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Abstract

Originally introduced as a neural network for
ensemble learning, mixture of experts (MoE)
has recently become a fundamental building
block of highly successful modern deep neural
networks for heterogeneous data analysis in
several applications of machine learning and
statistics. Despite its popularity in practice, a
satisfactory level of theoretical understanding
of the MoE model is far from complete. To
shed new light on this problem, we provide
a convergence analysis for maximum likeli-
hood estimation (MLE) in the Gaussian-gated
MoE model. The main challenge of that anal-
ysis comes from the inclusion of covariates
in the Gaussian gating functions and expert
networks, which leads to their intrinsic inter-
action via some partial differential equations
with respect to their parameters. We tackle
these issues by designing novel Voronoi loss
functions among parameters to accurately cap-
ture the heterogeneity of parameter estima-
tion rates. Our findings reveal that the MLE
has distinct behaviors under two complement
settings of location parameters of the Gaus-
sian gating functions, namely when all these
parameters are non-zero versus when at least
one among them vanishes. Notably, these be-
haviors can be characterized by the solvability
of two different systems of polynomial equa-
tions. Finally, we conduct a simulation study
to empirically verify our theoretical results.
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1 INTRODUCTION

Mixture of experts (MoE) (Jacobs et al., 1991; Jordan
and Jacobs, 1994) is a popular statistical machine learn-
ing model where experts are either regression functions
or classifiers, while the input-dependent weights (also
called gating functions) softly partition the input space
into different regions and define which regions each
expert is responsible for (see (Yuksel et al., 2012; Ma-
soudnia and Ebrahimpour, 2014; Fedus et al., 2022a)
for further details). In regression analysis with het-
erogeneous data, softmax-gated MoE (Jacobs et al.,
1991; Jordan and Jacobs, 1994) and Gaussian-gated
MoE (GMoE) (Xu et al., 1995) models are the most
popular choices. One of the main drawbacks of the
softmax-gated MoE models is the difficulty of applying
an expectation-maximization (EM) algorithm (Demp-
ster et al., 1977), which requires an internal iterative nu-
merical optimization procedure, e.g., Newton-Raphson
algorithm, to update the softmax parameters in the
maximization step. On the other hand, parameters of
the GMoE models can be updated analytically, which
helps reduce the computational complexity of the esti-
mation routine. For those reasons, GMoE has become
a fundamental component of modern deep neural net-
works in various fields, including speech recognition
(Fritsch et al., 1996; You et al., 2022), computer vision
(Lathuilière et al., 2017; Puigcerver et al., 2021), nat-
ural language processing (Shazeer et al., 2017; Fedus
et al., 2022b; Mustafa et al., 2022; Do et al., 2023; Pham
et al., 2024), medical images (Han et al., 2024), robot
dynamics (Sato and Ishii, 2000; Moody and Darken,
1989), remote sensing (Deleforge et al., 2015; Kugler
et al., 2022; Forbes et al., 2022a,b), and econometrics
(Norets and Pelenis, 2021; Norets and Pati, 2017; Diani
et al., 2022). However, there is a paucity of work aiming
at theoretically understanding the density estimation
and parameter estimation in the GMoE models, which
has remained poorly understood in the literature to
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the best of our knowledge.

Related literature. In the GMoE setting, early clas-
sical research focused on identifiability issues (Jiang
and Tanner, 1999c) and parameter estimation in the
exact-fitted setting, assuming the true number of com-
ponents k0 is known (Jiang and Tanner, 1999a). For
most applications, it is a too strong presumption as
the true number of components is seldom known. To
deal with this problem, there are three common practi-
cal approaches. The first approach is based on model
selection, most importantly the Bayesian information
criterion from asymptotic theory (Forbes et al., 2022b;
Chamroukhi and Huynh, 2019; Khalili, 2010) and the
slope heuristic (Baudry et al., 2012; Birgé and Massart,
2007) in a non-asymptotic framework (Nguyen et al.,
2022b, 2023d,e, 2022a). In particular, the bias term can
be substantially reduced with a sufficiently large model
collection w.r.t. the number of mixture components
k by well-studied universal approximations theorems
(Nguyen et al., 2021; Mendes and Jiang, 2012; Jiang
and Tanner, 1999b). However, since we have to search
for the optimal k over all possible values, this approach
is computationally expensive. The second approach is
to design a tractable Bayesian nonparametric GMoE
model. For example, Nguyen et al. (2023c) avoided any
commitment to an arbitrary k with posterior consis-
tency guarantee thanks to the merge-truncate-merge
post-processing in Guha et al. (2021). However, this
approach still depends on a tuning parameter, which
prevents the direct application of this approach to real
data sets. The last approach is to use prior knowledge
to over-specify the true model, i.e. specifying more mix-
ture components than necessary, where most existing
work is limited to its particular case, including mixture
models (Ho and Nguyen, 2016a,b, 2019; Guha et al.,
2021; Manole and Ho, 2022) and mixture of experts
(Ho et al., 2022; Nguyen et al., 2023b,a, 2024b,a). It is
worth noting that the convergence behavior of parame-
ter estimations in the GMoE model has remained an
open question, which we aim to answer in this paper.
Before going into further details, we first formally in-
troduce an affine instance of the GMoE model. This is
a simplified but standard setting where we use linear
functions for Gaussian mean experts.

GMoE setting. GMoE models are used to capture
the non-linear and heterogeneous relationship between
the response Y ∈ Y ⊂ R and the set of covariates
X ∈ X ⊂ Rd, d ∈ N. In the affine GMoE model, the
response Y is approximated by a k0 local affine:

Y =

k0∑

j=1

I (Z = j) [(a0j )
⊤X + b0j + e0j ]. (1)

Here I is an indicator function and Z is a latent variable
that captures a cluster relationship, such that Z = j if

Y comes from cluster j ∈ [k0] := {1, 2, . . . , k0}. Vectors
a0j ∈ Rd and scalars b0j ∈ R define cluster-specific affine
transformations. In addition, e0j are error terms that
capture both the reconstruction error (due to the local
affine approximations) and the observation noise in R.
Let Fd :=

{
f(·|ψ,Σ) : ψ ∈ Rd,Σ ∈ S+

d

}
be the family

of d-dimensional Gaussian density functions with mean
ψ and positive-definite covariance matrix Σ, where
S+
d indicates the set of all symmetric positive-definite

matrices on Rd×d. Following the usual assumption
that e0j is a zero-mean Gaussian variable with variance
ν0j ∈ R+, it follows that

p (Y |X,Z = j) = fD
(
Y |(a0j )⊤X + b0j , ν

0
j

)
, fD ∈ F1.

To enforce the affine transformations to be local, X is
defined as a mixture of k0 Gaussian components:

p (X|Z = j) = fL
(
X|c0j ,Γ0

j

)
, p (Z = j) = π0

j , (2)

where fL ∈ Fd. Here, we refer to fD and fL as the data
density and the local density, respectively. Additionally,
π0
j > 0 are called mixing proportions (or weights),

satisfying
∑k0

j=1 π
0
j = 1. Via the law of total probability,

we obtain the GMoE model of order k0 whose joint
density function pG0

(X,Y ) is given by:

k0∑

j=1

π0
j fL(X|c0j ,Γ0

j ) · fD(Y |(a0j )⊤X + b0j , ν
0
j ). (3)

Here, G0 :=
∑k0

j=1 π
0
j δ(c0j ,Γ0

j ,a
0
j ,b

0
j ,ν

0
j )

denotes a true but
unknown probability mixing measure, where δ is the
Dirac measure and for j ∈ [k0], (c0j ,Γ

0
j , a

0
j , b

0
j , ν

0
j ) ∈

Θ ⊂ Rd ×S+
d ×Rd ×R×R+ are called components of

G0. We assume that {(Xi, Yi)}i∈[n] are i.i.d. samples of
random variable (X,Y ), coming from the GMoE model
of order k0. To facilitate our theoretical guarantee, we
assume that Θ is compact and X is bounded.

Maximum likelihood estimation. We propose a
general theoretical framework for analyzing the statis-
tical performance of maximum likelihood estimation
(MLE) for parameters under the setting of the GMoE
model. Since the true order k0 is generally unknown
in practice, it is necessary to over-specify the number
of components of mixing measures to at most k, where
k > k0. In particular, we consider

Ĝn ∈ argmax
G∈Ok(Θ)

n∑

i=1

log(pG(Xi, Yi)), (4)

where Ok(Θ) := {G =
∑k′

i=1 πiδ(ci,Γi,ai,bi,νi) : 1 ≤ k′ ≤
k,

∑k
i=1 πi = 1, (ci,Γi, ai, bi, νi) ∈ Θ} denotes the set

of all mixing measures with at most k components.

Theoretical challenges. For the purpose of deriv-
ing parameter estimation rates in the GMoE model,



Huy Nguyen⋄,⋆, TrungTin Nguyen◦,†,⋆, Khai Nguyen⋄, Nhat Ho⋄

we first use the Taylor expansion to decompose the
term pĜn

(X,Y )− pG0(X,Y ) into a linear combination
of elements which belong to a linearly independent
set and associate with coefficients involving the dis-
crepancies between parameter estimations and true
parameters. By doing so, when the density estimation
pĜn

converges to the true density pG0 , those parameter
discrepancies also go to zero and we then obtain our
desired parameter estimation rates. Nevertheless, the
density decomposition is challenging due to a number
of linearly dependent derivative terms in the Taylor
expansion. In particular, we find out two interactions
among the parameters of either function fD or fL via
the following partial differential equations (PDEs):

∂2fD
∂b2

= 2
∂fD
∂ν

,
∂2fL
∂c ∂c⊤

= 2
∂fL
∂Γ

. (5)

We refer to those interactions as interior interactions
since each of them involves either parameters b, ν of
function fD or parameters c,Γ of function fL. Further-
more, we also figure out an interaction between the
parameters of functions fD and fL. More specifically,
let us denote F (X,Y |θ) := fL(X|c,Γ)fD(Y |a⊤X+b, ν)
where θ := (c,Γ, a, b, ν). Then, by taking the deriva-
tives of F with respect to its parameters as follows:

∂2F

∂c ∂b
(X,Y |θ0j ) = Γ−1(X − c0j ) · fL · ∂fD

∂b
;

∂F

∂a
(X,Y |θ0j ) = X · fL · ∂fD

∂b
,

it can be seen that the following PDE holds true when
the location parameter of fL vanishes, i.e. c0j = 0:

∂2F

∂c ∂b
(X,Y |θ0j ) = Γ−1 · ∂F

∂a
(X,Y |θ0j ). (6)

We refer to the interaction among parameters c, b, a
in equation (6) as the exterior interaction. Back to
the density decomposition, it is necessary to aggregate
linearly dependent derivative terms in equations (5)
and (6) by taking the summation of their associated
coefficients. As a result, we achieve our desired linear
combination of linearly independent terms. However,
the structure of associated coefficients in that combina-
tion becomes complex owing to the previous aggrega-
tion. Thus, when those coefficients converge to zero, we
have to cope with two complex systems of polynomial
equations given in equations (9) and (12).

Overall contributions. In this paper, we characterize
the convergence behavior of maximum likelihood esti-
mation in the GMoE model. Firstly, we demonstrate
that the density estimation pĜn

converges to the true
density pG0 under the Total Variation distance V at
the parametric rate V (pĜn

, pG0) = O(n−1/2). Regard-
ing the parameter estimation problem, given the above

challenge discussion, we consider two complement set-
tings of the location parameters c01, c02, . . . , c0k0

based
on the validity of the PDE in equation (6) as follows
(see also Table 1):

1. Type I setting: all the values of c01, c02, . . . , c0k0

are different from zero. Since the PDE (6) does not
hold under this setting, we have to deal with only
the interior interactions in equation (5). Thus, we
propose a novel Voronoi loss function D(G,G0) defined
in equation (10) to capture those interactions, and then
establish the Total Variation lower bound D(Ĝn, G0) ≲
V (pĜn

, pG0) = O(n−1/2). This result together with
the formulation of D(Ĝn, G0) indicate that exact-fitted
parameters c0j ,Γ0

j , a
0
j , b

0
j , ν

0
j , which are approximated by

exactly one component, share the same estimation rate
of order O(n−1/2). By contrast, the rates for estimating
over-fitted parameters c0j ,Γ0

j , b
0
j , ν

0
j , which are fitted by

at least two components, depend on the solvability of
the system of polynomial equations (9) and become
no faster than O(n−1/4). These slow rates are due
to the interior interactions among those parameters
in equation (5). As over-fitted parameters a0j are not
involved in those interactions, their estimation rates
keep unchanged of order O(n−1/4).

2. Type II setting: at least one among the values of
c01, c

0
2, . . . , c

0
k0

is equal to zero. Without loss of general-
ity, we assume that c01, c02, . . . , c0k̃ equal zero, where 1 ≤
k̃ ≤ k0, while other cj ’s are non-zero. Since the PDE (6)
holds true under this setting, we have to confront both
interior and exterior interactions among parameters.
For that purpose, we construct another novel Voronoi
loss function D̃(G,G0) in equation (13) to handle those
interactions, and then derive the Total Variation lower
bound D̃(Ĝn, G0) ≲ V (pĜn

, pG0
) = O(n−1/2). Due to

the occurrence of both interior and exterior interac-
tions, the rates for estimating over-fitted parameters
c0j ,Γ

0
j , a

0
j , b

0
j , ν

0
j are now determined by the solvability

of both systems of polynomial equations (9) and (12).
Meanwhile, the estimation rates for their exact-fitted
counterparts remain the same of order O(n−1/2).

Practical implication. In practice, the parameters
specific to each mixing component may carry useful
information about the heterogeneity of the underly-
ing (latent) subpopulations. Since in reality there
is a tendency to “over-fit” the mixture generously by
adding many more mixing components, our theory
warns against this because, as we have shown, the con-
vergence rate via standard methods such as MLE for
subpopulation-specific parameters deteriorates rapidly
with the number of redundant components. Hopefully,
the theoretical results will suggest practical ways to
identify benign scenarios and impose helpful constraints
when GMoE models have favourable convergence rates,
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Setting
Exact-
fitted
c0j ,Γ

0
j , a

0
j , b

0
j , ν

0
j

Over-fitted a0j Over-fitted c0j , b
0
j Over-fitted Γ0

j , ν
0
j

j ∈ [k̃] j ∈ [k0] \ [k̃] j ∈ [k̃] j ∈ [k0] \ [k̃] j ∈ [k̃] j ∈ [k0] \ [k̃]

Type I O(n−1/2) O(n−1/4) O(n−1/2r̄j ) O(n−1/r̄j )

Type II O(n−1/2) O(n−1/r̃j ) O(n−1/4) O(n−1/2r̃j ) O(n−1/2r̄j ) O(n−1/r̃j ) O(n−1/r̄j )

Table 1: Summary of parameter estimation rates in the GMoE model under the Type I and Type II settings.
Recall that the cardinality of Voronoi cells Aj (see Section 2) generated by true components (c0j ,Γ

0
j , a

0
j , b

0
j , ν

0
j )

indicates the number of components fitting them. When |Aj | = 1, we call them exact-fitted parameters, but when
|Aj | > 1, they are referred to as over-fitted parameters. Additionally, the notations r̄j := r̄(|Aj |) and r̃j := r̃(|Aj |)
stand for the solvability of two polynomial equation systems (9) and (12), respectively. For example, if |Aj | = 2,
then we have r̄j = r̃j = 4. Meanwhile, we get r̄j = r̃j = 6 if |Aj | = 3.

and detect pathological scenarios that practitioners
would do well to avoid. In particular, practitioners can
consistently estimate the true number of components
based on our important threshold on the convergence
rates of the MLE using the merge-truncate-merge pro-
cedure (Guha et al., 2021) or Group-Sort-Fuse (Manole
and Khalili, 2021).

