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Abstract

The success of the convex-concave proce-
dure (CCCP), a widely used technique for
non-convex optimization, crucially depends
on finding a decomposition of the objec-
tive function as a difference of convex func-
tions (dcds). Despite the widespread appli-
cability of CCCP, finding such dcds has at-
tracted little attention in machine learning.
For graphical models with polynomial poten-
tials, existing methods for finding dcds re-
quire solving a Sum-of-Squares (SOS) pro-
gram, which is often prohibitively expensive.
In this work, we leverage tools from algebraic
geometry certifying the positivity of polyno-
mials, to derive LP-based constructions of
dcds of polynomials which are particularly
suited for graphical model inference. Our
experiments demonstrate that using our LP-
based technique constructs dcds for polyno-
mial potentials of Markov random fields sig-
nificantly faster compared to SOS-based ap-
proaches used in previous works.

1 INTRODUCITON

Markov Random Fields (MRFs) provide a powerful
framework for modeling complex probabilistic sys-
tems. These models find applications in numerous do-
mains, particularly in image analysis and computer vi-
sion (Wang et al., 2014; Ecker and Jepson, 2010; Salz-
mann, 2013), where they are often modeled as Contin-
uous Markov Random Fields (CMRFs), wherein the
probability distribution being modeled is over a con-
tinuous set.

Difference of convex (DC) programming offers a com-
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putationally efficient method for solving CMRF infer-
ence problems (Wang et al., 2014). DC programming
relies on decomposing a given cost function into the
difference of two convex functions called a DC decom-
position (dcd), which can then be used to construct
a convex upper bound on the cost (Le Thi et al.,
2014; Salakhutdinov et al., 2012). Of particular inter-
est is the convex-concave procedure (Yuille and Ran-
garajan, 2003), an algorithm for solving differentiable
DC problems that has been widely adopted for a va-
riety of problems (Shen et al., 2016; Lipp and Boyd,
2016), and has well-established convergence guaran-
tees (Salakhutdinov et al., 2012; Lanckriet and Sripe-
rumbudur, 2009a; Khamaru and Wainwright, 2018).
In Wang et al. (2014), it was shown that difference
of convex (DC) programming was a highly effective
tool for solving the problem of efficient inference in
Continuous Markov Random Fields with polynomial
potentials. Specifically, it was shown that the convex-
concave procedure proposed in Yuille and Rangarajan
(2003) outperformed a variety of other methods, such
as Salzmann (2013). Other than graphical model in-
ference, DC programming has been widely used in a
variety of applications, including reinforcement learn-
ing (Piot et al., 2016, 2014), machine learning (Le Thi
and Pham Dinh, 2018), and others (Le Thi et al., 2014;
Shen et al., 2016; Lipp and Boyd, 2016).

However, a crucial drawback of DC programming is
the requirement of finding a DC decomposition (dcd)
of a given cost function. Algorithmic methods for con-
structing dcds are generally restricted to polynomials
(Niu, 2018; Wang et al., 2014; Ahmadi and Hall, 2017);
however, as shown in Ahmadi and Hall (2017), this
problem is, in general, NP-hard.

In this work, we address the problem of efficient infer-
ence of CMRFs with polynomial potential functions
that are constrained to convex polytopes. Such prob-
lems arise naturally in domains such as image process-
ing and computer vision, particularly in applications
such as shape-from-shading, for which box constraints
can naturally be applied. Motivated by prior success
at using DC programming (and the CCCP in partic-



LP-based Construction of DC Decompositions for Efficient Inference of Markov Random Fields

ular) for this task, we investigate methods for con-
structing local dcds for polynomials over convex poly-
topes, particularly to reduce expensive computations
required to construct dcds. To that end, we leverage
Handelman’s theorem (Handelman et al., 1988; Lê and
Thá-Hòa-B̀ınh, 2017), a powerful result in algebraic
geometry certifying the positivity of polynomials over
convex polytopes, in order to derive methods for the
construction of such dcds. We state our contributions
formally below.

1. We formulate problems of finding dcds over con-
vex polytopes. In Lemma 3, we establish that any
polynomial can be expressed as the difference of
two locally diagonally dominant polynomials on
a given convex polytope. Moreover, Theorem 5
demonstrates the existence of undominated local
DC decompositions as a solution to an optimiza-
tion problem.

2. The optimization problem proposed in Theorem 5
is known to be NP-hard. To address this problem,
we employ tools from algebraic geometry to for-
mulate tractable optimization problems whose so-
lutions are these dcds. Our strategy is to enforce
the positive-definiteness of the Hessian of the dcd,
thereby ensuring convexity. We establish results,
leveraging powerful tools from algebraic geome-
try, to show that verifying positive-definiteness
of a matrix polynomial is equivalent to checking
the feasibility an SDP. Using this result, we pro-
pose Theorem 6, called SDP-Local, which provides
an SDP-based relaxation for constructing undom-
inated dc decompositions.

3. However, SDP-based methods such as Wang et al.
(2014) and SDP-Local are computationally expen-
sive, and CMRFs are typically high-dimensional -
for instance, SFS problems have 16384 variables.
To develop methods for constructing polynomial
dcds without relying on solving SDPs, we leverage
our previous result guaranteeing the existence of a
dcd with a diagonally-dominant Hessian. To that
end, we propose new algebraic results to certify
positive-definiteness of diagonally dominant ma-
trix polynomials in Theorem 8. Using this result,
we derive an LP-based relaxation for construct-
ing dcds called DD-Local that can effectively be
used for graphical model inference. Furthermore,
in Theorem 9, we propose a technique for con-
structing dcds for a polynomial over a polytope
called DD-Linear, that does not require solving an
LP or an SDP, thus making it apt for graphical
model inference.

4. To highlight the tradeoffs between the quality of
the dcd obtained via the different methods pro-

posed, and the cost of computing such decompo-
sitions, we compare the cost of computing degree-
d′ polynomial dcds for an n-dimensional, degree-d
polynomial over a convex polytope with 2n facets,
in Theorem 10. We show that the cost of comput-
ing SDP-Local is Õ(n4d′

), whereas the cost of com-
puting a dcd with DD-Local is Õ(n2d′+1) and that
computing a dcd with DD-Linear can be achieved
in O(nd′−1).

5. We empirically evaluate our dcd constructions in
two ways. First, on a synthetic polynomial, we
illustrate the tradeoff between ease of construc-
tion of the dcd, and effectiveness with the CCCP
on a battery of random polynomials, and show
that DD-Local and SDP-Local cause the CCCP
to converge in up to 2x fewer iterations. We then
evaluate our dcd construction algorithms on stan-
dard shape-from-shading tasks, namely the Penny
and Mozart datasets. We show that SDP-Local is
impractical for such problems, whereas DD-Local
and DD-Linear are not. We then show that us-
ing dcds produced by solving DD-Local causes the
CCCP to converge in 2.28x fewer iterations than
DD-Linear.

2 NOTATION

We introduce the notation used throughout this pa-
per. Let [n] denote the set {1, · · · , n}. Let Sn denote
the space of n × n symmetric matrices. For a vector
B ∈ Rn, B ≥ 0 indicates that B is elementwise non-
negative. Let R[x] denote the ring of real-valued poly-
nomials over the variable(s) x, and let Sm (R[x]) de-
note the set of polynomials with coefficients in Sm. For
f : Rn → R, f ∈ Ck indicates the function is k-times
differentiable. Let Hf (x) be the Hessian of f , and for
f(x) = f1(x)+f2(x), letHf1+f2(x) = Hf1(x)+Hf2(x).
We define monomials using the multi-index notation as
follows: for x ∈ Rn, a monomial of degree d = |α|,
where α ∈ Nn

>0, is given by xα =
∏n

i=1 x
αi
i . Let

Z(x, d) be the vector of all monomials in x with de-
gree upto d. Z(x, d) has

(
n+d
d

)
elements, such that

Z(x, d)α = xα in the multi-index notation. Suppose
f ∈ R[x] has degree d. We write f(x) = C⊤

f Z(x, d),
where Cf is the unique vector of coefficients, and Cf,α

denotes the coefficient of xα. We let (Z(x, d))1 = 1,
and let e1 be the coordinate vector, where (e1)1 = 1.
If Hf (x) is the Hessian of f , and Hf,ij is the i, jth el-
ement of Hf , we have Hf,ij(x) = C⊤

f A⊤
d,ijZ(x, d− 2),

where Ad,ij is a known constant matrix. Next, sup-
pose f ∈ Sm (R[x]) , x ∈ Rn has degree d. Then, we
write f(x) =

∑
|α|≤d Qf,αx

α, where Qf,α are unique
symmetric matrix coefficients.

For standard definitions and properties of convex func-
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tions and sets, refer to Boyd and Vandenberghe (2004).
Of particular interest in this work is the fact the Hes-
sians of convex functions are positive semidefinite.

3 BACKGROUND

In this section, we review continuous markov random
fields, difference of convex programming, and Handel-
man’s theorem, a powerful tool in algebraic geometry
certifying positivity of polynomials over convex poly-
topes. A more detailed survey of relevant literature
is provided in Appendix A.

3.1 Continuous Markov Random Fields with
Polynomial Potential Functions

In this section, we discuss continuous Markov random
fields (CMRFs) with polynomial potential functions.
CMRFs with polynomial potentials provide a natu-
ral framework to address problems in computer vi-
sion, namely shape-from-shading (SFS). Continuous
Markov Random Fields represent distributions over
continuous spaces X ⊂ Rn. Each x ∈ X is an out-
put configuration, and is a set of random variables
x = (x1, · · · , xn). The probability of a particular con-
figuration x ∈ X is given by P[x] ∝ e−f(x), and we
refer to f(x) as a potential function. Furthermore, we
write

f(x) =
∑
r∈R

fr(xr)

where xr ∈ Xr ⊂ X is a finite subset of the random
variables x = (x1, · · · , xn). In Maximum a Posteriori
(MAP) inference, we aim to find the most likely con-
figuration by minimizing f(x), given knowledge of all
fr(·). As in Wang et al. (2014), we formulate this as
the following optimization problem.

x∗ = argmin
x∈X

∑
r∈R

fr(xr) (1)

3.1.1 Polynomial Shape-From-Shading

In this section, we discuss the polynomial shape-from-
shading (SFS) problem as solving a graphical model in-
ference problem, as shown in Ecker and Jepson (2010);
Wang et al. (2014). We are given a 2D image of a 3D
object and assume that both the image and object are
supported on the same grid. We further assume that
the image intensity at each point is proportional to the
angle between surface normals of that point, and the
light source direction.

In Ecker and Jepson (2010); Salzmann (2013); Wang
et al. (2014); Khamaru and Wainwright (2018), this
problem is formulated as finding the minimizer of the
sum of 3-variable polynomials of degree 4. As noted

in Khamaru and Wainwright (2018), these polynomi-
als are non-convex, but bounded from below and coer-
cive. In this work, we apply box constraints to the SFS
problem - that is, the depth cannot be a negative num-
ber, and the depth must also be bounded from above.
For a more detailed discussion on the SFS problem, we
refer readers to Appendix E.

