
Warped Diffusion for Latent Differentiation Inference

Masahiro Nakano Hiroki Sakuma Ryo Nishikimi
Ryohei Shibue Takashi Sato Tomoharu Iwata Kunio Kashino

NTT Corporation

Abstract

This paper proposes a Bayesian nonparamet-
ric diffusion model with a black-box warp-
ing function represented by a Gaussian pro-
cess to infer potential diffusion structures la-
tent in observed data, such as differentiation
mechanisms of living cells and phylogenetic
evolution processes of media information. In
general, the task of inferring latent differ-
entiation structures is very difficult to han-
dle due to two interrelated settings. One is
that the conversion mechanism between hid-
den structure and often higher dimensional
observations is unknown (and is a complex
mechanism). The other is that the topology
of the hidden diffuse structure itself is un-
known. Therefore, in this paper, we propose
a BNP-based strategy as a natural way to
deal with these two challenging settings si-
multaneously. Specifically, as an extension of
the Gaussian process latent variable model,
we propose a model in which the black box
transformation from latent variable space to
observed data space is represented by a Gaus-
sian process, and introduce a BNP diffusion
model for the latent variable space. We show
its application to the visualization of the dif-
fusion structure of media information and to
the task of inferring cell differentiation struc-
ture from single-cell gene expression levels.

1 INTRODUCTION

Importance of differentiation inference - In real-
world data analysis, there are often situations in which
one wishes to reveal potential generative mechanisms
with hidden diffusion structures in the observation
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data. A symbolic example would be the biological dif-
ferentiation mechanism of a group of living cells (Yuan
et al., 2023; Moravec et al., 2023; Braccini, 2023; Xi-
ang et al., 2023; Kim et al., 2020; Matsumoto et al.,
2017; Zou et al., 2016; Akmaev et al., 2000). It is
hoped that if further progress is made in elucidating
the mechanisms of cell differentiation, the realization
of artificial organs and artificial cells may become a
reality in the near future. As another example, in nat-
ural language and art (including painting, sculpture,
music), which have developed over a long history, it
is an important social issue to reveal the hidden phy-
logenetic evolutionary process behind them (Kanojia
et al., 2019; Shu et al., 2017; Enright and Kondrak,
2011; Milani et al., 2016; Laubach et al., 2012; Dias
et al., 2013, 2012). In response to these demands, this
paper proposes a method to infer such latent diffusion
structures from observational data alone. The discus-
sion that follows will culminate in cell differentiation
as a motivational case study, but we would like to em-
phasize that our method is applicable to many other
applications (as shown in Section 4).

Challenges in differentiation inference - This pa-
per will focus on two particular difficulties:

• Unknown topology - The potential topology of
the diffusion structure representing differentiation
(e.g., how many branches occur in the diffusion) is
unknown, except in special cases (e.g., with expert
knowledge). Therefore, for input data of diverse
quantity and quality, there is a need for a mech-
anism whereby the analytical method itself infers
the potential topology in a data-driven manner.

• Unknown observation mechanism - There is
an unknown black-box transformation between the
latent differentiation structure and the observation
data. For example, in the task of inferring cell dif-
ferentiation, the typical observational information,
gene expression levels, is only one aspect of the
complex chemistry in the cell. Therefore, it is very
difficult to accurately describe the transformation
mechanism in advance, which should essentially be
estimated in a data-driven manner.
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As a result, the differentiation inference task is very
challenging because these two unknown issues have a
mutually adverse effect on each other.

Our strategy - We propose a Bayesian nonparamet-
ric (BNP) differentiation inference method as a frame-
work that can handle both of the above-mentioned is-
sues at once. We introduce an a prior model for the
former problem of unknown topology using a Dirichlet
diffusion process (Neal, 2003). We also introduce an a
priori model of black-box information transformation
using Gaussian processes (Rasmussen and Williams,
2005) for the latter problem of unknown observational
information mechanisms. By constructing a hierar-
chical BNP model with these two modules and infer-
ring the model posterior probabilities, we can simul-
taneously estimate the hidden latent differentiation
structure and the black box observational information
transformation.

Our contributions - (1) Modeling: We extend
the Gaussian process latent variable model (Lawrence,
2003) to propose a new BNP model for types of data
in which the latent variables have diffusion structures.
(2) Inference: For complex models with continuous
diffuse structure in the latent variable, we propose an
inference algorithm that approximates it by discrete
structures using nested Chinese restaurant processes
(Blei et al., 2010a; Knowles and Ghahramani, 2015).
This is guaranteed to asymptote to the original con-
tinuous diffusion structure under the infinite limit of
the nested structure hierarchy.

2 PRELIMINARIES

2.1 Related work

Dimensionality reduction and intrinsic dimen-
sion extraction - When our method is viewed as a
kind of data dimensionality reduction, its distinguish-
ing feature is that it assumes a diffuse structure in the
latent variable space. Conventionally, various meth-
ods have been proposed that use various foresight and
assumptions on the latent variable space, including
the manifold learning (Ghojogh et al., 2023; McInnes
et al., 2018), those that use distributions over distances
between pairs Cai and Ma (2022); van der Maaten
(2014); van der Maaten and Hinton (2008), and em-
bedding local structure (Ghojogh et al., 2021; He and
Niyogi, 2003). In this context, the closest framework
to our method is an extension of the Gaussian process
latent variable model. In Figure 1, we summarize the
position of our method among related methods.

Latent differentiation inference - As an inference
method for differentiation structure, our method is
characterized by its ability to simultaneously estimate

latent differentiation and black box transformation to
observed information in a data-driven manner based
on a unified evaluation criterion (model posterior prob-
ability). As exemplified by the challenge to elucidate
the mechanism of cell differentiation, the technique for
extracting latent diffusion behind the observation data
is one of the most recent topics of interest among in-
formation processing technologies. An exhaustive and
comprehensive survey paper of recent years can be
found, for example, in Saelens et al. (2019) (especially,
Table 1). Our efforts can be summarized in two ways:

• Module integration - One of the most com-
monly used conventional methods is to perform
(1) dimensionality reduction (or clustering) and (2)
differentiation estimation of data separately in a
pipelined fashion (Schiebinger et al., 2019; Bouk-
ouvalas et al., 2018; Herring et al., 2018; Ahmed
et al., 2018; Jin et al., 2018; Parra et al., 2019;
Moon et al., 2019). Such methods have the disad-
vantage that cues from later stages of processing
cannot be utilized in earlier stages. On the other
hand, our method, in the sense of Bayesian Hierar-
chical Modeling, represents the entire system as a
single probabilistic model, allowing each module’s
cues to be leveraged against each other.

