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Abstract

In one view of the classical game of pre-
diction with expert advice with binary out-
comes, in each round, each expert maintains
an adversarially chosen belief and honestly
reports this belief. We consider a recently
introduced, strategic variant of this prob-
lem with selfish (reputation-seeking) experts,
where each expert strategically reports in or-
der to maximize their expected future repu-
tation based on their belief. In this work, our
goal is to design an algorithm for the selfish
experts problem that is incentive-compatible
(IC, or truthful), meaning each expert’s best
strategy is to report truthfully, while also en-
suring the algorithm enjoys sublinear regret
with respect to the expert with the best be-
lief. Freeman et al. (2020) recently studied
this problem in the full information and ban-
dit settings and obtained truthful, no-regret
algorithms by leveraging prior work on wa-
gering mechanisms. While their results under
full information match the minimax rate for
the classical (”honest experts”) problem, the
best-known regret for their bandit algorithm
WSU-UX is O(T 2/3), which does not match
the minimax rate for the classical (”honest
bandits”) setting. It was unclear whether the
higher regret was an artifact of their analy-
sis or a limitation of WSU-UX. We show, via
explicit construction of loss sequences, that
the algorithm suffers a worst-case Ω(T 2/3)
lower bound. Left open is the possibility that
a different IC algorithm obtains O(

√
T ) re-
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gret. Yet, WSU-UX was a natural choice for
such an algorithm owing to the limited design
room for IC algorithms in this setting.

1 INTRODUCTION

In the problem of prediction with expert advice (Vovk,
1995), we have K experts and T days and a fixed loss
function ℓ(xt, yt). Each day t ∈ [T ], the learner has
access to the advice bi,t of each expert i ∈ [K] about
the outcome yt. Using the expert advice, the learner
predicts xt and then outcome yt is revealed. The error
of the learner is measured by ℓ(xt, yt) at round t. The
goal of the learner is to achieve low regret with respect
to the cumulative loss of the best expert in hindsight.
One common approach to this problem in the litera-
ture is to, for any round t, maintain a set of weights
over experts wt,i for all i ∈ [K], select the advice of ex-
pert i with probability

wt,i

∥wt∥ 1
, and update the weights

appropriately once the outcome yt is revealed. See
for example the multiplicative weight update (MWU)
method (Arora et al., 2012) and Hedge (Freund and
Schapire, 1997).

Roughgarden and Schrijvers (2017) considered this
problem for binary outcomes (i.e. yt ∈ {0, 1}) where
the experts are strategic: in each round t, each expert
forms a belief bi,t ∈ [0, 1] about the binary outcome yt,
(i.e. bi,t = Pr (yt = 1) ∈ [0, 1]) and reports ri,t ∈ [0, 1]
in such a way as to maximize its own future reputa-
tion among the pool of experts. See the protocol in
Algorithm 1 which shows this framework.

Moreover, considering the class of learning algorithms
that maintain weights over experts wt,i for i ∈ [K],
Roughgarden and Schrijvers (2017) assumed that each
expert i at round t associates its own current repu-
tation with the weight wt,i and its future reputation
simply as its weight in the next round wt+1,i. This
type of expert is called a myopic expert as it does not
consider the impact of the decision on its long-term
reputation.
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Algorithm 1: Protocol for Prediction With Selfish
(Reputation Seeking) Experts for binary outcomes

Input: T , K, ℓ(X,Y ) : [0, 1]× {0, 1} → R
for t = 1, . . . , T do

The learner chooses a distribution πt ∈ ∆K

over experts and draws an expert It.
Each expert i ∈ [K] forms a belief bi,t ∈ [0, 1]
about the distribution of outcome yt.
Each expert i reports a prediction ri,t ∈ [0, 1]
with the goal of
maximizing their own future reputation.
Nature reveals the outcome yt ∈ {0, 1}.
Learner incurs loss of
E[ℓ(rIt,t, yt)] =

∑
j∈[K] πt,iℓ(rj,t, yt)

Given this notion of future reputation, the design of
the algorithm would impact how each expert would re-
port. Consider round t and expert i and a fixed weight-
based learning algorithm; depending on the learning
algorithm, there is a function f that determines the
weight wt+1,i as

wt+1,i = f(ri,t, yt, r−i,t, ht−1), (1)

where r−i,t denotes the reports of the experts other
than expert i and ht−1 is all the information revealed
by the end of round t− 1.

Moreover, assume that expert i has perfect informa-
tion about r−i,t and ht−1. Assuming expert i has a
belief bi,t about the distribution of yt, then it reports
ri,t to maximize its expected reputation:

ri,t = argmax
r∈[0,1]

Ebi,t [wt+1,i]

= argmax
r∈[0,1]

Ebi,t [f(r, yt, r−i,t, ht−1)] ,

where the expectation is over the randomness of the
outcome yt as if it were drawn based on the expert’s
belief bi,t. Observe that depending on function f , the
value the expert i reports ri,t can be different than
its belief bi,t. If truth-telling is always a dominating
strategy, meaning that no matter the other experts’
reports r−i,t, the best response is ri,t = bi,t, then the
algorithm is called incentive-compatible. The design
of incentive-compatible algorithms is desirable for two
reasons:

• Quality of prediction: The regret guarantee for
an incentive-compatible online learning algorithm
holds not only for the expert with the best reports
but also holds for the expert with the best beliefs,
which the algorithm does not have direct access to.
This guarantee is called belief regret.1

1Frongillo et al. (2021) used the term “regret with re-
spect to the true beliefs”.

• Natural strategy: An expert does not need to take
into consideration the reports of other experts.
Moreover, when a simple strategy (truth-telling) is
strictly dominating, it is reasonable to expect that
agents will choose that strategy.

As observed by Roughgarden and Schrijvers (2017),
the design of incentive-compatible online learning al-
gorithms is intimately connected to the problem of de-
signing proper scoring rules (see Definition 3 in Sec-
tion 2.3). This implies that when the loss function
is proper, the problem is easy. For instance, for any
proper loss function, such as squared loss, MWU which
uses the update rule

wt+1,i = wt,i(1− ηℓ(ri,t, yt)),

is incentive-compatible.

However, for absolute loss, which is not a proper loss
function, Roughgarden and Schrijvers (2017, Corol-
lary 31) showed that, under some mild restrictions2,
no weight-based randomized algorithm can achieve no-
regret.

Yet, as observed by Freeman et al. (2020), even for
proper loss functions such as squared loss, for another
natural variation of incentive for experts who, in any
round t, want to maximize their expected normalized
weight (i.e. the probability of being selected) in the
next round based on their private belief about the
outcome yt, the classical multiplicative weight algo-
rithm (MWU) fails to be truthful3. Freeman et al.
(2020) designed the Weighted-Score Update rule which
is truthful and also achieves O(

√
T ) regret in the full-

information setting. However, in their extension to
the multi-armed bandit setting (which they refer to as
the partial information setting), their algorithm WSU-
UX achieves O(T 2/3) regret, which does not match the
minimax optimal rate O(

√
T ) in the classical “honest

experts” problem.

Although the experimental results by Freeman et al.
(2020) suggested that WSU-UX performs similarly to
EXP3 (Auer et al., 2002) which has minimax optimal
regret of O(

√
T ) in the classical “honest experts” prob-

lem, it remained an open problem whether theO(T 2/3)
regret of WSU-UX is due to an artifact in the analysis
or if instead the algorithm cannot achieve lower regret.

2The class of algorithms that are considered by Rough-
garden and Schrijvers (2017) are those that are a natural
extension of deterministic weighted majority algorithms,
where the weight update has some mild restrictions.

3It is easy to show that Hedge and MWU are not truth-
ful. However, note that Frongillo et al. (2021) showed that
Hedge is approximately truthful. Under some assump-
tions, approximately truthfulness is enough to get good
belief regret, but in this paper, we only focus on exactly-
truthful/incentive-compatible algorithms: the algorithms
where truth-telling is the only dominant strategy.
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Main Question The main question that we are in-
terested in understanding is: in the setting of Freeman
et al. (2020), whether learning with reputation-seeking
experts under bandit feedback is strictly harder than
the classical bandit problem.

Contribution We take one step toward answering
this question by showing that WSU-UX, which is a
very natural choice for this problem, can not achieve
regret better than Ω(T 2/3) in the worst case. In partic-
ular, we show that for any choice of hyperparameters
for WSU-UX, for large enough T , there exists a loss
sequence where the belief regret is Ω(T 2/3). The con-
struction of the loss sequence is fairly simple but, for
the set of non-trivial hyperparameters (see Section 3.2
for a description of this set) requires a highly intricate
analysis. In particular, for the non-trivial case, we de-
sign a loss sequence such that (i) the best expert4 has
an estimated loss with large variance for a constant
fraction of T rounds, and at the same time (ii) the
best expert outperforms the other experts at the end.
The core technical difficulty is showing that both (i)
and (ii) happen simultaneously.

2 MODEL AND PRELIMINARIES

2.1 Problem setting

We first describe the learning protocol. In the set-
ting of Freeman et al. (2020), the protocol is the same
as Protocol 1, where the loss function is squared loss
(which is a proper loss). In the full-information version
of the problem, all experts offer reports, while under
bandit feedback, only the selected expert offers a re-
port. The future reputation of each expert is defined
as the probability of being selected in the next round.
More concretely, each expert i at round t with belief
bi,t ∈ [0, 1] about binary outcome yt strategically re-
ports ri,t ∈ [0, 1] to maximize their probability of being
selected by the algorithm in the next round t+1. The
goal of the learner is to minimize its belief regret, the
regret with respect to the expert with the best belief.

Definition 1. Let πt ∈ [K] be the learner’s probabil-
ity distribution in round t. Then the learner’s belief
regret E[RT ] after T rounds is defined as

E

∑
t∈[T ]

∑
j∈[K]

πt,jℓ(rj,t, yt)− min
i∈[K]

∑
t∈[T ]

ℓ(bi,t, yt)

 .

Note that the learner incurs loss according to reports
ri,t whereas the performance of the best expert is
measured with respect to bi,t. In general, ri,t need

4The best expert here is the expert whose belief has the
lowest cumulative loss over T rounds.

not equal bi,t. However, if a learning algorithm is
incentive-compatible, meaning that truth-telling is the
only strictly dominant strategy, it is reasonable to as-
sume that ri,t = bi,t. In this case, low classical regret
implies low belief regret. Next, we restate the defi-
nition of incentive-compatibility from Freeman et al.
(2020).

Definition 2 (Freeman et al. (2020)). An online
learning algorithm is incentive-compatible if for ev-
ery timestep t ∈ [T ], every expert i with belief bi,t,
every report ri,t, every vector of reports of the other
experts r−i,t, and every history of reports (rt′)t′<t and
outcomes (yt′)t′<t,

Eyt∼Bern(bi,t) [πt+1,i | (bi,t, r−i,t), yt, (yt′)t′<t, (rt′)t′<t]

≥ Eyt∼Bern(bi,t) [πt+1,i | (ri,t, r−i,t), yt, (yt′)t′<t, (rt′)t′<t] ,

where y ∼ Bern(b) denotes a random variable taking
value 1 with probability b and 0 otherwise.

2.2 Motivation for Bandit Setting

To motivate the bandit version of the problem, con-
sider the following example. A forecasting agency
wishes to forecast an event and has a choice of which
forecaster to employ. The selected forecaster will be
given a fixed payment (say $1000) from the agency to
research the event, will then develop their belief about
the likelihood of the event occurring, and will finally
decide what probability forecast (report) to give the
forecasting agency. Any forecaster that is not selected
will not receive a payment and will never provide a re-
port to the forecasting agency. Naturally, the agency
desires accurate reports, and so its goal is to select the
forecaster whose belief (which can be developed only
after the forecaster is funded and hence was selected)
is the most accurate. To this end, the agency should
ensure that the future expected payment given to a se-
lected forecaster (for the next event) incentivizes the
forecaster to report its belief honestly for the current
event. The forecaster’s incentive is exactly equal to
the future probability of being selected (a quantifica-
tion of the forecaster’s reputation) since, if selected in
the future, the selected forecaster will again receive a
fixed payment. The agency should thus ensure that a
forecaster’s future probability of being selected is di-
rectly proportional to the accuracy of the forecaster’s
report, an accuracy which is known once the outcome
has been realized.

2.3 Preliminaries

In this subsection, we overview fundamental concepts
relevant to incentive-compatibility. We first recall the
notion of proper scoring rules, which can be used
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to elicit information from an expert (Gneiting and
Raftery, 2007), (Buja et al., 2005).

Definition 3. Let Y denote the outcome space and
R ⊆ ∆(Y) denote the distributional report space. A
scoring rule s : R×Y → R is proper if for any b, r ∈ R,
we have

EY∼b [s(b, Y )] ≥ EY∼b [s(r, Y )] ,

and strictly proper if the inequality becomes tight only
when r = b.

This implies that when a scoring rule is (strictly)
proper, an expert with belief b about the distribution
of outcome Y ∈ Y would (uniquely) maximize their
expected score by reporting r = b.

