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Abstract

We propose a novel statistical method for
testing the results of anomaly detection (AD)
under domain adaptation (DA), which we
call CAD-DA——controllable AD under DA.
The distinct advantage of the CAD-DA
lies in its ability to control the probabil-
ity of misidentifying anomalies under a pre-
specified level « (e.g., 0.05). The challenge
within this DA setting is the necessity to ac-
count for the influence of DA to ensure the
validity of the inference results. We overcome
the challenge by leveraging the concept of Se-
lective Inference to handle the impact of DA.
To our knowledge, this is the first work ca-
pable of conducting a valid statistical infer-
ence within the context of DA. We evaluate
the performance of the CAD-DA method on
both synthetic and real-world datasets.

1 INTRODUCTION

Anomaly detection (AD) is a fundamental problem in
machine learning and statistics, as the vast body of
literature surveyed by Aggarwal (2017) suggests. The
goal of AD is to identify rare and unusual observa-
tions that deviate significantly from the norm within
a given dataset. AD plays a critical role in several ap-
plications and has been widely applied in many areas
such as medical (Wong et al., 2002; Aggarwal, 2005),
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fraud detection (Pourhabibi et al., 2020), and damage
detection (Avci et al., 2021; Du et al., 2020).

In numerous real-world scenarios, the availability of
limited data can lead to poor performance of AD. To
overcome this challenge, a strategy of increasing the
sample size by transferring data points from a read-
ily accessible source domain to the present target do-
main can be employed. This type of problem is known
as Domain Adaptation (DA). By leveraging data-rich
source domains to bolster the data pool in the target
domain, DA aims to enhance the efficacy of AD in sce-
narios where limited data hamper their effectiveness.

A critical concern arises regarding to the possibility of
erroneous detection. The AD could misidentify certain
observations as anomalies, even though they are actu-
ally normal. These errors are commonly referred to as
false positives, which can cause serious consequences in
high-stake decision making. Especially, when conduct-
ing AD under DA, there is an increased risk of misclas-
sifying normal instances as anomalies due to potential
DA errors. For instance, in the medical field, some
unhealthy individuals transformed from the source do-
main may become closely similar to healthy individu-
als in the target domain. Thus, we mistakenly classify
a healthy individual as unhealthy, and we could inad-
vertently administer drugs that may harm their well-
being. Hence, there is a critical need of an inference
method for controlling the false positive rate (FPR).

In AD-DA, controlling the false negative rate (FNR) is
also important. In the literature of statistics, a com-
mon procedure is to initially control the FPR at a
specified level a, e.g., 0.05, while concurrently seeking
to minimize the FNR, i.e., maximizing the true posi-
tive rate (TPR = 1 —FNR) by empirical evidences. In
this paper, we follow this established practice.
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Figure 1: Ilustration of the proposed method. Conducting AD-DA without inference results wrong anomalies
(A, B). The naive p-values are small even for falsely detected anomalies. The proposed CAD-DA can identify
both false positive (FP) and true positive (TP) detections, i.e., large p-values for FPs and small p-values for TPs.

To our knowledge, none of the existing method can
control the FPR of AD under the context of DA. The
main challenge is that, without accounting for the in-
fluence of DA, the FPR can not be properly controlled.
Tsukurimichi et al. (2022) proposed a method for test-
ing the anomalies when they are detected by a class
of robust regression methods (Huber et al., 1973; An-
drews, 1974; Zaman et al., 2001; Rousseeuw and Leroy,
2005; Maronna et al., 2019). However, this method
supposes that the data comes from the same distribu-
tion, and it is invalid in the scenario that a distribution
shift occurs and DA must be applied.

Our idea is to leverage Selective Inference (SI) (Lee
et al., 2016) for resolving this challenge. However, di-
rectly incorporating SI in our setting is still non-trivial
because SI is highly problem-specific. Therefore, we
need to carefully examine the selection strategy of the
algorithm in the context of AD after DA. Moreover,
if we naively leverage the ideas of existing SI methods
(Lee et al., 2016; Duy and Takeuchi, 2023), the power
of the test is low, i.e, the FNR is high. Therefore, we
need to introduce an approach to minimize the FNR
while properly controlling the FPR. We would like to
note that we start this new research direction with
the Optimal Transport (OT)-based DA Flamary et al.
(2016), which is recently promising and popular in the
OT community. The detailed discussions on future
extensions to other types of DA are provided in §5.

Contributions. Our contributions are as follows:

e We mathematically formulate the problem of testing
AD results under DA and introduce CAD-DA, a novel
method to conduct the statistical test with controllable
FPR. Compared to the literature on controllable AD,
CAD-DA presents a unique challenge in addressing the
effect of DA to ensure the validity of FPR control.

e We overcome the challenge by leveraging the SI
framework to handle the influence of DA. We care-
fully examine the selection strategy for OT-based

Table 1: The importance of the proposed method lies
in its ability to control the False Positive Rate (FPR).

No Inference | Naive | CAD-DA
N =120 FPR =1.0 0.6 0.04
N =240 FPR=1.0 0.7 0.05

DA, whose operations can be characterized by lin-
ear/quadratic inequalities, and prove that achieving
controllable AD-DA is indeed possible. Furthermore,
we introduce a more strategic approach to enhance the
TPR. To our knowledge, this is the first work capable
of conducting valid inference within the context of DA.

e We conduct experiments on both synthetic and real-
world datasets to support our theoretical results, show-
casing superior performance of the CAD-DA.

