
Differentiable Rendering with Reparameterized Volume Sampling

Nikita Morozov Denis Rakitin Oleg Desheulin
HSE Unversity HSE University HSE University

Dmitry Vetrov∗ Kirill Struminsky
Constructor University, Bremen HSE Unversity

Abstract

In view synthesis, a neural radiance field ap-
proximates underlying density and radiance
fields based on a sparse set of scene pic-
tures. To generate a pixel of a novel view,
it marches a ray through the pixel and com-
putes a weighted sum of radiance emitted
from a dense set of ray points. This render-
ing algorithm is fully differentiable and facili-
tates gradient-based optimization of the fields.
However, in practice, only a tiny opaque por-
tion of the ray contributes most of the radi-
ance to the sum. We propose a simple end-to-
end differentiable sampling algorithm based
on inverse transform sampling. It generates
samples according to the probability distribu-
tion induced by the density field and picks
non-transparent points on the ray. We utilize
the algorithm in two ways. First, we propose
a novel rendering approach based on Monte
Carlo estimates. This approach allows for
evaluating and optimizing a neural radiance
field with just a few radiance field calls per
ray. Second, we use the sampling algorithm
to modify the hierarchical scheme proposed
in the original NeRF work. We show that our
modification improves reconstruction quality
of hierarchical models, at the same time sim-
plifying the training procedure by removing
the need for auxiliary proposal network losses.

∗Work done while working at AIRI. Proceedings of the
27th International Conference on Artificial Intelligence and
Statistics (AISTATS) 2024, Valencia, Spain. PMLR: Volume
238. Copyright 2024 by the author(s).

Original

1 pt. / ray

PSNR 25.12

2 pts. / ray

PSNR 27.36

4 pts. / ray

PSNR 28.57

8 pts. / ray

PSNR 29.05

Figure 1: Novel views of a ship generated with the
proposed Monte Carlo radiance estimates. For each
ray we estimate density and then compute radiance
at a few ray points generated using the ray density.
As the above images indicate, render quality gradually
improves with the number of ray samples, without
visible artifacts at eight points per ray.

1 INTRODUCTION

Given a set of scene pictures with corresponding cam-
era positions, novel view synthesis aims to generate
pictures of the same scene from new camera positions.
Recently, learning-based approaches have led to signifi-
cant progress in this area. As an early instance, neu-
ral radiance fields (NeRF) by Mildenhall et al. (2020)
represent a scene via a density field and a radiance
(color) field parameterized with a multilayer percep-
tron (MLP). Using a differentiable volume rendering

Differentiable Rendering with Reparameterized Volume Sampling

algorithm (Max, 1995) with MLP-based fields to pro-
duce images, they minimize the discrepancy between
the output images and a set of reference images to learn
a scene representation.

In particular, NeRF generates an image pixel by casting
a ray from a camera through the pixel and aggregating
the radiance at each ray point with weights induced by
the density field. Each term involves a costly neural
network query, and the model has a trade-off between
rendering quality and computational load. In this work,
we revisit the formula for the aggregated radiance com-
putation and propose a novel approximation based on
Monte Carlo methods. We compute our approximation
in two stages. In the first stage, we march through
the ray to estimate density. In the second stage, we
construct a Monte Carlo color approximation using
the density to pick points along the ray. The resulting
estimate is fully differentiable and can act as a drop-in
replacement for the standard rendering algorithm used
in NeRF. Fig. 1 illustrates the estimates for a varying
number of samples. Compared to the standard render-
ing algorithm, the second stage of our algorithm avoids
redundant radiance queries and can potentially reduce
computation during training and inference.

Furthermore, we show that the sampling algorithm
used in our Monte Carlo estimate is applicable to the
hierarchical sampling scheme in NeRF. Similar to our
work, the hierarchical scheme uses inverse transform
sampling to pick points along a ray. The corresponding
distribution is tuned using an auxiliary training task.
In contrast, we derive our algorithm from a different
perspective and obtain the inverse transform sampling
for a slightly different distribution. With our algorithm,
we were able to train NeRF end-to-end without the
auxiliary task and improve the reconstruction qual-
ity. We achieve this by back-propagating the gradients
through the sampler, and show that the original sam-
pling algorithm fails to achieve similar quality in the
same setup.

Below, Section 2 gives a recap of neural radiance fields.
Then we proceed to the main contributions of our
work in Section 3, namely the rendering algorithm
fueled by Monte Carlo estimates and the novel sam-
pling procedure. In Section 4 we discuss related work.
In Subsection 5.1, we use our sampling algorithm to
improve the hierarchical sampling scheme proposed
for training NeRF. Finally, in Subsection 5.2 we ap-
ply the proposed Monte Carlo estimate to replace the
standard rendering algorithm. With an efficient neu-
ral radiance field architecture, our algorithm decreases
time per training iteration at the cost of reduced re-
construction quality. We also show that our Monte
Carlo estimate can be used during inference of a pre-
trained model with no additional fine-tuning needed,

and it can achieve better reconstruction quality at the
same speed in comparison to the standard algorithm.
Our source code is available at https://github.com/
GreatDrake/reparameterized-volume-sampling.

2 NEURAL RADIANCE FIELDS

Neural radiance fields represent 3D scenes with a non-
negative scalar density field σ : R3 → R+ and a vector
radiance field c : R3 × R3 → R3. Scalar field σ repre-
sents volume density at each spatial location x, and
c(x,d) returns the light emitted from spatial location
x in direction d represented as a normalized three
dimensional vector.

For novel view synthesis, NeRF (Mildenhall et al., 2020)
adapts a volume rendering algorithm that computes
pixel color C(r) as the expected radiance for a ray
r = o+ td passing through a pixel from origin o ∈ R3

in a direction d ∈ R3. For ease of notation, we will
denote density and radiance restricted to a ray r as

σr(t) := σ(o+ td) and cr(t) := c(o+ td,d). (1)

With that in mind, the expected radiance along ray r
is given as

C(r) =

∫ tf

tn

pr(t)cr(t)dt, (2)

where

pr(t) := σr(t) exp

(
−
∫ t

tn

σr(s)ds

)
. (3)

Here, tn and tf are near and far ray boundaries, and
pr(t) is an unnormalized probability density function
of a random variable t on a ray r. Intuitively, t is the
location on a ray where the portion of light coming
into the point o was emitted.

To approximate the nested integrals in Eq. 2, Max
(1995) proposed to replace fields σr and cr with a
piecewise approximation on a grid tn = t0 < t1 <
· · · < tm = tf and compute the formula in Eq. 2
analytically for the approximation. In particular, a
piecewise constant approximation with density σi and
radiance ci within i-th bin [ti+1, ti] of width δi = ti+1−
ti yields formula

Ĉ(r) =

m∑
i=1

wici, (4)

where the weights are given by

wi = (1− exp(−σiδi)) exp

−
i−1∑
j=1

σjδj

 . (5)

https://github.com/GreatDrake/reparameterized-volume-sampling
https://github.com/GreatDrake/reparameterized-volume-sampling

Morozov, Rakitin, Desheulin, Vetrov, Struminsky

Importantly, Eq. 4 is fully differentiable and can be
used as a part of a gradient-based learning pipeline.
To reconstruct a scene NeRF runs a gradient based
optimizer to minimize MSE between the predicted color
and the ground truth color averaged across multiple
rays and multiple viewpoints.

While the above approximation works in practice, it
involves multiple evaluations of c and σ along a dense
grid. Besides that, a ray typically intersects a solid sur-
face at some point t ∈ [tn, tf]. In this case, probability
density pr(t) will concentrate its mass near t and, as a
result, most of the terms in Eq. 4 will make a negligible
contribution to the sum. To approach this problem,
NeRF employs a hierarchical sampling scheme. Two
networks are trained simultaneously: coarse (or pro-
posal) and fine. Firstly, the coarse network is evaluated
on a uniform grid of Nc points and a set of weights wi

is calculated as in Eq. 5. Normalizing these weights
produces a piecewise constant PDF along the ray. Then
Nf samples are drawn from this distribution and the
union of the first and second sets of points is used to
evaluate the fine network and compute the final color
estimation. The coarse network is also trained to pre-
dict ground truth colors, but the color estimate for the
coarse network is calculated only using the first set of
Nc points.

