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Abstract

In this work, we present a novel approach for
compressing overparameterized models, de-
veloped through studying their learning dy-
namics. We observe that for many deep mod-
els, updates to the weight matrices occur
within a low-dimensional invariant subspace.
For deep linear models, we demonstrate that
their principal components are fitted incre-
mentally within a small subspace, and use
these insights to propose a compression algo-
rithm for deep linear networks that involve
decreasing the width of their intermediate
layers. We empirically evaluate the effective-
ness of our compression technique on matrix
recovery problems. Remarkably, by using an
initialization that exploits the structure of
the problem, we observe that our compressed
network converges faster than the original
network, consistently yielding smaller recov-
ery errors. We substantiate this observation
by developing a theory focused on deep ma-
trix factorization. Finally, we empirically
demonstrate how our compressed model has
the potential to improve the utility of deep
nonlinear models. Overall, our algorithm im-
proves the training efficiency by more than
2×, without compromising generalization.

1 INTRODUCTION

Overparameterization has proven to be a powerful
modeling approach for solving various problems in ma-
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chine learning and signal processing (LeCun et al.,
2015; Haderlein et al., 2021; Zou et al., 2021). In the
literature, it has been observed that overparameter-
ized models yield solutions with superior generaliza-
tion capabilities. This phenomenon has demonstrated
prevalence across a wide range of problems, along
with a broad class of model architectures, and has
far-reaching implications, including the acceleration of
convergence (Arora et al., 2018; Liu and Belkin, 2020)
and the improvement of sample complexity (Arora
et al., 2019; Sun et al., 2022). For example, Arora
et al. (2019) illustrated the advantages of deep linear
models within the context of low-rank matrix recovery.
They showed that deeper models promoted low-rank
solutions as a function of depth, consequently decreas-
ing the sample complexity compared to classical ap-
proaches like nuclear norm minimization (Recht et al.,
2010) and alternating gradient or alternating mini-
mization (Chi et al., 2019; Jain et al., 2013). Outside of
matrix recovery, there exists an abundance of research
showcasing the benefits of overparameterized models
under many different settings (Tripuraneni et al., 2021;
Dar et al., 2021; Chang et al., 2020; Ma and Fattahi,
2022).

Nevertheless, the benefits of overparameterization
come with a cost; they require extensive computational
resources to train. The number of parameters to esti-
mate rapidly increases with the signal dimension, hin-
dering the use of overparameterized models for large-
scale problems. To tackle this issue, researchers have
begun to study the learning dynamics of these models,
seeking opportunities for compression (Li et al., 2023;
Yaras et al., 2022; Idelbayev and Carreira-Perpiñán,
2020; Cheng et al., 2018). For instance, recent works
have shown that assuming the updates of the weight
matrices in nonlinear networks have a low-dimensional
structure can significantly reduce the training over-
head with only a small tradeoff in accuracy (Hu et al.,
2022; Wang et al., 2023; Horváth et al., 2023). How-
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Figure 1: Prevalence of low-dimensional weight updates across various networks. The plots depict the
singular values of the weight updates from initialization for the penultimate layer for different types of (nonlinear)
architectures: deep linear network (DLN), multi-layer perception (MLP), VGG (Simonyan and Zisserman, 2015),
and ViT-B (Dosovitskiy et al., 2021). The first two networks are trained on MNIST, while the latter are trained
on CIFAR-10. This result shows a prevalent phenomenon across linear and nonlinear networks – gradient descent
only updates a small portion of the singular values, while the others remain small and almost unchanged.

ever, these results are limited to only specific network
architectures under certain settings. Our first obser-
vation is that low-rank weight matrices arise rather
universally across a wide range of network architec-
tures when trained with gradient descent (GD). We
demonstrate this in Figure 1, where we plot the sin-
gular values of the weight updates for the penultimate
weight matrix across various networks, showing that
the training largely occurs within a low-dimensional
subspace (see Appendix A.4 for a discussion). Al-
though this suggests that it is possible to compress
the overparameterized weight matrices, it is not im-
mediately clear how one could tackle this task. In ad-
dition, therein lies the question of whether one could
construct compressed networks without compromising
the performance of their wider counterparts.

In this work, we take a step toward developing a
principled approach for compressing overparameter-
ized models. For overparameterized deep linear net-
works (DLNs), by carefully exploring the learning dy-
namics, we show strong evidence for several interest-
ing low-rank properties that occur during the training
process. Firstly, we demonstrate that the singular sub-
spaces of the DLN are fitted incrementally (Li et al.,
2021; Jacot et al., 2021; Chou et al., 2023), but only
within a small invariant subspace across a wide range
of matrix recovery problems. Secondly, we leverage
this observation to propose a simple, yet highly effec-
tive method for compressing DLNs that involves de-
creasing the width of the intermediate layers of the
original wide DLN. The main takeaway of our method
is the following:

When properly initialized, the compressed
DLN attains better solutions than the wide
counterpart throughout all iterations of GD.

By capitalizing on the property of incremental learn-
ing, we rigorously substantiate this finding on the deep
matrix factorization problem as an illustrative exam-
ple. We highlight that our approach can provide in-
sights into how one can compress overparameterized
weights without increasing recovery error. Below, we
outline some of our key contributions.

• Fast Convergence and Efficient Training. We
demonstrate that our compressed network attains
a lower recovery error than the overparameterized
network throughout all iterations of GD. As a re-
sult, we achieve (1) faster convergence in fewer GD
iterations and (2) further speed up training by es-
timating fewer parameters, all while enjoying the
benefits of overparameterized networks.

• Benefits of Incremental Learning. We empir-
ically demonstrate the prevalence of incremental
learning (also commonly referred to as sequential
learning), wherein the singular subspaces of a DLN
are fitted one at a time (see Figure 2). We estab-
lish that this phenomenon occurs in several canon-
ical matrix recovery problems and leverage these
insights to rigorously establish the superiority of
our compressed DLN over wide DLNs.

• Compression of Deep Nonlinear Networks.
We demonstrate how to leverage our findings in
deep linear models to accelerate the training of
deep nonlinear networks. By overparameterizing
the penultimate layer of these deep networks and
employing our compression technique, we can re-
duce memory complexity and training time while
achieving similar (or even better) test accuracy.
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Figure 2: Motivating the benefits of our compressed DLN while showcasing the incremental learning
phenomenon. Left: Plot of the change in singular values of the end-to-end DLN for matrix completion with
r = 10; this hints that we can perform low-rank training in a small subspace without having to overparameterize.
Middle & Right: Recovery error for the original and compressed DLN across iterations and time, respectively.

2 EFFICIENT NETWORK
COMPRESSION

In this section, we present our problem formulation
along with our corresponding compression algorithm.
For clarity in notation, we provide a full list of symbols
and their descriptions in Table 2 of the Appendix.

2.1 A Basic Problem Setup

We motivate our study based upon the low-rank ma-
trix recovery problem, where the goal is to estimate a
ground truth low-rank matrix M∗ ∈ Rd×d from mea-
surements y = A(M∗) ∈ Rm, where we assume that
the rank r of M∗ is much smaller than its ambient di-
mension (r ≪ d). Here, A(·) : Rd×d → Rm is a linear
operator and m denotes the number of measurements.