Example 1. To show the importance of the proposed
method, we provide an example presented in Fig. 1.
Our goal is to detect patients in Hospital T with heart
disease, treated as anomalies, in a scenario where the
number of patients is limited. Here, the source domain
consists of patients in Hospital S, while the target do-
main comprises patients in Hospital T. We employ the
OT-based DA approach to transfer the data from the
source domain to the target domain. Subsequently, we
apply an AD algorithm, i.e., mean absolute deviation.
The AD algorithm erroneously identified two healthy
individuals as anomalies. To address this issue, we
conducted an additional inference step using the pro-
posed p-values, allowing us to identify both true pos-
itive and false positive detections. Furthermore, we
repeated the experiments N times and the FPR results
are shown in Tab. 1. With the proposed method, we
were able to control the FPR under a = 0.05, which
other competitors were unable to achieve.

Related works. Although there exists an extensive
body of literature on AD methods (Aggarwal, 2017),
there has been a limited exploration of applying the
hypothesis testing framework to assess the results of
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AD. For instance, in Srivastava and von Rosen (1998)
and Pan and Fang (1995), the likelihood ratio test has
been discussed to determine if an individual data point
is an anomaly, employing the mean-shift model. How-
ever, these classical anomaly inference methods hold
validity exclusively when the target anomalies are pre-
determined in advance. When we employ these clas-
sical techniques on the anomalies detected by an AD
algorithm, they become invalid in the sense that the
FPR cannot be controlled at the desired level.

In order to control the FPR when using classical meth-
ods, the use of multiple testing correction is essential.
The most popular technique is Bonferroni correction,
in which the correction factor scales exponentially with
the number of instances, denoted as n. Specifically, it
grows to a value of 2". However, this correction factor
can become prohibitively large unless n fairly small,
which leads to overly conservative statistical inference.

In recent years, SI has emerged as a promising ap-
proach to resolve the invalidity of the traditional in-
ference method without the need of employing con-
servative multiple testing correction. Specifically, in-
stead of considering the exponentially increasing value
of 2™, we consider the correction factor of 1 by con-
ducting the conditional inference conditioning on the
single set of detected anomalies. This is the basic con-
cept of the conditional SI introduced in the seminal
work of Lee et al. (2016).

The seminal paper has not only laid the foundation
for research on SI for feature selection (Loftus and
Taylor, 2014; Fithian et al., 2015; Tibshirani et al.,
2016; Yang et al., 2016; Hyun et al., 2018a; Sugiyama
et al., 2021a; Fithian et al., 2014; Duy and Takeuchi,
2022a) but has also spurred the development of SI
for more complex supervised learning algorithms, such
as boosting (Riigamer and Greven, 2020), decision
trees (Neufeld et al., 2022), kernel methods (Yamada
et al., 2018), higher-order interaction models (Suzu-
mura et al., 2017; Das et al., 2021) and deep neural
networks (Duy et al., 2022; Miwa et al., 2023).

Moreover, SI is also valuable for unsupervised learning
problems, such as change point detection (Umezu and
Takeuchi, 2017; Hyun et al., 2018b; Duy et al., 2020;
Sugiyama et al., 2021b; Jewell et al., 2022), cluster-
ing (Lee et al., 2015; Inoue et al., 2017; Gao et al., 2022;
Chen and Witten, 2022), and segmentation (Tanizaki
et al., 2020; Duy et al., 2022). Furthermore, SI can
be applied to statistical inference on the DTW dis-
tance (Duy and Takeuchi, 2022b) and the Wasserstein
distance (Duy and Takeuchi, 2023).

The studies most related to this paper are Chen and
Bien (2019) and Tsukurimichi et al. (2022). The au-
thors of (Chen and Bien, 2019) introduced a method

for testing the features of a linear model after removing
anomalies. Although their work did not directly ad-
dress the problem of testing the anomalies, it was the
inspiration for Tsukurimichi et al. (2022). The contri-
bution of Tsukurimichi et al. (2022) centered on intro-
ducing a SI approach for testing the anomalies iden-
tified by a class of robust regression methods. How-
ever, a notable limitation of Chen and Bien (2019) and
Tsukurimichi et al. (2022) is their assumption that
the data comes from the same distribution. There-
fore, when applied in the context of DA, their methods
loses its validity, making them unsuitable for scenar-
ios involving DA. Besides, their primary focus revolves
around the context of linear regression, which differs
from the setting we consider in this paper.

2 PROBLEM SETUP

Let us consider two random vectors

X*=(X{,..X;) =p+e’, e ~N0O ),

X'=(x{,. X)) =p'+€', € ~N(0,x,

where n, and n; are the number of instances in the
source and target domains, p® and p! are unknown sig-
nals, €° and ! are the Gaussian noise vectors with the
covariance matrices ¥° and X! assumed to be known
or estimable from independent data. We assume that
the number of instances in the target domain is lim-
ited, i.e., n; is much smaller than ns. The goal is to
statistically test the results of AD after DA.

Optimal Transport (OT)-based DA (Flamary
et al., 2016). Let us define the cost matrix as
C(X*, X" = [(X; - X;)Q]ij € R XM,

The OT problem between the source and target do-
main is then defined as

T = argmin (T, C(X*, X?)) (1)
T>0

st. Tl,, =1, /ns,T' 1, =1,,/n,

where 1,, € R" is the vector whose elements are set
to 1. After obtaining the optimal transportation ma-
trix 7', source instances are transported in the target
domain. The transformation X?° of X* is defined as:

X* =n,TX".

More details are provided in Sec 3.3 of Flamary et al.
(2016).

Anomaly detection. After transforming the data
from source domain to the target domain, we apply
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an AD algorithm A on {Xs, Xt} to obtain a set O of
indices of anomalies in the target domain:

A: {XS7Xt} — O € [ny].