A (strictly) proper loss function ℓ is defined similarly
where truthful reporting of the belief (strictly) mini-
mizes the expected loss. We assume R = [0, 1] and
Y = {0, 1} in this paper.

Next, let us view any online algorithm for the problem
of prediction with expert advice as follows.

Definition 4 (Probability-based update class of an
online learning algorithm). An online learner M main-
tains a distribution πt over K experts. In round t, the
learner draws an expert It = i with probability πt,i.
Then, the outcome yt is revealed, and the learner in-
curs loss ℓIt,t = ℓ(rIt,t, yt) and updates πt+1 only as a
function of rt = (rt,1, . . . , rt,K), πt = (πt,1, . . . , πt,K),
and outcome yt.

Note that many algorithms can be described as
probability-based update algorithms, such as MWU
and Hedge. In order to make a distinction, we de-
scribe the precise definition of Hedge and MWU using
the probability-based update description.

Definition 5. Hedge initializes the weights w1,i =
1
K

for all i ∈ [K], updates the weights in each round based
on the update

wt+1,i = wt,i · exp (−ηℓ(ri,t, yt)), (2)

and chooses πt,i =
wt,i∑
j wt,j

.

MWU does the same except it uses the update

wt+1,i = wt,i · (1− ηℓ(ri,t, yt)).

Note that 1 − ηℓ(ri,t, yt) is a linear approximation of
exp (−ηℓ(ri,t, yt)) around 0.

Unlike the setting of Roughgarden and Schrijvers
(2017) where using MWU with a proper loss function
ℓ implies incentive-compatibility, in this setting we do

not achieve incentive-compatibility since the normal-
ization would impact the incentive.5 Indeed, in the
MWU algorithm, in round t, depending on the out-
come yt, the sum of the weights of all experts (the
normalization factor) can be different. This will skew
the incentive of an expert who wants to report to max-
imize the expected normalized weight.

2.3.1 Connection to Wagering Mechanism

Toward getting an update rule that is incentive com-
patible, Freeman et al. (2020) observed a connec-
tion between online learning algorithms and wagering
mechanisms. In a wagering mechanism, each player re-
ports their prediction about a random outcome and at
the same time wagers (bets) a non-negative amount
of money on their prediction. Once the outcome is
realized, the mechanism will pay each player a pay-
ment based on the quality of their prediction and the
amount they wagered.

More concretely, consider the specific setting of wager-
ing mechanisms where there are K fixed players called
experts, and there is an unknown Bernoulli outcome
y ∈ {0, 1}. Each expert i ∈ [K] with belief bi ∈ [0, 1]
about the probability that y = 1 wagers mi > 0 and
reports ri ∈ [0, 1] with the goal of maximizing the ex-
pected payment from the mechanism. Note that ri
may or may not be equal to bi. Once the random out-
come y is revealed, the mechanism takes the vector of
reports r = (r1, . . . , rK), wagers m = (m1, . . . ,mK),
and the realization y and outputs a K dimensional
vector of Γ(r,m, y) ∈ RK where Γi(r,m, y) ∈ R is
the payment that the mechanism will pay to expert i.

A mechanism is called incentive-compatible if any ex-
pert i with belief bi strictly maximizes their expected
payment by reporting ri = bi, i.e.,

bi = argmax
r∈R

Ey∼Bern(bi) [Γi ((ri, r−i) ,m, y)]

for any fixed vector r−i of reports of the other experts
and vector of wagers m.

The Weighted-Score Wagering Mechanism (WSWM)
is an incentive-compatible wagering mechanism de-
fined as follows.

Definition 6 (Lambert et al. (2008)). The Weighted-
Score Wagering Mechanism is a wagering mechanism
that maps any vectors r and m and outcome y to
payment Γ = (Γ1, . . . ,ΓK), where

ΓWSWM
i (r,m, y) = mi

1− ℓ(ri, y) +
∑
j∈[K]

mjℓ(rj , y)


5Note that Hedge is not incentive-compatible even in

the setting of Roughgarden and Schrijvers (2017).
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is the payment for expert i and ℓ is a strictly proper
loss function.

This mechanism has several essential properties
(Lambert et al., 2008). First, the mechanism is
budget-balanced meaning

∑
j Γj(r,m, y) =

∑
j mj ,

and moreover, the payment is non-negative, i.e.,
Γi(r,m, y) ≥ 0. Observe that designing an incentive-
compatible probability-based online learning algo-
rithm can be seen as designing an incentive-compatible
wagering mechanism that is budget balanced with non-
negative payment as follows.

Consider the probability-based description of any on-
line learning algorithm. This algorithm wants to real-
locate πt to πt+1. To do that, the algorithm at round
t asks for the reports of the experts. Once the out-
come yt is revealed, the algorithm uses the reports
of the experts rt = (rt,1, . . . , rt,K), the wagers vector
πt = (πt,1, . . . , πt,K), and outcome yt to set the prob-
ability in the next round as

πt+1,i = Γi(rt,πt, yt).

Since the payment Γi(rt,πt, yt) is incentive-
compatible, experts will report truthfully.

Therefore, among the algorithms in the class of online
probability-based update online learning algorithms
defined in Definition 4, the only incentive-compatible
ones are the ones where their update can be described
as a wagering mechanism update that is non-negative
and budget-balanced.

Using a wagering mechanism itself does not imply a
no-regret guarantee; however, Freeman et al. (2020)
designed a wagering mechanism called Weighted-Score
Update (WSU)6 in which the mechanism uses the up-
date

πt+1,i = ΓWSU
i (rt, ηπt, yt)

= ΓWSWM
i (rt, ηπt, yt) + ΓConst

i (rt, (1− η)πt, yt)

= ΓWSWM
i (rt, ηπt, yt) + (1− η)πt,i

for any i ∈ [K], where η ∈ (0, 0.5) and ΓConst
i is simply

a mechanism that returns the input wagers. Using the
definition of WSWM, this update may be written as

πt+1,i = πt,i

(
1− η

(
ℓt,i −

∑
j

πt,jℓt,j

))
. (3)

Freeman et al. (2020) showed that WSU with the up-
date of form (3) can achieve O(

√
T lnK) regret in the

full-information setting.

6They do not call their update rule as a wagering mech-
anism, but it can be viewed as a wagering mechanism.

Algorithm 2: WSU-UX (Freeman et al., 2020)

Input: η, γ ∈ (0, 1/2) such that ηK
γ ≤ 1/2, and

loss sequence ℓ(x, y).
Set π1,i =

1
K ,∀i ∈ [K]

for t ∈ [T ] do
The learner chooses expert It according to
distr. π̃t,i = (1− γ)πt,i +

γ
K ,∀i ∈ [K].

Arm i = It forms a belief bi,t ∈ [0, 1].
Arm i = It reports a report ri,t ∈ [0, 1] with
the goal of maximizing Eyt∼Bern(bi,t)[πt+1,i].

Nature reveals the outcome yt ∈ {0, 1}
The learner computes ℓ̂i,t =

ℓ(ri,t,yt)
π̃i,t

for i = It

and ℓ̂j,t = 0,∀j ̸= It.
The learner updates

πt+1,i = πt,i

(
1− η

(
ℓ̂t,i −

∑K
j=1 πt,j ℓ̂t,j

))
.

Interestingly, an apparently unnoticed connection is
that the update of form (3) recovers the same update
as the ML-Prod update of Gaillard et al. (2014) if in
all rounds all experts use the same learning rate η.

2.4 Existing Bandit Results

Freeman et al. (2020) extended their result to the ban-
dit case by designing the Weighted-Score Update with
Uniform Exploration (WSU-UX) algorithm described
in Algorithm 2, and they showed a O(T 2/3(K lnK)1/3)
upper bound on the regret of this algorithm. In partic-
ular, in their algorithm, they used the common tech-
nique of constructing unbiased importance-weighted
loss estimates. The algorithm then applies the WSU
update on the estimated losses to update the prob-
ability distribution. For some technical reasons, they
additionally needed to mix the probability distribution
over arms (πt) with a uniform distribution with weight
γ ∈ [0, 1] to get the probability distribution (π̃t) from
which an arm is selected, i.e., π̃t,i = (1 − γ)πt,i + γ 1

k .
The two technical reasons for using γ are as follows:

1. To make sure that after each update, πt,i is still
a valid probability distribution.

2. Their regret upper bound can be extremely large
in case they do not mix (i.e. γ = 0).

Note that mixing with uniform distribution is not for
the purpose of getting high probability bounds, as they
bound pseudo-regret.7

Indeed, they showed for WSU-UX with learning rate

7“Regret” in this work is actually pseudo-regret, which
equals expected regret under oblivious beliefs and out-
comes.
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η and mixing weight γ,

E[RT ] ≤ γT +
ηKT

γ
+

lnK

η
+ 2ηKT.

The best choice of η and γ attains the regret

E[RT ] ≤ 2(4T )2/3(K lnK)1/3,

which is O(T 2/3) in terms of T .

It was unclear whether the higher regret was an ar-
tifact of their analysis or a limitation of WSU-UX. If
there is a tighter analysis of WSU-UX’s regret, then
for some valid γ, η, we would have E[RT ] = o(T 2/3).
However, we show that for any valid γ, η, (see Sec-
tion 3.2 for a description of valid hyperparamters) for
large enough T , there exists a loss sequence for which
E[RT ] = Ω(T 2/3), implying that WSU-UX cannot
achieve regret better than O(T 2/3).

3 REGRET LOWER BOUND FOR
WSU-UX

3.1 Potential Analysis View Comparision
between EXP3 and WSU-UX

A potential(-based) analysis is a common way to an-
alyze the regret of online learning algorithms (Cesa-
Bianchi and Lugosi, 2003). We compare the potential
analysis of WSU-UX and EXP3, beginning with the
full-information variation of each algorithm and then
turning to the implications in the bandit setting.

In the potential analysis of Hedge, for any i ∈ [K] and
t ∈ [T ], we define ΦHEDGE

t,i := wt,i with wt,i as in

Definition 5. We define ΦHEDGE
t :=

∑
j∈[K] wt,j . By

non-negativity of wt,i, we have

1

η
ln (ΦHEDGE

T+1,i ) ≤ 1

η
ln (ΦHEDGE

T+1 ), (4)

where η is the learning rate of the algorithm. From the
LHS and RHS of (4), we can extract the cumulative
loss of expert i and the cumulative loss of the learn-
ing algorithm respectively. However, we might not be
able to exactly extract these two quantities from the
potentials as there might be some error terms involved
in the extraction process. Indeed, for Hedge, the LHS
is exactly the cumulative loss of expert i; however, the
RHS can only be upper bounded by the cumulative
loss of the learner plus some extra terms:

1

η
ln (ΦHEDGE

T+1 ) ≤
∑
t∈[T ]

∑
j

πt,jℓt,j

+
lnK

η︸ ︷︷ ︸
exploration term

+ η
∑
t∈[T ]

∑
j

πt,j (ℓt,j)
2


︸ ︷︷ ︸
Second order error

. (5)

These two terms will appear in the regret analysis.

On the other hand, note that the WSU update can
be written as a linear approximation of the Hedge up-
date at the point ℓ̄t :=

∑
j πt,jℓt,j (see Appendix C

for details). This means that WSU just uses a linear
approximation of Hedge when updating the potential.
This change in potential function will impact the pro-
cess of extracting the regret from the potential.

For WSU, the potential is defined as ΦWSU
t,i := πt,i

and ΦWSU
t :=

∑
j∈[K] πt,j = 1. By non-negativity of

πt,i we have

1

η
ln (ΦWSU

T+1,i) ≤
1

η
ln (ΦWSU

T+1 ) = 0. (6)

Now, the RHS of (6) (which is 0) does not involve any
second-order error term. In fact, since WSU is normal-
ized, the RHS does not give us information about the
regret. However, we can extract the difference between
the cumulative loss of the algorithm and expert i from
the LHS of (6), and this extraction process would lead
to a second-order error term. Indeed we have

1

η
ln (ΦWSU

T+1,i) ≥
∑
t∈[T ]

∑
j

πt,jℓt,j − ℓt,i


− lnK

η︸ ︷︷ ︸
exploration

term

− η
∑
t∈[T ]

∑
j

πt,jℓt,j − ℓt,i

2

︸ ︷︷ ︸
Second-order error

.

(7)

These two terms in (7) will appear in the regret.

Comparing (7) and (5): Note that the error term

in (7) is a second-order version of
[∑

j πt,jℓt,j − ℓt,i

]
for a fixed i whereas the second-order term in (5),

which is
[∑

j πt,j (ℓt,j)
2
]
, is a weighted average of

(ℓt,j)
2
weighted by πt.

