+ ϵ2KH2d ,

by applying the same arguments as above. Putting everything together, we obtain

∥Λh (ωh − ω∗
h)∥

2
2 ≤ P1 + P2 + P3

= (1− ϵ)2K2E2 + (1− ϵ)2KH2d+ 2ϵ(1− ϵ)K2E2 + 2ϵ(1− ϵ)KH2d+ ϵ2K2H2d+ ϵ2KH2d

= (1− ϵ)2K2E2 + 2ϵ(1− ϵ)K2E2 + ϵ2K2H2d+
(
(1− ϵ)H

√
Kd+ ϵH

√
Kd
)2

≤ 3(1− ϵ)2K2E2 + ϵ2K2H2d+KH2d ,

where the last inequality follows from the fact that ϵ < 1/2. Taking the square root of both sides and using the
triangle inequality, we finally obtain

∥Λh (ωh − ω∗
h)∥2 ≤ 2(1− ϵ)KE + ϵKH

√
d+H

√
Kd .
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Next, we derive an upper bound on the expected value of the feature norms with respect to policy pairs lying in
the LRU set.
Lemma 13. Assume that Assumption 3 holds on the clean dataset D̃ only, with given constant c1 > 0. Then,
for all h ∈ [H], with probability at least 1− δ, we have

Eπ∗,ν′
[∥∥ϕ(sh, ah, bh)⊤Λ−1

h

∥∥
2

]
+ Eπ′,ν∗

[∥∥ϕ(sh, ah, bh)⊤Λ−1
h

∥∥
2

]
≤ 2

(
d

c1c2K
+

dϵ

c1c2K(1− ϵ)

)
,

where c2 ≤ minϕ∈Φ ∥ϕ∥2.

Proof. Using the short-hand notation ϕh instead of ϕ(sh, ah, bh), we have

Eπ∗,ν′
[∥∥ϕ⊤

hΛ
−1
h

∥∥
2

]
≤ 1

c2
Eπ∗,ν′

[√
ϕ⊤
h

(
S−1
h + S−1

h MhS
−1
h

)2
ϕhϕ⊤

h ϕh

]
=

1

c2
Eπ∗,ν′

[√
Tr
(
S−2
h

(
I +MhS

−1
h

)2 (
ϕhϕ⊤

h

)2)]

≤ 1

c2
Eπ∗,ν′

[
Tr
(
S−1
h

(
I +MhS

−1
h

)
ϕhϕ

⊤
h

)]
=

1

c2
Tr
(
S−1
h

(
I +MhS

−1
h

)
(Σh(x))

)
≤ 1

c2

(
Tr
(
S−1
h Σh(x)

)
+ Tr

(
S−1
h MhS

−1
h Σh(x)

))
.

The first factor is bounded as

Tr
(
S−1
h Σh(x)

)
≤ d

c1K

by Lemma 8, while the second term is bounded as

Tr
(
S−1
h MhS

−1
h Σh(x)

)
≤ dϵ

c1K(1− ϵ)
,

by Lemma 11. The result follows.

Statement. Suppose that the conditions of Theorem 4 and Assumption 4 hold. Then, with probability at least
1− δ, S − PMV I returns (π̂, ν̂) that satisfy, for any s ∈ S:

SubOpt(π̂, ν̂, s) ≤ O

(
1

c1c2
H2d3/2K−1/2 +

1

c1c2
H2d3/2ϵ

)
.

Proof. Again, as in Theorem 3, we have

SubOpt(π̂, ν̂, s) = V ∗,ν̂
1 (s)− V π̂,∗

1 (s) =
(
V ∗,ν̂
1 (s)− V ∗

1 (s)
)
+
(
V ∗
1 (s)− V π̂,∗

1 (s)
)

≤
H∑

h=1

(
Eπ′,ν∗ [−ιh(sh, ah, bh)] + Eπ∗,ν′ [ιh(sh, ah, bh)]

)

≤ 2

H∑
h=1

(
Eπ′,ν∗

[
Γ̂h(s, a, b)|s1 = s

]
+ Eπ∗,ν′

[
Γ̂h(s, a, b)|s1 = s

])

≤ 2
(
2(1− ϵ)KE + ϵKH

√
d+H

√
Kd
) H∑

h=1

(
Eπ′,ν∗

[∥∥ϕ(s, a, b)⊤Λ−1
h

∥∥
2

]
+ Eπ∗,ν′

[∥∥ϕ(s, a, b)⊤Λ−1
h

∥∥
2

])
(26)

≤ 4H
(
2(1− ϵ)KE + ϵKH

√
d+H

√
Kd
) H∑

h=1

(
d

c1c2K
+

dϵ

c1c2K(1− ϵ)

)
(27)

≤ O

(
1

c1c2
H2d3/2K−1/2 +

1

c1c2
H2d3/2ϵ

)
,

where (27) follows from Lemma 12, and (27) follows from Lemma 13 .
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C Proofs of Section 6

In this section, we provide the proofs of results related to coverage assumptions in Section 6.

