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Abstract

We consider the parameter estimation prob-
lem in the deviated Gaussian mixture of ex-
perts in which the data are generated from
(1 − λ∗)g0(Y |X) + λ∗∑k∗

i=1 p
∗
i f(Y |(a∗i )⊤X +

b∗i , σ
∗
i ), where X,Y are respectively a covari-

ate vector and a response variable, g0(Y |X)
is a known function, λ∗ ∈ [0, 1] is true but un-
known mixing proportion, and (p∗i , a

∗
i , b

∗
i , σ

∗
i )

for 1 ≤ i ≤ k∗ are unknown parameters of
the Gaussian mixture of experts. This prob-
lem arises from the goodness-of-fit test when
we would like to test whether the data are
generated from g0(Y |X) (null hypothesis) or
they are generated from the whole mixture
(alternative hypothesis). Based on the alge-
braic structure of the expert functions and the
distinguishability between g0 and the mixture
part, we construct novel Voronoi-based loss
functions to capture the convergence rates
of maximum likelihood estimation (MLE) for
our models. We further demonstrate that our
proposed loss functions characterize the lo-
cal convergence rates of parameter estimation
more accurately than the generalized Wasser-
stein, a loss function being commonly used
for estimating parameters in the Gaussian
mixture of experts.

1 INTRODUCTION

Assume that (X1, Y1), . . . , (Xn, Yn) ∈ X ×Y ⊂ Rd ×R
are i.i.d samples from a joint distribution with den-
sity function pλ∗,G∗(X,Y ) := pλ∗,G∗(Y |X)f̄(X), where
f̄(X) is a prior density function of the explana-
tory variable X and the conditional density function
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pλ∗,G∗(Y |X) is a deviated Gaussian mixture of experts
of order k∗, which takes the following form:

pλ∗,G∗(Y |X) := (1− λ∗)g0(Y |X)

+ λ∗
k∗∑
i=1

p∗i f(Y |(a∗i )⊤X + bi, σ
∗
i ). (1)

where f(·|µ, σ) denotes the univariate Gaussian den-
sity function with mean µ and variance σ. Here,
g0(Y |X) is a known function and pG∗(Y |X) :=∑k∗

i=1 p
∗
i f(Y |(a∗i )⊤X + bi, σ

∗
i ) denotes the mixture of

experts part with respect to G∗. Next, λ∗ ∈ [0, 1]
represents a true mixing proportion, whereas G∗ :=∑k∗

i=1 p
∗
i δ(a∗

i ,b
∗
i ,σ

∗
i )

is a true but unknown mixing mea-
sure, that is, a linear combination of Dirac measures δ
associated with positive weights (p∗i )

k∗
i=1 which sum up

to one, i.e.,
∑k∗

i=1 p
∗
i = 1. Additionally, (a∗i , b∗i , σ∗

i ) ∈
Θ ⊂ Rd × R× R+, for all 1 ≤ i ≤ k∗, are called atoms
or components of the true mixing measure G∗. Mean-
while, h1(X, a, b) := a⊤X + b and h2(X,σ) := σ are
referred to as mean and variance expert functions.

Universal assumptions. For the sake of theory, we
assume the distribution of X to be continuous so that
the deviated Gaussian mixture of experts is identifi-
able (see Proposition 1). Moreover, we also assume
that the parameter space Θ is compact and the co-
variate space X is bounded in order to guarantee the
convergence of parameter estimation. Finally, we let
(a∗1, b

∗
1, σ

∗
1), . . . , (a

∗
k∗
, b∗k∗

, σ∗
k∗
) be pairwise distinct to

ensure the difference of Gaussian experts.

The deviated Gaussian mixture of experts (1) arises
from the goodness-of-fit test (Jitkrittum et al., 2020;
del Barrio et al., 1999; Hunter et al., 2008) when
the null hypothesis says that the data are generated
from the known joint distribution g0(Y |X)f̄(X) while
the alternative hypothesis corresponds to the assump-
tion that the data indeed follow the joint distribution
pλ∗,G∗(X,Y ). Several settings of this testing prob-
lem had been considered in the literature; namely
the problem of detection of sparse homogeneous mix-
tures (Donoho and Jin, 2004; Cai et al., 2007; Cai and
Wu, 2014; Verzelen and Arias-Castro, 2017), the prob-
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lem of testing the number of components (Chen et al.,
2001; Kasahara and Shimotsu, 2014, 2015), and multi-
ple testing problems (Patra and Sen, 2016; Deb et al.,
2022). Moreover, the deviated Gaussian mixture of ex-
perts is also a generalization of the Gaussian mixture of
experts (Jacobs et al., 1991; Jordan and Jacobs, 1994;
Jordan and Xu, 1995), which have been used in various
fields, namely speech recognition (Peng et al., 1996;
Gaur et al., 2021; You et al., 2022), multi-task learn-
ing (Liang et al., 2022; Ma et al., 2018; Hazimeh et al.,
2021), computer vision (Puigcerver et al., 2021; Lathuil-
ière et al., 2017; Xia et al., 2022), medical images (Han
et al., 2024) and natural language processing (Eigen
et al., 2014; Shazeer et al., 2017; Fedus et al., 2022; Du
et al., 2022; Zuo et al., 2023; Pham et al., 2024).

Maximum likelihood estimation. An important
application of the deviated Gaussian mixture of experts
to the hypothesis testing problem is parameter esti-
mation, namely, the problem of estimating unknown
mixing proportion λ∗ and mixing measure G∗. It is
worth noting that the number of experts k∗ is also un-
known in practice. Therefore, we fit the true model (1)
with a deviated Gaussian mixture of k experts, where
k > k∗, and then use the maximum likelihood estima-
tion (MLE) method to find the estimates of λ∗ and G∗
as follows:

(λ̂n, Ĝn) ∈ argmax
(λ,G)∈[0,1]×Gk(Θ)

n∑
i=1

log(pλ,G(Yi|Xi)). (2)

Here, we denote Gk(Θ) := {G =
∑k′

i=1 piδ(ai,bi,σi) :
1 ≤ k′ ≤ k, (ai, bi, σi) ∈ Θ} as the set of all discrete
probability measures with at most k components.

Challenge discussion. When λ∗ = 1 is known, the
conditional density pλ∗,G∗(Y |X) reduces to the mixture
part pG∗(Y |X). Thus, the problem of estimating Ĝn

becomes a parameter estimation problem in Gaussian
mixture of experts, which had been studied in Theorem
2 of Ho et al. (2022). Ho et al. (2022) demonstrated
that the convergence rates of parameter estimation
in the Gaussian mixture of experts were determined
by the solvability of a system of polynomial equations
induced the algebraic structures between the expert
functions. These convergence rates ranged from order
Õ(n−1/4) to order Õ(n−1/2r) for some r ≥ 4.

However, when λ∗ ∈ [0, 1] is unknown, the theoretical
understanding of the MLE (λ̂n, Ĝn) in the deviated
Gaussian mixture of experts becomes more challenging
than those in the standard Gaussian mixture of ex-
perts. The main challenge comes from the interaction
between the known function g0(Y |X) and the mixture
part pG∗(Y |X) with respect to the mixing measure G∗
via some partial differential equations (PDEs). This
interaction influences not only the identifiability of the

model but also the convergence rate of the MLE.

Another issue comes from the suboptimality of the
generalized Wasserstein loss function (Villani, 2003,
2008) used in learning parameters. The idea of lever-
aging that loss function in analyzing the convergence
behavior of MLE in mixture models was initialized
by Nguyen (2013), and then extended to mixture of
experts by Ho et al. (2022). An important property
of this divergence is that the convergence of the MLE
Ĝn is able to imply those of its atoms. For example, it
can be seen from Theorem 1 in Ho et al. (2022) that
the convergence rate Õ(n−1/4) of Ĝn to G∗ under the
generalized Wasserstein indicates that the rates of esti-
mating individual components are also Õ(n−1/4). On
the other hand, the generalized Wasserstein are unable
to capture those rates accurately. In particular, while
the estimation rates for those components should vary
with the number of fitted components approximating
them, that loss function always leads to the same rates.

Contribution. In the paper, we first establish the
parametric convergence rate of density estimation
pλ̂n,Ĝn

to the true density pλ∗,G∗ of order Õ(n−1/2)
under the Total Variation distance V . Next, to ad-
dress the above challenges of the parameter estimation
problem in the deviated Gaussian mixture of experts,
we first develop a distinguishability condition between
the function g0(Y |X) and the mixture part pG∗(Y |X)
in the deviated Gaussian mixture of experts in order
to isolate the effect of function g0 on the convergence
behaviors of parameter estimation of pG∗ . Then, we
conduct the convergence analysis of parameter esti-
mation under distinguishable settings, namely when
the distinguishability condition holds true, and non-
distinguishable settings, i.e. when that condition does
not hold. In each scenario, we construct a novel Voronoi
loss function to precisely capture distinct convergence
rates of parameter estimation in the deviated Gaussian
mixture of experts (see also Table 1). Our theory can
be summarized as follows:

1. Distinguishable settings: When the dis-
tinguishability condition holds, there is no impact
of the function g0 on the mixture of experts part
pG∗ . Therefore, we design a novel Voronoi loss func-
tion D1((λ̂n, Ĝn), (λ

∗, G∗)) in equation (8), and then
demonstrate that it is lower bounded by the Total
Variation distance V (pλ̂n,Ĝn

, pλ∗,G∗), which vanishes
at the rate of order Õ(n−1/2). It follows from this
bound that the estimation rate for (λ∗, G∗) is of order
Õ(n−1/2). Moreover, parameters (a∗i , b

∗
i , σ

∗
i ) which are

fitted by exactly one component enjoy the same estima-
tion rate of order Õ(n−1/2). By contrast, if (a∗i , b∗i , σ∗

i )
are approached by more than one component, then
the rates for estimating a∗i become slower at Õ(n−1/4),
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Setting
Bound of k Loss

Exact-
fitted
a∗j , b

∗
j , σ

∗
j

Over-fitted a∗j , b
∗
j , σ

∗
j

Distinguishable k ≥ k∗ D1 n−1/2 n−1/4, n−1/2r̄(|Aj |), n−1/r̄(|Aj |)

Non-
distinguishable

k ≥ k∗ + k0 − k̄, λ̂n > λ∗
D2 n−1/2

n−1/4, n−1/2r̄(|Bj |), n−1/r̄(|Bj |)

Otherwise n−1/4, n−1/2r̄(|Aj |), n−1/r̄(|Aj |)

Theorem 2 Ho et al. (2022) k ≥ k∗ W̃ n−1/4 n−1/4, n−1/2r̄(k−k∗+1), n−1/r̄(k−k∗+1)

Table 1: Summary of parameter estimation rates in the (deviated) Gaussian mixture of experts. Here, exact-fitted
parameters are those approximated by one fitted component, while their over-fitted counterparts are approached
by at least two fitted components. Additionally, the value of function r̄(·) ≥ 4 is determined by the solvability
of the system of polynomial equations (6). Meanwhile, the cardinalities of Voronoi cells Aj and Bj , which are
respectively defined in equations (7) and (11), indicate the number of components fitting parameters a∗j , b

∗
j , σ

∗
j .

Lastly, the notation W̃ stands for the generalized Wasserstein loss function used in Ho et al. (2022).

while those for b∗i and σ∗
i are of orders Õ(n−1/2r̄i) and

Õ(n−1/r̄i), respectively, where r̄i ≥ 4 is determined by
the solvability of the system of polynomial equations
defined in equation (6).

2. Non-distinguishable settings: When the distin-
guishability condition fails, we consider the function g0
as a Gaussian mixture of k0 experts, where 1 ≤ k0 ≤ k∗,
whose parameters interact with those of the mixture
part pG∗ . Notably, the convergence behaviors of pa-
rameter estimation in the deviated Gaussian mixture
of experts strictly depend on the interaction level de-
termined by the number of overlapped components k̄
that g0 and pG∗ share. Therefore, we propose a novel
Voronoi loss function D2((λ̂n, Ĝn), (λ

∗, G∗)) in equa-
tion (12) to capture this property, and then derive the
Total Variation lower bound D2((λ̂n, Ĝn), (λ

∗, G∗)) ≲
V (pλ̂n,Ĝn

, pλ∗,G∗) = Õ(n−1/2). Consequently, the
rates for estimating (λ∗, G∗) and exact-fitted parame-
ters a∗j , b∗j , σ∗

j are of order Õ(n−1/2). On the other hand,
for over-fitted parameters a∗j , b

∗
j , σ

∗
j , while the estima-

tion rate for a∗j remains unchanged of order Õ(n−1/4),
those for b∗j , σ

∗
j not only depend on the solvability of

the system (6) but also vary with the relation between
k and k∗ + k0 − k̄.

Organization. The paper is organized as follows.
Firstly, we introduce a novel distinguishability con-
dition and a notion of Voronoi cells as well as es-
tablish the density estimation rate in Section 2. In
Section 3.1, we analyze the convergence behavior of
parameter estimation under both the distinguishable
and non-distinguishable settings and provide a proof
sketch for main results. Then, we conduct a simulation
study in Section 4 to empirically verify our theoretical
results before concluding the paper in Section 5. Ad-
ditional results and detailed proofs are all deferred to
the supplementary material.

Notation. Let [n] stand for the set {1, 2, . . . , n} for any
n ∈ N. Given two sequences {sn} and {tn}, we write
sn ≲ tn or sn = O(tn) if there exists a constant C > 0
independent of n such that sn ≤ Ctn for all n ∈ N
(similar for sn ≳ tn). Next, the notation sn = Õ(tn)
indicates that the previous bound occurs up to some
logarithmic factor. Let ∥·∥p represents for the usual
p-norm in Rd with a convention that ∥ · ∥ being the 2-
norm. Finally, for any two probability density functions
p and q (with respect to the Lebesgue measure µ), we
define the Total Variation distance between them as
V (p, q) := 1

2

∫
|p− q|dµ, while the Hellinger distance is

given by h(p, q) :=
(

1
2

∫
(
√
p−√

q)2dµ
)1/2

.

2 BACKGROUND

In this section, we first introduce a distinguishabil-
ity condition, and then validate the identifiability of
the deviated Gaussian mixture of experts as well as
characterize the density estimation rate.
Recall that h1 and h2 are mean and variance expert
functions in the true model (1). Then, we begin this
section with the following distinguishability condition
between the function g0 and the mixture part pG∗ :
Definition 1 (Distinguishability Condition). We say
that pG∗ is distinguishable from g0 with respect to vector
r = (r1, . . . , rk∗) ∈ Nk∗ if the following holds: assume
that there exist real coefficients α(0) and α

(i)
ℓ1,ℓ2

, for
i ∈ [k∗] and 0 ≤ ℓ1 + ℓ2 ≤ ri that satisfy

k∗∑
i=1

ri∑
ℓ1+ℓ2=0

α
(i)
ℓ1,ℓ2

∂ℓ1+ℓ2f

∂hℓ1
1 ∂hℓ2

2

(Y |(a∗i )⊤X + b∗i , σ
∗
i )

+ α(0)g0(Y |X) = 0,

for almost surely (X,Y ), then α(0) = α
(i)
ℓ1,ℓ2

= 0 for
any i ∈ [k∗] and 0 ≤ ℓ1 + ℓ2 ≤ ri.



On Parameter Estimation in Deviated Gaussian Mixture of Experts

For better understanding, we provide below a scenario
when pG∗ is distinguishable from g0.

Example 1. Let G0 =
∑k0

i=1 p
0
i δ(θ0

1i,θ
0
2i)

∈ Ek0
(Θ) :=

Ok0
(Θ) \ Ok0−1(Θ), where k0 ∈ N. If we set

g0(Y |X) = pG0(Y |X)

: =

k0∑
i=1

p0i f(Y |(a0i )⊤X + b0i , σ
0
i ), (3)

then pG∗ is distinguishable from g0 whenever k0 > k∗.

In high level, the purpose of the distinguishability con-
dition is to control the interaction level between the
function g0 and the mixture part pG∗ . From the per-
spective of the parameter estimation problem, if there
is no effect of the function g0 on the mixture pG∗ ,
then the convergence behaviors of parameter estima-
tion in the deviated Gaussian mixture of experts will
be similar to those in the standard Gaussian mixture
of experts previously studied in Ho et al. (2022). On
the other hand, when the distinguishability condition
fails, i.e., there are interactions between g0 and pG∗ ,
the parameter estimation rates will strictly depend on
the interaction level among these two functions. In our
paper, we illustrate that point by considering g0 as a
Gaussian mixture of k0 expert given in equation (3),
where 1 ≤ k0 ≤ k∗. This choice of function g0 allows
us to determine the level of the interaction between
g0 and pG∗ explicitly via the number of overlapped
components that these functions share, which will be
discussed further in Section 3.2.

Subsequently, we figure out in the following proposi-
tion that if the distinguishability condition is satisfied,
then the deviated Gaussian mixture of experts in equa-
tion (1) is identifiable.

Proposition 1 (Identifiability). Let G,G′ be two mix-
ing measures in Gk(Θ) and λ, λ′ be two mixing propor-
tions in [0, 1]. Assume that pG∗ is distinguishable from
g0, then if the identifiability equation pλ,G(X,Y ) =
pλ′,G′(X,Y ) holds for almost surely (X,Y ) ∈ X × Y,
then we achieve that (λ,G) ≡ (λ′, G′).