Paper organization. The rest of this paper proceeds
as follows. In Section 2, we begin with providing some
background on the identifiability of the GMoE model
and the rate for estimating the joint density function
under that model. Next, in Section 3, we establish the
convergence rates of parameter estimation under both
Type I and Type II settings, which are then empirically
verified by simulation studies in Section 4. Finally, we
conclude the paper in Section 5 and defer proofs of all
theoretical results to the supplementary material.

Notation. Throughout the paper, {1, 2, . . . , n} is ab-
breviated as [n] for any n ∈ N. Given any two sequences
of positive real numbers {an}∞n=1 and {bn}∞n=1, we write
an = O(bn) or an ≲ bn to indicate that there exists a
constant C > 0 such that an ≤ Cbn for all n ≥ 1. Next,
for any vector v ∈ Rd, we denote |v| := v1+v2+. . .+vd,
whereas ∥v∥p stands for its p-norm with a note that
∥v∥ implicitly indicates the 2-norm unless stating other-
wise. By abuse of notation, we also denote by ∥A∥ the
Frobenius norm of any matrix A ∈ Rd×d. Additionally,
the notation |S| represents for the cardinality of any
set S. Finally, given two probability density functions
p, q with respect to the Lebesgue measure µ, we define
V (p, q) := 1

2

∫
|p − q|dµ as their Total Variation dis-

tance, while h2(p, q) := 1
2

∫
(
√
p−√

q)2dµ denotes the
squared Hellinger distance between them.

2 PRELIMINARIES

In this section, we first verify the identifiability of the
GMoE model, and then establish the density estimation

rate under that model. Lastly, we introduce a notion
of a Voronoi cells, which will be used to build Voronoi
loss functions in Section 3.

Firstly, we demonstrate in the following proposition
that the GMoE model is identifiable:
Proposition 1 (Identifiability of the GMoE model).
Let G and G′ be two mixing measures in Ok(Θ). If the
equation pG(X,Y ) = pG′(X,Y ) holds true for almost
surely (X,Y ) ∈ X × Y, then we obtain that G ≡ G′.

The proof of Proposition 1 is deferred to Appendix C.1.
Given the above result, we know that two mixing mea-
sures G and G′ are equivalent if and only if they share
the same joint density function.

Next, we characterize the convergence rate of the joint
density estimation pĜn

to its true counterpart pG0

under the Total Variation distance.
Proposition 2 (Joint Density Estimation Rate). With
the MLE Ĝn defined in equation (4), the following
bound indicates that the density estimation pĜn

con-
verges to the true density pG0

under the Total Variation
distance at the parametric rate of order O(n−1/2) (up
to a logarithmic term):

P(V (pĜn
, pG0

) > C1

√
log(n)/n) ≲ n−C2 ,

where C1 and C2 are universal constants.

The proof of Proposition 2 can be found in Ap-
pendix C.2. This result is a key ingredient to study the
parameter estimation problem in the GMoE model in
subsequent sections. In particular, if we are able to es-
tablish the lower bound of the Total Variation distance
in terms of some loss function D between two mixing
measures, i.e., V (pG, pG0

) ≳ D(G,G0) for any mixing
measure G ∈ Ok(Θ), then the MLE Ĝn also converges
to the true mixing measure G0 at the parametric rate
of O(n−1/2). Based on this result, we then achieve the
parameter estimation rates through the formulation of
the loss function D(Ĝn, G0). For that purpose, let us
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introduce a notion of Voronoi cells which are essential
to construct Voronoi loss functions later in Section 3.

Voronoi cells. In general, true parameters which are
fitted by exactly one component should enjoy faster es-
timation rates than those approximated by more than
one component. Therefore, in order to capture the con-
vergence behavior of parameter estimations accurately,
we define k0 different index sets called Voronoi cells to
control the number of fitted components approaching
each of the k0 true components. More formally, for any
G ∈ Ok(Θ), the Voronoi cell Aj := Aj(G) generated
by θ0j := (c0j ,Γ

0
j , a

0
j , b

0
j , ν

0
j ) is defined as

Aj := {i ∈ [k] : ∥θi − θ0j∥ ≤ ∥θi − θ0ℓ∥, ∀ℓ ̸= j}, (7)

for any j ∈ [k0], where θi := (ci,Γi, ai, bi, νi). An
illustration of Voronoi cells is given in Appendix A.
Notably, the cardinality of each Voronoi cell Aj is
exactly the number of fitted components approximating
the true component θ0j .

3 PARAMETER ESTIMATION
RATES

In this section, we conduct the convergence analysis
for parameter estimation in the GMoE model under
the Type I and Type II settings in Section 3.1 and
Section 3.2, respectively. Then, we sketch the proof for
main results in both settings in Section 3.3.

3.1 Type I Setting

Let us recall that under this setting, all the values
of c01, c02, . . . , c0k0

are non-zero. Although the exterior
interaction between the parameters of two functions fL
and fD mentioned in equation (6) does not hold in this
scenario, we encounter two interior interactions among
parameters b, ν and c,Γ via the following PDEs:

∂2fD
∂b2

= 2
∂fD
∂ν

,
∂2fL
∂c ∂c⊤

= 2
∂fL
∂Γ

. (8)

System of polynomial equations. To precisely char-
acterize the estimation rates for those parameters, we
need to consider the solvability of a system of poly-
nomial equations which was previously studied in Ho
and Nguyen (2016a). In particular, for each m ≥ 2, let
r̄(m) be the smallest positive integer r such that the
system:

m∑

l=1

∑

n1,n2∈N:
n1+2n2=s

p2l q
n1

1l qn2

2l

n1! n2!
= 0, s = 1, 2, . . . , r, (9)

does not have any non-trivial solutions for the unknown
variables {pl, q1l, q2l}ml=1. Here, a solution is called

non-trivial if all the values of pl are different from
zero, whereas at least one among q1l is non-zero. The
following lemma gives us the values of r̄(m) at some
specific points m.
Lemma 1 (Proposition 2.1, (Ho and Nguyen, 2016a)).
When m = 2, we have that r̄(m) = 4, while for m = 3,
we get r̄(m) = 6. If m ≥ 4, then r̄(m) ≥ 7.

Proof of Lemma 1 is in Ho and Nguyen (2016a). Now,
we are ready to introduce a Voronoi loss function used
for this setting.

Voronoi loss function. For simplicity, we denote
∆cij := ci − c0j , ∆Γij := Γi − Γ0

j , ∆aij := ai − a0j ,
∆bij := bi − b0j , ∆νij := νi − ν0j and r̄j := r̄(|Aj |). Ad-
ditionally, we also define mappings Kij : N5 → R such
that Kij(κ1, κ2, κ3, κ4, κ5) := ∥∆cij∥κ1 + ∥∆Γij∥κ2 +
∥∆aij∥κ3 + |∆bij |κ4 + |∆νij |κ5 , for any j ∈ [k0] and
i ∈ Aj . Then, the Voronoi loss function D(G,G0) of
interest in this setting is given by:

D(G,G0) :=
∑

j:|Aj |>1,
i∈Aj

πiKij

(
r̄j ,

r̄j
2
, 2, r̄j ,

r̄j
2

)
+

∑

j:|Aj |=1,
i∈Aj

πiKij(1, 1, 1, 1, 1) +

k0∑

j=1

∣∣∣∣∣∣
∑

i∈Aj

πi − π0
j

∣∣∣∣∣∣
. (10)

Given this loss function, we capture parameter estima-
tion rates in the GMoE model in the following theorem.
Theorem 1. Under the Type I setting, the Total Varia-
tion lower bound V (pG, pG0

) ≳ D(G,G0) holds for any
G ∈ Ok(Θ), which implies that there exists a universal
constant C3 > 0 depending on G0 and Θ satisfying

P(D(Ĝn, G0) > C3

√
log(n)/n) ≲ n−C4 ,

where C4 > 0 is a constant that depends only on Θ.

Proof of Theorem 1 is in Appendix B.1. It follows
from Theorem 1 that the discrepancy D(Ĝn, G0) van-
ishes at a rate of order O(n−1/2) up to a logarithmic
constant, which leads to following observations: (i)
True parameters c0j ,Γ0

j , a
0
j , b

0
j , ν

0
j , which are fitted by

exactly one component, share the same estimation rate
of order O(n−1/2); (ii) By contrast, the rates for es-
timating parameters fitted by more than one element
are significantly slower. In particular, the estimation
rates for c0j , b0j are of order O(n−1/2r̄(|An

j |)), whereas
those for Γ0

j , ν
0
j are of order O(n−1/r̄(|An

j |)) in which
An

j := Aj(Ĝn). For instance, if we have |An
j | = 3,

then Lemma 1 indicates that the previous two rates
become O(n−1/12) and O(n−1/6), respectively. These
slow rates are owing to the interior interactions among
those parameters in equation (8). Meanwhile, a0j ad-
mits a much faster rate of order O(n−1/4) as it does
not interact with other parameters.
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3.2 Type II Setting

Next, we consider the Type II setting, namely when
at least one among c01, c02, . . . , c0k0

is equal to vector 0d.
Without loss of generality, we assume that c01 = c02 =
. . . = c0

k̃
= 0d, while c0

k̃+1
, c0

k̃+2
, . . . , c0k0

are different
from 0d. Under this setting, we encounter not only the
two interior interactions in equation (8) but also the
exterior interaction expressed by the following PDE:

∂2F

∂c ∂b
(X,Y |θ0j ) = Γ−1 · ∂F

∂a
(X,Y |θ0j ), (11)

where F (X,Y |θ) := fL(X|c,Γ)fD(Y |a⊤X + b, ν) and
θ := (c,Γ, a, b, ν). This phenomenon poses a lot of chal-
lenges in the parameter estimation problem. Therefore,
we will only present the results when d = 1 for simplic-
ity, while those for the setting d > 1 can be argued in
a similar fashion but with more complex notations.

System of polynomial equations. Due to the emer-
gence of the exterior interaction, we need to control
the solvability of a totally new system of polynomial
equations, which is given by

m∑

l=1

∑

α∈Jℓ1,ℓ2

p2l q
α1

1l qα2

2l qα3

3l qα4

4l qα5

5l

α1! α2! α3! α4! α5!
= 0, (12)

for all ℓ1, ℓ2 ≥ 0 satisfying 1 ≤ ℓ1 + ℓ2 ≤ r, where
Jℓ1,ℓ2 := {α = (αl)

5
l=1 ∈ N5 : α1 + 2α2 + α3 =

ℓ1, α3 + α4 + 2α5 = ℓ2}. Now, we define r̃(m) as
the smallest natural number r such that the system in
equation (12) does not have any non-trivial solutions
for the unknown variables {pl, q1l, q2l, q3l, q4l, q5l}ml=1,
namely, all of pl are non-zero, whereas at least one
among q4l is different from zero. The following lemma
establishes a connection between r̃(m) and r̄(m) as
well as provides the values of r̃(m) given some specific
choices of m.

Lemma 2. In general, we have r̃(m) ≤ r̄(m) for all
m ∈ N. Furthermore, the equality occurs when m = 2
and m = 3, meaning that r̃(2) = 4 and r̃(3) = 6.

Proof of Lemma 2 is in Appendix C.3. Next, we intro-
duce a Voronoi loss function tailored to this setting.

Voronoi loss function. Firstly, let us reformulate
the mappings Kij defined in Section 3.1 for d = 1 as
Kij(κ1, κ2, κ3, κ4, κ5) := |∆cij |κ1+|∆Γij |κ2+|∆aij |κ3+
|∆bij |κ4+|∆νij |κ5 . In addition, we denote r̃j := r̃(|Aj |)
and r̄j := r̄(|Aj |), for any j ∈ [k0]. Then, the Voronoi

loss of interest D̃(G,G0) is defined as follows:

D̃(G,G0) :=
∑

j∈[k̃]:|Aj |>1,
i∈Aj

πiKij

(
r̃j ,

r̃j
2
,
r̃j
2
, r̃j ,

r̃j
2

)

+
∑

j∈[k0]\[k̃]:|Aj |>1,
i∈Aj

πiKij

(
r̄j ,

r̄j
2
, 2, r̄j ,

r̄j
2

)

+
∑

j∈[k0]:|Aj |=1,
i∈Aj

πiKij(1, 1, 1, 1, 1) +

k0∑

j=1

∣∣∣∣∣∣
∑

i∈Aj

πi − π0
j

∣∣∣∣∣∣
.

(13)

Given the above loss function, we derive the rates for
estimating parameters under the Type II setting in the
following theorem.

Theorem 2. Under the Type II setting, the Total
Variation lower bound V (pG, pG0) ≳ D̃(G,G0) holds
for any G ∈ Ok(Θ), which indicates that we can find a
constant C5 > 0 depending on G0,Θ such that

P(D̃(Ĝn, G0) > C5

√
log(n)/n) ≲ n−C6 ,

where C6 > 0 is a constant that depends only on Θ.

Proof of Theorem 2 is in Appendix B.2. Similar to
Theorem 1, the Voronoi loss D̃(Ĝn, G0) also converges
to zero at a rate of order O(n−1/2) (up to a loga-
rithmic term) under the Type II setting. Moreover,
true parameters c0j ,Γ0

j , a
0
j , b

0
j , ν

0
j enjoy the same esti-

mation rates as their counterparts in Section 3.1 for
any j ∈ [k0] : |An

j | = 1 and j ∈ [k0] \ [k̃] : |An
j | > 1.

However, the difference in the convergence behavior
occurs when j ∈ [k̃] : |An

j | > 1. In particular, the rates
for estimating parameters a0j now drop substantially to
O(n−1/r̃(|Aj |)) in comparison with O(n−1/4) under the
Type I settings. This phenomenon happens due to the
interaction of a0j with parameters c0j , b0j via the PDE
in equation (11).