3.2 Difference of Convex Programming and
the Convex-Concave Procedure

In this section, we discuss difference of convex pro-
gramming and the convex-concave procedure. First,
we define Difference of Convex (DC) functions, as first
described in Hartman et al. (1959).

Definition 1. A real-valued function f(x) is said
to be a difference of convex function if there exist
real-valued convex functions g(x) and h(x) such that
f(x) = g(x) − h(x). We say a function h is a differ-
ence of convex decomposition (dcd) of f if both h and
f + h are convex.

We define local dcds as follows.

Definition 2. We say a function h is a local difference
of convex decomposition (dcd) of f if both h and f +h
are convex on a given convex polytope Γ

We now state the following properties of difference
of convex decompositions of twice differentiable func-
tions, and polynomials in particular, stated first in
Wang et al. (2014).

Theorem 1. Consider a twice-differentiable function
f . There exist convex functions g and h such that
f(x) = g(x) − h(x). Moreover, the set of g, h that
satisfy f(x) = g(x)− h(x) is convex.

This theorem is a restatement of the claim made in
(Hartman et al., 1959), Section II part (ii), and is sim-
ilarly attributed in works such as Ahmadi and Hall
(2017). Since convexity is a local property, Theorem 1
holds over compact sets as well.

Difference of convex programs where f(x) and h(x) are
differentiable functions can be solved efficiently using
the Convex-Concave Procedure (Yuille and Rangara-
jan, 2003). Suppose we aim to minimize a DC function
f(x) = g(x) − h(x) with dcd h(x) over a convex set
X . The CCCP solves the following problem at each
iteration.

xk+1 = argmin
x∈X

g(x)−∇h(xk)
⊤(x− xk) (2)

Thus, at each step, the CCCP minimizes a convex
over-approximation of the cost function f . Next, when
X can be easily projected upon (i.e. X is a hypercube),
then we can use the projected gradient descent algo-
rithm to solve (2). We state the CCCP formally in
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algorithm 1. The Convex-concave procedure has been

Algorithm 1: Convex Concave Procedure

Initialize: Cost function f with DC decomposition
(g, h), convex constraints c(x) ≤ 0.

Inputs: Tolerance ϵ, initial point x0.
while ||∇(g(x)− h(x))|| ≥ ϵ do

xk+1 = argmin
x∈Γ

g(x)−∇h(xk)
⊤ (x− xk)

Outputs:
x∗ ∈ Γ

adapted to solving constrained DC programs as well
(Shen et al., 2016; Lipp and Boyd, 2016; Khamaru and
Wainwright, 2018). Moreover, recent works such as
Khamaru and Wainwright (2018); Abbaszadehpeivasti
et al. (2023) have stated explicit convergence rates of
the CCCP and the DCA respectively, in terms of the
Lipschitz constants of g and h, where f = g − h. We
state the result proposed in Khamaru and Wainwright
(2018) below.

Theorem 2 (Khamaru 2018). Suppose f(x) = g(x)−
h(x), where g, h ∈ C2, and where g(x) is Mg-smooth.
Then, the sequence of iterates generated by (2), start-
ing at x0, satisfies

Avgk ∥∇f(xk)∥ ≤ 2Mg(f(x0)− f(x∗))

k + 1
,

where x∗ is a critical point of f in X .

Crucial to DC programming is the construction of DC
decompositions. From Theorem 2, we see that we re-
quire dcds whereMg is minimized. Note that this anal-
ysis only assumes that the dcd is Lipschitz smooth, and
does not make use of second order derivatives at all.
Inspired by Ahmadi and Hall (2017), we seek to mini-
mize the trace of the Hessian of g(x) to find undomi-
nated dcds, defined and characterized in Section 4, by
finding a dcd h that minimizes maxx∈Γ Tr(Hh(x));
this also minimizes the pointwise maximum of the
trace of the Hessian of g, since g = f + h. Since the
Lipschitz constant of twice-differentiable convex func-
tions is given by the largest eigenvalue, we use the trace
of the Hessian as a proxy for the Lipschitz constant
Mg. However, characterizing the convergence rate of
the CCCP when the objective function and dcds are
polynomials remains an open problem, as noted in Ab-
baszadehpeivasti et al. (2023).

Methods for constructing DC decomposition for
quadratic polynomials were first proposed in Bomze
and Locatelli (2004), and extended to general polyno-
mials, in Wang et al. (2014); Ahmadi and Hall (2017).
However, these results have not been extended to the
case where local dcds are required. This motivates

us to use Handelman’s theorem, a powerful tool from
algebraic geometry, to construct local DC decomposi-
tions of polynomials over convex polytopes.

3.3 Positive Polynomials over Polytopes

Our strategy for constructing dcds over convex poly-
topes requires enforcing the positive-semidefiniteness
of the Hessian, and minimizing it’s trace. Polynomial
optimization offers a wide array of tools to address
this problem. In this section, we review prior work
in algebraic geometry, and state Handelman’s theo-
rem, a powerful result in algebraic geometry that pro-
vides a means to certify strict polynomial positivity
over closed convex polytopes. In the sequel, we use
Handelman’s theorem to guide principled approaches
for constructing local DC decompositions over closed
convex polytopes.

First, we define a convex polytope Γ ⊂ Rn as the
closed, bounded intersection of K half-spaces (referred
to as facets) as the set

Γ : {x : λi(x) = a⊤i x+ bu ≥ 0, i = 1, · · ·K}. (3)

We denote Λ = (λ1, · · · , λK) and Λ(x) =
(λ1(x), · · · , λK(x)) throughout this work. We state
Handelman’s theorem as follows.

Theorem 3 (Handelman (Handelman et al., 1988)).
Consider a convex polytope Γ as defined in (3), and
f ∈ R[x] of degree d. f(x) > 0 for all x ∈ Γ if and
only if, for some d′ ≥ d, there exists a polynomial
qf ∈ R[Λ] where

qf (Λ) =
∑

|α|≤d′

bαΛ
α

with nonnegative coefficients, and such that
qf (Λ(x)) = f(x).

This theorem was originally stated in Handelman et al.
(1988), and a proof with a degree bound was presented
in Powers and Reznick (2001).

We now state an extension of Theorem 3 to symmetric
polynomial matrices.

Theorem 4 (Le and Binh (Lê and Thá-Hòa-B̀ınh,
2017)). Consider a convex polytope Γ as defined in (3),
and suppose F ∈ Sm(R[x]) is of degree d. F (x) ≻
0 for all x ∈ Γ, if and only if, for some d′ ≥ d, there
exists a polynomial Qf ∈ Sm(R[Λ]) where

Qf (Λ) =
∑

|α|≤d′

BαΛ
α

with where Bα ⪰ 0, and such that Qf (Λ(x)) = F (x).

In subsequent sections, we will use this theorem to
enforce the positive-definiteness of the Hessian of the
dcd.
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4 CONSTRUCTION OF LOCAL
UNDOMINATED DC
DECOMPOSITIONS

In this section, we define undominated dcds of polyno-
mials defined over compact convex sets, and provide
Theorem 5, inspired by Ahmadi and Hall (2017), that
guarantees the existence of an undominated dcd, and
show that it is a solution to an optimization prob-
lem. We propose Theorem 6, which provides an SDP-
based relaxation for constructing undominated dcds.
All proofs are relegated to Appendix B.

4.1 The Existence of Undominated DC
Decompositions

We now define undominated DC decompositions. As
shown in Ahmadi and Hall (2017); Bomze and Lo-
catelli (2004), undominated DC decompositions yield
significant improvements in the convergence rate of the
convex-concave procedure, and are thus of significant
interest.

Definition 3. Suppose h is a dcd of f ∈ C2, where f :
Rn → R. If, for any dcd h′ of f where h′ ̸= h, we have
h− h′ is nonconvex, then we say h is an undominated
dcd of f .

We now provide a characterization of local undomi-
nated dc decompositions defined over compact convex
sets, such as polytopes. We show that we are guaran-
teed to find undominated dcds for polynomials defined
over polytopes, and that they are the solution(s) to a
convex optimization problem.

Theorem 5. Let Γ be a polytope as defined in (3),
and suppose f ∈ R[x] has degree at least 3. Consider
the optimization problem

min
h∈R[x]

max
x∈Γ

Tr(Hh(x))

s.t. Hh(x), Hf+h(x) ⪰ 0 ∀ x ∈ Γ (4)

where the degree of h is at least 3. Then, a solution h∗

to (4) always exists, and is an undominated dcd of f .

Thus, we can find undominated DC decompositions as
follows. Given f ∈ R[x] of degree d and a polytope Γ
as defined in (3), we find h ∈ R[x] of degree d′ ≥ d
that solves

min ρ

s.t. ρ− Tr(Hh(x)) ≥ 0,

Hh(x) ⪰ 0, Hf+h(x) ⪰ 0 ∀ x ∈ Γ. (5)

As noted in Ahmadi and Hall (2017), constructing DC
decompositions is, in general, NP-hard. However, for

any polynomial f ∈ R[x] of degree d, we can optimize
over a subset of valid dcds of f(x). We provide such
constructions in the sequel.

4.2 Checking Polynomial Positivity over
Convex Polytopes

In order to develop tractable algorithms for construct-
ing local DC decompositions, it is necessary to de-
velop tractable tests of the positive-semidefiniteness
of matrix polynomials. First, we establish connections
between Handelman’s theorem and convex optimiza-
tion. In this section, we elucidate the connection be-
tween the positivity certificates for polynomials sup-
ported on convex polytopes provided in Handelman
et al. (1988); Lê and Thá-Hòa-B̀ınh (2017), and the
feasibility of convex problems. Much like checking
non-negativity of polynomials using SOS relaxations is
equivalent to checking the feasibility of an SDP (Par-
rilo, 2000, 2003), we show that checking the positivity
of a polynomial over a convex polytope using Handel-
man’s theorem is equivalent to checking the feasibility
of a sufficiently large LP.

We now introduce a lemma relating the coefficients of a
polynomial and its Handelman representations defined
over a convex polytope.

Lemma 1. Let Γ be a polytope defined as in (3), and
suppose f ∈ R[x] of degree d is written as C⊤Z(x, d).
Then, there exists a polynomial q ∈ R[Λ], where
qf (Λ) = B⊤Z(Λ, d′) for some d′ > d, such that
qf (Λ(x)) = qf (a

⊤
1 x+ b1, · · · , a⊤Kx+ bK) = f(x), and a

real-valued matrix L(Γ, d′) ∈ R(
K+d′

d′ )×(n+d′
d′ ) such that

C = L(Γ, d′)⊤B. (6)

Remark : q(Λ) is referred to as a Handelman represen-
tation (Sankaranarayanan et al., 2013). Furthermore,
the above lemma conveys the fact that given a polyno-
mial f(x) of degree d with coefficients C, and for any
polytope Γ, a Handelman representation qf (Λ) exists
and can be found by solving a linear equation (though
the solution is not necessarily unique). The matrix
L(Γ, d) and the vectors lα(Γ) are fixed and unique, and
constant for each polytope Γ and each degree d > 0;
we will use this notation everywhere hereafter.