Proof of Proposition 1 is in Appendix B.1. Given
that pG∗ is distinguishable from h0, this result en-
sures the convergence of the MLE (λ̂n, Ĝn) to the true
pair of mixing proportion and mixing measure (λ∗, G∗)
when the density estimation pλ̂n,Ĝn

(X,Y ) converges to
the true density pλ∗,G∗(X,Y ) for almost surely (X,Y ).
Thus, it is natural to explore the density estimation
rate in the following proposition:

Proposition 2 (Density estimation rate). Sup-
pose that the function g0 is bounded with tail
EX [− log g0(Y |X)] ≳ Y q for almost surely Y ∈ Y for

some q > 0. Then, the following inequality holds true:

P
(
V (pλ̂n,Ĝn

, pλ∗,G∗) > C
√
log(n)/n

)
≲ n−c,

where C > 0 is a constant that depends on g0, λ∗, G∗
and Θ, while the constant c > 0 depends only on Θ.

Proof of Proposition 2 is in Appendix B.2. The above
bound indicates that the density estimation pλ̂n,Ĝn

con-
verges to the true density pλ∗,G∗ under the Total Varia-
tion distance at the parametric rate of order Õ(n−1/2).
In order to leverage this result, we assume that the func-
tion g0 is bounded with tail EX [− log g0(Y |X)] ≳ Y q

for almost surely Y ∈ Y for some q > 0 throughout the
paper unless stating otherwise.

3 CONVERGENCE RATES OF
PARAMETER ESTIMATION

In this section, we aim to establish the convergence
rates of maximum likelihood estimation in the deviated
Gaussian mixture of experts under both the distinguish-
able and non-distinguishable settings.

3.1 Distinguishable Settings

Under this setting, the mixture part pG∗ is distinguish-
able from the function g0 w.r.t vector r = (r1, . . . , rk∗)
that we will choose later. In other words, there is no
interaction between pG∗ and g0, and the following set
is linearly independent for almost surely X:{

∂ℓ1+ℓ2f

∂hℓ1
1 ∂hℓ2

2

(Y |(a∗j )⊤X + b∗j , σ
∗
j ), g0(Y |X) :

j ∈ [k∗], 0 ≤ ℓ1 + ℓ2 ≤ rj} . (4)

Given the parametric density estimation rate
V (pλ̂n,Ĝn

, pλ∗,G∗) = Õ(n−1/2) in Proposition 2, our
main goal is to establish the Total Variation lower
bound V (pλ̂n,Ĝn

, pλ∗,G∗) ≳ D1((λ̂n, Ĝn), (λ
∗, G∗)),

where D1 will be defined in equation (8), in or-
der to achieve the parametric convergence rate of
the MLE D1((λ̂n, Ĝn), (λ

∗, G∗)) = Õ(n−1/2). For
that purpose, we first rewrite the density discrepancy
pλ̂n,Ĝn

(X,Y )−pλ∗,G∗(X,Y ) in terms of f(Y |(âni )⊤X+

b̂ni , σ̂
n
i )− f(Y |(a∗j )⊤X + b∗j , σ

∗
j ), where (âni , b̂

n
i , σ̂

n
i ) is a

component of Ĝn. Next, we apply a Taylor expansion
to the function f(Y |(âni )⊤X + b̂ni , σ̂

n
i ) about the point

(a∗j , b
∗
j , σ

∗
j ) to decompose the density discrepancy into

a linear combination of linearly independent elements
associated with coefficients involving the parameter
discrepancies, namely âni − a∗j , b̂ni − b∗j and σ̂n

i − σ∗
j .

As a result, when pλ̂n,Ĝn
converges to pλ∗,G∗ , the pre-

vious parameter discrepancies also go to zero and we
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Figure 1: Illustration of the Voronoi cells generated by the components of G∗ (red crosses) and the fitted
components of the MLE Ĝn (blue points). Under the distinguishable settings, Theorem 1 indicates that the
rates for estimating true components (a∗j , b

∗
j , σ

∗
j ) in cells 1, 2, 4, 6, which are fitted by one component, are of order

Õ(n−1/2). Meanwhile, those for true components (a∗3, b
∗
3, σ

∗
3) in cell 3, which are fitted by three components, are

drastically slow at Õ(n−1/4), Õ(n−1/12) and Õ(n−1/6), respectively.

achieved our desired estimation rates. Note that such
decomposition cannot be done if the set in equation (4)
is linearly dependent. However, we observe an interac-
tion among parameters of the Gaussian density f via
the following partial differential equation (PDE):

∂2f

∂b2
= 2

∂f

∂σ
. (5)

In high level, in Step 1 of our proofs, we need to
decompose the density discrepancy pλn,Gn(Y |X) −
pλ∗,G∗(Y |X) into a combination of elements from some
linearly independent set. To this end, we apply Taylor
expansions to f(Y |(ani )⊤X + bni , σ

n
i ) around the true

parameters (a∗j , b
∗
j , σ

∗
j ). Unfortunately, there are many

linearly dependent derivative terms arising from the
above PDE. Thus, we have to group these terms to-
gether by taking the summation of their coefficients.
Consequently, when the resulting coefficients tend to
zero, we arrive at a system of polynomial equations
which was previously studied in Ho and Nguyen (2016).

System of polynomial equations. Let r̄(m) be
the smallest natural number r such that the follow-
ing system of polynomial equations does not admit
any non-trivial solutions for the unknown variables:
(sl, t1l, t2l)

m
l=1 ⊆ R3

m∑
l=1

∑
n1,n2∈N

n1+2n2=β

s2l tn1

1l tn2

2l

n1!n2!
= 0, β = 1, 2, . . . , r, (6)

A solution to the above system is regarded as non-trivial
if all variables sl are non-zero, whereas at least one of
the t1l is different from zero. As shown in [Proposition
2.1, Ho and Nguyen (2016)], we have r̄(2) = 4, r̄(3) = 6
and r̄(m) ≥ 7 when m ≥ 4.

Voronoi loss function: Intuitively, true parameters
a∗j , b

∗
j , σ

∗
j which are fitted by one component should ad-

mit faster estimation rates than those approximated by
more than one component. To capture this convergence
behavior of parameter estimation, let us introduce a
class of Voronoi cells Aj ≡ Aj(G) w.r.t an arbitrary

mixing measure G, which are generated by the compo-
nents θ∗j := (a∗j , b

∗
j , σ

∗
j ) of G∗ as follows:

Aj := {i ∈ [k] : ∥θi − θ∗j ∥ ≤ ∥θi − θ∗ℓ ∥, ∀ℓ ̸= j}, (7)

where θi := (ai, bi, σi) for any i ∈ [k]. Notably, the
cardinality of Voronoi cell Aj is exactly the number
of components fitting θ∗j . An instance of Voronoi cells
is illustrated in Figure 1. Based on those cells, the
Voronoi loss function used for this setting is defined as

D1((λ,G), (λ∗, G∗)) := |λ− λ∗|+ (λ+ λ∗)

×
[ ∑
j:|Aj |=1

∑
i∈Aj

pi

(
∥∆aij∥+ |∆bij |+ |∆σij |

)
+

∑
j:|Aj |>1

∑
i∈Aj

pi

(
∥∆aij∥2 + |∆bij |r̄(|Aj |)

+ |∆σij |r̄(|Aj |)/2
)
+

k∗∑
j=1

∣∣ ∑
i∈Aj

λpi − λ∗p∗j
∣∣]. (8)

where ∆aij := ai−a∗j , ∆bij := bi−b∗j and ∆σij := σi−
σ∗
j . It is obvious that D1((λ,G), (λ∗, G∗)) = 0 if and

only if (λ,G) = (λ∗, G∗). It is worth emphasizing that
we design the above loss function to merely determine
parameter estimation rates, so we do not attempt to
optimize that loss. Now, we derive the convergence rate
of the MLE (λ̂n, Ĝn) under the challenging scenario
when λ∗ ∈ (0, 1] in Theorem 1, while a discussion on
the scenario when λ∗ = 0 is relegated to Appendix D
due to the space limit.
Theorem 1. Assume that the distinguishability condi-
tion holds and λ∗ ∈ (0, 1] is unknown. Then, we achieve
the Total Variation lower bound V (pλ,G, pλ∗,G∗) ≳
D1((λ,G), (λ∗, G∗)) for any (λ,G) ∈ [0, 1] × Gk(Θ).
This bound together with Proposition 2 imply that

P
(
D1((λ̂n, Ĝn), (λ

∗, G∗)) > C1

√
log(n)/n

)
≲ n−c1 ,

where C1 > 0 is a constant depending on g0, λ
∗, G∗,Θ,

while the constant c1 > 0 depends only on Θ.

Proof of Theorem 1 is in Appendix A.1. When
λ∗ ∈ (0, 1], the result that D1((λ̂n, Ĝn), (λ

∗, G∗)) van-
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ishes at a rate of order Õ(n−1/2) implies the following
observations (which are illustrated in Figure 1 as well):

(i) Firstly, for any j ∈ [k∗] such that |An
j | = 1, where

An
j = Aj(Ĝn), it follows that all the true parame-

ters a∗j , b
∗
j , σ

∗
j , which are fitted by a single component,

share the same parametric rate of order Õ(n−1/2). On
the other hand, [Theorem 2, Ho et al. (2022)], which
used the generalized Wasserstein as a loss function,
indicated that the rates for estimating those parame-
ters were of orders Õ(n−1/4), Õ(n−1/2r̄(k−k∗+1)) and
Õ(n−1/r̄(k−k∗+1)), respectively. When k − k∗ + 1 = 3,
these rates become Õ(n−1/4), Õ(n−1/12) and Õ(n−1/6),
which are substantially slower than our parametric rate.
This highlights the benefits of using the Voronoi loss
function over the generalized Wasserstein in the con-
vergence analysis of the MLE.

(ii) Secondly, for any j ∈ [k∗] such that |An
j | > 1, the

rates for estimating true parameters a∗j , b
∗
j , σ

∗
j , which

are fitted by more than one component, are not uniform.
More specifically, the estimation rates for b∗j and σ∗

j are
significantly slow, standing at orders Õ(n−1/2r̄(|An

j |))

and Õ(n−1/r̄(|An
j |)), respectively. This is due to the

interaction between them via the PDE in equation (5).
By contrast, since a∗j does not interact with those
parameters, their estimation rates are much faster of
order Õ(n−1/4).

(iii) Finally, we point out a scenario when true pa-
rameters b∗j , σ

∗
j attain the slowest estimation rates. In

particular, assume that the MLE Ĝn has k̂n compo-
nents. When Ĝn converges to G∗, each Voronoi cell An

j

contains at least one element for any j ∈ [k∗], which im-
plies that |An

j | ≤ k̂n − k∗ + 1. The equality is achieved
if, for example, |An

1 | = k̂n − k∗ + 1 and |An
j | = 1 for

any j ∈ [k∗] \ {1}. Then, the rates for estimating
b∗1, σ

∗
1 reach the slowest orders of Õ(n−1/2r̄(|An

j |)) and
Õ(n−1/r̄(|An

j |)), respectively, which match those of their
counterparts in [Theorem 2, Ho et al. (2022)]. Con-
versely, we achieve the fastest estimation rates for other
parameters b∗j , σ

∗
j , which are of order Õ(n−1/2).

3.2 Non-distinguishable Settings

Under this setting, the mixture part pG∗ is not dis-
tinguishable from the function g0, that is, the set in
equation (4) is no longer linearly independent for al-
most surely X. There are several scenarios under which
this phenomenon occurs, and one of them is when g0
being a Gaussian mixture of k0 experts as follows:

g0(Y |X) = pG0
(Y |X)

:=

k0∑
j=1

p0jf(Y |(a0j )⊤X + b0j , σ
0
j ), (9)

where G0 :=
∑k0

i=1 p
0
i δ(a0

i ,b
0
i ,σ

0
i )

∈ Ek0(Θ) with k0 ∈ [k∗]
such that G0 and G∗ share some common atoms. With-
out loss of generality, we assume that (a0i , b

0
i , σ

0
i ) =

(a∗j , b
∗
j , σ

∗
j ) for any j ∈ [k̄], where k̄ ∈ [k0]. We consider

this choice of function g0 as we can control the level
of the interaction between g0 and pG∗ explicitly via
the number of overlapped components k̄ of two mixing
measures G0 and G∗. In particular, we consider two
separate regimes of the value of k̄. The first one is
when 1 ≤ k̄ < k0, which is referred to as the partial
overlap regime, and the second one is when k̄ = k0,
which is termed the full overlap regime. Due to the
space limit, we will present only results for the partial
overlap regime in this section, while those for the full
overlap regime are deferred to Appendix C. Further-
more, similar to Section 3.1, we will also focus on only
the scenario when λ∗ ∈ (0, 1], and relegate the details
for the scenario when λ∗ = 0 to Appendix D.

Partial overlap. Given the formulation of func-
tion g0 in equation (9), the deviated Gaussian mix-
ture of experts is no longer identifiable, that is, the
equation pλ,G(X,Y ) = pλ∗,G∗(X,Y ) for almost surely
(X,Y ) does not merely lead to (λ,G) ≡ (λ∗, G∗) any-
more, which causes a significant issue compared to
the distinguishable settings. Therefore, it is neces-
sary to find all the solutions (λ,G) of the equation
pλ,G(X,Y ) = pλ∗,G∗(X,Y ) for almost surely (X,Y ).
For that purpose, let us consider a new mixing mea-
sure. In particular, for any mixing proportion λ > λ∗,
we define

G∗(λ) :=

(
1− λ∗

λ

)
G0 +

λ∗

λ
G∗, (10)

as a mixing measure having a total of k∗ + k0 − k̄
components in Θ. Note that the previous equation
can be rewritten as λ[pG(X,Y )−pG∗(λ)

(X,Y )] = 0 for
almost surely (X,Y ). Thus, when k ≥ k∗ + k0 − k̄ and
λ > λ∗, we admit (λ,G) ≡ (λ,G∗(λ)) as a solution. On
the other hand, when either k < k∗ + k0 − k̄ or λ ≤ λ∗,
we obtain an obvious solution (λ,G) ≡ (λ∗, G∗). For
those reasons, we have to design a Voronoi loss function
which is able to capture the aforementioned solutions.

Voronoi loss function. To facilitate our presentation,
we assume that G∗(λ) =

∑k∗+k0−k̄
j=1 p′j(λ)δ(a′

j ,b
′
j ,σ

′
j)

.
When k ≥ k∗ + k0 − k̄ and λ > λ∗, we introduce an-
other set of Voronoi cells Bj ≡ Bj(G) w.r.t an arbitrary
mixing measure G ∈ Gk(Θ) generated by the support
of G∗(λ), denoted by θ′j := (a′j , b

′
j , σ

′
j), as follows:

Bj = {i ∈ [k] : ∥θi − θ′j∥ ≤ ∥θi − θ′ℓ∥, ∀ℓ ̸= j}, (11)

for any j ∈ [k∗ + k0 − k̄], where θi := (ai, bi, σi).
Let us denote ∆′aij := ai − a′j , ∆′bij := bi − b′j and
∆′σij := σi − σ′

j , then the discrepancy between two
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mixing measures G and G∗(λ) can be characterized by

D3(G,G∗(λ))

:=
∑

j:|Bj |=1

∑
i∈Bj

pi (∥∆′aij∥+ |∆′bij |+ |∆′σij |)

+
∑

j:|Bj |>1

∑
i∈Bj

pi

(
∥∆′aij∥2 + |∆′bij |r̄(|Bj |)

+ |∆′σij |r̄(|Bj |)/2
)
+

k∗+k0−k̄∑
j=1

∣∣∣∣∣∣
∑
i∈Bj

pi − p′j(λ)

∣∣∣∣∣∣ .
When either k < k∗ + k0 − k̄ or λ ≤ λ∗, we reuse
the loss function D1 in equation (8) to capture the
solution (λ,G) ≡ (λ∗, G∗). Thus, we combine the two
loss functions D1 and D3 together to construct the
following general Voronoi loss function used for any
settings of k and λ under the partial overlap regime:

D2((λ,G), (λ∗, G∗))

:=


D1((λ,G), (λ∗, G∗)), ∀k < k∗ + k0 − k̄;

1{λ≤λ∗}D1((λ,G), (λ∗, G∗))

+1{λ>λ∗}D3(G,G∗(λ)), ∀k ≥ k∗ + k0 − k̄.

(12)

Now, we are ready to present the main result for the
partial overlap regime in the following theorem.
Theorem 2. Assume that λ∗ ∈ (0, 1] is unknown,
and let g0 take the form in equation (9) with 1 ≤
k̄ < k0. Then, we obtain that V (pλ,G, pλ∗,G∗) ≳
D2((λ,G), (λ∗, G∗)) for any (λ,G) ∈ [0, 1] × Gk(Θ).
This bound together with Proposition 2 indicate that

P(D2((λ̂n, Ĝn), (λ
∗, G∗)) > C2

√
log(n)/n) ≲ n−c2 ,

where C2 > 0 is a constant depending on g0, λ
∗, G∗,Θ,

while the constant c2 > 0 depends only on Θ.