3.3 Proof Sketch

Since arguments used for the proof of Theorem 1
are included in that of Theorem 2, we will present
the former proof sketch implicitly inside the latter.
In particular, we focus on establishing the bound
infG∈Ok(Θ) V (pG, pG0

)/D̃(G,G0) > 0 under the Type
II setting when d = 1. For that purpose, we will re-
spectively demonstrate its local and global versions by
contradiction as follows:

Local bound: We wish to prove that

lim
ε>0

inf
G∈Ok(Θ),D̃(G,G0)≤ε

V (pG, pG0
)/D̃(G,G0) > 0.
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Assume that this bound does not hold, then we can find
a sequence Gn =

∑kn

i=1 π
n
i δθn

i
∈ Ok(Θ), where θni :=

(cni ,Γ
n
i , a

n
i , b

n
i , ν

n
i ), such that V (pGn

, pG0
)/D̃(Gn, G0)

and D̃(Gn, G0) both vanish as n → ∞. Now, we
decompose Ξn := pGn

(X,Y )− pG0
(X,Y ) as

Ξn =

k0∑

j=1

∑

i∈Aj

πn
i [F (X,Y |θni )− F (X,Y |θ0j )]

+

k0∑

j=1


∑

i∈Aj

πn
i − π0

j


F (X,Y |θ0j ),

where θ0j := (c0j ,Γ
0
j , a

0
j , b

0
j , ν

0
j ). Let us denote

h1(X, a, b) = a⊤X + b for any a ∈ Rd, b ∈ R. Then, for
i ∈ Aj and i′ ∈ Aj′ where j ∈ [k̃] and j′ ∈ [k0] \ [k̃],
we invoke the Taylor expansion up to some orders
r1j and r2j′ (we will choose later) for F (X,Y |θni ) and
F (X,Y |θni′), respectively, as follows:

F (X,Y |θni )− F (X,Y |θ0j )

=

2r1j∑

ℓ1+ℓ2=1

Qn
ℓ1,ℓ2(j) ·Xℓ1fL(X|c0j ,Γ0

j )

× ∂ℓ2fD

∂hℓ21
(Y |a0jX + b0j , ν

0
j ) +R1ij(X,Y ),

F (X,Y |θni′)− F (X,Y |θ0j′)

= R2i′j′(X,Y ) +

r2j′∑

α3=0

2(r2j′−α3)∑

τ1+τ2=0

Tn
α3,τ1,τ2(j

′) ·Xα3

× ∂τ1fL
∂cτ1

(X|c0j′ ,Γ0
j′)
∂α3+τ2fD

∂hα3+τ2
1

(Y |a0j′X + b0j′ , ν
0
j′).

Here R1ij(X,Y ) and R2i′j′(X,Y ) are Taylor remain-
ders such that their ratios to D̃(Gn, G0) vanishes as
n→ ∞. Thus, we can treat Ξn/D̃(Gn, G0) as a linear
combination of linearly independent terms

Xℓ1 · fL(X|c0j ,Γ0
j ) ·

∂ℓ2fD

∂hℓ21
(Y |a0jX + b0j , ν

0
j ),

Xα3 · ∂
τ1fL
∂cτ1

(X|c0j′ ,Γ0
j′) ·

∂α3+τ2fD

∂hα3+τ2
1

(Y |a0j′X + b0j′ , ν
0
j′)

associated with coefficients Qn
ℓ1,ℓ2

(j) and Tn
α3,τ1,τ2(j

′),
respectively. Moreover, it follows from Fatou’s lemma
that Ξn/D̃(Gn, G0) approaches zero when n → ∞.
Consequently, all the coefficients in the representa-
tion of Ξn/D̃(Gn, G0), i.e. Qn

ℓ1,ℓ2
(j)/D̃(Gn, G0) and

Tn
α3,τ1,τ2(j

′)/D̃(Gn, G0), go to zero as n→ ∞. There-
fore, in order to point out a contradiction, we need to
choose the values of r1j and r2j′ such that at least one
among these coefficients does not vanish. As a result,
we achieve the aforementioned local bound. Now, we

will show how to determine such values of r1j and r2j′ .
It is worth noting that if we set k̃ = 0, then Type II
settings reduces to Type I settings and we only need
to deal with r2j′ as follows:

Type I setting: We will specify an appropriate of r2j′
during proving by contradiction that not all the coef-
ficients Tn

α3,τ1,τ2(j
′)/D̃(Gn, G0) tend to zero. Assume

that these coefficients all vanish, then we extract some
useful limits among them for our arguments and end
up with the following system of polynomial equations:

∑

i′∈Aj′

∑

n1+2n2=s

p2l q
n1

1l qn2

2l

n1! n2!
= 0, s = 1, 2, . . . , r2j′ .

By construction, this system must have at least one
non-trivial solution. Thus, to contradict this condition,
we set r2j′ = r̄(|Aj′ |), which makes the above system
has no non-trivial solutions.

Type II setting: When k̃ > 0, i.e. there exist some
zero-valued parameter cj , we will keep r2j′ = r̄(|Aj′ |)
for all j′ ∈ [k0] \ [k̃] and find the desired values of r1j
for j ∈ [k̃] by showing by contradiction that not all
the coefficients Qn

ℓ1,ℓ2
(j)/D̃(Gn, G0) go to zero. En

route to pointing out a contradiction to the hypothesis,
we come across a more complex system of polynomial
equations than its counterpart in the previous setting,
specifically

∑

i∈Aj

∑

α∈Jℓ1,ℓ2

p2i q
α1
1i qα2

2i qα3
3i qα4

4i qα5
5i

α1! α2! α3! α4! α5!
= 0,

for all ℓ1, ℓ2 ≥ 0 such that 1 ≤ ℓ1 + ℓ2 ≤ r1j , where
Jℓ1,ℓ2 := {α = (αi)

5
i=1 ∈ N5 : α1 +2α2 +α3 = ℓ1, α3 +

α4 + 2α5 = ℓ2}. Since this system necessarily has a
non-trivial solution, we choose r1j = r̃(|Aj |) so that
it admits only trivial solutions, which contradicts the
previous claim. Consequently, we can find a constant
ε′ > 0 such that

inf
G∈Ok(Θ),D̃(G,G0)≤ε′

V (pG, pG0
)/D̃(G,G0) > 0.

Global bound: Thus, to complete the proof, it is
sufficient to demonstrate the global bound

inf
G∈Ok(Θ),D̃(G,G0)>ε′

V (pG, pG0
)/D̃(G,G0) > 0.

If this bound did not hold, there would be a mixing mea-
sure G′ ∈ Ok(Θ) that satisfies pG′(X,Y ) = pG0

(X,Y )
for almost surely (X,Y ), which leads to G′ ≡ G0 by
Proposition 1. As a result, we obtain D̃(G′, G0) = 0,
which contradicts the constraint that D̃(G′, G0) > ε′.
Hence, the proof sketch is completed.
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Figure 1: Log-log scaled plots of the empirical mean of discrepancies D(Ĝn, G0) and D̃(Ĝn, G0) and G0 (orange
lines with error bars) and least-squares fitted linear regression (black dash-dotted lines) when d = 1 and k0 = 3.

4 EXPERIMENTS

In this section, we empirically validate the convergence
rates of parameter estimation in four GMoE models
which satisfy the assumptions of Type I and Type II
settings, respectively, when k0 = 3. Note that for sim-
plicity, we only perform a simulation study to illustrate
the convergence rates of Theorems 1 and 2 for the
GMoE model when X lies in one- and two-dimensional
space with unknown location and scale parameters.
All code to reproduce our simulation study is publicly
available1 and all simulations below were performed in
Python 3.9.13 on a standard Unix machine.

Numerical schemes. In Model I, we set G0 as follows:

3∑

j=1

π0
j δ(c0j ,Γ0

j ,a
0
j ,b

0
j ,ν

0
j )

= 0.3δ(−0.1, 0.04, 0.40, 0.34, 0.01)

+ 0.4δ(0.1, 0.02,−0.71,−0.33, 0.03) + 0.3δ(0.5, 0.01, 0, 0.2, 0.02).

For Model II, we consider the same setting as in Model
I but with c01 = 0 and b01 = 0.3. To demonstrate the
claim that the empirical convergence rates of parameter
estimation under the Type I (Model III) and Type II
(Model IV) settings also hold in higher dimensions, we

1https://github.com/Trung-TinNGUYEN/CRPE-GMoE

conduct a numerical simulation for d = 2 and k0 = 3.
In Model III, we set G0 as
3∑

j=1

π0
j δ(c0j ,Γ0

j ,a
0
j ,b

0
j ,ν

0
j )

= 0.3δ(−0.1·1d,0.04·Id,0.4·1d,0.34,0.01)

+ 0.4δ(0.1·1d,0.02·Id,−0.71·1d,−0.33,0.03)

+ 0.3δ(0.5·1d,0.01·Id,0d,0.2,0.02),

where 1d = (1, 1), 0d = (0, 0) and Id is the identity
matrix of size d. In Model IV, we consider the same
setting of G0 as in Model III but with c01 = 0d and
b01 = 0.3.

Numerical details. In accordance with the hierar-
chical GMoE setting of (2), we generate 20 samples
(Xi, Yi)i∈[n] of size n for each setting, given 100 different
choices of sample size n between 102 and 105. Then, we
compute the MLE Ĝn w.r.t. a number of components k
for each sample. For both of these settings, we choose
k ∈ {k0 + 1, k0 + 2} with corresponding r, r̃ ∈ {4, 6}
using Lemmas 1 and 2. Here we implement the MLE
using the EM algorithm for GMoE. This is a simplifi-
cation of a general hybrid GMoE-EM from (Deleforge
et al., 2015, Section 5). We choose the convergence
criteria ϵ = 10−5 and 2000 maximum EM iterations.
Our goal is to illustrate the theoretical properties of the
estimator Ĝn. Therefore, we have initialized the EM al-

https://github.com/Trung-TinNGUYEN/CRPE-GMoE
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(c) Model IV, k = 4
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Figure 2: Log-log scaled plots of the empirical mean of discrepancies D(Ĝn, G0) and D̃(Ĝn, G0) (orange lines
with error bars) and least-squares fitted linear regression (black dash-dotted lines) when d = 2 and k0 = 3.

gorithm in a favourable way. More specifically, we first
randomly partitioned the set {1, . . . , k} into k0 index
sets J1, . . . , Jk0

, each containing at least one point, for
any given k and k0 and for each replication. Finally, we
sampled c0j (resp. Γ0

j , a
0
j , b

0
j , ν

0
j ) from a unique Gaussian

distribution centered on c0t (resp. Γ0
t , a

0
t , b

0
t , ν

0
t ), with

vanishing covariance so that j ∈ Jt.

Empirical convergence rates. The empirical mean
of discrepancies D and D̃ between Ĝn and G0, and the
choice of k for Models I-II are reported in Figure 1.
It can be observed from Figure 1 that those average
discrepancies vanish at a rate of order O(n−1/2), which
matches the results of Theorems 1 and 2, where the
only theoretical assumption that can be violated is the
global convergence of the MLE. Note that the use of the
joint density function allows the GMoE to be linked to
a hierarchical mixture model, which guarantees global
convergence for parameter estimation for arbitrary di-
mensions, see recent advances, e.g., (Kwon et al., 2021;
Kwon and Caramanis, 2020; Kwon et al., 2019). We
can therefore guarantee that the rates in Theorems 1
and 2 also hold in higher dimensions. Indeed, it can be
observed from Figure 2 that the average discrepancies
D(Ĝn, G0) and D̃(Ĝn, G0) also approach zero at the
rate of order O(n−1/2) for d = 2, confirming the em-
pirical behaviour of Theorems 1 and 2 under the high
dimensional settings.

5 CONCLUSION

In this paper, we conduct a convergence analysis for
density estimation and parameter estimation in the
Gaussian-gated mixture of experts (GMoE) under two
complement settings of location parameters of the gat-
ing function. We demonstrate that the density estima-
tion rate remains parametric on the sample size under
both settings. On the other hand, due to several chal-
lenges induced by the interior and exterior interactions
among parameters arising in those settings, we have to
solve two complex systems of polynomial equations and
then propose two corresponding novel Voronoi loss func-
tions among parameters. We show that these Voronoi
losses are able to capture the dependence of parameter
estimation rates on the number of fitted components,
which are more accurate than those characterized by
the generalized Wasserstein loss used in previous works.
We believe that our current techniques can be extended
to the GMoE model with general experts in Ho et al.
(2022) and to the hierarchical MoE for exponential
family models in Jiang and Tanner (1999a). In addi-
tion, understanding the convergence behavior of least
squares estimation under the deterministic MoE model
(Nguyen et al., 2024c) with Gaussian gate is also a
potential direction. However, we leave such non-trivial
developments for future work.
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Supplementary Materials for
“Towards Convergence Rates for Parameter Estimation in

Gaussian-gated Mixture of Experts”

In this supplementary material, we first include an illustration of Voronoi cells in Appendix A to help the readers
understand this concept better. Then, we provide the proof of Theorem 1 and Theorem 2 in Appendix B. Finally,
proofs for the remaining results are presented in Appendix C.

A ILLUSTRATION OF VORONOI CELLS

In this appendix, we aim to illustrate the Voronoi cells defined in Section 2. For that purpose, let us recall the
definition of that concept here. In particular, for any mixing measure G ∈ Ok(Θ), the Voronoi cell Aj := Aj(G)
generated by a true component θ0j := (c0j ,Γ

0
j , a

0
j , b

0
j , ν

0
j ) of G0 is given by

Aj := {i ∈ [k] : ∥θi − θ0j∥ ≤ ∥θi − θ0ℓ∥, ∀ℓ ̸= j}, (14)

for any j ∈ [k0], where θi := (ci,Γi, ai, bi, νi) is a component of G. Now, we provide an illustration of the above
Voronoi cells under the setting when k0 = 6 and k = 10 in Figure 3.

 

1

2

6

3

5

4

Figure 3: Illustration of Voronoi cells defined in equation (14) when k0 = 6 and k = 10. In this figure, red
squares represent for true components (i.e. components of G0), while blue circles indicate fitted components (i.e.
components of G). By definition, each Voronoi cell is generated by one true component, and its cardinality is
exactly the number of corresponding fitted components. For example, the square in cell 4 is approximated by two
rounds, which means that the cardinality of cell 4 is two.

Connection to Theorem 1. Under the Type I setting, parameters of the true components (c0j ,Γ
0
j , a

0
j , b

0
j , ν

0
j )

in cells 3, 5 and 6, which are fitted by one component, enjoy a parametric estimation rate of order O(n−1/2).
Next, the rates for estimating parameters c01, b01 of the true component in cell 1, which are approximated by three
components, stand at order O(n−1/2r̄(3)) = O(n−1/12), while those for Γ0

1, ν
0
1 are of order O(n−1/r̄(3)) = O(n−1/6).

Meanwhile, the estimation rate for a01 is independent of the cardinality of its corresponding Voronoi cell and
remains stable at order O(n−1/4).