Corollary 1. Suppose f ∈ R[x] of degree d, where
f = C⊤Z(x, d) is positive on a polytope Γ defined as
in (3). Then, f(x) > 0 ∀ x ∈ Γ if and only if, for

some d′ ≥ d, there exists a vector B ∈ R(
K+d′

d′ ) such
that

C = L(Γ, d′)⊤B, B ≥ 0, (7)

where L(Γ, d′) is a known matrix as given in (6).
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Proof Sketch. We apply Theorem 3 and Lemma 1, and
collect terms.

4.2.1 Positive-semidefineteness of Matrix
Polynomials over Polytopes

In this section, we extend the result of Corollary 1
to matrix polynomials by showing that checking the
positive-semidefiniteness of a matrix polynomial is
equivalent to checking the feasibility of a linear ma-
trix inequality (LMI). This result enables us to use
Handelman’s theorem to construct undominated dcds
of polynomials using semidefinite programming.

First, we establish the relationship between the coeffi-
cients of a polynomial and it’s Handelman representa-
tion.

Lemma 2. Let Γ be a polytope as defined in (3), and
suppose F ∈ Sm(R[x]) is of degree d, where f(x) =∑

|α|≤d′ Cαx
α, where d′ ≥ d. Then, there exists a

matrix-valued polynomial QF ∈ Sm(R[Λ]) of degree d′,
where QF (Λ(x)) =

∑
|α|≤d′ Bαx

α, and a vector of real

coefficients lα(Γ), such that QF (Λ(x)) = F (x) and

Cα =
∑

|α′|≤d

(lα(Γ, d))α′Bα′ for all α. (8)

where lα(Γ, d) is the row of L(Γ, d) corresponding to
the exponent α ∈ Nn.

Using this result, we show that checking the positive-
semidefiniteness of a matrix polynomial over a poly-
tope is equivalent to checking the feasibility of a set of
LMIs.

Corollary 2. Suppose F ∈ Sm(R[x]) where F (x) =∑
|α|≤d Cαx

α, where F (x) is positive definite on a

polytope Γ defined as in (3). Then, there exists a
matrix-valued polynomial QF ∈ Sm(R[Λ]) of degree d′,
where QF (Λ(x)) =

∑
|α|≤d′ Bαx

α, and a vector of real

coefficients lα(Γ), such that QF (Λ(x)) = F (x), such
that

Cα =
∑

|α|′≤d′

(lα(Γ, d))α′Bα′ , Bα′ ⪰ 0 for all α′, (9)

where lα(Γ, d) is the row of L(Γ, d) corresponding to
the exponent α ∈ Nn.

Proof Sketch. We apply Theorem 4 and Lemma 2 to
F , and collect terms appropriately.

This condition can also be checked using linear pro-
gramming by assuming that the coefficients must be
diagonally dominant. However, in general, the exis-
tence of a Handelman representation with diagonally
dominant coefficients is not guaranteed. We discuss
this further in Appendix C.

4.3 SDP-based construction of Undominated
DC Decompositions

We begin with solving (5). While this problem is NP-
hard, we can optimize over subsets of a fixed degree
using Corollary 2.

First, let h(x) = C⊤
h Z(x), and recall that Ch,α is the

element of Ch corresponding to the monomial xα in
the multi-index notation. Then, the Hessian of h(x)
can be written as

Hh(x) =
∑

|α|≤d′−2

Dαx
α, Dα =

∑
2≤|α′|≤d′

Ch,α′Mα,α′ ∀ α, (10)

where each Mα,α′ is a known constant matrix. With
this, we derive an SDP relaxation for finding undomi-
nated dcds.

Theorem 6 (SDP-Local). Suppose f ∈ R[x], f(x) =
C⊤

f Z(x, d) is of degree d, and suppose Γ is a polytope
as defined in (3). Then, for some d′ ≥ d, the SDP

min
ρ,Ch,B

ρ

s.t. (9) is satisfied for Hh(x), Hf+h(x)

ρei +
∑

2≤|α′|≤d′

Ch,α′Tr(Mα,α′) = L(Γ, d)B

(SDP)

is feasible with B ≥ 0 being an elementwise nonnega-
tive vector, and h(x) = C⊤

h Z(x, d′) is a dcd of f .

Proof Sketch. We directly apply corollary 2 to (5), and
collect terms, following which, we get the result. We
provide the full proof in Appendix B.

For the sake of brevity, we state the constraints by
referring to (9). We state the full SDP in Appendix C.

Solving the SDP associated with these constraints is
computationally expensive, even for relatively small
problems. This motivates us to derive methods for
constructing dcds using linear programming, by as-
suming the Hessian of h is diagonally dominant.

5 LP-BASED METHODS FOR
CONSTRUCTING DC
DECOMPOSITIONS

While Theorem 6 offers a powerful tool for construct-
ing local dcds of polynomials over convex polytopes,
the cost of solving SDPs makes them impractical for
use with high-dimensional graphical models. To ad-
dress this issue, we use the fact that the polynomial
potential functions are a sum of a large number of low-
dimensional, low-degree polynomials. Then, to escape
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the cost of solving SDPs, even for low-dimensional
problems, we develop an LP-based approach for con-
structing local dcds over convex polytopes. All proofs
are relegated to Appendix B.

First, we show that any polynomial can be written as
the difference of two convex polynomials with diago-
nally dominant Hessians. This result is crucial as it
facilitates the use of the conditions stated in Corol-
lary 3 to use linear programming to construct dcds,
as well as a construction of dcds that only requires
solving a linear system of equations.

Lemma 3. Suppose Γ is defined as in (3), and f ∈
R[x]. Then, for any d′ ≥ d, there exists h ∈ R[x] of
degree d′ such that Hh(x) and Hf+h(x) are diagonally
dominant and PSD for all x ∈ Γ.

5.1 Positive-Definite Diagonally Dominant
Matrix Polynomials

Next, we extend Theorem 3 to certify the positive-
definiteness of diagonally-dominant matrix polynomi-
als.

Theorem 7. F ∈ Sm (R[x]) of degree d is strictly di-
agonally dominant and positive definite for all x ∈
int(Γ) for Γ as defined in (3), if and only if, for

some d′ ≥ d, there exist Bi, Cij,+, Cij,− ∈ R(
K+d′

d′ ),
and polynomials Qij for each i, j such that for each
i ∈ [m],

F(ii)(x)−
∑
j ̸=i

Q(ij)(x) = Z(Λ(x), d′)⊤Bi, (11)

F(ij)(x)−Q(ij)(x) = Z(Λ(x), d)⊤Cij,+ ∀ i ̸= j (12)

F(ij)(x) +Q(ij)(x) = Z(Λ(x), d)⊤Cij,− ∀ i ̸= j (13)

where each element of each Bi,+, Bi,−, Cij,+, Cij,− is
nonnegative.

Next, as with Corollaries 1 and 2, we show that check-
ing whether a matrix polynomial is diagonally domi-
nant and PSD is equivalent to checking the feasibility
of a set of linear constraints. If a matrix polynomial
is diagonally dominant, we show that the certificate
provided in Theorem 7 is equivalent to checking a set
of linear feasibility constraints.

Corollary 3. F ∈ Sm (R[x]), where Fij(x) =
C⊤

F,ijZ(x, d), of degree d is strictly diagonally domi-
nant and positive definite for all x ∈ int(Γ) for Γ as
defined in (3), if and only if, for some d′ ≥ d, there
exist vectors Dij, Bii, Bij,+ and Bij,− for all i, j such
that, for each i, j,

CF,ii −
∑
i ̸=j

Dij = L(Γ, d)Bii (14)

CF,ij +Dij = L(Γ, d)Bij,+ (15)

Dij − CF,ij = L(Γ, d)Bij,− (16)

and where each Bii, Bij,+ and Bij,− is element-wise

nonnegative, and where L(Γ, d) ∈ R(
K+d′

d′ )×(n+d′
d′ ) is a

known matrix.

5.2 Linear Programming for Constructing
Undominated DC Decompositions

Using Theorem 7 and Corollary 3, we derive LP-based
techniques for the construction of dcds of polynomi-
als over polytopes, that are apt for use in graphi-
cal moedls. Specifically, we optimize over those dcds
h ∈ R[x] that are of degree d′ and have diagonally
dominant Hessians; this can be achieved by solving an
LP. We formally propose this construction below.

Theorem 8 (DD-Local). Suppose f ∈ R[x], f(x) =
C⊤

f Z(x, d) is of degree d, and suppose Γ is a polytope
as defined in (3). Then, for some d′ ≥ d, the linear
program

min
ρ,Ch,B

ρ

s.t. ρe1 −
∑
i

Ad′,iiCh = L(Γ, d)B, B ≥ 0

(14)-(16) are satisfied for Hh(x), Hf+h(x) (LP)

is feasible, and h(x) = C⊤
h Z(x, d′) is a dcd of f .

Proof Sketch. By Lemma 3, we are guaranteed the ex-
istence of a dcd with a diagonally dominant Hessian.
We then apply the conditions of Corollaries 1 and 3 to
the conditions of problem (5).

5.3 Constructing dcds by solving Linear
Equations

In this section, we propose a method to construct a dcd
with a diagonally dominant Hessian that only requires
solving a system of linear equations.

Next, we propose a method for constructing DC de-
compositions of polynomials over convex polytopes,
by ensuring that the coefficients of the dcd in terms
of Λ (for a given polytope Γ) are diagonally domi-
nant. We construct a convex function h with a di-
agonal Hessian, with the additional property that ev-
ery monomial of the polynomial in indeterminates Λ
should have strictly positive coefficients, allowing us
to ensure that the coefficients of the Hessian of f + h
are positive (where f is the polynomial we seek to find
a dc decomposition for). We state this as the theorem
below.

Theorem 9 (DD-Linear). Suppose f ∈ R[x] is of de-
gree d, and suppose Γ is a convex polytope defined
as in (3). Let Hf (x) be the Hessian of f , and let
QHf

∈ R[Λ], where QHf
(Λ) =

∑
|α|≤d′ BαΛ

α, satisfy
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Hf (x) = QHf
(Λ(x)). Then, the polynomial h ∈ R[x]

of even degree d′ ≥ d, where h(x) =
∑

j cj(xj + 1)d
′
,

cj = max
α

max
{
0, 1−Bα,ii +

∑
j |Bα,ij |

}
(d)(d− 1)Ḡj

, (Lin)

and where Ḡj is the largest coefficient of (xj + 1)d
′
in

the basis of monomials in (λ1, · · · , λK), is a dcd of f .

While this construction of dcds is the least expensive
computationally, the resultant dcds are not undomi-
nated, and thus yield slower convergence rates when
employed with the CCCP. Furthermore, we propose
additional dcd constructions that assumes that the
Hessian of h is diagonally dominant in Appendix C.