• Unified criteria - In order to take advantage of
alternating clues for each module, some have pro-
posed an iterative approach to module processing
(Diaz et al., 2016; Qiu et al., 2017). However, in
such cases, it is non-trivial to know what evaluation
criteria to use for iterative iteration as a whole. On
the other hand, our method is able to learn by a
unified criteria in the Bayesian framework.

2.2 Gaussian process latent variable model

Gaussian process (GP) (Rasmussen and Williams,
2005) - GP is a tool that has come in handy as a prior
model of function space in Bayesian analysis and more
general probabilistic methods. By definition, GP is a
stochastic process, i.e., a collection of random variables
(y1, · · · ,yN ) where yn ∈ RD (n ∈ [N ] := {1, . . . , N}),
and any subset (ya1

, · · · ,yaM
) ({a1, . . . , aM} ⊆ [N ]])

of those random variables all have a multivariate nor-
mal distribution, that is, all their finite linear com-
binations have a normal distribution. The projectivity
property of the multivariate normal distribution allows
us to define the joint distribution of an infinite num-
ber of random variables as the inverse limit (projec-
tive limit) of a finite-dimensional multivariate normal
distribution, which can then be used as a stochastic
process of infinite dimension (Orbanz, 2009, 2011).

GP latent variable model (GPLVM) (Lawrence,
2003) - One fascinating use case for GP is its appli-
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Figure 1: Conceptual comparison of our model and existing models as extensions of the Gaussian process latent
variable model (GPLVM) (Lawrence, 2003). (a) Latent single parametric distribution: GPLVM originally
uses a strategy of modeling the transformation from latent space to observed space by a Gaussian process, based
on the assumption that the (often high-dimensional) observed data has an intrinsic parametric distributional
structure in the (often low-dimensional) latent space. The history of GPLVM extensions has been developed by
modifying modeling regarding the latent space inherent in the data. (b) Latent mixture: While the original
GPLVM assumed a single parametric distribution in latent space (e.g., a normal distribution in the standard
sense), the infinite warped mixture model (iWMM) (Iwata et al., 2013) is an extension to capture cluster structure
using a mixture model (e.g., the infinite Gaussian mixture model Rasmussen (2000) using the Dirichlet process
(Ferguson, 1973)) on latent space. (c) Latent trajectory: Gaussian process dynamical model (Wang et al.,
2008) can be used to represent the hidden dynamics of a time series represented by a single path trajectory. (d)
Latent diffusion: Our model with diffusion structures.

cation to low-dimensional visualization and intrinsic
dimension extraction of observation data, which take
(generally high-dimensional) observed data and infers
the hidden (often low-dimensional) latent structure
behind them. Suppose that we have a collection of
observations Y = (y1, · · · ,yN )⊤, where yn ∈ RD.
They are associated with a set of latent variables
X = (x1, · · · ,xN )⊤, where xn ∈ RQ (We typically
expect Q ≪ D). GPLVM assumes that observations
are generated by mapping latent variables through a
set of smooth functions in which a Gaussian process
prior is placed. More specifically, the probability of
observations given the latent variables, integrating out
the mapping functions, is

p(Y |X, θ)

= (2π)
−DN

2 |K|
−D
2 exp

(
−1

2
tr(Y ⊤K−1Y )

)
,

where K is the N × N covariance matrix defined by
the kernel function k(xn,xm) (n,m ∈ [N ]), and θ =
(α, ℓ, β) is the kernel hyperparameter vector related to
the RBF kernel with an additive noise term:

k(xn,xm)

= α exp

(
− 1

2ℓ2
(xn − xm)⊤(xn − xm)

)
+ δnmβ−1,

where α > 0 is a weight variable, ℓ > 0 is the length
scale, and β > 0 is the variance of the additive noise.
For convenience, we denote the random observation
data as Y |X, θ ∼ GPwarp(X, θ). The last remain-
ing question in the full modeling of GPLVM is how

to set up the prior model p(X) of the latent variable
X. As shown in Figure 2, several methods have been
considered to introduce a single parametric model, an
infinite mixture model (Iwata et al., 2013), and a tra-
jectory model (Wang et al., 2008), depending on the
respective application. This paper examines the de-
sign of a new prior model p(X) to apply the GPLVM
framework to diffusion structures.

2.3 Dirichlet diffusion tree

The Dirichlet diffusion tree (DDT) is one of the stan-
dard stochastic processes used to describe diffusion on
state space with time. The generative probabilistic
model of DDT yields tree topologies and branch times
(via a hazard process) as well as latent states at and
along branches (via Gaussian diffusion) (Neal, 2003;
Shiffman et al., 2018). Roughly speaking, the struc-
ture of DDT can be depicted as a sequential evolution
of topology and branching time for an existing branch-
ing structure. We will therefore describe the structure
of DDT in two stages: a random branching structure
and a random trajectory on it.

Branching structure - As a standard approach in
the context of previous DDP (Neal, 2003; Shiffman
et al., 2018), we first introduce a branching rate of
a(t) = γ/(1 − t), which represents the instantaneous
chance a(t)dt/s of divergence, where s is the number
of particles that have previously traversed the given
branch without diverging. This branching rate means
that, if a particle is on an existing edge of a tree
bounded by time [ta, tb] and s particles have previ-
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ously taken this path, the likelihood of branching by
some time t > ta is defined by the Poisson process:

P
[
branch in [ta, t]

]
= 1− e−(A(t)−A(ta))/s

= 1−
(

1− t

1− ta

)γ/s

, (1)

where A(t) :=
∫ t

0
a(u)du = −γ log(1− t) is the cumu-

lative branching function.