Connection to Theorem 2. Parameter estimation rates under the Type II setting share the same behavior as
those in Theorem 1 except for the rates of estimating a0j . More specifically, if c01 = 0, the estimation rate for a01
now depends on the cardinality of cell 1, and experiences a drop to order O(n−1/r̃(3)) = O(n−1/6).
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B PROOF OF MAIN RESULTS

Before going to the proofs for Theorems 1 and 2 in Appendices B.1 and B.2, respectively, let us define some
necessary notations used throughout this appendix. Firstly, for any vector v ∈ Rd, either vi or v(i) represents the
i-th entry of v, while the sum of its entries is abbreviated as |v| := v1 + v2 + . . .+ vd. Next, for any vector p ∈ Nd,
we denote vp := vp1

1 v
p2

2 . . . vpd

d and p! := p1!p2! . . . pd!. Additionally, we sometimes use the notation h1 and h2 to
denote the expert functions considered in this work. In particular, we define h1(X, a, b) = a⊤X + b as the mean
expert function for any X ∈ X ⊂ Rd, a ∈ Rd and b ∈ R, whereas h2(X, ν) = ν stands for the variance expert
function for any ν ∈ R+. Finally, since parameters in the proofs for Theorem 1 and Theorem 2 belong to various
high-dimensional spaces, we summarize their domains in Table 2 and Table 3, respectively, to help readers keep
track of them.

c Γ a b ν τ1 τ2 α1 α2 α3 α4 α5 ℓ1 ℓ2

Thm 1 Rd S+
d Rd R R+ Nd N Nd Nd×d Nd N Nd N/A N/A

Table 2: Domains for parameters used in the proof of Theorem 1

c Γ a b ν τ1 τ2 α1 α2 α3 α4 α5 ℓ1 ℓ2

Thm 2 R R+ R R R+ N N N N N N N N N

Table 3: Domains for parameters used in the proof of Theorem 2

B.1 Proof of Theorem 1

Our goal is to show the following inequality:

inf
G∈Ok,β(Θ)

V (pG, pG0
)/D(G,G0) > 0, (15)

which implies the desired Total Variation lower bound V (pĜn
, pG0) ≳ D(Ĝn, G0). Given this bound, the joint

density estimation rate in Proposition 2 then leads to the convergence rate of the MLE Ĝn to G0 under the loss
D as follows:

P(D(Ĝn, G0) > C3

√
log(n)/n) ≲ n−C4 ,

for some universal constants C3 and C4. Note that the infimum in equation (15) is subject to all the mixing measures
in the set Ok,β(Θ) := {G =

∑k′

i=1 πiδ(ci,Γi,ai,bi,νi) : 1 ≤ k′ ≤ k,
∑k

i=1 πi = 1, πi ≥ β, (ci,Γi, ai, bi, νi) ∈ Θ}, for
some positive constant β. Now, we divide the proof of inequality (15) into two parts which we refer to as local
bound and global bound.

Local bound: Firstly, we will prove the local version of inequality (15):

lim
ε→0

inf
G∈Ok,β(Θ)

D(G,G0)≤ε

V (pG, pG0)/D(G,G0) > 0. (16)

Assume by contrary that the claim in equation (16) does not hold. Then, there exists a sequence of mixing
measures Gn =

∑kn

i=1 π
n
i δ(cni ,Γn

i ,a
n
i ,b

n
i ,ν

n
i ) ∈ Ok,β(Θ) such that D(Gn, G0) → 0 and V (pGn

, pG0
)/D(Gn, G0) → 0

as n → ∞. Moreover, since kn ≤ k for all n ∈ N, we can replace (Gn) by its subsequence that admits a fixed
number of atoms kn = k′ ≤ k. Additionally, Aj = An

j does not change with n for all j ∈ [k0].
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Step 1 - Taylor expansion for density decomposition: Now, we consider the quantity

pGn
(X,Y )− pG0

(X,Y )

=
∑

j:|Aj |>1

∑

i∈Aj

πn
i [fL(X|cni ,Γn

i )fD(Y |(ani )⊤X + bni , ν
n
i )− fL(X|c0j ,Γ0

j )fD(Y |(a0j )⊤X + b0j , ν
0
j )]

+
∑

j:|Aj |=1

∑

i∈Aj

πn
i [fL(X|cni ,Γn

i )fD(Y |(ani )⊤X + bni , ν
n
i )− fL(X|c0j ,Γ0

j )fD(Y |(a0j )⊤X + b0j , ν
0
j )]

+

k0∑

j=1


∑

i∈Aj

πn
i − π0

j


 fL(X|c0j ,Γ0

j )fD(Y |(a0j )⊤X + b0j , ν
0
j )

: = An +Bn + En.

For each j ∈ [k0] : |Aj | > 1, we perform a Taylor expansion up to the r̄(|Aj |)-th order, and then rewrite An with
a note that α = (α1, α2, α3, α4, α5) ∈ Nd × Nd×d × Nd × N× N as follows:

An =
∑

j:|Aj |>1

∑

i∈Aj

πn
i

r̄(|Aj |)∑

|α|=1

1

α!
(∆cnij)

α1(∆Γn
ij)

α2(∆anij)
α3(∆bnij)

α4(∆νnij)
α5

× ∂|α1|+|α2|fL
∂cα1∂Γα2

(X|c0j ,Γ0
j ) ·

∂|α3|+α4+α5fD
∂aα3∂bα4∂να5

(Y |(a0j )⊤X + b0j , ν
0
j ) +R1(X,Y )

where R1(X,Y ) is a remainder term such that R1(X,Y )/D(Gn, G0) → 0 as n→ ∞, which is due to the uniform
Holder continuity of a location-scale Gaussian family. Since fL d-dimensional Gaussian density functions, we
have the following partial differential equation (PDE):

∂|α1|+|α2|fL
∂cα1∂Γα2

(X|c0j ,Γ0
j ) =

1

2|α2|
· ∂

|α1|+2|α2|fL
∂cτ(α1,α2)

(X|c0j ,Γ0
j ),

where τ(α1, α2) :=
(
α
(v)
1 +

∑d
u=1(α

(uv)
2 + α

(vu)
2 )

)d

v=1
=

(
α
(v)
1 + 2

∑d
u=1 α

(uv)
2

)d

v=1
∈ Nd. Similarly, as fL is an

univariate Gaussian density function, then

∂|α3|+α4+α5fD
∂aα3∂bα4∂να5

(Y |(a0j )⊤X + b0j , ν
0
j ) =

Xα3

2α5
· ∂

|α3|+α4+2α5fD

∂h
|α3|+α4+2α5

1

(Y |(a0j )⊤X + b0j , ν
0
j ),

where h1(X, a, b) = a⊤X + b is the mean expert function. Combine these results together, An can be represented
as follows:

An =
∑

j:|Aj |>1

∑

i∈Aj

πn
i

r̄(|Aj |)∑

|α|=1

1

α!
(∆cnij)

α1(∆Γn
ij)

α2(∆anij)
α3(∆bnij)

α4(∆νnij)
α5

× 1

2|α2|
∂|α1|+2|α2|fL
∂cτ(α1,α2)

(X|c0j ,Γ0
j ) ·

Xα3

2α5

∂|α3|+α4+2α5fD

∂h
|α3|+α4+2α5

1

(Y |(a0j )⊤X + b0j , ν
0
j ) +R1(X,Y ),

Let τ1 = τ(α1, α2) ∈ Nd and τ2 = α4 + 2α5 ∈ N, we can rewrite An as

An =
∑

j:|Aj |>1

r̄(|Aj |)∑

|α3|=0

2(r̄(|Aj |)−|α3|)∑

|τ1|+τ2=0

∑

τ(α1,α2)=τ1
α4+2α5=τ2

∑

i∈Aj

πn
i

2|α2|+α5α!
(∆cnij)

α1(∆Γn
ij)

α2(∆anij)
α3

× (∆bnij)
α4(∆νnij)

α5 ·Xα3
∂|τ1|fL
∂cτ1

(X|c0j ,Γ0
j )
∂|α3|+τ2fD

∂h
|α3|+τ2
1

(Y |(a0j )⊤X + b0j , ν
0
j ) +R1(X,Y ),
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Analogously, for each j ∈ [k0] : |Aj | = 1, by means of Taylor expansion up to the first order, Bn is rewritten as
follows:

Bn =
∑

j:|Aj |=1

1∑

|α3|=0

2(1−|α3|)∑

|τ1|+τ2=0

∑

τ(α1,α2)=τ1
α4+2α5=τ2

∑

i∈Aj

πn
i

2|α2|+α5α!
(∆cnij)

α1(∆Γn
ij)

α2(∆anij)
α3

× (∆bnij)
α4(∆νnij)

α5 ·Xα3
∂|τ1|fL
∂cτ1

(X|c0j ,Γ0
j )
∂|α3|+τ2fD

∂h
|α3|+τ2
1

(Y |(a0j )⊤X + b0j , ν
0
j ) +R2(X,Y ), (17)

where R2(X,Y ) is a remainder such that R2(X,Y )/D(Gn, G0) → 0 as n→ ∞.

It is worth noting that An, Bn and En can be treated as linear combinations of elements of the following set:

F :=
{
Xα3

∂|τ1|fL
∂cτ1

(X|c0j ,Γ0
j )
∂|α3|+τ2fD

∂h
|α3|+τ2
1

(Y |(a0j )⊤X + b0j , ν
0
j ) : j ∈ [k0], 0 ≤ |α3| ≤ r̄(|Aj |),

0 ≤ |τ1|+ τ2 ≤ 2(r̄(|Aj |)− |α3|)
}
. (18)

Let Tn
α3,τ1,τ2(j) be the coefficients of

Xα3
∂|τ1|fL
∂cτ1

(X|c0j ,Γ0
j )
∂|α3|+τ2fD

∂h
|α3|+τ2
1

(Y |(a0j )⊤X + b0j , ν
0
j )

in the representations of An, Bn and En.

Step 2 - Proof of non-vanishing coefficients by contradiction: Assume that all the coefficients in the
representations of An/D(Gn, G0), Bn/D(Gn, G0) and En/D(Gn, G0) go to 0 as n → ∞. Then, by taking the
summation of the absolute values of coefficients in En/D(Gn, G0), which are |T0d,0d,0(j)|/D(Gn, G0) for all
j ∈ [k0], we get that

1

D(Gn, G0)
·

k0∑

j=1

∣∣∣∣∣∣
∑

i∈Aj

πn
i − π0

j

∣∣∣∣∣∣
→ 0. (19)

Subsequently, from the formulation of Bn in equation (17), we have

1

D(Gn, G0)
·

∑

j:|Aj |=1

∑

i∈Aj

πn
i (∥∆cnij∥1 + ∥∆Γn

ij∥1 + ∥∆anij∥1 + |∆bnij |+ |∆νnij |) → 0.

It follows from the topological equivalence of 1-norm and 2-norm that

1

D(Gn, G0)
·

∑

j:|Aj |=1

∑

i∈Aj

πn
i (∥∆cnij∥+ ∥∆Γn

ij∥+ ∥∆anij∥+ |∆bnij |+ |∆νnij |) → 0. (20)

Next, from the formulation of An, by combining all terms of the form |Tα3,0d,0(j)|/D(Gn, G0) where j ∈ [k0] :
|Aj | > 1 and α3 ∈ {2e1, 2e2, . . . , 2ed} with eu := (0, . . . , 0, 1︸︷︷︸

u-th

, 0, . . . , 0) being a one-hot vector in Rd for all

u ∈ [d], we obtain that

1

D(Gn, G0)
·

∑

j:|Aj |>1

∑

i∈Aj

πn
i ∥∆anij∥2 → 0. (21)

Putting the results in equations (19), (20) and (21) together with the formulation of D(Gn, G0) in equation (10),
we deduce that

∑
j:|Aj |>1

∑
i∈Aj

πn
i (∥∆cnij∥r̄(|Aj |) + ∥∆Γn

ij∥r̄(|Aj |)/2 + |∆bnij |r̄(|Aj |) + |∆νnij |r̄(|Aj |)/2)

D(Gn, G0)
→ 1.
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As a result, we can find an index j∗ ∈ [k0] such that |Aj | > 1 and
∑

i∈Aj∗
πn
i (∥∆cnij∗∥r̄(Aj∗ ) + ∥∆Γn

ij∗∥r̄(Aj∗ )/2 + |∆bnij∗ |r̄(Aj∗ ) + |∆νnij∗ |r̄(Aj∗ )/2)

D(Gn, G0)
̸→ 0. (22)

Without loss of generality (WLOG), we may assume that j∗ = 1. Now, we divide our arguments into two main
cases as follows:

Case 1:
1

D(Gn, G0)
·∑i∈A1

πn
i (∥∆cni1∥r̄(|A1|) + ∥∆Γn

i1∥r̄(|A1|)/2) ̸→ 0.

Here, we continue to split this case into two possibilities:

Case 1.1:
1

D(Gn, G0)
·∑i∈A1

πn
i

(
∥∆cni1∥r̄(|A1|) + ∥((∆Γn

i1)
(uu))du=1∥r̄(|A1|)/2

)
̸→ 0.

In this case, it must hold for some index u∗ ∈ [d] that

1

D(Gn, G0)
·
∑

i∈A1

πn
i

(
|(∆cni1)(u

∗)|r̄(|A1|) + |(∆Γn
i1)

(u∗u∗)|r̄(|A1|)/2
)
̸→ 0. (23)

WLOG, we assume that u∗ = 1 throughout case 1.1. In the representation of An, we consider the following
coefficient:

T0d,τ1,0(1) =
∑

i∈A1

∑

α1,α2:
τ(α1,α2)=τ1

πn
i

2|α2|α1!α2!
(∆cni1)

α1(∆Γn
i1)

α2 , (24)

where τ1 ∈ Nd such that τ (u)1 = 0 for all u = 2, . . . , d. Thus, the constraint τ(α1, α2) = τ1 holds if and only if
α
(u)
1 = α

(u1)
2 = α

(1v)
2 = α

(uv)
2 = 0 for all u, v = 2, . . . , d. Therefore, by assumption, we have

T0d,τ1,0(1)

D(Gn, G0)
=

1

D(Gn, G0)
·
∑

i∈A1

∑

α
(1)
1 +2α

(11)
2 =τ

(1)
1

πn
i

2α
(11)
2 α

(1)
1 ! α

(11)
2 !

(∆cni1)
α

(1)
1 (∆Γn

i1)
α

(11)
2 → 0. (25)

Collect results in equations (23) and (25), we obtain that

∑
i∈A1

∑
α

(1)
1 +2α

(11)
2 =τ

(1)
1

πn
i

2α
(11)
2 α

(1)
1 ! α

(11)
2 !

(∆cni1)
α

(1)
1 (∆Γn

i1)
α

(11)
2

∑
i∈A1

πn
i

(
|(∆cni1)(1)|r̄(|A1|) + |(∆Γn

i1)
(11)|r̄(|A1|)/2

) → 0. (26)

Next, we define Mn = max{|(∆cni1)(1)|, |(∆Γn
i1)

(11)|1/2 : i ∈ A1} and πn = maxi∈A1
πn
i . For any i ∈ A1, it is clear

that the sequence of positive real numbers (πn
i /πn) is bounded, therefore, we can replace it by its subsequence

that admits a non-negative limit denoted by p2i = limn→∞ πn
i /πn. In addition, let us denote (∆cni1)

(1)/Mn → ηi

and (∆Γn
i1)

(11)/2M
2

n → γi. From the formulation of Ok,β(Θ), since πn
i ≥ β, the real numbers pi will not vanish,

and at least one of them is equal to 1. Analogously, at least one of the ηi and γi is equal to either 1 or −1.

Note that
∑

i∈A1
πn
i

(
|(∆cni1)(1)|r̄(|A1|) + |(∆Γn

i1)
(11)|r̄(|A1|)/2

)
/(πnM

τ
(1)
1

n ) ̸→ 0 for all τ (1)1 ∈ [r̄(|A1|)]. Thus, we

are able to divide both the numerator and the denominator in equation (26) by πnM
τ
(1)
1

n and let n→ ∞ in order
to achieve the following system of polynomial equations:

∑

i∈A1

∑

α
(1)
1 +2α

(11)
2 =τ

(1)
1

p2i η
α

(1)
1

i γ
α

(11)
2

i

α
(1)
1 ! α

(11)
2 !