3 REPARAMETERIZED VOLUME
SAMPLING AND RADIANCE
ESTIMATES

3.1 Reparameterized Expected Radiance
Estimates

Monte Carlo methods give a natural way to approx-
imate the expected color. For example, given k i.i.d.
samples t1, . . . , tk ∼ pr(t) and the normalizing constant
yf :=

∫ tf
tn

pr(t)dt, the sum

ĈMC(r) =
yf
k

k∑
i=1

cr(ti) (6)

is an unbiased estimate of the expected radiance in
Eq. 2. Moreover, samples t1, . . . , tk belong to high-
density regions of pr by design, thus for a degener-
ate density pr even a few samples would provide an
estimate with low variance. Importantly, unlike the
approximation in Eq. 4, the Monte Carlo estimate de-
pends on scene density σ implicitly through sampling
algorithm and requires a custom gradient estimate for
the parameters of σ. We propose a principled end-to-
end differentiable algorithm to generate samples from
pr(t).

Our solution is primarily inspired by the reparam-

eterization trick (Kingma and Ba, 2014; Rezende
et al., 2014). We change the variable in Eq. 2. For
Fr(t) := 1− exp

(
−
∫ t

tn
σr(s)ds

)
and y := Fr(t) we

rewrite

C(r) =

∫ tf

tn

cr(t)pr(t)dt (7)

=

∫ yf

yn

cr(F
−1
r (y))dy (8)

=

∫ 1

0

yfcr(F
−1
r (yfu))du. (9)

The integral boundaries are yn := Fr(tn) = 0 and
yf := Fr(tf). Function Fr(t) acts as the cumulative
distribution function of the variable t with a single
exception that, in general, Fr(tf) ̸= 1. In volume
rendering, Fr(t) is called opacity function with yf being
equal to overall pixel opaqueness. After the first change
of variables in Eq. 8, the integral boundaries depend
on opacity Fr and, as a consequence, on ray density
σr. We further simplify the integral by changing the
integration boundaries to [0, 1] and substituting yn = 0.

Given the above derivation, we construct the reparam-
eterized Monte Carlo estimate for the right-hand side
integral in Eq. 9

ĈR
MC(r) :=

yf
k

k∑
i=1

cr(F
−1
r (yfui)), (10)

with k i.i.d. U [0, 1] samples u1, . . . , uk. It is easy to
show that the estimate in Eq. 10 is an unbiased estimate
of expected color in Eq. 2 and its gradient is an unbiased
estimate of the gradient of the expected color C(r).
Additionally, we propose to replace the uniform samples
u1, . . . , uk with uniform independent samples within
regular grid bins vi ∼ U [i−1

k+1 ,
i

k+1], i = 1, . . . , k. The
latter samples yield a stratified variant of the estimate
in Eq. 10 and, most of the time, lead to lower variance
estimates (see Appendix B).

In the above estimate, random samples u1, . . . , uk do
not depend on volume density σr or color cr. Essen-
tially, for the reparameterized Monte Carlo estimate we
generate samples from pr(t) using inverse cumulative
distribution function F−1

r (yfu). In what follows, we
coin the term reparameterized volume sampling (RVS)
for the sampling procedure. However, in practice, we
cannot compute Fr analytically and can only query σr

at certain ray points. Thus, in the following section,
we introduce approximations of Fr and its inverse.

3.2 Opacity Approximations

The expected radiance estimate in Eq. 10 relies on
opacity Fr(t) = 1−exp

(
−
∫ t

tn
σr(s)ds

)
and its inverse

Differentiable Rendering with Reparameterized Volume Sampling

tn tf
t

0.0

0.5y
Density Field

σ(t)
Piecewise constant σ̂0(t)
Piecewise linear σ̂1(t)

tn tf
t

0.0

0.2

0.4

Opacity

Opacity F(t)
Approximation ̂F0(t)
Approximation ̂F1(t)
̂F−11 (y)

Figure 2: Illustration of opacity inversion. On the
left, we approximate density field σr with a piece-
wise constant and a piecewise linear approximation.
On the right, we approximate opacity Fr(t) and com-
pute F−1

r (yfu) for u ∼ U [0, 1].

F−1
r (y). We propose to approximate the opacity using

a piecewise density field approximation. Fig. 2 illus-
trates the approximations and ray samples obtained
through opacity inversion. To construct the approxima-
tion, we take a grid tn = t0 < t1 < · · · < tm = tf and
construct either a piecewise constant or a piecewise lin-
ear approximation. In the former case, we pick a point
within each bin ti ≤ t̂i ≤ ti+1 and approximate density
with σr(t̂i) inside the corresponding bin. In the latter
case, we compute σr in the grid points and interpolate
the values between the grid points. Importantly, for a
non-negative field these two approximations are also
non-negative. Then we compute

∫ t

tn
σr(s)ds , which is

as a sum of rectangular areas in the piecewise constant
case

I0(t) =

i∑
j=1

σr(t̂j)(tj − tj−1) + σr(t̂i)(t− ti). (11)

Analogously, the integral approximation I1(t) in the
piecewise linear case is a sum of trapezoidal areas.

Given these approximations, we can approximate yf
and Fr in Eq. 10. We generate samples on a ray based
on inverse opacity F−1

r (y) by solving the equation

yfu = Fr(t) = 1− exp

(
−
∫ t

tn

σr(s)ds

)
(12)

for t, where u ∈ [0, 1] is a random sample. We rewrite
the equation as − log(1− yfu) =

∫ t

tn
σr(s)ds and note

that integral approximations I0(t) and I1(t) are mono-
tonic piecewise linear and piecewise quadratic func-
tions. We obtain the inverse by first finding the bin

that contains the solution and then solving a linear or
a quadratic equation. Crucially, the solution t can be
seen as a differentiable function of density field σr and
we can back-propagate the gradients w.r.t. σr through
t. We provide explicit formulae for t for both approx-
imations in Appendix A.1 and discuss the solutions
crucial for the numerical stability in Appendix A.2. In
Appendix A.3, we provide the algorithm implementa-
tion and draw parallels with earlier work. Additionally,
in Appendix A.4 we discuss an alternative approach to
calculating inverse opacity and its gradients. We use
piecewise linear approximations in Subsection 5.1 and
piecewise constant in Subsection 5.2.

3.3 Application to Hierarchical Sampling

Finally, we propose to apply our RVS algorithm to
the hierarchical sampling scheme originally proposed in
NeRF. Here we do not change the final color approxima-
tion, utilizing the original one (Eq. 4), but modify the
way the coarse density network is trained. The method
we introduce consists of two changes to the original
scheme. Firstly, we replace sampling from piecewise
constant PDF along the ray defined by weights wi (see
Section 2) with our RVS sampling algorithm that uses
piecewise linear approximation of σr and generates
samples from pr(t) using inverse CDF. Secondly, we
remove the auxiliary reconstruction loss imposed on
the coarse network. Instead, we propagate gradients
through sampling. This way, we eliminate the need for
auxiliary coarse network losses and train the network
to solve the actual task of our interest: picking the
best points for evaluation of the fine network. All com-
ponents of the model are trained together end-to-end
from scratch. In Subsection 5.1, we refer to the coarse
network as the proposal network, since such naming
better captures its purpose.

4 RELATED WORK

Monte Carlo estimates for integral approxima-
tions. In this work, we revisit the algorithm introduced
to approximate the expected color in Max (1995). Cur-
rently, it is the default solution in multiple works on
neural radiance fields. Max (1995) approximate density
and radiance fields with a piecewise constant functions
along a ray and compute Eq. 2 as an approximation.
Instead, we reparameterize Eq. 2 and construct Monte
Carlo estimates for the integral. To compute the esti-
mates in practice we use piecewise approximations only
for the density field. The cumulative density function
(CDF) used in our estimates involves integrating the
density field along a ray. Lindell et al. (2021) construct
field anti-derivatives to accelerate inference. While they
use the anti-derivatives to compute 2 on a grid with

Morozov, Rakitin, Desheulin, Vetrov, Struminsky

fewer knots, the anti-derivatives can be applied in our
sampling method based on the inverse CDF without
resorting to piecewise approximations.