In this paper, we used the Median Absolute Devia-
tion (MAD) as an example of the AD algorithm. Our
proposed CAD-DA framework is not specialized for a
specific AD algorithm but can also be applied to other
AD algorithms (see §3.3 for more details).

Statistical inference and decision making with a
p-value. To statistically quantifying the significance
of the detected anomalies, we consider the statistical
test on the following null and alternative hypotheses:

Ho ; :uz- =plo vs. Hyy: ué- #pl o, Vi€O,

where

N 1
Alo=—g 2. He
ni — 0| y
€[n:\O
In other words, our goal is to test if each of the detected
anomalies j € O is truly deviated from the remaining
data points after removing the set of anomalies O.

To test the hypotheses, the test statistic is defined as:
_ X
T
n-x-Xo=u (%) ©

where 7); is the direction of the test statistic:

OS
e (eﬁ' - nt—1|o|et0> ’ &

0° € R™ represents a vector where all entries are set
to 0, e§» € R™ is a vector in which the j*" entry is set
to 1, and 0 otherwise, et_o € R™ is a vector in which
the j* entry is set to 0 if j € O, and 1 otherwise.

After obtaining the test statistic in (2), we need to
compute a p-value. Given a significance level « € [0, 1],
e.g., 0.05, we reject the null hypothesis Hy ; and assert
that Xj’§ is an anomaly if the p-value < . Conversely,
if the p-value > «, we infer that there is insufficient
evidence to conclude that X; is an anomaly.

Challenge of computing a valid p-value. The

traditional (naive) p-value, which does not properly
consider the effect of DA and AD, is defined as:

; X° X3
naive __ T T obs
N Cley tea)!

where X and X!, are the observations of the ran-
dom vectors X* and X, respectively. If the vector

7n; is independent of the DA and AD algorithms, the
naive p-value is valid in the sense that

P(p;‘laive S a | Ho,j is true ) = qQ, Ya € [0; 1]7 (4)

a false positive

i.e., the probability of obtaining a false positive is con-
trolled under a certain level of guarantee. However, in
our setting, the vector 7; actually depends on the DA
and AD. The property of a valid p-value in (4) is no
longer satisfied. Hence, the naive p-value is invalid.

3 PROPOSED CAD-DA METHOD

In this section, we introduce the technical details of
computing the valid p-value in CAD-DA.

3.1 The valid p-value in CAD-DA

To calculate the valid p-value, we need to derive the
sampling distribution of the test statistic in (2). To
achieve the task, we utilize the concept of conditional
SI, i.e., we consider the sampling distribution of the
test statistic conditional on the AD results after DA:

XS
P(nj—r <Xt> ‘ OX&Xt = Oobs>a (5)

where Oxs xt is the results of AD after DA for any
random X* and X!, and Ogps = Oxs  xt

obs?“Yobs

Next, we introduce the selective p-value defined as

, pe X3,
p;el = IEDHO,j ( 77;— (Xt) ‘ > ’I’]J—r (XtE) ‘ g> s (6)
obs

where the conditioning event £ is defined as

£E= {OX.;,Xt = Oobs, Qx», xt = Qobs}- (7)

The Qx- x is the nuisance component defined as

XS
QXS,Xt - (InSJrnt - ban) (Xt>v (8)
_ _Xmj _ (¥ 0
where b = TS, and ¥ = ( 0 Et) .

Remark 1. The nuisance component Qxs xt corre-
sponds to the component z in the seminal paper of
Lee et al. (2016) (see Sec. 5, Eq. (5.2), and Theo-
rem 5.2)). We note that additionally conditioning on
Oxs xt, which is required for technical purpose, is a
standard approach in the SI literature and it is used in
almost all the SI-related works that we cited.

Lemma 1. The selective p-value proposed in (6) sat-
isfies the property of a valid p-value:

Py, , (p;'-e1 < a) =a, Yae€|0,1].
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Figure 2: A schematic illustration of the proposed method. By applying AD after DA
to the observed data, we obtain a set of anomalies. Then, we parametrize the data with
a scalar parameter z in the dimension of the test statistic to identify the truncation
region Z whose data have the same result of anomaly detection as the observed data.
Finally, the valid inference is conducted conditional on Z. We utilize the concept of
“divide-and-conquer” and introduce a hierarchical line search method for efficiently

characterizing the truncation region Z.
Proof. The proof is deferred to Appendix 6.1. O

Lemma 1 indicates that, by using the selective p-value,
the FPR is theoretically controlled at the significance
level a. To compute the selective p-value, we need to
identify the conditioning event £ in (7) whose charac-
terization will be introduced in the next section.

3.2 Conditional Data Space Characterization

We define the set of (‘;S) € R" 1™ that satisfies the
conditions in (7) as:

X
P= {<Xt>‘ OXS,Xt = 00b57QX5,Xt = Qobs} . (9)

In fact, the conditional data space D is a line in R™s 7
as stated in the following lemma.

Lemma 2. The set D in (9) can be rewritten using a
scalar parameter z € R as follows:

XS
D:{(Xt):a+bz|262},

where vector a = Qups, b is defined in (8), and

(10)

Z= {zeR | Oaspe :oobs}. (11)

Here, with a slight abuse of notation, Ogyp, = O(xi)
p.q

is equivalent to Oxs xt.

Proof. The proof is deferred to Appendix 6.2. O

Remark 2. Lemma 2 indicates that we need NOT
consider the (ns+mny)-dimensional data space. Instead,
we need only consider the one-dimensional projected
data space Z in (11). The fact of restricting the data to
a line has been implicitly exploited in Lee et al. (2016),
and explicitly discussed in Sec. 6 of Liu et al. (2018).