Proof of Theorem 2 is in Appendix A.2. A few com-
ments regarding Theorem 2 are in order. Firstly, when
either k < k∗ + k0 − k̄ or λ̂n ≤ λ∗, the loss function
D2 reduces to D1. Therefore, the convergence rates of
parameter estimation remain the same as those in The-
orem 1. Secondly, when k ≥ k∗ + k0 − k̄ and λ̂n > λ∗,
the loss function D2 turns into D3. As a result, for
true components (a′j , b

′
j , σ

′
j) which are approximated

by more than one fitted components, the rates of es-
timating b′j and σ′

j are reported to be Õ(n−1/2r̄(|Bn
j |))

and Õ(n−1/r̄(|Bn
j |)), respectively, where Bn

j := Bj(Ĝn).
Meanwhile, those for a′j are of order Õ(n−1/4). How-
ever, for true components (a′j , b

′
j , σ

′
j) approximated by

a single fitted component, their estimation rates are
uniform, standing at Õ(n−1/2). This again confirms the
ability to capture distinct estimation rates accurately
of the proposed Voronoi loss functions in comparison
with the generalized Wasserstein.

3.3 Proof Sketch

In this section, we provide a generic proof sketch for
Theorems 1 and 2, and distinguish our proof tech-
niques from those used in the most related work (Ho
et al., 2022). More details of these proofs are de-
ferred to Appendix A. For simplicity, the metric D
used in this sketch is implicitly understood as one
among the Voronoi loss functions D1 and D2 in Sec-
tions 3.1 and 3.2. Generally, our goal is to establish
the Total Variation lower bound V (pλ,G, pλ∗,G∗) ≳
D((λ,G), (λ∗, G∗)) for any (λ,G) ∈ [0, 1] × Gk(Θ),
which together with Proposition 2 give us our desired
conclusions in those theorems.

Local inequality. First, we prove the following local
bound by contradiction in three main steps:

lim
ε→0

inf
(λ,G)∈[0,1]×Gk(Θ):
D((λ,G),(λ∗,G∗))≤ε

V (pλ,G, pλ∗,G∗)

D((λ,G), (λ∗, G∗))
> 0. (13)

Step 1. Assume that the local inequality does
not hold, then there exists a sequence (λn, Gn)
such that both Dn := D((λn, Gn), (λ

∗, G∗)) and
V (pλn,Gn , pλ∗,G∗)/Dn vanish as n → ∞. Different from
Ho et al. (2022), we need to invoke the Taylor expansion
twice in this step due to the sophisticated structure of
our metric D. Firstly, for each j ∈ [k∗] : |Aj | = 1, we
apply the first-order Taylor expansion to the quantity
Un := [pλn,Gn

(X,Y )− pλ∗,G∗(X,Y )]/Dn, whereas for
each j ∈ [k∗] : |Aj | > 1, we use the Taylor expansion
up to order rj that will be chosen later in Step 2. Then,
we show that Un can be written as a linear combination
of elements of some linearly independent set H.

Step 2. We attempt to show by contradiction that at
least one among the coefficients in that combination
does not converge to zero. Assume that all of them
go to zero. Then, by some algebraic transformations
of those limits, we arrive at the following system of
polynomial equations:∑

i∈Aj

∑
n1,n2∈N,
n1+2n2=β

s2i tn1
1i tn2

2i

n1!n2!
= 0, β = 1, 2, . . . , rj .

By construction, this system necessarily has at least
one non-trivial solution. Therefore, in order to point
out a contradiction, we set rj = r̄(|Aj |) so that the
above system does not have any non-trivial solutions.

Step 3. On the other hand, by means of Fatou’s lemma
and the limit V (pλn,Gn

, pλ∗,G∗)/Dn → 0, we show that
Un → 0 for almost surely (X,Y ). Since H is a linearly
independent set, we deduce that all the coefficients of
elements of H in the representation of Un vanish as
n → ∞, which contradicts the result in Step 2. Hence,
we obtain the local inequality in equation (13).
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(a) Distinguishable setting (b) Non-distinguishable setting

Figure 2: Convergence rate of the maximum likelihood estimation (λ̂n, Ĝn) under the Voronoi loss functions.

Global inequality. Given the above local inequality,
it suffices to prove the following global bound:

inf
(λ,G)∈[0,1]×Gk(Θ):
D((λ,G),(λ∗,G∗))>ε

V (pλ,G, pλ∗,G∗)

D((λ,G), (λ∗, G∗))
> 0. (14)

A key step for establishing this bound is to solve the
equation pλ,G(X,Y ) = pλ∗,G∗(X,Y ) for almost surely
(X,Y ). If pG∗ is distinguishable from g0, then this
equation has the unique solution (λ,G) ≡ (λ∗, G∗).
However, this property does not hold when the dis-
tinguishability condition fails, which induces a huge
challenge compared to Ho et al. (2022). Thus, we solve
the previous equation under the partial overlap regime
in Section 3.1. Hence, the proof sketch is completed.

4 SIMULATION STUDY

In this section, we carry out a simulation study to
empirically verify our theoretical results regarding the
convergence rate of the MLE (λ̂n, Ĝn) under both the
distinguishable and non-distinguishable settings.

Distinguishable setting. We first generate the co-
variates X1, . . . , Xn

i.i.d∼ N (0, 1), and then set

g0(Y |X) =

2∑
j=1

p0jf(Y |a0jX + b0j , σ
0
j ),

where (a01, b01, σ0
1) = (.2, .1, .01), (a02, b02, σ0

2) = (.1, 0, .01)
and p01 = p02 = 1

2 . Next, we consider the following true
conditional density function:

pλ∗,G∗(Y |X) := (1−λ∗)g0(Y |X)+λ∗f(Y |a∗X+b∗, σ∗),

in which λ∗ = 0.5 and (a∗, b∗, σ∗) = (1, 1, 1). Here,
we have k0 = 2 > 1 = k∗, therefore, the distinguisha-
bility condition is satisfied according to Example 1.
Subsequently, we draw a sample Y1, Y2 . . . , Yn of size
n ∈ {100, 110, 120, . . . , 200} from pλ∗,G∗(Y |X). Then,

we overfit the true model by a deviated Gaussian mix-
ture of k = 2 experts, and run the EM algorithm
(Dempster et al., 1977) in 1000 iterations to find the esti-
mators λ̂n, (p̂n1 , ân1 , b̂n1 , σ̂n

1 ) and (p̂n2 , â
n
2 , b̂

n
2 , σ̂

n
2 ). Finally,

we compute the discrepancy D1((λ̂n, Ĝn), (λ
∗, G∗)),

where Ĝn =
∑2

i=1 p̂
n
i δ(ân

i ,b̂
n
i ,σ̂

n
i ) and G∗ = δ(a∗,b∗,σ∗),

and plot its values in Figure 2(a). From the figure,
it is obvious that the convergence rate of the MLE
(λ̂n, Ĝn) under the Voronoi loss D1 is at the order
of Õ(n−1/2), which is consistent with our theoretical
result in Theorem 1.

Non-distinguishable setting. For this setting, we
also generate X1, . . . , Xn

i.i.d∼ N (0, 1), but set

g0(Y |X) =

3∑
j=1

p0jf(Y |a0jX + b0j , σ
0
j ),

with (a01, b
0
1, σ

0
1) = (.2, .1, .01), (a02, b02, σ0

2) = (.1, .1, .01),
(a03, b

0
3, σ

0
3) = (.21, .11, .01215) and p01 = p02 = p30 = 1

3 .
Next, we consider the following true conditional density

pλ∗,G∗(Y |X) := (1− λ∗)g0(Y |X)

+ λ∗
3∑

j=1

p∗jf(Y |a∗jX + b∗1, σ
∗
j ),

with (a∗1, b
∗
1, σ

∗
1) = (.2, .1, .01), (a∗2, b∗2, σ∗

2) = (.1, .4, .25),
(a∗3, b

∗
3, σ

∗
3) = (1.1, .3, .25) p∗1 = p∗2 = p∗3 = 1

3 and λ∗ =
0.5. Here, each of G0 and G∗ has 3 components and
they share one common component among them, specif-
ically (a01, b

0
1, σ

0
1) = (a∗1, b

∗
1, σ

∗
1). Thus, pG∗ is not distin-

guishable from g0, and this setting belongs to the par-
tial overlap regime in Section 3.2 with k̄ = 1. We then
sample Y1, . . . , Yn with n ∈ {100, 110, 120, . . . , 200}
from pλ∗,G∗(Y |X). Next, we overfit the true model by
a deviated Gaussian of k = 4 experts and use the EM
algorithm to find the estimators λ̂n, p̂ni , âni , b̂ni and σ̂n

i

for i ∈ [4] in 1000 iterations. After that, we calculate
the distance D2((λ̂n, Ĝn), (λ

∗, G∗)), and plot its values
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in Figure 2(b). It can be seen from the figure that the
convergence rate of the MLE (λ̂n, Ĝn) is at the order of
Õ(n−1/2), which aligns with our claim in Theorem 2.

5 CONCLUSION AND DISCUSSION

In this paper, we characterize the convergence behav-
iors of maximum likelihood estimation in the deviated
Gaussian mixture of experts, which is motivated by the
goodness-of-fit test. We first show that the convergence
rate of density estimation to the true density is para-
metric on the sample size. Regarding the parameter
estimation problem, we consider two separate settings
based on the level of distinguishability between the
known function g0(Y |X) and the mixture of experts
part pG∗(Y |X) in the proposed model. In each set-
ting, we design a novel Voronoi loss function to capture
the interaction among the parameters of expert func-
tions, and the distinguishability of pG∗ from g0. We
then theoretically and empirically demonstrate that
our proposed loss functions outperform the general-
ized Wasserstein studied in previous work in terms of
precisely characterizing distinct parameter estimation
rates, which are determined by the solvability of a
system of polynomial equations.

Technical novelty. The most related work to our
paper is Ho et al. (2022) which characterize the con-
vergence behavior of parameter estimation in Gaussian
mixture of experts. Compared to Ho et al. (2022), our
paper is technically novel in three major aspects:

1. Distinguishability condition: In this work, we
cope with not only the interaction (5) among parame-
ters of the Gaussian density f as in Ho et al. (2022) but
also another interaction between the known density g0
and the mixture part pG∗ . Thus, we introduce a novel
distinguishability condition to isolate the effect of g0
on the convergence behaviors of parameter estimation
of pG∗ . To the best of our knowledge, such condition
for mixture-of-experts model had never been studied
in prior work.

2. Loss functions: Ho et al. (2022) propose using
the generalized Wasserstein loss function among pa-
rameters to determine the convergence rates of their
estimation. However, this loss leads to the same es-
timation rates for true parameters fitted by multiple
components, which should be distinct. To capture
those rates precisely, we construct novel Voronoi loss
functions in equations (8) and (12) based on Voronoi
cells. For instance, it follows from our Theorem 1 that
the estimation rate for exact-fitted parameter b∗j is
O(n−1/2), while that for its over-fitted counterpart is
O(n−1/2r̄(|Aj |)). By contrast, Theorem 2 in Ho et al.
(2022) indicates that the rates for estimating exact-

fitted and over-fitted parameters b∗j are the same of
order O(n−1/2r̄(k−k∗+1)). When k − k∗ + 1 = 3, these
rates become O(n−1/12), which are substantially slower
than our parametric rate O(n−1/2) (see our Table 1).

3. Model identifiability: Although the deviated
Gaussian mixture of experts is identifiable under the dis-
tinguishable settings (see Proposition 1), this property
does not hold under the non-distinguishable settings.
Therefore, we have to solve the non-trivial equation of
variable (λ,G): pλ,G(X,Y ) = pλ∗,G∗(X,Y ) for almost
surely (X,Y ) under both the partial overlap and full
overlap regimes. This accounts for the involvement of
mixing measures G∗(λ) and G̃∗(λ) in the loss functions
D2 (see equation (12)) and D4 (see equation (34)), re-
spectively, which are unprecedented in the literature,
including Ho et al. (2022).

Future directions. There are a few potential direc-
tions which are beyond the scope of our work and can
be developed in the future:

(i) Firstly, in the deviated Gaussian mixture of ex-
perts (1), we may consider a closer setting to practice
by assuming that the true parameters (a∗i , b

∗
i , σ

∗
i ) and

the true mixing proportion λ∗ vary with the sample
size n (see (Do et al., 2023)). Under that setting, we
would achieve uniform convergence rates of parame-
ter estimation rather than point-wise rates as in the
current work.

(ii) Secondly, we can adopt the current techniques
to characterize the convergence behavior of parame-
ter estimation under the deviated Gaussian mixture
of experts with covariate-dependent gating functions,
namely Gaussian gate (Nguyen et al., 2024d), softmax
gate (Nguyen et al., 2023, 2024c), Top-K sparse soft-
max gate (Nguyen et al., 2024b) and dense-to-sparse
gate (Nguyen et al., 2024a).

(iii) Finally, the theory in our paper relies on the
assumption that the data are generated from a devi-
ated Gaussian mixture of experts, i.e., the model is
well-specified. When the model is misspecified, which
resembles real-world applications, the data are sam-
pled from some unknown distribution associated with a
conditional density q(Y |X) (not necessarily a deviated
Gaussian mixture of experts). Then, the MLE (λ̂n, Ĝn)
converges to a pair

(λ̆, Ğ) ∈ argmin
(λ,G)∈[0,1]×Gk(Θ)

KL(q(Y |X)∥pλ,G(Y |X)),

where KL denotes the Kullback-Leibler divergence. The
insights from our theories indicate that the Voronoi
losses can be used to obtain the precise rates of indi-
vidual parameters of the MLE under the misspecified
setting. See (van de Geer, 2000) for further details.
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Supplementary Materials for “On Parameter Estimation in Deviated
Gaussian Mixture of Experts”

In this supplementary material, we first provide proofs for main results in Appendix A, while leaving those for
auxiliary results in Appendix B. Then, we present the convergence behavior of parameter estimation under the
full overlap regime in Appendix C. Finally, we study the parameter estimation problem in the deviated Gaussian
mixture of experts when the true mixing proportion vanishes, i.e. λ∗ = 0, in Appendix D.

A PROOF OF MAIN RESULTS

In this appendix, we provide the proof of Theorem 1 in Appendix A.1, and then present that for Theorem 2 in
Appendix A.2.

To begin with, let us define some essential notations that will be used in our arguments. For any vectors
u = (u1, u2, . . . , ud) ∈ Rd and q = (q1, q2, . . . , qd) ∈ Nd, we denote uq := uq1

1 uq2
2 . . . uqd

d , |u| := u1 + u2 + . . .+ ud

and q! := q1!q2! . . . qd!. Next, the two expert functions considered in this work are denoted by h1(X, a, b) = a⊤X+b
and h2(X,σ) = σ, for any (a, b, σ) ∈ Θ and X ∈ X . Finally, for any set A, we denote Ac as its complement.

A.1 Proof of Theorem 1

According to the result in Proposition 2, in order to reach the desired conclusion, we need to demonstrate that
V (pλ̂n,Ĝn

, pλ∗,G∗) ≳ D1((λ̂n, Ĝn), (λ
∗, G∗)), which follows from the following inequality:

inf
λ∈[0,1],G∈Gk,ξ(Θ)

V (pλ,G, pλ∗,G∗)

D1((λ,G), (λ∗, G∗))
> 0. (15)

For that purpose, we split the above inequality into two parts, which we referred to local inequality and
global inequality. Note that in the above infimum is subject to mixing measures in the set Gk,ξ(Θ) := {G =∑k′

i=1 piδ(ai,bi,σi) : 1 ≤ k′ ≤ k, pi ≥ ξ, (ai, bi, σi) ∈ Θ} for some ξ > 0 for simplicity.