5.4 Complexity of constructing dcds

In this section, we compare the cost of computing dcds
with SDP-Local, DD-Local, and DD-Linear for a poly-
nomial over a convex polytope Γ ⊂ Rn with 2n facets.
For the sake of brevity, we state the computational
complexities of constructing dcds with our proposed
methods as a single result below.

Theorem 10. Suppose f ∈ R[x], f : Rn → R, is of
degree d, and we wish to find a local dcd of f over a
polytope Γ ⊂ Rn with 2n facets. Then, assuming d′ is
fixed, the complexity of constructing a polynomial dcd
of degree d′ ≥ d using SDP-Local (Theorem 6), by solv-
ing (SDP) to an accuracy ε > 0 is Õ(n4d′

); DD-Local
(Theorem 8) by solving (22) to an accuracy ε > 0 is
Õ(n2d′+1); and DD-Linear, by solving (Lin), assuming
suitable preprocessing, is O(nd′−1), where Õ(·) sup-
presses the poly(1\ε) terms.

The proof for this result is provided in Appendix F.

This result highlights the tradeoffs between using dif-
ferent constructions of local dcds. Using SDP-Local
or DD-Local would yield dcds that improve the per-
formance of the CCCP, as we highlight in Section 6.
However, using DD-Linear is significantly cheaper to
compute, and can be used to obtain local dcds even
for very high dimensional polynomials.

6 NUMERICAL EXPERIMENTS

In this section, we examine the efficacy of our pro-
posed constructions for DC decompositions, both on
synthetic examples, and for inference in CMRFS with
polynomial potentials. For the sake of brevity, we re-
fer readers to Appendix D for experimental details as
well as additional experiments.

6.1 DC Decompositions for Synthetic
Polynomials

In this section, we investigate the efficacy of SDP-
Local, DD-Local, and DD-Linear for the construction
of dcds. We consider two key metrics - the time taken
to construct the dcd, and the number of iterations of
the CCCP required to reach a stationary point.

6.1.1 Time Efficiency of Methods for DCD
Construction

We consider the problem of constructing a dcd for the
degree 4 polynomial f(x) =

∑
|α|≤4 x

α, over the poly-

tope Γ := {x ∈ Rn :
∑

i xi ≥ −1, xi ≤ 1}.

We compare the time taken by DD-Local, DD-Linear
nad SDP-Local for constructing dcds. For DD-Linear,
we chose h(x) =

∑
j cj(xj + 1)4. We consider n =

2, 5, 20. We present the experimental details in Ta-
ble 1. We see that constructing dcds for a polynomial

Table 1: Comparison of times used to construct dcds with
the DD-Linear, DD-Local, and the SDP-Local. Each entry
contains the time taken to compute the coefficients of the
dcd of a polynomial in n variables.

Algorithm n = 2 n = 5 n = 20
DD-Linear .062s .118s 216s
DD-Local .656s 3.93s 1674s
SDP-Local 1.52s 61.2s >4hrs

using DD-Linear is dramatically faster than using DD-
Local and SDP-Local. Even at n = 50, constructing
a dcd of a nonconvex polynomial is accomplished in a
few hours, whereas we were unable to complete exper-
iments using SeDuMi. Thus, we clearly establish the
efficacy of DD-Linear in general, and DD-Local when
the dimension of the problem is relatively small.

6.1.2 Comparison of CCCP convergence for
different DC Decompositions

In this section, we empirically investigate the conver-
gence of the CCCP when different dcd constructions
are used. For our experiments, we consider polyno-
mials f(x) = C⊤Z(x) of degree 4 in 2 variables. We
then randomly select coefficient vectors C, with each
element Cα ∈ [0, 2]. We run this experiment for 40
such cases, and apply the CCCP for each case. We re-
port the average number of iterations for dcds obtained
by each method in 2. We see that using SDP-local re-

Table 2: Comparison of the number of iterations of the
CCCP required to reach a stationary point using dcds ob-
tained via DD-Linear, DD-Local, and the SDP-Local.

Algorithm SDP-Local DD-Local DD-Linear
CCCP iterations 31 42 89



Chaitanya Murti, Dhruva Kashyap, Chiranjib Bhattacharyya

sults in the fewest iterations of the CCCP, whereas
DD-Linear requires the most.

6.2 MAP Inference for CMRFs

We construct DC decompositions for inference of
graphical models used in polynomial SFS. First, we
study the efficiency of our methods, proposed in The-
orems 8 and 9 in the construction of dcds for the
polynomial potential function. Second, we verify that
our optimization-based methods effectively construct
dcds of the potential function that achieves improved
convergence rates and solution times of the convex-
concave procedure.

In this experiment, we use the potential function
for polynomial SFS proposed in Wang et al. (2014);
Khamaru and Wainwright (2018). This is a function
of the form (1), where each

f(z) =
∑
r∈R

(
(l1pr(z) + l2qr(z) + l3)

2
+

+ I2r
(
(pr(z)

2 + qr(z)
2 + 1

))2
, (17)

where z is the vector of z-coordinates for the object
that generated the image. For the light vector, we use
l = (0, 0, 1), as in (Wang et al., 2014).

6.2.1 Construction of Local DC
Decompositions for Graphical Model
Inference

In this section, we compute dcds for the potential
function (33). We compute a dcd for each fr using
SDP-Local, DD-Local, and DD-Linear. Each fr(z) is
of degree 4, and is in three unknowns. We measure
the time taken to compute 1,100, 1000, and 16129
dcds (which then completes the dcd for the entire
polynomial). For the Mozart example, we choose
Γr = {z ∈ R3 : 0 ≤ z ≤ 600} and for the Penny
example. we choose Γr = {z ∈ R3 : 0 ≤ z ≤ 300}.
As in previous sections, we compute and store L(Γr, d)
once, since each Γr is the same. We present our ex-
perimental results in Table 3 We clearly see that DD-

Table 3: Comparison of times used to compute dcds for the
Mozart shape-from-shading problem. Each entry contains
the time taken to compute the dcds of N polynomials fr(z)
using our proposed constructions.

Algorithm N = 1 N = 100 N = 1000 N = 16128
DD-Linear .097s 13.4s 103.4s 1827s
DD-Local .876s 102.9s 1081s ≈4.8 hrs
SDP-Local 2.06s 342.9s >6hrs n/a

Linear and DD-Local are able to compute dcds for each
fr(z) highly efficiently. The CMRF structure enables
us to optimize over dcds even in the extraordinarily
high number of variables.

6.2.2 Solving the Shape-from-Shading
problem with the Convex-Concave
Procedure

In this section, we examine the efficacy of different dcd
constructions for solving SFS problems. We consider
the Mozart and Penny datasets. For the inner loop
of Algorithm 1, we use projected gradient descent, as
the projections onto the hypercube can easily be com-
puted. We detail this further in Appendix D, including
stepsizes and tolerances used. We detail our results in
Table 4.

Table 4: Comparison of times used to compute dcds for the
Mozart shape-from-shading problem. Each entry contains
the time taken to compute the dcds of N polynomials fr(z)
using our proposed constructions. ‘Iters’ refers to iterations
and ‘F. value’ refers to objective function value.

Dataset Algorithm Iters. F. value Time
DD-Linear 182 1499 312s

Mozart DD-Local 73 1531 125s
DD-Linear 139 82.9 244s

Penny DD-Local 68 80.7 103s

Our experiments clearly show that using DD-Local
clearly outperforms DD-Linear in terms of the itera-
tions of the CCP required. In each case, the number
of CCCP iterations when dcds produced by DD-Linear
is more than twice that required by DD-Local.

7 CONCLUSIONS

In this work, we study the construction of local dc
decompositions of polynomials constrained to convex
polytopes, with a view toward MAP inference of CM-
RFs. We provide characterizations for locally un-
dominated dcds - shown to give the greatest stepwise
decrease in cost function value in Ahmadi and Hall
(2017) - as well as guaranteeing the existence of lo-
cal dcds with diagonally dominant structure. Using
Handelman’s theorem, we obtain tractable methods
for constructing such dcds, namely SDP-Local, DD-
Local, and DD-Linear. We measure the complexity of
constructing dcds with each of our proposed methods,
and show that while SDP-Local obtains the best dcds,
the cost of constructing dcds using DD-Local or DD-
Linear is significantly cheaper. We then validate our
methods empirically, and see that our method outper-
forms the nearest baselines. However, there are still
various unaddressed problems. First, the convergence
rate of the CCCP for polynomial or smooth dcds is
still not well understood, and second, systematically
constructing dcds for non-polynomial cost functions
remains an open problem.
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APPENDIX

In this Appendix, we present the following additional information and context.

1. In Appendix A, we provide a detailed discussion on relevant related literature. In particular, we discuss
inferencing continuous Markov Random Fields, fundamental work on the construction of dc decompositions,
and additional analysis and applications Handelman’s theorem.

2. In Appendix B, we provide the proofs missing in the main paper. We also state the optimization problems
involved in Theorems 6 and 8.

3. In Appendix C, we propose additional constructions of local dcds of polynomials. In particular, we detail
LP- and coefficient-based approaches for constructing dcds whose Hessians have Handelman representations
with diagonally dominant coefficients. We also propose an SOS-based construction of local dcds.

4. In Appendix D, we detail additional experiments we conducted that highlight the efficacy of using our local
construction of dcds. We also provide additional detail and context to experiments described in section 6.

5. In Appendix E, we describe the polynomial shape-from shading problem in greater detail.

6. In Appendix F, we provide an analysis of the complexity of solving the optimization problems involved in
SDP-Local, DD-Local, and DD-Linear.

7. Lastly, our code is available at: https://github.com/chaimurti/DC-Handelman

A RELATED WORK

In this section, we provide a more detailed survey of relevant literature. We separate this section into three parts
- first, we discuss recent work on continuous markov random fields. Next, we discuss recent work on difference
of convex programming. Last, we provide an overview of Handelman’s theorem and some prior applications of
it.

A.1 Continuous Markov Random Fields

Continuous Markov Random Fields, also known as undirected graphical models (UGMs), have been used for a va-
riety of tasks in machine learning (Koller and Friedman, 2009; Jordan, 2004). Typically, Markov Random Fields,
model collections of discrete random variables Koller and Friedman (2009). However, in many applications, the
random variables may not be discrete. In Gaussian Markov Random Fields, these are considered to be Gaussian
(Wang et al., 2013; Rue and Held, 2005), and have a variety of applications such as image denoising and segmen-
tation. Continuous Markov Random Fields dispense with the Gaussianity assumption on the random variables.
Such models have a variety of applications, including stereo estimation (Yamaguchi et al., 2012), collaborative
filtering Koren et al. (2009), and various other image processing tasks such as shape-from-shading (Ecker and
Jepson, 2010; Bednarik et al., 2018; Xiong et al., 2014), and non-rigid 3D reconstruction (see Deng et al. (2022)
and the references therein). However, learning and inference on such models is a challenging tasks, as noted
in Wang et al. (2014). Popular methods include using discrete particle approximations (Ihler and McAllester,
2009), specialized models that are amenable to convex optimization (Bach et al., 2012, 2017), proximal methods
(Wang et al., 2016), nonlinear optimization techniques such as dual-decompositions (Bauermeister et al., 2022),
or the convex-concave procedure (Wang et al., 2014). In this work, we address the problem of CMRF inference
using the CCCP.

