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Abstract

We study the real-valued combinatorial pure
exploration of the multi-armed bandit in the
fixed-budget setting. We first introduce the
Combinatorial Successive Assign (CSA) algo-
rithm, which is the first algorithm that can
identify the best action even when the size
of the action class is exponentially large with
respect to the number of arms. We show that
the upper bound of the probability of error
of the CSA algorithm matches a lower bound
up to a logarithmic factor in the exponent.
Then, we introduce another algorithm named
the Minimax Combinatorial Successive Ac-
cepts and Rejects (Minimax-CombSAR) al-
gorithm for the case where the size of the ac-
tion class is polynomial, and show that it is
optimal, which matches a lower bound. Fi-
nally, we experimentally compare the algo-
rithms with previous methods and show that
our algorithm performs better.

1 Introduction

The multi-armed bandit (MAB) model is an impor-
tant framework in online learning since it is useful to
investigate the trade-off between exploration and ex-
ploitation in decision-making problems (Auer et al.,
2002; Audibert et al., 2009). Although investigating
this trade-off is intrinsic in many applications, some
application domains only focus on obtaining the op-
timal object, e.g., an arm or a set of arms, among a
set of candidates, and do not care about the loss or
rewards that occur during the exploration procedure.
This learning problem called the pure exploration (PE)
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task has received much attention (Bubeck et al., 2009;
Audibert et al., 2010).

One of the important sub-fields among PE of MAB
is the combinatorial pure exploration of the MAB
(CPE-MAB)(Chen et al., 2014; Gabillon et al., 2016;
Chen et al., 2017). In the CPE-MAB, we have a set
of d stochastic arms, where the reward of each arm
s ∈ {1, . . . , d} follows an unknown distribution with
mean µs, and an action class A, which is a collection
of subsets of arms with certain combinatorial struc-
tures. Then, the goal is to identify the best action from
the action class A by pulling a single arm each round.
There are mainly two settings in the CPE-MAB. One
is the fixed confidence setting, where the player tries to
identify the optimal action with high probability with
as few rounds as possible, and the other is the fixed-
budget setting, where the player tries to identify the
optimal action with a fixed number of rounds (Chen
et al., 2014; Katz-Samuels et al., 2020; Wang and Zhu,
2022a; Gabillon et al., 2016). Abstractly, the goal is
to identify π∗, which is the optimal solution for the
following constraint optimization problem:

maximizeπ µ⊤π
subject to π ∈ A,

(1)

where µ is a vector whose s-th element is the mean
reward of arm s and ⊤ denotes the transpose.

Although CPE-MAB can be applied to many mod-
els which can be formulated as (1), most of the ex-
isting works in CPE-MAB (Chen et al., 2014; Wang
and Zhu, 2022b; Gabillon et al., 2016; Chen et al.,
2017; Du et al., 2021; Chen et al., 2016) assume
A ⊆ {0, 1}d. This means that although we can ap-
ply the CPE-MAB framework to the shortest path
problem (Sniedovich, 2006), top-K arms identifica-
tion (Kalyanakrishnan and Stone, 2010), matching
(Gibbons, 1985), and spanning trees (Pettie and Ra-
machandran, 2002), we cannot apply it to problems
where A ⊂ Rd, such as the optimal transport problem
(Villani, 2008), the knapsack problem (Dantzig and
Mazur, 2007), and the production planning problem
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Figure 1: A simple sketch of the knapsack problem.
We want to know how many of each item should be
included in the bag to maximize the total value. Here,
the total weight of every item cannot exceed 10kg,
which is the capacity of the bag.

(Pochet and Wolsey, 2010). For instance, in the knap-
sack problem shown in Figure 1, actions are not binary
vectors since, for each item, we can put more than one
in the bag, e.g., one blue one and two orange ones.

To overcome this limitation, Nakamura and Sugiyama
(2023) introduced the real-valued CPE-MAB (R-CPE-
MAB), where the action class is a set of real vectors,
i.e., A ⊂ Rd. Though they have investigated the R-
CPE-MAB in the fixed confidence setting, there is still
room for investigation in the fixed-budget setting. To
the best of our knowledge, the only existing work that
can be applied to the fixed-budget R-CPE-MAB is the
Peace algorithm introduced by Katz-Samuels et al.
(2020). However, the Peace algorithm required enu-
merating all of the feasible actions. This is nearly im-
possible since, in general, there is no efficient algorithm
for enumerating all actions for a combinatorial opti-
mization problem. Even if they could be enumerated,
it would require an operation to sort an exponentially
large number of actions by estimated reward, which is
practically unrealistic in terms of computation time.
Secondly, there is a hyper-parameter for it, and one
needs to carefully choose them for the feasibility of
the Peace algorithm (Yang and Tan, 2022). Finally, it
needs an assumption that the rewards follow a normal
distribution, which may not be satisfied in real-world
applications.

In this work, we first introduce a parameter-free al-
gorithm named the Combinatorial Successive Assign
(CSA) algorithm, which is a generalized version of
the Combinatorial Successive Accepts and Rejects
(CSAR) algorithm proposed by Chen et al.(2014) for
the ordinary CPE-MAB. Since the CSA algorithm
does not require enumerating all the actions in A, it
can be applied to cases even when the size of the ac-

tion class A is exponentially large in d. We show that
the upper bound of the probability of error of the CSA
algorithm matches a lower bound up to a logarithmic
factor in the exponent.

Since the CSA algorithm does not match a lower
bound, we introduce another algorithm named the
Minimax Combinatorial Successive Accepts and Re-
jects (Minimax-CombSAR) algorithm inspired by
Yang and Tan (2022) for the case where the size of the
action class is polynomial with respect to the number
of arms. In Section 4, we show that the Minimax-
CombSAR algorithm is optimal, which means that the
upper bound of the probability of error of the best
action matches a lower bound. We also show that
the Minimax-CombSAR algorithm has only one hyper-
parameter, and is easily interpreted.

Finally, we report the results of numerical experi-
ments. First, we show that the CSA algorithm can
identify the best action in a knapsack problem, where
the size of the action class can be exponentially large
in d. Then, when the size of the action class is poly-
nomial in d, we show that the Minimax-CombSAR al-
gorithm performs better than the CSA algorithm and
the Peace algorithm in identifying the best action in
the knapsack and optimal transport problems.

2 Problem Formulation

In this section, we formally define our R-CPE-MAB
model. Suppose we have d arms, numbered 1, . . . , d.
Assume that each arm s ∈ [d] is associated with a
reward distribution ϕs, where [d] = {1, . . . , d}. We
assume all reward distributions have R-sub-Gaussian
tails for some known constant R > 0. Formally, if X
is a random variable drawn from ϕs for some s ∈ [d],
then, for all λ ∈ R, we have E[exp(λX − λE[X])] ≤
exp(R2λ2/2). It is known that the family of R-sub-
Gaussian tail distributions includes all distributions
that are supported on [a, b], where (b− a)/2 = R, and
also many unbounded distributions such as Gaussian
distributions with variance R2 (Rivasplata, 2012; Ri-
naldo and Bong, 2018). Let µ = (µ1, . . . , µd)⊤ denote
the vector of expected rewards, where each element
µs = EX∼ϕs

[X] denotes the expected reward of arm s
and ⊤ denotes the transpose. With a given ν, let us
consider the following linear optimization problem:

maximizeπ ν⊤π
subject to π ∈ C ⊂ Rd

≥0.
(2)

Here, C is a problem-dependent feasible region of π,
which satisfies some combinatorial structures. Then,
for any ν ∈ Rd, we denote by πν,C the solution of (2).
We define the action class A as the set of vectors that
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contains optimal solutions of (2) for any ν, i.e.,

A =
{

πν,C ∈ Rd
≥0 | ∀ν ∈ Rd

}
. (3)

We assume that the size of A is finite and denote it
by K. This assumption is relatively mild since, for
instance, in linear programming, the optimal solution
can always be found at one of the vertices of the fea-
sible region (Ahmadi, 2016).

Also, let POSSIBLE-PI(s) = {x ∈ R | ∃π ∈ A, πs = x},
where πs denotes the s-th element of π. We can see
POSSIBLE-PI(s) as the set of all possible values that
an action in the action set can take as the s-th element.
Let us denote the size of POSSIBLE-PI(s) by Bs. Note
that K, the size of A, can be exponentially large in d,
i.e., |A| = O(

∏d
s=1 Bs).

We assume we have offline oracles which efficiently
solve the linear optimization problem (2) once ν is
given. For instance, offline oracles can be algorithms
which output π∗(ν) = arg max

π∈A
ν⊤π in polynomial

or pseudo-polynomial 1 time in d.

The player’s objective is to identify the best action
π∗ = arg max

π∈A
µ⊤π by pulling a single arm each round.

The player is given a budget T , and cannot pull arms
more than T times. The player outputs an action πout

at the end, and she is evaluated by the probability of
error, which is formally Pr [πout ̸= π∗].

3 Lower Bound of the Fixed-Budget
R-CPE-MAB

In this section, we show a lower bound of the prob-
ability of error in R-CPE-MAB. As preliminaries, let
us introduce some notions. First, we introduce π(s) as
follows (Nakamura and Sugiyama, 2023):

π(s) = arg min
π∈A\{π∗}

µ⊤ (π∗ − π)
|π∗

s − πs|
. (4)

Intuitively, among the actions whose s-th element is
different from π∗, π(s) is the action which is the most
difficult to determine whether it is the best action or
not. We also introduce the notion G-gap (Nakamura
and Sugiyama, 2023) as follows:

∆s = min
π∈A\{π∗}

µ⊤ (π∗ − π)
|π∗

s − πs|

=
µ⊤ (π∗ − π(s))∣∣∣π∗

s − π
(s)
s

∣∣∣ . (5)

1A pseudo-polynomial time algorithm is a numeric al-
gorithm whose running time is polynomial in the numeric
value of the input, but not necessarily in the length of the
input (Garey and Johnson, 1990)

G-Gap was first introduced in Nakamura and
Sugiyama (2023) as a natural generalization of the no-
tion gap in the CPE-MAB literature (Chen et al., 2014,
2016, 2017). This was introduced as a key notion that
characterizes the difficulty of the problem instance.

In Theorem 1, we show that the sum of the inverse of
squared G-Gaps,

H =
d∑

s=1

(
1

∆s

)2
, (6)

appears in the lower bound of the probability of error
of R-CPE-MAB, which implies that it characterizes
the difficulty of the problem instance.
Theorem 1. For any action class and any algorithm
that returns an action πout after T times of arm pulls,
the probability of error is at least

O
(

exp
(
− T

H

))
. (7)

We show the proof in Appendix A. If A is a set of
d dimensional standard basis, R-CPE-MAB becomes
the standard best arm identification problem whose
objective is to identify the best arm with the largest
expected reward among d arms (Bubeck et al., 2009;
Audibert et al., 2010; Carpentier and Locatelli, 2016).
From Carpentier and Locatelli (2016), a lower bound
is O

(
exp

(
− T

log(d)H

))
for the standard best arm iden-

tification problem. It is a future work that whether the
lower bound is O

(
exp

(
− T

log(d)H

))
for general action

classes.