Local inequality. Firstly, we will show the following local inequality:

lim
ε→0

inf
λ∈[0,1],G∈Gk,ξ(Θ):

D1((λ,G),(λ∗,G∗))≤ε

V (pλ,G, pλ∗,G∗)

D1((λ,G), (λ∗, G∗))
> 0. (16)

Assume by contrary that the above claim does not hold, then there exist a sequence of mixing measures
Gn =

∑kn

i=1 p
n
i δ(an

i ,b
n
i ,σ

n
i ) ∈ Gk,ξ(Θ) and a sequence of mixing proportions λn ∈ [0, 1] that satisfy

{
D1n := D1((λn, Gn), (λ

∗, G∗)) → 0,

V (pλn,Gn
, pλ∗,G∗)/D1n → 0,

as n → ∞. Next, the following Voronoi cells with respect to Ĝn is defined as:

An
j = Aj(Gn) = {i ∈ [kn] : ∥θni − θ∗j ∥ ≤ ∥θni − θ∗ℓ ∥, ∀ℓ ̸= j}, ∀j ∈ [k∗],

where θni := (ani , b
n
i , σ

n
i ) and θ∗j := (a∗j , b

∗
j , σ

∗
j ). Since kn ≤ k for all n, we can find a subsequence of Gn such that

kn does not change with n. Then, by replacing Gn with this subsequence, we may assume that kn = k for all
n ∈ N. Additionally, Aj = An

j does not change with n for all j ∈ [k∗], either. As D1n → 0, we can represent
Gn =

∑k∗
j=1

∑
i∈Aj

pni δ(an
i ,b

n
i ,σ

n
i ) such that |Aj | ≥ 1 for all j ∈ [k∗] and

∑k∗
j=1 |Aj | = k. Furthermore, it follows

from the formulation of metric D1 in equation (8) that λn → λ∗, (ani , bni , σn
i ) → (a∗j , b

∗
j , σ

∗
j ) for any i ∈ Aj and∑

i∈Aj
pni → p∗j for any j ∈ [k∗] when n tends to infinity.
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Step 1 - Application of Taylor expansion. Now, we consider the following quantity:

pλn,Gn(X,Y )− pλ∗,G∗(X,Y )

=
∑

j:|Aj |>1

∑
i∈Aj

λnp
n
i [f(Y |(ani )⊤X + bni , σ

n
i )− f(Y |(a∗j )⊤X + b∗j , σ

∗
j )]f̄(X)

+
∑

j:|Aj |=1

∑
i∈Aj

λnp
n
i [f(Y |(ani )⊤X + bni , σ

n
i )− f(Y |(a∗j )⊤X + b∗j , σ

∗
j )]f̄(X)

+

k∗∑
j=1

∑
i∈Aj

λnp
n
i − λ∗p∗j

 f(Y |(a∗j )⊤X + b∗j , σ
∗
j )f̄(X) + (λ∗ − λn)g0(Y |X)f̄(X)

:= An,1 +An,2 +Bn + Cn. (17)

For the sake of presentation, let us denote ∆anij := ani − a∗j , ∆bnij := bni − b∗j and ∆σn
ij := σn

i − σ∗
j for all i ∈ [kn]

and j ∈ [k∗]. For each j ∈ [k∗] such that |Aj | > 1, by applying the Taylor expansion up to order r̄(|Aj |), we can
rewrite f(Y |(ani )⊤X + bni , σ

n
i )− f(Y |(a∗j )⊤X + b∗j , σ

∗
j ) as

r̄(|Aj |)∑
|α|=1

1

α!
(∆anij)

α1(∆bnij)
α2(∆σn

ij)
α3

∂|α1|+α2+α3f

∂aα1∂bα2∂σα3
(Y |(a∗j )⊤X + b∗j , σ

∗
j ) +R1ij(Y |X)

=

r̄(|Aj |)∑
|α|=1

1

α!
(∆anij)

α1(∆bnij)
α2(∆σn

ij)
α3

Xα1

2α3

∂|α1|+α2+2α3f

∂h
|α1|+α2+2α3

1

(Y |(a∗j )⊤X + b∗j , σ
∗
j ) +R1ij(Y |X),

where R1ij(Y |X) is a Taylor remainder term such that R1ij(X,Y )/D1n → 0, and the first equality comes from
the following partial differential equation (PDE):

∂α3f

∂hα3
2

(Y |(a∗j )⊤X + b∗j , σ
∗
j ) =

1

2α3
· ∂

2α3f

∂h2α3
1

(Y |(a∗j )⊤X + b∗j , σ
∗
j ).

As a result, let ℓ = α2 + 2α3, then An,1 can be represented as

An,1 =
∑

j:|Aj |>1

r̄(|Aj |)∑
|α1|=0

2(r̄(|Aj |)−|α1|)∑
ℓ=0

En
α1,ℓ(j)X

α1 · ∂
|α1|+ℓf

∂h
|α1|+ℓ
1

(Y |(a∗j )⊤X + b∗j , σ
∗
j )f̄(X) +R1(X,Y ),

where R1(X,Y ) :=
∑k∗

j=1

∑
i∈Aj

R1ij(Y |X)f̄(X), which leads to R1(X,Y )/D1n → 0 as n → ∞. In addition, the
coefficients En

α1,ℓ
(j) in this representation are defined as

En
α1,ℓ(j) :=

∑
i∈Aj

∑
α2+2α3=ℓ

α2+α3≥1−|α1|

λnp
n
i

2α3α!
· (∆anij)

α1(∆bnij)
α2(∆σn

ij)
α3 ,

for any j ∈ [k∗], 0 ≤ |α1| ≤ r̄(|Aj |) and 0 ≤ ℓ ≤ 2(r̄(|Aj |)− |α1|).

Similarly, by means of Taylor expansion up to the first order, An,2 is decomposed as

An,2 =
∑

j:|Aj |=1

1∑
|α1|=0

2(1−|α1|)∑
ℓ=0

En
α1,ℓ(j)X

α1 · ∂
|α1|+ℓf

∂h
|α1|+ℓ
1

(Y |(a∗j )⊤X + b∗j , σ
∗
j )f̄(X) +R2(X,Y ),

where R2(X,Y ) is a Taylor remainder term such that R2(X,Y )/D1n → 0 as n → ∞.

Note that three terms An,1, An,2, Bn and Cn can be viewed as linear combinations of elements of the set H1

defined as

H1 :=

{
Xα1 · ∂

|α1|+ℓf

∂h
|α1|+ℓ
1

(Y |(a∗j )⊤X + b∗j , σ
∗
j )f̄(X), g0(Y |X)f̄(X) : j ∈ [k∗],

0 ≤ |α1| ≤ r̄(|Aj |), 0 ≤ ℓ ≤ 2(r̄(|Aj |)− |α1|)

}
. (18)
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Step 2 - Non-vanishing coefficients. In this step, we will show by contradiction that not all the coefficients
in the representations of An,1/D1n, An,2/D1n, Bn/D1n and Cn/D1n vanish as n → ∞. In particular, assume
that all of them vanish converge to zero. Given this hypothesis, it can be seen from the definitions of Cn and Bn

in equation (17) that

(λ∗ − λn)

D1n
→ 0,

1

D1n
·

k∗∑
j=1

∣∣∣∣∣∣
∑
i∈Aj

λnp
n
i − λ∗p∗j

∣∣∣∣∣∣→ 0. (19)

Regarding the coefficients in An,2, by considering the limits of En
0d,1

(j)/D1n and En
α1,0(j)/D1n for j ∈ [k∗] :

|Aj | = 1 and α1 ∈ {e1, e2, . . . , ed}, where eu := (0, . . . , 0, 1︸︷︷︸
u-th

, 0, . . . , 0) being a one-hot vector in Rd for any

u ∈ [d], we obtain that

1

D1n
·
∑

j:|Aj |=1

∑
i∈Aj

λnp
n
i

(
∥∆anij∥1 + |∆bnij |+ |∆σn

ij |
)
→ 0.

Due to the topological equivalence of 1-norm and 2-norm, the above limit is equivalent to

1

D1n
·
∑

j:|Aj |=1

∑
i∈Aj

λnp
n
i

(
∥∆anij∥+ |∆bnij |+ |∆σn

ij |
)
→ 0. (20)

Regarding the coefficients in An,1, it follows from the limits of En
α1,0(j)/D1n for any α1 ∈ {2e1, 2e2, . . . , 2ed} and

j ∈ [k∗] : |Aj | > 1 that

1

D1n
·
∑

j:|Aj |>1

∑
i∈Aj

λnp
n
i ∥∆anij∥2 → 0.

Putting the results in equations (19) and (20) together with the formulation of D1n that

1

D1n
·
∑

j:|Aj |>1

∑
i∈Aj

λnp
n
i

(
|∆bnij |r̄(|Aj |) + |∆σn

ij |r̄(|Aj |)/2
)
→ 1.

Therefore, we can find an index j∗ ∈ [k∗] : |Aj∗ | > 1 such that

1

D1n
·
∑

i∈Aj∗

λnp
n
i

(
|∆bnij∗ |r̄(|Aj∗ |) + |∆σn

ij∗ |r̄(|Aj∗ |)/2
)
̸→ 0.

WLOG, we assume that j∗ = 1 throughout this proof. Moreover, since En
0d,ℓ

(1)/D1n → 0 as n → ∞ for any
1 ≤ ℓ ≤ r̄(|A1|), we deduce that ∑

i∈A1

∑
α2+2α3=ℓ p

n
i · (∆bni1)

α2(∆σn
i1)

α3

2α3α2!α3!∑
i∈A1

pni

(
|∆bni1|r̄(|A1|) + |∆σn

i1|r̄(|A1|)/2
) → 0, (21)

for any 1 ≤ ℓ ≤ r̄(|A1|). Subsequently, we denote

Mn = max{|∆bni1|, |∆σn
i1|1/2 : i ∈ A1}, pn = max

i∈A1

pni .

Since the sequence pni /pn is bounded, we can substitute it by its subsequence which admits a non-negative limit
s2i = limn→∞ pni /pn. Furthermore, as pni ≥ ξ > 0 for all i ∈ A1, at least one among the limit s2i is equal to 1.
Similarly, let (∆bni1)/Mn → t1i and (∆σn

i1)/(2M
2

n) → t2i as n → ∞ for any i ∈ A1. Then, at least one among t1i
and t2i for i ∈ A1 is equal to either 1 or −1.

Then, we divide both the numerator and the denominator of the ratio in equation (21) by pnM
ℓ

n, and obtain the
following system of polynomial equations:∑

i∈A1

∑
α2+2α3=ℓ

s2i tα2
1i tα3

2i

α2! α3!
= 0, ∀ℓ = 1, 2, . . . , r̄(|A1|).
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From the definition of r̄(|A1|), this system does not have any non-trivial solutions, which contradicts to the
aforementioned properties of si, t1i and t2i. Consequently, not all the coefficients in the representations of
An,1/D1n, An,2/D1n, Bn/D1n and Cn/D1n go to 0 as n → ∞.

Step 3 - Collapse of coefficients by Fatou’s lemma. In this step, we will point out a contradiction to the
result in Step 2 by using Fatou’s lemma. In particular, let us denote by mn the maximum of the absolute values
of the coefficients in the representations of An,1/D1n, An,2/D1n, Bn/D1n and Cn/D1n, i.e.

mn = max
j∈[k∗], 0≤|α1|≤r̄(|Aj |),
0≤ℓ≤2(r̄(|Aj |)−|α1|)

{ |En
α1,ℓ

(j)|
D1n

,
|λn − λ∗|

D1n

}
,

with a note that En
0d,0

(j) :=
∑

i∈Aj
λnp

n
i −λ∗p∗j . Since |En

α1,ℓ
(j)|/(mnD1n) and |λn −λ∗|/(mnD1n) are bounded,

we can replace them by their subsequences such that

|En
α1,ℓ

(j)|
mnD1n

→ τα1,ℓ(j),
|λn − λ∗|
mnD1n

→ τ,

as n → ∞ for all j ∈ [k∗], 0 ≤ |α1| ≤ r̄(|Aj |) and 0 ≤ ℓ ≤ 2(r̄(|Aj |)− |α1|). Here, at least one among τα1,ℓ(j) and
τ is different from zero. By applying the Fatou’s lemma, we get

0 = lim
n→∞

2V (pλn,Gn , pλ∗,G∗)

mnD1n
≥
∫

lim inf
n→∞

|pλn,Gn
(X,Y )− pλ∗,G∗(X,Y )|

mnD1n
d(X,Y ) ≥ 0,

which implies that

|pλn,Gn
(X,Y )− pλ∗,G∗(X,Y )|

mnD1n
→ 0,

for almost surely (X,Y ). Recall that the left hand side in the above equation converges to∑
j,α1,ℓ

τα1,ℓ(j)X
α1 · ∂

|α1|+ℓf

∂h
|α1|+ℓ
1

(Y |(a∗j )⊤X + b∗j , σ
∗
j )f̄(X) + τg0(Y |X)f̄(X),

where the ranges of (j, α1, ℓ) in the summation are j ∈ [k∗], 0 ≤ |α1| ≤ r̄(|Aj |) and 0 ≤ ℓ ≤ 2(r̄(|Aj |)− |α1|). As
a result, we get ∑

j,α1,ℓ

τα1,ℓ(j)X
α1 · ∂

|α1|+ℓf

∂h
|α1|+ℓ
1

(Y |(a∗j )⊤X + b∗j , σ
∗
j ) + τg0(Y |X) = 0, (22)

for almost surely (X,Y ). Since pG∗ is distinguishable from g0, it follows from Definition 1 that τα1,ℓ(j)X
α1 = τ = 0,

for any j ∈ [k∗], 0 ≤ |α1| ≤ r̄(|Aj |) and 0 ≤ ℓ ≤ 2(r̄(|Aj |)− |α1|) for almost surely X. This result indicates that
τα1,ℓ(j) = τ = 0, which contradicts to the fact that at least one among τα1,ℓ(j), τ is non-zero. Hence, we obtain
the local inequality in equation (16).

As a consequence, there exists some ε′ > 0 such that

inf
λ∈[0,1],G∈Gk,ξ(Θ):

D1((λ,G),(λ∗,G∗))≤ε′

V (pλ,G, pλ∗,G∗)/D1((λ,G), (λ∗, G∗)) > 0.

Global inequality: Thus, it remains to prove the following global inequality:

inf
λ∈[0,1],G∈Gk,ξ(Θ):

D1((λ,G),(λ∗,G∗))>ε′

V (pλ,G, pλ∗,G∗)/D1((λ,G), (λ∗, G∗)) > 0.

Assume by contrary that it is not the case. Then, there exist some sequences G′
n ∈ Gk,ξ(Θ) and λ′

n ∈ [0, 1] such
that

V (pλ′
n,G

′
n
, pλ∗,G∗)/D1((λ

′
n, G

′
n), (λ

∗, G∗)) → 0,

D1((λ
′
n, G

′
n), (λ

∗, G∗)) > ε′.
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As a result, we get V (pλ′
n,G

′
n
, pλ∗,G∗) → 0. Note that Θ and [0, 1] are bounded sets, then we can find a subsequence

of G′
n and a subsequence of λ′

n such that G′
n → G′ and λ′

n → λ′, where G′ ∈ Gk,ξ(Θ) and λ′ ∈ [0, 1]. By replacing
G′

n and λ′
n with these subsequences, we get that D1((λ

′
n, G

′
n), (λ

∗, G∗)) > ε′. Moreover, by the Fatou’s lemma,
we obtain that

0 = lim
n→∞

2V (pλ′
n,G

′
n
, pλ∗,G∗) ≥

∫
lim inf
n→∞

∣∣pλ′
n,G

′
n
(X,Y )− pλ∗,G∗(X,Y )

∣∣d(X,Y )

=

∫
|pλ′,G′(X,Y )− pλ∗,G∗(X,Y )|d(X,Y ) ≥ 0,

which indicates that pλ′,G′(X,Y ) = pλ∗,G∗(X,Y ) for almost surely (X,Y ). According to Proposition 1, the
deviated Gaussian mixture of experts is identifiable when pG∗ is distinguishable from g0. Thus, it follows that
(λ′, G′) ≡ (λ∗, G∗). This contradicts to the previous claim that D1((λ

′, G′), (λ∗, G∗)) > ε′ > 0. Hence, the proof
is completed.

A.2 Proof of Theorem 2

Similar to the proof of Theorem 1, we need to prove the following claim:

inf
λ∈[0,1],G∈Gk,ξ(Θ)

V (pλ,G, pλ∗,G∗)

D2((λ,G), (λ∗, G∗))
> 0.

Local inequality. Firstly, we will demonstrate the local version of the above inequality:

lim
ε→0

inf
λ∈[0,1],G∈Gk,ξ(Θ),

D2((λ,G),(λ∗,G∗))≤ε

V (pλ,G, pλ∗,G∗)

D2((λ,G), (λ∗, G∗))
> 0. (23)

Assume by contrary that the above inequality does not hold, then there exist sequences λn ∈ [0, 1] and
Gn =

∑kn

i=1 p
n
i δ(an

i ,b
n
i ,σ

n
i ) ∈ Gk,ξ(Θ) such that{

D2n := D2((λn, Gn), (λ
∗, G∗)) → 0,

V (pλn,Gn
, pλ∗,G∗)/D2n → 0.

Case 1: λn ≤ λ∗ for infinitely n ∈ N. WLOG, we assume that λn ≤ λ∗ for all n ∈ N.

In this case, we have D2n = D1((λn, Gn), (λ
∗, G∗)), for any n ∈ N. Note that kn ≤ k, thus, we can replace Gn

with one of its subsequences such that kn does not vary with n. Therefore, we assume that kn = k for all n. In
addition, the Voronoi cells Aj = An

j does not change with n for all j ∈ [k∗]. Next, we decompose the quantity
pλn,Gn

(X,Y )− pλ∗,G∗(X,Y ) as follows:

pλn,Gn(X,Y )− pλ∗,G∗(X,Y ) = (λ∗ − λn)

k0∑
j=k̄+1

p0jf(Y |(a0j )⊤X + b0j , σ
0
j )f̄(X)

+
∑

j:|Aj |>1

∑
i∈Aj

λnp
n
i [f(Y |(ani )⊤X + bni , σ

n
i )− f(Y |(a∗j )⊤X + b∗j , σ

∗
j )]f̄(X)

+
∑

j:|Aj |=1

∑
i∈Aj

λnp
n
i [f(Y |(ani )⊤X + bni , σ

n
i )− f(Y |(a∗j )⊤X + b∗j , σ

∗
j )]f̄(X)

+

k∗∑
j=1

∑
i∈Aj

λnp
n
i − p̄∗j (λn)

 f(Y |(a∗j )⊤X + b∗j , σ
∗
j )f̄(X)

:= Cn +An,1 +An,2 +Bn,

where we define p̄∗j (λn) :=

{
λ∗p∗j + (λn − λ∗)p0j , j ∈ [k̄]

λ∗p∗j , j ∈ [k∗] \ [k̄]
.