Particle trajectory - We can use the Brownian
motion in transforming the above random branching
structure into random particle trajectory along vir-
tual pseudotime (∈ T ) in a state space X (e.g., for
data visualization, typically a one-dimensional or two-
dimensional Euclidean space). Specifically, a particle
that has reached X(t) at time t ∈ (0, 1) will diffuse
to X(t + dt) = X(t) + Normal(0, σ2

0 I · dt) after an
infinitesimal amount of time dt, for some base variance
σ2
0 , where I is the identity matrix. From the linearity

of the normal distribution, integrated over a discrete
time interval ∆t, we can rewrite the above particle
trajectory as

X(t+∆t) ∼ Normal
(
X(t), σ2

0 I ·∆t
)
. (2)

Thus, latent state along the tree evolves according to
collective Brownian motion, where each branch event
signifies the birth of two independent Brownian motion
processes (conditioned on their starting location).

In summary, DDT is a generative probabilistic model
of random diffusion on the product of the state space
X and pseudotime T := [0, 1]. For the nth particle
(n = 1, . . . , N), we view τn : T → X as a function
that returns the state τn(t) (i.e. realization of X(t)
for the n-th particle) at pseudotime t (∈ [0, 1]). For
convenience, we denote the collection of the latent tra-
jectories as

τ1, . . . , τN ∼ DDT(γ, σ0). (3)

2.4 Nested Chinese restaurant process

At the end of the preparations, we describe another
representation of DDT, the nested Chinese restau-
rant process representation, which is more suited to
Bayesian inference. Roughly speaking, DDT is not
easy to infer due to its representation of continu-
ous trajectories, so we are trying to come up with a
discrete-time approximation representation of it.

Chinese restaurant process (CRP, Figure 2 (a)) -
As is well known in the Bayesian nonparametrics liter-
ature, CRP is a stochastic process that represents the
evolution on the partition of elements and is an equiv-
alent representation of the data clustering assignment

Figure 2: (a) Standard CRP: By considering data
elements as customers (triangles) and clusters as tables
(circles), CRP can generate random partitions through
a probabilistic algorithm in which customers choose
tables sequentially. (b) Nested CRP: By nesting
random partitions generated from CRPs, nCRP can
represent hierarchical partitions. In the figure above,
the large circles represent the tables in which the par-
titions occur in the hierarchy. An important property
to emphasize here is that the continuum limit of nCRP
can simulate the DDT diffusion (See Theorem 2.2).

in the Dirichlet process (DP) mixture model (Fergu-
son, 1973; Rasmussen, 2000). We here consider the
data elements as guests and the clusters as tables. Let
φ > 0 be a concentration parameter corresponding to
DP. We consider a Markov process in which customers
sequentially choose tables as follows: (1) The first cus-
tomer sits at the first table, and (2) The next and
subsequent customers choose their tables according to

• The nth customer chooses the kth existing table
with probability Nk/(n+φ), where Nk is the num-
ber of customers already seated at the kth table.

• The nth customer sits at the new table with prob-
ability φ/(n+ φ).

In this procedure, the CRP can represent the parti-
tioning of elements by considering data elements cor-
responding to customers sitting at the same table as
belonging to the same cluster. As is well known,
the random partitioning generated by CRP can also
be expressed as a scaling limit of a finite Dirichlet-
Categorical hierarchical mixture model:

Remark 2.1 For a real variable φ > 0 and K ∈ N,
we consider the following K-dimensional Dirichlet-
Categorical hierarchical model:

π ∼ Dirichlet(φ/K, . . . , φ/K) (4)

Zn | π ∼ Categorical(π) (n = 1, . . . , N). (5)
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Then, we regard Zn as the table index of the n-th cus-
tomer. Taking the limit K → ∞ recovers CRP with
the concentration parameter φ.

Nested CRP (nCRP, Figure 2 (b)) (Blei et al.,
2010b) - A tree can be viewed as a sequence of nested
partitions; generalizing the CRPs to such a sequence
yields a distribution over the tree. Specifically, we de-
fine a nested CRP (nCRP) by imagining the following
scenario for generating the sample. Suppose there are
an infinite number of Chinese restaurants with infinite
tables in a given city. One restaurant is identified as
the root restaurant, and each of its infinite tables has a
card with the name of another restaurant on it. Each
of these restaurant tables has a card introducing an-
other restaurant, and this structure is assumed to be
repeated over T ∈ N levels. Note that each restau-
rant is associated with a level in this tree. The root
restaurant is on level 1, the restaurants featured on its
table card are on level 2, and so on. The most impor-
tant thing to emphasize here is that a very interesting
property of nCRP is that it is a discrete approximate
representation of DDT:

Theorem 2.2 (See also Theorem 2 in (Knowles and
Ghahramani, 2015)). We suppose that ∆t is a small
nonnegative real number and that, for simplicity,
(1/∆t) is a natural number. We associate each level s
in an (1/∆t)-level nCRP with pseudotime (s − 1)∆t,
and let the concentration parameter at level s be a((s−
1)∆t)/S. Taking the limit ∆t → 0 recovers DDT with
divergence function a(t) (Figure 2 (b)).

3 WARPED DIFFUSION MODEL

Our goal is to infer potential diffusion structures from
(often high-dimensional) observation data. This is mo-
tivated, for example, by the intention to elucidate the
mechanisms of cell differentiation (how cells transition
through state space in pseudotime) from expression
level data to various genes in a group of cells. There-
fore, it is reasonable to interpret the observation data
as corresponding to a single landmark in the latent dif-
fusion structure, from which it is translated into gene
expression levels through complex (often black-box)
biological mechanisms. We will employ a Bayesian
nonparametric approach to such a goal.

3.1 Generative probabilistic model

We will consider Bayesian nonparametric methods
for inferring potential diffusion structures, such as
cell differentiation, hidden behind high-dimensional
data, such as gene expression patterns in a group of
cells. Our strategy begins with the GPLVM frame-
work described in Section 2.2. We recall that GPLVM

has a model for revealing the hidden latent variable
structure behind high-dimensional data; in the de-
sign of GPLVM, there is room for introducing what-
ever foresight knowledge the designer wishes to induce
about the prior model for the latent variable structure.
Therefore, we can consider the strategy of introduc-
ing an a prior model to induce diffusion structures by
DDT described in Section 2.3. Based on the above
broad strategy, we will construct a detailed model as
follows. As Figure 3 shows, our generative probabilis-
tic model is based on a Bayesian hierarchical model of
three modules. Suppose that we have a collection of
observations Y = (y1, · · · ,yN )⊤, where yn ∈ RD.