4 The Combinatorial Successive
Assign (CSA) Algorithm

In this section, we first introduce the CSA algorithm,
which can be seen as a generalization of the CSAR
algorithm (Chen et al., 2014). This algorithm can be
applied to fixed-budget R-CPE-MAB even when the
size of the action class A is exponentially large in d.
Then, we show an upper bound of the probability of
error of the best action of the CSA algorithm. We also
discuss the number of times offline oracles have to be
called.

4.1 CSA Algorithm

In this subsection, we introduce the CSA algorithm,
a fully parameter-free algorithm for fixed-budget R-
CPE-MAB that works even when the action set A can
be exponentially large in d.

We first define the constrained offline oracle which is
used in the CSA algorithm.
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Definition 1 (Constrained offline oracle). Let S =
{(e, x)|(e, x) ∈ Z×R} be a set of tuples. A constrained
offline oracle is denoted by COracle: Rd×S → A ∪ ⊥
and satisfies

COracle(µ, S) =
{

arg max
π∈AS

µ⊤π (if AS ̸= ∅),

⊥ (if AS = ∅),

where we define AS = {π ∈ A | ∀(e, x) ∈ S, πe = x}
as the collection of feasible actions and ⊥ is a null
symbol.

Here, we can see that a COracle is a modification of
an offline oracle specified by S. In other words, for
all (e, x) in S, the COracle outputs an action whose
e-th element is x; otherwise, it outputs the null sym-
bol. In Appendix B, we discuss how to construct such
COracles for some combinatorial problems, such as the
optimal transport problem and the knapsack problem.

We introduce the CSA algorithm in Algorithm 1. The
CSA algorithm divides the budget into d rounds. In
each round, we pull each of the remaining arms the
same number of times (line 5). At each round t, the
CSA outputs the empirically best action π̂(t) (line 6),
chooses a single arm p(t) (line 14), and assigns π̂p(t)(t)
for the e-th element of πout. Indices that are assigned
are maintained in F (t), and arms s ∈ F (t) will no
longer be pulled in the next rounds. The pair of the
index and the assigned value for πout, S(t), is updated
at every round (line 16).

4.2 Theoretical Analysis of CSA Algorithm

Here, we first discuss an upper bound of the probabil-
ity of error. Then, we discuss the number of times we
call the offline oracle.

4.2.1 An Upper Bound of the Probability of
Error

Here, we show an upper bound of the probability of
error of the CSA algorithm. Let ∆(1), . . . , ∆(d) be a
permutation of ∆1, . . . , ∆d such that ∆(1) ≤ · · · ≤
∆(d). Also, let us define

H2 = max
s∈[d]

s

∆2
(s)

.

One can verify that H2 is equivalent to H up to a
logarithmic factor: H2 ≤ H ≤ log(2d)H2 (Audibert
et al., 2010).
Theorem 2. Given any T > d, action class A ⊂
Rd, and µ ∈ Rd, the CSA algorithm uses at most T
samples and outputs a solution πout ∈ A ∪ {⊥} such

Algorithm 1 CSA: Combinatorial Successive Assign
Algorithm
Input: Budget: T ≥ 0; COracle: → A∪ {⊥}
1: Define ˜log(n) =

∑d
i=1

1
i

2: T̃0 ← 0, F (t)← ∅, S(t) = ∅
3: for t = 1 to d do
4: T̃ (t)← ⌈ T −d

˜log(d)(d−t+1)⌉
5: Pull each arm e ∈ [d]\F (t) for T̃ (t)− T̃t−1 times

6: π̂(t)← COracle(µ̂(t), S(t))
7: if π̂(t) =⊥ then
8: Fail: set πout ←⊥ and return πout

9: end if
10: for all e in [d] \ F (t) do
11: CHECK(e)← POSSIBLE-PI(e) \ {π̂e(t)}
12: π̃e(t)← arg max

x∈CHECK(e)
COracle(µ̂(t), S(t)∪ (e, x))

13: end for
14: p(t)← arg max

e∈[d]\F (t)

⟨µ̂(t),π̂(t)−π̃e(t)⟩
π̂e(t)−π̃e

e(t)

15: F (t + 1)← F (t) ∪ {p(t)}
16: S(t + 1)← S(t) ∪ {(p(t), π̂p(t)(t)}
17: end for
18: // Convert S(d + 1) to πout

19: for (e, x) in S(d + 1) do
20: // The e-th element of πout is x
21: πout

e = x
22: end for
23: return πout

that

Pr
[
πout ̸= π∗]

≤ d2 exp
(
− T − d

2(2 + L2)2R2 ˜log(d)U2
AH2

)
, (8)

where L = maxe∈[d],π1,π2,π3∈A,π1
e ̸=π3

e

|π1
e−π2

e|
|π1

e−π3
e | ,

˜log(d) ≜
∑d

s=1
1
s , and UA =

maxπ,π′∈A,e∈{s∈[d] | πs ̸=π′
s}

∑d

s=1
|πs−π′

s|
|πe−π′

e| .

We can see that the CSA algorithm is optimal up to
a logarithmic factor in the exponent. Since L = 1 and
UA = width(A) in the ordinary CPE-MAB, we can
confirm that Theorem 2 can be seen as a natural gen-
eralization of Theorem 3 in Chen et al. (2014), which
shows an upper bound of the probability of error of
the CSAR algorithm.

4.2.2 The Oracle Complexity

Next, we discuss the oracle complexity, the number of
times we call the offline oracle (Ito et al., 2019; Xu
and Li, 2021). Note that, in the CSA algorithm, we
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call the COracle O(d
∑d

s=1 Bs) times (line 12). There-
fore, if each COracle call invokes the offline oracle N

times, the oracle complexity is O
(

Nd
∑d

s=1 Bs

)
. Fi-

nally, if the time complexity of each oracle call is Z,
then the total time complexity of the CSA algorithm
is O

(
ZNd

∑d
s=1 Bs

)
.

Below, we discuss the oracle complexity of the CSA
algorithm in some specific combinatorial problems
such as the knapsack problem and the optimal trans-
port problem. Note that the Peace algorithm (Katz-
Samuels et al., 2020) has to enumerate all the actions
in advance, where the number may be exponentially
large in d. We show that the CSA algorithm mitigates
the curse of dimensionality.

The Knapsack Problem (Dantzig and Mazur,
2007). In the knapsack problem, we have d items.
Each item s ∈ [d] has a weight ws and value vs. Also,
there is a knapsack whose capacity is W in which we
put items. Our goal is to maximize the total value of
the knapsack, not letting the total weight of the items
exceed the capacity of the knapsack. Formally, the
optimization problem is given as follows:

maximizeπ∈A
∑d

s=1 vsπs

subject to
∑d

s=1 πsws ≤W,

where πs ∈ Z≥0 denotes the number of item s in the
knapsack. Here, if we assume the weight of each item
is known, but the value is unknown, we can apply
the R-CPE-MAB framework to the knapsack problem,
where we estimate the values of items. The knapsack
problem is NP-complete (Garey and Johnson, 1979).
Hence, it is unlikely that the knapsack problem can be
solved in polynomial time. However, it is well known
that the knapsack problem can be solved in pseudo-
polynomial time O(dW ) if we use dynamic program-
ming (Kellerer et al., 2004; Fujimoto, 2016). It finds
the optimal solution by constructing a table of size
dW whose (s, w)-th element represents the maximum
total value that can be achieved if the sum of the
weights does not exceed w using up to the sth item.
In some cases, it is sufficient to assume O(dW ) time-
complexity is enough, and therefore, we use this dy-
namic programming method as the offline oracle. We
can construct the COrcale for the knapsack problem by
calling this offline oracle once (see Appendix B.1 for
details). Therefore, the CSA algorithm calls the of-
fline oracle O(1 × d

∑d
s=1 Bs) = O(d

∑d
s=1 Bs) times,

and the total time complexity of the CSA algorithm
is O(dW × d

∑d
s=1 Bs) = O(d2W

∑d
s=1 Bs). This is

much more computationally friendly than the Peace
algorithm with time complexity O

(∏d
s=1 Bs

)
.

The Optimal Transport (OT) Problem (Peyré

and Cuturi, 2019). OT can be regarded as the
cheapest plan to deliver resources from m suppliers
to n consumers, where each supplier i and consumer
j have supply si and demand dj , respectively. Let
γ ∈ Rm×n

≥0 be the cost matrix, where γij denotes the
cost between supplier i and demander j. Our objective
is to find the optimal transportation matrix,

π∗ = arg min
π∈G(s,d)

∑
i,j

πijγij , (9)

where

G(s, d) ≜
{

Π ∈ Rm×n
≥0

∣∣∣Π1n = s, Π⊤1m = d
}

. (10)

Here, s = (s1, . . . , sm) and d = (d1, . . . , dn). πij rep-
resents how much resources one sends from supplier i
to demander j. If we assume that the cost is unknown
and changes stochastically, e.g., due to some traffic
congestions, we can apply the R-CPE-MAB framework
to the optimal transport problem, where we estimate
the cost of each edge (i, j) between supplier i and con-
sumer j.

Once γ is given, we can compute π∗ in O(l3 log l),
where l = max (m, n), by using network simplex or
interior point methods (Cuturi, 2013), and we can
use them as the offline oracle. It is known that
the solution of linear programming can always be
found at one of the vertices of the feasible region
(Ahmadi, 2016), and therefore the size of the ac-
tion space A =

{
πν,G(s,d) ∈ Rm×n

≥0 | ∀ν ∈ Rm×n
}

is finite. However, it is difficult to construct
{POSSIBLE-PI ((i, j))}i∈[m],j∈[n] in general to run
the CSA algorithm. On the other hand, if s
and d are both integer vectors, we can construct
{POSSIBLE-PI ((i, j))}i∈[m],j∈[n] thanks to the fact
that A =

{
πν,G(s,d) ∈ Zm×n

≥0 | ∀ν ∈ Rm×n
}

is a
set of non-negative integer matrices (Goodman and
O’Rourke, 1997). In this case, all actions are restricted
to non-negative integers, and POSSIBLE-PI(i, j) =
{0, 1, . . . , min (si, dj)}. In Appendix B.2, we show
that the COracle can be constructed by calling the
offline oracle once. Therefore, we call the offline oracle
O (1×mn

∑mn
s=1 Bs) = O(mn

∑mn
s=1 Bs) times, and

the total time complexity is O
(
mn

∑mn
s=1 Bs · l3 log l

)
,

where l = max (m, n). Again, this is much more com-
putationally friendly than the Peace algorithm with
time complexity O

(∏d
s=1 Bd

)
.