Implication for Bandit Case Now, in the bandit
case where we use ℓ̂t,i to be an unbiased estimated
loss for quantity ℓt,i, the expectation of the second-

order term in (5) is E
[∑

j πt,j

(
ℓ̂t,j

)2]
= O(K),

whereas the expectation of the second-order term in

(7) is E
[(∑

j πt,j ℓ̂t,j − ℓ̂t,i

)2]
≤ E

[(∑
j πt,j ℓ̂t,j

)2]
+

E
[(

ℓ̂t,i

)2]
= 2K + E

[
1

π̃t,i

]
= O(Kγ ). This difference

makes the regret bound for WSU-UX larger.

However, it is not clear whether the potential-based
analysis is tight or if there might be a way to get a
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better regret upper bound. Next, we show our main
result, a lower bound demonstrating that it is not pos-
sible to get a better upper bound.

3.2 Lower Bound Proof

We show that WSU-UX cannot achieve regret better
than Ω(T 2/3). The following theorem restricts the fo-
cus to valid settings of the hyperparameters, which we
define after the theorem.

Theorem 7. For any valid set of hyperparameters
(η, γ) there exists T0 such that for any T ≥ T0,

E[RT ] = Ω(T 2/3).

The notion of valid hyperparameters is taken from
the restrictions imposed by Freeman et al. (2020).
In particular, the restrictions are ηK

γ ≤ 1/2 and

η, γ ∈ (0, 1/2). See the beginning of the Appendix A
for more information about the restrictions.

Now, we further partition the set of valid hyperparam-
eters (η, γ) into two cases:

• the trivial case: η < T−2/3 or γ > T−1/3;

• the non-trivial case: η ≥ T−2/3 and γ ≤ T−1/3.

In the trivial case, either the learning rate η is too
small, causing the algorithm to take a long time to con-
centrate on the optimal expert and incurring a large
regret of order Ω(T 2/3), or γ is so large that the uni-
form exploration would cause the algorithm to incur a
large regret of Ω(T 2/3). The proof for the trivial case,
along with all other results in this paper, can be found
in the appendix. For the non-trivial case, we show the
following.

Theorem 8. For K = 2 and for any valid set of (η, γ)
in the non-trivial case, there exists T0 such that for any
T ≥ T0, we have a loss sequence {ℓt}Tt=1 such that

E[RT ] = Ω(T 2/3). (8)

3.3 High-level Proof for Non-Trivial Case

In this subsection, we give a high-level proof of Theo-
rem 8. We first introduce the following loss sequence.

Definition 9. For any T , we define

{ℓt}Tt=1 =

{
ℓt,1 = 1, ℓt,2 = 0 for 1 ≤ t ≤ T

100

ℓt,1 = 0, ℓt,2 = 1 for T
100 < t ≤ T

.

Moreover, we call the set of rounds {t : 1 ≤ t ≤ T
100}

Phase 1, where only arm 1 incurs loss, and the set of

rounds {t : T
100 < t ≤ T} Phase 2, where only arm 2

incurs loss.

From now on, by {ℓt}Tt=1 we mean the loss sequence
defined in Definition 9. Note that in this loss sequence,
the best arm is arm 1. Our goal is to show that this
particular loss sequence forces the algorithm to incur
large regret. We do this by decomposing the regret
into three terms, as described in Theorem 10.

Theorem 10. When running WSU-UX for any valid
choice of (η, γ) in the non-trivial case, there exists T0

such that for any T ≥ T0, for loss sequence {ℓt}Tt=1,
we have for some constants c1, c2, c3 > 0,

E [RT ] ≥ c1
1

η
+ c2

ηTK

γ
+ c3γT. (9)

Note that Theorem 10 implies E [RT ] = Ω(T 2/3) as
the RHS of (9) can be lower bounded by Ω(T 2/3).

3.3.1 Proof of Theorem 10

It remains to show (9). To do that, we first introduce
the following key lemma that follows similar steps as
Lemma 4.3 of Freeman et al. (2020) but with all the
inequalities in the reverse direction, which implies a
second-order lower bound.

Lemma 11 (Second-Order Lower Bound). For any
valid choice of (η, γ) when running WSU-UX on loss
sequence {ℓt}Tt=1, we get

T∑
t=1

∑
j∈[K]

πt,j ℓ̂t,j −
T∑

t=1

ℓ̂t,1

≥ lnπT+1,1 + lnK

η
+

η

4

T∑
t=1

(ℓ̂t,1 −
∑
j∈[K]

πt,j ℓ̂t,j)
2.

(10)

Next, to convert (10) to the lower bound in (9), we list
three claims that hold when running WSU-UX on the
loss sequence in Definition 9 given hyperparameters
falling in the non-trivial case. Note that each claim
corresponds to a term on the right-hand side of (9).

Claim 1 (Concentration on best arm at the end). For
large enough T , there exists c1 > 0 such that

E [lnπT+1,1 + lnK] ≥ c1. (11)

Claim 2 (Second moment lower bound). For large
enough T , there exists c2 such that

E

 T∑
t=1

ℓ̂t,1 −
∑

j∈[1,2]

πt,j ℓ̂t,j

2
 ≥ 4c2

TK

γ
.
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Claim 3 (Bias induced by uniform exploration). For
large enough T , there exists c3 such that

E

 T∑
t=1

( ∑
j∈[1,2]

π̃t,j ℓ̂t,j −
∑

j∈[1,2]

πt,j ℓ̂t,j

) ≥ c3γT.

Given all three claims and Lemma 11, the proof of The-
orem 10 is straightforward. In loss sequence {ℓt}Tt=1,
the best arm is arm 1; therefore, Claim 3 gives

E[RT ] = E

 T∑
t=1

∑
j∈[K]

π̃t,j ℓ̂t,j −
T∑

t=1

ℓ̂t,1


≥ E

 T∑
t=1

∑
j∈[K]

πt,j ℓ̂t,j −
T∑

t=1

ℓ̂t,1

+ c3γT.

(12)

To further lower bound (12), we take the expectation
of both sides of (10) and use Claims 1 and 2 to get

E [RT ] ≥ c1
1

η
+ c2

ηTK

γ
+ c3γT.

3.3.2 Subtlety of Showing the Claims

The proof of the claims is not straightforward and re-
quires subtle work. At a high level, we designed loss
sequence {ℓt}Tt=1 such that for a constant fraction of
rounds T

200 ≤ t ≤ T
100 , arm 1 (the best arm) has a cu-

mulative loss linearly worse than arm 2. This can be
used to show Claim 2. However, during these rounds
T
200 ≤ t ≤ T

100 , arm 1 keeps getting small probabil-
ity and hence very large estimated loss. Yet, because
the algorithm has some uniform exploration, it picks
arm 1 frequently. Therefore, at the beginning of round
t ≥ T

100 , the probability update is very slow. There-
fore, it is not obvious whether the algorithm can allow
πT,1 to recover at the end or not.

The next section gives a technical overview of how we
prove the claims. We perform a careful analysis of
the probability updates, leveraging a recently shown
multiplicative form of Azuma’s inequality (Kuszmaul
and Qi, 2021) in some key steps to show that indeed
with probability at least 1−O( 1

T 2 ), πT1+T2+1,1 ≥ 1/4.
We then show that with high probability πT+1,1 ≥ 3/4.
This implies Claim 1 and also Claim 3.

4 SHOWING THE CLAIMS

The proof of Claim 2 is fairly straightforward. The
proof requires the following lemma.

Lemma 12. In WSU-UX with two arms (i, ī),

E[πt+1,i | Ft−1] = (1− Ct,i)πt,i + Ct,i π
2
t,i, (13)

where Ct,i := η
(
ℓt,i − ℓt,̄i

)
and Ft−1 is the history up

until the end of round t− 1.

This lemma can be used to show that for t in Phase
1, i.e., t ≤ T

100 , πt,1 decreases in a multiplicative way
and we have

E[πt+1,1] ≤ (1− η

2
)E[πt,1].

The above inequality can be used to show that for a
constant fraction of rounds T

200 ≤ t ≤ T
100 we have

E[πt,1] ≤
1

KT
. (14)

The above fact can be further utilized to show that
the summation of the second moments of the esti-
mated loss differences in Claim 2 is large, which proves
Claim 2.

Claims 1 and 3 require more sophisticated techniques.
To demonstrate them, we need to analyze the behavior
of πt,1 for t ∈ [T ] when running the algorithm on the
loss sequence {ℓt}Tt=1. Note that since we are in the
bandit case, πt,1 is a random variable.

Recall Phases 1 and 2 from Definition 9, the definition
of the loss sequence. We need to further decompose
these phases into multiple sub-phases as defined below.

Definition 13. Define T1 = 1
100T, T2 = 2

10T, T3 =
1
10T, T4 = 69

100T , and then define (sub-)phases as fol-
lows:

• Phase 1: T1 = {t : 1 ≤ t ≤ T1},

• Phase 2.1: T2 = {t : T1 + 1 ≤ t ≤ T1 + T2},

• Phase 2.2: T3 = {t : T1+T2+1 ≤ t ≤ T1+T2+T3},

• Phase 2.3: T4 = {t : T1 + T2 + T3 + 1 ≤ t ≤
T1 + T2 + T3 + T4}.

Moreover, we define T ′ and M , which are intermedi-
ate numbers that are going to be used in our analysis
regarding high probability statements in this section.

Definition 14. We define M and T ′ as follows

M :=
1

ln 2

ln
(
2K

γ

)
︸ ︷︷ ︸

∝(lnT )

+2(1 + ε1)(1 +
ηK

γ
)ηT1︸ ︷︷ ︸

∝(ηT1)


(15)

T ′ :=
1

1− ε2
(

4

3− γ
)
2

η
M (16)

where ε1 =
√

6 lnT
2γ
K T1

and ε2 =
√

4 lnT
3−γ
4 T2

.
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Note that since we are in the non-trivial case (η ≥
T−2/3 and γ ≤ T−1/3), as T goes to ∞, we
have ε1, ε2 → 0 and moreover M ≈ c ηT1 and
T ′ = c′Mη ≈ c c′ T1. Note that for large enough
T , we have

T ′ ≤ T2. (17)

We now give a high-level picture of how we prove
Claims 1 and 3, which also will give more intuition
about M and T ′.

Proof Sketch of Claims 1 and 3. Let E1 = {πT1+1,1 ≥
2−M} be the event that arm 1’s probability at the end
of Phase 1 is not too small, where M is defined in (15).
Let E2 = {πT1+T2+1,1 ≥ 1

4} be the event that arm 1’s
probability at the end of Phase 2.2 has recovered to 1

4 .

First, we show that with high probability, the algo-
rithm does not pull arm 1 too many times in Phase 1.
In particular, we show that at the end of Phase 1, the
probability πT1+1,1 of selecting arm 1 is lower bounded
by 2−M (hence, E1 happens). To prove this result, we
leverage a recent multiplicative form of Azuma’s in-
equality for martingales (Kuszmaul and Qi, 2021).

The next key step is to show that if E1 happens,
then with high probability E2 happens. Since we al-
ready showed that E1 happens with high probabil-
ity, it follows that with high probability we have that
πT1+T2+1,1 ≥ 1/4. Now, to show this key step, we pro-
ceed as follows. First, we observe that in Phase 2.1, it
is only via pulls of arm 2 that the probability of arm
1 can increase. Moreover, initially, the rate of update
of arm 1 is

πt+1,1

πt,1
, which is very close to 1. There-

fore, we first analyze how many pulls of arm 2 suffice
for arm 1’s probability to double, and we then ana-
lyze how many doublings are needed to satisfy event
E2. Finally, we again use a martingale analysis (mul-
tiplicative Azuma) to show that within the rounds of
Phase 2.1, the sufficient number of pulls of arm 2 occur
with high probability and hence event E2 happens.

We then show that conditional on event E2, from Phase
2.2 onwards, the probability πt,2 goes to zero exponen-
tially quickly as t increments beyond T1 + T2. There-
fore, the probability πt,1 converges to 1 exponentially
quickly. This, combined with Lemma 12, is essentially
what is needed to prove Claim 3. For Claim 1, we use
a careful analysis based on Chebyshev’s inequality to
show that with probability exponentially close to 1,
πT,1 is at least 3/4. This is essentially what allows us
to control the expected log probability term in Claim 1
and hence what allows Claim 1 to go through.
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A Main Result And High-level proof

We give a high-level proof of the main theorem. For the convenience of the reader, we re-state the lemmas along
with their proofs.

Theorem 7. For any valid set of hyperparameters (η, γ) there exists T0 such that for any T ≥ T0,

E[RT ] = Ω(T 2/3).

We remind the reader that we restrict our attention to the set of valid hyperparameters: ηK
γ ≤ 1/2 and η, γ ∈

(0, 1/2). The notion of valid hyperparameters is taken from the restrictions imposed by Freeman et al. (2020).
We briefly explain some of the restrictions.

We note that we need ηK
γ ≤ 1 to make sure that we get a valid probability distribution πt+1 after updating

in each round t. Moreover, to get sublinear regret, we need γ ≤ 1/2; otherwise, uniform exploration will pick
the suboptimal arm frequently, which can cause linear regret. Since K ≥ 1, the inequality ηK

γ ≤ 1 implies

η ≤ γ
K ≤ γ ≤ 1/2 and therefore η ≤ 1/2.