Moreover, we consider deep low-rank matrix recovery
by modeling M∗ via a DLN parameterized by a se-
quence1 Θ = (Wl ∈ Rd×d)Ll=1, which can be estimated
by solving the following least-squares problem:

Θ̂ ∈ argmin
Θ

1

2

∥∥A(WL:1 −M∗)∥∥2
2︸ ︷︷ ︸

=: ℓA(Θ;M∗)

, (1)

where we abbreviate WL:1 := WL · . . . ·W1 for expo-
sition. This problem frequently arises in many signal
processing settings; if A = Id, the identity map, it
simplifies to deep matrix factorization; if A = PΩ, the
projection operator onto a subset of its entries defined
by Ω, it is deep matrix completion.

It is well-known that GD with small initialization
has an implicit bias towards low-rank solutions (Gidel
et al., 2019; Arora et al., 2019). To obtain the desired

1In general, both the target matrix M∗ and the layer
parameter matrices Wl ∈ Rdl×dl−1 can have arbitrary
shapes with any d1, . . . , dL−1. Here, we assumed square
shapes for simplicity in exposition.

low-rank solution, for every iteration t ≥ 0, we update
each weight matrix Wl using GD given by

Wl(t) = Wl(t− 1)− η · ∇Wl
ℓA(Θ(t− 1)), (2)

∀l ∈ [L], where η > 0 is the learning rate and
∇Wl

ℓA(Θ(t)) is the gradient of ℓA(Θ) with respect
to the l-th weight matrix at the t-th GD iterate. Ad-
ditionally, we initialize the weights to be orthogonal
matrices scaled by a small constant ϵ > 0:

Wl(0)
⊤Wl(0) = Wl(0)Wl(0)

⊤ = ϵI, (3)

∀l ∈ [L]. For the case in which the weight matrices
are not square, we can initialize them to be ϵ-scaled
semi-orthogonal weight matrices that satisfy

Wl(0)
⊤Wl(0) = ϵI or Wl(0)Wl(0)

⊤ = ϵI, (4)

which depends on the shape of Wl. It has been proven
that such an initialization leads to favorable conver-
gence properties when training DLNs (Yaras et al.,
2023; Pennington et al., 2018; Chen et al., 2018), which
we adopt throughout this paper for analysis.2

2.2 Efficient Low-Rank Network
Compression Methods

While overparameterization offers benefits such as de-
creased sample complexity and improved generaliza-
tion, they come at the cost of a large increase in com-
putational complexity. However, as we observed in
Figures 1 and 2, overparameterized networks mani-
fest effective low-dimensionality in their training dy-
namics across various learning tasks, which could be
potentially exploited for an efficient training strategy.
To this end, instead of overparameterizing each layer
of the DLN, we consider a compressed DLN parame-

terized by Θ̃ :=
(
W̃1, · · · , W̃L

)
, where W̃L ∈ Rd×r̂,

2Nonetheless, our experiments show that our method is
effective even with small random uniform initialization.
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W̃1 ∈ Rr̂×d, and W̃l ∈ Rr̂×r̂ for 2 ≤ l ≤ L − 1, and r̂
is any positive integer such that r̂ ≥ r = rank (M∗).
The end-to-end matrix product at GD iterate t with
this parameterization is given by

W̃L:1(t) = W̃L(t) · . . . · W̃1(t) ∈ Rd×d. (5)

Note that we do not assume knowledge of r, but only
require r̂ ≥ r. This reduces the total number of pa-
rameters from Ld2 into 2dr̂ + (L − 2) · r̂2, which is
a substantial reduction for sufficiently small r̂. This
compressed DLN is largely motivated by Figure 2. If
r̂ ≥ r, then we can “prune” out the portion of the
DLN that corresponds to the singular values that re-
main close to zero. However, truncating singular val-
ues before we are sufficiently close to the minimizer
would at best cause slower convergence and at worst
lead to sub-optimal solutions. We show that a partic-
ular initialization of Θ̃ can mitigate these issues and
remarkably outperform the wide DLN.

For initialization, we choose a small constant ϵ > 0

and let W̃l(0) = ϵ · Ir̂ for 2 ≤ l ≤ L− 1; additionally,

we initialize the left and right most factors W̃L(0) and

W̃1(0) by extracting the top-r̂ singular vectors of the
surrogate matrix

M surr := A†A(M∗) =
1

m

m∑
i=1

yiAi, (6)

where yi = ⟨Ai,M
∗⟩, and scaling them by ϵ. For a

random operator A(·), the singular subspaces ofM surr

are known to closely approximate those of M∗ with
high probability (Chi et al., 2019). Thus, we expect

W̃L(0) and W̃1(0) to be roughly close to the singular
subspaces of M∗. To update each weight matrix, we
use a learning rate η > 0 to update the intermediate

layers, and a rate α · η with α > 0 to update W̃L(t)

and W̃1(t). We observe that using a scale α > 1 to
update the left and rightmost factors often accelerates
convergence. The complete algorithm is summarized
in Algorithm 1.

To provide an intuition for the use of spectral initial-
ization, we conducted an experiment where we ana-
lyzed the trajectories of the factors WL(t) and W1(t)
of the original DLN starting from an orthogonal ini-
tialization. In Figure 3, we show that these factors
ultimately align with the singular vectors of the tar-
get matrix M∗. Interestingly, this observation is simi-
lar to that of Stöger and Soltanolkotabi (2021), where
they note that the initial iterations of GD for two-
layer matrix factorization resemble the power method.
We find a similar result, but it applies to the left and
rightmost factors of the DLN. Thus, initializing these
factors close to the target singular vectors could accel-
erate convergence even when compressing the DLN.

Matrix Factorization Matrix Completion

Figure 3: Motivating the use of spectral initial-
ization for DLNs when starting from an orthog-
onal initialization. These plots measure the similar-
ity between the first principal component of WL(t)
and U∗ (and respectively W1(t) and V ∗). This result
shows that these DLN factors fit the left and right sin-
gular vectors of the target matrix M∗.

2.3 Extension to Compression in Linear
Layers of Nonlinear Networks

In this section, we explore our network compression
idea to improve the training efficiency and general-
ization capabilities of deep nonlinear networks. Tra-
ditionally, the success of deep neural networks is at-
tributed to the power of overparameterization, which
is often achieved by increasing the width of weight ma-
trices keeping the depth fixed. Interestingly, recent
work by Huh et al. (2023) demonstrated that increas-
ing the depth of each weight matrix by adding lin-
ear layers also improves generalization, across a wide
range of datasets for classification problems. More
concretely, consider a simple deep network parame-
terized by Θ = (Wl)

L
l=1, which represents a map3

ψΘ : x 7→ WLρ (WL−1 . . . ρ(W1x)) , where ρ(·) is a
predetermined nonlinear activation function such as
ReLU. Huh et al. (2023) showed that adding linear lay-
ers results in a more favorable deep network, namely,
ψ′
Θ : x 7→ WL+2ρ (WL+1WLWL−1 . . . ρ(W1x)). Ob-

serve that this amounts to overparameterizing the
penultimate layer of the deep nonlinear network us-
ing a 3-layer DLN WL+1:L−1 = WL+1WLWL−1.