A.2 Difference of Convex Programming and the Convex-Concave Procedure

Difference-of-convex programming is a well-studied field, and has been applied to a wide variety of applications
(Le Thi et al., 2014; Le Thi and Pham Dinh, 2018). Difference-of-convex programs are solved using the DC
Algorithm (Tao and An, 1997), when the dcd is nonsmooth, and the convex-concave procedure for differentiable
dcds (Yuille and Rangarajan, 2003). Variants of this algorithm, including for DC programming with smooth
DC constraints, were proposed, such as Lipp and Boyd (2016); Shen et al. (2016). However, several open
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problems remain. Most importantly, understanding the convergence properties of these algorithms remains an
open problem, however. Initial convergence results for the CCCP were stated in Lanckriet and Sriperumbudur
(2009b); Sriperumbudur and Lanckriet (2012). In Salakhutdinov et al. (2012), the CCCP is described as a ‘bound
optimization algorithm’, and connected the convergence rate of the CCCP to the curvature of the objective
function, thus providing a connection to works such as Bomze and Locatelli (2004); Dür (2002); Bomze and
Lemaréchal (2010). More recently, convergence results for the CCCP were given for the case when the cost
function and the dcd are Lipschitz smooth (Khamaru and Wainwright, 2018). Similarly, in Abbaszadehpeivasti
et al. (2023), convergence results for the DCA are proposed for the case where the Lipshitz constants of the dcd
are available. Other works investigate connections between the CCCP and Frank-Wolfe algorithms (Yurtsever
and Sra, 2022), and Bregman divergences (Faust et al., 2023). However, as noted in Abbaszadehpeivasti et al.
(2023), convergence analysis of the CCCP when the objective function and the dcds are polynomials, or even
twice differentiable, remain open problems.

A.3 Handelman’s Theorem and Applications

Handelman’s theorem, first introduced in Handelman et al. (1988), is a significant result in algebraic geometry,
with particular importance to polynomial optimization. For polynomial optimization problems where the feasi-
ble set is a convex polytope, Handelman’s theorem offers a more efficient alternative to SOS programming, as
it allows for the derivation of LP-based relaxations for such problems (Kamyar and Peet, 2015; Zuluaga et al.,
2006). Moreover, it has been shown that the hierarchy of LP-relaxations derived from Handelman’s theorem
converges (Lasserre, 2005). Other works, such as (De Klerk and Laurent, 2010; De Klerk et al., 2017) investigate
the error bounds of the relaxations to polynomial optimization problems obtained by Handelman’s theorem.
Handelman’s theorem has also been successfully applied to a variety of real-world problems. In control engineer-
ing, it has been applied to Lyapunov function synthesis (Kamyar et al., 2014; Sankaranarayanan et al., 2013;
Briat, 2017) and reachability analysis (Asadi et al., 2021; Winkler et al., 2019). Other interesting applications
of Handelman’s theorem include network utility maximization (Chiang, 2009), solving polynomial hyperbolic
partial differential equations (Marx et al., 2018), cache miss calculations in program verification (Shah et al.,
2022), automated precision analysis for programs deployed on specialized hardware (Boland and Constantinides,
2010), and Lipschitz constant estimation for neural networks (Latorre et al., 2020).

B MISSING PROOFS OF MAIN RESULTS

In this section, we provide proofs for the main results. Proofs are presented in the order in which the original
results appeared in the main paper.

Proof of Theorem 5

We prove Theorem 5, a key result used throughout this work to motivate the construction of local dcds by solving
convex optimization problems.

Proof. We prove the theorem in 4 steps.

Step 1: First, we show that (4) is a convex optimization problem.We know the feasible set (set of dcds for a
polynomial) is convex. Next, we show that maxx∈Γ Tr(Hh(x)) is convex in the set of feasible h. Consider two
feasible functions h1, h2. Then,

max
x∈Γ

Tr (αHh1
(x) + (1− α)Hh1

(x))

≤αmax
x∈Γ

Tr(Hh1(x)) + (1− α)max
x∈Γ

Tr(Hh2(x))

since Tr(Hh1
(x)), Tr(Hh2

(x)) ≥ 0 by the convexity of h1, h2.
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Step 2: Let h′ be a feasible solution to (4) such that maxx∈Γ Tr(Hh′(x)) = γ. Consider the following opti-
mization problem:

min
h∈R[x]

max
x∈Γ

Tr (Hh(x))

h, f + h are convex on Γ, max
x∈Γ

Tr(Hh(x)) ≤ γ (P2)

Clearly, any optimal solution to (P2) is a solution to (4) and vice versa. Let U be the feasible set of (P2). Similar
to Ahmadi and Hall (2017), we see that U is closed. Next, we show boundedness. Suppose some h ∈ U has a
monomial that is at least quadratic in one variable that coefficient cβ for each β > 0 such that cβ > 0. Thus,
under this assumption, there is a diagonal entry of Hh that can get arbitrarily large. However, by the definition
of U , we have that maxx∈Γ Tr(Hh(x)) = max ∥Hh(x)∥∗ ≤ γ, where ∥ · ∥∗ denotes the nuclear norm. This is a
contradiction, and thus, we show that the set is bounded as well. Since the feasible set is compact, and the cost
function of (P2) is convex, we see that (P2) is guaranteed to have a solution, thereby guaranteeing that (4) has
a solution.

Step 3: We now show that optimal solutions are undominated by suboptimal dcds. Suppose ρ∗ is the optimal
value of (4). Then, by convexity, any optimal solution to (4) yields the objective function value ρ∗. Next, let
h∗ be an optimal solution to (4), and let h be a suboptimal feasible solution to (4). Suppose that h∗ is not
undominated, and that h∗ − h is convex. Then, minx∈Γ Tr(Hh∗−h(x)) ≥ 0. However, we see that

Tr(Hh∗−h(x)) = Tr(Hh∗(x))− Tr(Hh(x)) ≤ ρ∗ − Tr(Hh(x)).

Thus, we have

min
x∈P

Tr(Hh∗−h(x)) ≤ min
x∈P

ρ∗ − Tr(Hh(x)) = ρ∗ −max
x∈P

Tr(Hh(x)).

However, maxx∈P Tr(Hh(x)) > ρ∗. Thus, we obtain a contradiction, and we show that optimal solutions to (4)
are undominated by suboptimal feasible points.

Step 4: Last, we show that distinct optimal solutions are undominated by each other. Let h1, h2 be distinct
optimal solutions of (4). Then, by the feasibility of (4), maxx∈P Tr(Hh1(x) +Hh2(x)) ≥ ρ∗. However,

max
x∈P

Tr(Hh1−h2(x)) = max
x∈P

Tr(Hh1(x)− (Hh2(x))

≤ max
x∈P

Tr(Hh1
(x))−min

x∈P
Tr(Hh2

(x)) ≤ ρ∗

Therefore, maxx∈P Tr(Hh1−h2
(x)) = ρ∗. Since the degree of h is at least 3, the Hessian is non-constant. Fur-

thermore, suppose maxx∈P Tr(Hh1−h2
(x)) = ρ∗. This is achieved when x = argmax Tr(Hh1

(x)), which must
coincide with Tr(Hh2(x)) = 0. Since
maxTr(Hh1(x)) = ρ∗, there exists an x where Tr(Hh1(x)) < Tr(Hh2(x)), thereby implying that h1 − h2 is
nonconvex. Thus, we obtain a contradiction and prove the theorem.

Proof of Lemma 1

We present the proof for Lemma 1.

Proof of Lemma 1. Ensuring that qf (a
⊤
1 x + b1, · · · , a⊤Lx + bK) = f(x1, · · · , xn) is equivalent to matching the

coefficients. Observe that we can expand each monomial λ1(x)
α1 · · ·λK(x)αK as

λ1(x)
α1 · · ·λK(x)αK =

∑
|α|≤d

cα′x
α′

1
1 · · ·xα′

K

K

by substituting λi(x) = a⊤i x + bi. From this, it follows that Zα(Λ(x), d
′) = lα(Γ)

⊤Z(x, d′) From this, we can
write qf (Λ(x), d

′) = B⊤LZ(x, d′), where L is a matrix with rows lα. If f(x) = qf (Λ(x)), then C = L(Γ, d′)⊤B.
We can solve for B by solving an underdetermined set of linear equations of full rank. Thus, a solution always
exists.
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Proof of Corollary 1

Here, we present the proof for Corollary 1.

Proof of Corollary 1. We are given that f(x) > 0 for x ∈ Γ. Thus, by Handelman’s theorem (Theorem 3,
for some d′ ≥ d, there must exist a polynomial q(Λ) = B⊤Z(Λ, d′) with nonnegative coefficients such that
q(Λ(x)) = f(x). Thus, C⊤Z(x, d) = B⊤Z(Λ(x), d′). But by Lemma 1, we have that C = L(Γ, d′)B. Thus, the
statement is proved.

Proof of Lemma 2

We present the proof for Lemma 2, which extends Lemma 1 to matrix polynomials.

Proof of Lemma 2. From Lemma 1, we know that for each i, j, Fij(x) = Z(x, d′)⊤Cij , and QF,ij(Λ) =
Z(Λ, d′)⊤Bij , where Cα,ij = Cij

α , Bα,ij = Bij
α , and where Cij = L(Γ, d′)⊤Bij , with L(Γ, d′) defined as in

Lemma 1. Thus, Cα,ij = Cij
α = lα(Γ)

⊤Bij .Thus, we have wα,α′ = (lα(Γ))α′ , which is the entry of lα(Γ) corre-

sponding to the monomial xα′
(in the multi-index notation). Since this holds for all i, j and since lα(Γ) is fixed,

the statement is proved.

Proof of Corollary 2

Following the proof of Lemma 2, we present the proof for Corollary 2.

Proof of Corollary 2. We are given that F (x) ≻ 0 for x ∈ Γ. Thus, by Theorem 4, for some d′ ≥ d, there must
exist a polynomial Q(Λ) =

∑
α BαΛ

α with PSD coefficients such that Q(Λ(x)) = F (x). Thus, C⊤Z(x, d) =
B⊤Z(Λ(x), d′). By Lemma 2, the proof follows in the same fashion as that of Corollary 1.

Proof of Theorem 6

In this section, we provide a proof for Theorem 6, which guarantees the feasibility of the SDP-Local method. We
first restate the Theorem and include the SDP in full.