In the past decade, integral reparameterizations have
become a common practice in generative model-
ing (Kingma and Welling, 2013; Rezende et al., 2014)
and approximate Bayesian inference (Blundell et al.,
2015; Gal and Ghahramani, 2016; Molchanov et al.,
2017). Similar to Equation 2, objectives in these areas
require optimizing expected values with respect to dis-
tribution parameters. We refer readers to Mohamed
et al. (2020) for a systematic overview. Notably, in
computer graphics, Loubet et al. (2019) apply reparam-
eterization to estimate gradients of path-traced images
with respect to scene parameters.

NeRF acceleration through architecture and
sparsity. Since the original NeRF work (Mildenhall
et al., 2020), a number of approaches that aim to im-
prove the efficiency of the model have been proposed.
One family of methods tries to reduce the time re-
quired to evaluate the field. It includes a variety of
architectures combining Fourier features (Tancik et al.,
2020) and grid-based features (Garbin et al., 2021; Sun
et al., 2022; Fridovich-Keil et al., 2022; Reiser et al.,
2021). Besides grids, some works exploit space parti-
tions based on Voronoi diagrams (Rebain et al., 2021),
trees (Hu et al., 2022; Yu et al., 2021) and even hash
tables (Müller et al., 2022). These architectures gen-
erally trade-off inference speed for parameter count.
TensorRF (Chen et al., 2022) stores the grid tensors
in a compressed format to achieve both high compres-
sion and fast performance. On top of that, skipping
field queries for the empty parts of a scene addition-
ally improves rendering time (Levoy, 1990). Recent
works (such as Hedman et al. (2021); Fridovich-Keil
et al. (2022); Liu et al. (2020); Li et al. (2022); Sun
et al. (2022); Müller et al. (2022)) manually exclude
low-weight components in Eq 4 to speed up rendering
during training and inference. Below, we show that our
Monte Carlo algorithm is compatible with fast architec-
tures and sparse density fields, achieving comparable
speedups by using a few radiance evaluations.

Anti-aliased scene representations. Mip-
NeRF (Barron et al., 2021), Mip-NeRF 360 (Barron
et al., 2022) and a more recent Zip-NeRF (Barron
et al., 2023) represent a line of work that modifies
scene representations. Relevant to our research is the
fact that these models employ modifications of the orig-
inal hierarchical sampling scheme, where the coarse
network parameterizes some density field. Mip-NeRF
parameterizes the coarse and the fine fields by the
same neural network that represents the scene at a
continuously-valued scale. Mip-NeRF 360 and Zip-
NeRF use a separate model for proposal density, but

train it to mimic the fine density rather than indepen-
dently reconstructing the image. This means that our
method for training the proposal density field can be
potentially used to improve the performance of these
models and simplify the training algorithm.

Algorithms for picking ray points. Mildenhall
et al. (2020) employs a hierarchical scheme to generate
ray points using an auxiliary density and color fields.
Since then, a number of other methods for picking ray
points, which focus on real-time rendering and aim to
improve the efficiency of NeRF, have been proposed.
DoNeRF (Neff et al., 2021) uses a designated depth or-
acle network supervised with ground truth depth maps.
TermiNeRF (Piala and Clark, 2021) foregoes the depth
supervision by distilling the sampling network from a
pre-trained NeRF model. NeRF-ID (Arandjelović and
Zisserman, 2021) adds a separate differentiable pro-
poser neural network to the original NeRF model that
maps outputs of the coarse network into a new set of
samples. The model is trained in a two-stage procedure
together with NeRF. The authors of NeuSample (Fang
et al., 2021) use a sample field that directly transforms
rays into point coordinates. The sample field can be
further fine-tuned for rendering with a smaller number
of samples. AdaNeRF (Kurz et al., 2022) proposes to
use a sampling and a shading network. Samples from
the sampling network are processed by the shading
network that tries to predict the importance of samples
and cull the insignificant ones. One of the key merits
of our approach in comparison to these works is its
simplicity. We simplify the original NeRF training pro-
cedure, while other works only build upon it, adding
new components, training stages, constraints, or losses.
Moreover, the absence of reliance on additional neural
network components (not responsible for density or ra-
diance) for sampling makes our approach better suited
for fast NeRF architectures. Finally, our approach
is suitable for end-to-end training of NeRF models
from scratch, whereas the works mentioned above use
pre-trained NeRF models or multiple training stages.

5 EXPERIMENTS

5.1 End-to-end Differentiable Hierarchical
Sampling

In this section, we evaluate the proposed approach to
hierarchical volume sampling (see Subsection 3.3).

Experimental setup. We do the comparison by
fixing some training setup and training two models from
scratch: one NeRF model is trained using the procedure
proposed in Mildenhall et al. (2020) (further denoted as
NeRF in the results), and the other one is trained using
our modification described in Subsection 3.3 (further

Differentiable Rendering with Reparameterized Volume Sampling

(16, 32) (32, 64) (64, 128) (64, 192)

NeRF

RVS

Figure 3: Comparison between renderings of test-set view on the Lego scene (Blender). Rows correspond to
different (Np, Nf) configurations. NeRF baseline has difficulties in reconstructing fine details for (16, 32) and
(32, 64) configurations, and some parts remain blurry even in (64, 128) and (64, 192) configurations, while our
method already produces realistic reconstruction for (32, 64) configuration.

denoted as RVS). For both models, the final color
approximation is computed as in Eq. 4, so the difference
only appears in the proposal component.

We train all models for 500k iterations using the same
hyperparameters as in the original paper with minor
differences. We replace ReLU density output activation
with Softplus. The other difference is that we use a
smaller learning rate for the proposal density network
in our method (start with 5× 10−5 and decay to 5×
10−6) but the same for the fine network (start with
5× 10−4 and decay to 5× 10−5). This is done since we
observed that decreasing the proposal network learning
rate improves stability of our method. We run the
default NeRF training algorithm in our experiments
with the same learning rates for proposal and fine
networks. Further in the ablation study we show that
decreasing the proposal network learning rate only
degrades the performance of the base algorithm. We
use PyTorch implementation of NeRF (Yen-Chen, 2020)
in our experiments.

Comparative evaluation. We start the compar-
ison on the Lego scene of the synthetic Blender
dataset (Mildenhall et al., 2020) for different (Np, Nf)
configurations that correspond to the number of pro-
posal and fine network evaluations. Note that this
Np, Nf notation does not directly correspond to the
Nc, Nf notation used in Section 2 since the original
NeRF model evaluates the fine network in Nc + Nf

points. For more details on training configurations and
options for picking points for fine network evaluation,
see Appendix D. The results are presented in Table 1.
Our method outperforms the baseline across all con-
figurations and all metrics, with the only exception of

Table 1: Comparison on the Lego scene of Blender
dataset between NeRF training algorithm and our mod-
ification depending on the number of proposal and fine
network evaluations per ray (Np, Nf). The (64, 192)
configuration is the one originally used in NeRF. The
training time column depicts relative training time on
a single NVIDIA A100 GPU (1.0 being 12 hours).

Evals. Train PSNR ↑ SSIM ↑ LPIPS ↓
Np Nf time

NeRF 16 32 0.39 27.09 0.913 0.121
RVS 16 32 0.37 29.18 0.928 0.112
NeRF 32 64 0.52 30.11 0.947 0.070
RVS 32 64 0.48 31.89 0.955 0.066
NeRF 64 128 0.79 32.14 0.958 0.053
RVS 64 128 0.76 32.80 0.963 0.051
NeRF 64 192 1.0 32.69 0.962 0.048
RVS 64 192 0.98 33.03 0.964 0.047

LPIPS in (64, 192) configuration, where it showed sim-
ilar performance. We observe that the improvement is
more significant for smaller (Np, Nf). Our method also
has a minor speedup over the baseline due to the fact
that the former does not use the radiance component
of the proposal network. Fig. 3 in visualizes test-set
view renderings of models trained by two methods.

We also visualize proposal and fine densities learned
by two algorithms in Fig. 4. Figures are constructed
by fixing some value of z coordinate and calculating
the density on (x, y)-plane. While fine density visual-
izations look similar, proposal densities turn out very
different. This happens due to the fact that the original
algorithm trains the proposal network to reconstruct
the scene (but using a smaller number of points for
color estimation), while our algorithm trains this net-
work to sample points for fine network evaluation that

Morozov, Rakitin, Desheulin, Vetrov, Struminsky

Proposal

NeRF

RVS

Fine

Figure 4: Visualizations across 2D slice of proposal
and fine densities learnt on the Lego scene in (32, 64)
configuration. Brighter pixels correspond to larger
density values.