Motivated by this, we explore improving the perfor-
mance of deep nonlinear networks across a variety of
architectures (e.g., MLP and ViT) by (1) initially over-
parameterizing their penultimate layer with a DLN,
followed by (2) compressing the DLN using our pro-
posed technique. This modification is anticipated to
enjoy the advantages of overparameterization through
DLNs, while mitigating the increase in computational
demands. However, we note that determining initial

subspaces for W̃L(0) and W̃l(0) in this setting is not
as straightforward as in the low-rank matrix recovery
context. As a first step towards applying compres-

3Here, we omit the bias of the network for simplicity.
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Algorithm 1 Compressed DLNs (C-DLNs) for Learning Low-Dimensional Models

Require: loss function ℓ(·); y ∈ Rm; ϵ, η, α ∈ R+; r̂, L, T ∈ N
1: W̃l(0)← ϵ · Ir̂, 2 ≤ l ≤ L− 1 ▷ Initialize intermediate weight parameters
2: Ur̂,Vr̂ ← SVD(M surr) ▷ Compute M surr via Equation (6) and take top-r̂ SVD

3: W̃L = ϵ ·Ur̂, W̃1 = ϵ · Vr̂ ▷ Initialize outer weight parameters
4: for t = 1, . . . , T do ▷ GD update for T iterations

W̃L(t+ 1)← W̃L(t)− αη · ∇W̃L
ℓ(Θ̃(t)

)
,

W̃l(t+ 1)← W̃l(t)− η · ∇W̃l
ℓ
(
Θ̃(t)

)
,

W̃1(t+ 1) = W̃1(t)− αη · ∇W̃1
ℓ(Θ̃(t)

)
,

5: end for
6: Return W̃L:1 = W̃L(T ) · . . . · W̃1(T ) ▷ Output of compressed DLN

sion techniques to deep nonlinear networks, we pro-
pose initializing the subspaces by using the singular
subspaces of the cross-correlation matrix, M corr :=
Y X⊤ ∈ Rdy×dx where applicable and otherwise us-
ing random subspaces. When the number of classes
dy is smaller than the feature dimension dx, this ma-
trix M corr is low-rank with rank (M corr) ≤ dy ≪ dx,
permitting the choice r̂ ≥ dy.

3 THEORETICAL RESULTS

In this section, we present a theory elucidating the
superior performance of our compressed DLN for the
deep matrix factorization case. Our analysis aims to
explain the benefits of the spectral initialization and
the incremental learning phenomenon in achieving ac-
celerated convergence (in iteration complexity).

3.1 The Benefits of Spectral Initialization

Let M∗ ∈ Rd×d be a matrix of rank r and M∗ =
U∗Σ∗V ∗⊤ be a singular value decomposition (SVD)
of M∗. We consider the deep matrix factorization set-
ting, where A = Id, i.e., we have full observation of
M∗. Here, M surr = M∗ and so Algorithm 1 initial-

izes W̃L(0) = ϵ · U∗
r̂ and W̃1(0) = ϵ · V ∗⊤

r̂ , the top-r̂
singular subspaces of M∗ themselves. This leads to
the compressed deep matrix factorization problem

min
Θ̃

ℓ(Θ̃(t)) =
1

2
∥W̃L:1(t)−M∗∥2F, (7)

where the intermediate layers are initialized to

W̃l(0) = ϵ · Ir̂ for 2 ≤ l ≤ L − 1. In Figure 3, we
showed that the left and rightmost factors of the orig-
inal DLN align with the left and right singular vectors
of the target matrix M∗ more closely throughout GD.
This observation implies that our particular choice of
initialization could accelerate the training process. We

substantiate this observation by proving that this ini-
tialization has two advantages: (1) the compressed
DLN has a low-dimensional structure and (2) the com-
pressed DLN incurs a lower recovery error at initial-
ization than the original DLN.

Theorem 1. Let M∗ ∈ Rd×d be a matrix of rank
r and M∗ = U∗Σ∗V ∗⊤ be a SVD of M∗. Sup-
pose we run Algorithm 1 with α = 1 to update all

weights
(
W̃l

)L

l=1
of Equation (7), where A = Id.

Then, the end-to-end compressed DLN possesses low-
dimensional structures, in the sense that for all t ≥ 1,

W̃L:1(t) admits the following decomposition:

W̃L:1(t) = U∗
r̂

[
Λ(t) 0
0 β(t)L · Ir̂−r

]
V ∗⊤
r̂ , (8)

where Λ(t) ∈ Rr×r is a diagonal matrix with entries
λi(t)

L, where

λi(t) = λi(t− 1) ·
(
1− η · (λi(t− 1)L − σ∗

i ) · λi(t− 1)L−2
)
,

for 1 ≤ i ≤ r, with λi(0) = ϵ and σ∗
i is the i-th diagonal

entry of Σ∗ and

β(t) = β(t− 1) ·
(
1− η · β(t− 1)2(L−1)

)
,

with β(0) = ϵ.

Remarks. We defer all proofs to Appendix B. By
using our initialization technique as outlined in Algo-
rithm 1, Theorem 1 allows us to characterize the GD
updates of the compressed DLN, which also constitutes
a valid SVD. This also shows that the compressed DLN
directly finds low-rank solutions of rank r, as the last
r̂ − r singular values is a decreasing function where
β(t) ≤ ϵL for a small constant ϵ > 0.

We also note a couple of points regarding the rela-
tionship between Theorem 1 and existing theory. The
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main difference of our result from that of Yaras et al.
(2023) is that, through the use of spectral initializa-
tion, we are able to characterize the dynamics of all of
the singular values, whereas Yaras et al. (2023) only
characterizes the behavior of d−2r singular values but
does not specify the behavior of the remaining 2r sin-
gular values. The result by Arora et al. (2019) has
a similar flavor — if we consider infinitesimal steps
of their gradient flow result regarding the behavior of
the singular values, we can recover the discrete steps as
outlined in Theorem 1. With Theorem 1 in place, an
immediate consequence is that the compressed DLN
exhibits a lower recovery error than the original DLN
at the initialization t = 0, as outlined by Corollary 1.

Corollary 1. Let WL:1(0) denote the original DLN
at t = 0 initialized with orthogonal weights according

to Equation (3) and W̃L:1(0) denote the compressed
DLN at t = 0. Then, we have

∥WL:1(0)−M∗∥2F ≥ ∥W̃L:1(0)−M∗∥2F. (9)

This result can be established by applying Theorem 1
at t = 0. Next, we demonstrate that the inequality
in Equation (9) holds for all t ≥ 0, which involves
leveraging the incremental learning phenomenon along
with an analysis using gradient flow.

3.2 The Benefits of Incremental Learning

In this section, we establish that the inequality in
Equation (9) holds for all GD iterations t ≥ 0 for the
deep matrix factorization case. To prove such a re-
sult, we assume that both the original DLN and the
compressed DLN undergo incremental learning, in the
sense that the singular values of both networks and
their respective singular vectors are fitted sequentially.
This assumption is stated formally in Assumption 1.

Assumption 1. Let WL:1(t) ∈ Rd×d denote the end-
to-end weight matrix at GD iterate t with respect to
Equation (1) with A = Id and M∗ ∈ Rd×d be the
target matrix with rank r. Then, GD follows an in-
cremental learning procedure in the sense that there
exist small constants cval, cvec ∈ [0, 1] and a sequence
of time points t1 ≤ t2 ≤ . . . ≤ tr ∈ R such that

(σi(WL:1(t))− σi(M∗))
2 ≤ cval, (10)

⟨ui(t),u
∗
i ⟩ ≥ 1− cvec, (11)

⟨vi(t),v
∗
i ⟩ ≥ 1− cvec, (12)

for all t > ti and limϵ→0 σi(WL:1(t)) = 0 for all t < ti,
where ϵ > 0 is the initialization scale.