C.1 Proof of Proposition 1

Before proving Proposition 1, we state a result that provides bounds on the concentration of covariance matrices.
For proof see (Zanette et al., 2021a).

Lemma 14. Let {ϕi}i∈[K] ⊂ Rd be i.i.d. samples from an underlying bounded distribution ν, with ∥ϕi∥2 ≤ 1, for
i ∈ [K] and covariance Σ. Define

Λ =

K∑
k=1

ϕiϕ
⊤
i + λI ,

where λ ≥ Ω(d log(K/δ)). Then, with probability at least 1− δ, we have

1

3
(KΣ+ λI) ⪯ Λ ⪯ 5

3
(KΣ+ λI) .

We restate Proposition 1.

Statement. Assume Φ has full rank and let δ ∈ (0, 1). Then, if Assumption 6 holds, there exists a positive
constant that depends on δ for which Assumption 3 holds, with probability at least 1− δ. Moreover, in the tabular
MG setting, these two assumptions are equivalent.

Proof. Fix x ∈ S. Given policy pair (π, ν) and h ∈ [H], let the matrix Dπ,ν
h ∈ RSAB×SAB denote the diagonal

matrix composed of dπ,νh (s, a, b) diagonal entries, where we set dπ,ν1 (x, a, b) = 1. Note that

Eπ,ν

[
ϕ(sh, ah, bh)ϕ(sh, ah, bh)

⊤|s1 = x
]
= Φ⊤Dπ,ν

h Φ . (28)

Further, let us denote by ρ the behavioral policy from which the clean tuples (s, a, b) from the given offline data
are sampled and let us define the diagonal matrix Dρ

τ,h ∈ RSAB×SAB, for every τ ∈ [K], h ∈ [H], with diagonal
entries

D̃ρ
τ,h[(s, a, b)] := d̃ρτ,h(s, a, b) =

{
1 if (sτh, a

τ
h, b

τ
h) = (s, a, b)

0 otherwise

and let

D̂ρ
h =

1

K

K∑
τ=1

D̃ρ
τ,h

denote the sample covariance matrix. By assumption, there exists a finite positive constant c such that

dπ,νh (s, a, b)

dρh(s, a, b)
< c <∞,∀h ∈ [H], (π, ν) ∈ U(π∗, ν∗), (s, a, b) ∈ {(s, a, b) ∈ S ×A× B : dπ,νh (s, a, b) > 0} ,

where U(π∗, ν∗) = {(π∗, ν), (π, ν∗),∀π,∀ν}. This implies that

min
(s,a,b)∈S×A×B

(
dρh(s, a, b)−

1

c
dπ,νh (s, a, b)

)
≥ 0 , (29)

which implies that

Dρ
h −

1

c
Dπ,ν

h ⪰ 0 . (30)

Now, Lemma 14 implies that there exist constants λh ≥ Ω(d log(KH/δ)), for h ∈ [H], such that, with probability
at least 1− δ, we have

1

3
(KDρ

h + λhI) ⪯
K∑

k=1

D̃ρ
k,h + λhI ⪯

5

3
(KDρ

h + λhI) ,
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for all h ∈ [H]. This implies that

1

3
Dρ

h −
2λh

3K
I ⪯ D̂ρ

h ⪯
5

3
Dρ

h +
2λh

3K
I . (31)

Equations (30) and (31) imply that, with probability at least 1− δ, we have

D̂ρ
h −

(
1

c
Dπ,ν

h − 2λh

3K
I

)
⪰ 0 .

Since the left-hand side is a diagonal matrix, the above is equivalent to

min
(s,a,b)

(
d̂ρh(s, a, b)−

(
1

c
− 2λh

3Kdπ,νh (s, a, b)

)
dπ,νh (s, a, b)

)
≥ 0 .

Now let us define constant c1 as

c1 = max{1
c
− 2d log(KH/δ)

3Kdπ,νh (s, a, b)
: dπ,νh (s, a, b) > 0} .

Then we obtain
min
(s,a,b)

(
d̂ρh(s, a, b)− c1d

π,ν
h (s, a, b)

)
≥ 0,

which means that we have
D̂ρ

h − c1D
π,ν
h ⪰ 0 .

Now, since Φ has full rank, its null space is 0. Thus, given non-zero x ∈ Rd, we have Φx ̸= 0 and thus

(Φx)⊤
(
D̂ρ

h − c1D
π,ν
h

)
(Φx) ≥ 0 ,

since D̂ρ
h − c1D

π,ν
h ⪰ 0. Therefore,

Φ⊤
(
D̂ρ

h − c1D
π,ν
h

)
Φ ⪰ 0 ,

which implies
K∑

τ=1

Φ⊤D̃ρ
τ,hΦ+ I ⪰ I + c1KΦ⊤Dπ,ν

h Φ .