Our analysis focuses on the restriction ηK
γ ≤ c for c = 1/2. Thus far, for technical reasons related to certain

inequalities, we are not sure whether our particular analysis can be made to go through for a larger c (that is still
less than 1). The main concern arises as c gets closer to 1. However, using advanced Taylor approximation-based
inequalities, this might be possible.

Now, we further partition the set of valid hyperparameters (η, γ) into two cases:

• The trivial case: η < T−2/3 or γ > T−1/3

• The non-trivial case: η ≥ T−2/3 and γ ≤ T−1/3.

The proof strategy for this theorem is that for any valid hyperparameters (η, γ), we show there exists a loss
sequence such that the algorithm will incur an expected regret of Ω(T 2/3).

A.1 Trivial Case

We show that in the trivial case E[RT ] = Ω(T 2/3).

Lemma 15. For K = 2 and for any setting (η, γ) in the trivial case where η < T−2/3 or γ > T 1/3,

E[RT ] = Ω(T 2/3).

We prove this by proving the following Lemma 16 for the case where η < T−2/3 and Lemma 17 for the case
where γ > T−1/3.

Lemma 16. For WSU-UX run with any η < T−2/3 and any γ ≥ 0 there exists a loss sequence {ℓt}Tt=1 and
c = 1

200 > 0 such that

E [RT ] ≥ c T 2/3.

Before proving Lemma 16, let us restate and prove Lemma 12. We will use this lemma numerous times in the
course of proving the main result.

Lemma 12. In WSU-UX with two arms (i, ī),

E[πt+1,i | Ft−1] = (1− Ct,i)πt,i + Ct,i π
2
t,i, (13)

where Ct,i := η
(
ℓt,i − ℓt,̄i

)
and Ft−1 is the history up until the end of round t− 1.
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Proof of Lemma 12. When we have two arms, the update rule for arm i can be expressed as

πt+1,i = πt,i

1− η

ℓ̂t,i −
∑

j∈{i,̄i}

πt,j ℓ̂t,j


= πt,i − ηπt,iℓ̂t,i + ηπt,i

 ∑
j∈{i,̂i}

πt,j ℓ̂t,j

 .

Now, taking the expectation of both sides conditional on the past, we get

E [πt+1,i | Ft−1] = Et−1 [πt+1,i]

= Et−1

πt,i − ηπt,iℓ̂t,i + ηπt,i

∑
j∈{i,̄i}

πt,j ℓ̂t,j


= πt,i − ηπt,iEt−1[ℓ̂t,i] + ηπ2

t,iEt−1

[
ℓ̂t,i

]
+ η(πt,i)(πt,̄i)Et−1

[
ℓ̂t,̄i

]
= πt,i − ηπt,iℓt,i + ηπ2

t,iℓt,i + η(πt,i)(1− πt,i)ℓt,̄i.

Now, rearranging the terms, we get

Et [πt+1,i] =
(
1− ηℓt,i + ηℓt,̄i

)
πt,i + η

(
ℓt,i − ℓt,̄i

)
π2
t,i

= (1− Ct,i)πt,i + (Ct,i)π
2
t,i,

where we recall that Ct,i = η
(
ℓt,i − ℓt,̄i

)
.

Now, we are ready to prove Lemma 16.

Proof of Lemma 16. Consider loss sequence with two arms, {ℓt}Tt=1 where ℓt,1 = 0, ℓt,2 = 1 for 1 ≤ t ≤ T . In
this case, we show that regret simplifies to the number of times we pull arm 2. In particular,

E[RT] = E

 T∑
t=1

2∑
j=1

π̃t,jℓt,j −
T∑

t=1

ℓt,1


=

T∑
t=1

E [π̃t,2] ℓt,2 (ℓt,1 = 0,∀t ∈ [T ])

=

T∑
t=1

E[π̃t,2]. (ℓt,2 = 1,∀t ∈ [T ])

Remember that

π̃t,i = (1− γ)πt,i +
γ

2
. (18)

Now, taking the expectation of both sides of (18) for i = 2, we get

T∑
t=1

E[π̃t,2] =

T∑
t=1

E[(1− γ)πt,2 +
γ

2
]

= (1− γ)

T∑
t=1

E[πt,2] +
γ

2
T. (19)

Next, we lower bound the first term. Observe that by applying Lemma 12 on any round t > 1, we get

E[πt,2|Ft−2] = (1− η)πt−1,2 + η π2
t−1,2

≥ (1− η

2
)πt−1,2, (20)
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where the last inequality comes from the fact that πt−1,2 ≤ 1/2. This fact is true because we know the initial value
for π1,2 = 1

2 in the first round, as this quantity can only decrease, E[π2
t,2] ≤ 1

2E[πt,2]. Now, taking expectation of
both sides of (20), we get

E[πt,2] ≥ (1− η

2
)E[πt−1,2]. (21)

Now, using (21) recursively, we get

E[πt,2] ≥ π1,2 (1−
η

2
)t−1

≥ 1

2
e−η(t−1). (1− η

2
≥ e−η,∀η : 0 < η ≤ 0.5)

Setting T ′ = min{⌊ ln 100
η ⌋+ 1, T} ≤ T , we have

T∑
t=1

E[πt,2] ≥
T∑

t=1

1

2
e−η(t−1) ≥

T ′∑
t=1

1

2
e−η(t−1)

≥
T ′∑
t=1

1

200
=

T ′

200
≥ 1

200
min{ ln 100

η
, T}. (22)

Now, by using (22), we can further lower bound (19) to get

T∑
t=1

E[π̃t,2] = (1− γ)

T∑
t=1

E[πt,2] +
γ

2
T

≥ (1− γ)

(
1

200
min

{
ln 100

η
, T

})
+ γ

T

2
(from (22))

≥ min

{
1

200
min

{
ln 100

η
, T

}
,
T

2

}
(γα+ (1− γ)β ≥ min{α, β})

=
1

200
min

{
ln 100

η
, T

}
≥ 1

200
min

{
1

η
, T

}
≥ 1

200
T 2/3 (η > T−2/3)

= c T 2/3.

We now present the next lemma.

Lemma 17. For WSU-UX run with any γ > T−1/3 and any η ≥ 0 there exists a loss sequence {ℓt}Tt=1 and
c = 1

2 > 0 such that

E [RT ] ≥ c T 2/3.

Proof. Consider the same loss sequence as Lemma 16 with two arms: {ℓt}Tt=1 where ℓt,1 = 0, ℓt,2 = 1 for
1 ≤ t ≤ T . The best arm is arm 1. Since we have a uniform exploration of γ, in any round t ∈ [T ], we pick arm
2 with probability π̃t,2 = (1− γ)πt,2 + γ 1

2 ≥ γ 1
2 . Therefore, the algorithm incurs at least γ 1

2 loss for each round.
Hence

E [RT ] =

T∑
t=1

E [π̃t,2] ≥
T∑

t=1

γ

2
=

γT

2
> cT 2/3,

where the last inequality holds because γ > T−1/3.
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A.2 Non-trivial Case

For the non-trivial case, we have the following theorem as stated in the main text.

Theorem 8. For K = 2 and for any valid set of (η, γ) in the non-trivial case, there exists T0 such that for any
T ≥ T0, we have a loss sequence {ℓt}Tt=1 such that

E[RT ] = Ω(T 2/3). (8)

Note that in the non-trivial case, we always consider the loss sequence defined in Definition 9. For the convenience
of the reader, we recall that for any T , we define {ℓt}Tt=1 as

{ℓt}Tt=1 =

{
ℓt,1 = 1, ℓt,2 = 0 for 1 ≤ t ≤ T

100

ℓt,1 = 0, ℓt,2 = 1 for T
100 < t ≤ T

.

To prove Theorem 8, by Lemma 18 we first observe that any bound of the form c1
1
η + c2

ηKT
γ + c3γT can be

lower bounded by c4K
1
3T

2
3 .

Lemma 18. For any choice of c1, c2, c3 > 0, and any valid choice of γ, η > 0, there exists c4 > 0 such that

c1
1

η
+ c2

ηKT

γ
+ c3γT ≥ c4K

1
3T

2
3 = Ω(T 2/3).

Proof. Observe that c1
1
η + c2

ηKT
γ ≥ 2

√
c1
η

c2ηKT
γ . Therefore, c1

1
η + c2

ηKT
γ + c3γ T ≥ 2

√
c1c2KT

γ + c3γ T . Define

f(γ) := 2
√

c1c2KT
γ + c3γ T for γ > 0. Note that since f is convex, the minimum is attained at γ∗ where

f ′(γ∗) = 0. It is easy to see that γ∗ = c
− 2

3
3 · ( c1c2KT )

1
3 and therefore, we get

f(γ) ≥ f(γ∗)

= f(c
− 2

3
3 · (c1c2K

T
)

1
3 )

= 2

√
c1c2KT

c
− 2

3
3 · ( c1c2KT )

1
3

+ c
1
3
3 (c1c2K)

1
3T

2
3

= 2

√
(c1c2c3K)

2
3T

4
3 + (c1c2c3K)

1
3T

2
3

= 2(c1c2c3K)
1
3T

2
3 + (c1c2c3K)

1
3T

2
3

= 3(c1c2c3K)
1
3T

2
3 .

Therefore, there exists c4 = 3(c1c2c3)
1
3 > 0 such that c1

1
η + c2

ηKT
γ + c3γT ≥ c4K

1
3T

2
3 .

We will then show that for large enough T , the regret on this particular loss sequence can be lower bounded as
follows.

Theorem 10. When running WSU-UX for any valid choice of (η, γ) in the non-trivial case, there exists T0 such
that for any T ≥ T0, for loss sequence {ℓt}Tt=1, we have for some constants c1, c2, c3 > 0,

E [RT ] ≥ c1
1

η
+ c2

ηTK

γ
+ c3γT. (9)

Theorem 10 along with Lemma 18 proves Theorem 8.
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A.2.1 Proving Theorem 10 using Claims

In this section, we show Theorem 10 given Claim 1, 2, and 3. We first restate and prove the second-order lower
bound lemma.

Lemma 11 (Second-Order Lower Bound). For any valid choice of (η, γ) when running WSU-UX on loss sequence
{ℓt}Tt=1, we get

T∑
t=1

∑
j∈[K]

πt,j ℓ̂t,j −
T∑

t=1

ℓ̂t,1

≥ lnπT+1,1 + lnK

η
+

η

4

T∑
t=1

(ℓ̂t,1 −
∑
j∈[K]

πt,j ℓ̂t,j)
2. (10)

Proof of Lemma 11. We can express πT+1,1 as follows.

πT+1,1 =
1

K

T∏
t=1

(1− η(ℓ̂t,1 −
∑
j∈[K]

πt,j ℓ̂t,j)).

Taking the logarithm of both sides, we get

ln (πT+1,1) = − lnK +

T∑
t=1

ln

1− η(ℓ̂t,1 −
∑
j∈[K]

πt,j ℓ̂t,j)

. (23)

Next, we observe that for any fixed t ∈ [T ], we have −1 ≤ η(ℓ̂t,1 −
∑

j∈[K] πt,j ℓ̂t,j) ≤ 1/2 (by Lemma 20 below).

Note that for −1 ≤ x ≤ 1/2 we have ln (1− x) ≤ −x− x2/4 (by Lemma 19 below). Therefore, we can show

ln

1− η(ℓ̂t,1 −
∑
j∈[K]

πt,j ℓ̂t,j)

 ≤ −η(ℓ̂t,1 −
∑
j∈[K]

πt,j ℓ̂t,j)−
η2

4
(ℓ̂t,1 −

∑
j∈[K]

πt,j ℓ̂t,j)
2

Taking the summation over T rounds and combining with (23), we get

lnπT+1,1 ≤ − lnK − η

T∑
t=1

(ℓ̂t,1 −
∑
j∈[K]

πt,j ℓ̂t,j)−
η2

4

T∑
t=1

(ℓ̂t,1 −
∑
j∈[K]

πt,j ℓ̂t,j)
2.

Rearranging and dividing by η, we get

T∑
t=1

∑
j∈[K]

πt,j ℓ̂t,j − ℓ̂t,1 ≥ lnπT+1,1 + lnK

η
+

η

4

T∑
t=1

(ℓ̂t,1 −
∑
j∈[K]

πt,j ℓ̂t,j)
2.

The previous proof used the following two simple lemmas.

Lemma 19. ln (1− x) ≤ −x− x2/4 when −1 ≤ x ≤ 1/2.

Proof. Let f(x) = ln (1− x) + x+ x2/4. Then f ′(x) = −1/(1− x) + 1+ x/2 = −x(1+x)
2−2x . Therefore f ′(x) ≥ 0 for

−1 ≤ x ≤ 0, and f ′(x) < 0 for 0 < x ≤ 1/2. The maximum is attained at x = 0. As a result, f(x) ≤ f(0) = 0
when −1 < x ≤ 1/2.