A General Case When K(= |A|) = poly(d). In
some cases, we can enumerate all the possible actions
in A. For instance, one may use some prior knowl-
edge of each arm, which is sometimes obtainable in
the real world, to narrow down the list of actions,
and make the size of the action class A polynomial
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in d. In Appendix B.3, we show that the time com-
plexity of the COracle is O (dK + K log K), and there-
fore the total time complexity of the CSA algorithm is
O
(

(dK + K log K) · d
∑d

s=1 Bs

)
.

5 The Minimax-CombSAR Algorithm
for R-CPE-MAB where |A| = poly(d)

In this section, we show an algorithm for fixed-budget
R-CPE-MAB named the Minimax Combinatorial Suc-
cessive Accept (Minimax-CombSAR) algorithm, for
the case where we can assume that the size of A is
polynomial in d. Let A = {π1 = π∗, π2, . . . , πK},
where µ⊤πi ≥ µ⊤πi+1, for all i ∈ [K − 1]. The
Minimax-CombSAR algorithm is inspired by the Opti-
mal Design-based Linear Best Arm Identification (OD-
LinBAI) algorithm Yang and Tan (2022), which elim-
inates actions in order from those considered subopti-
mal and finally outputs the remaining action as the op-
timal action. For the Minimax-CombSAR algorithm,
we show an upper bound of the probability of error.

5.1 Minimax-CombSAR Algorithm

We show the Minimax-CombSAR in Algorithm 2.
Here, we explain it at a higher level.

We have ⌈log d⌉ phases in the Minimax-CombSAR al-
gorithm, and it maintains an active action set A(r)
in each phase r. In each phase r ∈ [⌈log d⌉], it
pulls arms m(r) = T ′−d⌈log2 d⌉

B/2r−1 times in total, where
B = 2⌈log2 d⌉−1 and β ∈ [0, 1] is a hyperparameter, and
T ′ = T −

⌊
T
d β
⌋
× d. In each phase, we compute an al-

location vector p(r) ∈
{

v ∈ Rd |
∑d

s=1 vs = 1
}
≜ Πd,

and pull each arm s ⌈ps(r) ·m(r)⌉ times. Then, at the
end of each phase r, it eliminates a subset of possibly
suboptimal actions. Eventually, there is only one ac-
tion πout in the active action set, which is the output
of the algorithm.

The key to identifying the best action with high con-
fidence is the choice of the allocation vector p(r),
which determines how many times we pull each arm
in phase r.

Choice of p(r)

We discuss how to choose an allocation vector that is
beneficial to identify the best action. Let us denote
the number of times arm s is pulled before phase r
starts by Ts(r). Also, we denote by µ̂s(r) the empir-
ical mean of the reward from arm s before phase r
starts. Then, at the end of phase r, from Hoeffding’s

Algorithm 2 Minimax Combinatorial Successive Ac-
cept Algorithm
Input: Budget: T ≥ 0, initialization parameter: β,

action set: A(1) = A
1: // Initialization
2: for s ∈ [d] do
3: Pull arm s

⌊
T
d β
⌋

times and update µ̂s(1)
4: Ts(r)←

⌊
T
d β
⌋

5: end for
6: T ′ ← T −

⌊
T
d β
⌋
× d

7: for r = 1 to ⌈log2 d⌉ do
8: m(r) = T ′−d⌈log2 d⌉

B/2r−1

9: Compute p(r) according to (13) or (15)
10: for s ∈ [d] do
11: Pull arm s ⌈ps(r) ·m(r)⌉ times
12: Update µ̂s(r + 1) with the observed samples
13: end for
14: For each action π ∈ A(r), estimate the expected

reward: ⟨µ̂(r + 1), π⟩
15: Let A(r + 1) be the set of

⌈
d
2r

⌉
actions in A(r)

with the largest estimates of the expected re-
wards

16: end for
Output: The only action πout in A(⌈log2 d⌉+ 1)

inequality (Hoeffding, 1963), we have

Pr
[∣∣(µ̂(r + 1)− µ)⊤(πa − πb)

∣∣ ≥ ϵ
]

≤ exp
(
− ϵ2

κa,b,p(r)R2

)
(11)

for any πa, πb ∈ A, and ϵ ∈ R. Here, µ̂(r + 1) =
(µ̂1(r + 1), . . . , µ̂d(r + 1))⊤ and

κa,b,p(r) =
d∑

s=1

(
πa

s − πb
s

)2

Ts(r) + ⌈ps(r) ·m(r)⌉ . (12)

(11) shows that the empirical difference µ̂⊤(πa − πb)
between πa and πb is closer to the true difference
µ⊤(πa−πb) with high probability if we make κa,b,p(r)
small. In that case, we have a higher chance to distin-
guish whether πa is better than πb or not. However,
when we have more than two actions in A(r),

pa,b(r) = arg min
p∈Πd

κa,b,p(r)

is not necessarily a good allocation vector for investi-
gating the true difference between other pairs of ac-
tions in A(r). Therefore, we propose the following al-
location vector as an alternative:

pmin(r) ≜ arg min
p∈Πd

max
πa,πb∈A

κa,b,p(r). (13)

(13) takes a minimax approach, which computes an
allocation vector that minimizes the maximum value
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of the right-hand side of (11) among all of the pairs
of actions in A(r). Since (13) is a d-dimensional non-
linear optimization problem, it becomes computation-
ally costly as d grows. Thus, another possible choice
of the allocation vector is as follows:

qmin(r) ≜ arg min
p∈Πd

max
πa,πb∈A

λa,b,p(r), (14)

where λa,b,p =
∑d

s=1
(πa

s −πb
s)2

ps(r)·m(r) . For specific actions
πk, πl ∈ A, from the method of Lagrange multipliers
(Hoffmann and Bradley, 2009), we have

qk,l(r) ≜ arg min
p∈Πd

λk,l,p(r)

=
( ∣∣πk

1 − πl
1
∣∣∑d

s=1 |πk
s − πl

s|
, . . . ,

∣∣πk
d − πl

d

∣∣∑d
s=1 |πk

s − πl
s|

)⊤

,

and therefore, qmin(r) in (14) can be written explicitly
as follows:

qmin(r) = qi,j(r)

=


∣∣∣πi

1 − πj
1

∣∣∣∑d
s=1

∣∣∣πi
s − πj

s

∣∣∣ , . . . ,

∣∣∣πi
d − πj

d

∣∣∣∑d
s=1

∣∣∣πi
s − πj

s

∣∣∣
⊤

,

(15)

where πi, πj = arg max
πk,πl∈A

λk,l,p(r). If we use (15) for the

allocation vector instead of computing (13), we do not
have to solve a d-dimensional non-linear optimization
problem, and thus is computationally more friendly.

In some cases, actions in A can be sparse, and p(1) can
also be sparse. If p(1) is sparse, we may only have a
few samples for some arms, and therefore accidentally
eliminate the best action in the first phase in line 15
of Algorithm 2. To cope with this problem, we have
the initialization phase (lines 2–5) to pull each arm⌊

T
d β
⌋

times, where β ∈ [0, 1] is a hyperparameter. In-
tuitively, β represents how much of the total budget
will be spent on the initialization phase. If β is too
small, we may accidentally eliminate the best action
in the early phase, and if it is too large, we may not
have enough budget to distinguish between the best
action and the next best action.

5.2 Theoretical Analysis of
Minimax-CombSAR

Here, in Theorem 3, we show an upper bound of the
probability of error of the Minimax-CombSAR algo-
rithm.
Theorem 3. For any problem instance in fixed-budget
R-CPE-MAB, the Minimax-CombSAR algorithm out-

puts an action πout satisfying

Pr
[
πout ̸= π∗]

≤
(

4K

d
+ 3 log2 d

)
exp

(
−T ′ − ⌈log2 d⌉

R2V 2 · 1
H2

)
,

(16)

where V = maxπi∈A\{π∗}

(
d∑

s=1

|π1
s−πi

s|∣∣π1
s(i)−πi

s(i)

∣∣)2

and

s(i) = arg max
s∈[d]

∣∣π1
s − πi

s

∣∣.
We can see that the Minimax-CombSAR algorithm is
an optimal algorithm whose upper bound of the prob-
ability of error matches the lower bound shown in (7)
since we have H2 ≤ H ≤ log(2d)H2.

5.3 Computational Complexity

We discuss the time complexity of the MinMax-
CombSAR algorithm. We can compute the allocation
vector p(r) with time complexity of O(1) if we use
Equation (15) (line 9). The time complexity of the
elimination procedure for A in lines 14 and 15 is of
O(K log K). In total, since we have ⌈log d⌉ phases,
the time complexity is O (K log K⌈log d⌉).

5.4 Comparison with Katz-Samuels et al.
(2020)

Here, we compare the Minimax-CombSAR algorithm
with the Peace algorithm introduced in Katz-Samuels
et al. (2020). The upper bound of the Peace algorithm
can be written as follows:

Pr
[
πout ̸= π∗]

≤ 2 ⌈log (d)⌉ exp
(
− T

c′ log(d) (γ∗ + ρ∗)

)
, (17)

where

γ∗ = inf
λ∈Πd

Eη∼N (0,I)

[
sup

π∈A\{π∗}

(π∗ − π)⊤
A (λ)

1
2 η

µ⊤ (π∗ − π)

]
,

ρ∗ = min
λ∈Πd

max
π∈A\{π∗}

∑d
s=1

|π∗
s −πs|2

λs

∆2
π∗,π

,

and c′ is a problem-dependent constant. Here, A (λ)
is a diagonal matrix whose (i, i) element is λi. In gen-
eral, it is not clear whether the upper bound of the
Minimax-CombSAR algorithm in (2) is tighter than
that of the Peace algorithm shown in (17). In the
experiment section, we compare the two algorithms
numerically and show that our algorithm outperforms
the Peace algorithm.
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Table 1: The percentage of correctly identified optimal actions in the knapsack problem. The size of the action
set is exponentially large in d. We conducted experiments for 100 times for each d.

d 10 20 30 40 50 60 70 80 90 100
Naive Baseline 93 % 82 % 63 % 65 % 49 % 47 % 33 % 30 % 24 % 15 %

CSA 98 % 84 % 77 % 70 % 55 % 49 % 51 % 50 % 35 % 32 %

Table 2: Comparison of the percentage of the best actions correctly identified by the CSA, Minimax-CombSAR,
and Peace algorithms in the knapsack problem. We assume that |A| ≤ 1000 is guaranteed. The horizontal axis
represents the number of items d. We ran the experiments a hundred times for each d.

d 10 15 20 25 30 35 40 45 50
Peace 97 % 86 % 88 % 78 % 74 % 71 % 58 % 58 % 55 %
CSA 98 % 96 % 93 % 87 % 83 % 81 % 80 % 73 % 73 %

MinMaxCombSAR(β = 0.2) 98 % 93 % 95 % 89 % 93 % 87 % 83 % 85 % 83 %
MinMaxCombSAR(β = 0.2) 99 % 94 % 95 % 92 % 93 % 85 % 86 % 79 % 83 %

6 Experiment

In this section, we numerically compare the CSA,
Minimax-CombSAR, and Peace algorithms. First, we
run an experiment where we assume |A| is exponen-
tially large in d. We see the performance of the CSA al-
gorithm with different budgets. Also, we compare the
CSA algorithm with a naive baseline method. Next,
we compare the CSA, Minimax-CombSAR, and Peace
algorithms, where we can assume that |A| is polyno-
mial in d.