On Parameter Estimation in Deviated Gaussian Mixture of Experts

By applying the Taylor expansions as in Appendix A.1, we are able to show that An,1/D2n, An,2/D2n, Bn/D2n

and Cn/D2n can be written as linear combinations of elements of the following set

H2 :=

{
Xα1 · ∂

|α1|+ℓf

∂h
|α1|+ℓ
1

(Y |(a∗j )⊤X + b∗j , σ
∗
j )f̄(X), f(Y |(a0j′)⊤X + b0j′ , σ

0
j′)f̄(X) : j ∈ [k∗],

j′ ∈ [k0] \ [k̄], 0 ≤ |α1| ≤ r̄(|Aj |), 0 ≤ ℓ ≤ 2(r̄(|Aj |)− |α1|)

}
. (24)

Furthermore, not all the coefficients in these representations go to zero as n tends to infinity.

Subsequently, by following the same arguments for deriving equation (22), we can find some constants τα1,ℓ(j)
and τ(j′), where j ∈ [k∗], 0 ≤ |α1| ≤ r̄(|Aj |), 0 ≤ ℓ ≤ 2(r̄(|Aj |)− |α1|) and j′ ∈ [k0] \ [k̄], such that at least one
among them is non-zero and

∑
j,α1,ℓ

τα1,ℓ(j)X
α1 · ∂

|α1|+ℓf

∂h
|α1|+ℓ
1

(Y |(a∗j )⊤X + b∗j , σ
∗
j ) +

k0∑
j′=k̄+1

τ(j′)f(Y |(a0j′)⊤X + b0j′ , σ
0
j′) = 0, (25)

for almost surely (X,Y ). Now, we demonstrate that the set H2 is linearly independent with respect to X and
Y , or equivalently, τα1,ℓ(j) = τ(j′) = 0, for any j ∈ [k∗], 0 ≤ |α1| ≤ r̄(|Aj |), 0 ≤ ℓ ≤ 2(r̄(|Aj |) − |α1|) and
j′ ∈ [k0] \ [k̄]. Indeed, equation (25) can be rewritten as

k∗∑
j=1

2r̄(|Aj |)∑
v=0

 ∑
|α1|+ℓ=v

τα1,ℓ(j)X
α1

 ∂vf

∂hv
1

(Y |(a∗j )⊤X + b∗j , σ
∗
j ) +

k0∑
j′=k̄+1

τ(j′)f(Y |(a0j′)⊤X + b0j′ , σ
0
j′) = 0, (26)

for almost surely X and Y . It is worth noting that (a∗j , b
∗
j , σ

∗
j ) and (a0j′ , b

0
j′ , σ

0
j′) are distinct components for

j ∈ [k∗] and j ∈ [k0] \ [k̄], therefore, ((a∗j )⊤X + b∗j , σ
∗
j ) and ((a0j′)

⊤X + b0j′ , σ
0
j′) are distinct pairs for almost surely

X ∈ X . This implies that ∂vf
∂hv

1
(Y |(a∗j )⊤X + b∗j , σ

∗
j ) and f(Y |(a0j′)⊤X + b0j′ , σ

0
j′) are linearly independent with

respect to Y for 0 ≤ v ≤ 2r̄(|Aj |) for any j ∈ [k∗] and j′ ∈ [k0] \ [k̄]. Then, it follows from equation (26) that
τ(j′) = 0 for any j′ ∈ [k0] \ [k̄] and

∑
|α1|+ℓ=u τα1,ℓ(j)X

α1 = 0 for any j ∈ [k∗], 0 ≤ v ≤ 2r̄(|Aj |) for almost surely
X. Note that this is a polynomial of X ∈ X , which is a bounded subset of Rd, we deduce that τα1,ℓ(j) = 0 for
all |α1| + ℓ = v, j ∈ [k∗] and 0 ≤ v ≤ 2r̄(|Aj |). This contradicts the previous claim that at least one among
τα1,ℓ(j), τ(j

′) is different from zero.

Thus, we obtain the local inequality in equation (23) for this case.

Case 2: λn > λ∗ for infinitely n ∈ N. WLOG, we assume that λn > λ∗ for all n ∈ N.

Case 2.1: k ≤ k∗ + k0 − k̄ − 1

In this case, the discrepancy D2n reduces to D1((λn, Gn), (λ
∗, G∗)). Therefore, the local inequality for this case

can be achieved analogously to that for Case 1.

Case 2.2: k ≥ k∗ + k0 − k̄

In this case, the discrepancy D2n equals to D3(Gn, G∗(λn)), which was defined in equation (12). Additionally, we
have

pλn,Gn
(X,Y )− pλ∗,G∗(X,Y ) = λn

{
k∗∑
j=1

∑
i∈Aj

pni f(Y |(ani )⊤X + bni , σ
n
i )

−
[(

1− λ∗

λn

) k0∑
j=1

p0jf(Y |(a0j )⊤X + b0j , σ
0
j ) +

λ∗

λn

k∗∑
j=1

p∗jf(Y |(a∗j )⊤X + b∗j , σ
∗
j )
]}

f̄(X)

= λn

[
pGn

(X,Y )− pG∗(λn)
(X,Y )

]
.
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Recall that

0 = lim
n→∞

2V (pλn,Gn
, pλ∗,G∗)

D2n
= lim

n→∞

∫
|pλn,Gn(X,Y )− pλ∗,G∗(X,Y )|d(X,Y )

D3(Gn, G∗(λn))

= lim
n→∞

λn ·
∫
|pGn(X,Y )− pG∗(λn)

(X,Y )|d(X,Y )

D3(Gn, G∗(λn))

= lim
n→∞

λn ·
2V (pGn

, pG∗(λn)
)

D3(Gn, G∗(λn))

Since λn > λ∗ > 0 for all n ∈ N, we get V (pGn
, pG∗(λn)

)/D3(Gn, G∗(λn)) → 0 as n → ∞. For the sake of

presentation, we represent the mixing measure G∗(λn) =
(
1− λ∗

λn

)
G0 +

λ∗

λn
G∗ as

G∗(λn) =

k∗+k0−k̄∑
j=1

(pnj )
′δ(a′

j ,b
′
j ,σ

′
j)

∈ Ek∗+k0−k̄(Θ).

Next, let us define Voronoi cells used for this case as follows:

Bn
j = Bj(Gn) = {i ∈ [kn] : ∥θni − θ′j∥ ≤ ∥θni − θ′ℓ∥, ∀ℓ ̸= j},

where θni = (ani , b
n
i , σ

n
i ) and θ′j = (a′i, b

′
i, σ

′
i) for any j ∈ [k∗ + k0 − k̄]. Since kn ≤ k, there exists a subsequence

of Gn such that kn does not vary with n. Thus, by replacing Gn with this subsequence, we can assume that
kn = k for all n. In addition, Bj = Bn

j does not change with n for all j ∈ [k∗ + k0 − k̄]. Then, we can rewrite the
difference pGn(X,Y )− pG∗(λn)

(X,Y ) as follows:

pGn
(X,Y )− pG∗(λn)

(X,Y ) =
∑

j:|Bj |>1|

∑
i∈Bj

pni

[
f(Y |(ani )⊤X + bni , σ

n
i )− f(Y |(a′j)⊤X + b′j , σ

′
j)
]

+
∑

j:|Bj |=1|

∑
i∈Bj

pni

[
f(Y |(ani )⊤X + bni , σ

n
i )− f(Y |(a′j)⊤X + b′j , σ

′
j)
]

+

k∗+k0−k̄∑
j=1

(∑
i∈Bj

pni − p′j

)
f(Y |(a′j)⊤X + b′j , σ

′
j)

By abuse of notation, we denote three terms in the above summation as An,1, An,2 and Bn, respectively. By
invoking the Taylor expansions as in Appendix A.1, we get that An,1, An,2 and Bn can be treated as linear
combinations of elements of the following set:

H :=

{
Xα1 · ∂

|α1|+ℓf

∂h
|α1|+ℓ
1

(Y |(a′j)⊤X + b′j , σ
′
j)f̄(X) : j ∈ [k∗ + k0 − k̄], 0 ≤ |α1| ≤ r̄(|Bj |),

0 ≤ ℓ ≤ 2(r̄(|Bj |)− |α1|)

}
.

Moreover, not all the coefficients in the representations of An,1/D2n, An,2/D2n and Bn/D2n approach zero as
n → ∞. Additionally, we can utilize the same arguments for deriving equation (22) to deduce that there exist
some constants τα1,ℓ(j), where j ∈ [k∗ + k0 − k̄], 0 ≤ |α1| ≤ r̄(|Bj |) and 0 ≤ ℓ ≤ 2(r̄(|Bj |)− |α1|) that satisfy at
least one among them is different from zero and∑

j,α1,ℓ

τα1,ℓ(j)X
α1 · ∂

|α1|+ℓf

∂h
|α1|+ℓ
1

(Y |(a′j)⊤X + b′j , σ
′
j) = 0,

for almost surely (X,Y ). Since H is a linearly independent set, which can be proved in a similar way as for
the set H2 in Case 1, the above equation leads to τα1,ℓ(j) for any j ∈ [k∗ + k0 − k̄], 0 ≤ |α1| ≤ r̄(|Bj |) and
0 ≤ ℓ ≤ 2(r̄(|Bj |)− |α1|). This contradicts with the result that at least one among τα1,ℓ(j) is non-zero. Hence, we
achieve the local inequality in equation (23).
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As a consequence, there exists a positive constant ε′ that satisfies

inf
λ∈[0,1],G∈Gk,ξ(Θ),

D2((λ,G),(λ∗,G∗))≤ε

V (pλ,G, pλ∗,G∗)

D2((λ,G), (λ∗, G∗))
> 0.

Global inequality. Now, it suffices to show that

inf
λ∈[0,1],G∈Gk,ξ(Θ),

D2((λ,G),(λ∗,G∗))>ε′

V (pλ,G, pλ∗,G∗)

D2((λ,G), (λ∗, G∗))
> 0. (27)

Assume by contrary that the above claim does not hold, then there exist sequences (λ′
n) ⊂ [0, 1] and (G′

n) ⊂ Gk,ξ(Θ)
that satisfy {

D2((λ
′
n, G

′
n), (λ

∗, G∗)) > ε′,

V (pλ′
n,G

′
n
, pλ∗,G∗)/D2((λ

′
n, G

′
n), (λ

∗, G∗)) → 0,

which leads to the fact that V (pλ′
n,G

′
n
, pλ∗,G∗) → 0 as n → ∞.

Case 1: λ′
n ≤ λ∗ for infinitely n ∈ N. WLOG, we assume that λ′

n ≤ λ∗ for all n ∈ N.

In this case, we have D2((λ
′
n, G

′
n), (λ

∗, G∗)) = D1((λ
′
n, G

′
n), (λ

∗, G∗)) > ε′. Since the sets Θ and [0, 1] are bounded,
we can find a subsequence of G′

n and a subsequence of λ′
n such that G′

n → G′ and λ′
n → λ′, where G′ ∈ Gk,ξ(Θ)

and λ′ ∈ [0, 1]. By replacing G′
n and λ′

n with those subsequences, we get that D1((λ
′, G′), (λ∗, G∗)) > ε′. On the

other hand, the result that V (pλ′
n,G

′
n
, pλ∗,G∗) → 0 as n → ∞ implies that V (pλ′,G′ , pλ∗,G∗) = 0, which leads to

pλ′,G′(X,Y ) = pλ∗,G∗(X,Y ),

for almost surely (X,Y ). Since λ′
n ≤ λ∗, we get λ′ ≤ λ∗. It is worth noting that if λ′ < λ∗, G∗(λ

′) is not
valid mixing measure. Therefore, we obtain (λ′, G′) ≡ (λ∗, G∗) in this scenario. If λ′ = λ∗, then G∗(λ

′) ≡ G∗
and the above identifiability equation also admits (λ′, G′) ≡ (λ∗, G∗) as a solution. Thus, it follows that
D1((λ

′, G′), (λ∗, G∗)) = 0, which contradicts the result that D1((λ
′, G′), (λ∗, G∗)) > ε′ > 0. Hence, the global

inequality (27) holds true in this case.

Case 2: λ′
n > λ∗ for infinitely n ∈ N. WLOG, we assume that λ′

n > λ∗ for all n ∈ N.

Case 2.1: k ≤ k∗ + k0 − k̄ − 1

In this case, we also have D2((λ
′
n, G

′
n), (λ

∗, G∗)) = D1((λ
′
n, G

′
n), (λ

∗, G∗)) > ε′. Similar to Case 1, we get
pλ′,G′(X,Y ) = pλ∗,G∗(X,Y ) for almost surely (X,Y ), where λ′ ∈ [0, 1] and G′ ∈ Gk,ξ(Θ) are the limits of λ′

n and
G′

n as n goes to infinity, respectively.

Under this setting, the previous identifiability equation admits either (λ′, G′) ≡ (λ∗, G∗) or (λ′, G′) ≡ (λ′, G∗(λ
′))

for any λ′ ∈ [0, 1] as a solution as mentioned in Section 3.1. However, as G∗(λ
′) has k∗+k0− k̄ components, which

is higher than that of G′ which has no more than k components. As a result, we obtain that (λ′, G′) ≡ (λ∗, G∗),
leading to D1((λ

′, G′), (λ∗, G∗)) = 0, which is a contradiction to the fact that D1((λ
′, G′), (λ∗, G∗)) > ε′ > 0.

Case 2.2: k ≥ k∗ + k0 − k̄

In this case, we have D2((λ
′
n, G

′
n), (λ

∗, G∗)) = D3(G
′
n, G(λ′

n)) > ε′. Similar to Case 1, we may replace G′
n

and λ′
n with their subsequences whose limits are G′ ∈ Gk,ξ(Θ) and λ′ ∈ [0, 1], respectively. Then, we get

D3(G
′, G(λ′)) > ε′. Additionally, we also achieve the identifiability equation pλ′,G′(X,Y ) = pλ∗,G∗(X,Y ) for

almost surely (X,Y ). Note that in this case, G′ has more components than G∗, then the previous equation admits
only (λ′, G(λ′)) as a solution. Therefore, we obtain that D3(G

′, G(λ′)) = 0, which contradicts the result that
D3(G

′, G(λ′)) > ε′ > 0.

Hence, we reach the global inequality in equation (27), and the proof is totally completed.

B PROOF OF AUXILIARY RESULTS

In this appendix, we provide proofs for Proposition 1 and Proposition 2 in Appendix B.1 and Appendix B.2,
respectively.
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B.1 Proof of Proposition 1

Firstly, we suppose that G =
∑k

i=1 piδ(ai,bi,σi) and G′ =
∑k′

i=1 p
′
iδ(a′

i,b
′
i,σ

′
i)

are two mixing measures such that the
equation pλ,G(X,Y ) = pλ′,G′(X,Y ) holds for almost surely (X,Y ) ∈ X × Y. This equation can be expanded as

(λ′ − λ)g0(Y |X) +

k∑
i=1

λpif(Y |a⊤i X + bi, σi)−
k′∑
i=1

λ′p′if(Y |(a′i)⊤X + b′i, σ
′
i) = 0,

for almost surely (X,Y ). Now, assume that G and G′ share only ℓ components in common, where 0 ≤ ℓ ≤
min{k, k′}, e.g. (ai, bi, σi) = (a′i, b

′
i, σ

′
i) for any i ∈ [ℓ]. Then, we rewrite the above equation as

(λ′ − λ)g0(Y |X) +

ℓ∑
i=1

(λpi − λ′p′i)f(Y |a⊤i X + bi, σi) +

k∑
i=ℓ+1

λpif(Y |a⊤i X + bi, σi)

−
k′∑

i=ℓ+1

λ′p′if(Y |(a′i)⊤X + b′i, σ
′
i) = 0,

for almost surely (X,Y ). Next, we consider a mixing measure Gℓ which has k + k′ − ℓ components
(a1, b1, σ1), . . . , (ak, bk, σk), (a′ℓ+1, b

′
ℓ+1, σ

′
ℓ+1), . . . , (a

′
k′ , b′k′ , σ′

k′). Since pGℓ
is distinguishable from g0, we see

that if either k ̸= k′ or 0 ≤ ℓ < min{k, k′}, then there exists an index i such that pi = 0 and/or p′i = 0, which
contradicts to the fact that pi, p

′
i > 0. As a result, we must have k = k′ and ℓ = k, i.e. (ai, bi, σi) = (a′i, b

′
i, σ

′
i) for

all i ∈ [k]. Given this result, the above equation is equivalent to

(λ′ − λ)g0(Y |X) +

k∑
i=1

(λpi − λ′p′i)f(Y |a⊤i X + bi, σi) = 0,

for almost surely (X,Y ). Note that pG is distinguishable from g0, then we obtain that λ− λ′ = λpi − λ′p′i = 0,
which implies that λ = λ′ and pi = p′i for any i ∈ [k]. As a result, it follows that (λ,G) ≡ (λ′, G′).

Hence, the proof is completed.

B.2 Proof of Proposition 2

First of all, let us introduce some necessary notations used throughout this appendix. In particular, we denote
PK([0, 1]×Θ) := {pλ,G(X,Y ) : λ ∈ [0, 1], G ∈ GK,ξ(Θ)}. Additionally, we define

PK([0, 1]×Θ) = {pλ,G = (pλ,G + pλ∗,G∗)/2 : (λ,G) ∈ [0, 1]× Gk,ξ(Θ)},

P1/2

K ([0, 1]×Θ) = {p̄1/2λ,G : p̄λ,G ∈ PK([0, 1]×Θ)}.