#1 Latent diffusion - First, we introduce the di-
rect product space of the low-dimensional state space
X and the pseudotime T as a latent variable space in
order to represent latent variables that diffuse along
a pseudotime axis in the state space. We represent
the diffusion structure, i.e., a collection of random tra-
jectories τn : T → X (n = 1, . . . , N) on the latent
variable space based on DDT:

τ1, . . . , τN ∼ DDT(γ, σ0), (6)

where γ and σ0 are hyperparameters for DDT de-
scribed in Section 2.3.

#2 Latent landmarks - We consider the situation
where each particle is observed at a particular time
among potential trajectories on pseudotime T = [0, 1],
similar to Shiffman et al. (2018). This is often the
case, for example, in the process of cell differentia-
tion, where gene expression levels are measured by
destructive manipulation at a particular time. Each
measurement procedure can only provide a snapshot
of gene expression at a given instant in time in a con-
tinuously growing cell. This means that the observa-
tion data can only be observed at landmark discrete
points in a continuously growing, differentiating cell in
continuous time. We introduce a probability measure
µ : T → R+ as an intensity function on the pseudotime
T . For example, for simplicity, this paper employs an
example like the beta distribution Beta(1, 5), where
landmarks are more likely to appear as the pseudo-
time increases. Then, for each n = 1, . . . , N , we have
tn ∼ µ. This means that the nth observed data corre-
sponds to (τn(tn), tn) ∈ X × T on the latent variable
space, i,e., the product of the state space X and the
pseudotime T .

#3 Black-box transformation - Finally, we assume
that each observation data is generated via a black
box transformation by a Gaussian process using latent
measurement points. For each n = 1, . . . , N , we set
xn := (τn(tn), tn). Then, we draw the observation
data Y based on the GPLVM framework, that is,

Y | X, θ ∼ GPwarp(X, θ). (7)
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Figure 3: Overview of our generative model. Left: From the foresight knowledge of the bioinformatics perspec-
tive, we can first assume that certain groups of cells have potential differentiation processes behind them. We
model this cell differentiation by DDT, which is a suitable model to model the development of cells differentiating
(branching) according to virtual time (horizontal axis) in a latent space (in the example above, one-dimensional
Euclidean space as vertical axis). Middle: In a population of cells following the DDT differentiation process
on a virtual continuous time scale, we often measure gene expression levels at each point by taking discrete
measurements (red points in the figure above). This discrete measurement can be modeled by a point process
with intensity on virtual continuous time from the differentiation process of DDT. Right: A group of cells
extracted at a discrete set of measurement points on the differentiation process of DDT is transformed by some
kind of black-box manipulation (a microscopic biological phenomenon at the gene level that is difficult to model
directly) into observed data, gene expression levels. We model this black-box transformation by GP

The kernel hyperparameters θ = (α, β, ℓ) are discussed
in the supplemental material, as they are not an es-
sential part of this paper and can be modeled and in-
ferred in a similar manner to conventional methods
(Lawrence, 2003; Iwata et al., 2013).

3.2 Discretization and approximation

Before discussing Bayesian inference, we emphasize
that above exact model is not advisable to infer it di-
rectly. This is because it involves beyond a black-box
transformation with the observed data a difficult ob-
ject to handle: a continuous trajectory on the latent
space. Therefore, it is reasonable to use a discrete
approximation model. Specifically, we make the fol-
lowing two assumptions: (1) Based on Theorem 2.2,
we approximate the random diffusion generated from
DDT by nCRP with a sufficiently tiny real variable ∆t
to discretize it. (2) Based on Remark 2.1, we approxi-
mate an unbounded number of partition structures of
CRPs by a sufficiently large number K of partitions.

Discretized and approximated model - We first
introduce a collection of auxiliary discrete trajecto-
ries based on nCRP for the latent trajectories τn
(n = 1, . . . , N). Specifically, for the nth data, we shall
denote each partition represented in the nCRP hierar-

chy by a sequence z
(1)
n z

(2)
n · · · , z(1/∆t)

n of partition in-

dices ∈ {1, 2, . . . ,K}. For example, z
(1)
n z

(2)
n z

(3)
n = 314

means the 3rd block in the first hierarchy, the 1st block
in the second hierarchy, and the 4th block in the third
hierarchy. We denote the space of this sequence of par-
tition indices as Z := {ϕ, 1, 2, . . . ,K}1/∆t, including
empty element ϕ. We then discretize the pseudotime
space T = [0, 1] as T̂ := {0,∆t, 2∆t, . . . , 1 − ∆t, 1}.
As a result, we can replace the latent trajectory τn :
T → X (n = 1, . . . , N) as τ̂n : Z → X . For each

z
(s+1)
n = 1, 2, . . . ,K, we have

τ̂n
(
z(1)n z(2)n · · · z(s)n z(s+1)

n ϕ · · ·ϕ
)

∼ Normal
(
τ̂n
(
z(1)n z(2)n · · · z(s)n ϕϕ · · ·ϕ

)
, σ2

0I ·∆t
)
.

Then we also discretize the latent measurement points
as t̂n ∼ µ̂, where µ̂ is a discrete probability measure
on T̂ . Finally, we obtain the observation from Y ∼
GPwarp(X̂, θ), where X̂ = (x̂1, · · · , x̂N )⊤ and x̂n =
(τ̂n, t̂n). Owing to Theorem 2.2 and Remark 2.1, the
this discretized and approximated model can recover
the exact model described in Subsection 3.1 when we
take ∆t → 0 and K → ∞.

Practical tip - It should be emphasized that, for prac-
tical purposes, when ∆t is taken small enough, it is
reasonable for K to be somewhat smaller as well. We
recall here that K, the maximum number of tables
in the CRP partition in each hierarchy, implies the
maximum possible number that DDT can have binary
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branches during the ∆t time interval. Thus, if ∆t is
sufficiently small, we can assume that the branching
that occurs during the ∆t time interval is also suf-
ficiently small. For simplicity of implementation, we
can use the setting ∆t = 1/N (where N is again the
number of observation data) and K = 2, for example.