6.1 When |A| is Exponentially Large in d

Here, the goal is to identify the best action for the
knapsack problem. In the knapsack problem, we have
d items. Each item s ∈ [d] has a weight ws and value
vs. Also, there is a knapsack whose capacity is W in
which we put items. Our goal is to maximize the total
value of the knapsack, not letting the total weight of
the items exceed the capacity of the knapsack. For-
mally, the optimization problem is given as follows:

maximizeπ∈A
∑d

s=1 vsπs

subject to
∑d

s=1 πsws ≤W,

where πs denotes the number of item s in the knapsack.
Here, the weight of each item is known, but the value
is unknown, and therefore has to be estimated. In
each time step, the player chooses an item s and gets
an observation of value vs, which can be regarded as
a random variable from an unknown distribution with
mean vs.

Here, we assume |A| is exponentially large in d. There-
fore, we can not use the Minimax-CombSAR and
the Peace algorithm since they have to enumerate all
the possible actions. For our experiment, we gener-

ated the weight of each item s, ws, uniformly from
{1, 2, . . . , 200}. For each item s, we generate vs as
vs = ws×x, where x is a uniform sample from [1.0, 1.1].
The capacity of the knapsack is W = 200. Each time
we choose an item s, we observe a value vs + ϵ where
ϵ is a noise from N (0, 1). We set R = 1.

We compare the CSA algorithm to a naive baseline,
which pulls each arm equally and returns the action
with the largest reward using the sample mean. The
budget T is set to 10000. The results are shown in Ta-
ble 1. We can see that the CSA algorithm outperforms
the baseline method in all d.

6.2 When |A| is Polynomial in d.

Here, we assume that we have prior knowledge of
the rewards of arms, i.e., knowledge of the values of
the items. We assume that we know each vs is in
[ws, 1.1 × ws], and use this prior knowledge to gen-
erate the action class A in the following procedure.
We first generate a vector v′ whose s-th element v′

s is
uniformly sampled from [ws, 1.1×ws], and then solve
the knapsack problem with v′

s and adde the obtained
solution π to A. We repeate this 1000 times; there-
fore |A| ≤ 1000. In this experiment, the budget is
T = 20000. For the Minimax-CombSAR algorithm,
we set β = 0.2, 0.4. We run forty experiments for each
d ∈ {10, 15, . . . , 100}. We show the result in Table 2.
We can see that the Minimax-CombSAR algorithm
outperforms the other two algorithms for almost ev-
ery d. Also, the CSA algorithm outperforms the Peace
algorithm for almost every d.

Next, we compare the performance of each method by
conducting an experiment on the best action identi-
fication task on the optimal transport problem. We
use the notation introduced in Section 4.2.2. We
set the supplier vector and the demand vector as
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Table 3: Comparison of the percentage of the best actions correctly identified by the CSA, Minimax-CombSAR,
and Peace algorithms in the optimal transport problem. We assume that |A| ≤ 100 is guaranteed. We show the
accuracy of identifying the optimal action for d = {4, 9, 16, 25, 36, 49, 64, 81, 100}. For each d, we conducted the
experiment for 100 times.

d 4 9 16 25 36 49 64 81 100
Peace 84 % 67 % 58 % 49 % 41 % 35 % 36 % 24 % 11 %
CSA 84 % 75 % 57 % 46 % 50 % 38 % 31 % 39 % 15 %

MinMax-CombSAR (β = 0.2) 82 % 83 % 73 % 67 % 59 % 54 % 49 % 48 % 29 %

s = (1, 2, . . . , m) and d = (1, 2, . . . , n), respectively.
Also, we set m = n. We generate each element of
the cost matrix γ from a uniform distribution U(0, 1).
Here, we assume that γ is unknown, and therefore has
to be estimated. Note that the number of arms d is
mn = m2 in this setting. To generate the action set,
we follow the following procedure. We first generate
a random matrix γ′, where each element is sampled
from U(0, 1). Then, we solve the optimal transport
problem with the offline oracle and add the obtained
solution π′ to A. We repeat this procedure for 100
times, and therefore |A| ≤ 100. We show the results
in Table 3. We can see that the MinMax-CombSAR
algorithm outperforms the other two methods.

7 Conclusion

In this paper, we studied the fixed-budget R-CPE-
MAB. We first introduced the CSA algorithm, which
is the first algorithm that can identify the best action
even when the size of the action class is exponentially
large with respect to the number of arms. However,
it still has an extra logarithmic term in the exponent.
Then, we proposed an optimal algorithm named the
Minimax-CombSAR algorithm, which, although it is
applicable only when the action class is polynomial,
matches a lower bound. We showed that both of the
algorithms outperform the existing methods.
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Checklist

The checklist follows the references. For each ques-
tion, choose your answer from the three possible op-
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erencing the appropriate section of your paper or pro-
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section does not count towards the page limit. Not
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result in desk rejection, although in such case we will
ask you to upload it during the author response period
and include it in camera ready (if accepted).

In your paper, please delete this instructions
block and only keep the Checklist section head-
ing above along with the questions/answers be-
low.

1. For all models and algorithms presented, check if
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(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
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(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
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(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Not Applicable]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
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(a) Citations of the creator If your work uses ex-
isting assets. [Yes]

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]
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A Proof of Theorem 1

Here, we prove Theorem 1. For the reader’s convenience, we restate the Theorem.
Theorem 1. For any action class and any algorithm that returns an action πout after T times of arm pulls,
the probability of error is at least

O
(

exp
(
− T

H

))
. (7)

We follow a similar discussion to Carpentier and Locatelli (2016). This is a lower bound that will hold in the
much easier problem where the learner knows that the bandit setting she is facing is one of only d given bandit
settings. This lower bound ensures that even in this much simpler case, the learner will make a mistake.

Let N (µ, 1) denote the Gaussian distribution of mean µ and unit variance. For any k ∈ [d], we write νk :=
N (µk, 1). Also, for any k ∈ [d], we define ν′

k as follows:

ν′
k :=

{
N (µk + 2∆k, 1) (if π∗

k < π
(k)
k )

N (µk − 2∆k, 1) (if π∗
k > π

(k)
k )

.

Recall that ∆k = µ⊤(π∗−π(k))∣∣π∗
k

−π
(k)
k

∣∣ and π(k) = arg min
π ̸=π∗

µ⊤(π∗−π)
|π∗

k
−πk| .

For any s ∈ [d], we define the product distributions Gs as νs
1 ⊗ · · · ⊗ νs

d, where for 1 ≤ k ≤ d,

νs
k := νk1 [k ̸= s] + ν′

k1 [k = s] . (18)

The bandit problem associated with distribution Gs, and that we call “the bandit problem s” is such that, for any
1 ≤ k ≤ d, arm k has distribution νs

k, i.e., all arms have distribution νk except for arm s that has distribution ν′
k.

We denote by µ(s) the vector of expected rewards of bandit problem s, i.e., µ
(s)
k = µk for k ̸= s, µ

(s)
k = µk + 2∆k

for k = s and π∗
k < π

(k)
k , µ

(s)
k = µk − 2∆k for k = s and π∗

k > π
(k)
k . For any 1 ≤ s ≤ d, Ps := P(Gs)⊗T for the

probability distribution of the bandit problem s according to all the samples that a strategy could possibly collect
up to horizon T , i.e., according to the samples (Xk,u)1≤k≤d,1≤u≤T ∼ (Gs)⊗T . Also, we define P0 := P(G0)⊗T ,
where G0 := ν1 ⊗ · · · ⊗ νd.

In the bandit problem s, π∗ is no longer the best action since the difference of the expected reward between π∗

and π(s) is ∑
e∈[d]\s

µe(π∗
e − π(s)

e )− 2∆s ×
∣∣∣π∗

s − π(s)
s

∣∣∣
≤ −µ⊤

(
π∗ − π(s)

)
< 0. (19)

We denote by π∗,(s) the best action in the bandit problem s.

Now, we prove Theorem 1.

Step 1: Definition of KL-divergence

For two distributions ν and ν′ defined on R, and that are such that ν is absolutely continuous with respect to
ν′, we write

KL(ν, ν′) =
∫
R

log
(

dν(x)
dν′(x)

)
dν(x), (20)

for the Kullback Leibler divergence between distribution ν and ν′. For any k ∈ [d], let us write

KLk ≜ KL(νk, ν′
k) = 1

2 (µa − µb)2
. (21)

for the Kullback-Leibler divergence between two Gaussian distributions N (µa, 1) and N (µb, 1).
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Let 1 ≤ t ≤ T . Also, let us fix e ∈ [d], and think of bandit instance e. We define the quantity:

K̂Ls,t = 1
t

t∑
u=1

log
(

dνs

dν′
s

(Xs,u)
)

=


1
t

∑t
u=1−∆s (Xs,u − µs − 2∆s) ifπ∗

s > π
(s)
s and e ̸= s,

1
t

∑t
u=1 ∆s (Xs,u − µs + 2∆s) if π∗

s < π
(s)
s and e ̸= s,

0 if e = s

(22)

where Xs,u ∼i.i.d νe
s for any u ≤ t.