Lemma 20. For 0 ≤ η, γ ≤ 1/2 where ηK
γ ≤ 1/2, and loss sequence {ℓt}Tt=1, for any round t ∈ [T ], we have

−1 ≤ η

ℓ̂t,1 −
∑

j∈{1,2}

πt,j ℓ̂t,j

 ≤ 1/2.
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Proof. For 1 ≤ t ≤ T
100 , we have ℓt,2 = 0, and hence ℓ̂t,2 = 0. Therefore, we have

η

ℓ̂t,1 −
∑

j∈{1,2}

πt,j ℓ̂t,j

 = η
(
ℓ̂t,1 − πt,1ℓ̂t,1

)
= ηℓt,1

1− πt,1

π̃t,1
1[It = 1].

Observe that

−1 < 0 ≤ η ℓt,1
1− πt,1

π̃t,1
1[It = 1]

≤ η
1

π̃t,1

≤ η
K

γ
(π̃t,1 ≥ γ

K
)

≤ 1/2.

For T
100 < t ≤ T , we have ℓt,1 = 0, and hence ℓ̂t,1 = 0. Therefore

η (ℓ̂t,1 −
∑

j∈{1,2}

πt,j ℓ̂t,j) = η (−πt,2ℓ̂t,2)

= −η ℓt,2
πt,2

π̃t,2
1[It = 2]

= −η
πt,2

πt,2(1− γ) + γ
K

ℓt,21[It = 2].

Now, we can simply show

1/2 ≥ 0 ≥ −η
πt,2

πt,2(1− γ) + γ
K

ℓt,2 1[It = 2]

≥ −η
πt,2

πt,2(1− γ)
ℓt,2 1[It = 2]

≥ − η

1− γ

≥ − η

1/2
(γ ≤ 1/2)

≥ −1. (η ≤ 1/2)

Then, as mentioned in the main part of the paper, we can use Claims 1, 2, and 3 to convert the RHS of (10) to
the lower bound in (9).

B Proof of claims

In this part, we prove the claims.

B.1 Proof of Claim 2

We first restate Claim 2.

Claim 2 (Second moment lower bound). For large enough T , there exists c2 such that

E

 T∑
t=1

ℓ̂t,1 −
∑

j∈[1,2]

πt,j ℓ̂t,j

2
 ≥ 4c2

TK

γ
.
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In order to prove Claim 2, we need to introduce the following lemma.

Lemma 21. When running WSU-UX on loss sequence {ℓt}Tt=1 and hyperparameter defined in the non-trivial
case and for large enough T , for T1

2 ≤ t ≤ T1, we have

E[πt,1] ≤
1

KT
.

Proof. According to Lemma 12, which can be found in Appendix A.1, we have E [πt+1,1 | Ft−1] = (1−Ct)πt,1 +
Ct π

2
t,1 where Ct = η (ℓt,1 − ℓt,2). For t in

T1

2 ≤ t ≤ T1, we have πt,1 ≤ 1/2 and Ct = η. Therefore,

E [πt+1,1 | Ft−1] = (1− η)πt,1 + η π2
t,1

≤ (1− η)πt,1 +
η

2
πt,1

= (1− η

2
)πt,1.

Taking the expectation over all possible Ft−1, we get

E[πt+1,1] ≤ (1− η

2
)E[πt,1].

Therefore, we have

E
[
π
1,

T1
2

]
= E [π1,1]

⌈T1
2 ⌉−1∏
s=1

E [πs+1,1]

E [πs,1]
≤ 1

2
(1− η

2
)

T1
2

≤ 1

2
(e−

η
2 )

T
200 (1 + x ≤ ex, T1 =

T

100
)

≤ 1

2
exp

(
− 1

400
T

1
3

)
. (η ≥ T−2/3)

Since we are in the non-trivial case and η ≥ T−2/3, we have η T ≥ T 1/3. Since 1
2e

−T1/3

400 converges to
zero exponentially, whereas 1

KT convergence to zero at a slower rate, we can say for large enough T that

1
2e

− ηT
400 ≤ 1

2e
−T1/3

400 ≤ 1
KT .

Now, we are ready to prove Claim 2.

Proof of Claim 2. For T1

2 ≤ t ≤ T1, we have ℓt,2 = 0, therefore ℓ̂t,2 = 0. Now we can lower bound
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E
[∑T

t=1

(
ℓ̂t,1 −

∑
j∈[1,2] πt,j ℓ̂t,j

)2]
as follows:

E

 T∑
t=1

ℓ̂t,1 −
∑

j∈[1,2]

πt,j ℓ̂t,j

2
 ≥ E

 T/200∑
t=T/100

ℓ̂t,1 −
∑

j∈[1,2]

πt,j ℓ̂t,j

2


= E

 T/100∑
t=T/200

(
ℓ̂t,1 − πt,1ℓ̂t,1

)2
= E

 T/100∑
t=T/200

(1− πt,1)
2
ℓ̂2t,1


≥ E

 T/100∑
t=T/200

(1− 1/2)2ℓ̂2t,1

 (∀t, T

200
≤ t ≤ T

100
: πt,1 ≤ 1/2)

=
1

4

T/100∑
t=T/200

E

[(
ℓt,1
π̃t,1

1[It = 1]

)2
]

=
1

4

T/100∑
t=T/200

E

[
Et−1

[(
ℓt,1
π̃t,1

)2

(1[It = 1])
2

]]

=
1

4

T/100∑
t=T/200

E

[(
1

π̃t,1

)2

Et−1

[
(1[It = 1])

2
]]

(∀t, T

200
≤ t ≤ T

100
: ℓt,1 = 1)

=
1

4

T/100∑
t=T/200

E
[

1

π̃t,1

]

≥ 1

4

T/100∑
t=T/200

1

E [π̃t,1]
,

where the last inequality comes from applying Jensen’s inequality E
[
1
X

]
≥ 1

E[X] . Note that for large enough T ,

for T
200 ≤ T ≤ T

100 , we have

E [π̃1,t] = E
[
π1,t(1− γ) +

γ

K

]
≤ E [π1,t] +

γ

K

≤ 1

KT
+

γ

K
(Lemma 21)

≤ 2γ

K
, (since

1

T
≤ γ)

where the last inequality comes from the fact that we have ηK
γ ≤ 1/2 for WSU-UX. This implies γ ≥ 2ηK ≥

2KT−2/3 ≥ 1
T , where we use the fact that η ≥ T−2/3. As a result, we get

E

 T∑
t=1

ℓ̂t,1 −
∑

j∈[1,2]

πt,j ℓ̂t,j

2
 ≥ 1

4

T/100∑
t=T/200

1

E[π̃t,1]

≥ 1

4

T/100∑
t=T/200

K

2γ

≥ 1

4
(
T

100
− T

200
)
K

2γ
=

1

1600

TK

γ
.
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Therefore, for c2 = 1
4·1600 , Claim 2 holds.

B.2 Proof Sketch of Claims 1 and 3

In this subsection, we prove Claims 1 and 3 using several technical lemmas without stating their proof. We will
prove all the technical lemmas in the next subsection.

We first recall the notion of phases here.

Definition 13. Define T1 = 1
100T, T2 = 2

10T, T3 = 1
10T, T4 = 69

100T , and then define (sub-)phases as follows:

• Phase 1: T1 = {t : 1 ≤ t ≤ T1},

• Phase 2.1: T2 = {t : T1 + 1 ≤ t ≤ T1 + T2},

• Phase 2.2: T3 = {t : T1 + T2 + 1 ≤ t ≤ T1 + T2 + T3},

• Phase 2.3: T4 = {t : T1 + T2 + T3 + 1 ≤ t ≤ T1 + T2 + T3 + T4}.

We recall the definitions of M and T ′ as well.

Definition 14. We define M and T ′ as follows

M :=
1

ln 2

ln
(
2K

γ

)
︸ ︷︷ ︸

∝(lnT )

+2(1 + ε1)(1 +
ηK

γ
)ηT1︸ ︷︷ ︸

∝(ηT1)

 (15)

T ′ :=
1

1− ε2
(

4

3− γ
)
2

η
M (16)

where ε1 =
√

6 lnT
2γ
K T1

and ε2 =
√

4 lnT
3−γ
4 T2

.

Next, we restate two events E1 and E2.
Definition 22. Let

E1 = {πT1+1,1 ≥ 2−M}

be the event that arm 1’s probability at the end of Phase 1 is not too small, where M is defined in (15).

Definition 23. Let E2 = {πT1+T2+1,1 ≥ 1
4} be the event that arm 1’s probability at the end of Phase 2.2 has

recovered to 1
4 .

Next, we have the following lemma stating that, with high probability, πT1+1,1 is not too small.

Lemma 24. When we run WSU-UX with any valid parameters η, γ on specific loss sequence {ℓt}Tt=1, for any

(ε, δ), where ε =

√
3 ln 1

δ
2γ
K T1

∈ (0, 1], at the end of phase 1, we have that with probability at least 1− δ,

πT1+1,1 ≥ 2−M,

where M = 1
ln 2

(
2(1 + ε)(1 + ηK

γ )ηT1 + ln 2K
γ

)
. In particular, for large enough T , by choosing δ = 1

T 2 , we get

πT1+1,1 ≥ 2−M where M is defined in (15).

We used a recently developed multiplicative form of Azuma’s inequality for martingales (Kuszmaul and Qi,
2021) to show Lemma 24. This lemma shows that when T is large enough, with high probability, πT1+1,1 does
not become too small, i.e., Event E1 happens. Next, we will show that πT1+T2+1,1 recovers to 1/4 with high
probability. To show this, observe that Phase 2.1 is the phase where πt,1 can start to recover. By each pull of
arm 2 in Phase 2.1, the probability πt,1 increases, whereas by pulls of arm 1, πt,1 does not change. Hence, we
first find an upper bound on the number of pulls of arm 2 needed so that πt,1 recovers to 1/4. At the beginning
of Phase 2.1, after each pull of arm 2, the rate of update

πt+1,1

πt,1
≈ 1 + ε is very close to 1. Therefore, we first

focus on finding an upper bound on the number of pulls of arm 2 needed for πt,1 to double.
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Lemma 25. Consider a round t0 > T1, where 0 < πt0,1 ≤ 1
4 . If arm 2 is pulled m times in rounds t1, . . . , tm

where t0 ≤ t1 < t2 < . . . < tm ≤ T and m ≥ 2
η · 1

1−2πt0,1
, then we have πtm+1,1 ≥ 2πt0,1.

Next, Lemma 26 is a cumulative version of Lemma 25 where we show an upper bound on the total number of
pulls of arm 2 needed so that πt,1 doubles for M − 2 times.

Lemma 26. Consider a round t > T1 where we have 2−m ≤ πt,1 ≤ 2−(m−1), where m ∈ Z+. Then if arm 2 is
pulled k = 2

η m times in rounds t, t + 1, . . . , T1, and round t′ denotes the round just after the k th pull, then we

have πt′,1 ≥ 1
4 .

Lemma 26 indicates that given Event E1 happened, k = 2
η M pulls of arm 2 suffice to ensure that πt,1 ≥ 1/4.

The next lemma shows that given Event E1 happened, then with high probability, arm 2 is going to be picked in
T2 rounds at least k times. This along with Lemma 26 implies that πT1+T2+1,1 recovers.

Lemma 27. When T is large enough, with probability at least 1− 2 1
T 2 , Event E2 happens. i.e πT1+T2+1,1 ≥ 1/4.

We next show that given E2, the expectation of πt,2 goes to 0 exponentially quickly as t increments beyond
T1 + T2.

Lemma 28. Assume Event E2 happens. Define t0 = T1+T2+1, and 1 ≤ τ ≤ T3+T4, and time step t = t0+ τ .
Then we have

E[πt,2|E2] ≤
3

4
exp (−η

4
τ).

Now, conditional on Event E2, by using Chebyshev’s inequality and Lemma 28, we show that it is very unlikely
that πT,1 is constantly smaller than 1.

Lemma 29. Condition on Event E2 defined in Definition 23, we have

Pr

(
πT+1,1 ≤ 3

4

∣∣∣∣ E2) ≤ 75

4
e−cηT .

Using conditional expectation and Lemma 29, we prove Claim 1 in the next subsection.

Next, we introduce the following lemma.

Lemma 30. For large enough T , we have E [πt,2] ≤ 1
4 for T1 + T2 + T3 < t ≤ T .

We prove Claim 3 using Lemma 30 in Appendix B.3.