Figure 3: If we leverage the idea
of existing SI literature and ap-
ply to our setting, the FNR will
be high due to small condition-
ing region by extra-conditioning.
In contrast, the FNR is minimized
with the proposed method.

Reformulation of the selective p-value. Let us

consider a random variable and its observation:

S

X X
Z=n] (Xt) ER and Zobs =7, (Xj;b5> eR.

obs

Then, the selective p-value in (6) can be rewritten as

! =Puy, (1212 |2l | Z€ 2). (12)

Because Z ~ N (0,77;'—277]») under the null hypothesis,
Z | Z € Z follows a truncated normal distribution.
Once the truncation region Z is identified, computa-
tion of the selective p-value in (12) is straightforward.
Therefore, the remaining task is to identify Z.

3.3 Identification of Truncation Region Z

As discussed in §3.2, to calculate the selective p-value
(12), we must identify the truncation region Z in (11).
However, there is no direct way to identify Z. To over-
come the difficulty, we utilize the concept the “divide-
and-conquer” and introduce an approach (illustrated
in Fig. 2) to efficiently identify Z, described as follows:

e Step 1 (extra-conditioning): breaking down the
problem into multiple sub-problems by additionally
conditioning the transportation for DA and all the
steps of the AD after DA. Each sub-problem can be
directly solved with a finite number of operations.

e Step 2 (hierarchical line search): hierarchically
combining multiple extra-conditioning steps and check
the condition Ogtp, = Opps to obtain Z.

Specifically, let us denote by U a number of all pos-
sible transportations for DA along the parametrized
line. We denote by V* a number of all possible sets
of steps performed by the AD algorithm after the T,
transportation, u € [U]. The entire one-dimensional
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Algorithm 1 hierachical line_search

Algorithm 2 CAD-DA

Input: a,b, zmin, Zmax

1: Initialization: u =1, v =1, 2y.u = Zmin, V=0
2: while 2,y < Zmax do

3:  Tu < DA on data a + bzy,,

4:  Compute [Ly, Ry] = Z, + Lemma 3

5 while true do

6 Sy + AD after DA on data a + bz,
7: Compute Z, + Lemma 4

8 [Luyv, Ruw] = Zup < ZuN 2,

9: if M(Tw,Sv) = Oobs then

10: V< VU{(u,v)}

11: end if

12: if Ry, = R, then

13: v 1, uu+1, 2y = Ry, break
14: end if

15: V4 v+ 1, z2yp = Ruw

16: end while
17: end while
Output: V

space R can be decomposed as:

== U U

ue[U]ve[VH]

{Z€R|7;+bz:7:l,78a+bzzsv 9

a sub-problem of extra-conditioning

where Tg1p. denotes the OT-based DA on a + bz,
Sa+bz denote a set of steps performed by the AD al-
gorithm after DA. Our goal is to search a set

V= {(w,0)s M(Tey8)) = Ours, } - (13)
for all u € [U],v € [V¥], the function M is defined as:

M : (7:1+b278a+bz) = Oa+bz~

Finally, the region Z in (11) can be obtained as follows:

zZ= {z ER | Ogyp: = OobS}

= U {26R|7;+bz=77u5a+bz:8v}~ (14)

(u,v)eVy

Extra-conditioning (step 1). For any u € [U] and
v € [V¥], we define the subset of one-dimensional pro-
jected dataset on a line for the extra-conditioning as:

Zu,u = {Z eR | 7:1+bz = 7:L78a+bz = Sv}- (15)
The extra-conditioning region can be re-written as:

Zu,v :Zumzv7
Zy = {Z | Tatbz = 7;}7 Z, = {Z ‘ Satbz = Sv}

Input: X3, XébS7 Zmin, Zmax
1: Oops < AD after DA on {Xc‘fbs,Xébs}
: for j € Ogps do
Compute n; < Eq. (3), a and b+ Eq. (10)

2
3
4: V + hierachical line_search (a,b, Zmin, zmax)
5. pi « Eq. (12) with Z + Eq. (14)

6: end for

Output: {pj‘31 }jEO

obs

Lemma 3. The set Z, can be characterized by a set
of quadratic inequalities w.r.t. z described as follows:

Zu:{z€R|w+Tz+02220},

where vectors w, T, and o are defined in Appendiz 6.3.

Lemma 4. The set Z,, which represents the set of op-
eration performed by the MAD algorithm, can be char-
acterized by a set of linear inequalities:

sz{zeR|pz§q}, (16)
where vectors p and q are provided in Appendiz 6.4.

The proofs of Lemmas 3 and 4 are deferred to Appen-
dices 6.3 and 6.4. Since the definitions of w, 7, o, p,
and q are complex and require extensive descriptions,
we deferred them to the Appendices. Briefly speaking,
they are used for ensuring that the transportation and
all the steps of the AD after DA remains the same for
all z € 2, ,. Lemmas 3 and 4 indicate that Z,, and Z,
can be analytically obtained by solving the systems of
quadratic and linear inequalities, respectively. After
computing Z, and Z,, the extra conditioning region
Zy. in (15) is obtained by Z,, = Z, N Z,. As men-
tioned in §2, our proposed CAD-AD can be applied
to other AD algorithms whose operations can be char-
acterized by sets of linear/quadratic inequalities (e.g.,
least absolute deviations, Huber regression).

Remark 3. The selective p-value computed with the
extra-conditioning region 2, s still valid and this
fact is well-known in the literature of conditional SI.
The computation of Z, ., can be considered as an ex-
tension of the methods presented in Lee et al. (2016)
and Duy and Takeuchi (2023) into our proposed set-
ting. However, the major drawback of this case is that
the TPR is low, i.e., the FNR is high. Therefore,
we introduce the line search step to remove the extra-
conditioning for the purpose of minimizing the FNR.
The illustration is shown in Fig. 3.