Next, let us define the following event:

ξ =
{
∀1 ≤ s ≤ d, ∀1 ≤ t ≤ T,

∣∣∣K̂Ls,t

∣∣∣−KLs ≤
√

2∆2
s

log(12Td)
t

}
. (23)

The following lemma shows a concentration bound for
∣∣∣K̂Ls,t

∣∣∣.
Lemma 1. It holds that

Pre [ξ] ≥ 5
6 (24)

Proof. When e = s,
∣∣∣K̂Ls,t

∣∣∣−KLs ≤
√

2∆2
s

log(12T d)
t holds for any t. Therefore, we think of e ̸= s. Since Xs,t is

a 1-sub-Gaussian random variable, we can see that K̂Ls,t is a ∆s
2

t -sub-Gaussian random variable from (22). We
can apply the Hoeffding’s inequality to this quantity, and we have that with probability larger than 1− 1

6dT ,∣∣∣K̂Ls,t

∣∣∣−KLs ≤
√

2∆2
s log(12Td)

t
(25)

Step2: A change of measure

Let ALG denote the active strategy of the learner, that returns some action πout after pulling arms T times
in total. Let (Ts)1≤s≤T denote the number of samples collected by ALG on each arm. These quantities are
stochastic but it holds that

∑d
s=1 Ts = T . For any 1 ≤ s ≤ d, let us write

ts = E0[Ts]. (26)

It holds also that
∑d

s=1 ts = T .

We recall the change of measure identity (Audibert et al., 2010), which states that for any measurable event E
and for any 1 ≤ s ≤ d,

Prs [E ] = E0

[
1 [E ] exp

(
−TsK̂Ls,Ts

)]
, (27)

where 1 denotes the indicator function.

Then, we consider the following event:

Es = {πout = π∗} ∩ {ξ} ∩ {Ts ≤ 6ts} , (28)

i.e., the event where the algorithm outputs action π∗ at the end, where ξ holds, and where the number of times
arm s is pulled is smaller than 6ts. From (28), we have

Prs[Es] = E0

[
1 [Es] exp

(
−TsK̂Ls,Ts

)]
(29)

≥ E0

[
1 [Es] exp

(
−TsKLs −

√
2Ts∆2

s log(12Td)
)]

(30)

≥ E0

[
1 [Es] exp

(
−6tsKLs −

√
2T∆2

s log(12Td)
)]

(31)

≥ exp
(
−6tsKLs −

√
2T∆2

s log(12Td)
)

Pr0 [Es] , (32)
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since on Es, we have that ξ holds and that Ts ≤ 6ts, and E0

[
K̂Ls,t

]
= KLs for any t ≤ T .

Step 3: Lower bound on Pr0 [E1] for any reasonable algorithm
Assume that the algorithm ALG is a δ-correct algorithm. Then, we have Pr0 [πout ̸= π∗] ≤ δ. From the Markov’s
inequality, we have

Pr0[Ts ≥ 6ts] ≤ E0Ts

6ts
= 1

6 , (33)

since E0 [Ts] = ts for algorithm ALG.

Combining Lemma 1, (33), and the fact that ALG is a δ-correct algorithm, by the union bound, we have

Pr0 [Es] ≥ 1− (1/6 + δ + 1/6) = 2
3 − δ. (34)

This fact combined with (32), (21), and the fact that Prs

[
πout ̸= π∗,(s)] ≥ Prs [Es], we have

Prs

[
πout ̸= π∗,(s)

]
≥

(
2
3 − δ

)
exp

(
−6tsKLs −

√
2T∆2

s log(12Td)
)

=
(

2
3 − δ

)
exp

(
−12ts (∆s)2 −

√
2T∆2

s log(12Td)
)

since KLs = 2∆2
s.

Step 4: Conclusion. Since H =
d∑

s=1

(
1

∆s

)2
and

d∑
s=1

ts = T , there exists e ∈ [d] such that

te ≤
T

H∆2
e

, (35)

as the contradiction yields an immediate contradiction. For this e, it holds by (35) that

Pre

[
πout ̸= π∗,(e)

]
≥
(

2
3 − δ

)
exp

(
−12 T

H − 2
√

T∆2
e log(6Td)

)
. (36)

This concludes the proof.

B How to construct COracles

Here, we show how to construct COracles once µ and S(t) are given for some specific combinatorial problems.

B.1 COracle for the Knapsack Problem

Here, we show that we can construct the COracle for the knapsack problem by calling the offline oracle once.
Let S1(t) be the set that collects only the first component of each of all elements in S(t). Also, let Wdone =∑
(e,x)∈S(t)

xwe. If W −Wdone < 0, the COracle outputs ⊥. Otherwise, we call the offline oracle and solve the

following optimization problem:

maximizeξ

∑
s∈[d]\S1(t)

µsξs

subject to
∑

s∈S1(t)
ξsws ≤W −Wdone.

Then, we return COracle(µ, S(t)) = S(t) ∪ ξ.
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B.2 COracle for the Optimal Transport Problem

Here, in Algorithm 3, we show the COracle for the optimal transport problem, which calls the offline oracle
once. First, let us define S1(t) as the set that collects only the first element of each of all elements in S(t). Then,
let us define πCO as the final output of the COracle. Also, let us define s′ and d′ as follows:

∀i ∈ [m], j ∈ [n], x ∈ POSSIBLE-PI((i, j)), s′
i =

{
x (if ((i, j), x) ∈ S(t),
0 (otherwise),

and

∀i ∈ [m], j ∈ [n], x ∈ POSSIBLE-PI((i, j)), d′
j =

{
x (if ((i, j), x) ∈ S(t),
0 (otherwise).

Also, let us define π′ ∈ Rm×n whose (i, j)-th element is defined as follows:

∀i ∈ [m], j ∈ [n], x ∈ POSSIBLE-PI((i, j)), π′
ij =

{
x (if ((i, j), x) ∈ S(t),
0 (otherwise).

Intuitively, for any ((i, j), x) ∈ S(t), we have to send resources from supplier i to demander j for a value of
s′

i(= d′
j). This means that we have resources of si − s′

i left to send from supplier i, and dj − d′
j left to send to

demander j. Since we can not send a negative value of resources, si− s′
i ≥ 0 and dj −d′

j ≥ 0 have to be satisfied.

From the above discussion, we can formally write πCO as follows:

πCO =
{ ∑

i,j π′
ijγij + arg min

π′′∈G(s−s′,d−d′)

∑
i,j π′′

ijγ′
ij ( if there is no negative value in neither s− s′ nor d− d′),

⊥ (otherwise).

Here, γ′ is defined as

∀i ∈ [m], j ∈ [n], x ∈ POSSIBLE-PI((i, j)), γ′
ij =

{
−∞ (if ((i, j), x) ∈ S(t),
γij (otherwise),

to not let πCO send materials more than the amount determined by S(t).

Algorithm 3 COracle for the Optimal Transport Problem
Input: Cost matrix: γ, supply vector s ∈ Rm, demand vector d ∈ Rn, S(t)
1: π′ ← 0m×n

2: for ((i, j), x) in S(t) do
3: π′

ij ← x
4: si ← si − x
5: dj ← dj − x
6: γij ← −∞
7: if si < 0 or dj < 0 then
8: Return ⊥
9: end if

10: end for
11: Compute π′′ = arg min

π∈G(s,d)

∑
i,j πijγij using the offline oracle

12: Return πCO = π′ + π′′

B.3 COracle for a General Case When K(= |A|) = poly(d)

Here, we show the time complexity of the COracle when the size of the action class is polynomial in d. If AS

is an empty set, the COracle returns ⊥. Otherwise, we return πreturn = arg max
π∈AS

µ⊤π. The time complexity to

construct AS is O(dK). This is because, for each action π ∈ A, we check every dimension to see if π ∈ AS .
Then, the time complexity of finding πreturn from AS is O(K log K). Therefore the time complexity of the
COracle is O (dK + K log K).
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C Proof of Theorem 2

Here, we prove Theorem 2. We first introduce some notions that are useful to prove it. Then, we show some
preparatory lemmas that are needed to prove Theorem 2.

C.1 Preparatories

Let us introduce some notions that are useful to prove the theorem.

C.1.1 Arm-Value Pair

We define an arm-value pair set M(π) ⊂ [d]× R of π as follows:

M(π) = {(e, πe) | ∀e ∈ [d]}.

Also, we define the arm-value pair family M as follows:

M = {M(π) | ∀π ∈ A}.

For any arm-value pair set M ∈ M, we denote by Me the second component of the ordered pair whose first
component is e, i.e., Me = x for any (e, x) ∈M . Also, we call Me the e-th element of M .

For any two different arm-value pair set M , M ′ ∈ M, we define an operator ⊟ such that the e-th element of
M ′ ⊟ M ⊂ [d]× R, (M ′ ⊟ M)e, is defined as follows:

(M ′ ⊟ M)e =
{

M ′
e −Me (if M ′

e > Me)
0 (if M ′

e ≤Me) .

C.1.2 Exchange Class

We define an exchange set b as an ordered pair of sets b = (b+, b−), where b+, b− ⊂ [d]×R \ {0}. We say b+ (or
b−) has as e-changer if it has an element whose first component is e. For any b+ (or b−), we denote by b+

e the
second component of the ordered pair whose first component is e, i.e., b+

e = x for any (e, x) ∈ b+. Also, for any
b = (b+, b−), we do not let both b+ and b− have e-changers.

Next, for any arm-value pair set M ∈ M, exchange set b = (b+, b−), and e ∈ [d], we define operator ⊕ such
that the e-the element of M ⊕ b ⊂ [d]× R, (M ⊕ b)e, is defined as follows:

(M ⊕ b)e =


Me + b+

e (if b+ has an e−changer)
Me − b−

e (if b− has an e−changer)
Me (if neither b+ nor b− has an e−changer)

. (37)

Similarly, for any arm-value pair set M ∈M, exchange set b = (b+, b−), and e ∈ [d], we define operator ⊖ such
that the e-the element of M ⊖ b ⊂ [d]× R, (M ⊖ b)e, is defined as follows:

(M ⊖ b)e =


Me − b+

e (if b+ has an e−changer)
Me + b−

e (if b− has an e−changer)
Me (if neither b+ nor b− has an e−changer)

. (38)

We call a collection of exchange sets B an exchange class for M if B satisfies the following property. For any
M , M ′ ∈ M and e ∈ [d], where (M ⊟ M ′)e > 0, there exists an exchange set b = (b+, b−) ∈ B that satisfies
the following five constraints: (a) b−

e = (M ⊟ M ′)e (b) b+ ⊆M ′ ⊟ M , (c) b− ⊆M ⊟ M ′, (d)(M ⊕ b) ∈ M
and (e) (M ′ ⊖ b) ∈M.

For any a ⊂ [d] × R, let ae denote the second component of the ordered pair whose first component is e, i.e.,
ae = x for any (e, x) ∈ a. Then, let χ(a) ∈ Rd denote the vector defined as follows:

χe(a) =
{

ae (if a has an element whose first component is e )
0 (otherwise) .