Assumption 1 states that there exists a sequence of
time points where the i-th principal components of
both networks are fitted to a certain precision, while

the singular values associated with the remaining prin-
cipal components remain close to the initialization
scale. This assumption has been widely studied and
adopted for the two-layer case (Jin et al., 2023; Jiang
et al., 2023b), with some results extending to the deep
matrix factorization case (Li et al., 2021; Jacot et al.,
2021; Chou et al., 2023; Gidel et al., 2019). In Figure 4,
we further show the occurrence of this phenomenon
and demonstrate its validity with extensive experimen-
tal results in Appendix A.1. In Appendix A.1, we also
show that generally, we have cvec = cval = 0, which
will play a role in our proofs as well. While we ini-
tially assume this phenomenon for deep matrix factor-
ization, our extensive experiments also confirm that
Assumption 1 holds for low-rank matrix sensing and
completion.

By using this phenomenon, we can analyze the sin-
gular values of the original and compressed DLN one
at a time, and show that the singular values of the
compressed network are fitted more quickly than those
of the original network, leading to faster convergence
in terms of iteration complexity. Our main result is
stated in Theorem 2.

Theorem 2. Let M∗ ∈ Rd×d be a rank-r matrix and
let r̂ ∈ N such that r̂ ≥ r. Suppose that we run gradient
flow with respect to the original DLN in Equation (1)
and with respect to the compressed network defined in
Equation (7) with A = Id. Then, if Assumption 1
holds such that cvec = 0, we have that ∀t ≥ 0,

∥WL:1(t)−M∗∥2F ≥ ∥W̃L:1(t)−M∗∥2F. (13)

Remarks. The proof relies on analyzing the evolu-

tion of singular values of WL:1 and W̃L:1 using gra-
dient flow. Through this analysis, we demonstrate
that the singular values of the compressed network
are fitted more quickly than those of the original DLN
throughout all iterations of GD, thereby highlighting
the benefits of spectral initialization and our compres-
sion technique. We remark that there is a slight dis-
crepancy between our algorithm and the analysis. Our
algorithm employs discrete gradient steps to update
the weight matrices. However, it is well-established
that using differential equations (and hence gradient
flow) for theoretical analysis has a rich history, and
it is known that discrete gradient steps approximate
the gradient flow trajectories as long as the step size
is sufficiently small (Helmke and Moore, 1996; Arora
et al., 2018).

4 EXPERIMENTS

This section is organized as follows. In Section 4.1,
we present results for solving low-rank matrix recov-
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Figure 4: Occurence of the incremental learning phenomenon in deep matrix factorization. We
observe that the first r = 5 singular values are fitted incrementally, along with their respective singular subspaces,
corroborating Assumption 1.

ery problems on both synthetic and real data. In Sec-
tion 4.2, we show that adding linear layers to a deep
network indeed improves generalization, and provide
results on compressing the linear layers using our pro-
posed method.

4.1 Matrix Recovery Problems

Throughout all of the experiments in this section, we
use a DLN of depth L = 3 and small initialization scale
ϵ = 10−3. To quantatively measure the performance
between the original and compressed DLN, we use the
recovery error defined as

Recovery Error = ∥Ŵ −M∗∥F,

where Ŵ is an estimate of the target matrix.

Deep Matrix Factorization. For deep matrix fac-
torization, we synthetically generate a data matrix
M∗ ∈ Rd×d with d = 100 and rank r = 10. We
use the left and right singular vectors of M∗ for

W̃L(0) ∈ Od×r̂ and W̃1(0) ∈ Or̂×d, where we choose
r̂ = 20 as our upper bound on the rank r. We run GD
with η = 10 for the learning rate and α = 5 for the
scale. In Figure 5, we can observe that the compressed
network maintains a lower recovery error throughout
all iterations of GD, corroborating Theorem 2. As a
result, this leads to two advantages: (1) a reduction
in the number of iterations to converge to a specific
threshold when using the compressed DLN, and (2) a
further reduction in time complexity, as each iteration
of the compressed DLN is much faster than that of the
original DLN.

Deep Matrix Completion. We present our results
for deep matrix completion and present results for
deep matrix sensing in Appendix A.2. Our goal is
to show that choosing the singular subspaces of the

Figure 5: Empirical results on deep linear ma-
trix factorization. Left: Shows that our compressed
network achieves a lower recovery error than the origi-
nal network, corroborating our theory. Right: Demon-
strates the speed up over the original network.

surrogate matrix in Equation (6) serve as good ini-

tial points for W̃L(0) and W̃1(0). We also compare
the performance of our compressed network to Alt-
Min (Jain et al., 2013), which involves alternatingly
minimizing over just the factor matrices to construct

Ŵ = W̃LW̃1. Firstly, we compare these algorithms
using synthetic data, where we follow the setup in deep
matrix factorization. For the observation set Ω, we
consider the “missing completely at random” (MCAR)
setting, where each entry of Ω is Bernoulli with prob-
ability p. We choose p = 0.3 so that roughly 30% of
the observations are observed. We run GD with learn-
ing rate η = 10 and α = 5. In Figure 6, we observe
the same trends as seen in the deep matrix factor-
ization case, where our compressed DLN consistently
exhibits lower recovery error than the original DLN.
Additionally, it is evident that AltMin fails to recover
the underlying matrix completely, as the rank is over-
specified. We observe that while the training loss goes
to zero, the recovery error does not decrease, as there
are insufficient measurements for recovery using this
parameterization. To efficiently use AltMin (or both
networks for the L = 2 case), one would need to obtain
a more accurate estimate of the rank r̂ for recovery.
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Results on Synthetic Data Results on MovieLens Data

Figure 6: Results on matrix completion with synthetic and real data. Left: Results on matrix completion
with only 30% observed entries for recovering a rank r = 10 matrix. Right: Results on MovieLens dataset with
r̂ = 10. For both experiments, we observe that our compressed network achieves faster convergence than the
original network and also outperforms overparameterized AltMin (Jain et al., 2013).

Next, we compare these algorithms on the MovieLens
100K dataset (Harper and Konstan, 2015). Since the
MovieLens dataset is not precisely a low-rank matrix,
this experiment also serves to demonstrate the per-
formance of DLNs on approximately low-rank matrix
completion. We randomly choose 80% of the samples
to train the network and test on the remaining 20%.
For the hyperparameters, we choose r̂ = 10, η = 0.5,
and α = 5. As depicted in Figure 6, we find that
our compressed network achieves the same recovery
error as the original DLN in less than 5× the time.
While AltMin initially finds solutions with lower re-
covery error at a faster rate, its recovery error even-
tually plateaus, whereas both DLNs can find solutions
with overall lower recovery error.

4.2 Applications of DLNs for Deep
Nonlinear Networks

To demonstrate the application of our compressed
DLN on deep nonlinear networks, we consider the set-
ting in Section 2.3, where we overparameterize the
penultimate layer using a DLN. We consider this addi-
tional overparameterization using two network archi-
tectures: MLPs and ViTs. For MLPs, we train two
MLPs: (1) one MLP with 3 hidden layers and one lin-
ear penultimate layer and (2) one MLP with 3 hidden
layers and one 3-layer DLN as the penultimate layer.
Mathematically, this amounts to the compressed net-
work

ψΘ̃(x) = W6ρ(W̃5W̃4W̃3︸ ︷︷ ︸
W̃5:3

(ρ(W2ρ(W1x))).