Table 2: Comparison with NeRF on Blender and LLFF
datasets in (Np = 32, Nf = 64) configuration.

Blender Dataset
PSNR ↑ SSIM ↑ LPIPS ↓

NeRF 29.49 0.934 0.085
RVS 30.26 0.939 0.082

LLFF Dataset
PSNR ↑ SSIM ↑ LPIPS ↓

NeRF 26.01 0.796 0.273
RVS 26.24 0.799 0.270

would lead to a better overall reconstruction. Since
RVS shows better reconstruction quality, and its pro-
posal densities are significantly different from the NeRF
ones, one can argue that a proposal density that tries
to mimic the fine density is not the optimal choice.

Next, we evaluate our method on all scenes from
Blender, as well as the LLFF (Mildenhall et al., 2019)
dataset containing real scenes. Table 2 depicts the
results averaged across all scenes. The results for in-
dividual scenes can be found in Appendix F. Our ap-
proach shows improvement over the baseline on all
scenes of Blender dataset. While the improvement is
less pronounced on LLFF dataset, it is still present
across all metrics on average. Fig. 7 in Appendix E
visually depicts the quality of reconstruction on T-Rex
scene.

Unbounded scenes. In addition, we evaluate our
approach with NeRF++ (Zhang et al., 2020) modifica-
tion designed for unbounded scenes. NeRF++ utilizes
the same hierarchical scheme as the original NeRF,
so we ran the same setup as previously: one model
is trained using the original procedure, and for the
other one we replace the sampling algorithm with RVS
and propagate gradients through sampling instead of
using a separate reconstruction loss for the proposal
network. We did not modify any hyperparameters in

Table 3: Comparison with NeRF++ on LF and T&T
datasets in (Np = 32, Nf = 64) configuration.

LF Dataset
PSNR ↑ SSIM ↑ LPIPS ↓

NeRF++ 23.99 0.784 0.287
RVS 24.63 0.812 0.253

T&T Dataset
PSNR ↑ SSIM ↑ LPIPS ↓

NeRF++ 19.21 0.612 0.493
RVS 19.62 0.622 0.472

Table 4: Ablation study with NeRF on Blender dataset
in (Np = 32, Nf = 64) configuration.

Blender Dataset
PSNR ↑ SSIM ↑ LPIPS ↓

aux. loss (base NeRF) 29.49 0.934 0.085
aux. loss (smaller prop. lr) 29.23 0.932 0.090
aux. loss (union of points) 29.06 0.929 0.096
aux. loss (our sampling) 29.70 0.936 0.082
end-to-end (NeRF sampling) 29.07 0.929 0.095
end-to-end (our sampling) 30.26 0.939 0.082

comparison to Zhang et al. (2020) apart from using
a smaller (Np, Nf) configuration and a smaller pro-
posal learning rate in our approach, the same as in
the previous experiments. We run the comparison on
LF (Yücer et al., 2016) and T&T (Knapitsch et al.,
2017) datasets containing unbounded real scenes. The
results are presented in Table 3. Our approach also
shows improvement over NeRF++ across all metrics
on both datasets. Table 12 and Table 13 in Appendix F
present the results for individual scenes.

Ablation study. Finally, we ablate the influence of
some components of our approach on the results. Ta-
ble 4 presents the ablation study. Firstly, we run NeRF
baseline with a decreased proposal network learning
rate, thus fully matching all training hyperparame-
ters with our method. This only reduces all metrics.
Next, we run our approach that trains the proposal
network end-to-end, but replace our algorithm that
draws samples from the proposal distribution with the
sampling algorithm originally proposed in NeRF. Even
though the original work does not propagate gradients
through sampling, the algorithm is still end-to-end dif-
ferentiable, thus the setup is plausible. It also produces
results that fall behind the baseline NeRF. This shows
that while both algorithms are differentiable, ours is
better suited for end-to-end optimization. We discuss
some possible reasons behind these results and the dif-
ferences between the two algorithms in Appendix A.3.
After that, we run the original NeRF approach that
uses an auxiliary loss for proposal network training,
but replace the sampling algorithm with ours (without
propagating gradients through sampling). This variant
performs better than the baseline, but still falls behind

Differentiable Rendering with Reparameterized Volume Sampling

10.0 10.5 11.0 11.5 12.0 12.5
Frames per second

26

28

30

32

34

36

PS
N

R

α=10−4 α=10−3 α=10−2

α=5×10−2

α=10−1

k=1

k=2
k=4k=8

Speed-Fidelity Trade-off

Default rendering, sparsified w.r.t. α
RVS + stratified MC, k samples

Figure 5: Test-time rendering quality as a function
of rendering speed. Given a scene representation pre-
trained with the standard rendering algorithm, we eval-
uate rendering algorithms at various configurations.

end-to-end training with RVS. Finally, we run the base-
line with a different strategy for picking fine points (see
Appendix D for a detailed discussion), which also leads
to degradation of the baseline performance.

5.2 Scene Reconstruction with Monte Carlo
Estimates

In this section, we evaluate the proposed Monte Carlo
radiance estimate (see Subsection 3.1 and Eq. 10) as a
part of the rendering algorithm for scene reconstruction.
Given an accurate density field approximation, our
color estimate is unbiased for any given number of
samples k. Therefore, our estimate is especially suitable
for architectures that can evaluate the density field
faster than the radiance field. As an example, we pick
a voxel-based radiance field model DVGO (Sun et al.,
2022) that parametrizes density field as a voxel grid
and relies on a combination of voxel grid and a view-
dependent neural network to parameterize radiance.
In Appendix C, we evaluate the inference time of the
model to illustrate the benefits of our approach. In
our experiments, we take the default model parameters
and only replace the rendering algorithm.

Experimental setup & comparative evaluation.
In Table 5, we report iterations per second and peak
memory consumption on the Lego scene of Blender
dataset during training. One of the primary goals of
DVGO is to reduce the training time of a scene model.
To achieve that goal, the authors mask components
in the sum in Eq. 4 that have weights below a certain
threshold α. We achieve a similar effect without thresh-
olding: k = 8 samples yield a comparable ×6 speedup
and with fewer samples, we reduce iteration time even
further. However, the speed-up in our estimate comes
at the cost of additional estimate variance.

Next, we evaluate the effect of additional variance on
the rendering fidelity. In Fig. 5, we report test PSNR
on a fixed pre-trained Lego scene representation for

Table 5: Training iteration times and peak memory
consumption for different color approximations.

DVGO Renderer Speed Memory
Default w/o sparisty 24 it/s 9 GB
Default w/ sparsity 160 it/s 5 GB
MC + RVS, k = 128 20 it/s 8 GB
MC + RVS, k = 8 170 it/s 5 GB
MC + RVS, k = 1 260 it/s 5 GB

Table 6: Scene reconstruction results on Blender for
training with Monte Carlo estimates.

DVGO Renderer
Train
time
(min)

PSNR↑ SSIM↑ LPIPS↓

Default w/ sparsity 2:48 31.90 0.956 0.054
MC + RVS, k = 4 2:24 31.19 0.951 0.059
MC + RVS, k = 8 2:00 31.13 0.951 0.059
MC + RVS, adaptive k 2:54 31.44 0.953 0.056

both rendering algorithms, comparing them at the in-
ference stage. Our algorithm achieves the same average
PSNR with k = 8 samples and outperforms the de-
fault rendering algorithm in case of a higher sparsity
threshold α.

In Table 6, we report the performance of models trained
with various color estimates (see Appendix F for per-
scene results), comparing them at the training stage.
We train a model with k = 4 samples using × 3

2 more
training steps than with k = 8 samples aiming to
achieve similar training times. Additionally, we con-
sider a model that chooses the number of samples k
on each ray adaptively between 4 and 48 based on the
number of grid points with high density. The adaptive
number of samples allows to reduce estimate variance
without a drastic increase in training time. We evaluate
our models with k = 64 samples to mitigate the effect
of variance on evaluation.

As Table 6 indicates, the training algorithm with our
color approximation fails to outperform the base algo-
rithm in terms of reconstruction quality; however, it
allows for the faster training of the model.