Theorem (SDP-Local). Suppose f ∈ R[x], f(x) = C⊤
f Z(x, d) is of degree d, and suppose Γ is a polytope as

defined in (3). Then, for some d′ ≥ d, the SDP

min
A

ρ

s.t.
∑

2≤|α′|≤d′

Ch,α′Mα,α′ =
∑

α′′≤|d′|

(lα(Γ))α′′Bh,α′′ (18)

∑
2≤|α′|≤d′

(Ch,α′ + Cf,α′)Mα,α′ =
∑

α′′≤|d′|

(lα(Γ))α′′Bf+h,α′′ (19)

ρei +
∑

2≤|α′|≤d′

Ch,α′Tr(Mα,α′) = L(Γ, d)B (20)

B ≥ 0, Bh,α′′ ≻ 0, Bf+h,α′′ ≻ 0 for all α′′ (21)

is feasible, where

A :=
{
ρ, B, Ch, {Bh,α}|α|≤d′ , {Bf+h,α}|α|≤d′

}
with B being an elementwise nonnegative vector, and h(x) = C⊤

h Z(x, d′) is a dcd of f .

Proof. Since f is a polynomial, we are guaranteed to find a polynomial dcd h of f . Since Hh(x) ⪰ 0 and
Hf+h(x) ⪰ 0 for all x ∈ Γ, (18)-(21) follow from Theorem 4 and Corollary 2. Last, we write ρ − Tr(Hh(x)) =

ρ−
∑

α xα
(∑

2≤|α′|≤d′ Ch,α′Tr(Mα,α′)
)
. Then, (20) follows from Theorem 3 and Corollary 1.
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Proof of Theorem 7

Proof of Theorem 7. First, we show necessity. Assuming F (x) ≻ 0 for all x ∈ Γ, it follows that F(ii)(x) > 0 for
all x ∈ Γ and each i ∈ [m]. Furthermore, since F (x) is strictly diagonally dominant, we have

F(ii)(x)−
∑
j ̸=i

|F(ij)(x)| > 0

Let Qij(x) ≤ |F(ij)(x)|. Thus, it follows that Fij(x) +Qij(x) ≥ 0 and Fij(x)−Qij(x) ≥ 0 Thus, it follows that

F(ii)(x) >
∑
j ̸=i

Q(ij)(x) and F(ii)(x) > −
∑
j ̸=i

Q(ij)(x)

From Theorem 3, for each i, j, there must exist elementwise nonnegative vectors Bi, Cij,+, Cij,− such that

F(ii)(x)−
∑
j ̸=i

F(ij)(x) = Z(Λ(x), d)⊤Bi

Fij(x) +Qij(x) = Z(Λ(x), d)⊤Cij,+

Fij(x)−Qij(x) = Z(Λ(x), d)⊤Cij,−.

Thus, we show necessity. To show sufficiency, we recall from Ahmadi and Majumdar (2014) that, given P ∈ Rn×n,
if for each i ∈ [n], there exist real numbers Rij , j ∈ [n] such that Pii −

∑
j ̸=i Rij ≥ 0 and − Rij ≤ Pij ≤ Rij ,

then P is diagonally dominant and PSD. We replace P with F (x), Rij with Qij(x) and apply Theorem 3 to the
conditions listed above, obtaining equations (11)-(13).

Proof of Lemma 3

In this section, we prove Lemma 3, which guarantees the existence of a local dcd with a diagonally dominant
Hessian. To prove this, we first show that we are guaranteed to find a local dcd with a diagonal Hessian.

Lemma 4. Suppose Γ is defined as in (3), and f ∈ R[x]. Then, there exists h ∈ R[x] such that Hh(x) is PSD
and diagonal and Hf+h(x) is PSD and diagonally dominant for all x ∈ Γ.

Proof. Let Hf be the Hessian of f . Let

zi = max
x∈Γ

∑
j ̸=j

|Hf,ij(x)| −Hf,ii(x).

Since Γ is compact, and Hf,ij(x) is smooth for each i, j, zi < ∞. Next, for each i ∈ [n], let hi(xi) be a convex

polynomial in xi such that wi = minx∈Γ h
′′
i (xi) > 0, where h′′

i (x) =
∂2

∂x2
i
h(x). Let h(x) =

∑
i∈[n] cihi(x). Then,

for each i, Hf+h,ii(x) = ch′′
i (x) +Hf,ii(x), and

Hf+h,ii(x)−
∑
i ̸=j

|Hf+h,ij(x)| = ch′′
i (x) +Hf,ii(x)−

∑
i ̸=j

|Hf,ij(x)|

= ch′′
i (x)−

∑
i ̸=j

|Hf,ij(x)| −Hf,ii(x)

 ≥ cwi − zi ∀, x ∈ Γ.

Thus, we can choose ci = 1 + zi/wi, ensuring that Hf+h(x) is diagonally dominant for all x ∈ Γ.

The construction used in the proof of Lemma 4 is used again in the proof of Lemma 3, which we now present.

Proof of Lemma 3. We prove this Lemma by construction. Let h̄ be a polynomial dcd of polynomial f , which is
guaranteed to exist. Define

yi = max
x∈Γ

∑
j ̸=j

|Hh̄,ij(x)| −Hh̄,ii(x)

zi = max
x∈Γ

∑
j ̸=j

|Hf+h̄,ij(x)| −Hf+h̄,ii(x)
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Similar to the proof of Lemma 4, let hi(xi) be a convex polynomial in xi such that wi = minx∈Γ h
′′
i (xi) > 0,

where h′′
i (x) = ∂2

∂x2
i
h(x). Let h(x) =

∑
i cihi(xi), where each ci > 0. Using a similar construction used in the

proof of Lemma 4, if we require ci > max{yi, zi}/wi. Thus, we can choose ci = 1 + max{yi, zi}/wi, which
guarantees that h̄+

∑
i cihi is a diagonally dominant dcd of f .

Proof of Theorem 8

In this section, we prove Theorem 8, which guarantees the feasibility of the DD-Local method. We first restate
Theorem 8 with the LP involved in DD-Local stated in full.

Theorem (DD-Local). Suppose f ∈ R[x], f(x) = C⊤
f Z(x, d) is of degree d, and suppose Γ is a polytope as defined

in (3). Then, for some d′ ≥ d, the linear program

min
A

ρ

s.t. ρe1 −
∑
i

Ad′,iiCh = L(Γ, d)B, B ≥ 0

Ad′,iiCh −
∑
i̸=j

Dh,ij = L(Γ, d)Bh,ii for all i

Ad′,ijCh +Dh,ij = L(Γ, d)Bh,ij,+ for all i, j

Dh,ij −Ad′,iiCh = L(Γ, d)Bh,ij,− for all i, j

Ad′,ii(Ch + Cf )−
∑
i ̸=j

Df+h,ij = L(Γ, d)Bf+h,ii for all i, j

Ad′,ij(Ch + Cf ) +Df+h,ij = L(Γ, d)Bf+h,ij,+ for all i, j

Df+h,ij −Ad′,ii(Ch + Cf ) = L(Γ, d)Bf+h,ij,− for all i, j

Bh,ii ≥ 0, Bh,ij,+ ≥ 0, Bh,ij,− ≥ 0 for all i, j

Bf+h,ii,≥ 0, Bf+h,ij,+ ≥ 0, Bf+h,ij,− ≥ 0 for all i, j (22)

where
A := {ρ,B,Ch, {Dh.ij}i̸=j , {Bh,ii}ni=1, {Df+h.ij}i̸=j , {Bf+h,ii}ni=1}

is feasible, and h(x) = C⊤
h Z(x, d′) is a dcd of f .

Proof. By Lemma 3, any polynomial f is guaranteed to have a dcd h with a Hessian that is diagonally dominant
on a given polytope Γ. The constraints are directly derived from Theorem 7 and Corollary 3.

Proof of Theorem 9

In this section, we prove Theorem 9, which provides a simple construction of local dcds that only requires solving
a linear equation. To begin, we first state the following technical Lemma.

Lemma 5. Suppose Γ is a convex polytope defined as in (3). Then, for each j and each ε ≥ 0, there exist scalars
kji > ε such that

xj =
∑
j

kjiai. (23)

Proof. A polyhedron P := {x : Ax ≥ b}, A = [a⊤1 , · · · , a⊤K ]⊤ is unbounded if there exists a point z and a vector
d such that x + ηd ∈ Γ for all η ≥ 0. This implies the set {d ∈ Rn : Ad ≥ 0} is nonempty iff P is unbounded.
However, we assume that Γ is bounded, and hence, the set {x : Ax ≥ 0} is empty. Next, we see that by matching
coefficients, finding kji > ϵ such that

∑
i kjiai = xj where kji ≥ ε is equivalent to solving

A⊤kj = ej − εA⊤1, kj ≥ 0 entrywise (24)

where ej is the j-th coordinate vector and 1 is the vector of ones. Then, by Farkas’ Lemma, (24) is feasible iff
there exists no vector y s.t. Ay ≥ 0 and (ej − εA⊤1)⊤y < 0. Since the only feasible y = 0, (ej − εA⊤1)⊤y = 0,
thus proving the statement.
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Proof. Let d′ ≥ d be an even integer. By Lemma 4, we are guaranteed that f can be written as the difference of
a diagonal and a diagonally dominant matrix. Next, we can choose

h(x) =
∑
j

cj(xj + ηj + 1)d
′
,

where xj + ηj + 1 = 1 +
∑

i kjiλi(x). Thus,

qh(Λ) =
∑
j

cj(1 + kj1λ1 + · · ·+ kjKλK)d
′
=

∑
|α|≤d′

gi,αΛ
α,

where crucially, each gi,α > 0. Similarly, we see that

Hh,jj(x) = cjd
′(d′ − 1)(xj + ηj + 1)d

′−2

has polytopic representation

QHh,jj(Λ) = cjd
′(d′ − 1)(1 + kj1λ1 + · · ·+ kjKλK)d

′−2

=
∑

|α|≤d′

g′j,αΛ
α,

again, with all g′j,α > 0. Thus, the coefficients Gα of QHh
(Λ) are diagonal and positive definite. Next, by

Lemma 2, we can write the polytopic form of Hf , as QHf
=

∑
|α|≤d′ BαΛ

α. Next,let g = f + h, and let it’s
Hessian be Hg. We write the polytopic form of Hg as

QHg (Λ) = QHh
(Λ) +QHf

(Λ) =
∑

|α|≤d−2

(d′(d′ − 1)CGα +Bα)Λ
α, (25)

where C is a diagonal matrix with Cjj = cj .
By theorem 4, we require each Pα = d′(d′ − 1)CGα + Bα ≻ 0. If we require Cα to be diagonally dominant as
well, we require

cjd
′(d′ − 1)g′α,j +Bα,jj >

∑
i

|Bα,ji|.

From this, we can solve for cj . For each α, we require

cj ≥
1−Bα,ii +

∑
j |Bα,ij |

(d)(d− 1)Gα,i

and thus, can choose

cj = max
α

max
{
0, 1−Bα,ii +

∑
j |Bα,ij |

}
(d)(d− 1)Gα,i

(26)

C ADDITIONAL RESULTS

In this section, we detail additional results that may be of interest to readers, but not included in the main
paper. In particular, we focus on additional constructions of dcds.