Also, for any exchange set b, we define χ(b) = χ(b+)− χ(b−).
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C.2 Preparatory Lemmas

Here, let us introduce some lemmas that are useful to prove the theorem. Below, we define M∗ = M(π∗).
Lemma 2 (Interpolation Lemma). Let B be an exchange class of M, and M , M ′ be two different members of
M. Then, for any e ∈ {s ∈ [d] | Ms ̸= M ′

s}, there exists an exchange set b = (b+, b−) ∈ B, which satisfies the
following five constraints: (a) b−

e = (M ⊟M ′)e or b+
e = (M ′ ⊟M)e, (b) b− ⊆ (M ⊟M ′), (c) b+ ⊆M ′ ⊟M ,

(d) (M ⊕ b) ∈M and (e)(M ′ ⊖ b) ∈M. Moreover, if M ′ = M∗, then we have

⟨µ, χ(b)⟩
χe(b) ≥ ∆e. (39)

Proof. We decompose our proof into two cases.

Case (1): (M ⊟ M ′)e > 0

By the definition of the exchange class, we know that there exists b = (b+, b−) ∈ B which satisfies that there
is an e ∈ [d] where (a) b−

e = (M ⊟ M ′)e, (b) b− ⊆ (M ⊟ M ′), (c) b+ ⊆ M ′ ⊟ M , (d) (M ⊕ b) ∈ M and
(e)(M ′ ⊖ b) ∈M. Therefore the five constraints are satisfied.

Case (2): (M ′ ⊟ M)e > 0

Using the definition of the exchange class, we see that there exists b = (c+, c−) ∈ B such that (a) c−
e =

(M ′ ⊟ M)e, (b) c− ⊆ (M ′ ⊟ M), (c) c+ ⊆ (M ⊟ M ′), (d) (M ⊕ b) ∈ M, and (e) (M ′ ⊖ b) ∈ M. We
construct b = (b+, b−) by setting b+ = c− and b− = c+. Notice that, by the construction of b, we have
M ⊕ b = M ⊖ c and M ′ ⊖ b = M ′ ⊕ c. Therefore, it is clear that b satisfies the five constraints of the lemma.

Next, let us think when M ′ = M∗ for both cases. Let us consider

π1 = arg min
π∈M\π∗

⟨µ, π∗ − π⟩
|π∗

e − πe|
. (40)

Note that, by the definition of the G-Gap, we have ⟨µ,π∗−π1⟩
|π∗

e −π1
e | = ∆e. We define π0 such that M(π0) = M(π∗)⊖b.

Note that we already have M(π0) ∈M. We can see that

⟨µ, χ(b)⟩
|χe(b)| = ⟨µ, π∗ − π0⟩

|π∗
e − π0

e |
≥ ∆e, (41)

where the inequality follows from the definition of G-Gap.

Next, we establish the confidence bounds used for the analysis of the CSA algorithm.
Lemma 3. Given a phase t ∈ [d], we define random events τt as follows:

τ(t) =
{
∀s ∈ [d] \ F (t), |µ̂s(t)− µs| <

∆(d−t+1)

(2 + L2)UA

}
, (42)

where L = maxe∈[d],π1,π2,π3∈A
|π1

e−π2
e|

|π1
e−π3

e | . Then, we have

Pr
[

d⋂
t=1

τ(t)
]
≥ 1− d2 exp

(
− T − d

2 (2 + L2)2
R2 ˜log(d)U2

MH2

)
(43)

Proof. Fix some t ∈ [d] and active arm s ∈ [d] \ F (t) of phase t. Note that arm s has been pulled for T̃ (t) times
during the first t phases. Therefore, by Hoeffding’s inequality, we have

Pr
[
|µ̂s(t)− µs| ≥

∆(d−t+1)

(2 + L2)UA

]
≤ 2 exp

(
−

T̃ (t)∆2
(d−t+1)

2 (2 + L2)2
R2U2

A

)
. (44)
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By plugging the definition of T̃ (t), the quantity T̃ (t)∆2
(d−t+1) on the right hand side of (44) can be further

bounded by

T̃ (t)∆2
(d−t+1) ≥ T − d

˜log(d)(d− t + 1)
∆2

(d−t+1)

≥ T − d
˜log(d)H2

,

where the last inequality follows from the definition of H2 = maxs∈[d]
s

∆2
(s)

. By plugging the last equality into
(44), we have

Pr
[
|µ̂s(t)− µs| ≥

∆(d−t+1)

(2 + L2)UA

]
≤ 2 exp

(
− T − d

2 (2 + L2)2
R2 ˜log(d)U2

AH2

)
. (45)

Using (45) and a union bound for all t ∈ [d] and all s ∈ [d] \ F (t), we have

Pr
[

d⋂
t=1

τ(t)
]
≥ 1− 2

d∑
t=1

(d− t + 1) exp
(
− T − d

2 (2 + L2)2
R2 ˜log(d)U2

AH2

)

≥ 1− d2 exp
(
− T − d

2 (2 + L2)2
R2 ˜log(d)U2

MH2

)

The following lemma builds the confidence bound of inner products.
Lemma 4. Fix a phase t ∈ [d]. Suppose that random event τ(t) occurs. For any vector a ∈ Rd, we have

|⟨µ̂(t), a⟩ − ⟨µ, a⟩| <
∆(d−t+1)

(2 + L2)UA
∥a∥1. (46)

Proof. Suppose that τt occurs. We have

|⟨µ̂(t), a⟩ − ⟨µ, a⟩| = |⟨µ̂(t)− µ, a⟩|

=
∣∣∣∣∣

d∑
s=1

(µ̂s(t)− µs)as

∣∣∣∣∣
≤

d∑
s=1
|µ̂s(t)− µs||as|

<
∆(d−t+1)

(2 + L2)UA

d∑
i=1
|as| (47)

=
∆(d−t+1)

(2 + L2)UA
∥a∥1,

where (47) follows from the definition of τt in (42).

C.3 Main Lemmas

Let R(t) = {(e, x) | ∀e ∈ [d],∀x ∈ POSSIBLE-PI(e), (e, x) /∈ S(t)}. We begin with a technical lemma that
characterizes several useful lemma properties of S(t) and R(t).
Lemma 5. Fix a phase t ∈ [d]. Suppose that S(t) ⊆ M∗ and R(t) ∩M∗ = ∅. Let M be a set such that
S(t) ⊆M and R(t)∩M = ∅. Let a and b be two sets satisfying that a ⊆M \M∗, b ⊆M∗ \M and a∩b = ∅.
Then, we have

S(t) ⊆ (M \ a ∪ b) and R(t) ∩ (M \ a ∪ b) = ∅
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Proof. We first prove the first part as follows:

S(t) ∩ (M \ a ∪ b) = (S(t) ∩ (M \ a)) ∪ (S(t) ∩ b)
= S(t) ∩ (M \ a) (48)
= (S(t) ∩M) \ a

= S(t) \ a (49)
= S(t), (50)

where (48) holds since we have S(t)∩b ⊆ S(t)∩(M∗\M) ⊆M∩(M∗\M) = ∅; (49) follows from S(t) ⊆M ; and
(50) follows from a ⊆M \M∗ and S(t) ⊆M∗ which implies that a∩S(t) = ∅. Notice that S(t) ⊆ (M \a∪b).

Then, we proceed to prove the second part in the following

R(t) ∩ (M \ a ∪ b) = (R(t) ∩ (M \ a)) ∪ (R(t) ∩ b)
= R(t) ∩ (M \ a) (51)
= (R(t) ∩M) \ a

= ∅ \ a = ∅, (52)

where (51) follows from the fact that R(t) ∩ b ⊆ R(t) ∩ (M∗ \M) ⊆ R(t) ∩M∗ = ∅; and (52) follows from the
fact that R(t) ∩M = ∅.

Let M̂(t) = M(π̂(t)). The next lemma provides an important insight into the correctness of the CSA algorithm.
Informally speaking, suppose that the algorithm does not make an error before phase t. Then, we show that, if
arm e has a gap ∆e larger than the “reference gap” ∆(d−t+1) of phase t, then arm e must be correctly clarified
by M̂(t), i.e., Me(t) = M∗

e .

Lemma 6. Fix any phase t > 0. Suppose that event τt occurs. Also, assume that S(t) ⊆M∗ and R(t)∩S(t) = ∅.
Let e ∈ [d] \ F (t) be an active arm. Suppose that ∆(d−t+1) ≤ ∆e. Then, we have (e, π∗

e) ∈M∗ ∩ S(t).

Proof. Suppose that (e, π∗
e) /∈ (M∗ ∩ M̂(t)). This is equivalent to the following

(e, π∗
e) ∈ (M∗ ∩ ¬M̂(t)) ∪ (¬M∗ ∩ M̂(t)) (53)

(53) can be further rewritten as

(e, π∗
e) ∈ (M∗ \ M̂(t)) ∪ (M̂(t) \M∗). (54)

From this assumption, it is easy to see that M̂(t) ̸= M∗. Therefore, we can apply Lemma 2. We know that
there exists b = (b+, b−) ∈ B such that (a) b−

e = (M̂(t)⊟M∗)e or b+
e = (M∗⊟M̂(t))e, (b) b− ⊆ (M̂(t)⊟M∗),

(c) b+ ⊆M∗ ⊟ M̂(t), (d) (M̂(t)⊕ b) ∈M, (e) (M∗ ⊖ b) ∈M, and ⟨µ,χ(b)⟩
χe(b) ≥ ∆e > 0.

Using Lemma 5, we see that (M̂(t)⊕ b) ∩R(t) = ∅, S(t) ⊆ (M̂(t)⊕ b), and (b+ ∪ b−) ∩ (S(t) ∪R(t)) = ∅.

Recall the definition M̂(t) ∈ arg max
M∈M,S(t)⊆M ,R(t)∩M=∅

⟨µ̂(t), π(M)⟩ and also recall that M̂(t)⊕b ∈M. Therefore,

we obtain that

⟨µ̂(t), π(M̂(t))⟩
χe(b) ≥ ⟨µ̂, π(M̂(t)⊕ b)⟩

χe(b) . (55)
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On the other hand, we have

⟨µ̂(t), π(M̂(t)⊕ b)⟩
χe(b) = ⟨µ̂(t), π(M̂(t)) + χ(b)⟩

χe(b) (56)

= ⟨µ̂(t), π(M̂(t))⟩
χe(b) + ⟨µ̂(t), χ(b)⟩

χe(b)

>
⟨µ̂(t), π(M̂(t))⟩

χe(b) + ⟨µ, χ(b)⟩
χe(b) −

∆(d−t+1)

(2 + L2)UA

∥χ(b)∥
χe(b) (57)

≥ ⟨µ̂(t), π(M̂(t))⟩
χe(b) + ⟨µ, χ(b)⟩

χe(b) − ∆e

(2 + L2)UA

∥χ(b)∥
χe(b)

≥ ⟨µ̂(t), π(M̂(t))⟩
χe(b) + ⟨µ, χ(b)⟩

χe(b) − ∆e

(2 + L2) (58)

≥ ⟨µ̂(t), π(M̂(t))⟩
χe(b) + 1 + L2

2 + L2 ∆e (59)

≥ ⟨µ̂(t), π(M̂(t))⟩
χe(b) . (60)

This means that ⟨µ̂(t), π(M̂(t) ⊕ b)⟩ > ⟨µ̂(t), π(M̂(t))⟩. This contradicts the definition of π̂(t), and therefore,
we have (e, π∗

e) ∈ (M∗ ∩ M̂(t)).