= 0, τ
(1)
1 ∈ [r̄(|A1|)].

However, by the definition of r̄(|A1|), the above system cannot admit any non-trivial solutions, which is a
contradiction. Thus, case 1.1 cannot happen.

Case 1.2:
1

D(Gn, G0)
·∑i∈A1

πn
i

(
∥((∆Γn

i1)
(uv))1≤u̸=v≤d∥r̄(|A1|)/2

)
̸→ 0.
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In this case, it must hold for some indices u∗ ̸= v∗ that

1

D(Gn, G0)
·
∑

i∈A1

πn
i |(∆Γn

i1)
(u∗v∗)|r̄(|A1|)/2 ̸→ 0.

Recall that |A1| > 1, or equivalently, |A1| ≥ 2, we have that r̄(|A1|) ≥ 4. Therefore, the above equation leads to

1

D(Gn, G0)
·
∑

i∈A1

πn
i |(∆Γn

i1)
(u∗v∗)|2 ̸→ 0. (27)

WLOG, we assume that u∗ = 1 and v∗ = 2 throughout case 1.2. We continue to consider the coefficient T0d,τ1,0

in equation (24) with τ1 = (2, 2, 0, . . . , 0) ∈ Nd. By assumption, we have T0d,τ1,0/D(Gn, G0) → 0, which together
with equation (27) imply that

∑
i∈A1

∑
α1,α2:

τ(α1,α2)=τ1

πn
i

2|α2|α1!α2!
(∆cni1)

α1(∆Γn
i1)

α2

∑
i∈A1

πn
i |(∆Γn

i1)
(12)|2 → 0. (28)

Similarly, by combining the fact that case 1.1 does not hold and the result in equation (27), we get

∑
i∈A1

πn
i

(
∥∆cni1∥r̄(|A1|) + ∥((∆Γn

i1)
(uu))du=1∥r̄(|A1|)/2

)

∑
i∈A1

πn
i |(∆Γn

i1)
(12)|2 → 0.

Since r̄(|A1|) ≥ 4, the above limit indicates that any terms in equation (28) with α
(u)
1 > 0 and α

(uu)
2 > 0 for

u ∈ {1, 2} will vanish. Consequently, we deduce from equation (28) that

1 =

∑
i∈A1

πn
i |(∆Γn

i1)
(12)|2∑

i∈A1
πn
i |(∆Γn

i1)
(12)|2 → 0,

which is a contradiction. Thus, case 1.2 cannot happen.

Case 2:
1

D(Gn, G0)
·∑i∈A1

πn
i (|∆bni1|r̄(|A1|) + |∆νni1|r̄(|A1|)/2) ̸→ 0.

In this case, we consider the coefficient T0d,0d,0(1) in the formulation of An. By assumption,

T0d,0d,0(1)

D(Gn, G0)
=

1

D(Gn, G0)
·
∑

i∈A1

πn
i

∑

α4,α5:
α4+2α5=τ2

(∆bni1)
α4(∆νni1)

α5

2α5α4!α5!
→ 0.

Consequently, we obtain that

∑
i∈A1

πn
i

∑
α4,α5:

α4+2α5=τ2

(∆bni1)
α4(∆νni1)

α5

2α5α4!α5!∑
i∈A1

πn
i (|∆bni1|r̄(|A1|) + |∆νni1|r̄(|A1|)/2)

→ 0.

By employing the same arguments for showing that the equation (26) does not hold in case 1.1, we obtain that
the above limit does not hold, either. Thus, case 2 cannot happen.

From the above results of the two main cases, we conclude that not all the coefficients in the representations of
An/D(Gn, G0), Bn/D(Gn, G0) and En/D(Gn, G0) vanish as n→ ∞.

Step 3 - Application of Fatou’s lemma: Subsequently, we denote by mn the maximum of the absolute values
of the coefficients in the representations of An/D(Gn, G0), Bn/D(Gn, G0) and En/D(Gn, G0), that is,

mn := max
(α3,τ1,τ2,j)∈S

|Tn
α3,τ1,τ2(j)|/D(Gn, G0),

where the constraint set S is defined as

S :=
{
(α3, τ1, τ2, j) ∈ Nd × Nd × N× [k0] : 0 ≤ |α3| ≤ r̄(|Aj |), 0 ≤ |τ1|, τ2 ≤ 2(r̄(|Aj |)− |α3|)

}
.
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Additionally, we define Tn
α3,τ1,τ2(j)/mn → ξα3,τ1,τ2(j) as n → ∞ for all (α3, τ1, τ2, j) ∈ S. Since not all the

coefficients in the representations of An/D(Gn, G0), Bn/D(Gn, G0) and En/D(Gn, G0) vanish as n → ∞, at
least one among ξα3,τ1,τ2(j) is different from zero and mn ̸→ 0. Then, by applying the Fatou’s lemma, we get that

0 = lim
n→∞

1

mn
· 2V (pGn

, pG)

D(Gn, G0)
≥

∫
lim inf
n→∞

1

mn
· |pGn

(X,Y )− pG(X,Y )|
D(Gn, G0)

d(X,Y ) ≥ 0.

Moreover, by definition, we have

1

mn
·pGn(X,Y )− pG(X,Y )

D(Gn, G0)

→
∑

(α3,τ1,τ2,j)∈S

ξα3,τ1,τ2(j)X
α3
∂|τ1|fL
∂cτ1

(X|c0j ,Γ0
j )
∂|α3|+τ2fD

∂h
|α3|+τ2
1

(Y |(a0j )⊤X + b0j , ν
0
j ).

As a consequence, we achieve that

∑

(α3,τ1,τ2,j)∈S

ξα3,τ1,τ2(j)X
α3
∂|τ1|fL
∂cτ1

(X|c0j ,Γ0
j )
∂|α3|+τ2fD

∂h
|α3|+τ2
1

(Y |(a0j )⊤X + b0j , ν
0
j ) = 0,

for almost surely (X,Y ). Since elements of the set F defined in equation (18) are linearly independent (proof
of this claim is deferred to the end of this proof), the above equation implies that ξα3,τ1,τ2(j) = 0 for all
(α3, τ1, τ2, j) ∈ S, which contradicts the fact that at least one among ξα3,τ1,τ2(j) is different from zero. Hence, we
reach the conclusion in equation (16), which indicates that there exists some ε0 > 0 such that

inf
G∈Ok,β(Θ)

D(G,G0)≤ε0

V (pG, pG0
)/D(G,G0) > 0.

Global bound: Given the above result, in order to achieve the inequality in equation (15), we only need to
prove its following global version:

inf
G∈Ok,β(Θ)

D(G,G0)>ε0

V (pG, pG0
)/D(G,G0) > 0.

Assume by contrary that the above claim is not true. Then, there exists a sequence G′
n ∈ Ok,β(Θ) such that

V (pG′
n
, pG0)/D(G′

n, G0) → 0 and D(G′
n, G0) > ε0 for all n ∈ N. Since the set Θ is compact, we can replace

G′
n by its subsequence that converges to some mixing measure G′ ∈ Ok,β(Θ). Consequently, we deduce that

D(G′, G0) = limn→∞D(G′
n, G0) ≥ ε0. This result together with the fact that V (pG′

n
, pG0

)/D(G′
n, G0) → 0 lead

to the limit V (pG′
n
, pG0

) → 0 as n→ ∞. Again, by applying the Fatou’s lemma, we obtain that

0 = lim
n→∞

2V (pG′
n
, pG0

) ≥
∫

lim inf
n→∞

|pG′
n
(X,Y )− pG0

(X,Y )|d(X,Y )

=

∫
|pG′(X,Y )− pG0

(X,Y )|d(X,Y ) ≥ 0.

As a consequence, we have that pG′(X,Y ) = pG0
(X,Y ) for almost surely (X,Y ). Due to the identifiability of the

model, this equality leads to G′ ≡ G0, which contradicts the bound D(G′, G0) ≥ ε0 > 0. Hence, we achieve the
conclusion in equation (15).

Linear independence of elements in F : For completion, we will demonstrate elements of the set F defined
in equation (18) are linearly independent by definition. In particular, assume that there exist real numbers
ξα3,τ1,τ2(j), where (α3, τ1, τ2, j) ∈ S, such that the following equation holds for almost surely (X,Y ):

∑

(α3,τ1,τ2,j)∈S

ξα3,τ1,τ2(j)X
α3
∂|τ1|fL
∂cτ1

(X|c0j ,Γ0
j )
∂|α3|+τ2fD

∂h
|α3|+τ2
1

(Y |(a0j )⊤X + b0j , ν
0
j ) = 0.
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Now, we rewrite the above equation as follows:

k0∑

j=1

2r̄(|Aj |)∑

ω=0

( ∑

|α3|+τ2=ω

2(r̄(|Aj |)−α3)−τ2∑

|τ1|=0

ξα3,τ1,τ2(j)X
α3 · ∂

|τ1|fL
∂cτ1

(X|c0j ,Γ0
j )
)

× ∂ωfD
∂hω1

(Y |(a0j )⊤X + b0j , ν
0
j ) = 0, (29)

for almost surely (X,Y ). As (a0j , b
0
j , ν

0
j ) for j ∈ [k0] are k0 distinct tuples, we deduce that ((a0j )

⊤X + b0j , ν
0
j ) for

j ∈ [k0] are also k0 distinct tuples for almost surelyX. Thus, for almost surelyX, one has
∂ωfD
∂hω1

(Y |(a0j )⊤X+b0j , ν
0
j )

for j ∈ [k0] and 0 ≤ ω ≤ 2r̄(|Aj |) are linearly independent with respect to Y . Given that result, the equation (29)
indicates that for almost surely X,

∑

|α3|+τ2=ω

2(r̄(|Aj |)−ω)∑

|τ1|=0

ξα3,τ1,τ2(j)X
α3 · ∂

|τ1|fL
∂cτ1

(X|c0j ,Γ0
j ) = 0,

for all j ∈ [k0] and 0 ≤ ω ≤ 2r̄(|Aj |). Note that for each j ∈ [k0] and 0 ≤ ω ≤ r̄(|Aj |), the left hand side of the
above equation can be viewed as a high-dimensional polynomial of two random vectors X and X − c0j (c0j ̸= 0d)
in X , which is a compact set in Rd. As a result, the above equation holds when ξα3,τ1,τ2(j) = 0 for all j ∈ [k0],
0 ≤ ω ≤ 2r̄(|Aj |), |α3| + τ2 = ω and |τ1| ≤ 2(r̄(|Aj |) − α3) − τ2. This is equivalent to ξα3,τ1,τ2(j) = 0 for all
(α3, τ1, τ2, j) ∈ S.

Hence, we conclude that the elements of F are linearly independent.

B.2 Proof of Theorem 2

In order to reach the conclusion in Theorem 2, we only need to demonstrate the following inequality:

inf
G∈Ok,β(Θ)

V (pG, pG0
)/D̃(G,G0) > 0. (30)

In this proof, we will only prove the following local version of inequality (30) while the global version can be
argued in the same fashion as in Appendix (B.1):

lim
ε→0

inf
G∈Ok,β(Θ)

D̃(G,G0)≤ε

V (pG, pG0)/D̃(G,G0) > 0. (31)

Assume that the claim in equation (31) is not true. This indicates that we can find a sequence of mixing measures
Gn =

∑kn

i=1 π
n
i δ(ci,Γn

i ,a
n
i ,b

n
i ,ν

n
i ) ∈ Ok,β(Θ) that satisfies: D̃(Gn, G0) → 0 and V (pGn

, pG0
)/D̃(Gn, G0) → 0 as

n→ ∞. Additionally, since kn ≤ k for all n ∈ N, we are able to replace (Gn) by its subsequence which admits a
fixed number of atoms kn ≤ k′ ≤ k and Aj = An

j is independent of n for all j ∈ [k0].

Step 1 - Taylor expansion for density decomposition: Next, we take into account the quantity

pGn
(X,Y )− pG0

(X,Y )

=
∑

j:|Aj |>1

∑

i∈Aj

πn
i [fL(X|cni ,Γn

i )fD(Y |ani X + bni , ν
n
i )− fL(X|c0j ,Γ0

j )fD(Y |a0jX + b0j , ν
0
j )]

+
∑

j:|Aj |=1

∑

i∈Aj

πn
i [fL(X|cni ,Γn

i )fD(Y |ani X + bni , ν
n
i )− fL(X|c0j ,Γ0

j )fD(Y |a0jX + b0j , ν
0
j )]

+

k0∑

j=1


∑

i∈Aj

πn
i − π0

j


 fL(X|c0j ,Γ0

j )fD(Y |a0jX + b0j , ν
0
j )

:= An +Bn + En.
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For each j ∈ [k0] : |Aj | > 1, by means of Taylor expansion up to the r̃(|Aj |)-th order, An can be rewritten as
follows with a note that α = (α1, α2, α3, α4, α5) ∈ N5:

An =
∑

j:|Aj |>1

∑

i∈Aj

πn
i

r̃(|Aj |)∑

|α|=1

1

α!
(∆cnij)

α1(∆Γn
ij)

α2(∆anij)
α3(∆bnij)

α4(∆νnij)
α5

× ∂α1+α2fL
∂cα1∂Γα2

(X|c0j ,Γ0
j ) ·

∂α3+α4+α5f

∂aα3∂bα4∂να5
(Y |a0jX + b0j , ν

0
j ) +R1(X,Y )

=
∑

j:|Aj |>1

∑

i∈Aj

πn
i

r̃(|Aj |)∑

|α|=1

1

α!
(∆cnij)

α1(∆Γn
ij)

α2(∆anij)
α3(∆bnij)

α4(∆νnij)
α5

× 1

2α2

∂α1+2α2fL
∂cα1+2α2

(X|c0j ,Γ0
j ) ·

Xα3

2α5

∂α3+α4+2α5fD

∂hα3+α4+2α5
1

(Y |a0jX + b0j , ν
0
j ) +R3(X,Y ),

where R3(X,Y ) is Taylor remainder such that R3(X,Y )/D̃(Gn, G0) → 0. Since c0j is equal to zero when j ∈ [k̃]

and different from zero otherwise, the formulation of
∂α1+2α2fL
∂cα1+2α2

(X|c0j ,Γ0
j) will vary when j ∈ [k̃] compared to

k̃ + 1 ≤ j ≤ k0. Thus, we will consider these two cases of j separately.

For j ∈ [k̃], when α1 is an even integer, we have

∂α1+2α2fL
∂cα1+2α2

(X|c0j ,Γ0
j ) =





∑α1/2+α2

w=0 t2w,α1+2α2
X2w, j ∈ [k̃]

∑α1/2+α2

w=0 s2w,α1+2α2
(X − c0j )

2w, k̃ + 1 ≤ j ≤ k0.

On the other hand, when α1 is an odd integer, we get

∂α1+2α2fL
∂cα1+2α2

(X|c0j ,Γ0
j ) =





∑(α1−1)/2+α2

w=0 t2w+1,α1+2α2
X2w+1, j ∈ [k̃]

∑(α1−1)/2+α2

w=0 s2w+1,α1+2α2
(X − c0j )

2w+1, k̃ + 1 ≤ j ≤ k0.