To derive a convergence rate for the joint density estimators under the Hellinger distance, we require a condition
on the complexity of the following class introduced in van de Geer (2000):

P1/2

K ([0, 1]×Θ, ε) := {p̄1/2λ,G ∈ P1/2

K (Θ) : h(p̄λ,G, pλ∗,G∗) ≤ ε},

The complexity of this class can be captured by the following bracketing entropy integral

JB(ε,P
1/2

K ([0, 1]×Θ, ε),m) =

∫ ε

ε2/213

√
logHB(u,P

1/2

K ([0, 1]×Θ, ε),m)du ∨ ε,

where u ∨ ε = max{u, ε} and HB(ε,P,m) represents the ε-bracketing entropy of a set P under the Lebesgue
measure m (readers are referred to van de Geer (2000) for more detail about the definition of this term).
Interestingly, we discover a connection between this quantity and the convergence of the density estimators as
follows:
Lemma 1. Given a universal constant J > 0, assume that we can find a natural number N , possibly depending
on Θ and k, such that for all n ≥ N and ε >

√
log n/n, the following holds:

JB(ε,P
1/2

K ([0, 1]×Θ, ε),m) ≤ J
√
nε2. (28)
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Then, there exists a positive constant c that depends only on Θ such that for all n ∈ N, we have

P
(
h(pλ̂n,Ĝn

, pλ∗,G∗) > δ
)
≤ c exp

(
−nδ2

c2

)
.

Proof of Lemma 1 is in Appendix B.2.3. As a consequence, in order to guarantee that our estimators will
converge, it is sufficient to satisfy the condition in equation (28). For that purpose, we need to introduce a
result regarding the upper bounds of the covering number N(ε,Pk(Θ, [0, 1]), ∥ · ∥∞) and the bracketing entropy
HB(ε,Pk(Θ, [0, 1]), h) of the metric space Pk(Θ, [0, 1]) in the following lemma:
Lemma 2. Suppose that Θ1 and Θ2 are respectively two bounded subsets of Rq1 and Rq2 . Then, for any
0 < ε < 1/2, the following results hold

(i) logN (ε,Pk(Θ× [0, 1]), ∥.∥∞) ≲ log(1/ε),

(ii) HB(ε,Pk([0, 1]×Θ), h) ≲ log(1/ε).

Proof of Lemma 2 is in Appendix B.2.2. Now, we are ready to provide the proof of Proposition 2 in Appendix B.2.1.

B.2.1 Main Proof

Note that P1/2

k ([0, 1]×Θ, δ) ⊆ P1/2

k ([0, 1]×Θ), it follows from the definition of Hellinger distance that

HB(δ,P
1/2

k ([0, 1]×Θ, δ), ∥ · ∥2) ≤ HB(δ,P
1/2

k ([0, 1]×Θ), ∥ · ∥2)

= HB

( δ√
2
,Pk([0, 1]×Θ), h

)
≤ HB(δ,Pk([0, 1]×Θ), h).

According to part (ii) of Lemma 2, we find that

HB(δ,P
1/2

k ([0, 1]×Θ, δ), ∥ · ∥2) ≲ log(1/δ).

Consequently, we deduce that

JB(ε,P
1/2

k ([0, 1]×Θ, δ), u) ≲ ε[log(213ε2)]1/2 < nε2,

for all ε >
√

log n/n. By applying Lemma 1 with δ =
√

log n/n, we obtain the desired result.

B.2.2 Proof of Lemma 1

It follows from Lemma 4.1 and Lemma 4.2 in van de Geer (2000) that
1

16
h2(pλ̂n,Ĝn

, pλ∗,G∗) ≤ h2(p̄λ̂n,Ĝn
, pλ∗,G∗) ≤

1√
n
νn(λ̂n, Ĝn),

where ν(λ̂n, Ĝn) is an empirical process defined as

νn(λ̂n, Ĝn) :=
√
n

∫
pλ∗,G∗>0

1

2
log
(pλ̂n,Ĝn

pλ∗,G∗

)
· [pλ̂n,Ĝn

− pλ∗,G∗ ]d(X,Y ).

Thus, for any δ > δn :=
√

log n/n, we obtain

Pλ∗,G∗(h(pλ̂n,Ĝn
, pλ∗,G∗) ≥ δ)

≤ Pλ∗,G∗

(
νn(λ̂n, Ĝn)−

√
nh2(pλ̂n,Ĝn,pλ∗,G∗

) ≥ 0, h(pλ̂n,Ĝn
, pλ∗,G∗) ≥ δ/4

)
≤ Pλ∗,G∗

(
sup

λ,G:h(p̄λ,G,pλ∗,G∗ )≥δ/4

[νn(λG)−
√
nh2(p̄λ,G, pλ∗,G∗)] ≥ 0

)
≤

S∑
s=0

Pλ∗,G∗

(
sup

λ,G:2sδ/4≤h(p̄λ,G,pλ∗,G∗ )≤2s+1δ/4

|νn(λG)| ≥
√
n22s(δ/4)2

)
≤

S∑
s=0

Pλ∗,G∗

(
sup

λ,G:h(p̄λ,G,pλ∗,G∗ )≤2s+1δ/4

|νn(λG)| ≥
√
n22s(δ/4)2

)
,
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where S is the smallest number such that 2Sδ/4 > 1. Now, we proceed by recalling Theorem 5.11 in van de Geer
(2000) with adapted notations to our setting as follows:
Lemma 3 (Theorem 5.11 in van de Geer (2000)). Let R > 0, k ≥ 1, and Gk,ξ(Θ) ⊂ Gk,ξ(Θ) containing G∗. Let
C be sufficiently large, then for all n ∈ N and C0, C1, t > 0 that satisfy

(i) t ≤ 8
√
nR ∨ C1

√
nR2/K;

(ii) t ≥ C2(C1 + 1)
(
R ∧

∫ R

t/(26
√
n)

H
1/2
B

(
u√
2
,P1/2

K ([0, 1]×Θ, R), ν
)
du
)
,

we get

Pλ∗,G∗

(
sup

G∈Gk,ξ(Θ),h(p̄λ,G,pλ∗,G∗ )≤R

|νn(λG)| ≥ t

)
≤ C exp

[
− t2

C2(C1 + 1)R2

]
.

Proof of Lemma 3 can be found in van de Geer (2000).

Back to our proof, by choosing R = 2s+1δ, C1 = 15 and t =
√
n22s(δ/4)2, we can verify that condition (i) in

Lemma 3 is satisfied as 2s−1δ/4 ≤ 1 for all s ≤ S. Meanwhile, the condition (ii) is met as∫ R

t/(26
√
n)

H
1/2
B

(
u√
2
,P1/2

K ([0, 1]×Θ, R), ν

)
du ∨ 2s+1δ =

√
2

∫ R/
√
2

R2/213
H

1/2
B

(
u,P1/2

K ([0, 1]×Θ, R), ν
)
du ∨ 2s+1δ

≤ 2JB(R,P1/2

K ([0, 1]×Θ, R), ν)

≤ 2J
√
n22s+1δ2 = 26Jt.

Applying Lemma 3, we get that

Pλ∗,G∗(h(pλ̂n,Ĝn
, pλ∗,G∗) > δ) ≤ C

∞∑
s=0

exp

(
22snδ2

J2214

)
≤ c exp

(
−nδ2

c

)
.

Hence, the proof is completed.

B.2.3 Proof of Lemma 2

Part (i). For any set S, we denote Eε(S) an ε-net of S if each element of S is within ε distance from some elements
of Eε(S). By definition of the covering number, we get |Eε(S)| = N(ε, S, ∥ · ∥∞). Let Pk(Θ) := {pG : G ∈ Gk(Θ)},
where pG(X,Y ) :=

∑k
i=1 pif(Y |a⊤i X + bi, σi). According to [Lemma 6, Ho et al. (2022)], we have

log |Eε(Pk(Θ))| = N(ε,Pk(Θ), ∥ · ∥∞) ≲ log(1/ε).

Let Gk,ξ(Θ) := {G̃ : pG̃ ∈ Eε(Pk(Θ))} be the set of all latent mixing measures G in the net Eε(Pk(Θ)). We will
show that

Eε(Pk([0, 1]×Θ)) ⊆ {pλ,G : λ̃ ∈ Eε([0, 1]), G̃ ∈ Gk,ξ(Θ)}. (29)

Indeed, for any λ ∈ [0, 1], G ∈ Gk(Θ), there exist λ̃ ∈ Eε([0, 1]), G̃ ∈ Gk,ξ(Θ) such that |λ − λ̃| ≤ ε and
∥pG − pG̃∥∞ ≤ ε, which leads to

∥pλ,G − pλ̃G̃∥∞ ≤ ∥pλ,G − pλ̃G∥∞ + ∥pλ̃G − pλ̃G̃∥∞
= |λ− λ̃|∥g0 − pG∥∞ + λ̃∥pG − pG̃∥∞
≤ ε(∥g0∥∞ + ∥pG∥∞) + ε

≲ ε.

Therefore, we obtain equation (29). Putting the above results together with a note that log(|Eε([0, 1])|) ≤ log(1/ε),
we have

log(N(ε,Pk(Θ× [0, 1]), ∥ · ∥∞)) ≤ log(|Eε([0, 1])|) + log(|Eε(Pk(Θ))|) ≲ log(1/ε).
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Hence, we reach the conclusion in part (i).

Part (ii). Firstly, let η ≤ ε be some positive number that we will chose later. Since f is the density function of
an univariate location-scale Gaussian distribution, we can verify for any |Y | ≥ 2a and X ∈ X that

f(Y |h1(X, θ1), h2(X, θ2)) ≤
1√
2πℓ

exp
(
−Y 2/(8u2)

)
.

Recall that log g0(Y |X) ≲ −Y p and g0(Y |X) ≤ M for some positive constants M,p > 0. Let q = min{p, 2},
C2 = max

{
M, 1√

2πℓ

}
and

H(X,Y ) =

{
C1 exp (−Y q) f(X), for |Y | ≥ 2a

C2f(X), for |Y | < 2a,
(30)

where C1 > 0 is a constant depending on ℓ, g0. Thus, it can be shown that H(X,Y ) is an envelope of
Pk([0, 1] × Θ). Subsequently, we denote by g1, . . . , gN an η-net over Pk([0, 1] × Θ). Then, we construct the
brackets [pLi (X,Y ), pUi (X,Y )] as follows:

pLi (X,Y ) := max{gi(X,Y )− η, 0}, pUi (X,Y ) := max{gi(X,Y ) + η,H(X,Y )}

for 1 ≤ i ≤ N . As a result, Pk([0, 1] × Θ) ⊂ ∪N
i=1[p

L
i (X,Y ), pUi (X,Y )] and pUi (X,Y ) − pLi (X,Y ) ≤

min{2η,H(X,Y )}. It follows that ,∫ (
pUi (X,Y )− pLi (X,Y )

)
d(X,Y )

≤
∫

|Y |<2a

(
pUi (X,Y )− pLi (X,Y )

)
d(X,Y ) +

∫
|Y |≥2a

(
pUi (X,Y )− pLi (X,Y )

)
d(X,Y )

≤
∫

|Y |<2a

2ηd(X,Y ) +

∫
|Y |≥2a

H(X,Y )d(X,Y ) ≤ cη,

(31)

where c is some positive universal constant. This implies that

HB(cη,Pk([0, 1]×Θ), ∥.∥1) ≤ N ≲ log(1/η).

By choosing η = ε/c, we have

HB(ε,Pk([0, 1]×Θ), ∥.∥1) ≲ log(1/ε).

Due to the inequality h2 ≤ ∥.∥1 between Hellinger distance and total variational distance, we reach the conclusion
of bracketing entropy bound.

C PARAMETER ESTIMATION UNDER THE FULL OVERLAP REGIME

In this appendix, we study the convergence rates of parameter estimation in the deviated Gaussian mixture of
experts under the full overlap regime, namely when the function g0(Y |X) takes the following form:

g0(Y |X) = pG0
(Y |X) :=

k0∑
j=1

p0jf(Y |(a0j )⊤X + b0j , σ
0
j ), (32)

and k̄ = k0, where k̄ stands for the number of overlapped components of two mixing measures G0 and G∗.

Under this regime, it is worth noting that if G∗ = G0, then the conditional density function pλ∗G∗(Y |X) is
reduced to pλ∗G∗(Y |X) = (1− λ∗)pG0(Y |X) + λ∗pG0(Y |X) = pG0(Y |X), which coincides with the setting λ∗ = 0
that we will consider in Appendix D. For that reason, we assume that G∗ ̸= G0 throughout this appendix.
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Identiability of the deviated Gaussian mixture of experts. Similar to the partial overlap regime studied
in Section 3.2, the deviated Gaussian mixture of experts under the full overlap regime is also not identifiable.
Furthermore, it is even more challenging to solve the equation pλ,G(X,Y ) = pλ∗,G∗(X,Y ) for almost surely (X,Y )
in this regime. In particular, we have to take into account the following set of mixing proportions λ which make
the term G∗(λ) =

λ−λ∗

λ G0 +
λ∗

λ G∗ defined in equation (10) a valid mixing measure:

T := {λ ∈ (0, 1] : (λ∗ − λ)p0i ≤ λ∗p∗i ,∀i ∈ [k0]}.

Here, the set T contains λ ∈ (0, 1] such that the weights associated with components of G∗(λ) are non-negative,
i.e. p̄∗i (λ) ≥ 0 where

p̄∗i (λ) :=

{
[(λ− λ∗)p0i + λ∗p∗i ]/λ, i ∈ [k0],

λ∗p∗i /λ, i ∈ [k∗] \ [k0].

Subsequently, we solve the identifiability equation in two complement scenarios of λ with respect to the set T .

When λ ∈ T : Since G∗(λ) is valid mixing measure in this case, the identifiability equation can be rewritten as
λ[pG(X,Y )− pG∗(λ)

(X,Y )] = 0 for almost surely (X,Y ). Moreover, as G∗(λ) has k∗ + k0 − k̄ = k∗ components
and k > k∗, that equation admits (λ,G∗(λ)) as a solution for any λ ∈ T . Additionally, it is worth noting that
(λ∗, G∗) is a special instance of (λ,G∗(λ)) when λ = λ∗ ∈ T .

When λ ∈ T c: In this case, there are some components of G∗(λ) having negative weights p̄∗i (λ) < 0. Thus, it is
necessary to inspect such components by considering the following set:

Iλ := {i ∈ [k0] : (λ
∗ − λ)p0i > λ∗p∗i },

which includes indices i ∈ [k0] such that p̄∗i (λ) < 0. Here, we say that Iλ is ratio-independent if |Iλ| = 1 or
p0i /p

∗
i = p0j/p

∗
j for all i, j ∈ Iλ if |Iλ| ≥ 2. An intuition behind this definition is to guarantee that all the terms

(λ∗ −λ)p0i −λ∗p∗i , for i ∈ Iλ, can be arbitrary small simultaneously. Consequently, when Iλ is a ratio-independent
set, mixing measures of the following form are solutions of the identifiability equation:

G̃∗(λ) :=
1

s(λ)

∑
i∈Ic

λ

[
p∗i λ

∗ + (λ− λ∗)p0i

]
δ(a0

i ,b
0
i ,σ

0
i )

+

k∗∑
i=k0+1

λ∗p∗i δ(a∗
i ,b

∗
i ,σ

∗
i )

 , (33)

where s(λ) :=
∑

i∈Ic
λ

[
p∗i λ

∗ + (λ− λ∗)p0i

]
+
∑k∗

i=k0+1 λ
∗p∗i is a normalizing term. It can be seen from the above

formulation that components of the mixing measure G̃∗(λ) are those of G∗(λ) with positive weights.

Voronoi loss function. Now, we are ready to define the Voronoi loss function D4((λ,G), (λ∗, G∗)) for the full
overlap regime as follows:

D4((λ,G), (λ∗, G∗)) =


1{λ∈T c}s(λ)D3(G, G̃∗(λ)) + 1{λ∈T }D3(G,G∗(λ)), if Iλ is ratio-independent;

1{λ∈T c}
∑

i∈Iλ
[−λp′i(λ)] + 1{λ∈T }D3(G,G∗(λ)), otherwise,

(34)

where the loss function D3 is given in Section 3.2.

Given the above loss of interest, we establish the convergence rate of the MLE under the full overlap regime in
the following theorem.

Theorem 3. Assume that λ∗ ∈ (0, 1] is unknown, and let g0 take the form in equation (32) with k̄ = k0. Then,
we achieve that V (pλ,G, pλ∗,G∗) ≳ D4((λ,G), (λ∗, G∗)) for any (λ,G) ∈ [0, 1]× Gk(Θ). This bound together with
Proposition 2 indicate that

P(D4((λ̂n, Ĝn), (λ
∗, G∗)) > C4

√
log(n)/n) ≲ n−c4 ,

where C4 > 0 is a constant depending on g0, λ
∗, G∗,Θ, while the constant c4 depends only on Θ.
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Proof of Theorem 3 is deferred to Appendix C.1. When λ̂n ∈ T , the formulation of D4((λ,G), (λ∗, G∗)) is
simplified to that of D3(G,G∗(λ)). Therefore, the convergence behavior of the MLE in this case resembles the
results in Theorem 2, which will not be repeated here. The difference between this theorem and its previous
counterparts occurs only when λ̂n ∈ T c. In particular, if Iλ̂n

is a ratio-independent set, then the MLE Ĝn

converges to G̃∗(λ̂n) at a substantially slower rate than Õ(n−1/2) as it depends on the convergence rate of s(λ̂n)
to zero. By contrast, if the set Iλ̂n

is not ratio-independent, then the discrepancy D4((λ,G), (λ∗, G∗)) will not
vanish as n tends to infinity. Thus, we cannot deduce any conclusions regarding the convergence rates of the
MLE in this case. An underlying reason for this phenomenon is that the terms (λ∗ − λ̂n)p

0
i − λ∗p∗i for i ∈ Iλ̂n

cannot approach zero simultaneously as Iλ̂n
is not ratio-independent.