The next lemma takes a step further. Hereinafter, we denote M̃
e(t) as M(π̃e(t)).

Lemma 7. Fix any phase t > 0. Suppose that event τt occurs. Also, assume that S(t) ⊆M∗ and R(t)∩M∗ = ∅.
Let e ∈ [d] \ F (t) satisfy ∆(d−t+1) ≤ ∆e. Then, we have

⟨µ̂(t), π̂(t)− π̃e(t)⟩
|π̂e(t)− π̃e

e(t)| >
L + 1/L

2 + L2 ∆(d−t+1). (61)

Proof. By Lemma 6, we see that

(e, π∗
e) ∈ (M∗ ∩ S(t)). (62)

From the definition of M̃
e(t), which ensures that M̃e

e (t) ̸= M∗
e , we have (e, π∗

e) ∈ (M∗ \ M̃
e(t)).

Hence, we apply Lemma 2. There exists b = (b+, b−) ∈ B such that (a) b−
e =

(
M̃

e(t) ⊟ M∗
)

e
or b+

e =(
M∗ ⊟ M̃

e(t)
)

e
, (b) b− ⊆ (M̃ e(t) ⊟ M∗), (c) b+ ⊆M∗ ⊟ M̃

e(t), (d) (M̃ e(t) ⊕ b) ∈ M, (e) M∗ ⊖ b ∈ M,

and ⟨µ,χ(b)⟩
χe(b) ≥ ∆e.

Define M
e(t) ≜ M̃

e(t)⊕ b. Using Lemma 5, we have S(t) ⊆M
e(t) and R(t) ∩M

e(t) = ∅. Since M
e(t) ∈ M

and by definition M̂(t) = arg max
M∈M,St⊆M,Rt∩M=∅

⟨µ̂, π(M)⟩, we have

⟨µ̂(t), π(M̂(t))⟩
|π̂e(t)− π̃e

e(t)| ≥
⟨µ̂(t), π(M e(t))⟩
|π̂e(t)− π̃e

e(t)| . (63)
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Hence, we have

⟨µ̂(t), π̂(t)− π̃e(t)⟩
|π̂e(t)− π̃e

e(t)| ≥ ⟨µ̂(t), π(M e(t))− π̃e(t)⟩
|π̂e(t)− π̃e

e(t)|

= ⟨µ̂(t), π(M̃ e(t)⊕ b)⟩
|π̂e(t)− π̃e

e(t)| − ⟨µ̂(t), π(M̃ e(t))⟩
|π̂e(t)− π̃e

e(t)|

= ⟨µ̂(t), π(M̃ e(t)) + χ(b)⟩
|π̂e(t)− π̃e

e(t)| − ⟨µ̂(t), π(M̃ e(t))⟩
|π̂e(t)− π̃e

e(t)| (64)

= ⟨µ̂(t), χ(b)⟩
|π̂e(t)− π̃e

e(t)|

>
χe(b)

|π̂e(t)− π̃e
e(t)|

(
⟨µ, χ(b)⟩

χe(b) −
∆(d−t+1)

(2 + L2)UA

∥χ(b)∥1

χe(b)

)
(65)

≥ χe(b)
|π̂e(t)− π̃e

e(t)|

(
⟨µ, χ(b)⟩

χe(b) − ∆e

(2 + L2)UA

∥χ(b)∥1

χe(b)

)
(66)

≥ χe(b)
|π̂e(t)− π̃e

e(t)| ·
1 + L2

2 + L2 ∆e (67)

≥ L + 1/L

2 + L2 ∆e

≥ L + 1/L

2 + L2 ∆(d−t+1), (68)

where (65) follows from Lemma 4, the assumption on event τt; (66) follows from the assumption that ∆e ≥
∆(d−t+1); (67) holds since b ∈ B and therefore ∥χ(b)∥1

|π̂e(t)−π̃e
e(t)| ≤ UA; (68) follows from the fact that ⟨µ,χ(b)⟩

|π̂e(t)−π̃e
e(t)| ≥

∆e.

The next lemma shows that, during phase t, if ∆e ≤ ∆(d−t+1) for some e, then the empirical gap between π(t)
and π̃e(t) is smaller than 1

3 ∆(d−t+1).

Lemma 8. Fix any phase t > 0. Suppose that event τt occurs. Also, assume that S(t) ⊆M∗ and R(t) ⊆M∗ =
∅. Suppose an active arm e ∈ [d] \ F (t) satisfies that M∗

e ̸= Me(t). Then, we have

⟨µ̂(t), π̂(t)− π̃e(t)⟩
|π̂e(t)− π̃e

e(t)| ≤ L

2 + L2 ∆(d−t+1). (69)

Proof. Fix any exchange class B = arg min
B′∈Exchange(M)

width(B′).

From the assumption that M∗
e ̸= M̂e(t), we can apply Lemma 2, and have (a)b−

e = (M̂(t) ⊟ M∗)e or b+
e =

(M∗ ⊟ M̂(t))e, (b) b− ⊆ M̂(t) ⊟ M∗, (c) b+ ⊂ M∗ ⊟ M̂(t), (d) M̂(t) ⊕ b ∈ M (e) M∗ ⊖ b ∈ M, and
⟨µ,χ(b)⟩

χe(b) ≥ ∆e > 0.

Define M
e(t) ≜ M̂(t)⊕ b, and let πe(t) = π(M e(t)). We claim that

⟨µ̂(t), π̃e(t)⟩ ≥ ⟨µ̂, πe(t)⟩. (70)

From the definition of M̃
e(t) in Algorithm 1, we only need to show that (a): π̂e(t) ̸= πe(t) and (b): S(t) ⊆M

e(t)
and R(t) ∩M

e(t) = ∅. Since, either b+ or b
−

has an e-changer, the e-th element of π(t) is different from that
of π̂(t). Next, we notice that this follows directly from Lemma 5 by setting M = M̂(t). Hence, we have shown
that (70) holds.
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Therefore, we have

⟨µ̂(t), π̂(t)− π̃e(t)⟩
|π̂e(t)− π̃e

e(t)| ≤ ⟨µ̂(t), π̂(t)− πe(t)⟩
|π̂e(t)− π̃e

e(t)|

≤ ⟨µ̂(t), π(t)− (π(t) + χ(b))⟩
|π̂e(t)− π̃e

e(t)|

= − ⟨µ̂(t), χ(b)⟩
|π̂e(t)− π̃e

e(t)|

≤ χe(b)
|π̂e(t)− π̃e

e(t)| ·
(
−⟨µ, χ(b)⟩

χe(b) +
∆(d−t+1)

(2 + L2)UM

∥χ(b)∥1

χe(b)

)
(71)

≤ χe(b)
|π̂e(t)− π̃e

e(t)| ·
∆(d−t+1)

(2 + L2) (72)

≤ L

2 + L2 ∆(d−t+1)

C.4 Proof of Theorem 2

For the reader’s convenience, we first restate Theorem 2 as follows.
Theorem 2. Given any T > d, action class A ⊂ Rd, and µ ∈ Rd, the CSA algorithm uses at most T samples
and outputs a solution πout ∈ A ∪ {⊥} such that

Pr
[
πout ̸= π∗]

≤ d2 exp
(
− T − d

2(2 + L2)2R2 ˜log(d)U2
AH2

)
, (8)

where L = maxe∈[d],π1,π2,π3∈A,π1
e ̸=π3

e

|π1
e−π2

e|
|π1

e−π3
e | , ˜log(d) ≜

∑d
s=1

1
s , and UA =

maxπ,π′∈A,e∈{s∈[d] | πs ̸=π′
s}

∑d

s=1
|πs−π′

s|
|πe−π′

e| .

Proof. First, we show that the algorithm takes at most T samples. Note that exactly one arm is pulled for T̃1
times, one arm is pulled T̃2 times, ..., and one arm is pulled T̃d times. Therefore, the total number of samples
used by the algorithm is bounded by

d∑
t=1

T̃t ≤
d∑

t=1

(
T − d

˜log(d)(d− t + 1)
+ 1
)

= T − d
˜log(d)

˜log(d) + d = T.

By Lemma 3, we know that the event τ =
⋂T

t=1 τt occurs with probability at least 1 − d2 exp
(

T −d
R2 ˜log(d)U2

AH2

)
.

Therefore, we only need to prove that, under event τ the algorithm outputs M∗. We will assume that event τ
occurs in the rest of the proof.

We prove the theorem by induction. Fix a phase t ∈ [d]. Suppose that the algorithm does not make any error
before phase t, i.e., S(t) ⊆M∗ and R(t) ∩M∗ ̸= ∅. We show that the algorithm does not err at phase t.

At the beginning of phase t, there are exactly t− 1 inactive arms, i.e., |F (t)| = t− 1. Therefore, there must exist
an active arm e(t) ∈ [d] \ F (t), such that ∆e(t) = ∆(d−t+1). Hence, by Lemma 7, we have

⟨µ̂(t), π(t)− π̃e(t)(t)⟩∣∣∣π̂e(t)(t)− π̃
e(t)
e(t)(t)

∣∣∣ ≥ L + 1/L

2 + L2 ∆(d−t+1), (73)

where b is an exchange set of M̂(t) and M̃
e(t).
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Notice that the algorithm makes an error in phase t if and only if (p(t), π̂p(t)(t)) ∈ (M∗∩¬M̂(t))∪(¬M∗∩M̂(t)).