By combining both cases, we rewrite An as follows:

An =
∑

j:|Aj |>1,

j∈[k̃]

∑

i∈Aj

2r̃(|Aj |)∑

ℓ1+ℓ2=1

∑

α∈Iℓ1,ℓ2

πn
i

2α2+α5α!
(∆cnij)

α1(∆Γn
ij)

α2(∆anij)
α3

× (∆bnij)
α4(∆νnij)

α5 tℓ1−α3,α1+2α2
Xℓ1

∂ℓ2fD

∂hℓ21
(Y |a0jX + b0j , ν

0
j )fL(X|c0j ,Γ0

j )

+
∑

j:|Aj |>1

k̃+1≤j≤k0

∑

i∈Aj

r̃(|Aj |)∑

α3=0

2(r̃(|Aj |)−α3)∑

τ1+τ2=0

∑

α1+2α2=τ1
α4+2α5=τ2

πn
i

2α2+α5α!
(∆cnij)

α1(∆Γn
ij)

α2(∆anij)
α3

× (∆bnij)
α4(∆νnij)

α5 ×Xα3
∂τ1fL
∂cτ1

(X|c0j ,Γ0
j )
∂α3+τ2fD

∂hα3+τ2
1

(Y |a0jX + b0j , ν
0
j ) +R3(X,Y ), (32)

where for any 0 ≤ ℓ1 ≤ 2r̄(|Aj |) and 0 ≤ ℓ2 ≤ 2r̄(|Aj |)− ℓ1, we define

Iℓ1,ℓ2 :=
{
α = (αi)

5
i=1 ∈ N5 : α1 + 2α2 + α3 ≥ ℓ1, α3 + α4 + 2α5 = ℓ2,

1 ≤ α1 + α2 + . . .+ α5 ≤ r̃(|Aj |)
}
.

Regarding the formulation of Bn, for each j ∈ [k0] : |Aj | = 1, we perform a Taylor expansion up to the first order
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and obtain that

Bn =
∑

j:|Aj |=1,

j∈[k̃]

∑

i∈Aj

2∑

ℓ1+ℓ2=1

∑

α∈Iℓ1,ℓ2

πn
i

2α2+α5α!
(∆cnij)

α1(∆Γn
ij)

α2(∆anij)
α3

× (∆bnij)
α4(∆νnij)

α5 tℓ1−α3,α1+2α2
Xℓ1

∂ℓ2fD

∂hℓ21
(Y |a0jX + b0j , ν

0
j )fL(X|c0j ,Γ0

j )

+
∑

j:|Aj |=1

k̃+1≤j≤k0

∑

i∈Aj

2∑

α3=0

2(1−α3)∑

τ1+τ2=0

∑

α1,α2:
α1+2α2=τ1

∑

α4,α5:
α4+2α5=τ2

πn
i

2α2+α5α!
(∆cnij)

α1(∆Γn
ij)

α2(∆anij)
α3

× (∆bnij)
α4(∆νnij)

α5 ×Xα3
∂τ1fL
∂cτ1

(X|c0j ,Γ0
j )
∂α3+τ2fD

∂hα3+τ2
1

(Y |a0jX + b0j , ν
0
j ) +R4(X,Y ), (33)

where R4(X,Y ) is a Taylor remainder such that R4(X,Y )/D̃(Gn, G0) → 0 as n→ ∞.

From equations (32) and (33), we can treat An/D̃(Gn, G0), Bn/D̃(Gn, G0) and En/D̃(Gn, G0) as linear combi-
nations of elements of the following set:

H : =
{
Xℓ1

∂ℓ2fD

∂hℓ21
(Y |a0jX + b0j , ν

0
j )fL(X|c0j ,Γ0

j ) : j ∈ [k̃], 0 ≤ ℓ1 + ℓ2 ≤ 2r̃(|Aj |)
}

∪
{
Xα3

∂τ1fL
∂cτ1

(X|c0j ,Γ0
j )
∂α3+τ2fD

∂hα3+τ2
1

(Y |a0jX + b0j , ν
0
j ) : k̃ + 1 ≤ j ≤ k0, 0 ≤ α3 ≤ r̃(|Aj |),

0 ≤ τ1 + τ2 ≤ 2(r̃(|Aj |)− α3)
}
. (34)

For any (j, ℓ1, ℓ2) ∈ Q := {(j, ℓ1, ℓ2) ∈ N3 : j ∈ [k̃], 0 ≤ ℓ1 + ℓ2 ≤ 2r̃(|Aj |)}, let Qn
ℓ1,ℓ2

(j) be the coefficient of

Xℓ1
∂ℓ2fD

∂hℓ21
(Y |a0jX + b0j , ν

0
j )fL(X|c0j ,Γ0

j )

in the representations of An, Bn and En. It follows from equations (32) and (33) that Qn
ℓ1,ℓ2

(j) is given by

Qn
ℓ1,ℓ2(j) =





∑
α∈Iℓ1,ℓ2

∑
i∈Aj

πn
i · tℓ1−α3,α1+2α2

2α2+α5α!
(∆cnij)

α1(∆Γn
ij)

α2(∆anij)
α3(∆bnij)

α4(∆νnij)
α5

(ℓ1, ℓ2) ̸= (0, 0),

∑
i∈Aj

πn
i − π0

j , (ℓ1, ℓ2) = (0, 0).

Meanwhile, we denote by Tn
α3,τ1,τ2(j) the coefficient of

Xα3
∂τ1fL
∂cτ1

(X|c0j ,Γ0
j )
∂α3+τ2fD

∂hα3+τ2
1

(Y |a0jX + b0j , ν
0
j ),

for all (j, α3, τ1, τ2) ∈ T := {(j, α3, τ1, τ2) ∈ N3 : k̃+1 ≤ j ≤ k0, 0 ≤ α3 ≤ r̃(|Aj |), 0 ≤ τ1+ τ2 ≤ 2(r̃(|Aj |)−α3)}.
Thus, Tn

α3,τ1,τ2(j) is represented as

Tn
α3,τ1,τ2(j) =





∑
α1+2α2=τ1,
α4+2α5=τ2

∑
i∈Aj

πn
i

2α2+α5α!
(∆cnij)

α1(∆Γn
ij)

α2(∆anij)
α3(∆bnij)

α4(∆νnij)
α5

(α3, τ1, τ2) ̸= (0, 0, 0),

∑
i∈Aj

πn
i − π0

j , (α3, τ1, τ2) = (0, 0, 0).

Step 2 - Proof of non-vanishing coefficients by contradiction: Assume by contrary that all the coefficients
of elements in the set H in the representations of An/D̃(Gn, G0), Bn/D̃(Gn, G0) and En/D̃(Gn, G0) vanish when
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n tends to infinity. It is worth noting that for (ℓ1, ℓ2) ̸= (0, 0), we have Iℓ1+1,ℓ2 ⊆ Iℓ1,ℓ2 and

Jℓ1,ℓ2 := Iℓ1,ℓ2 \ Iℓ1+1,ℓ2 =
{
(α1, . . . , α5) ∈ N5 : α1 + 2α2 + α3 = ℓ1, α3 + α4 + 2α5 = ℓ2,

1 ≤ α1 + α2 + . . .+ α5 ≤ r̃(|Aj |)
}
.

Since Qn
ℓ1,ℓ2

(j)/D̃(Gn, G0) → 0 for all tuples (j, ℓ1, ℓ2) ∈ Q, we achieve that

Sn
ℓ1,ℓ2

(j)

D̃(Gn, G0)
:=

Qn
ℓ1,ℓ2

(j)−Qℓ1+1,ℓ2(j)

D̃(Gn, G0)

=

∑
α∈Jℓ1,ℓ2

∑
i∈Aj

πn
i · tℓ1−α3,α1+2α2

2α2+α5α!
(∆cnij)

α1(∆Γn
ij)

α2(∆anij)
α3(∆bnij)

α4(∆νnij)
α5

D̃(Gn, G0)

=

∑
α∈Jℓ1,ℓ2

∑
i∈Aj

πn
i

(Γ0
j )

α1+2α2 2α2+α5α!
(∆cnij)

α1(∆Γn
ij)

α2(∆anij)
α3(∆bnij)

α4(∆νnij)
α5

D̃(Gn, G0)

→ 0,

where the third inequality follows from the fact that tℓ1−α3,α1+2α2
= tα1+2α2,α1+2α2

= (Γ0
j )

−(α1+2α2). Additionally,
we also let S0,0(j) := Q0,0(j) for all j ∈ [k̃].

By assumption, |S0,0(j)|/D̃(Gn, G0) → 0 for all j ∈ [k̃] and |T0,0,0(j)|/D̃(Gn, G0) → 0 for all k̃ + 1 ≤ j ≤ k0 as
n→ ∞. By taking the summation of all such terms, we get that

1

D̃(Gn, G0)
·

k0∑

j=1

∣∣∣∣∣∣
∑

i∈Aj

πn
i − π0

j

∣∣∣∣∣∣
→ 0. (35)

Next, we consider indices j ∈ [k0] : |Aj | = 1, i.e. those in the formulation of Bn. For j ∈ [k̃], since
|Sn

ℓ1,ℓ2
(j)|/D̃(Gn, G0) → 0 for all (ℓ1, ℓ2) ∈ {(1, 0), (0, 1), (1, 1), (2, 0), (0, 2)}, we get that

1

D̃(Gn, G0)
·

∑

j:|Aj |=1

j∈[k̃]

∑

i∈Aj

πn
i

(
|∆cnij |+ |∆Γn

ij |+ |∆anij |+ |∆bnij |+ |∆νnij |
)
→ 0. (36)

Moreover, for k̃ + 1 ≤ j ≤ k0, as |Tn
α3,τ1,τ2(j)|/D̃(Gn, G0) → 0 for all (α3, τ1, τ2) ∈

{(0, 1, 0), (0, 2, 0), (1, 0, 0), (0, 0, 1), (0, 0, 2)}, we deduce that

1

D̃(Gn, G0)
·

∑

j:|Aj |=1

k̃+1≤j≤k0

∑

i∈Aj

πn
i

(
|∆cnij |+ |∆Γn

ij |+ |∆anij |+ |∆bnij |+ |∆νnij |
)
→ 0. (37)

Let us denote

Kn
ij(κ1, κ2, κ3, κ4, κ5) := |∆cnij |κ1 + |∆Γn

ij |κ2 + |∆anij |κ3 + |∆bnij |κ4 + |∆νnij |κ5 .

Then, equations (36) and (37) indicates that

1

D̃(Gn, G0)
·

∑

j:|Aj |=1

∑

i∈Aj

πn
i K

n
ij(1, 1, 1, 1, 1) → 0. (38)

Additionally, since |T2,0,0(j)|/D̃(Gn, G0) → 0 for all k̃ + 1 ≤ j ≤ k0, we have that

1

D̃(Gn, G0)
·

∑

j:|Aj |>1

∑

i∈Aj

πn
i |∆anij |2 → 0. (39)
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Putting the results in equations (35), (38) and (39) together with the formulation of D̃(Gn, G0) in equation (13),
we obtain that

1

D̃(Gn, G0)

[ ∑

j:|Aj |>1

j∈[k̃]

∑

i∈Aj

πn
i K

n
ij

(
r̃(|Aj |),

r̃(|Aj |)
2

,
r̃(|Aj |)

2
, r̃(|Aj |),

r̃(|Aj |)
2

)

+
∑

j:|Aj |>1

k̃+1≤j≤k0

∑

i∈Aj

πn
i K

n
−3,ij

(
r̃(|Aj |),

r̃(|Aj |)
2

, r̃(|Aj |),
r̃(|Aj |)

2

)]
→ 1, (40)

where Kn
−3,ij(κ1, κ2, κ3, κ4, κ5) := |∆cnij |κ1 + |∆Γn

ij |κ2 + |∆bnij |κ4 + |∆νnij |κ5 . Now, we will divide our arguments
into two main scenarios based on the above limit:

Case 1:

∑
j:|Aj |>1

j∈[k̃]

∑
i∈Aj

πn
i K

n
ij

(
r̃(|Aj |), r̃(|Aj |)

2 ,
r̃(|Aj |)

2 , r̃(|Aj |), r̃(|Aj |)
2

)

D̃(Gn, G0)
̸→ 0.

This assumption indicates that we can find an index j∗ ∈ [k̃] : |Aj∗ | > 1 such that

1

D̃(Gn, G0)
·
∑

i∈Aj∗

πn
i K

n
ij∗

(
r̃(|Aj∗ |),

r̃(|Aj∗ |)
2

,
r̃(|Aj∗ |)

2
, r̃(|Aj∗ |),

r̃(|Aj∗ |)
2

)
̸→ 0.

WLOG, we may assume that j∗ = 1 throughout this case. Recall that Sn
ℓ1,ℓ2

(1)/D̃(Gn, G0) → 0 for all pairs
(ℓ1, ℓ2) such that 0 ≤ ℓ1 + ℓ2 ≤ 2r̃(|A1|). Combine this result with the assumption of case 1, we obtain

Sn
ℓ1,ℓ2

(1)

D1(Gn, G0)
=

Sn
ℓ1,ℓ2

(1)

D̃(Gn, G0)
· D̃(Gn, G0)

D1(Gn, G0)
→ 0,

where D1(Gn, G0) :=
∑

i∈A1
πn
i K

n
i1

(
r̃(|A1|), r̃(|A1|)

2 , r̃(|A1|)
2 , r̃(|A1|), r̃(|A1|)

2

)
. By expanding the formulations of

Sn
ℓ1,ℓ2

(1) and D1(Gn, G0), we have that

∑
i∈A1

∑
α∈Jℓ1,ℓ2

πn
i

(Γ0
1)

α1+2α2 2α2+α5α!
(∆cni1)

α1(∆Γn
i1)

α2(∆ani1)
α3(∆bni1)

α4(∆νni1)
α5

∑
i∈A1

πn
i

[
|∆cni1|r̃(|A1|) + |∆Γn

i1|
r̃(|A1|)

2 + |∆ani1|
r̃(|A1|)

2 + |∆bni1|r̃(|A1|) + |∆νni1|
r̃(|A1|)

2

] → 0. (41)

Next, we define Mn := max{|∆cni1|, |∆Γn
i1|1/2, |∆ani1|1/2, |∆bni1|, |∆νni1|1/2 : i ∈ A1} and πn := maxi∈A1

πn
i . For

any i ∈ A1, since the sequence (πn
i /πn)i∈A1

is bounded, we can substitute it with its subsequence that admits a
non-negative limit p2i = limn→∞ πn

i /πn.

Additionally, we define (∆cni1)/(Γ
0
j ·Mn) → q1i, (∆Γn

i1)/[2(Γ
0
j )

2 ·M2

n] → q2i, (∆ani1)/M
2

n → q3i, (∆bni1)/Mn → q4i

and (∆νni1)/2M
2

n → q5i. It can be seen from the formulation of Ok,β(Θ) that πn
i ≥ δ, therefore, pi’s will not

vanish and at least one of them is equal to 1. Similarly, at least one of the limits q1i, q2i, . . . , q5i will be equal to
either 1 or −1.