B.3 Complete Proof of Claims 1 and 3

B.3.1 High Probability Lemma for Event E1

Proof of Lemma 24. We define τ to be the largest t in 1 ≤ t ≤ T1 such that πt,1 > γ
K . Since πt,1 are random

variables that depend on internal random bits of the algorithm, τ is also a random variable. Observe that for
the loss sequence {ℓt}Tt=1 we are considering, for all 1 ≤ t ≤ T1 + 1 we have πt,1 ≥ πt+1,1. This implies that

πt,1 >
γ

K
∀t : 1 ≤ t ≤ τ (24)

πt,1 ≤ γ

K
∀t : τ + 1 ≤ t ≤ T1. (25)
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Using τ , we can express πT1+1,1 as follows8:

πT1+1,1 = π1,1

T1∏
s=1

πs+1,1

πs,1

=

(
π1,1

τ−1∏
s=1

πs+1,1

πs,1

)
︸ ︷︷ ︸

first term

(
πτ+1,1

πτ,1

)
︸ ︷︷ ︸
second term

(
T1∏

s=τ+1

πs+1,1

πs,1

)
︸ ︷︷ ︸

third term

. (26)

Clearly, the first term in (26) can be lower bounded as

π1,1

τ−1∏
s=1

πs+1,1

πs,1
= πτ−1,1 >

γ

K
, (27)

where we used (24). Next, observe that for rounds 1 ≤ t ≤ T1, in phase one, we can simply lower bound
πs+1,1

πs,1

as follows:

πs+1,1

πs,1
= 1− η

(
ℓ̂s,1 −

∑
j∈[2]

πs,j ℓ̂s,j

)
= 1− η

1− πs,1

(1− γ)πs,1 +
γ
K

1[Is = 1]

≥ 1− η
1− 0

0 + γ
K

1[Is = 1] (πs,1 ≥ 0)

= 1− ηK

γ
1[Is = 1]

= (1− ηK

γ
)1[Is=1]. (28)

Therefore, the second term can be lower bounded by

πτ+1,1

πτ,1︸ ︷︷ ︸
second term

≥ (1− ηK

γ
)1[Iτ=1] ≥ 1/2, (29)

since ηK
γ ≤ 1/2 in WSU-UX. Moreover, we have

T1∏
s=τ+1

πs+1,1

πs,1︸ ︷︷ ︸
third term

≥
T1∏

s=τ+1

(1− ηK

γ
)1[Is=1] (by 28)

= (1− ηK

γ
)
∑T1

s=τ+1 1[Is=1]. (30)

Therefore, by plugging (27), (29), and (30) into the right hand side of (26) we obtain

πT1+1,1 ≥ γ

2K
(1− ηK

γ
)
∑T1

s=τ+1 1[Is=1], (31)

where the right-hand side is a random variable that depends on τ . Note that 1 [τ = t′|Ft′ ] is measurable, meaning
that in round t′, given access to the past history, we can deterministically tell whether τ = t′ or not. Next, we

8For convention, the product over an empty set is assumed to be 1. e.g. if τ = 1, then the first term in the right-hand
side of (26) which is a product over the empty set is assumed to be 1. Similarly, if τ = T1, the third term in the right-hand
side of (26) is assumed to be 1.
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will show that for any possible value t′ that τ can take, and particular history Ft′ up until the end of round t′

for which τ = t′, 9 there is a suitable upper bound on the following term

T1∑
s=t′+1

1[Is = 1 | Ft′ ] (32)

that holds with probability at least 1 − δ. This implies a uniform high probability lower bound on (31), which
completes the proof.

It remains to show this uniform upper bound for (32). In order to show this, we set up a martingale. In
particular, we define It,i := 1[It = i]. Consider any fixed history up until round t′ denoted by Ft′ such that
τ = t′. Then for any t where t′ + 1 ≤ t ≤ T1, we have

E [It,1 | Ft−1] = E
[
(1− γ)πt,1 +

γ

K

∣∣∣Ft−1

]
(Uniform Exploration by WSU-UX)

≤ E
[
πt,1 +

γ

K

∣∣∣Ft−1

]
≤ 2γ

K
=: q, (from 25) (33)

where the last inequality comes from (24). Define Zt′ := 0 and for any t where t′ + 1 ≤ t ≤ T1, let Wt :=
It,1 − E[It,1 | Ft−1] and Zt :=

∑t
s=t′+1 Ws. Observe that for t in t′ + 1 ≤ t ≤ T1, we have

E[Zt | Ft−1] = Zt−1 + E[Wt | Ft−1] = Zt−1;

therefore (Zt)t∈{t′,...,T1} is a martingale. Moreover, for t in t′ + 1 ≤ t ≤ T1, we have Zt − Zt−1 = Wt ∈ [−At, Bt]
for At = E [It,1 | Ft−1] and Bt = 1−At, simply because It,1 ∈ {0, 1}. Observe that we have

T1∑
t=t′+1

At =

T1∑
t=t′+1

E [It,1 | Ft−1] ≤
T1∑

t=t′+1

q ≤
T1∑
t=1

q = qT1 =
2γ

K
T1 =: µ,

where the first inequality comes from (33). We define c := At +Bt = 1 and apply Theorem 10 of Kuszmaul and
Qi (2021) to get that for all ε > 0,

Pr (ZT1
− Zt′ ≥ εµ | Ft′) ≤ exp

(
− ε2µ

(2 + ε)c

)
.

Using our definition of the martingale sequence, and noting that c = 1, we get

Pr

(
T1∑

t=t′+1

It,1 ≥
T1∑

t=t′+1

E [It,1 | Ft−1] + εµ

∣∣∣∣∣Ft′

)
≤ exp

(
− µε2

2 + ε

)
.

Using
∑T1

t=t′+1 E [It,1 | Ft−1] ≤ µ and by imposing the restriction ε ≤ 1, we have for ε ∈ (0, 1],

Pr

(
T1∑

t=t′+1

It,1 ≥ (1 + ε)µ

∣∣∣∣∣Ft′

)
≤ exp

(
−µε2

3

)
.

Equivalently, conditional on Ft′ , with probability at least 1− δ, where ε =

√
3 ln 1

δ
2γ
K T1

∈ (0, 1], we have

T1∑
t=t′+1

It,1 ≤ (1 + ε)µ

= (1 + ε)
2γ

K
T1. (34)

9Observe that this t′ is well defined since Ft′−1, the history up until round t′ − 1, is enough to determine whether
τ = t′ or τ ̸= t′.
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This is the suitable upper bound we wanted for the quantity in (32). In particular, we have

(1− ηK

γ
)

[∑T1
t=t′+1

It
]
≥
(
e(−

ηK
γ )(1+ ηK

γ )
)[∑T1

t=t′+1
It
]

(1− x ≥ e(−x−x2) for 0 < x ≤ 1

2
)

≥
(
e(−

ηK
γ )(1+ ηK

γ )
)(1+ε) 2γ

K T1

from (34)

= exp

(
− 2(1 + ε)(1 +

ηK

γ
)ηT1

)
. (35)

Combining this lower bound with (31), we get the following statement.

For any possible value for τ and any fixed Ft′ satisying τ = t′, for any ε =

√
3 ln 1

δ
2γ
K T1

∈ (0, 1], with probability at

least 1− δ, we have

πT1+1,1 =
γ

2K
(1− ηK

γ
)

[∑T1
s=τ+1 1[Is=1]

]
≥ γ

2K
exp

(
− 2(1 + ε)(1 +

ηK

γ
)ηT1

)

= exp

(
−
(
2(1 + ε)(1 +

ηK

γ
)ηT1 + ln

2K

γ

))
= 2−M. (36)

Since (36) holds true for any possible value of τ and any fixed Ft′ where τ = t′, it holds true in general.

Moreover, note that when T is large enough, we can choose δ = 1
T 2 since ε =

√
6 lnT
2γ
K T1

∈ (0, 1] for large enough T .

As a result, we get

πT1+1,1 ≥ 2−M ,

where M is defined in (15).

B.3.2 Upper bound on the Number of Pulls of Arm 2

Proof of Lemma 25. We can lower bound πtm+1,1 as

πtm+1,1 = 1− πtm+1,2 = 1− πt0,2

tm∏
s=t0

πs+1,1

πs,1

= 1− πt0,2

tm∏
s=t0

(
1− η

1− πs,2

(1− γ)πs,2 +
γ
K

1[Is = 2]
)

≥ 1− πt0,2

tm∏
s=t0

(
1− η

πs,1

1
1[Is = 2]

) (
(1− γ)πs,2 +

γ

K
≤ 1
)

≥ 1− πt0,2

tm∏
s=t0

(
1− ηπt0,11[Is = 2]

) (
πs,1 ≥ πt0,1

)
= 1− πt0,2

tm∏
s=t0

(
1− ηπt0,1

)1[Is=2]

= 1− πt0,2

(
1− ηπt0,1

)m
≥ 1−

(
1− ηπt0,1

)m
. (πt0,2 ≤ 1)



Ali Mortazavi, Junhao Lin, Nishant A. Mehta

Moreover,

(1− ηπt0,1)
m ≤ exp (−ηπt0,1m) (1− x ≤ exp(x),∀x ∈ R)

≤ exp

(
−2πt0,1

1− 2πt0,1

)
(m ≥ 2

η (1− 2πt0,1)
)

≤ 1− 2πt0,1, (e
−2x
1−2x ≤ 1− 2x, ∀x ∈ (0,

1

2
])

which means

πtm+1,1 ≥ 1−
(
1− ηπt0,1

)m ≥ 2πt0,1.

Proof of Lemma 26. Note that if m ≤ 2, then we already have πt,1 ≥ 1
4 , and since t ≥ T1, any pulls of arm 2

only increase πt,1. Hence, after k pulls we have πt′,1 ≥ πt,1 ≥ 1
4 .

Consider the case where m ≥ 3. We have 2−m ≤ πt,1 ≤ 2m−1. Now we want to upper bound the number of
pulls it takes so that 1/4 ≤ πt′,1 ≤ 1/2. Suppose we require k1 pulls for the first doubling of π, k2 for the second

doubling, and so forth. This means we need k =
∑m−2

i=1 ki pulls before we get 1/4 ≤ πt′,1 ≤ 1/2. Next, we upper
bound each ki. To do this, we denote all the rounds after t, in which we pull arm 2 as follows

t
(1)
1 , t

(1)
2 , . . . , t

(1)
k1︸ ︷︷ ︸

rounds before 1st doubling

t
(2)
1 , . . . , t

(2)
k2︸ ︷︷ ︸

rounds before 2nd doubling

. . . t
(i)
1 , t

(i)
2 , . . . t

(i)
ki︸ ︷︷ ︸

rounds before ith doubling

. . . t
(m2−2)
1 , . . . , t

(m2−2)
km2−2︸ ︷︷ ︸

rounds before (m − 2) doubling

, tk︸︷︷︸
1/4≤πtk,1

Now we can upper bound each ki as follows:

ki ≤
2

η

1

1− 2π
(i)
t1

(Lemma 25)

≤ 2

η

1

1− 2−m+i+1
. (π

(i)
t1 ≤ 2−m+i)

To see why the first inequality holds, observe that we start from round t1
(i), and Lemma 25 has an upper bound

on the number of pulls needed to get doubled.

Therefore, we get

m−2∑
i=1

ki ≤
m−2∑
i=1

2

η

1

1− 2−m+i+1
=

2

η

m−2∑
i=1

1

1− 2−i
. (37)

Now, observe that

1

1− 2−i
= 1 +

1

2i − 1

≤ 1 +
1

2i−1
. (2i − 1 ≥ 2i−1 for i ≥ 1)

Therefore, we get

m−2∑
i=1

ki ≤
2

η

m−2∑
i=1

(
1 +

1

2i−1

)

≤ 2

η

[
m− 2 +

m−2∑
i=0

1

2i

]

≤ 2

η
[m− 2 + 2] (geometric series)

=
2

η
m.
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B.3.3 High-probability lemma for event E2

Proof of Lemma 27. Recall the definition of E1 from Definition 22 and E2 from Definition 23 as follows:

E1 =
{
πT1+1,1 ≥ 2−M

}
E2 =

{
πT1+T2+1,1 ≥ 1

4

}
,

where M = 1
ln 2

(
2(1 + ε1)(1 +

ηK
γ )ηT1 + ln 2K

γ

)
. We then show the following two statements.

(a) For δ = 1
T 2 , we prove that with probability at least 1− δ1, E1 happens, i.e., Pr(E1) ≥ 1− δ1

(b) Given E1 happened, for δ2 = 1
T 2 , we prove that with probability at least 1 − δ2, E2 happens, i.e., Pr(E2 |

E1) ≥ 1− δ2.

Having both (a) and (b) implies that the lemma holds true, as

Pr(E2) ≥ Pr(E1 and E2) = Pr(E1) Pr(E2 | E1) = (1− δ1) (1− δ2)

≥ 1− δ1 − δ2 = 1− 2

T 2
.

Now, we prove (a) and (b).

Proof of (a) By Lemma 24, with probability at least 1− 1
T 2 , we have

πT1+1,1 ≥ 2−M ,

for M = 1
ln 2

(
2(1 + ε1)(1 +

ηK
γ )ηT1 + ln 2K

γ

)
.

Proof of (b) We show that for any history FT1 such that E1 happened, we have

Pr(E2 | FT1
) ≥ 1− δ2. (38)

This implies that Pr(E2 | E1) ≥ 1− δ2.

Consider a fixed history FT1
such that E1 happened. Event E1 implies that for some M ′ ≤ M , we have

2−M ′
≤ πT1+1,1 ≤ 2−(M ′−1).