For ViT, we consider a smaller variant of ViT-base,
which consists of 6 alternating layers of multi-headed
self-attention and MLP blocks. We set the token di-
mension as 512 and the MLP dimension as 3072 and
compress last linear layer in the 6-th MLP block, which
can also be seen as the penultimate layer of the ViT.

Here, our objective is two-fold: (1) to demonstrate
that overparameterizing the penultimate layer has bet-
ter generalization capabilities and (2) to show that the
compressed networks have similar (or better) perfor-
mance while significantly reducing the training time.

We illustrate this by training the MLPs on the Fash-
ionMNIST dataset and training the ViTs on the
CIFAR-10 dataset. For r̂, we choose r̂ = 4dy, where
dy denotes the number of classes in the dataset. For
the MLPs, we run GD with η = 5 × 10−3 and α = 1
and used η = 1 × 10−4, α = 1 with cosine annealing
for the ViTs. Both models were tested 5 times start-
ing from random initialization to account for variabil-
ity. In Table 1, we observe that our compressed net-
work can achieve the highest accuracy for MLPs on
average, with very competitive results for ViTs. How-
ever, the compressed network takes significantly less
time to train while storing fewer parameters. Over-
all, these results highlight the effectiveness of our ap-
proach, demonstrating that one can reduce runtime
and memory without sacrificing the performance of
deeper and wider models.

5 RELATED WORK

Deep Linear Networks. Despite their simplicity,
deep linear networks have been widely adopted for
theoretical analysis, as it has been observed that they
share similar behavioral characteristics as their non-
linear counterparts (Saxe et al., 2014). Some ex-
amples include the study of their optimization land-
scape (Kawaguchi, 2016; Lin et al., 2021; Eftekhari,
2020; Chatterji and Long, 2023) and the study of
understanding feature representation in deep net-
works (Yaras et al., 2022; Zhu et al., 2021; Papyan
et al., 2020; Jiang et al., 2023a; Li et al., 2023; Yaras
et al., 2022; Wang et al., 2022; Zhou et al., 2022a,b).
Our work highlights that these deep linear models are
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Method Test Accuracy (%) Time MACs Memory (Train) # of Parameters
Original 89.87± 0.216 83.02± 20.87 sec 2.370× 107 25.80 MB 1.850 M

MLP DLN 90.20± 0.040 95.82± 12.29 sec 3.940× 107 35.90 MB 3.080 M
C-DLN 90.28± 0.104 54.85± 2.950 sec 1.670× 107 21.60 MB 1.300 M
Original 84.72± 0.120 32.80± 2.786 min 2.100× 1010 7.110 GB 25.20 M

ViT DLN 84.90± 0.230 45.80± 2.638 min 3.640× 1010 7.811 GB 44.10 M
C-DLN 84.89± 0.187 31.40± 1.855 min 1.980× 1010 7.090 GB 23.80 M

Table 1: Quantitative results for deep nonlinear networks. DLN and C-DLN denote networks that are
overparameterized using their respective models. The reported time is the amount of time taken for the models
to achieve 99% test accuracy. Note that the reduction in memory and MACs is not substantial as we only
consider compressing the penultimate layer. Best results are in bold and second best results are underlined.

not only useful analytical tools but also powerful mod-
els for solving low-rank matrix recovery tasks. This ob-
servation is built upon some of the work done by Arora
et al. (2019), where they show that deeper models tend
towards more accurate solutions for these matrix re-
covery problems in settings where the number of obser-
vations are very limited. The most relevant works to
this study are those conducted by Yaras et al. (2023)
and Khodak et al. (2021). We were unaware of the
work by Khodak et al. (2021) at the time of writ-
ing this paper, where they explore the advantages of
spectral initialization and weight decay for deep non-
linear networks. Their methods involve assuming a
Gaussian prior on the weights of deep nonlinear net-
works, which they then apply spectral initialization
with weight decay to train the weights of such net-
works. However, their methods are not directly ap-
plicable to the problems addressed in this paper, as a
Gaussian prior alone is insufficient to realize the bene-
fits of the compressed network as demonstrated in this
study. This point is further emphasized by our theory
– the spectral initialization step must incorporate some
function of the data for it to be meaningful. The study
by Yaras et al. (2023) investigates the learning dynam-
ics of DLNs starting from orthogonal initialization in
the deep matrix factorization case. Their theory in-
cludes an additional weight decay parameter, which
can also be extended to our theory.

Low-Rank Training and Adaptation. Low-rank
training refers to modeling the weight updates of net-
works (whether shallow or deep) as a product of low-
rank matrices, rather than updating the entire matrix
itself. By updating the low-rank matrices, one can re-
duce training costs and improve generalization by ex-
ploiting its intrinsic structure. This method has a long
and rich history, dating back to the Burer-Monteiro
factorization (Burer and Monteiro, 2003) and includ-
ing efficient implementations of alternating minimiza-
tion (Ma et al., 2023; Chi et al., 2019). Our work can
be viewed as an improvement upon these techniques,
as deeper models are more favorable for modeling low-

rank matrices. There is also a body of work related
to low-rank adaptation, which generally involves low-
rank fine-tuning of large models (Hu et al., 2022; Wang
et al., 2023; Zhao et al., 2023; Lialin et al., 2023; Zhai
et al., 2023). For instance, Hu et al. (2022) proposed
Low-Rank Adaptation (LoRA), which fine-tunes large
language models (LLMs) by assuming that the weight
updates have a low-dimensional structure and model-
ing them as a product of two matrices. This method
has shown to significantly reduce memory complexity
with only a minimal tradeoff in test accuracy. There
also have been attempts at extending LoRA by train-
ing low-rank matrices from scratch, as such techniques
not only reduce the training costs but also leads to
possible performance gain by restricting the training
dynamics to a low-dimensional manifold (Wang et al.,
2023; Zhao et al., 2023; Lialin et al., 2023; Zhai et al.,
2023). We believe that our work can improve the util-
ity of algorithms of these algorithms, where we can
model the weight updates using a DLN. For example,
it would be an interesting direction to explore whether
we can model the weight updates in LoRA using our
compressed DLN to improve its expressive power.

6 CONCLUSION

In this work, we proposed an efficient technique to
compress overparameterized networks by studying the
learning dynamics of DLNs. Our method involved re-
ducing the width of the intermediate layers along with
a spectral initialization scheme that improved conver-
gence compared to its wider counterpart. We theoreti-
cally argued the benefits of our network while showcas-
ing their results on matrix factorization and comple-
tion with applications on nonlinear networks for clas-
sification tasks. We believe that our work opens doors
to many exciting questions: the theoretical analysis
of the learning trajectory for deep matrix sensing, and
the practical application of further improving low-rank
training for deep nonlinear networks.