Hierarchical line search (step 2). Our strategy is
to identify V in (13) by repeatedly applying OT-based
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DA and MAD after DA to a sequence of datasets a +
bz within sufficiently wide range of 2z € [2min, Zmax) "
For simplicity, we consider the case in which Z, is
an interval 2. Since Z, is also an interval, Zyw is
an interval. We denote 2, = [L,,R,] and 2, , =
[Ly,vs Ruv]. The hierarchical line search procedure can
be summarized in Algorithm 1. After obtaining V by
Algorithm 1. We can compute Z in (14), which is
subsequently used to obtain the proposed selective p-
value in (12). The entire steps of the proposed CAD-
DA method is summarized in Algorithm 2.

3.4 Extension to Multi-Dimension

In this section, we generalize the problem setup and
the proposed method in multi-dimension. We consider
two random sets X° € R™*? and X* € R™*9 of d-
dimensional vectors which are random samples from

veo(X*) ~ N(vee(M°), Soeixr) )
VeC(Xt) ~ N(VGC(Mt), Eiec(xt)),

where vec(-) is an operator that transforms a matrix
into a vector with concatenated rows, M?* and M?
are signal matrices that are unknown, Ejec( X*) and

Eiec(Xf) ¢
ter obtaining 7" by solving the OT problem, we obtain

X® =n,TX". Then, the AD result after DA is:

are variance matrices that are known. Af-

A X XM = 0 € [ny).
For j € O, we consider the following hypotheses:

HO,j . M;,m = Mio,m VS. Hl,j . M;ﬁ 7é Mt_oﬁ,
for all k € [d], M307K = nt%‘(gl > leﬁ.
Len]\O

The test-statistic is then can be defined as:

Lj= > 1X] .~ Xlo.l (17)
KE[d]

In order to compute the valid p-values, we consider the
following conditional distribution of the test statistic:

IP(FJ | OXS,Xf = Oob57 IXS,Xf = Iobs)v (18)

where Txs x is a set of all the signs of the subtractions
in (17). By extending the techniques in §3.2 and §3.3,
the conditional space in (18) can be obtained which is
subsequently used to compute the p-value.

"'We set zmin = —200 and zmax = 200, o is the standard
deviation of the distribution of the test statistic, because
the probability mass outside this range is negligibly small.

2If Z, is a union of intervals, we can select the interval
containing the data point that we are currently considering.
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Figure 5: FPR and TPR in multi-dimensional case

4 EXPERIMENT

In this section, we demonstrate the performance of the
proposed method. We compared the performance of
the following methods in terms of FPR and TPR:

e CAD-DA: proposed method

e CAD-DA-oc: proposed method with only the extra-
conditioning described in §3.2 (extension the ideas in
Lee et al. (2016) and Duy and Takeuchi (2023) to our
proposed setting)

e Bonferroni: the most popular multiple hypothesis
testing approach

e Naive: traditional statistical inference
e No Inference: AD after DA without inference

We note that if a method cannot control the FPR un-
der «, it is tnvalid and we do not need to consider its
TPR. A method has high TPR indicates that it has
low FNR. We set a = 0.05. We executed the code on
Intel(R) Xeon(R) CPU E5-2687TW v4 @ 3.00GHz.

4.1 Numerical Experiments

Univariate case. We generated X* and X! with
pi =0, ef ~N(0,1), for all i € [ng], and pf, = 2,€} ~
N(0,1), for all j € [n:]. We randomly selected 5 data
points in the target domain and made them to be ab-
normal by setting /LE» = ,u; + A. Regarding the FPR
experiments, we set ngs € {50,100, 150,200}, n; = 25,
and A = 0. In regard to the TPR experiments, we set
ns = 150, n; = 25, and A € {1,2,3,4}. Each experi-
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Figure 6: TPR when changing d

ment was repeated 120 times. The results are shown in
Fig. 4. In the plot on the left, the CAD-DA, CAD-DA-oc
and Bonferroni controlled the FPR under a whereas
the Naive and No Inference could not. Because the
Naive and No Inference failed to control the FPR,
we no longer considered the TPR . In the plot on the
right, we can see that the CAD-DA has highest TPR
compared to other methods in all the cases, i.e., the
CAD-DA has lowest FNR compared to the competitors.

Multi-dimensional case. We generated X and X*
with X7 ~ N(0g, 14),Vi € [ng], th‘,: ~ N(24,14),Vj €
[n¢], and the dimension d = 10. The settings for FPR
and TPR experiments were the same as univariate
case. The results are shown in Fig. 5. The interpre-
tation of the results is similar and consistent with the
univariate case. The important point we would like to
note is that the difference in TPR between the CAD-DA
and CAD-DA-oc in the multi-dimensional case is larger
than that in the univariate case. This indicates that
the issue of extra-conditioning is more serious when in-
creasing d. If we naively extend the ideas in Lee et al.
(2016); Duy and Takeuchi (2023) to our setting, the
TPR will be low, i.e., the FNR is high. In contrast, by
introducing the hierarchical linear search step to re-
move the extra-conditioning, the FNR is significantly
decreased by the proposed CAD-DA method.

TPR comparison when changing d. We addition-
ally conducted the TPR experiments by varying the di-
mension d € {2,4,6,8}. The results are shown in Fig.
6. Overall, both the CAD-DA and CAD-DA-oc consis-
tently exhibited higher TPR compared to Bonferroni
in all cases. Moreover, as the dimension d increased,
the TPR disparity between CAD-DA and CAD-DA-oc
became larger. This observation underscores the ad-
vantageous performance of the CAD-DA, particularly in
higher-dimensional scenarios.