C.1 SOS-based Construction of Local dcds

In this section, we propose a Sum-of-Squares-based relaxation for the construction of undominated local dcds.
In subsequent sections, we will use this result to illustrate the cost of solving the SDPs required is significantly
higher than that required for DD-Local.

We first define Sum-of-Squares (SOS) polynomials.
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Definition 4. A polynomial f ∈ R[x] is said to be Sum of Squares (SOS) if there exist finitely many polynomials
pi ∈ R[x] such that

f(x) =
∑
i

(pi(x))
2

We use Σn,d ⊂ R[x] to denote the convex cone of polynomials of degree d in n variables which are SOS.

Note that the cone of SOS polynomials is, in general, a strict subset of the cone of nonnegative polynomials, as
noted in Parrilo (2000); Lasserre (2001).

Checking whether a polynomial is nonnegative is, in general, strongly NP-hard. However, checking whether a
polynomial is SOS can be achieved using semidefinite programming Parrilo (2000). We will leverage this property
to derive an SOS based construction of local dcds.

Next, we define semialgebraic sets, which are sets defined by polynomial inequalities and equalities. Note that
convex polytopes as defined in (3) are examples of semialgebraic sets.

Definition 5. A semialgebraic set is a set of the form

S := {x ∈ Rn : fi(x) ≥ 0, i = 1, ..., n1, hi(x) = 0, i = 1, ..., n3}

where each fi, hi ∈ R[x].

Next, we state an SOS-based relaxation for constructing local dcds of a polynomial. Our construction relies on
Putinar’s positivstellensatz Putinar (1993), which certifies nonnegativity of polynomials over compact semialge-
braic sets.

Theorem 11. Suppose f ∈ R[x] is of degree d, and let Γ be a polytope defined as in (3), and let Σn,d denote
the cone of SOS polynomials in n indeterminates and of degree d. Then, for some d′ ≥ d, there exists h ∈
R[x], σρ, σρ

i ∈ Σn,d−2, σ
h
i , σ

f+h
i ∈ Σ2n,d. that solves

min ρ

s.t. ρ− Tr(Hh(x))− σρ
i (x)λi(x) = σρ

0(x)

y⊤Hh(x)y − σh
i (x, y)λi(x, y) = σh

0 (x, y)

y⊤Hf+h(x)y − σf+h
i (x, y)λi(x) = σf+h

0 (x, y) (SOS)

Proof. By Ahmadi and Hall (2017), the existence of an SOS convex dcd is guaranteed. The constraints are
guaranteed due to Putinar’s positivstellensatz Putinar (1993); Parrilo (2003).

C.2 Construction of Local dcds with Linear Programming - An Alternative approach

In this section, we state a variant of the optimization problem stated in Theorem 6, which assumes that the
coefficients of the Handelman representation of the Hessian of the dcd are diagonally dominant. Note that since
we cannot guarantee a representation with diagonally dominant coefficients, we do not state this problem as a
theorem.

Suppose f ∈ R[x], f(x) = C⊤
f Z(x, d) is of degree d, and suppose Γ is a polytope as defined in (3). Then, for
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some d′ ≥ d, we wish to solve the LP

min
A

ρ

s.t.
∑

2≤|α′|≤d′

Ch,α′Mα,α′ =
∑

α′′≤|d′|

(lα(Γ))α′′Bh,α′′

∑
2≤|α′|≤d′

(Ch,α′ + Cf,α′)Mα,α′ =
∑

α′′≤|d′|

(lα(Γ))α′′Bf+h,α′′

ρei +
∑

2≤|α′|≤d′

Ch,α′Tr(Mα,α′) = L(Γ, d)B

(Bh,α)ii −
∑
i ̸=j

|(Bh,α)ij | ≥ 0 (27)

(Bf+h,α)ii −
∑
i̸=j

|(Bf+h,α)ij | ≥ 0 (28)

B ≥ 0,

where
A :=

{
ρ, B, Ch, {Bh,α}|α|≤d′ , {Bf+h,α}|α|≤d′

}
with B being an elementwise nonnegative vector. If this problem is feasible, h(x) = C⊤

h Z(x, d′) is a dcd of f .

To derive this result, we directly use the construction used in SDP-Local (Theorem 6). The only difference is,
we assume that the PSD matrices Bh,α and Bf+h,α are diagonally dominant, thereby allowing us to enforce the
positive-semidefiniteness using (27)-(28). This, therefore, reduces the problem to an LP.

C.3 Construction of local dcds with Diagonally Dominant Hessians without Linear
Programming

Previously, we proposed a method to compute a dcd h of f such that Ĥf+h has diagonally dominant coefficients.
‘However, it is also possible to construct dcds with diagonally dominant Hessians without needing to solve a
conic optimization problem.

We begin by choosing h(x) in the same manner as previously; that is,

h(x) =
∑
i

ci(xi + c+ 1)d

for some even d greater than or equal to the degree of f . Similarly, the Hessian of h is given by

Hh,ii(x) = Cid
′(d′ − 1)(xi + ci + 1)d−2.

Next, we compute the polytopic representation of each element of Hf .

qf,ij(Λ) =
∑
|α|≤d

bij,αΛ
α

for each i, j. Next, we define

q+f,ij(Λ) =
∑

|α|≤d,bij,α>0

bij,αΛ
α =

∑
|α|≤d

b+ij,αΛ
α

q−f,ij(Λ) =
∑

|α|≤d,bij,α<0

bij,α = −
∑
|α|≤d

b−ij,αΛ
α

We have b+ij,α = 0 when bij,α < 0 and b−ij,α = 0 when bij,α > 0 By theorem 3, q+f,ij(Λ(x)) > 0 and q−f,ij(Λ(x)) < 0
for all x ∈ Γ. Next, note that

|Hf,ij(x)| = |q+f,ij(Λ(x)) + q−f,ij(Λ(x))| ≤ q+f,ij(Λ(x))− q−f,ij(Λ(x)) (29)
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From (29), for each i, we have ∑
j ̸=i

|Hf,ij | ≤ q+f,ij(Λ(x))− q−f,ij(Λ(x)).

Next, we consider the Hessian of f + h, which is given by

Hf+h,ij(x) = Hh,ij(x) +Hf,ij(x).

To certify that Hf+h(x) is diagonally dominant, for each i, we need

Pi(x) = Hh,ii(x) +Hf,ii(x)−
∑
j ̸=i

|Hf,ij(x)| ≥ 0 ∀ x ∈ Γ

However, from (29), it follows that Hf+h(x) is diagonally dominant if for each i and all x ∈ Γ

Pi(x) = Hh,ii(x) +Hf,ii(x)−
∑
j ̸=i

q+f,ij(Λ(x))− q−f,ij(Λ(x)) ≥ 0.

From Handelman’s theorem, this means that the polynomial

QPi(Λ) =
∑
|α|≤d

CαΛ
α

must have nonnegative coefficients. Recall that the polytopic representation of Hh can be written as

QHh,ii(Λ) = cid
′(d′ − 1)

∑
|α|≤d−2

Gi,αΛ,

where Gi,α > 0 for each i, α. Thus, we can choose

QPi
(Λ) = QHh,ii(Λ) +QHf ,ii(Λ)−

∑
j ̸=i

q+f,ij(Λ)− q−f,ij(Λ)

 (30)

Thus, for each α, we have

Ci,α = cid
′(d′ − 1)Gi,α + bii,α −

∑
j ̸=i

b+ij,α + b−ij,α

 ≥ 0

If Hf+h(x) is diagonally dominant, we require each Ci,α ≥ 0. Thus,

ci ≥
1

d′(d′ − 1)Gi,α

−bii,α +
∑
j ̸=i

b+ij,α + b−ij,α

 for all α.

Thus, we can find

ci = max
α

max{−bii,α +
∑

j ̸=i b
+
ij,α + b−ij,αbi,α, 0}

d′(d′ − 1)Gi,α
(31)

C.4 Computation of kji Coefficients

In this section, we discuss the construction of kji coefficients as described in Lemma 5.

Suppose we have a polytope Γ := {x ∈ Rn : a⊤i x+ bi ≥ 0}. Recall that the kji coefficients introduced in 5 satisfy
kjiai = ej where ej is the jth coordinate vector. We can find kji for a given polytope by solving the following
linear program:

kj = argmin
k

{1|A⊤k ≥ ej − εA⊤1}



Chaitanya Murti, Dhruva Kashyap, Chiranjib Bhattacharyya

where ε is any positive constant, and 1 is a vector of ones. For certain sets, however, kji can be found algorith-
mically. For a simplex

Γsimplex := {x ∈ Rn : l0(x) ≥ 0, lj(x) ≥ 0, j ∈ [n]},

where l0(x) = 1 −
∑

i xi and li(x) = xi, we can find kji = 1 for i ̸= j, i = 0, 1, · · · , n, and kji = 2 otherwise.
Similarly, for a hypercube

Γcube := {x ∈ Rn : l+j (x) ≥ 0, l−j (x) ≥ 0, j ∈ [n]},

where l+i (x) = xi+ui and l−i = vi−xi, where ui < vi are real numbers, we can find kji = 1 for i ̸= j and kji = 2
for i = j.

D ADDITIONAL IMPLEMENTATION DETAILS

In this section, we provide provide additional experimental details from section 6, as well as a simple example
highlighting the construction of dcds.

D.1 Experimental Setup

We conduct our experiments on a system with the following specifications:

• 32GB RAM

• intel17-11700

• MATLAB2020b

We use the Mozart and Penny datasets as used in Wang et al. (2014); Ecker and Jepson (2010) for shape-from-
shading experiments.

D.2 Optimization Details

We use projected gradient descent to solve the inner loop of the CCCP. Given a differentiable function f : Rn → R,
we aim to solve

x∗ = argmin
X∈Γ

f(x).

Here, we consider Γ to be a polytope as defined in (3).

We use the following update rule:

yk+1 = xk − η∇f(xk)

xk+1 = PΓ(yk+1), (32)

where PΓ(y) is the projection of y onto Γ. In particular, for the set Γ := {x ∈ Rn : a ≤ xi ≤ b}, if x = PΓ(y),
then

xi = min{b,max{a, xi}}.

We typically use η = 0.05 as a stepsize.

D.3 Undominated vs Suboptimal dcds

In this section, we provide a simple experiment that provides intuition into the difference between undominated
and suboptimal dcds. We also highlight the utility of undominated dcds when it comes to the CCCP.

We consider the problem of finding dcds of

f(x, y) = x4 − xy3 + x2y − 5xy − x2 − 2x+ 3y + 1

over the polytope Γ := {x ∈ R2 : −1 ≤ xi ≤ 1, i = 1, 2}. We apply a variety of methods to construct dcds, and
compare the efficacy of the convex-concave procedure at solving x∗ = argmin{f(x) : x ∈ Γ} having used the
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different dcds we obtained, and using a projected gradient descent algorithm to solve the convex subproblems.
We obtain dcds by (a) solving Problem 1 with the relaxation given by Theorem 8, (b) solving the feasibility
problem stated in Theorem 6 giving us, (c) solving (26). We compare the values of maxx∈Γ Tr(Hh(x)), as well
as the number of iterations for Convex-Concave procedure. We state the experimental details in section D in
the Appendix. We present our results in Table 5, and plot the dcds obtained by solving optimization problems
in Figure 1.