Efficient Low-Dimensional Compression of Overparameterized Models

Acknowledgments

SMK, DS, and QQ acknowledge support from NSF
CAREER CCF-2143904, NSF CCF-2212066, NSF
CCF-2212326, and NSF IIS 2312842, an AWS AI
Award, a gift grant from KLA, and MICDE Catalyst
Grant. SMK and LB acknowledge support from DoE
award DE-SC0022186, ARO YIP W911NF1910027,
and NSF CAREER CCF-1845076. Results presented
in this paper were obtained using CloudBank, which is
supported by the NSF under Award #1925001. SMK
would also like to thank Can Yaras for fruitful discus-
sions. ZZ would like to thank Zaicun Li for insights
and justifications regarding mathematical proofs.

References

Arora, S., Cohen, N., and Hazan, E. (2018). On the
optimization of deep networks: Implicit acceleration
by overparameterization. In Proceedings of the 35th
International Conference on Machine Learning, vol-
ume 80 of Proceedings of Machine Learning Research,
pages 244–253. PMLR.

Arora, S., Cohen, N., Hu, W., and Luo, Y. (2019).
Implicit regularization in deep matrix factorization.
In Advances in Neural Information Processing Sys-
tems, volume 32. Curran Associates, Inc.

Burer, S. and Monteiro, R. (2003). A nonlinear
programming algorithm for solving semidefinite pro-
grams via low-rank factorization. Mathematical Pro-
gramming, Series B, 95:329–357.

Chang, X., Li, Y., Oymak, S., and Thrampoulidis, C.
(2020). Provable benefits of overparameterization in
model compression: From double descent to pruning
neural networks. In AAAI Conference on Artificial
Intelligence.

Chatterji, N. S. and Long, P. M. (2023). Deep linear
networks can benignly overfit when shallow ones do.
Journal of Machine Learning Research, 24(117):1–39.

Chen, M., Pennington, J., and Schoenholz, S. (2018).
Dynamical isometry and a mean field theory of
RNNs: Gating enables signal propagation in recur-
rent neural networks. In Proceedings of the 35th Inter-
national Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pages
873–882. PMLR.

Cheng, Y., Wang, D., Zhou, P., and Zhang, T. (2018).
Model compression and acceleration for deep neural
networks: The principles, progress, and challenges.
IEEE Signal Processing Magazine, 35(1):126–136.

Chi, Y., Lu, Y. M., and Chen, Y. (2019). Non-
convex optimization meets low-rank matrix factor-
ization: An overview. IEEE Transactions on Signal
Processing, 67(20):5239–5269.

Chou, H.-H., Gieshoff, C., Maly, J., and Rauhut, H.
(2023). Gradient descent for deep matrix factoriza-
tion: Dynamics and implicit bias towards low rank.
Applied and Computational Harmonic Analysis, page
101595.

Dar, Y., Muthukumar, V., and Baraniuk, R. G.
(2021). A farewell to the bias-variance tradeoff? An
overview of the theory of overparameterized machine
learning. arXiv preprint arXiv:2109.02355.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weis-
senborn, D., Zhai, X., Unterthiner, T., Dehghani, M.,
Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J.,
and Houlsby, N. (2021). An image is worth 16x16
words: Transformers for image recognition at scale.
In 9th International Conference on Learning Repre-
sentations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021.

Eftekhari, A. (2020). Training linear neural networks:
Non-local convergence and complexity results. In
Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Ma-
chine Learning Research, pages 2836–2847. PMLR.

Gidel, G., Bach, F., and Lacoste-Julien, S. (2019).
Implicit regularization of discrete gradient dynam-
ics in linear neural networks. In Advances in Neural
Information Processing Systems, volume 32. Curran
Associates, Inc.

Haderlein, J. F., Mareels, I. M. Y., Peterson, A.
D. H., Eskikand, P. Z., Burkitt, A. N., and Gray-
den, D. B. (2021). On the benefit of overparameter-
ization in state reconstruction. In 2021 60th IEEE
Conference on Decision and Control (CDC), pages
1580–1585.

Harper, F. M. and Konstan, J. A. (2015). The movie-
lens datasets: History and context. ACM Transac-
tions on Interactive Intelligent Systems, 5(4).

Helmke, U. and Moore, J. (1996). Optimization and
dynamical systems. Proceedings of the IEEE, 84(6).
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7 Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes/No/Not Applicable]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes/No/Not Applicable]

(c) (Optional) Anonymized source code, with spec-
ification of all dependencies, including external
libraries. [Yes/No/Not Applicable]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of all
theoretical results. [Yes/No/Not Applicable]

(b) Complete proofs of all theoretical results.
[Yes/No/Not Applicable]

(c) Clear explanations of any assumptions.
[Yes/No/Not Applicable]

3. For all figures and tables that present empirical re-
sults, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
[Yes/No/Not Applicable]

(b) All the training details (e.g., data splits,
hyperparameters, how they were chosen).
[Yes/No/Not Applicable]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments mul-
tiple times). [Yes/No/Not Applicable]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes/No/Not Applicable]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses exist-
ing assets. [Yes/No/Not Applicable]

(b) The license information of the assets, if applica-
ble. [Yes/No/Not Applicable]

(c) New assets either in the supplemental material
or as a URL, if applicable. [Yes/No/Not Ap-
plicable]

(d) Information about consent from data
providers/curators. [Yes/No/Not Appli-
cable]

(e) Discussion of sensible content if applicable, e.g.,
personally identifiable information or offensive
content. [Yes/No/Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Yes/No/Not Appli-
cable]

(b) Descriptions of potential participant risks, with
links to Institutional Review Board (IRB) ap-
provals if applicable. [Yes/No/Not Applica-
ble]

(c) The estimated hourly wage paid to participants
and the total amount spent on participant com-
pensation. [Yes/No/Not Applicable]
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Supplementary Materials

A ADDITIONAL RESULTS

In this section, we present additional experimental results to supplement those presented in the main text. These
results include extensive plots for the validity of Assumption 1, results for deep matrix sensing, ablation studies,
and a discussion on the prevalence of low-rank updates for nonlinear networks. All experiments were run using
either a CPU with processor 3.0 GHz Intel Xeon Gold 6154 or a NVIDIA V100 GPU. The code to reproduce our
results is available at https://github.com/soominkwon/comp-deep-nets. For clarity in notation throughout
the Appendix, we provide a table of notation in Table 2.

Notation Definition
L ∈ N Depth of the DLN
r̂ ∈ N Estimated rank for the compressed DLN
ϵ ∈ R+ Weight initialization scale
η ∈ R+ Learning rate
α ∈ R+ Discrepant learning rate scale
Wl ∈ Rd×d l-th weight matrix of original DLN

W̃l ∈ Rr̂×r̂ l-th weight matrix of compressed DLN

Table 2: Summary of the notation used throughout this work.

A.1 Experimental Results on Incremental Learning

Here, we aim to present more empirical results to validate our observation of the incremental learning phe-
nomenon. To that end, we synthetically generate a target matrix M∗ ∈ Rd×d with d = 100 and rank r = 5
and r = 10 with r̂ = 2r. We consider deep matrix factorization, sensing, and completion, where our goal is to
fit the target matrix M∗ using a DLN of L = 3 with initialization scale ϵ = 10−3. To train the weights, we
run GD with step size η = 10 and α = 5, 2, 5 for matrix factorization, sensing, and completion, respectively.
For deep matrix sensing, each sensing matrix Ai was filled with i.i.d. Gaussian entries N (0, 1), for all i ∈ [m],
where m = 2000. For matrix completion, we consider the MCAR setting, with 20% observed entries. The same
setup was also used to generate Figure 4. The results are displayed in Figures 7, 8 9, 10, 11. The same setup
was also used to generate Figure 4. In Figure 12, we display a two-dimensional plot of the change in singular
values. These plots demonstrate that throughout deep matrix factorization and sensing problems, the principal
components of the DLN are fitted incrementally, starting from the largest principal component to the next. The
two-dimensional plot in Figure 12 illustrates this more precisely. We can observe that the learning of the singular
values occurs one at a time, while the other singular values remain close to their initial values until the previous
one is adjusted to its target singular value. These findings serve to support our assumptions and observations as
outlined in Assumption 1.