3.3 Bayesian inference

Owing to the discretized approximation of the model
in the previous Subsection 2.3, we are able to de-
rive Bayesian inference that, unlike standard diffusion
model inference methods (Neal, 2003; Knowles and
Ghahramani, 2015; Heaukulani et al., 2014; Knowles
et al., 2011; Shiffman et al., 2018), avoids continuous
trajectories, which are difficult to handle. Given the
observation data Y = (y1, · · · ,yN )⊤, we infer the pos-
terior distribution of (1) the nCRP hierarchical parti-

tions z
(1)
n · · · z(1/∆t)

n (n = 1, . . . , N), (2) the table lo-
cations τ̂n (n = 1, . . . , N), (3) the latent landmarks
t̂n (n = 1, . . . , N), and (4) the kernel hyperparame-
ters θ. We use a Markov chain Monte Carlo method
that iterates Gibbs sampling and Hamiltonian Monte
Carlo. We provide here a high-level intuitive sketch
along with Figure 11. We specify detailed MCMC up-
date rules in Appendix A.1

(1) nCRP hierarchical partitions - For each zsn
(i.e., the index (∈ {1, . . . ,K}) of the table that the
nth data chooses in the sth level of the nCRP hier-
archical partitioning), we can calculate the posterior
probabilities of the cases zsn = 1, . . . ,K. We can then
use Gibbs sampling based on a categorical distribution
proportional to their posterior probabilities.

(2) Partition locations - Each discretized posterior
trajectory τ̂n (i.e., a sequence of discritized points of
the trajectory) is a model represented by the prod-

1Computational complexity - In this paper, we do
not promote the computational efficiency of DDTGP as
an advantage. As one can immediately see from construc-
tion, our DDTGP requires additional processing for con-
ventional GPLVM and iWMM. Roughly speaking, we can
regard DDTGP as replacing the single parametric distribu-
tion in GPLVM and the infinite mixture portion in iWMM
with DDT approximated by nCRP. Therefore, it is a little
less efficient than GPLVM and iWMM. On the other hand,
it should be emphasized that the computational bottle-
neck of the extensions of GPLVM, including our DDTGP,
is the MCMC update with respect to GP (especially the
computation of the inverse of the kernel matrix). There-
fore, in situations where GPLVM and iWMM can be uti-
lized, our DDTGP can also be used with little stress on
computational efficiency. Various innovations (Matthews,
2016; Lázaro-Gredilla et al., 2012; Candela and Rasmussen,
2005; Snelson and Ghahramani, 2005) that increase the ef-
ficiency of GP inference are expected to be applicable to
our DDTGP, which in itself must be an important research
topic in the near future, but is not the current main focus.

Figure 4: Discretized and approximated model.

uct of the Brownian bridge (Brownian motion under a
given parent and child) and the GP warp likelihood.
We shall use the Hamiltonian Monte Carlo method,
since this facilitates the computation of the gradient.

(3) Latent landmarks - For each tn, we can cal-
culate the posterior probabilities of the cases tn =
0,∆t, . . . , (1 − ∆t), 1. We can then use Gibbs sam-
pling based on a categorical distribution proportional
to their posterior probabilities.

(4) Kernel hyperparameters - We can straightfor-
wardly apply the Hamilton Monte Carlo method, sim-
ilar to the GPLVM variants (Iwata et al., 2013).

Practical tip - To empirically avoid local modes with
worse posterior probabilities, it is recommended that
each parameter should be initialized by sampling from
each prior model.

4 Applications

4.1 Data visualization

As a first application, we show that our method (re-
ferred to as DDTGP) can be easily used to represent
latent diffusion structures for a variety of multimedia.

Synthetic dataset - First, we demonstrate the ap-
plication of our DDTGP to the type of data that has
often been discussed in extensions of GPLVM. First,
we demonstrate the application of our DDTGP to the
type of data that has often been discussed in exten-
sions of GPLVM. Here the observation data is on a
two-dimensional Euclidean space for visualization in-
tuition, but we imagine a situation where the data
is embedded in some black-box manifold. Figures 5,6,
and 7 show the results of applying our method to three
synthetic data sets provided by iWMM (Iwata et al.,
2013).2 Each figure show the observation data points
(marked with ×) and the reconstructed/predicted

2http://github.com/duvenaud/warped-mixtures

http://github.com/duvenaud/warped-mixtures
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Figure 5: Spiral Figure 6: Circles Figure 7: Pinwheel

Figure 8: Latent diffusion structure of MNIST from top viewpoint (top) and oblique viewpoint (bottom). Our
inference does not use any true number labels, but for visualization purposes we extract and display the numbers
0, 1, 5, 7, and 9, which correspond to the true labels, from left to right.

point density distribution (approximated by samples
circled in gray) simultaneously. We note that predic-
tive density distribution can be typically approximated
by sampling in the same way as in the usual GPLVMs
(e.g., Section 4.1 of Iwata et al. (2013)). For example,
Figure 5 shows two intertwining spiral structures in
the observation data, whereas our DDTGP is able to
show a diffusion structure divided into two large parts
by DDT and an intrinsically one-dimensional (linear)
state space X by GP warping. For each of the three ex-
amples, the left figure shows a sample of diffuse struc-
ture τ1, . . . , τN at 2000 MCMC iterations, when the
MCMC has completed burn-in and has converged suf-
ficiently (to a posterior local mode), while the right
shows the observation data.

Image dataset - Next we will demonstrate the appli-
cation of our DDTGP to Modified National Institute
of Standards and Technology database (MNIST)3 and
fashion MNIST.4 As is well known, MNIST consists
of 28×28 pixel images representing handwritten num-

3http://yann.lecun.com/exdb/mnist/
4https://github.com/zalandoresearch/

fashion-mnist

Figure 9: Latent differentiation of fashion MNIST
from oblique (left) and top (right) viewpoints.

bers from 0 to 9, and fashion MNIST similarly consists
of 28 × 28 pixel images of clothing. For each we use
the 10000 images originally provided for testing. Fig-
ure 12 shows the results of applying our DDTGP to
MNIST. The latent diffusion structure samples from
iterations 2001 to 2005 of MCMC are shown, each
with latent landmarks for a single numerically labeled
group of images. We can see how the group of im-
ages of the numbers of each label is actively utilizing
only a portion of the overall diffuse structure. It can

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
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Figure 10: Pseudotime reconstruction performance (mean ± standard error) based on DEMaP metric.

also be seen that early in the pseudo-time (on the up-
per side of the vertical axis), some characters appear
that are difficult to distinguish from other characters
in appearance. Figure 9 shows the result pf applying
our DDTGP to fashion MNIST. We can see how the
clothing items expand into a structure similar to the
subcategories interpreted by humans as they diffuse.