Ablation study. We ablate the proposed algorithm
on the Lego scene to gain further insights into the dif-
ference in reconstruction fidelity when it is used for
training. Specifically, we ablate parameters affecting
optimization aiming to match the reconstruction qual-
ity of the default algorithm. The results are given in
Table 7. The increase in training steps or the num-
ber of samples improves the performance but does not
lead to matching results. Increased spline density im-
proves both our model and the baseline to the same
extent. We also noticed that the standard objective es-
timates the expected loss EL2(Ĉ, Cgt) rather than the
loss at expected radiance L2(EĈ, Cgt), which leads to

Morozov, Rakitin, Desheulin, Vetrov, Struminsky

Table 7: Ablation study for training with Monte Carlo
estimates on the Lego scene.

Ablated Feature PSNR
MC + RVS with adaptive k 33.85
Training steps (×7) +0.28
Monte Carlo samples (×2 on avg.) +0.15
Dense grid on rays (×2) +0.29

Unbiased loss L2(EĈ, Cgt) +0.25
Density grid resolution (1603 → 2563) +0.63
Radiance grid resolution (1603 → 2563) +0.08
σ + c resolution (1603 → 2563) +0.86
DVGO 34.64

an additional bias towards low-variance densities. The
estimate (Ĉ1−Cgt)(Ĉ2−Cgt) with two i.i.d. color esti-
mates is an unbiased estimate of the latter and allows
reconstructing non-degenerate density fields, but the
estimate has little effect in case of degenerate densities
omnipresent in 3D scenes. Finally, with a denser ray
grid our algorithm surpasses the baseline PSNR at the
cost of increased training time.

To summarize, training with the reparameterized
Monte Carlo estimate currently does not fully match
the fidelity of the standard approach. At the same time,
Monte Carlo radiance estimates provide a straightfor-
ward mechanism to control both training and inference
speed.

6 CONCLUSION

The core of our contribution is an end-to-end differ-
entiable ray point sampling algorithm. We utilize it
to construct an alternative rendering algorithm based
on Monte Carlo, which provides an explicit mecha-
nism to control rendering time during the inference
and training stages. While it is able to outperform the
standard rendering algorithm at the inference stage
given a pre-trained model, it achieves lower reconstruc-
tion quality when used during training, which suggests
areas for future research. At the same time, we show
that the proposed sampling algorithm improves scene
reconstruction in hierarchical models and simplifies the
training approach by disposing of auxiliary losses.

Acknowledgements

The study was carried out within the strategic project
"Digital Transformation: Technologies, Effects and Per-
formance", part of the HSE University "Priority 2030"
Development Programme. The results on hierarchi-
cal sampling from Section 5.1 were obtained by Kirill
Struminsky with the support of the grant for research
centers in the field of AI provided by the Analyti-

cal Center for the Government of the Russian Feder-
ation (ACRF) in accordance with the agreement on
the provision of subsidies (identifier of the agreement
000000D730321P5Q0002) and the agreement with HSE
University No. 70-2021-00139. This research was sup-
ported in part through computational resources of HPC
facilities at HSE University (Kostenetskiy et al., 2021).

References

Arandjelović, R. and Zisserman, A. (2021). Nerf in
detail: Learning to sample for view synthesis. arXiv
preprint arXiv:2106.05264.

Barron, J. T., Mildenhall, B., Tancik, M., Hed-
man, P., Martin-Brualla, R., and Srinivasan, P. P.
(2021). Mip-nerf: A multiscale representation for
anti-aliasing neural radiance fields. In Proceedings of
the IEEE/CVF International Conference on Com-
puter Vision, pages 5855–5864.

Barron, J. T., Mildenhall, B., Verbin, D., Srinivasan,
P. P., and Hedman, P. (2022). Mip-nerf 360: Un-
bounded anti-aliased neural radiance fields. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5470–5479.

Barron, J. T., Mildenhall, B., Verbin, D., Srinivasan,
P. P., and Hedman, P. (2023). Zip-nerf: Anti-aliased
grid-based neural radiance fields. ICCV.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wier-
stra, D. (2015). Weight uncertainty in neural net-
work. In International conference on machine learn-
ing, pages 1613–1622. PMLR.

Chen, A., Xu, Z., Geiger, A., Yu, J., and Su, H. (2022).
Tensorf: Tensorial radiance fields. In Computer
Vision–ECCV 2022: 17th European Conference, Tel
Aviv, Israel, October 23–27, 2022, Proceedings, Part
XXXII, pages 333–350. Springer.

Fang, J., Xie, L., Wang, X., Zhang, X., Liu, W.,
and Tian, Q. (2021). Neusample: Neural sample
field for efficient view synthesis. arXiv preprint
arXiv:2111.15552.

Figurnov, M., Mohamed, S., and Mnih, A. (2018).
Implicit reparameterization gradients. Advances in
Neural Information Processing Systems, 31.

Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht,
B., and Kanazawa, A. (2022). Plenoxels: Radiance
fields without neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5501–5510.

Gal, Y. and Ghahramani, Z. (2016). Dropout as a
bayesian approximation: Representing model uncer-
tainty in deep learning. In international conference
on machine learning, pages 1050–1059. PMLR.

Differentiable Rendering with Reparameterized Volume Sampling

Garbin, S. J., Kowalski, M., Johnson, M., Shotton,
J., and Valentin, J. (2021). Fastnerf: High-fidelity
neural rendering at 200fps. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 14346–14355.

Hedman, P., Srinivasan, P. P., Mildenhall, B., Bar-
ron, J. T., and Debevec, P. (2021). Baking neural
radiance fields for real-time view synthesis. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision, pages 5875–5884.

Hu, T., Liu, S., Chen, Y., Shen, T., and Jia, J. (2022).
Efficientnerf efficient neural radiance fields. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12902–12911.

Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kingma, D. P. and Welling, M. (2013). Auto-encoding
variational bayes. arXiv preprint arXiv:1312.6114.

Knapitsch, A., Park, J., Zhou, Q.-Y., and Koltun, V.
(2017). Tanks and temples: Benchmarking large-
scale scene reconstruction. ACM Transactions on
Graphics (ToG), 36(4):1–13.

Kostenetskiy, P., Chulkevich, R., and Kozyrev, V.
(2021). Hpc resources of the higher school of eco-
nomics. In Journal of Physics: Conference Series,
volume 1740, page 012050. IOP Publishing.

Kurz, A., Neff, T., Lv, Z., Zollhöfer, M., and Stein-
berger, M. (2022). Adanerf: Adaptive sampling
for real-time rendering of neural radiance fields. In
Computer Vision–ECCV 2022: 17th European Con-
ference, Tel Aviv, Israel, October 23–27, 2022, Pro-
ceedings, Part XVII, pages 254–270. Springer.

Levoy, M. (1990). Efficient ray tracing of volume data.
ACM Transactions on Graphics (TOG), 9(3):245–
261.

Li, R., Tancik, M., and Kanazawa, A. (2022). Nerfacc:
A general nerf acceleration toolbox. arXiv preprint
arXiv:2210.04847.

Lindell, D. B., Martel, J. N., and Wetzstein, G. (2021).
Autoint: Automatic integration for fast neural vol-
ume rendering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 14556–14565.

Liu, L., Gu, J., Zaw Lin, K., Chua, T.-S., and Theobalt,
C. (2020). Neural sparse voxel fields. Advances in
Neural Information Processing Systems, 33:15651–
15663.

Loubet, G., Holzschuch, N., and Jakob, W. (2019).
Reparameterizing discontinuous integrands for differ-
entiable rendering. ACM Transactions on Graphics
(TOG), 38(6):1–14.

Max, N. (1995). Optical models for direct volume
rendering. IEEE Transactions on Visualization and
Computer Graphics, 1(2):99–108.

Mildenhall, B., Srinivasan, P. P., Ortiz-Cayon, R.,
Kalantari, N. K., Ramamoorthi, R., Ng, R., and
Kar, A. (2019). Local light field fusion: Practical
view synthesis with prescriptive sampling guidelines.
ACM Transactions on Graphics (TOG), 38(4):1–14.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron,
J. T., Ramamoorthi, R., and Ng, R. (2020). Nerf:
Representing scenes as neural radiance fields for view
synthesis. In European conference on computer vision,
pages 405–421. Springer.

Mohamed, S., Rosca, M., Figurnov, M., and Mnih, A.
(2020). Monte carlo gradient estimation in machine
learning. J. Mach. Learn. Res., 21(132):1–62.

Molchanov, D., Ashukha, A., and Vetrov, D. (2017).
Variational dropout sparsifies deep neural networks.
In International Conference on Machine Learning,
pages 2498–2507. PMLR.