Correlated data. In this setting, we consider the
case where the data is not independent. We generated
X® and X* with X7 ~ N(04,2),Vi € [ng], X]t-’: ~
N(24,Z),Vj € [ng], the matrix = = [pli_jl]ij Vi, j €

[d]l, p = 0.5, and d = 10. The settings for FPR
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Figure 7: FPR and TPR in the case of correlated data
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Figure 9: Comparison with Tsukurimichi et al. (2022).

and TPR experiments were also the same as univari-
ate case. The results are shown in Fig. 7. Ad-
ditionally, we also conducted FPR and TPR experi-
ments when changing p € {0.2,0.4,0.6,0.8}. We set
ns = 150,n; = 25, A = 0 for FPR experiments,
and A = 4 for the TPR experiments. The results
are shown in Fig. 8. In essence, the correlated data
contains redundant information. This means that the
effective sample size is smaller than the actual sam-
ple size. A smaller effective sample size reduces the
amount of information available for the statistical test,
making it less powerful. Therefore, the TPR tends to
decrease when increasing the value of p. However, in
all the case, the proposed CAD-DA method consistently
achieves the highest TPR while controlling the FPR.

Comparison with Tsukurimichi et al. (2022)
and robustness experiments. Since the method
of Tsukurimichi et al. (2022) is not applicable to our
setting, we have to introduce an extended setting for
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Table 2: Comparison on real-data.

N =120 N =240
FPR | TPR | FPR | TPR
No Inference | 1.00 N/A | 1.00 | N/A
Naive 0.90 N/A | 0.90 | N/A
Bonferroni 0.00 0.00 0.00 0.00
CAD-DA-oc 0.05 0.12 0.04 0.07
CAD-DA 0.04 | 0.71 | 0.04 | 0.73
0.8
1.0
087« crmoon | 08
CAD-DA-oc —e— CAD-DA
g 0.6 —e— Bonferroni E 0.4 CAD-DA-oc
04 —e— Naive —e— Bonferroni
—e— No Inference 0.2
0.2
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Figure 10: FPR and TPR comparison on real-data.

conducting the experiments of FPR comparison with
their method. The details are provided in Appendix
6.5. The results are shown in Fig. 9. The CAD-DA could
properly control the FPR under a = 0.05 whereas
the existing method (Tsukurimichi et al., 2022) failed
because it could not account for the influence of DA
process. Additionally, we conducted the experiments
on the robustness of the CAD-DA when the noise fol-
lows Laplace distribution, skew normal distribution,
tog distribution, and variance is estimated from the
data. The details are shown in Appendix 6.6. Overall,
the CAD-DA method still maintained good performance.

4.2 Real-data Experiments

We performed comparison on real-data. We used the
NeuroKit2 simulator (Makowski et al., 2021) to gen-
erate realistic respiration signals (ns = 150) used
for source dataset, and heart-beat signals (n; = 25)
used for target dataset, each with a dimensionality of
d = 12. We repeated the experiment N € {120,240}
times. The results are shown in Tab. 2. While the
Bonferroni, CAD-DA-oc and CAD-DA could control the
FPR, the CAD-DA had the highest TPR in all the cases.
We note that, in the case of Bonferroni correction, the
TPRs were all 0.0 which indicates that this method
is too conservative and all the true anomalies were
missed out even though there exists, i.e., FNR = 1.0.
We also conducted the FPR and TPR comparison by
varying ns € {50,100,150,200}. The corresponding
results are shown in Fig. 10.

Additionally, we compared the p-values of the

1.0
0.8

0.6

0.4

0.2

0.0 L

CAD-DA-oc

CAD-DA

Figure 11: Boxplots of p-values

CAD-DA-oc and CAD-DA on Heart Disease dataset,
which is available at the UCI Machine Learning Repos-
itory. We randomly selected ny = 150 patients whose
gender is male (source domain), n; = 25 patients
whose gender is female (target), and conducted the
experiment to compute the p-value. The experiments
was repeated 120 times. The boxplots of the distri-
bution of the p-values are illustrated in Fig. 11. The
p-values of the CAD-DA tend to be smaller than those of
CAD-DA-oc, which indicates that the proposed CAD-DA
method has higher power than the CAD-DA-oc.

5 DISCUSSION

We propose a novel setup of testing the results of AD
after DA and introduce a method to compute a valid
p-value for conducting the statistical test. We believe
that this study stands as a significant step toward con-
trollable machine leaning under DA. Some open ques-
tions remain. Our method currently does not support
MMD-based DAs (Gong et al., 2013; Pan et al., 2010;
Baktashmotlagh et al., 2013) or metric learning-based
DA (Saenko et al., 2010) because the selection event of
these methods are more complicated than OT-based
DA. A potential solution could involve a sampling-
based approach to approximate the truncation region
for p-value computation. Similarly, our method is ap-
plicable to AD algorithms with analytically charac-
terizable event, such as MAD and robust regression.
Extending the proposed method to more complex AD
algorithms would represent a valuable contribution.

Another important future direction could be expand-
ing the proposed framework for testing the anoma-
lies in the context of Deep Learning (DL)-based DA.
Simply conducting AD after DL-based DA often re-
veals many FPs, thereby compromising the reliability
of the model. Consequently, enhancing the proposed
methodology to accommodate DL-based DA would
represent a significant contribution to the existing lit-
erature. Nevertheless, it is crucial to acknowledge that
the DL training is inherently complex, necessitating
careful analysis when addressing DL-based DA.
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6 APPENDIX

6.1 Proof of Lemma 1

We have

T(X* T (K T
T’j Xt | {OXS,X" = Oob57 QXS,Xt = Qobs} ~ TN 77] Hft 777j 277]73 3

which is a truncated normal distribution with a mean nj-T (Z,), variance anan in which ¥ = (2()) Z(])t)’ and

the truncation region Z described in Sec. 3.2. Therefore, under the null hypothesis,
p;‘_el | {Ox: xt = Oobs, Qx=.xt = Qobs} ~ Unif (0, 1).