Since
∑

i∈A1
πn
i

[
|∆cni1|r̃(|A1|) + |∆Γn

i1|
r̃(|A1|)

2 + |∆ani1|
r̃(|A1|)

2 + |∆bni1|r̃(|A1|) + |∆νni1|
r̃(|A1|)

2

]

πnM
ℓ1+ℓ2
n

̸→ 0,

for all pairs (ℓ1, ℓ2) such that ℓ1 + ℓ2 ∈ [r̃(|A1|)], we can divide both the numerator and the denominator in
equation (41) by πnM

ℓ1+ℓ2
n , and then let n→ ∞ to achieve the following system of polynomial equations:

∑

i∈A1

∑

α∈Jℓ1,ℓ2

p2i q
α1
1i qα2

2i qα3
3i qα4

4i qα5
5i

α1! α2! α3! α4! α5!
= 0,
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for all pairs (ℓ1, ℓ2) such that 0 ≤ ℓ1 + ℓ2 ≤ r̃(|A1|). Nevertheless, according to the definition of r̃(|A1|), the above
system cannot admit any non-trivial solutions, which is a contradiction. Thus, case 1 does not hold.

Case 2:
1

D̃(Gn, G0)
·∑ j:|Aj |>1

k̃+1≤j≤k0

∑
i∈Aj

πn
i K

n
−3,ij

(
r̃(|Aj |), r̃(|Aj |)

2 , r̃(|Aj |), r̃(|Aj |)
2

)
̸→ 0.

This assumption implies that there exists an index k̃ + 1 ≤ j∗ ≤ k0 : |Aj∗ | > 1 such that

1

D̃(Gn, G0)
·
∑

i∈Aj∗

πn
i K

n
−3,ij∗

(
r̃(|Aj∗ |),

r̃(|Aj∗ |)
2

, r̃(|Aj∗ |),
r̃(|Aj∗ |)

2

)
̸→ 0. (42)

By applying similar arguments for equation (22) in the proof of Theorem 1 to equation (42), we are able to point
out that equation (42) cannot happen, which is a contradiction. As a result, case 2 cannot happen either.

Collect the results of the above two scenarios, we realize that the limit in equation (40) does not hold true, which
is a contradiction. As a consequence, not all the coefficients of elements in the set H, defined in equation (34), in
the representations of An/D̃(Gn, G0), Bn/D̃(Gn, G0) and En/D̃(Gn, G0) go to zero as n→ ∞.

Step 3 - Application of Fatou’s lemma: Next, we denote by mn the maximum of the absolute values of
those coefficients, which means that

mn := max

{
max

(j,ℓ1,ℓ2)∈Q

|Qn
ℓ1,ℓ2

(j)|
D̃(Gn, G0)

, max
(j,α3,τ1,τ2)∈T

|Tn
α3,τ1,τ2(j)|
D̃(Gn, G0)

}
.

In addition, let us define Qn
ℓ1,ℓ2

(j)/mn → ζℓ1,ℓ2(j) for (j, ℓ1, ℓ2) ∈ Q and Tn
α3,τ1,τ2(j) → ξα3,τ1,τ2(j) for

(j, α3, τ1, τ2) ∈ T as n→ ∞. As not all the coefficients of elements of H in the representations of An/D̃(Gn, G0),
Bn/D̃(Gn, G0) and En/D̃(Gn, G0) vanish as n → ∞, at least one among ζℓ1,ℓ2(j) and ξα3,τ1,τ2(j

′) is different
from zero and mn ̸→ 0. By invoking the Fatou’s lemma, we get that

0 = lim
n→∞

1

mn
· 2V (pGn

, pG)

D̃(Gn, G0)
≥

∫
lim inf
n→∞

1

mn
· |pGn

(X,Y )− pG(X,Y )|
D̃(Gn, G0)

d(X,Y ) ≥ 0.

Furthermore, we have that

1

mn
·pGn(X,Y )− pG(X,Y )

D̃(Gn, G0)

→
∑

(j,ℓ1,ℓ2)∈Q

ζℓ1,ℓ2(j)X
ℓ1 · ∂

ℓ2fD

∂hℓ21
(Y |a0jX + b0j , ν

0
j ) · fL(X|c0j ,Γ0

j )

+
∑

(j,α3,τ1,τ2)∈T

ξα3,τ1,τ2(j)X
α3 · ∂

τ1fL
∂cτ1

(X|c0j ,Γ0
j ) ·

∂α3+τ2fD

∂hα3+τ2
1

(Y |a0jX + b0j , ν
0
j ).

Consequently, we achieve that

∑

(j,ℓ1,ℓ2)∈Q

ζℓ1,ℓ2(j)X
ℓ1 · ∂

ℓ2fD

∂hℓ21
(Y |a0jX + b0j , ν

0
j ) · fL(X|c0j ,Γ0

j )

+
∑

(j,α3,τ1,τ2)∈T

ξα3,τ1,τ2(j)X
α3
∂τ1fL
∂cτ1

(X|c0j ,Γ0
j )
∂α3+τ2fD

∂hα3+τ2
1

(Y |a0jX + b0j , ν
0
j ) = 0,

for almost surely (X,Y ). Since elements of the set H defined in equation (34) are linearly independent (proof of
this claim is deferred to the end of this proof), the above equation indicates that ζj,ℓ1,ℓ2(j) = ξα3,τ1,τ2(j

′) = 0 for
all (j, ℓ1, ℓ2) ∈ Q and (j′, α3, τ1, τ2) ∈ T , which contradicts the fact that at least one among ζj,ℓ1,ℓ2(j), ξα3,τ1,τ2(j

′)
is different from zero. Hence, we reach the conclusion in equation (31).

Linear independence of elements in H: For completion, we will show that elements of the set F defined in
equation (34) are linearly independent by definition. In particular, assume that there exist real numbers ζℓ1,ℓ2(j)
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and ξα3,τ1,τ2(j
′), where (j, ℓ1, ℓ2) ∈ Q and (j′, α3, τ1, τ2) ∈ T , such that the following equation holds for almost

surely (X,Y ):

∑

(j,ℓ1,ℓ2)∈Q

ζℓ1,ℓ2(j)X
ℓ1 · ∂

ℓ2fD

∂hℓ21
(Y |a0jX + b0j , ν

0
j ) · fL(X|c0j ,Γ0

j )

+
∑

(j′,α3,τ1,τ2)∈T

ξα3,τ1,τ2(j
′)Xα3

∂τ1fL
∂cτ1

(X|c0j′ ,Γ0
j′)
∂α3+τ2fD

∂hα3+τ2
1

(Y |a0j′X + b0j′ , ν
0
j′) = 0,

Now, we rewrite the above equation as follows:

k0∑

j=1

2r̃(|Aj |)∑

ω=0

[ ∑

α3+τ2=ω

2(r̃(|Aj |)−α3)−τ2∑

τ1=0

ξα3,τ1,τ2(j)X
α3 · ∂

τ1fL
∂cτ1

(X|c0j ,Γ0
j ) · 1{k̃+1≤j≤k0}

+

2r̃(|Aj |)−ω∑

ℓ1=0

ζℓ1,ω(j)X
ℓ1 · fL(X|c0j ,Γ0

j ) · 1{j∈[k̃]}

]
∂ωfD
∂hω1

(Y |a0jX + b0j , ν
0
j ) = 0, (43)

for almost surely (X,Y ). As (a0j , b
0
j , ν

0
j ) for j ∈ [k0] are k0 distinct tuples, we deduce that ((a0j )

⊤X + b0j , ν
0
j ) for

j ∈ [k0] are also k0 distinct tuples for almost surelyX. Thus, for almost surelyX, one has
∂ωfD
∂hω1

(Y |(a0j )⊤X+b0j , ν
0
j )

for j ∈ [k0] and 0 ≤ ω ≤ 2r̃(|Aj |) are linearly independent with respect to Y . Given that result, the equation (43)
indicates that for almost surely X,

∑

α3+τ2=ω

2(r̃(|Aj |)−α3)−τ2∑

τ1=0

ξα3,τ1,τ2(j)X
α3 · ∂

τ1fL
∂cτ1

(X|c0j ,Γ0
j ) · 1{k̃+1≤j≤k0}

+

2r̃(|Aj |)−ω∑

ℓ1=0

ζℓ1,ω(j)X
ℓ1 · fL(X|c0j ,Γ0

j ) · 1{j∈[k̃]} = 0.

for all j ∈ [k0] and 0 ≤ ω ≤ 2r̃(|Aj |). This equation is equivalent to

2r̃(|Aj |)−ω∑

ℓ1=0

ζℓ1,ω(j)X
ℓ1 · fL(X|c0j ,Γ0

j ) = 0, (44)

∑

α3+τ2=ω′

2(r̃(|Aj′ |)−α3)−τ2∑

τ1=0

ξα3,τ1,τ2(j
′)Xα3 · ∂

τ1fL
∂cτ1

(X|c0j′ ,Γ0
j′) = 0, (45)

for all j ∈ [k̃], 0 ≤ ω ≤ 2r̃(|Aj |) and k̃ + 1 ≤ j
′ ≤ k0, 0 ≤ ω ≤ 2r̃(|Aj′ |). We can treat the left hand side of

equation (44) as a polynomial of the random vector X ∈ X , which is a compact set in R. Meanwhile, the left hand
side of equation (45) can be viewed as another polynomial of X and X − c0j′ , where c0j′ ̸= 0. As a result, the above
equations hold when ζℓ1,ω(j) = 0 for all j ∈ [k̃], 0 ≤ ω ≤ 2r̃(|Aj |), 0 ≤ ℓ1 ≤ 2r̃(|Aj |)− ω, and ξα3,τ1,τ2(j

′) = 0 for
all k̃ + 1 ≤ j′ ≤ k0, 0 ≤ ω′ ≤ 2r̃(|Aj′ |), α3 + τ2 = ω′ and 0 ≤ τ1 ≤ 2(r̃(|Aj |)− α3)− τ2. This result is equivalent
to ζℓ1,ℓ2(j) = 0, for all (j, ℓ1, ℓ2) ∈ Q and ξα3,τ1,τ2(j

′) = 0 for all (j′, α3, τ1, τ2) ∈ T .

Hence, the elements of H are linearly independent, which completes the proof.

C PROOF OF REMAINING RESULTS

In this appendix, we provide proofs for Proposition 1, Proposition 2 and Lemma 2 in that order.
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C.1 Proof of Proposition 1

For any two mixing measures G =
∑k

i=1 πiδ(ci,Γi,ai,bi,νi) and G′ =
∑k′

i=1 π
′
iδ(c′i,Γ′

i,a
′
i,b

′
i,ν

′
i)

, we assume that
pG(X,Y ) = pG′(X,Y ) holds true for almost surely (X,Y ) ∈ X × Y, or equivalently,

k∑

i=1

πifL(X|ci,Γi)fD(Y |(ai)⊤X + bi, νi) =

k′∑

i=1

π′
ifL(X|c′i,Γ′

i)fD(Y |(a′i)⊤X + b′i, ν
′
i). (46)

Recall that if Y |X ∼ N1(a
⊤X + b, ν) and X ∼ Nd(c,Γ), then


X
Y


 ∼ Nd+1




 c

a⊤c+ b


 ,


 Γ Γa

a⊤Γ a⊤Γa+ ν




 .

Let us denote

ψi :=


 ci

(ai)
⊤ci + bi


 , Σi :=


 Γi Γiai

(ai)
⊤Γi (ai)

⊤Γiai + νi


 ,

ψ′
i :=


 c′i

(a′i)
⊤c′i + b′i


 , Σ′

i :=


 Γ′

i Γ′
ia

′
i

(a′i)
⊤Γ′

i (ai)
⊤Γ′

ia
′
i + ν′i


 .

Then, equation (46) can be rewritten as

k∑

i=1

πif(X,Y |ψi,Σi) =

k′∑

i=1

π′
if(X,Y |ψ′

i,Σ
′
i), (47)

for almost surely (X,Y ), where f belongs to the family of (d + 1)-dimensional Gaussian density functions.
Since the location-scale Gaussian mixtures are identifiable, it follows from the above equation that k = k′ and
{π1, π2, . . . , πk} ≡ {π′

1, π
′
2, . . . , π

′
k}. WLOG, we may assume that πi = π′

i for any i ∈ [k].

Subsequently, we construct a partition of the set [k], denoted by P1, P2, . . . , Pm that satisfies the following
properties:

(i) πi = π′
i for any i ∈ Pℓ and ℓ ∈ [m];

(ii) πi ̸= π′
j if i and j are not in the same set Pℓ for any ℓ ∈ [m].

Given this partition, we represent equation (47) as follows:

m∑

ℓ=1

∑

i∈Pℓ

πif(X,Y |ψi,Σi) =

m∑

ℓ=1

∑

i∈Pℓ

π′
if(X,Y |ψ′

i,Σ
′
i),

for almost surely (X,Y ). Consequently, for each ℓ ∈ [m], we obtain that

{(ψi,Σi) : i ∈ Pℓ} ≡ {(ψ′
i,Σ

′
i) : i ∈ Pℓ} .

WLOG, we may assume that (ψi,Σi) = (ψ′
i,Σ

′
i) for any i ∈ Pℓ. Given this result, by some simple algebraic

derivations, we achieve that (ci,Γi, ai, bi, νi) = (c′i,Γ
′
i, a

′
i, b

′
i, ν

′
i) for any i ∈ Pℓ and ℓ ∈ [m]. As a result, it follows

that

G =

m∑

ℓ=1

∑

i∈Pℓ

πiδ(ci,Γi,ai,bi,νi) =

m∑

ℓ=1

∑

i∈Pℓ

π′
iδ(c′i,Γ′

i,a
′
i,b

′
i,ν

′
i)
= G′.

Hence, the proof is completed.
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C.2 Proof of Proposition 2

Prior to presenting the proof of Proposition 2, let us review fundamental background on density estimation for
M-estimators, which is covered in van de Geer (2000). First of all, we define Pk,β(Θ) := {pG(X,Y ) : G ∈ Ok,β(Θ)}
as the set of joint densities of all mixing measure in Ok,β(Θ). In addition, we denote

Qk,β(Θ) := {p(G+G0)/2(X,Y ) : G ∈ Ok,β(Θ)},
Q1/2

k,β (Θ) := {p1/2(G+G0)/2
(X,Y ) : G ∈ Ok,β(Θ)}.

Subsequently, for any δ > 0, the Hellinger ball centered around the density pG0
(X,Y ) and intersected with the

set Q1/2
k,β (Θ) is defined as

Q1/2
k,β (Θ, δ) := {g1/2 ∈ Q1/2

k,β (Θ) : h(g, pG0
) ≤ δ}.

Additionally, Geer et al. van de Geer (2000) introduce the following quantity to capture the size of the above
Hellinger ball:

JB(δ,Q1/2
k,β (Θ)) :=

∫ δ

δ2/213
H

1/2
B

(
u,Q1/2

k,β (Θ, u), ∥ · ∥
)
du ∨ δ, (48)

where H1/2
B

(
u,Q1/2

k,β (Θ, u), ∥ · ∥
)

denotes the bracketing entropy of Q1/2
k,β (Θ, u) under the Euclidean distance, and

u ∨ δ := max{u, δ}. Given these notations, let us state the result regarding the joint density estimation rate
presented in Theorem 7.4 in van de Geer (2000).