Müller, T., Evans, A., Schied, C., and Keller, A. (2022).
Instant neural graphics primitives with a multiresolu-
tion hash encoding. ACM Trans. Graph., 41(4):102:1–
102:15.

Neff, T., Stadlbauer, P., Parger, M., Kurz, A., Mueller,
J. H., Chaitanya, C. R. A., Kaplanyan, A., and
Steinberger, M. (2021). Donerf: Towards real-time
rendering of compact neural radiance fields using
depth oracle networks. In Computer Graphics Forum,
volume 40, pages 45–59. Wiley Online Library.

Piala, M. and Clark, R. (2021). Terminerf: Ray termi-
nation prediction for efficient neural rendering. In
2021 International Conference on 3D Vision (3DV),
pages 1106–1114. IEEE.

Rebain, D., Jiang, W., Yazdani, S., Li, K., Yi, K. M.,
and Tagliasacchi, A. (2021). Derf: Decomposed radi-
ance fields. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
pages 14153–14161.

Reiser, C., Peng, S., Liao, Y., and Geiger, A. (2021).
Kilonerf: Speeding up neural radiance fields with
thousands of tiny mlps. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 14335–14345.

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014).
Stochastic backpropagation and approximate infer-
ence in deep generative models. In International
conference on machine learning, pages 1278–1286.
PMLR.

Sun, C., Sun, M., and Chen, H.-T. (2022). Direct
voxel grid optimization: Super-fast convergence for
radiance fields reconstruction. In Proceedings of the

Morozov, Rakitin, Desheulin, Vetrov, Struminsky

IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5459–5469.

Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-
Keil, S., Raghavan, N., Singhal, U., Ramamoorthi,
R., Barron, J., and Ng, R. (2020). Fourier features
let networks learn high frequency functions in low di-
mensional domains. Advances in Neural Information
Processing Systems, 33:7537–7547.

Yen-Chen, L. (2020). Nerf-pytorch. https://github.
com/yenchenlin/nerf-pytorch/.

Yu, A., Li, R., Tancik, M., Li, H., Ng, R., and
Kanazawa, A. (2021). Plenoctrees for real-time ren-
dering of neural radiance fields. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 5752–5761.

Yücer, K., Sorkine-Hornung, A., Wang, O., and
Sorkine-Hornung, O. (2016). Efficient 3d object seg-
mentation from densely sampled light fields with
applications to 3d reconstruction. ACM Transac-
tions on Graphics (TOG), 35(3):1–15.

Zhang, K., Riegler, G., Snavely, N., and Koltun, V.
(2020). Nerf++: Analyzing and improving neural
radiance fields. arXiv preprint arXiv:2010.07492.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes, see Section 2 and Section 3]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes, see Appendix B and Appendix C for
numerical analysis]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes, see Section 1]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Not Applicable]

(b) Complete proofs of all theoretical results.
[Yes, see Section 3 and Appendix A.1]

(c) Clear explanations of any assumptions. [Yes,
see Section 3]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
[Yes, see Section 1 and Section 5]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes,
see Section 5]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [No. We use well-established
measures to report the performance of the
proposed algorithm. We report the measures
across a variety of datasets and a range of
hyperparameters. We do not include results
averaged across multiple runs as randon reini-
tialization has almost no effect on the result-
ing performance.]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes, see Section 5]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. [Yes]

(b) The license information of the assets, if appli-
cable. [Not Applicable]

(c) New assets either in the supplemental material
or as a URL, if applicable. [Not Applicable]

(d) Information about consent from data provider-
s/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]

https://github.com/yenchenlin/nerf-pytorch/
https://github.com/yenchenlin/nerf-pytorch/

Differentiable Rendering with Reparameterized Volume Sampling

A INVERSE OPACITY CALCULATION

A.1 Inverse Functions for Density Integrals

In this section, we derive explicit formulae for the density integral inverse used in inverse opacity.

A.1.1 Piecewise Constant Approximation Inverse

We start with a formula for the integral

I0(t) =

i∑
j=1

σr(t̂j)(tj − tj−1) + σr(t̂i)(t− ti) (13)

and solve for t equation
y = I0(t). (14)

The equation above is a linear equation with solution

t = ti +
y −

∑i
j=1 σr(t̂j)(tj − tj−1)

σr(t̂i)
. (15)

In our implementation we add small ϵ to the denominator to improve stability when σr(t̂i) ≈ 0.

A.1.2 Piecewise Linear Approximation Inverse

The piecewise linear density approximation yield a piecewise quadratic function

I1(t) =

i∑
j=1

σr(tj) + σr(tj−1)

2
(tj − tj−1) +

(σr(ti) + σ̄r(t))

2
(t− ti), (16)

where σ̄r(t) = σr(ti)
ti+1−t
ti+1−ti

+ σr(ti+1)
t−ti

ti+1−ti
is the interpolated density at t. Again, we solve

y = I1(t) (17)

for t. We change the variable to ∆t := t− ti and note that terms a and c in quadratic equation

0 = a∆t2 + b∆t+ c (18)

will be

a =
σr(ti+1)− σr(ti)

2
(19)

c =

 i∑
j=1

σr(tj) + σr(tj−1)

2
(tj − tj−1)− y

× (ti+1 − ti) (20)

and with a few algebraic manipulations we find the linear term

b = σr(ti)× (ti+1 − ti). (21)

Since our integral monotonically increases, we can deduce that the root ∆t must be

∆t = −b+
√
b2−4ac
2a . (22)

However, this root is computationally unstable when a ≈ 0. The standard trick is to rewrite the root as

∆t = 2c
b+

√
b2−4ac

. (23)

For computational stability, we add small ϵ to the square root argument. See the supplementary notebook for
details.

Morozov, Rakitin, Desheulin, Vetrov, Struminsky

A.2 Numerical Stability in Inverse Opacity

Inverse opacity input y is a combination of a uniform sample u and ray opacity yf = 1− exp
(
−
∫ tf
tn

σr(s)ds
)
:

y = − log(1− yfu). (24)

The expression above is a combination of a logarithm and exponent. We rewrite it to replace with more reliable
logsumexp operator:

y = − log

(
exp(log(1− u)) + exp(log u−

∫ tf

tn

σr(s)ds)

)
. (25)

In practice, for opaque rays
∫ tf
tn

σr(s)ds ≈ 0 implementation of logsumexp becomes computationally unstable. In
this case, we replace y with a first order approximation u ·

∫ tf
tn

σr(s)ds.

A.3 Parallels with Prior Work and Algorithm Implementation

Original NeRF architecture uses inverse transform sampling to generate a grid for a fine network. They define a
distribution based on Eq. 5 with piecewise constant density. In turn, we do inverse transform sampling from a
distribution induced by a piecewise interpolation of σr in Eq. 3. The two approximation approaches yield distinct
sampling algorithms. In Listing 1, we provide a numpy implementation of the two algorithms to highlight the
difference. We rewrite NeRF sampling algorithm in an equivalent simplified form to facilitate the comparison. For
simplicity, we provide implementation of RVS only for a piecewise constant approximation of σ. The inversion
algorithm described in Appendix A.1 is hidden under the hood of np.interp().

The interpolation scheme in our algorithm can be seen as linear interpolation of density field rather than
probabilities. As a result, samples follow the Beer-Lambert law within each bin. The law describes light
absorption in a homogeneous medium. In contrast, the hierarchical sampling scheme in NeRF interpolates
exponentiated densities. We speculate that the numerical instability of the exponential function makes the latter
algorithm less suitable for end-to-end optimization (as observed in Table 4).

1 import numpy as np
2

3 def inverse_cdf(u, sigmas , ts, sampling_mode):
4 """ Get inverse CDF sample
5

6 Arguments:
7 u - array of uniform random variables
8 sigmas - array of density values on a grid
9 ts - array of grid knots

10 """
11 # Compute $\int_{t_0}^{ t_i} \sigma(s) ds$
12 bin_integrals = sigmas * np.diff(ts)
13 prefix_integrals = np.cumsum(bin_integrals)
14 prefix_integrals = np.concatenate ([np.zeros (1), prefix_integrals])
15 # Get inverse CDF argument
16 rhs = -np.expm1(-bin_integrals.sum()) * u
17 if sampling_mode == ’rvs’: # interpolate $\int \sigma(s) ds$
18 return np.interp(-np.log1p(-rhs), prefix_integrals , ts)
19 elif sampling_mode == ’nerf’: # interpolate CDF
20 return np.interp(rhs , -np.expm1(-prefix_integrals), ts)

Listing 1: Numpy implementation of the inverse transform sampling procedure proposed in this work and the
inverse transform sampling proposed in NeRF. The implementation assumes a single ray for brevity.