4.2 Pseudotime reconstruction

In order to perform a qualitative evaluation comparing
the proposed method to other methods, we evaluate it
using the denoised embedding manifold preservation
(DEMaP) metric (Moon et al., 2019) on a pseudotime
estimation task from gene expression matrices on cells
× genes, which is a standard evaluation method for
differentiation inference. DEMaP compares geodesic
distances on noisy data with Euclidean distances of
embeddings extracted from noisy data using Spearman
correlation. This is intended to evaluate (1) that the
relationships in the data hold such that cells that are
close in the latent space are also close in the embed-
ding space, and cells that are far apart in the latent
space are also far apart in the embedding space, and
(2) that the low-dimensional latent space accurately
represents ground truth data and is as invariant as
possible against biological and technical noise.

In order to have known true diffusion structures for
objective evaluation, we followed the benchmark eval-
uation method and generated single cell Ribonucleic
acid (RNA) sequence data using Splatter5 (Zappia
et al., 2017), a biosystem simulator. We simulate
100 datasets, including branches, and add biological
and technical noise to the reference data to repli-
cate the following three scenarios: (1) Using Splat-
ter’s biological coefficient of variation (BCV) parame-
ter, BCV = {0, 0.25, 0.5}, to simulate stochastic gene
expression. (2) Undersampling from the true counts,
n cells = {150, 1500, 2850}, using the default BCV
to simulate inefficient capture of RNA in single cells.
(3) Randomly remove genes from the data matrix,
n genes = {2000, 10000, 17000} to demonstrate ro-

5https://github.com/Oshlack/splatter

bustness to variation in all measured genes. Simula-
tion details are provided in the Supplementary Mate-
rial. We compare our proposed method, DDTGP, with
(a) the closely related GPLVM (Lawrence, 2003), (b)
its extension, iWMM (Iwata et al., 2013), (c) one of
the standards, PHATE (Moon et al., 2019), and (d)
UMAP (McInnes et al., 2018), t-sne (van der Maaten
and Hinton, 2008), LLE (Polito and Perona, 2001),
and PCA, which are responsible for essentially low-
dimensional embedding modules in many pseudotime
analysis methods. Figure 10 shows the comparison re-
sults based on the DEMaP metric (the closer to 1, the
more accurate the pseudotime estimation is). We can
see that our DDTGP performs as well as or better than
many methods on objective metrics. In particular, we
can see that the performance reduction is reduced even
when n cells and n genes become smaller (i.e., when
the number of cues from the data decreases). This
may be due to the characteristics of BNP methods, in
which the prior model induces the analysis results to be
reasonable even in situations with few clues. DDTGP
also shows better performance than other BNP mod-
els, iWMM and GPLVM. This may reflect the fact that
DDTGP is a generalization of iWMM and GPLVM.
Indeed, our model is attributed to iWMM when the
hierarchical structure of DDT represented by nCRPs
is one layer, and furthermore, our model is attributed
to GPLVM when the hierarchical structure of nCRPs
is replaced by standard Gaussian distribution.

5 Conclusion

This paper has proposed a new Bayesian nonparamet-
ric model with Dirichlet diffusion trees in the latent
variable space as an extension of the Gaussian process
latent variable model and derived a Bayesian infer-
ence algorithm with a reasonable approximation repre-
sentation using the nested Chinese restaurant process.
We expect that this fits very well to situations where
(1) the diffusion structure is hidden in the data gen-
eration mechanism and (2) the transformation from
diffusion structure to observed data is based on some
black box transformation, as in the case of biological
cell differentiation inference from gene expression data.

https://github.com/Oshlack/splatter
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A Details of Bayesian Inference Algorithm

We begin by restating our generative probabilistic model described in the text, just in case the details of the
Bayesian inference algorithm need to be presented. We utilize the discretized and approximated model of the
Dirichlet diffusion tree (DDT) and the Gaussian process (GP) for Bayesian inference. Figure 11 provides a visual
illustration of the generative probabilistic model we use for inference.

Figure 11: (Reprinted from the text.) Discretized and approximated model.

Discretized and approximated model - We introduce two approximations to the hierarchical Bayesian model
of an exact Dirichlet diffusion tree (DDT)-Gaussian process (GP) to simplify the inference algorithm. Specifically,
we make the following two assumptions:

• (1) Owing to Theorem 2.2 (in the main text), we approximate the random diffusion generated from DDT
by nested Chinese restaurant process (nCRP) with a sufficiently tiny real variable ∆t to discretize it.

• (2) Owing to Remark 2.1 (in the main text), we approximate an unbounded number of partition structures
of CRPs by a sufficiently large number K of partitions.

We suppose that ∆t is a small nonnegative real number and that, for simplicity, (1/∆t) is a natural number. Let
nCRP(a(t)) be the law of nCRP with the divergence function a(t) : [0, 1] → R+ and the concentration parameter
a((s − 1)∆t)/S at level s ∈ {1, 2, . . . , S}. It should be emphasized that taking the limit ∆t → 0 recovers DDT
with the divergence function a(t). We first introduce a collection of auxiliary discrete trajectories based on the
nCRP with the divergence function a(t) = γ/(1 − t) for the latent trajectories. Specifically, for the nth data,

we shall denote each partition represented in the nCRP hierarchy by a sequence z
(1)
n z

(2)
n · · · , z(1/∆t)

n of partition

indices ∈ {1, 2, . . . ,K}. For example, z
(1)
n z

(2)
n z

(3)
n = 314 means the 3rd block in the first hierarchy, the 1st

block in the second hierarchy, and the 4th block in the third hierarchy. We denote the space of this sequence of
partition indices as Z := {ϕ, 1, 2, . . . ,K}1/∆t, including empty element ϕ. We also denote the nth trajectory as

zn := z
(1)
n z

(2)
n · · · z(1/∆t)

n . For notational convenience, we shall use the following expression:

z1:N := {z1, . . . ,zN} ∼ nCRP
(
γ/(1− t)

)
. (8)

Specifically, we place an noninformative gamma prior Gamma(ϵ, ϵ) on γ. We then discretize the pseudotime
space T = [0, 1] as T̂ := {0,∆t, 2∆t, . . . , 1−∆t, 1}. As a result, we can replace the latent trajectory τn : T → X
(n = 1, . . . , N) as τ̂n : Z → X . For each z