Thus, Py, (pj’31 < a | Oxs xt = Oobs; Qx= xt = Qobs) = «,Va € [0,1]. Under the null hypothesis, by
conditioning on the results of AD under DA, we can exactly derive the sampling distribution of the test statistic,
which is a truncated normal distribution. Then, by applying the probability integral transform, the selective p-
value follows uniform distribution. We would like to remind that, in probability theory, the probability integral
transform states that if X is a continuous random variable with cumulative distribution function Fx, then the
random variable Fx(X) has a uniform distribution on [0,1]. Consequently, the p-value, defined as 1 — Fx (X),
also adheres to a uniform distribution on the same interval [0, 1].

Next, we have
Puo, (2 < @] Oxext = Oun )
= /IP’HO)J. (10281 <a|Oxs xt = Ogbs, Qxs xt = Qobs) Py, | (QXS,Xt = Qobs | Oxs xt = Oobs)dQObs

= /a Py, ; <QXS,X‘ = Qobs | Oxs, xt = Oobs)onbs

Ol/]P’HO,j (QXS,Xt = Qobs | Oxs xt = Oobs>dQ0bs
=a.

Finally, we obtain the result in Lemma 1 as follows:

P, (pj-d < a) = Z Py, ; (p;»el <a|Oxs xt = Oobs) Py, (OXS,Xt = Oobs)
Oobs

= Z a Py, (OXS,Xt = Oobs>

Oobs

=« Z PHO,J‘ (OXS,Xt = Oobs)
Oobs

= .
6.2 Proof of Lemma 2

According to the second condition in (9), we have

Ox: xt = Qobs

XS
) ()

XS XS
= (Xt> = Qobs + b777T (Xt>

By defining a = Qups, 2z = an (§t)7 and incorporating the first condition of (9), we obtain Lemma 2.
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6.3 Proof of Lemma 3

The proof is constructed based on the results presented in Duy and Takeuchi (2023), in which the authors
introduced an approach to characterize the event of OT by using the concept of parametric linear programming.
Let us re-written the OT problem between the source and target domain in (1) as:
t =argmin t'c(X*, X?)
tERMs ™t
st. Ht="h, t>0,

where t = vec(T), ¢(X*, X*t) = vec(C(X*, X)) = [Q(;gt)} o [Q(it)}7

Q = hstack (I,,, ® 1,,, —1,, ® I,,,) € RemeX(metne)

s

vec(-) is an operator that transforms a matrix into a vector with concatenated rows, the operator o is element-
wise product, hstack(-,-) is horizontal stack operation, I,, € R™*™ is the identity matrix, and 1,, € R™ is a

vector of ones. The matrix H is defined as H = (H,. HC)—r € R(mstn)xnsne in which

1...10...0 ... 0...0
Ho— |00 Tl 00 s,
0...0 0...0 1...1

that performs the sum over the rows of T" and

Hc = [I"t In,, ‘e Int] c R™t XN gy

that performs the sum over the columns of T, and h = (1,, /ng 1,,/n;) " € Rrtne,

Next, we consider the OT problem with the parametrized data a + bz:

terﬁliql t"[Qa+bz)oQa+b2)] st. Ht=h,t>0

<, r}gin (W + 72+ 622)"t st. Ht=h,t >0,
CR7s

where

w = (Qa)o (Qa), 7= (Na)o (b)+ (2b)o(Qa), and 6= (02b)o (0Qb).

By fixing B, as the optimal basic index set of the linear program, the relative cost vector w.r.t to the set of
non-basic variables B¢, is defines as

rge =W+ 1z + 027,

where
- T ST -1 T ST =T -1 T T AT -1 T
w=(wf, — @ Ha He) . r= (7 — 75 H3 He) . o= (0 —05 Hp He) . (19

H. g, is a sub-matrix of S made up of all rows and columns in the set B,,. The requirement for B, to be the
optimal basis index set is 75: > 0 (i.e., the cost in minimization problem will never decrease when the non-basic
variables become positive and enter the basis). We note that the optimal basis index set B, corresponds to the
transportation 7,. Therefore, the set Z,, can be defined as

Zu:{Z€R|7:1+bz:7:L}a
= {Z€R|Ba+bz :Bu}7
={2€R|rg. =w+rz+0z>>0}.

Thus, we obtain the result in Lemma 3.
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6.4 Proof of Lemma 4

For notational simplicity, let us denote the original data and the data after OT-based DA as follows:

Xs - X 0 n.T
_ ns+ng _ — — ngXns s Ns+ng ns+mnt
Y = ( t) eR , Y= < t> = 0Y, where © = (On:;ns m) € R( Ix( ).

The procedure of applying MAD on Y is described as follows:

1. ffkl = median(f’). This step can be represented by the following sets:

Sla = {(lc,kl) Y, < ifkl}, S = {(k,kl) Y, > Yk} k € [ns + ne. (20)

2. Vi, — Vi, | = median({|3~fk — Y, |}ke[ns+m]>' This step can be represented by the following sets:

Sﬁa = {Sk LS = sign (}7]€ — Y/]ﬁ)} s (21&)
Sgb = {(k, kg) . Sk (ifk - Yflﬁ) < Sko (?lm - i/kl)}v (21b)
S = {(k, ko)t sk (Vi — Yiy) > s (Yiey — Ykl)}7 (21c)

for any k € [ns + nyl.