C.1 Proof of Theorem 3

Similar to previous proofs, we need to demonstrate the following inequality:

inf
λ∈[0,1],G∈Gk,ξ(Θ)

V (pλ,G, pλ∗,G∗)/D4((λ,G), (λ∗, G∗)) > 0. (35)

Local inequality. Firstly, we will derive the local version of the above inequality:

lim
ε→0

inf
λ∈[0,1],G∈Gk,ξ(Θ):

D4((λ,G),(λ∗,G∗))≤ε

V (pλ,G, pλ∗,G∗)/D4((λ,G), (λ∗, G∗)) > 0. (36)

Assume that the above claim does not hold true, then there exist a sequence of mixing measures Gn =∑kn

i=1 p
n
i δ(an

i ,b
n
i ,σ

n
i ) ∈ Gk,ξ(Θ) and a sequence of mixing proportions λn ∈ [0, 1] such that{

D4n := D4((λn, Gn), (λ
∗, G∗)) → 0,

V (pλnGn
, pλ∗G∗)/D4n → 0,

as n → ∞. Under the setting of Theorem 3, we have θ∗j = θ0j for all j ∈ [k0] and

pλn,Gn(X,Y )− pλ∗,G∗(X,Y )

= λn

kn∑
i=1

pni f(Y |(ani )⊤X + bni , σ
n
i )f̄(X)−

k∗∑
j=1

p̄∗j (λn)f(Y |(a∗j )⊤X + b∗j , σ
∗
j )f̄(X), (37)

where p̄∗j (λn) :=

{
λ∗p∗j + (λn − λ∗)p0j , j ∈ [k0]

λ∗p∗j , k0 + 1 ≤ j ≤ k∗
.

Next, we will show that lim inf λn is bounded below by some positive constant. Assume that this claim is not
true, then λn → 0 as n → ∞. Note that

V (pλ,Gn , pλ,G∗) =
V (pλ,Gn

, pλ,G∗)

D4n
×D4n → 0.

Then, by the Fatou’s lemma, we get that pλn,Gn(X,Y )− pλ∗,G∗(X,Y ) → 0 as n → ∞ for almost surely (X,Y ).
Since λn → 0 and the density f(Y |(ani )⊤X + bni , σ

n
i ) can be upper bounded by a function which is independent

of n for almost surely (X,Y ) (see the proof of part (ii) of Lemma 2 for more detail), we deduce that

λn

kn∑
i=1

pni f(Y |h1(X, θn1i), h2(X, θn2i)) → 0.

It follows that
∑k∗

j=1 p̄
∗
j (λn)f(Y |h1(X, θ∗1j), h2(X, θ∗2j)) → 0 as n → ∞, which leads to the fact that p̄∗j (λn) → 0

for all j ∈ [k∗]. This means that p∗i = p0i when i ∈ [k0] and p∗i = 0 otherwise. Thus, we obtain G∗ ≡ G0, which
is a contradiction to the assumption that G∗ ̸= G0. Therefore, lim inf λn is bounded below by some positive
constant.

Subsequently, we consider two main scenarios of λn based on the set T mentioned in Section C, i.e.

T := {λ ∈ (0, 1] : (λ∗ − λ)p0i ≤ λ∗p∗i ,∀i ∈ [k0]}.



Huy Nguyen, Khai Nguyen, Nhat Ho

Case 1: λn ∈ T for infinitely n ∈ N. WLOG, we assume that λn ∈ T for all n ∈ N.

In this case, we have D4n = D3(Gn, G∗(λn)), and the difference pλn,Gn
(X,Y )− pλ∗,G∗(X,Y ) can be written as

pλn,Gn
(X,Y )− pλ∗,G∗(X,Y ) = λn

{
k∗∑
j=1

∑
i∈Aj

pni f(Y |(ani )⊤X + bni , σ
n
i )

−
[(

1− λ∗

λn

) k0∑
j=1

p0jf(Y |(a0j )⊤X + b0j , σ
0
j ) +

λ∗

λn

k∗∑
j=1

p∗jf(Y |(a∗j )⊤X + b∗j , σ
∗
j )
]}

f̄(X)

= λn

[
pGn

(X,Y )− pG∗(λn)
(X,Y )

]
. (38)

Recall that under the full overlap regime, we have k̄ = k0, which leads to k ≥ k∗ = k∗ + k0 − k̄. Moreover, since
λn ∈ T , we get that G∗(λn) is a valid mixing measure. Thus, by employing arguments utilized in Case 2.2 in
Appendix A.2, we obtain the local inequality in equation (36) for this case.

Case 2: λn ̸∈ T for infinitely n ∈ N. WLOG, we assume that λn ̸∈ T for all n ∈ N.

For each n ∈ N, since λn ̸∈ T , there exists an index i ∈ [k0] such that λ∗p∗i − (λ∗ − λn)p
0
i < 0. In other words,

the set Iλn := {i ∈ [k0] : (λ
∗ − λn)p

0
i > λ∗p∗i } is not empty and has at least one element. In addition, we also

have that p̄∗j (λn) < 0 for any j ∈ Iλn
in this case.

Next, we will consider two different settings of the set Iλn as follows:

Case 2.1: Iλn
is not ratio-independent.

From the formulation of metric D3 in equation (34), we have D4n =
∑

j∈Iλn
[−p̄∗j (λn)] → 0 in this case. Recall

that we have −p̄∗j (λn) > 0 for all j ∈ Iλn , then it follows that p̄∗j (λn) → 0 as n → ∞ for all j ∈ Iλn . This leads
to the fact that p∗i /p

0
i = p∗j/p

0
j for all i, j ∈ Iλn , which is a contradiction to the assumption that Iλn is not

ratio-independent. Therefore, we obtain the local inequality in equation (36) for this case.

Case 2.2: Iλn is ratio-independent.

In this case, we have D4n = s(λn)D3(Gn, G̃∗(λn)). Next, we will demonstrate that s(λn) ̸→ 0 as n → ∞. Assume
by contrary that s(λn) → 0, then p∗j = 0 for all j > k0 and p̄∗j (λn) = λ∗p∗j +(λn −λ∗)p0j → 0 for all j ̸∈ Iλn

. Note
that

V (pλn,Gn
, pλ∗,G∗) =

V (pλn,Gn
, pλ∗,G∗)

D4n
×D4n → 0.

Therefore, by means of Fatou’s lemma, we get that pλn,Gn(X,Y )− pλ∗,G∗(X,Y ) → 0 when n → ∞. Recall that

pλn,Gn(X,Y )− pλ∗,G∗(X,Y )

=
∑

j∈Iλn

(−p̄∗j (λn))f(Y |(a∗j )⊤X + b∗j , σ
∗
j )f̄(X) +

[
λn

K∑
i=1

pni f(Y |(ani )⊤X + bni , σ
n
i )f̄(X)

−
∑

j∈Ic
λn

p̄∗j (λn)f(Y |(a∗j )⊤X + b∗j , σ
∗
j )f̄(X)−

k∗∑
j=k0+1

p̄∗j (λn)f(Y |(a∗j )⊤X + b∗j , σ
∗
j )f̄(X)

]
,

we get p̄∗j → 0 for all j ∈ Iλn
and λn → 0, which is a contradiction to the result that lim inf λn is bounded below

by a positive constant. Thus, s(λn) ̸→ 0 as n → ∞.

From the definition of G̃∗(λn), we can rewrite it as G̃∗(λn) :=
∑

j∈Jλn

p̄∗
j (λn)

s(λn)
δ(a∗

j ,b
∗
j ,σ

∗
j )

, where

Jλn
:= Icλn

∪ {k0 + 1, . . . , k∗}.

Next, we will use the following Voronoi cells to study the discrepancy D3(Gn, G̃∗(λn)):

Cn
j = Cj(Gn) = {i ∈ [kn] : ∥θni − θ∗j ∥ ≤ ∥θni − θ∗ℓ ∥, ∀ℓ ̸= j},
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for any ∀j ∈ Jλn , where θni := (ani , b
n
i , σ

n
i ) and θ∗j = (a∗j , b

∗
j , σ

∗
j ).

As kn ≤ k for all n, there exists a subsequence of Gn such that kn does not change with n. Thus, by replacing
Gn with this subsequence, we assume that kn = k for all n. Additionally, Cj = Cn

j does not change with n for all
j ∈ [k∗], either. Then, we rewrite the difference pλn,Gn(X,Y )− pλ∗,G∗(X,Y ) as follows:

pλn,Gn(X,Y )− pλ∗,G∗(X,Y ) =
∑

j∈Iλn

[−p̄∗j (λn)]f(Y |(a∗j )⊤X + b∗j , σ
∗
j )f̄(X)

+
∑

j:|Cj |>1

∑
i∈Cj

λnp
n
i [f(Y |(ani )⊤X + bni , σ

n
i )− f(Y |(a∗j )⊤X + b∗j , σ

∗
j )]f̄(X)

+
∑

j:|Cj |=1

∑
i∈Cj

λnp
n
i [f(Y |(ani )⊤X + bni , σ

n
i )− f(Y |(a∗j )⊤X + b∗j , σ

∗
j )]f̄(X)

+
∑

j∈Jλn

∑
i∈Cj

λnp
n
i − p̄∗j (λn)

 f(Y |(a∗j )⊤X + b∗j , σ
∗
j )f̄(X)

:= Cn +An,1 +An,2 +Bn.

For each j ∈ Jλn
: |Cj | > 1, by applying the Taylor expansion up to order r̄(|Cj |) as in Appendix A.1, we can

rewrite An,1 as

An,1 =
∑

j:|Cj |>1

r̄(|Cj |)∑
|α1|=0

2(r̄(|Cj |)−|α1|)∑
ℓ=0

En
α1,ℓ(j)X

α1 · ∂
|α1|+ℓf

∂h
|α1|+ℓ
1

(Y |(a∗j )⊤X + b∗j , σ
∗
j )f̄(X) +R5(X,Y ),

where R5(X,Y ) is a Taylor remainder such that R5(X,Y )/D4n, and

En
α1,ℓ(j) :=

∑
i∈Cj

∑
α2+2α3=ℓ

α2+α3≥1−|α1|

λnp
n
i

2α3α!
· (∆anij)

α1(∆bnij)
α2(∆σn

ij)
α3 , (39)

for any j ∈ Jλn
: |Cj | > 1, 0 ≤ |α1| ≤ r̄(|Cj |) and 0 ≤ ℓ ≤ 2(r̄(|Cj |)− |α1|).

On the other hand, by means of Taylor expansion up to the first order, we can decompose An,2 as

An,2 =
∑

j:|Cj |=1

1∑
|α1|=0

2(1−|α1|)∑
ℓ=0

En
α1,ℓ(j)X

α1 · ∂
|α1|+ℓf

∂h
|α1|+ℓ
1

(Y |(a∗j )⊤X + b∗j , σ
∗
j )f̄(X) +R6(X,Y ),

where R6(X,Y ) is a Taylor remainder term such that R6(X,Y )/D1n → 0 as n → ∞, and Eα1,ℓ(j) is defined
similarly as in equation (39) but for j ∈ Jλn

: |Cj | = 1, 0 ≤ |α1| ≤ 1 and 0 ≤ ℓ ≤ 2(r̄(|Cj |)− |α1|). Additionally,
we also utilize the notation En

α1,ℓ
(j) to denote the coefficients in Cn as En

0d,0
(j) := −p̄∗j (λn) for any j ∈ Iλn , and

those in Bn as

En
0d,0

(j) :=
∑
i∈Cj

λnp
n
i − p̄∗j (λn),

for any j ∈ Jλn . Therefore, An,1, An,2, Bn and Cn can be viewed as linear combinations of elements of the
following set:

H3 :=

{
Xα1 · ∂

|α1|+ℓf

∂h
|α1|+ℓ
1

(Y |(a∗j )⊤X + b∗j , σ
∗
j )f̄(X) : j ∈ Jλn

, 0 ≤ |α1| ≤ r̄(|Cj |), 0 ≤ ℓ ≤ 2(r̄(|Cj |)− |α1|),
}
. (40)

Assume that all the coefficients in the formulations of An,1/D4n, An,2/D4n, Bn/D4n and Cn/D4n go to zero as
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n → ∞. Now, we consider the following quantity:

1 =
D4n

D4n
=

s(λn)D3(Gn, G̃∗(λn))

D4n

=
s(λn)

∑
j∈Jλn

|
∑

i∈Cj
pni − p̄∗j (λn)/s(λn)|

D4n

+
s(λn)

∑
j:|Cj |=1

∑
i∈Cj

pni (∥∆anij∥+ |∆bnij |+ |∆σn
ij |)

D4n

+
s(λn)

∑
j:|Cj |>1

∑
i∈Cj

pni (∥∆anij∥2 + |∆bnij |r̄(|Cj |) + |∆σn
ij |r̄(|Cj |)/2)

D4n
(41)

For j ∈ Jλn : |Cj | > 1, we take summation of the limits of Eα1,0(j), where α1 ∈ {2e1, 2e2, . . . , 2ed} with
eu := (0, . . . , 0, 1︸︷︷︸

u-th

, 0, . . . , 0), and obtain that

1

D4n
·

∑
j∈Jλn :|Cj |>1

∑
i∈Cj

λnp
n
i ∥∆anij∥2 → 0, (42)

For j ∈ Jλn
such that |Cj | = 1, we combine the limits of E0d,1(j)/D4n, E0d,2(j)/D4n and Eα1,0(j)/D4n for any

α1 ∈ {e1, e2, . . . , ed}, then

1

D4n
·

∑
j∈Jλn :|Cj |=1

∑
i∈Cj

λnp
n
i

(
∥∆anij∥1 + |∆bnij |+ |∆σn

ij |
)
→ 0.

Due to the topological equivalence between 1-norm and 2-norm, we receive

1

D4n
·

∑
j∈Jλn :|Cj |=1

∑
i∈Cj

λnp
n
i

(
∥∆anij∥+ |∆bnij |+ |∆σn

ij |
)
→ 0. (43)

Since s(λn) ̸→ 0, it follows from equations (42) and (43) that

s(λn)

D4n
·

∑
j∈Jλn :|Cj |>1

∑
i∈Cj

λnp
n
i ∥∆anij∥2 +

s(λn)

D4n
·

∑
j∈Jλn :|Cj |=1

∑
i∈Cj

λnp
n
i

(
∥∆anij∥1 + |∆bnij |+ |∆σn

ij |
)
→ 0. (44)

By taking the summation of the limits of |E0d,0(j)|/D4n for j ∈ Jλn , we get that

1

D4n
·
∑

j∈Jλn

∣∣∣∣∣∣
∑
i∈Cj

λnp
n
i − p̄∗j (λn)

∣∣∣∣∣∣→ 0.

From the above hypothesis, we take the summation of all the coefficients in the representation of Cn/D4n and get
that

1

D4n
·
∑

j∈Iλn

−p̄∗j (λn) → 0.

Then, we have

0 ≤
s(λn)|

∑
i∈Cj

pni − p̄∗j (λn)/s(λn)|
D4n

=

∑
i∈Jλn

|s(λn)
∑

i∈Cj
pni − p̄∗j (λn)|

D4n

≤
∑

j∈Jλn
|λn

∑
i∈Cj

pni − p̄∗j (λn)|
D4n

+

 ∑
j∈Jλn

∑
i∈Cj

pni

∑j∈Iλn
−p̄∗j (λn)

D4n
→ 0,
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which leads to

1

D4n
· s(λn)

∣∣∣∣∣∣
∑
i∈Cj

pni − p̄∗j (λn)/s(λn)

∣∣∣∣∣∣→ 0. (45)

By plugging in the limits in equations (44) and (45) into the equation(41), we deduce that

1

D4n
· s(λn)

∑
j:|Cj |>1

∑
i∈Cj

pni

(
|∆bnij |r̄(|Cj |) + |∆σn

ij |r̄(|Cj |)/2
)
→ 1.

Therefore, we can find an index j∗ ∈ Jλn such that |Cj | > 1 satisfies

1

D4n
· s(λn)

∑
i∈Cj∗

pni

(
|(∆bnij∗)

(1)|r̄(|Cj∗ |) + |∆σn
ij∗ |r̄(|Cj∗ |)/2

)
̸→ 0.

WLOG, we assume that j∗ = 1. From the hypothesis, as E0d,ℓ(1)/D4n → 0 as n → ∞ for any 1 ≤ ℓ ≤ r̄(|C1|), we
have ∑

i∈C1
pni
∑

α2+2α3=ℓ

(∆bni1)
α2(∆σn

i1)
α3

2α3α2!α3!

s(λn)
∑

i∈C1
pni
(
|∆bni1|r̄(|C1|) + |∆σn

ij |r̄(|C1|)/2
) → 0,

for any 1 ≤ ℓ ≤ r̄(|C1|). Recall that s(λn) ̸→ 0, then

∑
i∈C1

pni
∑

α2+2α3=ℓ

(∆bni1)
α2(∆σn

i1)
α3

2α3α2!α3!∑
i∈C1

pni
(
|∆bni1|r̄(|C1|) + |∆σn

ij |r̄(|C1|)/2
) → 0. (46)

Subsequently, we denote

Mn = max{|∆bni1|, |∆σn
ij |1/2 : i ∈ C1}, p̄n = max

i∈C1

pni .