Note that the above can be written as

Λh ⪰ I + c1Kmax

{
sup
ν

Eπ∗,ν

[
ϕhϕ

⊤
h |s1 = x

]
, sup

ν
Eπ,ν∗

[
ϕhϕ

⊤
h |s1 = x

]}
.

Now assume the MG is tabular. Then Φ is just the identity matrix. Thus, if Assumption 3 holds, then there
exists a positive constant c1 such that, for any h ∈ [H], (π, ν) ∈ U(π∗, ν∗), we have

Λh ⪰ I + c1KΦ⊤Dπ,ν
h Φ⇒ Φ⊤

(
D̂ρ

h − c1D
π,nu
h

)
Φ ⪰ 0

⇒ D̂ρ
h − c1D

π,ν
h ⪰ 0

⇒ 5

3
Dρ

h +
2λh

3K
I − c1D

π,ν
h ⪰ 0

⇒ Dρ
h +

2λh

5K
I − 3

5
c1D

π,ν
h ⪰ 0

⇒ min
(s,a,b)

(
dρh(s, a, b)−

(
3

5
c1 −

2λh

3Kdπ,νh (s, a, b)

)
dπ,νh (s, a, b)

)
≥ 0 .

Now let us define

c′ = max

{
3

5
c1 −

2λh

5Kdπ,νh (s, a, b)
: dπ,νh (s, a, b) > 0

}
.
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We have
min
(s,a,b)

(dρh(s, a, b)− c′dπ,νh (s, a, b)) ≥ 0 .

Thus, for c = 1/c′, we obtain

dπ,νh (s, a, b)

dρh(s, a, b)
< c <∞,∀h ∈ [H], (π, ν) ∈ U(π∗, ν∗), (s, a, b) ∈ {(s, a, b) ∈ S ×A× B : dπ,νh (s, a, b) > 0} .

C.2 Proof of Proposition 2

First, we show the equivalence of both assumptions in the tabular Markov game setting. Note that, in the tabular
setting, the features are SAB dimensional and ϕ(s, a, b) is the unit vector es,a,b with coordinate (s, a, b) set to 1.
First, suppose Assumption 2 is true. Then we have,

Edρ
h

[
es,a,be

⊤
s,a,b

]
= diag [{dρh(s, a, b)}s,a,b] ⪰ ξI (32)

This implies that dρh(s, a, b) ≥ ξ for any h and s, a, b and Assumption 7 is satisfied.

Now, suppose Assumption 7 is true. Then dρh(s, a, b) > 0 for any h and tuple (s, a, b). Since the number of
states is finite, there exists a constant C such that dρh(s, a, b) ≥ C for any h and any tuple (s, a, b). Therefore,
Equation (32) is satisfied with ξ = C, and thus, Assumption 2 is satisfied.

Next, we show that Assumption 2 is actually a stronger assumption than Assumption 7 for the more general
linear MDP model. We will write Φ ∈ RSAB×d to denote the feature matrix where the row (s, a, b) corresponds
to the d-dimensional feature ϕ(s, a, b).7

Lemma 15. Suppose rank(Φ) = d. Then Assumption 2 implies Assumption 7.

Proof. We will assume S is finite but possibly very large. The proof can be easily generalized for infinite S. Since
Φ has rank d let us write Φ = UΛV ⊤ where U ∈ RSAB×d, Λ is a d-dimensional diagonal matrix, and V ∈ Rd×d.
Moreover, we can take V to be orthonormal i.e. V ⊤V = I. Let Dρ

h ∈ RSAB×SAB be a diagonal matrix with
Dρ(s, a, b) = dρh(s, a, b).

Edρ
h

[
ϕ(s, a, b)ϕ(s, a, b)⊤

]
= Φ⊤Dρ

hΦ

= V ΛU⊤Dρ
hUΛV ⊤ ⪰ ξId×d

Since Φ has rank d, both Λ and V are invertible. This gives us

U⊤Dρ
hU ⪰ ξ(V Λ)−1(ΛV ⊤)−1

= ξΛ−1(V ⊤V )−1Λ−1 ⪰ ξΛ−2Id×d

Since the matrix U⊤Dρ
hU is already in diagonalized representation, the minimum eigenvalue of U⊤Dρ

hU is the
smallest diagonal entry of Dρ

h. Therefore,

λmin

(
U⊤Dρ

hU
)
= min

s,a,b
dρh(s, a, b) ≥

ξ

maxj∈[d] Λ(j)2

Since Φ has rank d at least one entry of the diagonal matrix Λ is non-zero. Therefore, for any h, the tuple (s, a, b)
is covered with probability at least p where p = ξ/maxj Λ(j)

2.

On the other hand, note that, for general rank-d feature matrix Φ, assumption 7 need not imply assumption 2.
However, if we put additional restrictions on the features e.g. diversity, these two assumptions could be
equivalent.

7For infinite S, Φ is interpreted as a function.
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