3. Given 7, Y}, is considered to be an anomaly if Y; & [ b — 7|Yk2 Ykl |, }N/kl + 'y|1~/k2 — Ykl ” This step can
be represented by the following sets:

Sg)a = {k S [TLS + nt] : ?;@ < }7;@1 — VSky (}7]@2 — ?kl)}’ (22&)
S = {k € [ne+ne) : Vi > Yiy +v80, (Ve — Yir) 1 (22b)
SSC = {k‘ S [ns + nt] : Y/kl YSks (Ykz — Ykl) < ~k < ~k1 + YSk, (Ykz — Ykl)} (220)

The entire MAD algorithm can be represented as S, = S} U S} US2e US?* US2cUS3 U S U S,

For any data point a + bz, if it satisfies all the inequalities from (20) to (22), Sat+b. = Sy. Regarding the
inequalities in S! of (20) w.r.t. a + bz, we can write

e, O(a+bz) < e] O(a+ bz)
& (ex — ekl)Tsz < (eg, — ek)T@av

for all (k, k) € S!¢, and e;, € R+t is a vector with 1 at the k", and 0 otherwise. Then we have a system of
linear inequalities p'®z < g'® where

la T la T
= vector {e Gb} , = vector {e @a}
p < k,k1 (k,kl)esga> q < k1,k (k.kr)ESha )

vector(-) is the operation that converts a set to a vector, and ey x, = ey — e, . Similarly, we obtain pttz < g'?

where
1b T 1b T
= vector {e @b} , = vector {e @a} .
p < FUEZE S (kokyyesta q bk (k,k1)ESka

In regard to (21), we have three systems of linear inequalities p??z < q%¢, p?*z < q*, and p*°z < ¢*¢, where

spep @b . q** = vector {s e, @a} ,

<{ kCkak Sk ES%“) q ( kEkk spES2e

= vector { Spe Sk, € )T@b} q*® = vector {(s e — spe )T@a}
k€k,ky — Sky€ky ky (hkyesa ) ko €k, kq k€k,ky

T
> , q20 = vector ({(skek’kl — skzekz’kl) @a}

= vector

(k,kneSSb) ’

= vector

Sk €Ly k1 — Sk€k.k @b} .
2 Cka,k1 1) (k,kz) €S20

(k,k2)eS2¢
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With regard to (22), we have four systems of linear inequalities p3?z < ¢®?, p3*z < ¢%, p?>'z < ¢3>!, and
p3©2z < @>>? (the (22¢) corresponds to two systems of linear inequalities), where

T 3 T
= vector yskzekz,kl — €y k) Gb}kesaa> . @3 = vector ({(ekhk — VSky €y ky ) @a}kesh) ,
v

T
= vector VSkoC€Clo,ky — ek,kl 5 q = vector ( €Lk — '73k26k2,k1) Ga}kes3”> 5

({ }kesf”’) {
p>©1 = vector <{ ekl,k - ’YSerkg,kl Qb}k6530> , g°“' = vector < 73kzek2,k1 - ekl’k)—r@a}kesgc) ’
({ @b} ) <

T
p = vector ekJﬁ — ’}/Sk,zek%kl , q = vector 'yskzek%kl — ek,kl) ®a}kes3c) .
v

S3C

Finally, by defining

p = vstack (p'", p'", p**, p, p*, p**, p*, p*1, p*? ) (23)
and q = vstack(qla, a. ¢*, q®. 4> ¢**, ¢ ¢ qgc,z)7 (24)

we obtain the result in Lemma 4.

6.5 Comparison with Tsukurimichi et al. (2022)

Since the method of Tsukurimichi et al. (2022) is not applicable to our proposed setting, we have to introduce
an extended setting for conducting the experiments of FPR comparison with their method. The method of
Tsukurimichi et al. (2022) primarily focus on a regression problem. Let us consider (X* Y *) and (X!, Y?),
where X° € R®*P and X* € R™"*P are given feature matrices assumed to be non-random,

R™ 3Y* ~N(u* ¥%) and R™ 3Y"'~N(u' X",
The cost matrix is defined as

CY*,Y") = (7 - Y]], e R

After obtaining T by solving the OT problem with C(Y*,Y?), we transform the data from the source domain
to the target domain and conduct a robust regression in the target domain. The problem of hypothesis testing
is the same as Tsukurimichi et al. (2022). However, when computing the p-value for conducting the test, the
method of Tsukurimichi et al. (2022) does not take into account the influence of DA. Therefore, their method is
invalid and could not control the FPR. In contrast, with the proposed method, we can successfully control the
FPR by handling the effect of DA process. In the experiment for FPR comparison, we set ns € {20, 40, 60, 80},
ny = 15, p =5 and used LAD (least absolute deviations) as the robust regression method. The results are shown
in Fig. 9. The proposed CAD-DA could properly control the FPR under o« = 0.05 whereas the existing method
(Tsukurimichi et al., 2022) failed because it could not account for the influence of DA process.

6.6 Robustness experiments

We conducted the following experiments:

e Non-normal data: we considered the noise following Laplace distribution, skew normal distribution (skewness
coefficient 10) and tog distribution. We set n, € {100, 150,200, 250}, n; = 45, and d = 1. Each experiment
was repeated 120 times. We tested the FPR for both @ = 0.05 and o = 0.1. The FPR results are shown in
Figs. 12a, 12b and 12c. We confirmed that the CAD-DA still maintained good performance on FPR control.

e Estimated variance: the variances of the noises were estimated from the data by using empirical variance.
Our proposed CAD-DA method could properly control the FPR (Fig. 12d).
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Figure 12: False positive rate of the proposed CAD-DA method when data is non-normal or variance is unknown.