(s+1)
n = 1, 2, . . . ,K, we have

τ̂n
(
z(1)n z(2)n · · · z(s)n z(s+1)

n ϕ · · ·ϕ
)

∼ Normal
(
τ̂n
(
z(1)n z(2)n · · · z(s)n ϕϕ · · ·ϕ

)
, σ2

0I ·∆t
)
, (9)

where σ0 > 0 is the base variance. Specifically, we place an noninformative gamma prior Gamma(ϵ, ϵ) on σ0,
similar to Shiffman et al. (2018). For notational convenience, we use τ̂1:N = {τ̂1, . . . , τ̂N}. We will simply rewrite
this discritized Brownian motion (DBM) as

τ̂n ∼ DBM(σ0) (n = 1, 2, . . . , N). (10)
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Then we also discretize the latent measurement points as t̂n ∼ µ̂, where µ̂ is a discrete probability measure on
T̂ . In this paper, we use the discritization of Beta(1, 5). Finally, we obtain the observation as follows:

Y ∼ GPwarp(X̂(τ̂1:N , t̂1:N ), θ), (11)

where X̂(τ̂1:N , t̂1:N ) = (x̂1, · · · , x̂N )⊤ and x̂n = (τ̂n(z
(1)
n · · · z(t̂n)n ϕ · · ·ϕ), t̂n). In summary, the whole generative

probabilistic model can be expressed as follows:

γ ∼ Gamma(ϵ, ϵ) : nCRP concentration parameter (12)

z1:N ∼ nCRP
(
γ/(1− t)

)
: nCRP hierarchical partition (13)

σ0 ∼ Gamma(ϵ, ϵ) : DBM base variance (14)

τ̂n ∼ DBM(σ0) (n = 1, 2, . . . , N) : Latent trajectory of nth observation (15)

Y ∼ GPwarp(X̂(τ̂1:N , t̂1:N ), θ) : Observation data (16)

As a result, we can obtain the following posterior probability density of the model parameters:

p(τ̂1:N , t̂1:N , z1:N , γ, σ0, θ | Y ) ∝ p(τ̂1:N , t̂1:N , z1:N , γ, φ, θ,Y )

= pnCRP(z1:N ; γ) ·
N∏

n=1

pDBM(τ̂n;σ0) ·
N∏

n=1

pCat(t̂n; µ̂) · pGP(Y ; z1:N , τ̂1:N , t̂1:N , θ)

·pGamma(γ; ϵ, ϵ) · pGamma(σ0; ϵ, ϵ), (17)

where pnCRP(·; γ) is the probability of nCRP with the divergence function γ/(1−t), pDBM(·;σ0) is the probability
of DBM with the base variance σ0, pCat(·; µ̂) is the probability of the categorical distribution with the weights
µ̂, pGP is the probability density of the Gaussian process, pGamma(·; ϵ, ϵ) is the probability density of the gamma
distribution with the shape parameter ϵ and the rate parameter ϵ.

Bayesian inference - Given the observation data Y = (y1, · · · ,yN )⊤, we infer the posterior distribution of (1)

the nCRP hierarchical partitions zn = z
(1)
n · · · z(1/∆t)

n (n = 1, . . . , N), (2) the table locations τ̂n (n = 1, . . . , N),
(3) the latent landmarks t̂n (n = 1, . . . , N), and (4) the kernel hyperparameters θ and the noninformative gamma
variables γ (i.e., the nCRP concentration parameter) and σ0 (i.e., the base variance for DBM). We use a Markov
chain Monte Carlo method that iterates Gibbs sampling and Hamiltonian Monte Carlo.

(1) nCRP hierarchical partitions - For each zsn (n = 1, . . . , N, s = 1, . . . , 1/∆t), i.e., the index (∈ {1, . . . ,K})
of the table that the nth data chooses in the sth level of the nCRP hierarchical partitions, we now consider an
update law for the target variable zsn under which all parameters except the target variable are conditioned. We
can condition on the pseudotime t̂n at the latent landmark and update the nCRP partition index at the level
s ∈ {1, . . . , 1/∆t} from s = 1 to t̂n/∆t and from s = (t̂n/∆t) + 1 to 1/∆t as follows:

• s = 1 to t̂n/∆t - For all a1a2 . . . at̂n/∆t where a· ∈ {1, . . . ,K}, we calculate the corresponding posterior
probability proportional to Equation 17, and set it as qa1a2...at̂n/∆t

. Then, we can apply the Gibbs sampling

method to sample z
(1)
n z

(2)
n . . . z

(t̂n/∆t)
n from the categorical distribution:

z(1)n z(2)n . . . z(t̂n/∆t)
n ∼ Categorical

({
qa1a2...at̂n/∆t

|ai ∈ {1, . . . ,K} (i = 1, . . . , N)
})

. (18)

This seems naively to require calculating posterior probabilities for an exponentially increasing number of
candidates, but it is important to emphasize that there are only at most 2N possible candidates for N
number of observations. This is because, due to the exchangeability of CRPs, there is no need to distinguish
between tables that do not have latent landmarks for each nCRP hierarchy.

• s = (t̂n/∆t) + 1 to 1/∆t - Under conditioning on the latent landmark’s pseudotime t̂n, the trajectory

z
((t̂n/∆t)+1)
n · · · z1/∆t

n do not contribute to the likelihood to the observation data. Therefore, we can directly
sample them from the prior model. Specifically, for each nCRP hierarchy s = (t̂n/∆t)+1, . . . , 1/∆t, we can
sequentially apply the following Gibbs sampling:

z(s)n ∼ Categorical

({
N (s)

k,n + γ/K

N − 1 + γ
|k ∈ {1, . . . ,K}

})
, (19)
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where N (s)
k,n is the number of customers sitting at the kth table in the sth nCRP level, other than the nth

customer, who is the current target.