A.4 Implicit Inverse Opacity Gradients

To compute the estimates in Eq. 10, we need to compute the inverse opacity F−1
r (y) along with its gradient.

In the main paper, we invert opacity explicitly with a differentiable algorithm. Alternatively, we could invert
Fr(t) = 1− exp

(
−
∫ t

tn
σr(s)ds

)
with binary search. This approach can be used in situations when the formula

for inverse opacity cannot be explicitly derived.

Differentiable Rendering with Reparameterized Volume Sampling

Opacity Fr(t) is a monotonic function and for y ∈ (yn, yf) = (Fr(tn), Fr(tf)) the inverse lies in (tn, tf). To
compute F−1

r (y), we start with boundaries tl = tn and tr = tf and gradually decrease the gap between the
boundaries based on the comparison of Fr(

tl+tr
2) with y. Importantly, such procedure is easy to parallelize across

multiple inputs and multiple rays.

However, we cannot back-propagate through the binary search iterations and need a workaround to compute the
gradient ∂t

∂θ of t(θ) = F−1
r (y, θ). To do this, we follow Figurnov et al. (2018) and compute differentials of the

right and the left hand side of equation y(θ) = Fr(t, θ)

∂y

∂θ
dθ =

∂Fr

∂t

∂t

∂θ
dθ +

∂Fr

∂θ
dθ. (26)

By the definition of Fr(t, θ) we have

∂Fr

∂t = (1− Fr(t, θ))σr(t, θ), (27)

∂Fr

∂θ = (1− Fr(t, θ))
∂
∂θ

(∫ t

tn

σr(s, θ)ds

)
. (28)

We solve Eq. 26 for ∂t
∂θ and substitute the partial derivatives using Eqs. 27 and 28 to obtain the final expression

for the gradient
∂t

∂θ
=

∂y
∂θ − (1− Fr(t, θ))

∂
∂θ

∫ t

tn
σr(s, θ)ds

(1− Fr(t, θ))σr(t, θ)
. (29)

Automatic differentiation can be used to compute ∂y/∂θ and ∂
∂θ

∫ t

tn
σ(s)ds to combine the results as in Eq. 29.

B RADIANCE ESTIMATES FOR A SINGLE RAY

In this section, we evaluate the proposed Monte Carlo radiance estimate (see Eq. 10) in a one-dimensional setting.
In this experiment, we assume that we know density in advance and show how the estimate variance depends on
the number of radiance calls. Compared to sampling approaches, the standard approximation from Eq. 4 has
zero variance but does not allow controlling the number of radiance calls.

Our experiment models light propagation on a single ray in two typical situations. The upper row of Fig. 6
defines a scalar radiance field (orange) cr(t) and opacity functions (blue) Fr(t) for "Foggy" and "Wall" density
fields. The first models a semi-transparent volume, which often occurs after model initialization during training.
In the second, light is emitted from a single point on a ray, which is common in applications.

For the two fields we estimated the expected radiance C(r) =
∫ tf
tn

cr(t)dFr(t). We consider two baseline methods
(both in red in Fig. 6): the first is a Monte Carlo estimate of C obtained with uniform distribution on a ray
U [tn, tf], and its stratified modification with a uniform grid tn = t0 < · · · < tk = tf (note that here we use k to
denote the number of samples, not the number of grid points m in piecewise density approximation):

ĈIW(r) =

k∑
i=1

(ti − ti−1)cr(τi)
dFr

dt

∣∣∣∣
t=τi

, (30)

where τi ∼ U [ti−1, ti] are independent uniform bin samples. We compare the baseline against the estimate from
Eq. 10 and its stratified modification. All estimates are unbiased. Therefore, we only compare the estimates’
variances for a varying number of samples m.

In all setups, our stratified estimate uniformly outperforms the baselines. For the more challenging "foggy"
field, approximately k = 32 samples are required to match the baseline performance for k = 256. We match the
baseline with only a k = 4 samples for the "wall" field. Inverse transform sampling requires only a few points for
degenerate distributions.

Morozov, Rakitin, Desheulin, Vetrov, Struminsky

t
0

1

y

Foggy Density Field
Opacity

t
0

1

y

Wall Density Field
Opacity

50 100 150 200 250
Number of Samples

10−3

10−2

10−1

100
Estimate Variance

50 100 150 200 250
Number of Samples

10−6

10−5

10−4

10−3

10−2

10−1

100

101 Estimate Variance
U[tn, tf]
with stratified sampling
pr(t) (ours)
with stratified sampling

Radiance Radiance

Figure 6: Color estimate variance compared for a varying number of samples. The upper plot illustrates underlying
opacity function on a ray; the lower graph depicts variance in logarithmic scale. Compared to a naive estimate
of the integral with uniform samples (dashed red), inverse transform sampling exhibits lower variance (dashed
green). Stratified sampling improves variance in both setups (solid lines).

C COMPUTATIONAL EFFICIENCY OF APPROXIMATIONS

In this section, we analyze our approximation method’s computational efficiency and compare it with the numerical
approximation from Eq. 4. To illustrate it in a more practical setting, we determine the time performance of
the estimates relative to the batch processing time of a radiance field model. As an example, we pick a recent
voxel-based radiance field model DVGO Sun et al. (2022) that parameterizes density field as a voxel grid and
combines voxel grid with a view-dependent neural network to obtain a hybrid parameterization of radiance.

Table 8: Computational complexity of three stages of color estimation.

Voxel Grid (σ) Hybrid (c) EĈ
Baseline 0.00025s 0.02887s 0.00187s
Ours, 32 0.00025s 0.00419s 0.00369s
Ours, 64 0.00025s 0.00665s 0.00372s
Ours, 128 0.00025s 0.01334s 0.00381s
Ours, 256 0.00025s 0.02887s 0.00383s

Despite the toy nature of the experiment, we focus on a setting and hyperparameters commonly used in the
rendering experiments. We take a batch of size 2048, draw 256 points along each of the corresponding rays and
use them to calculate density σ. In the baseline setting, we then use the same points to calculate radiance c and
estimate pixel colors with Eq. 4. In contrast to this pipeline, we propose to use calculated values of σ to make
a piecewise constant approximation of density, generate a varying number (32, 64, 128, 256) of Monte Carlo
samples and use them to calculate the stratified version of the color estimate (Eq 10). We parameterize σ with a
voxel grid and c with a hybrid architecture used in DVGO with the default parameters.

In Table 8 we report time measurements for each of the stages of color estimation: calculating density field in
256 points along each ray, calculating radiance field in the Monte Carlo samples (or in the same 256 points in
case of baseline) and sampling combined with calculating the approximation given σ and c (just calculating the
approximation in case of baseline). All calculations were made on NVIDIA GeForce RTX 3090 Ti GPU and
include both forward and backward passes.

First of all, σ computation time is equal for all of the cases and has order of 10−4 seconds, negligible in comparison
with other stages. In terms of calculating the approximation, both baseline and our method work proportionally

Differentiable Rendering with Reparameterized Volume Sampling

to 10−3 seconds, but Monte Carlo estimate take 2.3 to 2.4 times more. Nevertheless, in the mentioned practical
scenario this difference is not crucial, since computation of c, the heaviest part, takes up to 3× 10−2 seconds.
Even in the case of 256 radiance evaluations the difference in total computation time is less than 10%. This
makes our method at least comparable with the baseline for architectures that can evaluate the density field
faster than the radiance field. At the same time, our approach allows to explicitly control the number of radiance
evaluations k, improving the computational efficiency even further given suitable architectures.

D PICKING FINE POINTS IN DIFFERENTIABLE HIERARCHICAL
SAMPLING

Table 9: Comparison of various hierarchical sampling configurations on the Lego scene of Blender dataset.