Method maxx∈Γ Tr(Hh(x)) CCCP Iterations
Thm. 8 Opt. 26.7 13
Thm. 6 Feas. 70 31

Thm. 9 < 81.3 89

Table 5: Comparison of efficacy of methods for construction of dcds for a polynomial.Thm. 8 Opt. refers to solving
Problem 1 using the conditions in Theorem 8, and Thm 6 Feas. refers to finding h(x) that satisfies (18)-(20).

(a) Plot of f + hs, f(x, y), and −hs. (b) Plot of f + hu, f , and −hu.

Figure 1: Plots of different dcds of f(x, y); f(x, y) is the surface “sandwiched” between the convex and concave functions.
We find hs = 23x2 + 12y2 + 2x− 3y and hu(x, y) = .52x4 − .28x3y+ .42x2y2 + .5xy3 + .07y4 + .06x3 + .83x2y+ .17xy2 −
.06y3 + 5.5x2 + 1.67xy + 2.67y2 + 2x− 3y

D.4 Additional Details on Shape-from-Shading Experiments

In this section, we provide additional details for the shape-from-shading experiments given in Section 6. We
choose a random initialization for the CCCP.

In Figure 2, we compare the 3D-structures with the ground truth structure obtained. We find that we ob-
tain solutions that are close to the ground truth. We see that the quality of the depth maps is high, though
imperfections can be noticed. The quality of the shape is roughly the same irrespective of the choice of dcd used.

E ADDITIONAL DETAILS ON POLYNOMIAL SHAPE FROM SHADING

In this section, we provide additional discussion on the polynomial shape-from-shading (SFS) problems. We
focus on the fundamental computer-vision aspects, as how such problems can be solved using graphical model
inference, as shown in Ecker and Jepson (2010); Wang et al. (2014).

In SFS, we are given a 2D image of a 3D object. We assume that both the image and object have the same support,
and we assume knowledge of the camera and the light source. Under the Lambertian lighting assumption (used in
this model), we further assume that the image intensity at each point is proportional to the angle between surface
normals of that point, and the light source direction Wang et al. (2014); Ecker and Jepson (2010); Salzmann
(2013).

In Ecker and Jepson (2010); Salzmann (2013); Wang et al. (2014); Khamaru and Wainwright (2018), this problem
is formulated as finding the minimizer of the sum of 3-variable polynomials of degree 4. As noted in Khamaru and
Wainwright (2018), these polynomials are non-convex, but bounded from below and coercive. In this work, we
apply box constraints to the SFS problem - that is, the depth cannot be a negative number, and the depth must
also be bounded from above. More specifically, we let Vij = (xij , yij , zij) be the 3D coordinates of the i, jth grid
point. Our goal is to find zij . Next, let r be a clique of 3 neighboring points on the grid that form a triangular
section of the mesh (i.e. rij = (Vij , Vi+1,j , Vi,j+1)). Under the Lambertian lighting model, Ir is the observed



Chaitanya Murti, Dhruva Kashyap, Chiranjib Bhattacharyya

(a) Ground Truth for Mozart (b) Depth Map for Mozart after CCCP
with DD-Local

(c) Depth Map for Mozart after CCCP
with DD-Linear

(d) Ground Truth Depth Map for Penny(e) Depth Map for Penny after CCCP
with DD-Local

(f) Depth Map for Penny after CCCP
with DD-Linear

Figure 2: Depth Maps for the Mozart/Penny datasets obtained via CCCP using DD-Local and DD-Linear.

intensity, and L = (l1, l2, l3) is the light direction. The surface normal is the vector Nr = (pr, qr, 1), where pr
and qr are functions of Vij , Vi+1,j , Vi,j+1, and, in particular, are affine functions of the z-coordinates.Thus, we
can write Nr = Nr(zr) = Nr(z) = (pr(z), qr(z), 1). Then, as shown in Salzmann (2013); Wang et al. (2014);
Khamaru and Wainwright (2018), the SFS problem can be written as

z∗ = argmin
z

∑
r∈R

(
(l1pr(z) + l2qr(z) + l3)

2
+ I2r

(
(pr(z)

2 + qr(z)
2 + 1

))2

.

Furthermore, we have that each r ∈ R is a tuple of the form r = ((i, j), (i, j + 1), (i+ 1, j)). With this, we have
we have

pr(z) =
(yi,j+1 − yi,j) (zi+1,j − zi,j)− (yi+1,j − yi,j) (zi,j+1 − zi,j)

(xi,j+1 − xi,j) (yi+1,j − yi,j)− (xi+1,j − xi,j) (yi,j+1 − yi,j)
, (33)

qr(z) =
(xi,j+1 − xi,j) (zi+1,j − zi,j)− (xi+1,j − xi,j) (zi,j+1 − zi,j)

(xi,j+1 − xi,j) (yi+1,j − yi,j)− (xi+1,j − xi,j) (yi,j+1 − yi,j)
. (34)

F COMPLEXITY ANALYSIS

The computational challenge faced when searching for DC Decompositions (or indeed, solving any polynomial
optimization problem) is the size of the associated LP or SDP. In most relaxations for polynomial optimization
problems (POPs), the decision variables in the optimization problem are the coefficients of the original polynomial
cost function and constraints. In this section, we provide a proof for Theorem 10, and thus compare the
computational complexities of obtaining dcds for some f ∈ R[x] over a polytope Γ as defined in (3). For
clarity, we derive the complexity of each method separately, as well as that of the SOS-based method derived in
Theorem 11 stated in Appendix C .

F.1 Complexity of Obtaining a DC Decomposition using Sum-of-Squares Programming

We consider the problem of finding a dcd of f ∈ R[x] using Theorem 11. We now state the complexity of solving
(SOS).

Lemma 6. Suppose f ∈ R[x] is of degree d, and we wish to find a local dcd of f over a polytope Γ as defined

in (3) with K facets. The complexity of solving (SOS) up to accuracy ε with SOS multipliers σh
i and σf+h

i , for
all i, are of degree d− 2, and where σh

o and σf+h
o are of degree d, using interior point algorithms is Õ(K3n7d),

where Õ is used to suppress poly(1/ε) factors.
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Proof. Solving an SDP with ΘSOS variables and ΞSOS constraints with an interior point algorithm requires
Õ(Ξ3

SOS +Θ3
SOSΞSOS +Θ2

SOSΞ
2
SOS) Nemirovski (2004). We have

Ch ∈ R(
n+d
d ), σh

0 ∈ Σ2n,d, σ
h
i ∈ Σ2n,d−2.

From this, the number of elements of the Gram matrix associated with the SOS form is

O

(
2n+ d/2

d/2

)2

,

and the total number of SOS polynomials of the same size is 2K, which are of size

O

(
n+ (d− 2)/2

(d− 2)/2

)2

.

Thus,

ΘSOS = 2K

(
2n+ (d− 2)/2

(d− 2)/2

)2

+ 2

(
2n+ (d/2)/2

(d/2)

)2

= O(Kn2d).

Similarly, we get ΞSOS = O((2n)d). Applying this to the complexity, we get

C = (Õ(2nd))3 + (Õ(2Kn2d)3Õ(2nd)) + (Õ(2Kn2d)2Õ(2nd))2 = Õ(K3n7d)

F.2 Complexity of solving SDP-Local

In this section, we analyze the time complexity of finding a local dcd using SDP-Local.

Lemma 7. Suppose f ∈ R[x] is of degree d, where d is even, and suppose we want to find a local dcd h ∈ R[x]
of degree d. Then, the complexity of solving the SDP in Theorem 6 to an accuracy ε is Õ(K4d), where Õ(·) is
used to suppress poly(1/ε) factors.

Proof. Solving an SDP with Θ variables and Ξ constraints with an interior point algorithm requires Õ(Ξ3 +

Θ3Ξ + Θ2Ξ2) Nemirovski (2004). Recall that Ch ∈ R(
n+d
d ), and each Bh,α, Bf+h,α ∈ Sn. Thus, for each α, we

have O(2n2) variables, and we have 2
(
K+d−2
d−2

)
= O(Kd−2) such variables. Thus, we have

Θ = 2O(n2)O(Kd−2) +O(nd) = O(n2Kd−2 +O(nd)) = O(Kd)

where the last equality holds since K > n,O(nd) = O(Kd). Similarly, we Hh(x) has
(
n+d−2
d−2

)
= O(nd−2)

coefficients, and each coefficients, and each coefficient has O(n2) elements. Thus,

Ξ = O(nd).

From this, we get

C = Õ((O(n3d) +O(K3d)O(nd) +O(n2d)O(K2d)) = Õ(K4d).

F.3 Complexity of Solving DD-Local

Next, we analyze the complexity of constructing a local dcd using DD-Local. We state the result below.

Lemma 8. Suppose f ∈ R[x] is of degree d, where d is even, and suppose we want to find a local dcd h ∈ R[x]
of degree d. Then, the complexity of solving the LP in Theorem 8 to an accuracy ε is Õ(K2d+2), where Õ(·) is
used to suppress poly(1/ε) factors.
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Proof. Recall that solving an LP with Θ variables and Ξ constraints with an interior point algorithm requires

Õ(Θ2Ξ)

operations Nemirovski (2004).

First, we count the number of variables. Ch ∈ R(
n+d
d ) = O(nd), Dh,ij ∈ R(

n+d−2
d−2 ) = O(nd−2); there are 2n such

variables. Next, each Bh,ij,+, Bh,ij,− has
(
K+d−2
d−2

)
= O(Kd−2) variables, of which there are O(n). Lastly, each

Bh,ii has
(
K+d−2
d−2

)
elements, and there are 2n such variables. Thus,

Θ = O(2nKd−2) +O(2n2Kd−2) +O(2nKd − 2) = O(Kd).

Similarly, there are O(n) = O(K) constraints. Thus, we have

C = Õ(O(K2d)O(K2)) = Õ(K2d+1)

Lemma 8 clearly shows the improvement in complexity when using DD-Local as compared to SDP-Local and
Theorem 11.

F.4 Complexity of Solving DD-Linear

Last, we analyze the complexity of constructing a local dcd using DD-Linear.

Lemma 9. Suppose f ∈ R[x] is of degree d, where d is even, and suppose we want to find a local dcd h ∈ R[x]
of degree d′. Then, the complexity of constructing a dcd using Theorem 9 to an accuracy ε is Õ(nKd′−2.

Proof. We assume we can preprocess the Hessian of f and the Handelman representation of h as given in
Theorem 9. Then, for each of the n variables, we have O(Kd′−2) monomials. Finding the max of these values
(to obtain the max required in (Lin)) costs O(nKd′−2).
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