Now, Lemma 26 states that Γ = 2
ηM

′ pulls is sufficient to get

πt′,1 ≥ 1

4
, (39)

where t′ is round number after Γ-th pull. We define

Xt := 1

[
It = 2 or πt,1 ≥ 1

4

]
.

Next, observe that if

∑
t∈phase 2.1

Xt =

T1+T2∑
t=T1+1

Xt ≥
2

η
M ′, (40)

then this implies that πT1+T2+1 ≥ 1/4, (i.e. E2 happens.) To see why, note that if for any for t in T1 + 1 ≤
t ≤ T1 + T2, we have πt,1 ≥ 1/4, this implies πT1+T2+1 ≥ 1/4 since πt,1 can only increase in phase 2.1. If for
all t in T1 + 1 ≤ t ≤ T1 + T2, we have πt,1 < 1/4, then (40) implies that

T1+T2∑
t=T1+1

Xt =

T1+T2∑
t=T1+1

1[It = 2] ≥ 2

γ
M ′.
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Therefore, Lemma 26 implies that πT1+T2+1 ≥ 1/4.

Now it remains to show that with probability at least 1− 1
T 2 , (40) happens. We use a martingale concentration

argument to show this. Indeed, we define ZT1
= 0 and for any t in T1 + 1 ≤ t ≤ T1 + T2, we define

Wt := Xt − E[Xt | Ft−1] and Zt :=
∑t

s=T1+1 Ws. Observe that

E[Zt | Ft−1] = Zt−1 + E[Wt | Ft−1] = Zt−1,

and hence (Zt)t∈{T1,...,T} is a martingale. Since Xt ∈ {0, 1}, we have Zt − Zt−1 = Wt ∈ [−At, Bt] for

At = E [Xt | Ft−1] and Bt = 1−At. Consequently, we have At +Bt = 1 := c for all t ≥ t′. Define q := 3−γ
4 .

Observe that we have E [Xt | Ft−1] ≥ q. It is because for any Ft−1 such that πt,1 ≥ 1/4, we have
E [Xt | Ft−1] = E

[
1
[
It = 2 or πt,1 ≥ 1

4

]
| Ft−1

]
= 1 > q. Moreover, for any Ft−1 such that πt,1 < 1/4,

we have πt,2 ≥ 3/4 and hence E [1 [It = 2] | Ft−1] = π̃t,2 = (1− γ)πt,2 +
γ
2 ≥ 3−γ

4 , therefore

E [Xt | Ft−1] = E
[
1 [It = 2] or 1[πt,1 ≥ 1

4
]

∣∣∣∣Ft−1

]
= E [1 [It = 2] | Ft−1] ≥

3− γ

4
.

Note that we have

T1+T2∑
t=T1+1

At =

T1+T2∑
t=T1+1

E [Xt | Ft−1] ≤
T1+T2∑
t=T1+1

q = qT2 =: µ.

We now apply Theorem 15 from Kuszmaul and Qi (2021) to get for any ε > 0,

Pr(ZT1+T2
− ZT1

≤ −εµ | FT1
) ≤ exp

(
−ε2µ

2c

)
for FT1

where E1 holds.

Plugging in our setting of c and using our definition of the martingale sequence gives

Pr

(
T1+T2∑
t=T1+1

Xt ≤
T1+T2∑
t=T1+1

E [Xt | Ft−1]− εqT2

∣∣∣∣∣FT1

)
≤ exp

(
−µε2

2

)
.

Using
∑T1+T2

t=T1+1 E [Xt | Ft−1] ≤ µ, we have all ε > 0,

Pr

(
T1+T2∑
t=T1+1

Xt ≤ (1− ε)µ

∣∣∣∣∣FT1

)
≤ exp

(
−µε2

2

)
.

This implies that, for any given FT1
such that E1 holds, with probability at least 1− 1

T 2 , we have

T1+T2∑
t=T1+1

Xt ≥ µ =
3− γ

4
(1− ε2)T2,

where ε2 =
√

4 lnT
3−γ
4 T2

. Now, recall T ′ from Definition 14. For large enough T , by (17), we have T2 ≥ T ′.

Therefore,

(
3− γ

4
)(1− ε2)T2 ≥ (

3− γ

4
)(1− ε2)T

′.

Also by definition of T ′, we get

3− γ

4
(1− ε2)T

′ = M
2

η
.

Finally by definition of M ′, we have

M
2

η
≥ M ′ 2

η
,

which means with probability at least 1− 1
T 2 , (40) happens.
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B.3.4 Proof of Lemmas 28 and 29

We first prove Lemma 28.

Proof of Lemma 28. Consider any round t where t ≥ t0+1. Consider any history Ft−1 where Event E2 happened.
By applying Lemma 12 for i = 2, we get

E [πt+1,2 | Ft−1] = (1− η)πt,2 + η π2
t,2.

Now, note that since E2 happened we have πt0,1 ≥ 1/4. Since πt,1 = πt0+τ can only increase, we have πt,1 ≥ 1/4.
This implies πt,2 ≤ 3/4, therefore

π2
t,2 ≤ 3

4
πt,2.

Therefore, we get

E [πt+1,2 | Ft−1] ≤ (1− η)πt,2 +
3

4
η πt,2

≤ (1− η

4
)πt,2. (41)

We now can show an upper bound on E [πt+1,2 | E2] by noting that

E [πt+1,2 | E2] = E [E [πt+1,2 | E2,Ft−1] | E2]
= E [E [πt+1,2 | Ft−1] | E2] .

This means that we can take the conditional expectation on both sides of (41) to get

E[πt+1,2|E2] ≤ (1− η

4
)E [πt,2|E2] . (42)

Moreover, by definition of E2 we have E[πt0,2|E2] = πt0,2 ≤ 3/4. Therefore, we get

E[πt,2 | E2] = E[πt0,2 | E2]
t0+τ−1∏
s=t0

E[πs+1,2 | E2]
E[πs,2 | E2]

≤ E[πt0,2 | E2]
t0+τ−1∏
s=t0

(1− η

4
) by (42)

≤ 3

4
(1− η

4
)τ

≤ 3

4
exp (−η

4
τ). (1− x ≤ e−x)

We now prove Lemma 29.

Proof of Lemma 29. Let τ = T3 + T4 = c T for c > 0. Define random variable X := πT+1,1 ∈ [0, 1]. Clearly
Lemma 28 implies that E[X|E2] = E[πT+1,1|E2] = 1−E[πT+1,2|E2] ≥ 1− 3

4e
− η

4 c T . Therefore, using Chebyshev’s
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inequality, we get

Pr

(
X ≤ 3

4

∣∣∣∣ E2) = Pr

(
X − E [X|E2] + E [X|E2] ≤

3

4

∣∣∣∣ E2)
= Pr

(
X − E [X|E2] ≤

3

4
− E [X|E2]

∣∣∣∣ E2)
≤ Pr

(
X − E [X|E2] ≤

3

4
−
(
1− 3

4
e−

η
4 cT

) ∣∣∣∣ E2) (E [X|E2] ≥ 1− 3

4
e−

η
4 cT )

= Pr

(
X − E [X|E2] ≤

3

4
e−

η
4 cT − 1

4

∣∣∣∣ E2)
≤ Pr

(
X − E [X|E2] ≤ −1

5

∣∣∣∣ E2) (for large T we have
3

4
e−

c
4ηT ≤ 1

20
)

≤ Pr

(∣∣X − E
[
X|E2

]∣∣ ≥ 1

5

∣∣∣∣ E2)
≤ 25Var(X|E2) (Chebyshev inequality)

= 25
(
E
[
X2|E2

]
− E [X|E2]2

)
≤ 25

(
E [X|E2]− E [X|E2]2

)
(E[X] ≥ E[X2] for X ∈ [0, 1])

= 25E [X|E2] (1− E [X | E2])
≤ 25

(
1− E

[
X|E2

])
(E
[
X|E2

]
≤ 1)

≤ 75

4
e−c η

4 T . (from Lemma 28)

B.3.5 Proof of Claim 1

Now, we are ready to prove Claim 1. We recall Claim 1.

Claim 1 (Concentration on best arm at the end). For large enough T , there exists c1 > 0 such that

E [lnπT+1,1 + lnK] ≥ c1. (11)

First, we have the following simple observation.

Observation 31. When running WSU-UX with any valid hyperparameter η, γ on the loss sequence {ℓt}Tt=1

defined in Definition 9, we have with probability 1, that

πT+1,1 ≥
(
1

2

) T
100+1

.

Proof of Observation 31. The probability of πt,1 can only decrease in the first T
100 rounds and only if arm 1 is

pulled in those rounds. It is easy to see that the value drops by at most a factor of 2 each time it is pulled as for
1 ≤ s ≤ T1 we have

πs+1,1

πs,1
= 1− η

(
ℓ̂s,1 −

∑
j∈[2]

πs,j ℓ̂s,j

)
≥ 1− ηK

γ
1[Is = 1] ≥ 1/2.

Proof of Claim 1. Define Event A := 1 [πT+1,1 ≥ 3/4]. Using conditional expectation, we have

E[lnπT+1,1 | E2] = Pr(A | E2)E[lnπT+1,1 | E2, A] + Pr(Ac | E2)E[lnπT+1,1 | E2, Ac]

≥
(
1− 75

4
e−

cη
4 T

)
E[lnπT+1,1|E2, A] +

(
75

4
e−

cη
4 T

)
E[lnπT+1,1|E2, Ac],
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where the inequality comes from Lemma 29. This can be further lower bounded by(
1− 75

4
e−

cη
4 T

)
ln

3

4
+

(
75

4
e−

cη
4 T

)
E[lnπT+1,1|E2, Ac]

≥
(
1− 75

4
e−

cη
4 T

)
ln

3

4
+

(
75

4
e−

cη
4 T

)
min [lnπT+1,1]

≥
(
1− 75

4
e−

cη
4 T

)
ln

3

4
+

(
75

4
e−

cη
4 T

)(
T

100
+ 1

)
ln

1

2︸ ︷︷ ︸
second term

(Observation 31)

≥ ln
11

16
. second term → 0 as T → ∞

Therefore, we have

E[lnπT+1,1 | E2] ≥ ln
11

16
. (43)

Now, we can lower bound E[lnπT+1,1] using conditional expectation:

E [lnπT+1,1] = Pr(E2)E [lnπT+1,1 | E2] + Pr(Ec
2)E [lnπT+1,1 | Ec

2 ]

≥ (1− 2δ) E [lnπT+1,1 | E2] + (2δ)E [lnπT+1,1 | Ec
2 ]

≥ (1− 2δ)E [lnπT+1,1 | E2] + (2δ) [min lnπT+1,1]

≥ (1− 2δ) (ln
11

16
) + (2δ) [min lnπT+1,1] (By inequality 43)

≥ (1− 2δ) (ln
11

16
) + (2δ) (

T

100
+ 1) ln

1

2
(Observation 31)

≥ (ln
11

16
) + (2δ) (

T

100
+ 1) ln

1

2︸ ︷︷ ︸
second term

≥ (ln
5

8
). δ =

1

T 2
, therefore second term → 0 as T → ∞

Therefore, we get

E[lnπT+1,1 + lnK] ≥ (ln
5

8
) + lnK

= ln
5

4
. (K = 2)

Therefore, for c1 = ln 5
4 > 0,

E[lnπT+1,1 + lnK] ≥ c1.

B.3.6 Proof of Claim 3

We first prove Lemma 30 and then we prove Claim 3.

Proof of Lemma 30. Set t = 31T
100 = T1 + T2 + T3 + 1. We can use conditional expectation for π2,t on event E2

defined in Definition 23 to get

E[πt,2] = Pr(E2)E[πt,2|E2] + Pr(Ec
2)E[πt,2|Ec

2 ]

≤ E[πt,2|E2] + Pr(Ec
2) · 1. (πt,2 ≤ 1)
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Now, by setting τ = T3 in Lemma 28, one would get E [πt,2|E2] ≤ 3
4 exp (−

η
4T3) =

3
4 exp (

−cη
4 T ) for c = 1

10 > 0.
Moreover, by Lemma 27 we have that Pr(Ec

2) ≤ 2
T 2 . Therefore, for large enough T , we can further upper bound

E[πt,2] by

E [πt,2 | E2] + Pr(Ec
2) · 1 ≤ 3

4
e

−cηT
4 +

2

T 2
≤ 1

4
.