Evaluations NeRF RVS
Np Nf PSNR ↑ SSIM ↑ LPIPS PSNR ↑ SSIM ↑ LPIPS

Union 16 32 25.81 0.890 0.150 27.18 0.903 0.145
No union 16 32 27.09 0.913 0.121 29.18 0.928 0.112
Union 32 64 29.61 0.939 0.084 30.34 0.942 0.088
No union 32 64 30.11 0.947 0.070 31.89 0.955 0.066
Union 64 128 32.14 0.958 0.053 31.63 0.952 0.068
No union 64 128 31.87 0.958 0.054 32.80 0.963 0.051
Union 64 192 32.69 0.962 0.048 32.46 0.960 0.056
No union 64 192 32.14 0.960 0.051 33.03 0.964 0.047

We consider two options for picking Nf points for fine network evaluation: either take Nf samples from the
proposal distribution (first option), or take the union of Np grid points that were used to construct the distribution
and Nf −Np new samples from the proposal distribution (second option, originally used in NeRF). In Table 1, we
report the best result out of the two options, and Table 9 presents the results for both options. Our method works
best with the first option. The baseline performs better with the first option for (16, 32), (32, 64) configurations
and with the second option for other configurations. Comparisons in Table 2 are done in (Np = 32, Nf = 64)
configuration with the first option. We use this configuration for comparison as both methods perform best
with the same option and produce better results than in (Np = 16, Nf = 32) configuration. In the ablation
study in Table 4, we also show that the base model works worse with the second option in (Np = 32, Nf = 64)
configuration on average across other scenes from Blender dataset.

E ADDITIONAL VISUALIZATIONS

ground truth NeRF RVS

Figure 7: Comparison between renderings of a test-set view on T-Rex scene (LLFF) for (32, 64) configuration.
Artifacts can be seen on railings and bones in the NeRF render, while such artifacts are absent in the reconstruction
produced by our model.

Morozov, Rakitin, Desheulin, Vetrov, Struminsky

F PER-SCENE RESULTS

Table 10: Differentiable hierarchical sampling with NeRF on Blender dataset.

PSNR↑ Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg
NeRF, (Np = 32, Nf = 64) 31.33 23.89 28.26 35.44 30.11 28.65 31.46 26.76 29.49
RVS, (Np = 32, Nf = 64) 31.99 24.60 29.27 36.18 31.89 29.31 31.84 27.19 30.26
SSIM↑ Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg
NeRF, (Np = 32, Nf = 64) 0.956 0.908 0.949 0.972 0.947 0.940 0.973 0.834 0.934
RVS, (Np = 32, Nf = 64) 0.958 0.915 0.955 0.974 0.955 0.946 0.974 0.834 0.939
LPIPS↓ Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg
NeRF, (Np = 32, Nf = 64) 0.059 0.116 0.063 0.050 0.070 0.072 0.033 0.220 0.085
RVS, (Np = 32, Nf = 64) 0.056 0.113 0.060 0.050 0.066 0.065 0.033 0.219 0.082

Table 11: Differentiable hierarchical sampling with NeRF on LLFF dataset.

PSNR↑ Room Fern Leaves Fortress Orchids Flower T-Rex Horns Avg
NeRF, (Np = 32, Nf = 64) 31.22 24.79 20.81 31.00 20.32 27.41 25.89 26.64 26.01
RVS, (Np = 32, Nf = 64) 31.87 24.89 20.89 31.11 20.27 27.40 26.48 26.98 26.24
SSIM↑ Room Fern Leaves Fortress Orchids Flower T-Rex Horns Avg
NeRF, (Np = 32, Nf = 64) 0.938 0.771 0.678 0.875 0.630 0.822 0.858 0.798 0.796
RVS, (Np = 32, Nf = 64) 0.942 0.773 0.681 0.878 0.630 0.823 0.869 0.795 0.799
LPIPS↓ Room Fern Leaves Fortress Orchids Flower T-Rex Horns Avg
NeRF, (Np = 32, Nf = 64) 0.203 0.309 0.328 0.187 0.338 0.226 0.279 0.310 0.273
RVS, (Np = 32, Nf = 64) 0.193 0.310 0.328 0.182 0.340 0.223 0.267 0.311 0.270

Table 12: Differentiable hierarchical sampling with NeRF++ on LF dataset.

PSNR↑ Africa Basket Torch Ship Avg
NeRF++, (Np = 32, Nf = 64) 26.36 21.38 23.72 24.53 23.99
RVS, (Np = 32, Nf = 64) 27.31 21.58 24.60 25.01 24.63
SSIM↑ Africa Basket Torch Ship Avg
NeRF++, (Np = 32, Nf = 64) 0.838 0.790 0.767 0.744 0.784
RVS, (Np = 32, Nf = 64) 0.865 0.812 0.797 0.777 0.812
LPIPS↓ Africa Basket Torch Ship Avg
NeRF++, (Np = 32, Nf = 64) 0.221 0.302 0.297 0.329 0.287
RVS, (Np = 32, Nf = 64) 0.177 0.290 0.258 0.288 0.253

Table 13: Differentiable hierarchical sampling with NeRF++ on T&T dataset.

PSNR↑ Truck Train M60 Playground Avg
NeRF++, (Np = 32, Nf = 64) 21.18 17.16 16.96 21.55 19.21
RVS, (Np = 32, Nf = 64) 21.62 17.32 17.48 22.05 19.62
SSIM↑ Truck Train M60 Playground Avg
NeRF++, (Np = 32, Nf = 64) 0.661 0.539 0.617 0.633 0.612
RVS, (Np = 32, Nf = 64) 0.666 0.545 0.619 0.657 0.622
LPIPS↓ Truck Train M60 Playground Avg
NeRF++, (Np = 32, Nf = 64) 0.423 0.541 0.516 0.493 0.493
RVS, (Np = 32, Nf = 64) 0.410 0.527 0.506 0.446 0.472

Differentiable Rendering with Reparameterized Volume Sampling

Table 14: DVGO with Monte Carlo estimates on Blender dataset.

PSNR↑ Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg
DVGO 34.07 25.40 32.59 36.75 34.64 29.58 33.14 29.02 31.90
MC + RVS, k = 4 33.79 25.16 31.81 36.22 33.35 28.32 33.03 27.87 31.19
MC + RVS, k = 8 33.49 25.16 31.30 36.26 33.34 28.64 32.87 27.99 31.13
MC + RVS, adaptive k 34.13 25.18 31.17 36.63 33.85 29.09 33.03 28.43 31.44
SSIM↑ Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg
DVGO 0.976 0.929 0.977 0.980 0.976 0.950 0.983 0.877 0.956
MC + RVS, k = 4 0.976 0.927 0.975 0.979 0.971 0.938 0.982 0.857 0.951
MC + RVS, k = 8 0.973 0.927 0.972 0.979 0.970 0.942 0.981 0.861 0.951
MC + RVS, adaptive k 0.977 0.928 0.972 0.980 0.973 0.946 0.982 0.870 0.953
LPIPS↓ Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg
DVGO 0.028 0.080 0.025 0.034 0.027 0.058 0.018 0.162 0.054
MC + RVS, k = 4 0.028 0.079 0.028 0.038 0.032 0.070 0.017 0.181 0.059
MC + RVS, k = 8 0.031 0.080 0.030 0.037 0.033 0.067 0.019 0.178 0.059
MC + RVS, adaptive k 0.027 0.081 0.031 0.034 0.031 0.062 0.019 0.165 0.056

	INTRODUCTION
	NEURAL RADIANCE FIELDS
	REPARAMETERIZED VOLUME SAMPLING AND RADIANCE ESTIMATES
	Reparameterized Expected Radiance Estimates
	Opacity Approximations
	Application to Hierarchical Sampling

	RELATED WORK
	EXPERIMENTS
	End-to-end Differentiable Hierarchical Sampling
	Scene Reconstruction with Monte Carlo Estimates

	CONCLUSION
	INVERSE OPACITY CALCULATION
	Inverse Functions for Density Integrals
	Piecewise Constant Approximation Inverse
	Piecewise Linear Approximation Inverse

	Numerical Stability in Inverse Opacity
	Parallels with Prior Work and Algorithm Implementation
	Implicit Inverse Opacity Gradients

	RADIANCE ESTIMATES FOR A SINGLE RAY
	COMPUTATIONAL EFFICIENCY OF APPROXIMATIONS
	PICKING FINE POINTS IN DIFFERENTIABLE HIERARCHICAL SAMPLING
	ADDITIONAL VISUALIZATIONS
	PER-SCENE RESULTS