Furthermore, recall that in our definition of Assumption 1, there exist constants cval, cvec ∈ [0, 1] that define
the precision with which the singular values and vectors fit the target values, respectively. We perform a study
on deep matrix factorization to demonstrate that both cval and cvec are (very) close to 0. To this end, we
synthetically generate a target matrix M∗ ∈ Rd×d with d = 100 and rank r = 3 with learning rate η = 5. We
measure the difference in singular values and vectors throughout the course of GD, and display our results in
Figure 13.

https://github.com/soominkwon/comp-deep-nets
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Figure 7: Occurence of the incremental learning phenomenon in matrix completion. We observe that
the first r = 5 singular values are fitted incrementally, along with their respective singular subspaces.

Figure 8: Occurence of the incremental learning phenomenon in matrix sensing. We observe that the
first r = 5 singular values are fitted incrementally, along with their respective singular subspaces.

Figure 9: Occurence of the incremental learning phenomenon in matrix factorization. We observe
that the first r = 10 singular values are fitted incrementally, along with their respective singular subspaces.
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Figure 10: Occurence of the incremental learning phenomenon in matrix sensing. We observe that
the first r = 10 singular values are fitted incrementally, along with their respective singular subspaces.

Figure 11: Occurence of the incremental learning phenomenon in matrix completion. We observe
that the first r = 10 singular values are fitted incrementally, along with their respective singular subspaces.

Figure 12: Occurence of the incremental learning phenomenon in matrix factorization, with a more
close up view on its singular values. Since the underlying matrix is rank r = 5, the sixth singular value
and onwards stay (almost) unchanged from initialization. The dotted lines represent the magnitude of the target
singular value (σ∗

i ).
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Figure 13: Experiments observing the values of cval and cvec throughout the course of GD. These
plots demonstrate that after ti, which indicate the time in which the i-th principal components are learned in
Assumption 1, the values cval and cvec are very close to 0 (smaller than approximately 10−15).

d = 100, r = 5, m = 2000 d = 200, r = 10, m = 8000

Figure 14: Results on deep matrix sensing with random Gaussian measurements. We observe the same
phenomena in the matrix sensing setting similar to Figures 5 and 6, where the compressed network consistently
outperforms the original network.

A.2 Results on Deep Matrix Sensing

In this section, we present the deferred results for deep matrix sensing. We consider modeling a low-rank matrix
M∗ ∈ Rd×d with varying dimensions d and rank r. For the sensing operator, we use random Gaussian matrices

Ai ∈ Rd×d with varying values of measurements m. As previously discussed, to initialize W̃L(0) and W̃1(0), we
take the left and right singular subspaces of the surrogate matrix

S = A†A(M∗).

For the hyperparameters, we use the same setup as described in Section A.1. The results are displayed in
Figure 14. In Figure 14, we observe that for deep matrix sensing, we observe the same phenomenon, where the
compressed network consistently outperforms the original network in terms of recovery error for all iterations of
GD. This empirically shows the benefits of spectral initialization and the use of DLNs.

A.3 Ablation Studies

In this section, we conduct several ablation studies to demonstrate (1) the effect of the learning rate scale α, (2)
the performance of the compressed network with small random initialization, (3) the added time complexity of
SVD, and (4) the effect of depth.

The Effect of α. In Section 2.2, we introduced the concept of a learning rate ratio (or scale), denoted as

α. Recall that in Figure 3, we showed that the factor matrices W̃L and W̃1 ultimately align the the singular
subspaces of the target matrix. By increasing α (i.e., by choosing α > 1), we can hope to fit these target subspaces
more quickly, leading to accelerated convergece in terms of iterations. To this end, we peform an ablation study
where we vary alpha from α ∈ [0.5, 10] in increments of 0.25, and report the recovery error on synthetic matrix
completion. We present our results in Figure 15, where we observe for larger values of α significantly improves
convergence. For values of α ≤ 1, we have slower convergence in terms of iterations than the original wide DLN,
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but since each iteration is much faster, it still takes much less time to train the compressed DLN. However, for
large values of α (e.g. α≫ 10), the training becomes unstable and often diverges. In Figure 17, we demonstrate
a case of this, where for large values of α, the compressed network overfits and incurs a large recovery error. For
smaller values of α (e.g., α = 0.1), the networks takes significantly longer to converge.

On the other hand, choosing a learning rate scale α > 1 may like an unfair advantage for the compressed network.
For a fairer comparison, we first fix α = 1 and perform a grid search of 20 evenly spaced steps for η ∈ [10, 100]
and choose the value of η that converges the fastest (in terms of number of iterations) for a tolerance level of
10−12 for both networks. In Figure 16, we demonstrate that the original network still converges slower than the
compressed network.

Figure 15: Ablation study on the performance of the compressed DLN with varying values of α.
For small values of α, the compressed network takes more iterations to reach the convergence criteria, but since
the time complexity of each iteration is smaller, it still takes much shorter time overall.

Figure 16: Ablation study on the performance of the compressed DLN with α = 1 and different
learning rates η for both networks. We perform a grid search of 20 evenly spaced steps for η ∈ [10, 100] and
choose the value of η that converges the fastest for a tolerance level of 10−12. We demonstrate that the original
network still converges slower than the compressed network.

The Use of Small Random Initialization. Thus far, all of our experiments and theory relied on the fact
that the original network was initialized with orthogonal weights scaled by a small scale ϵ > 0. In this section, we
perform a study to show that our compressed network also outperforms the original network when the original
network is initialized with random weights also scaled by ϵ. We consider deep matrix factorization and matrix
completion, following the setting of Section 4.1. We showcase our results in Figure 18, where show that the same
phenomenon persists in this setting as well.

Added Time Complexity of Taking SVD. Recall that our algorithm involves taking the SVD of a carefully
constructed surrogate matrix to initialize the weights of the compressed network. In this study, we report the
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Figure 17: Ablation study on α on the MovieLens dataset. These plots demonstrate that for large values
of α, the compressed network can overfit, whereas smaller values of α increases the time it takes for the model
to converge.

Deep Matrix Factorization Deep Matrix Completion

Figure 18: Comparison of the performance of networks when the original network is initialized
with near-zero random weights. We observe that the compressed network still outperforms the original
wide network in this setting for both deep matrix factorization and completion.

time (in seconds) it takes to train both the original network and the compressed network, including the time
taken for the SVD step, for varying values of d (the dimensions of the target matrix). Our results are presented
in Table 3. We observe that the time taken for the SVD is almost negligible compared to the training time for
synthetic data. For real larger-scale experiments, while we anticipate that computing the SVD may take a longer
time, it will also significantly reduce the training time, resulting in a smaller overall time.