Proof of Claim 3. By expanding π̃t,j = πt,j(1− γ) + γ
2 , we get

 2∑
j=1

π̃t,j ℓ̂t,j − ℓ̂t,1

 =

2∑
j=1

(
πt,j(1− γ) +

γ

2

)
ℓ̂t,j − ℓ̂t,1 =

 2∑
j=1

πt,j ℓ̂t,j − ℓ̂t,1

−
2∑

j=1

γπt,j ℓ̂t,j +

2∑
j=1

γ

2
ℓ̂t,j

Taking the expectation from both sides, we get

E

 2∑
j=1

π̃t,j ℓ̂t,j − ℓ̂t,1

 = E

 2∑
j=1

πt,j ℓ̂t,j − ℓ̂t,1

+

−
2∑

j=1

E
[
γπt,j ℓ̂t,j

]
+

2∑
j=1

E
[γ
2
ℓ̂t,j

]
= E

 2∑
j=1

πt,j ℓ̂t,j − ℓ̂t,1

−
2∑

j=1

E
[
γπt,j Et−1

[
ℓ̂t,j

]]
+

2∑
j=1

E
[γ
2
Et−1

[
ℓ̂t,j

]]

= E

 2∑
j=1

πt,j ℓ̂t,j − ℓ̂t,1

+

−
2∑

j=1

E [γπt,jℓt,j ] +

2∑
j=1

γ

2
ℓt,j

 .

Summing over T rounds, we get

E

 T∑
t=1

 2∑
j=1

π̃t,j ℓ̂t,j − ℓ̂t,1

 = E

 T∑
t=1

 2∑
j=1

πt,j ℓ̂t,j − ℓ̂t,1

+

−
T∑

t=1

2∑
j=1

E [γπt,jℓt,j ] +

T∑
t=1

2∑
j=1

γ

2
ℓt,j


︸ ︷︷ ︸

∆

,

where we define

∆ := −
T∑

t=1

2∑
j=1

E [γπt,jℓt,j ] +

T∑
t=1

2∑
j=1

γ

2
ℓt,j . (44)

Note that to prove Claim 3, we need to show that for large enough T ,

∆ ≥ c3γ T (45)

holds true.

Note that in loss sequence {ℓt}Tt=1 for all rounds t, we have ℓt,1 + ℓt,2 = 1; therefore

T∑
t=1

2∑
j=1

γ

2
ℓt,j =

γ T

2
. (46)
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Moreover, for large enough T we have

T∑
t=1

2∑
j=1

E [γπt,jℓt,j ] =
∑
t∈T1

E [γπt,1]︸ ︷︷ ︸
phase 1

+
∑

t∈T2∪T3

E [γπt,2]︸ ︷︷ ︸
phase 2.1 and phase 2.2

+
∑
t∈T4

E [γπt,2]︸ ︷︷ ︸
phase 2.3

≤ T1
γ

2
+

∑
t∈T2∪T3

E [γπt,2] +
∑
t∈T4

E [γπt,2] (πt,1 ≤ 1/2 ∈ T1)

≤ T1
γ

2
+ γ (T2 + T3) +

∑
t∈T4

E [γπt,2] (πt,2 ≤ 1)

≤ T1
γ

2
+ γ (T2 + T3) + T4

γ

4
, (∀t ∈ T4,E[πt,2] ≤ 1/4 when T is large)

(47)
where the first inequality comes from the fact that πt,1 ≤ 1/2 when 1 ≤ t ≤ T1. The third inequality comes from
the fact that by Lemma 30, for large enough T , we have E[πt,2] ≤ 1

4 when t ∈ T4.

By using (46) and (47), we have

∆ = −
T∑

t=1

2∑
j=1

E [γπt,jℓt,j ] +

T∑
t=1

2∑
j=1

γ

2
ℓt,j ≥ −

(
T1

γ

2
+ (T2 + T3) γ + T4

γ

4

)
+ T

γ

2

= −T (
1

100

γ

2
+

3

10
γ +

69

100

γ

4
) + T

γ

2

=
9

400
γ T = c3γ T,

for large enough T , i.e., (45) holds. This proves the claim.
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C Potential Analysis

C.1 WSU as a Linear approximation of Hedge Update

As mentioned in the main text, the WSU update can be viewed as a linear approximation to the Hedge update.
In this section, we briefly show this approximation argument.

Observe that by applying the linear approximation f(x) ≈ f(x0) + f ′(x0)(x − x0) for f(x) = exp(−x) and for
x = ηℓt,i and x0 = ηℓ̄t, where ℓ̄t :=

∑
j πt,jℓt,j , we get

exp (−ηℓt,i) ≈ exp
(
−ηℓ̄t

)
·
(
1− η

(
ℓt,i − ℓ̄t

))
. (48)

Note that Hedge updates weights by the LHS of (48). Now, if we instead update the weights by RHS of (48),
we get

wt+1,i = wt,i · exp
(
−ηℓ̄t

)
·
(
1− η

(
ℓt,i − ℓ̄t

))
.

By defining πt,i :=
wt,i∑

j∈[K] wt,j
, we get

πt+1,i =
wt+1,i∑
j wt+1,j

=
exp

(
−ηℓ̄t

) [
wt,i ·

(
1− η

(
ℓt,i − ℓ̄t

))]
exp

(
−ηℓ̄t

) [∑
j∈[K] wt,j ·

(
1− η

(
ℓt,j − ℓ̄t

))]
=

wt,i ·
(
1− η

(
ℓt,i − ℓ̄t

))∑
j∈[K] wt,j ·

(
1− η

(
ℓt,j − ℓ̄t

))
=

wt,i ·
(
1− η

(
ℓt,i − ℓ̄t

))∑
j∈[K] wt,j

= πt,i

(
1− η

(
ℓt,i − ℓ̄t

))
.

Note that this recovers the WSU update.10

C.2 Completed version of Potential Argument of Subsection 3.1

In this subsection, for the convenience of the reader, we give a comprehensive explanation of the derivation of
(7) and (5).

In the potential analysis of Hedge which can be found in Hazan et al. (2016), for any i ∈ [K] and t ∈ [T ], we
define ΦHEDGE

t,i := wt,i with wt,i and πt,i as in Definition 5. Moreover, assume that w1,i = 1.11 We also define

define ΦHEDGE
t :=

∑
j∈[K] wt,j . By non-negativity of wt,i, we have

1

η
ln (ΦHEDGE

T+1,i ) ≤ 1

η
ln (ΦHEDGE

T+1 ), (49)

It is easy to see that for any t ∈ [T ] we can write

ΦHEDGE
t+1 = ΦHEDGE

t

∑
j∈[K]

πt,j exp (−ηℓt,j)

 .

Note that we have∑
j∈[K]

πt,j exp (−ηℓt,j) ≤ 1− η
∑
j∈[K]

πt,jℓt,j + η2
∑
j∈[K]

πt,j (ℓt,j)
2

(exp (−x) ≤ 1− x+ x2 for x ≥ 0)

≤ exp

−η
∑
j∈[K]

πt,jℓt,j + η2
∑
j∈[K]

πt,j (ℓt,j)
2

. (exp (x) ≤ 1 + x)

10The idea of linear approximation of hedge was noted by Kivinen and Warmuth (1997) for a slightly different setting.
11This is slightly different than Definition 5 where w1,i = 1/K. We can view it as dividing all weights by the same

constant. This does not impact the behaviour of Hedge at all.
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Therefore, we have

ΦHEDGE
t+1 ≤ ΦHEDGE

t exp

−η
∑
j∈[K]

πt,jℓt,j + η2
∑
t∈[T ]

∑
j∈[K]

πt,j (ℓt,j)
2

.

By applying (50) recursively, we get

ΦHEDGE
T+1 ≤ ΦHEDGE

1 exp

−η
∑
t∈[T ]

∑
j∈[K]

πt,jℓt,j + η2
∑
t∈[T ]

∑
j∈[K]

πt,j (ℓt,j)
2


= exp

lnK − η
∑
t∈[T ]

∑
j∈[K]

πt,jℓt,j + η2
∑
t∈[T ]

∑
j∈[K]

πt,j (ℓt,j)
2

, (50)

since ΦHEDGE
1 =

∑
j∈[K]

1
K = K.

On the other hand, we have

ΦHEDGE
T+1,i = ΦHEDGE

T,i exp (−ηℓT,i) = ΦHEDGE
1,i exp (−η

∑
t∈[T ]

ℓt,i) = exp

−η
∑
t∈[T ]

ℓt,i

. (51)

We can upper bound the RHS of (49) by (50) and lower bound the LHS of (49) by (51) to get

−
∑
t∈[T ]

ℓt,i ≤
1

η
ln (ΦHEDGE

T+1,i ) ≤ 1

η
ln (ΦHEDGE

T+1 ) ≤ −
∑
t∈[T ]

∑
j∈[K]

πt,jℓt,j +
lnK

η
+ η

∑
t∈[T ]

 ∑
j∈[K]

πt,j (ℓt,j)
2

 .

Note that the above is the full version of (5). Rearranging, we get 12

∑
t∈[T ]

∑
j∈[K]

πt,jℓt,j −
∑
t∈[T ]

ℓt,i ≤
lnK

η︸ ︷︷ ︸
exploration term

+η
∑
t∈[T ]

∑
j

πt,j (ℓt,j)
2


︸ ︷︷ ︸
Second order error

.

For WSU, the potential is defined as ΦWSU
t,i := πt,i and ΦWSU

t :=
∑

j∈[K] πt,i = 1. By non-negativity of πt,i

we have

1

η
ln (ΦWSU

T+1,i) ≤
1

η
ln (ΦWSU

T+1 ) = 0. (52)

Now, the RHS of (6) (which is 0) does not involve any second-order error term. In fact, since WSU is normalized,
the RHS does not give us information about the regret. However, we can extract the difference between the
cumulative loss of the algorithm and expert i from the LHS of (6).

12Note that the exploration term is an inevitable error incurred by both Hedge and WSU when they move toward the
optimal point in the simplex ∆K by the learning rate η. We call it exploration term as the algorithm is trying to explore
and find the optimal point in the domain of the simplex.
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Indeed, we have

ΦWSU
T+1,i = ΦWSU

T,i

1− η

ℓT,i −
∑
j

πT,jℓT,j


= ΦWSU

1,i

∏
t∈[T ]

1− η

ℓt,i −∑
j

πt,jℓt,j


≥ 1

K

∏
t∈[T ]

exp

−η

ℓt,i −∑
j

πt,jℓt,j

− η2

ℓt,i −∑
j

πt,jℓt,j

2


=
1

K
exp

−η
∑
t∈[T ]

ℓt,i −∑
j

πt,jℓt,j

− η2
∑
t∈[T ]

ℓt,i −∑
j

πt,jℓt,j

2
, (53)

where the inequality comes from 1− x ≥ exp(−x− x2) for 0 ≤ x ≤ 1/2.

Using (53), we can lower bound the LHS of (52) as

∑
t∈[T ]

∑
j

πt,jℓt,j − ℓt,i

− lnK

η
− η

∑
t∈[T ]

∑
j

πt,jℓt,j − ℓt,i

2

≤ 1

η
ln (ΦWSU

T+1,i) ≤
1

η
ln (ΦWSU

T+1 ) = 0.

Note that the above is the full version of (7). Rearranging, we get

∑
t∈[T ]

∑
j∈[K]

πt,jℓt,j −
∑
t∈[T ]

ℓt,i ≤
lnK

η︸ ︷︷ ︸
exploration term

+η
∑
t∈[T ]

∑
j

πt,jℓt,j − ℓt,i

2

︸ ︷︷ ︸
Second order error

.

Implication for Bandit Case In the bandit setting, when we use WSU-UX, we can show that we get a
second-order term in (7) which is upper bounded by

E


∑

j

πt,j ℓ̂t,j − ℓ̂t,i

2
 ≤ E


∑

j

πt,j ℓ̂t,j

2

+
(
ℓ̂t,i

)2
≤ E

∑
j

πt,j

(
ℓ̂t,j

)2
+
(
ℓ̂t,i

)2 . (Jensen’s inequality for f(x) = x2)

Note that

E

 ∑
j∈[K]

πt,j

(
ℓ̂t,j

)2 = E

 ∑
j∈[K]

πt,j

(
ℓt,j1[It = j]

π̃t,j

)2


= E

 ∑
j∈[K]

πt,j

(
ℓt,j
π̃t,j

)2

Et−1

[
1[It = j]2

]
= E

 ∑
j∈[K]

πt,j

π̃t,j

 (ℓt,j ≤ 1) (54)

≤ 2K, (55)
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where the last inequality holds since
πt,j

π̃t,j
≤ 2 as we have

2π̃t,i − πt,i = 2
(
(1− γ)πt,i +

γ

K

)
− πt,i = (1− 2γ)πt,i + 2γ

1

K
≥ min{πt,i,

1

K
} ≥ 0.

Moreover,

E
[(

ℓ̂t,i

)2]
= E

[(
ℓt,i1[It = i]

π̃t,i

)2
]

= E

[(
ℓt,i
π̃t,i

)2

Et−1

[
1[It = i]2

]]

= E

[
ℓ2t,i
π̃t,i

]

≤ E
[

1

π̃t,i

]
. (ℓt,i ≤ 1)

Therefore, we have

E

 ∑
j∈[K]

πt,j

(
ℓ̂t,j

)2 ≤ 2K + E
[

1

π̃t,i

]
≤ 2K +

K

γ
= O(

K

γ
),

where the last inequality holds because we have π̃t,i = (1− γ)πt,i +
γ
K ≥ γ

K .
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