Lemma 3 (Theorem 7.4, van de Geer (2000)). Take Ψ(δ) ≥ JB(δ,Q1/2
k,β (Θ)) such that Ψ(δ)/δ2 is a non-increasing

function of δ. Then, for a universal constant c and a sequence (δn) that satisfies
√
nδ2n ≥ cΨ(δn), we obtain that

P
(
h(pĜn

, pG0
) > δ

)
≤ c exp

(
−nδ

2

c2

)
,

for any δ ≥ δn.

Proof of Lemma 3 is provided in van de Geer (2000). Next, we introduce the upper bounds of the covering
number (under the sup norm) N(ε,Pk,β(Θ), ∥ · ∥∞), and the bracketing entropy (under the Hellinger distance)
HB(ε,Pk,β(Θ), h) of the metric space Pk,β(Θ). For further detail about the definitions of these terms, readers are
referred to van de Geer (2000).

Lemma 4. Given a bounded set Θ, we have for any ε ∈ [0, 1/2] that

(i) logN(ε,Pk,β(Θ), ∥ · ∥∞) ≲ log(1/ε);

(ii) HB(ε,Pk,β(Θ), h) ≲ log(1/ε).

Proof of Lemma 4 is relegated to Appendix C.2.2. Now, we already have all necessary ingredients to provide the
proof for Proposition 2 in Appendix C.2.1

C.2.1 Proof of Proposition 2

Note that for any u > 0, we have

HB(u,Q1/2
k,β (Θ), ∥ · ∥) ≤ HB(u,Pk,β(Θ), h) ≤ log(1/u),

where the second inequality is induced by part (ii) of Lemma 4. Then, it follows from equation (48) that

JB(δ,Q1/2
k,β (Θ)) ≤

∫ δ

δ2/213
log(1/u)du ∨ δ. (49)
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By choosing Ψ(δ) := δ · [log(1/δ)]1/2, we get that Ψ(δ)/δ2 is a non-increasing function of δ and Ψ(δ) ≥
JB(δ,Q1/2

k,β (Θ)) from equation (49). Let δn :=
√
log(n)/n, we achieve that

√
nδ2n ≥ cΨ(δn) for some universal

constant c. As a result, Lemma 3 gives us that

P(h(pĜn
, pG0) > C1

√
log(n)/n) ≲ exp(−C2 log(n)) = n−C2 ,

where C1 and C2 are some universal constants. Finally, since the Total Variation is upper bounded by the
Hellinger distance, we obtain the desired conclusion.

C.2.2 Proof of Lemma 4

Part (i). Given some ε > 0, since Θ is a compact set, we can find an ε-cover of Θ, denoted by Θε. Additionally,
let ∆ε be an ε-cover of an (k − 1)-dimensional simplex. Assume that |Θε| = T and |∆ε| = S. Note that
Θ ⊂ Rd × S+

d × Rd × R × R+ is a subspace of Rd2+4d, then it can be checked that T = O(ε−(d2+4d)k) and
S = O(ε−(k−1)). Next, we define

G := {pG ∈ Pk,β(Θ) : (π1, π2, . . . , πk) ∈ ∆ε, (ci,Γi, ai, bi, νi) ∈ Θε} .

Given some mixing measure G =
∑k′

i=1 πiδθi ∈ Ok,β(Θ) with k′ ≤ k and θi := (ci,Γi, ai, bi, νi) ∈ Θ, let us consider
G =

∑k′

i=1 πiδθ̃i where θ̃i := (c̃i, Γ̃i, ãi, b̃i, ν̃i) ∈ Θε such that ∥θ̃i − θi∥ ≤ ε for any i ∈ [k′]. In addition, we

also take into account another mixing measure G̃ =
∑k′

i=1 π̃iδθ̃i where (π̃1, π̃2, . . . , π̃k′ , 0, . . . , 0) ∈ ∆ε such that
∥(π̃i)k

′

i=1 − (πi)
k′

i=1∥ ≤ ε. From the definition of G, we get that pG̃ ∈ G. Since ∥(π̃i)k
′

i=1 − (πi)
k′

i=1∥ ≤ ε, we can
deduce that

∥pG − pG̃∥∞ ≤
k′∑

i=1

|π̃i − πi| · ∥fL(X|c̃i, Γ̃i)fD(Y |(ãi)⊤X + b̃i, ν̃i)∥∞ ≲ ε.

Next, we consider

∥pG − pG∥∞ ≤
k′∑

i=1

πi∥F (θi|X,Y )− F (θ̃i|X,Y )∥∞,

where we denote F (θ|X,Y ) := fL(X|c,Γ)fD(Y |a⊤X + b, ν). As F is twice differentiable with respect to θ and X
is a bounded set, we achieve the following inequality:

k′∑

i=1

πi∥F (θi|X,Y )− F (θ̃i|X,Y )∥∞ ≤
k′∑

i=1

π∥θ̃i − θi∥ ≲ ε,

which leads to ∥pG − pG∥∞ ≤ ε. As a consequence, by the triangle inequality, we have

∥pG − pG̃∥∞ ≤ ∥pG − pG∥∞ + ∥pG − pG̃∥∞ ≲ ε.

Given this result, it follows that G is an ε-cover of Pk,β(Θ), therefore,

N
(
ε,Pk,β(Θ), ∥ · ∥∞

)
≤ |G| = S × T = O(ε−(d2+4d)k)×O(ε−(k−1)) = O(ε−(d2+4d+1)k+1),

which implies that logN
(
ε,Pk,β(Θ), ∥ · ∥∞

)
≲ log(1/ε).

Part (ii). We begin with finding an upper bound for the density fL(X|c,Γ)fD(Y |a⊤X+ b, ν). Since X and Θ are
bounded sets, we can find positive constants u, u1, u2, u3, l1, l3 such that ∥c∥ ≤ u, l1 ≤ λmin(Γ) ≤ λmax(Γ) ≤ u1,
−u2 ≤ a⊤X + b ≤ u2 and l3 ≤ ν ≤ u3, where λmin(Γ) and λmax(Γ) are the smallest and the largest eigenvalues of
Γ, respectively. Firstly, it is clear that

fL(X|c,Γ) = 1√
(2π)d det(Γ)

exp
(
− 1

2
(x− c)⊤Γ−1(x− c)

)
≤ 1

(2πl1)d/2
.
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Additionally, note that

(X − c)⊤Γ−1(x− c) ≥ λmin(Γ
−1)∥X − c∥2 =

1

λmax(Γ)
∥X − c∥2.

Moreover, for any ∥X∥ ≥ 2u, by the Cauchy-Schwartz inequality, we get

4∥X − c∥2 − ∥X∥2 = 3∥X∥2 − 8X⊤c+ 4∥c∥2 ≥ 3∥X∥2 − 8∥X∥ · ∥c∥+ 4∥c∥2 ≥ 0,

which implies that (X − c)⊤Γ−1(x− c) ≥ 1
4u1

∥X∥2. As a result,

fL(X|c,Γ) = 1√
(2π)d det(Γ)

exp
(
− 1

2
(x− c)⊤Γ−1(x− c)

)
≤ 1

(2πl1)d/2
exp

(
−∥X∥2

8u1

)
,

for any ∥X∥ ≥ 2u. Combine this result with the previous bound, we obtain that fL(X|c,Γ) ≤ G1(X), where

G1(X) :=





1

(2πl1)d/2
exp

(
−∥X∥2

8u1

)
, ∥X∥ ≥ 2u,

1

(2πl1)d/2
, ∥X∥ < 2u.

By arguing in a similar fashion, we also have fD(Y |a⊤X + b, ν) ≤ G2(X,Y ) where

G2(X,Y ) :=





1√
2πl3

exp

(
− Y 2

8u3

)
, |Y | ≥ 2u2

1√
2πl3

, |Y | < 2u2.

Consequently, we achieve that fL(X|c,Γ)fD(Y |a⊤X + b, ν) ≤ G(X,Y ) := G1(X)G2(X,Y ).

Next, given some η > 0 that we will choose later, we consider an η-cover of Pk,β(Θ) which is assumed to have N
elements denoted by f1, f2, . . . , fN . For any i ∈ [N ], we define

Li(X,Y ) := max{fi(X,Y )− η, 0}, Ui(X,Y ) := {fi(X,Y ) + η,G(X,Y )}.

Then, we can validate that Pk,β(Θ) ⊂ ∪N
i=1[Li(X,Y ), Ui(X,Y )] and Ui(X,Y )− Li(X,Y ) ≤ min{2η,G(X,Y )}.

Furthermore, we also deduce that

∥Ui − Li∥1 =

∫
(Ui(X,Y )− Li(X,Y ))d(X,Y )

=

∫

|Y |<2u2

(Ui(X,Y )− Li(X,Y ))d(X,Y ) +

∫

|Y |≥2u2

(Ui(X,Y )− Li(X,Y ))d(X,Y )

≤ c1η + exp(−c21/(2u3)) ≤ c2η,

where c1 = max{2u2,
√
8u3} log(1/η) and c2 > 0 is some universal constant. This means that each bracket

[Li(X,Y ), Ui(X,Y )] is of size c2η. Recall that the bracketing entropy is the logarithm of the smallest number of
brackets to cover Pk,β(Θ), it follows that

HB(c2η,Pk,β(Θ), ∥ · ∥1) ≤ logN(η,Pk,β(Θ), ∥ · ∥1) ≤ logN(η,Pk,β(Θ), ∥ · ∥∞) ≲ log(1/η),

where the second inequality occurs since ∥ · ∥∞ ≤ ∥ · ∥1, while the last inequality is due to the result in part (i).
Moreover, as the Hellinger distance is upper bounded by the L1-norm ∥ · ∥1, we get that

HB(c2η,Pk,β(Θ), h) ≤ HB(c2η,Pk,β(Θ), ∥ · ∥1) ≲ log(1/η).

Here, if we choose η = ε/c2, we can conclude that HB(ε,Pk,β(Θ), h) ≤ log(1/ε).
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C.3 Proof of Lemma 2

We begin with recalling the system of interest here:

m∑

l=1

∑

α∈Jℓ1,ℓ2

p2l q
α1

1l qα2

2l qα3

3l qα4

4l qα5

5l

α1! α2! α3! α4! α5!
= 0, (50)

with unknown variables {(pl, q1l, q2l, q3l, q4l, q5l)}ml=1 ⊂ R5 for all ℓ1 ≥ 0 and ℓ2 ≥ 0 that satisfy 1 ≤ ℓ1 + ℓ2 ≤ r,
where

Jℓ1,ℓ2 := {α = (αi)
5
i=1 ∈ N5 : α1 + 2α2 + α3 = ℓ1, α3 + α4 + 2α5 = ℓ2}.

Let us consider only a part of the above system when ℓ1 = 0 as follows:

m∑

l=1

∑

α4,α5∈N
α4+2α5=ℓ2

p2l q
α4

4l qα5

5l

α4! α5!
= 0, (51)

for all 1 ≤ ℓ2 ≤ r, which takes the same form as the system in equation (9). Thus, it follows from Lemma 1
that the smallest positive integer r such that the system (51) does not admit any non-trivial solutions is r̄(m).
Therefore, we obtain that r̃(m) ≤ r̄(m).

Next, we will respectively show that r̃(2) = 4 and r̃(3) = 6.

When m = 2: In this case, it follows from the above result that r̃(m) ≤ r̄(m) = 4. Thus, it is sufficient to
demonstrate r̃(m) > 3, i.e. pointing out a non-trivial solution for the system (50) when r = 3, which is given by

m∑

l=1

p2l q1l = 0,

m∑

l=1

p2l q4l = 0,

m∑

l=1

p2l

( 1

2!
q21l + q2l

)
= 0,

m∑

l=1

p2l

(
q1lq4l + q3l

)
= 0,

m∑

l=1

p2l

( 1

2!
q24l + q5l

)
= 0,

m∑

l=1

p2l

( 1

3!
q31l + q1lq2l

)
= 0,

m∑

l=1

p2l

( 1

2!
q21lq4l + q1lq3l + q2lq4l

)
= 0,

m∑

l=1

p2l

( 1

2!
q1lq

2
4l + q1lq5l + q3lq4l

)
= 0,

m∑

l=1

p2l

( 1

3!
q34l + q4lq5l

)
= 0. (52)

We can check that the following is a non-trivial solution of the system (52):

pl = 0, q1l = q2l = q3l = 0, ∀l ∈ [m],

q41 = 1, q42 = −1, q51 = q52 = −1

2
.

Hence, we conclude that r̃(m) = 4.

When m = 3: Again, according to Lemma 1, we have r̃(m) ≤ r̄(m) = 6. Therefore, it suffices to show a
non-trivial solution of the system (50) for r = 5, which is a combination of the system (52) and the following
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system:

m∑

l=1

p2l

( 1

4!
q41l +

1

2!
q21lq2l +

1

2!
q22l

)
= 0,

m∑

l=1

p2l

( 1

4!
q24l +

1

2!
q24lq5l +

1

2!
q25l

)
= 0,

m∑

l=1

p2l

( 1

3!
q31lq4l +

1

2!
q1lq

2
2l +

1

2!
q21lq2l + q2lq3l

)
= 0,

m∑

l=1

p2l

( 1

3!
q1lq

3
4l +

1

2!
q1lq4lq

2
5l +

1

2!
q3lq

2
4l + q3lq5l

)
= 0,

m∑

l=1

p2l

( 1

2!2!
q21lq

2
4l +

1

2!
q2lq

2
4l +

1

2!
q21lq5l + q2lq5l + q1lq3lq4l +

1

2!
q23l

)
= 0,

m∑

l=1

p2l

( 1

5!
q51l +

1

3!
q31lq2l +

1

2!
q1lq

2
2l

)
= 0,

m∑

l=1

p2l

( 1

5!
q54l +

1

3!
q34lq5l +

1

2!
q4lq

2
5l

)
= 0,

m∑

l=1

p2l

( 1

4!
q41lq4l +

1

2!
q21lq2l +

1

2!
q22lq4l +

1

3!
q31lq3l + q1lq2lq3l

)
= 0,

m∑

l=1

p2l

( 1

4!
q1lq

4
4l +

1

2!
q1lq

2
4lq5l +

1

2!
q1lq

2
5l +

1

3!
q3lq

3
4l + q3lq4lq5l

)
= 0,

m∑

l=1

p2l

( 1

3!2!
q31lq

2
4l +

1

3!
q31lq5l +

1

2!
q1lq2lq

2
4l + q1lq2lq4l +

1

2!
q21lq3lq4l + q2lq3lq4l +

1

2!
q1lq

2
3l

)
= 0,

m∑

l=1

p2l

( 1

2!3!
q21lq

3
4l + q21lq4lq5l +

1

3!
q2lq

3
3l + q2lq4lq5l +

1

2!
q1lq3lq

2
4l + q1lq3lq5l +

1

2!
q23lq4l

)
= 0.

It can be verified that the following is a non-trivial of this system:

pl = 0, q1l = q2l = q3l = 0, ∀l ∈ [m],

q41 =

√
3

3
, q42 = −

√
3

3
, q43 = 0, q51 = q52 = −1

6
, q53 = 0.

As a consequence, we obtain that r̃(m) > 5, which implies the desired conclusion that r̃(m) = 6.
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