Since the sequence pni /pn is bounded, we can substitute it by its subsequence which admits a non-negative limit
s2i = limn→∞ pni /pn. Furthermore, as pni ≥ ξ > 0 for all i ∈ C1, at least one among the limit s2i is equal to 1.
Similarly, let (∆bni1)/Mn → t1i and (∆σn

i1)/(2M
2

n) → t2i as n → ∞ for any i ∈ C1. Then, at least one among t1i
and t2i for i ∈ C1 is equal to either 1 or −1.

Then, we divide both the numerator and the denominator of the ratio in equation (46) by pnM
ℓ

n, and obtain the
following system of polynomial equations:∑

i∈C1

∑
α2+2α3=ℓ

s2i tα2
1i tα3

2i

α2! α3!
= 0, ∀ℓ = 1, 2, . . . , r̄(|C1|).

It follows from the definition of r̄(|Cj |) that this system of polynomial equations will not admit any non-trivial
solutions (si, t1i, t2i)i∈Cj , which is a contradiction to the fact that si > 0 for all i ∈ C1.

Consequently, at least one among the coefficients in the representations of An,1/D4n, An,2/D4n, Bn/D4n and
Cn/D4n does not go to zero as n → ∞. Let us denote by mn the maximum of the absolute values of those
aforementioned coefficients, i.e.

mn = max
j∈[k∗],0≤|α1|≤r̄(|Cj |),
0≤ℓ≤2(r̄(|Cj |)−|α1|)

{ |En
α1,ℓ

(j)|
D4n

}
.

Additionally, we define

En
α1,ℓ(j)/mn → τα1,ℓ(j)
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as n → ∞ for all j ∈ [k∗], 0 ≤ |α1| ≤ r̄(|Cj |), 0 ≤ ℓ ≤ 2(r̄(|Cj |) − |α1|). Here, at least one among τα1,ℓ(j) is
non-zero. By applying the Fatou’s lemma, we get

0 = lim
n→∞

1

mn

2V (pλn,Gn , pλ∗,G∗)

D4n
≥
∫

lim inf
n→∞

1

mn

|pλn,Gn(X,Y )− pλ∗,G∗(X,Y )|
D4n

d(X,Y ) ≥ 0.

Note that

1

mn

pλn,Gn
(X,Y )− pλ∗,G∗(X,Y )

D4n
→
∑
j,α1,ℓ

τα1,ℓ(j)X
α1 · ∂

|α1|+ℓf

∂h
|α1|+ℓ
1

(Y |(a∗j )⊤X + b∗j , σ
∗
j )f̄(X).

As a result, we get ∑
j,α1,ℓ

τα1,ℓ(j)X
α1 · ∂

|α1|+ℓf

∂h
|α1|+ℓ
1

(Y |(a∗j )⊤X + b∗j , σ
∗
j )f̄(X) = 0, (47)

By employing similar arguments for showing the set H2 is linearly independent as in Appendix A.2, we can
demonstrate that H3 defined in equation (40) is also a linearly independent set. Thus, equation (47) indicates
that ∑

j,α1,ℓ

τα1,ℓ(j)X
α1 = 0,

for all j ∈ [k∗] and 0 ≤ |α1| ≤ r̄(|Cj |) and 0 ≤ ℓ ≤ 2(r̄(|Cj |)− |α1|). As the left hand side of the above equation is
a polynomial of X ∈ X , which is a bounded set of Rd. Then, τα1,ℓ(j) = 0 for all j ∈ [k∗], 0 ≤ |α1| ≤ r̄(|Cj |) and
0 ≤ ℓ ≤ 2(r̄(|Cj |)− |α1|). This is a contradiction to the fact that at least one among τα1,ℓ(j) is different from 0.
Therefore, we reach the local inequality in equation (36), which means that there exists a positive constant ε0
such that

inf
λ∈[0,1],G∈Gk,ξ(Θ):

D4((λ,G),(λ∗,G∗))≤ε0

V (pλ,G, pλ∗,G∗)/D4((λ,G), (λ∗, G∗)) > 0.

Global inequality. Thus, it is sufficient to demonstrate that

inf
λ∈[0,1],G∈Gk,ξ(Θ):

D4((λ,G),(λ∗,G∗))>ε0

V (pλ,G, pλ∗,G∗)/D4((λ,G), (λ∗, G∗)) > 0. (48)

Suppose that the above inequality does not hold, then there exist sequences λ′
n ∈ [0, 1] and G′

n ∈ Gk,ξ(Θ) such
that {

D4((λ
′
n, G

′
n), (λ

∗, G∗)) > ε0

V (pλ′
n,G

′
n
, pλ∗,G∗)/D4((λ

′
n, G

′
n), (λ

∗, G∗)) → 0,

which implies that V (pλ′
n,G

′
n
, pλ∗,G∗) → 0 as n → ∞. Note that the sets Θ and [0, 1] are bounded, we can find a

subsequence of G′
n and a subsequence of λ′

n such that G′
n → G′ and λ′

n → λ′, where G′ ∈ Gk,ξ(Θ) and λ′ ∈ [0, 1].
By replacing G′

n and λ′
n with their subsequences, we get that D4((λ

′, G′), (λ∗, G∗)) > ε0. By the Fatou’s lemma,
we obtain that

0 = lim
n→∞

2V (pλ′
n,G

′
n
, pλ∗,G∗) ≥

∫
lim inf
n→∞

∣∣pλ′
n,G

′
n
(X,Y )− pλ∗,G∗(X,Y )

∣∣ d(X,Y )

=

∫
|pλ′,G′(X,Y )− pλ∗,G∗(X,Y )| d(X,Y ) ≥ 0,

which indicates that pλ′,G′(X,Y ) = pλ∗,G∗(X,Y ) for almost surely (X,Y ).

Case 1: λ′
n ∈ T for infinitely n ∈ N. WLOG, we assume that λ′

n ∈ T for all n ∈ N.

In this case, D4((λ
′, G′), (λ∗, G∗)) = D3(G

′, G∗(λ
′)) > ε0. It follows from equation (38) that

0 = pλ′,G′(X,Y )− pλ∗,G∗(X,Y ) = λ′[pG′(X,Y )− pG∗(λ′)(X,Y )],
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Since lim inf λ′
n is lower bounded by a positive constant, then λ′ > 0. Combining this with the above result, we

get that pG(X,Y ) = pG∗(λ′)(X,Y ) for almost surely (X,Y ). Due to the identifiability of the Gaussian mixture
of experts Ho et al. (2022), we obtain that G′ = G∗(λ

′). This means that D3(G
′, G∗(λ

′)) = 0, which is a
contradiction to the fact that D3(G

′, G∗(λ
′)) > ε0 > 0.

Case 2: λ′
n ∈ T c for infinitely n ∈ N. WLOG, we assume that λ′

n ∈ T c for all n ∈ N.

Case 2.1: Iλ′
n

is not ratio-independent

In this case, D4((λ
′, G′), (λ∗, G∗)) =

∑
j∈Iλ′ −p̄∗j (λ

′) > ε0. It follows from equation (37) that

0 = pλ′,G′(X,Y )− pλ∗,G∗(X,Y ) =
∑
j∈Iλ′

−p̄∗j (λ
′)f(Y |(a∗j )⊤X + b∗j , σ

∗
j )f̄(X)

+
[ k′∑

i=1

λ′p′if(Y |(a′i)⊤X + b′i, σ
′
i)f̄(X)−

∑
j∈Jλ′

p̄∗j (λ
′)f(Y |(a∗j )⊤X + b∗j , σ

∗
j )f̄(X)

]
=
∑
j∈Iλ′

−p̄∗j (λ
′)f(Y |(a∗j )⊤X + b∗j , σ

∗
j )f̄(X) + [pG′(X,Y )− pG̃∗(λ′)(X,Y )]

=
∑
j∈Iλ′

−p̄∗j (λ
′)f(Y |(a∗j )⊤X + b∗j , σ

∗
j )f̄(X).

Recall that −p̄∗j (λ
′) > 0 for all j ∈ Iλ′ . Thus, p̄∗j (λ′) = 0 as n → ∞ for all j ∈ Iλ′ . This leads to the fact that

p∗i /p
0
i = p∗j/p

0
j = (λ∗−λ′)/λ∗ for all i, j ∈ Iλ′ , which is a contradiction to the fact that Iλ′ is not ratio-independent,

which follows from the ratio-independece of Iλ′
n
.

Case 2.2: Iλ′
n

is ratio-independent.

In this case, D4((λ
′, G′), (λ∗, G∗)) = D3(G

′, G̃∗(λ
′)). The result pλ′,G′(X,Y ) = pλ∗,G∗(X,Y ) for almost surely

(X,Y ) indicates that G′ = G̃∗(λ
′). Then, we have D3(G

′, G̃∗(λ
′
n)) = 0, which contradicts to the fact that

D3(G
′, G̃∗(λ

′
n)) > ε0 > 0.

Hence, the proof is completed.

D PARAMETER ESTIMATION WITH VANISHING MIXING PROPORTION

In this appendix, we resume the discussion about parameter estimation rates under the deviated Gaussian mixture
of experts when the mixing proportion vanishes, that is, λ∗ = 0. For that purpose, we consider the distinguishable
and non-distinguishable settings in Appendix D.1 and Appendix D.2, respectively.

D.1 Distinguishable Settings

First of all, we explore the convergence behavior of parameter estimation under the distinguishable settings.
Theorem 4. Assume that the distinguishability condition in Definition 1 holds and λ∗ = 0. Then, the Total
Variation lower bound V (pλ,G, pλ∗,G∗) ≳ λ holds for any (λ,G) ∈ [0, 1] × Gk(Θ). This bound together with
Proposition 2 suggest that we can find a positive constant C5 that depends only on g0, λ

∗,Θ such that

P(λ̂n > C5

√
log(n)/n) ≲ n−c5 ,

where c5 is a positive constant depending only on Θ.

When λ∗ = 0, the mixture part pG∗ is no longer involved in the formulation of the true conditional density
function pλ∗,G∗(Y |X). Moreover, since pG∗ is distinguishable from the known function g0, then we are not able to
access the convergence behavior of the MLE Ĝn. Nevertheless, Theorem 4 indicates that the mixing proportion
estimation λ̂n converges to λ∗ = 0 at a parametric rate of order O(n−1/2).

Proof of Theorem 4. From the result of Proposition 2, it is sufficient to show that V (pλ̂n,Ĝn
, pλ∗,G∗) ≳ λ̂n. When

λ̂n = 0, this problem becomes trivial. Therefore, we will consider only the case when λ̂n > 0, in which the
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problem turns into proving that

inf
λ∈(0,1],G∈Gk,ξ(Θ)

V (pλ,G, pλ∗,G∗)

λ
> 0.

Assume that the above inequality does not hold, which implies that there exist sequences λn ∈ (0, 1] and
Gn =

∑kn

i=1 p
n
i δ(an

i ,b
n
i ,σ

n
i ) ∈ Gk,ξ(Θ) such that V (pλn,Gn

, pλ∗,G∗)/λn → 0 as n → ∞. Since Θ is a compact set, we

can find a subsequence of Gn such that Gn → G̃, where G̃ :=
∑k̃

i=1 p̃iδ(ãi ,̃bi,σ̃i)
∈ Gk,ξ(Θ). By replacing Gn with

this subsequence and applying the Fatou’s lemma with a note that λ∗ = 0, we get

lim
n→∞

2V (pλn,Gn
, pλ∗,G∗)

λn
≥
∫

lim inf
n→∞

∣∣∣∣∣
kn∑
i=1

pni f(Y |(ani )⊤X + bni , σ
n
i )− g0(Y |X)

∣∣∣∣∣ f̄(X)d(X,Y ).

It follows from the hypothesis V (pλn,Gn
, pλ∗,G∗)/λn → 0 that

∑k̃
i=1 p̃if(Y |(ãi)⊤X + b̃i, σ̃i)− g0(Y |X) = 0, for

almost surely (X,Y ). This contradicts the assumption that pG̃ is distinguishable from g0. Hence, we reach the
conclusion of this part.

D.2 Non-distinguishable Settings

We now draw our attention to parameter estimation rates under the non-distinguishable settings when the mixing
proportion vanishes, namely when the function g0 takes the following form:

g0(Y |X) = pG0
(Y |X) :=

k0∑
j=1

p0jf(Y |(a0j )⊤X + b0j , σ
0
j ), (49)

where k0 ∈ [k∗].

Since λ∗ = 0, the mixture part pG∗ is not involved in the formulation of the true conditional density pλ∗,G∗(Y |X).
As a result, we do not have any interaction between two functions g0(Y |X) and pG∗(Y |X). Therefore, it is
unnecessary to divide the non-distinguishable setting into partial overlap regime and full overlap regime. Instead,
we establish the parameter estimations under the general non-distinguishable settings in the following theorem:

Theorem 5. Suppose that the function g0 takes the form in equation (49) and λ∗ = 0. Then, the Total Variation
lower bound V (pλ,G, pλ∗,G∗) ≳ λD3(G,G0) holds for any (λ,G) ∈ [0, 1] × Gk(Θ). This bound together with
Proposition 2 indicates that there exists a positive constants C6 depending on g0, λ

∗,Θ such that

P(λ̂nD3(Ĝn, G0) > C6

√
log(n)/n) ≲ n−c6 ,

where c6 is a constant that depends only on Θ.

Different from the results of all previous theorems, the MLE Ĝn converges to the mixing measure G0 rather than
G∗ under the loss function D3 due to the disappearance of the mixture part pG∗(Y |X) in the conditional density
pλ∗,G∗(Y |X). Moreover, the rate of that convergence depends on the vanishing rate of λ̂n, therefore, it is no
better than the parametric rate of order O(n−1/2).

Proof of Theorem 5. Note that the problem is trivial when λ̂n = 0, therefore, we consider only the case when
λ̂n > 0. From Proposition 2, it is sufficient to show that

inf
λ∈(0,1],G∈Gk,ξ(Θ)

V (pλ,G, pλ∗,G∗)

λD3(G,G0)
> 0. (50)

Since λ∗ = 0, we get that

pλ,G(X,Y )− pλ∗,G∗(X,Y ) = (1− λ)g0(Y |X)f̄(X) + λpG(X,Y )− g0(Y |X)f̄(X)

= λ [pG(X,Y )− g0(Y |X)f̄(X)]

= λ [pG(X,Y )− pG0
(X,Y )].
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As a result, equation (50) becomes infG∈Gk,ξ(Θ) V (pG, pG0)/D3(G,G0) > 0.

Local inequality: We first prove that

lim
ε→0

inf
G∈Gk,ξ(Θ):D3(G,G0)≤ε

V (pG, pG0
)

D3(G,G0)
> 0.

Assume by contrary that the above claim is not true. Then, there exists a sequence Gn =
∑kn

i=1 p
n
i δ(an

i ,b
n
i ,σ

n
i ) ∈

Gk,ξ(Θ) such that as n → ∞, we have {
D3(Gn, G0) → 0,

V (pGn
, pG0

)/D3(Gn, G0) → 0.

By employing arguments (with adapted notations) used in Case 2.2 in Appendix A.2 for showing contradiction
to the fact that V (pGn

, pG∗(λn)
) → 0 as n → ∞, we also get a contradiction here. Consequently, there exists a

positive constant ε0 such that

inf
G∈Gk,ξ(Θ):D3(G,G0)≤ε0

V (pG, pG0
)

D3(G,G0)
> 0.

Global inequality: From the above result, we only need to show that

inf
G∈Gk,ξ(Θ):D3(G,G0)>ε0

V (pG, pG0)

D3(G,G0)
> 0.

Assume that the above inequality does not hold. Then, there exists a sequence G′
n ∈ Gk,ξ(Θ) satisfying

V (pG′
n
, pG0

)/D3(G
′
n, G0) → 0 as n → ∞, whereas D3(G

′
n, G0) > ε0 for all n ∈ N. Therefore, V (pG′

n
, pG0

) → 0
as n → ∞. Note that Θ is a compact set, then we can find a subsequence of G′

n such that G′
n → G′ for some

G′ ∈ Gk,ξ(Θ). By replacing the sequence G′
n by that subsequence, we obtain that D3(G

′, G0) > ε0 as a result of
D3(G

′
n, G0) > ε0 for all n ∈ N. By Fatou’s lemma, we get

0 = lim
n→∞

V (pG′
n
, pG0

) ≥ 1

2

∫
lim inf
n→∞

|pG′
n
(X,Y )− pG0

(X,Y )|d(X,Y )

=
1

2

∫
|pG′(X,Y )− pG0

(X,Y )|d(X,Y ) ≥ 0,

which implies that pG′(X,Y ) = pG0
(X,Y ) for almost surely (X,Y ) ∈ X × Y. Since the Gaussian mixture of

experts is identifiable (cf. Proposition 3 in Ho et al. (2022)), the previous equation indicates that G′ ≡ G0. This
contradicts to the fact that D3(G

′, G0) ≥ ε > 0.

Hence, the proof is completed.
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