(2) Partition locations - For each τ̂n(z
(1)
n · · · z(t̂n)n ϕ · · ·ϕ) (n = 1, . . . , N, s = 1, . . . , 1/∆t), i.e., the nCRP

table location that the nth data chooses in the sth level, we now consider an update law for the target variable
under which all parameters except the target variable are conditioned. In this situation, it is difficult to derive
the conditional posterior probability (for Gibbs sampling) of the target variable analytically. But on the other
hand we have no difficulty in computing the gradient of the log posterior probability with respect to the target
variable. Thus, we can use a Hamiltonian Monte Carlo method that uses the gradient to produce an MCMC
update rule. For convenience, we introduce a set v as

v :=
{
i ∈ {1, . . . , N}|τ̂i(z(1)n · · · z(t̂n)n ϕ · · ·ϕ) = τ̂n(z

(1)
n · · · z(t̂n)n ϕ · · ·ϕ)

}
. (20)

Using the chain rule for composite functions, we can compute the gradient of the log posterior probability with
respect to the target variable as follows:

∂

∂τ̂n(z
(1)
n · · · z(t̂n)n ϕ · · ·ϕ)

log p
(
τ̂n(z

(1)
n · · · z(t̂n)n ϕ · · ·ϕ) | τ̂1:N \ τ̂n(z(1)n · · · z(t̂n)n ϕ · · ·ϕ), t̂1:N , z1:N , γ, σ0, θ,Y

)
=

∂

∂τ̂n(s∆t)

{
N∑

n=1

log pDBM(τ̂n;σ0) + log pGP(Y ; z1:N , τ̂1:N , t̂1:N , θ)

}

=
∑
i∈v

F (i, 1 : N)

N∑
m=1

{
− α

ℓ2
exp

(
− 1

2ℓ2
(xi − xm)⊤(xi − xm)

)
(xi − xm)

}

+
∑
i∈v

1

σ2
0

{
xi − τ̂n(z

(1)
n · · · z(t̂n−1)

n ϕ · · ·ϕ)
}
+
∑
i∈v

K∑
k=1

1

σ2
0

{
xi − τ̂n(z

(1)
n · · · z(t̂n)n kϕ · · ·ϕ)

}
(21)

where F = − 1
2DK−1 + 1

2K
−1Y Y TK−1. Finally, we apply the Hamilton Monte Carlo framework, similar to

the infinite warped mixture model (Iwata et al., 2013), to update the target variable τ̂n(z
(1)
n · · · z(t̂n)n ϕ · · ·ϕ).

(3) Latent landmarks - For each tn (n = 1, . . . , N), we can calculate the posterior probability of the case
tn = s (s = 1, . . . , 1/∆t) using Equation 17, and set it as rs. We can then use Gibbs sampling based on a
categorical distribution proportional to their posterior probabilities, that is,

tn ∼ Categorical(r1, . . . , r1/∆t). (22)

(4) Hyperparameters - For the kernel hyperparameters θ, we can straightforwardly apply the Hamilton Monte
Carlo method, similar to the GPLVM variants (Iwata et al., 2013). For the noninformatice gamma variables γ
and σ0, we can simply use the Metropolis-Hastings algorithm. Specifically, we draw a sample candidate from the
prior distribution (i.e., the noninformative gamma prior Gamma(ϵ, ϵ)), and then apply the accept/reject scheme.

B Experiment details

B.1 Denoised embedding manifold preservation (used in Section 4.2 of main body)

We wish to calculate the degree to which each method preserves the basic structure of the reference data set
and removes noise as a measure for quantitatively comparing each pseudotime estimation method. In general,
single-cell RNA sequences and other biological data are very noisy, so data visualization methods that present a
latent space that reveals the underlying structure of the data should be highly valued. Accordingly, metrics have
been proposed to quantify the correspondence between distances in low-dimensional embeddings and manifold
distances in ground-truth references (Moon et al., 2019). One standard way to define a quantitative notion of
manifold distance is to use geodesic distance. The geodesic distance is the shortest path distance on the nearest
graph of the data, weighted by the Euclidean distance between connected points. Importantly, the geodesic
distance converges exactly to the distance along the manifold of data when points are noiselessly sampled from
some manifold, as in our ground-truth reference. Thus, if the geodesic distances between points on a noise-free
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Figure 12: Screenshots of MCMC evolution for Spiral data.
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manifold are preserved by an embedding computed for noisy data, we can expect the data to be adequately
denoised and the true data structure to be adequately preserved. Thus, a measure called denoised embedding
manifold preservation (DEMaP) quantifies the preservation of manifold distance as the correlation between the
geodesic distance in a noiseless reference data set and the Euclidean distance in the embedding space, and is the
standard measure of structure preservation utilized.

B.2 Splatter simulation (used in Section 4.2 of main body)

Splatter is a single cell Ribonucleic acid (RNA) sequence simulation package that uses a parametric model to
generate data with various structures, such as branches or clusters (Zappia et al., 2017). We use Splatter to
simulate multiple ground truth datasets for multiple experiments. The parameters of the simulation were set
following previous studies. They were chosen to fit the Embryoid Body data (Martin and Evans, 1975) from the
Splatter paths (for latent diffusion structures). The default parameters used in the simulation are the following:

n cells n genes mean.shape mean.rate lib.loc lib.scale out.prob out.facLoc out.facScale bcv.common bcv.df de.prob

3000 17580 6.6 0.45 9.1 0.33 0.016 5.4 0.90 0.18 21.6 0.2

For more information on the parameters, we like to direct the reader to the Splatter project page.6 We simulate
100 datasets, including branches, and add biological and technical noise to the reference data to replicate the
following three scenarios: (1) Using Splatter’s biological coefficient of variation (BCV) parameter, bcv.common =
{0, 0.25, 0.5}, to simulate stochastic gene expression. (2) Undersampling from the true counts, n cells =
{150, 1500, 2850}, using the default BCV to simulate inefficient capture of RNA in single cells. (3) Randomly
remove genes from the data matrix, n genes = {2000, 10000, 17000} to demonstrate robustness to variation
in all measured genes. Additionally, for the paths simulation, we draw the number of groups from a Poisson
distribution with rate 10, and then draw the group.prob parameter from a Dirichlet distribution with n categories
and a uniform concentration (1, 1, . . . , 1). Finally, we set the ith entry in the parameter path.from as a random
integer between 0 and i−1, draw the parameter path.nonlinearProb from a uniform distribution on the interval
(0, 1), and draw the parameter path.skew from a beta distribution with shape (10, 10).

6https://github.com/Oshlack/splatter

https://github.com/Oshlack/splatter
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