Suppose that (p(t), π̂p(t)(t)) ∈ (M∗ ∩ ¬M̂(t)) ∪ (¬M∗ ∩ M̂(t)). From Lemma 8, we have

⟨µ̂(t), π̂(t)− π̃p(t)(t)⟩∣∣∣π̂p(t) − π̃
p(t)
p(t)

∣∣∣ ≤ L

2 + L2 ∆(d−t+1). (74)

By combining (73) and (74), we see that

⟨µ̂(t), π̂(t)− π̃p(t)(t)⟩∣∣∣π̂p(t)(t)− π̃
p(t)
p(t)(t)

∣∣∣ ≤ L

2 + L2 ∆(d−t+1) <
L + 1/L

2 + L2 ∆(d−t+1) ≤
⟨µ̂(t), π̂(t)− π̃e(t)(t)⟩

π̂e(t)(t)− π̃
e(t)
e(t)(t)

. (75)

However, (75) is contradictory to the definition of

p(t) = arg max
e∈[d]\F (t)

⟨µ̂(t), π̂(t)− π̃(t)⟩
π̂e(t)− π̃e

e(t) . (76)

Therefore, we have proven that (p(t), π̂p(t)(t)) /∈ (M∗∩¬M̂(t))∪ (¬M∗∩M̂(t)). This means that the algorithm
does not err at phase t, or equivalently S(t + 1) ⊆M∗ and R(t + 1) ∩M∗ = ∅. By induction, we have proven
that the algorithm does not err at any phase t ∈ [d].

Hence, we have S(d + 1) ⊆M∗ and R(d + 1) ⊆ ¬M∗ in the final phase. This means that S(d + 1) = M∗, and
therefore, πout = π∗ after phase d.

D Proof of Theorem 3

We first introduce some useful lemmas to prove Theorem 3. Lemma 9 shows that Algorithm 2 pulls arms no
more than T times. Recall that B = 2⌈log2 d⌉ − 1 and T ′ = T −

⌊
T
d β
⌋
× d.

Lemma 9. Algorithm 2 terminates in phase ⌈log2 d⌉ with no more than a total of T arm pulls.

Proof. The total number of arm pulls Ttotal is bounded as follows.

Ttotal =
⌊

T

d
β

⌋
× d +

⌈log2 d⌉∑
r=1

∑
s∈[d]

⌈ps(r) ·m(r)⌉

≤
⌊

T

d
β

⌋
× d +

⌈log2 d⌉∑
r=1

(d + T ′ − d⌈log2 d⌉
B/2r−1 )

≤
⌊

T

d
β

⌋
× d + d⌈log2 d⌉+ 2⌈log2 d⌉ − 1

B
(T ′ − d⌈log2 d⌉)

= T.

Let us write ∆′
(i) = ⟨µ, π1−πi⟩. Note that µ⊤πi ≥ µ⊤πi+1 for all i ∈ [K−1]. Lemma 10 bounds the probability

that a certain action has its estimate of the expected reward larger than that of the best action at the end of
phase r.
Lemma 10. For a fixed realization of A(r) satisfying π∗ ∈ A(r), for any action πi ∈ A(r),

Pr
[
µ̂⊤(r + 1)π1 < µ̂⊤(r + 1)πi

]
≤ exp

− 2∆′
(i)

2

d∑
s=1

(π1
s−πi

s)2

Ts(r+1) R2

 . (77)
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Proof. For any i ∈ {2, . . . , K}, we have

Pr
[
µ̂⊤(r + 1)π1 < µ̂⊤(r + 1)πi

]
≤ Pr

[〈
µ̂(r + 1)− µ, π1 − πi

〉
< −∆′

(i)

]

≤ exp

− 2∆′
(i)

2

d∑
s=1

(π1
s−πi

s)2

Ts(r+1) R2

 , (78)

where the last inequality follows from Hoeffding’s inequality (Hoeffding, 1963).

If we use allocation vector (15), (78) can be upper bounded by

(78) ≤ exp

− 2∆′
(i)

2

d∑
e=1

(π1
e−πi

e)2

⌈ps(r)m(r)⌉ R2

 (79)

≤ exp
(
−

2∆′
(i)

2

R2V ′2
· T ′ − ⌈log2 d⌉

B/2r−1

)

≤ exp
(
−

∆′
(i)

2

R2V ′2
· T ′ − ⌈log2 d⌉

d/2r−1

)

where V ′ =
d∑

e=1

∣∣π1
e − πi

e

∣∣.
Next, we bound the error probability of a single phase r in Lemma 11.
Lemma 11. Assume that the best action is not eliminated prior to phase r, i.e., π1 /∈ A(r). Then, the probability
that the best action is eliminated in phase r + 1 is bounded as

Pr
[
π1 /∈ Ar|π1 ∈ Ar−1

]
≤


4K
d exp

(
T ′−⌈log2 d⌉

R2V 2 · ∆(ir)
2

ir

)
(when r = 1)

3 exp
(

T ′−⌈log2 d⌉
R2V 2 · ∆(ir)

2

ir

)
(when r > 1),

(80)

where ir =
⌈

d
2r+1

⌉
+ 1 and

V = max
π∈A\{π∗},s∈{e∈[d] | π∗

e ̸=πe }

∑d
u=1 |π∗

u − πu|
|π∗

s − πs|
. (81)

Proof. Define B(r + 1) as the set of actions in A(r) excluding the best action and ⌈ d
2r+1 ⌉ − 1 suboptimal actions

with the largest expected rewards. We have |B(r + 1)| = |A(r)| − ⌈ d
2r+1 ⌉.

Let us think of bijective function p : [d]→ [d], which satisfies the following:

∀s ∈ [d], ∆(p(s)) = ∆s. (82)

Also, we denote the inverse mapping of f by f−1. Next, for any i ∈ [d], we define s(i) as follows:

s(i) = arg max
s∈[d]

|π1
s − πi

s|.

Then, from the definition of {∆s}s=1,...,d, we have

∆′
(i)

|π1
s(i) − πi

s(i)|
≥ ∆s(i) = ∆(p(s(i))). (83)

Also, we have

min
i∈B(r+1)

∆(p(s(i))) ≥ ∆(⌈ d
2r+1 ⌉+1). (84)
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If the best action is eliminated in phase r, then at least ⌈ d
2r ⌉−⌈ d

2r+1 ⌉+ 1 actions of B(r + 1) have their estimates
of the expected rewards larger than that of the best action.

Let N(r) denote the number of actions in B(r + 1) whose estimates of the expected rewards are larger than that
of the best action. By Lemma 10, we have

E [Nr] =
∑
i∈Br

Pr
[
µ̂⊤(r + 1)π1 < µ̂⊤(r + 1)πi

]

≤
∑
i∈Br

exp
(
−

∆′
(i)

2

R2V ′2
· T ′ − ⌈log2 d⌉

d/2r−1

)

≤ |Br| max
i∈B(r+1)

exp
(
−

∆′
(i)

2

R2V ′2
· T ′ − ⌈log2 d⌉

d/2r−1

)

= |Br| max
i∈B(r+1)

exp
(
−
|π1

s(i) − πi
s(i)|

2∆2
(p(s(i))

R2V ′2
· T ′ − ⌈log2 d⌉

d/2r−1

)
(85)

≤
(
|Ar−1| −

⌈
d

2r+1

⌉)
exp

T ′ − ⌈log2 d⌉
R2V 2 ·

∆(⌈ d
2r+1 ⌉+1)

2⌈
d

2r+1)

⌉
+ 1

 (86)

where (85) follows from (83), (86) follows from (84), and

V = max
π∈A\{π∗},s∈{e∈[d] | π∗

e ̸=πe }

∑d
u=1 |π∗

u − πu|
|π∗

s − πs|
. (87)

Then, together with Markov’s inequality, we obtain

Pr
[
π1 /∈ Ar

]
≤ Pr

[
Nr ≥

⌈
d

2r

⌉
−
⌈

d

2r+1

⌉
+ 1
]

≤ E [Nr]⌈
d
2r

⌉
−
⌈

d
2r+1

⌉
+ 1

≤
|Ar−1| −

⌈
d

2r+1

⌉⌈
d
2r

⌉
−
⌈

d
2r+1

⌉
+ 1

exp

T ′ − ⌈log2 d⌉
R2V 2 ·

∆(⌈ d
2r+1)

⌉
+1
)⌈

d
2r+1)

⌉
+ 1

 (88)

When r = 1, we have |Ar−1| = K. Thus,

|Ar−1| −
⌈

d
2r+1

⌉⌈
d
2r

⌉
−
⌈

d
2r+1

⌉
+ 1

=
K −

⌈
d

2r+1

⌉⌈
d
2r

⌉
−
⌈

d
2r+1

⌉
+ 1

≤ K
d
2 −

d
22

≤ 4K

d
. (89)

When r > 1, we have |Ar−1| =
⌈

d
2r−1

⌉
. Thus,

|Ar−1| −
⌈

d
2r+1

⌉⌈
d
2r

⌉
−
⌈

d
2r+1

⌉
+ 1

=
⌈

d
2r−1

⌉
−
⌈

d
2r+1

⌉⌈
d
2r

⌉
−
⌈

d
2r+1

⌉
+ 1

≤
d

2r−1 + 1−
⌈

d
2r+1

⌉
d
2r −

⌈
d

2r+1

⌉
+ 1

≤
3 · d

2r+1 + d
2r+1 −

⌈
d

2r+1

⌉
+ 1

d
2r+1 + d

2r+1 −
⌈

d
2r+1

⌉
+ 1

≤ 3, (90)
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where the last inequality results from the fact that for any x, y > 0, 3x+y
x+y ≤ 3.

Therefore, for this specific realization of Ar−1 satisfying 1 ∈ Ar−1,

Pr
[
π1 /∈ Ar|π1 ∈ Ar−1

]
≤


4K
d exp

(
T ′−⌈log2 d⌉

R2V 2 · ∆(ir)
2

ir

)
(when r = 1)

3 exp
(

T ′−⌈log2 d⌉
R2V 2 · ∆(ir)

2

ir

)
(when r > 1),

(91)

where ir = ⌈ d
2r+1 + 1⌉.

Finally, we prove Theorem 3.

Proof of Theorem 3. We have

Pr
[
πout ̸= π1] = Pr

[
π1 /∈ A⌈log2 d⌉

]
≤

⌈log2 d⌉∑
r=1

Pr
[
π1 /∈ Ar|π1 ∈ Ar−1

]
≤ 4K

d
exp

(
T ′ − ⌈log2 d⌉

R2V 2 ·
∆2

(i1)

i1

)
+

d∑
s=1

3 exp
(

T ′ − ⌈log2 d⌉
R2V 2 ·

∆2
(ir)

ir

)

≤
(

4K

d
+ 3 (⌈log2 d⌉ − 1)

)
exp

(
T ′ − ⌈log2 d⌉

R2V 2 · 1
max1≤s≤d

s
∆(s)

2

)

<

(
4K

d
+ 3 log2 d

)
exp

(
T ′ − ⌈log2 d⌉

R2V 2 · 1
H2

)
, (92)

where

H2 = max
1≤s≤d

s

∆2
(s)

.