Method SVD Training Total
DLN (d = 100) - 184.3 184.3

C-DLN (d = 100) 0.009 109.7 109.7
DLN (d = 300) - 511.2 511.2

C-DLN (d = 300) 0.082 381.3 381.4

Table 3: The time (measured in seconds) required to train both the compressed and original
networks, accounting for the SVD step. We note that the time taken to compute the SVD is nearly
negligible.

The Effect of Depth. In this section, we make a quick note on the effect of depth on matrix completion. We
synthetically generate data according to Section 4.1. Here, our objective is to answer whether the compressed
network can still outperform the original network when the number of layers is small (e.g. L = 2). The work by
Arora et al. Arora et al. (2019) suggests that the implicit regularization property is “stronger” as a function of
depth, where deeper networks favor more low-rank solutions. In Figure 19, we illustrate that when the number
of observed measurements is very limited and the number of layers is small, both networks seem to perform
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considerably worse compared to the 3-layer case. While the training error is still smaller for the compressed
DLN, the recovery error is slightly higher. This result implies that deeper networks are more favorable than
shallow ones when the number of measurements is extremely limited, and the advantages of the compressed
network become especially apparent when both networks can achieve a low recovery error.

Figure 19: The effect of depth on deep matrix completion with limited number of measurements.
We show that the compressed network only has advantages over the original network when the original network
converges in terms of recovery (or test) error.

A.4 Additional Results and Details for Nonlinear Networks

Additional Results. In Figure 1, we plotted the singular values of the change in weight updates from initial-
ization of the penultimate layer matrix (i.e., W (t)−W (0) where W denotes the penultimate layer matrix) and
showed that the changes happen within a low-dimensional subspace. In Figure 20, we plot the change in the
top-r singular vectors. We use the subspace distance defined as

Subspace Distance = r − ∥Ur(t)
⊤Ur(t+ 1)∥2F, (14)

where Ur denotes the singular vectors of W corresponding to the top-r singular values. For this experiment,
we choose r = 10 and initialize the networks as described in the training details (next subsection). Here, we
observe that the subspace distance is very small throughout training all network architectures, which hints that
the subspaces greatly overlap throughout all t (i.e., the training occurs within an invariant subspace).

In Figure 21, we present additional plots for experiments on deep nonlinear networks. Here, we depict the change
in test accuracy over GD iterations for MLP and ViT trained on FashionMNIST and CIFAR-10, respectively.
We display the test accuracies for the original (in green), original network whose penultimate layer is a DLN
(Original + DLN in blue), and the original network whose penultimate layer is a compressed DLN (in orange)
throughout GD and their respective training times in seconds. We observe that networks whose penultimate
layer is modeled as a DLN exhibit the best performance in terms of test accuracy, but they take the longest time
to train due to the additional overparameterization. By using our compression approach, we can reduce this
training time by almost 2×, while achieving very similar test accuracy. Interestingly, Figure 21 shows that for
ViT, we can outperform the other networks using our compressed DLN, while having the shortest training time.

Training Details. To plot Figure 1, we observe the change in singular values of the penultimate weight matrix
for DLNs, MLPs, VGG (Simonyan and Zisserman, 2015), and ViT-B (Dosovitskiy et al., 2021). We train the DLN
starting from orthogonal initialization using SGD with learning rate 0.01 and batch size 128. All of the nonlinear
networks were initialized using random uniform initialization. For MLP, we train using the same parameters as
the DLN. For VGG, we use batch size 128 with learning rate 0.05, weight decay parameter 5× 10−4, momentum
0.9 and step size scheduler with cosine annealing. Lastly, for ViT-B, we train using ADAM with a batch size
of 512 and learning rate 10−5 with cosine annealing. The ViT-B architecture is the same as the one presented
by Dosovitskiy et al. (2021).
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Figure 20: Distance between consecutive singular subspaces of the penultimate weight matrices.
These plots show that the subspace distance defined in Equation (14) is small, hinting that the training happens
within an invariant subspace.

Results on FashionMNIST Results on CIFAR-10

Figure 21: Results on classification tasks with nonlinear networks with overparameterized penul-
timate layers. Left: Results with FashionMNIST dataset with MLP. Right: Results on CIFAR-10 dataset
with ViT. For both experiments, we observe that the compressed networks (colored in orange) has similar test
accuracy (if not better) than the original network (colored in blue) throughout training, while reducing run-time
by almost 2×. The plot colored in green represents the network with a standard penultimate layer, which has
lower test accuracy throughout all experiments.

B THEORETICAL RESULTS

B.1 Deferred Proofs for Spectral Initialization

To keep this section self-contained, we will first restate all of our results. Throughout this section, we will
consider the compressed deep matrix factorization problem, which at GD iterate t is defined as

ℓ(Θ̃(t)) =
1

2
∥W̃L:1(t)−M∗∥2F,

where W̃L(0) = ϵ ·U∗
r̂ , W̃1(0) = ϵ ·V ∗⊤

r̂ , and W̃l(0) = ϵ · Ir̂ for 2 ≤ l ≤ L− 1, for some small initialization scale
ϵ > 0.

Theorem 1. Let M∗ ∈ Rd×d be a matrix of rank r and M∗ = U∗Σ∗V ∗⊤ be a SVD of M∗. Suppose we

run Algorithm 1 with α = 1 to update all weights
(
W̃l

)L

l=1
of Equation (7), where A = Id. Then, the end-to-

end compressed DLN possesses low-dimensional structures, in the sense that for all t ≥ 1, W̃L:1(t) admits the
following decomposition:

W̃L:1(t) = U∗
r̂

[
Λ(t) 0
0 β(t)L · Ir̂−r

]
V ∗⊤
r̂ , (15)

where Λ(t) ∈ Rr×r is a diagonal matrix with entries λi(t)
L, where

λi(t) = λi(t− 1) ·
(
1− η · (λi(t− 1)L − σ∗

i ) · λi(t− 1)L−2
)
, 1 ≤ i ≤ r, (16)
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with λi(0) = ϵ and σ∗
i is the i-th diagonal entry of Σ∗ and

β(t) = β(t− 1) ·
(
1− η · β(t− 1)2(L−1)

)
, (17)

with β(0) = ϵ.

Proof. We will prove using mathematical induction.

Base Case. For the base case at t = 0, the decomposition holds immediately by the choice of initialization:

W̃L:1(0) = U∗
r̂ · ϵIr̂︸ ︷︷ ︸
W̃L(0)

· ϵ(L−2)Ir̂︸ ︷︷ ︸
W̃2:L−1(0)

· ϵIr̂ · V ∗⊤
r̂︸ ︷︷ ︸

W̃1(0)

= U∗
r̂ ·

[
ϵLIr 0
0 ϵLIr̂−r

]
· V ∗⊤

r̂

= U∗
r̂ ·

[
Λ(0) 0
0 β(0)LIr̂−r

]
· V ∗⊤

r̂ .

Inductive Hypothesis. Now, by the inductive hypothesis, suppose that the decomposition holds for some
t ≥ 0. Notice that by the rotational invariance of the Frobenius norm, we can rewrite the objective function into

ℓ(Θ̃(t)) =
1

2
∥W̃L:1(t)−M∗∥2F (18)

=
1

2

∥∥∥∥U∗
r̂

[
Λ(t) 0
0 β(t)LIr̂−r

]
V ∗⊤
r̂ −U∗

r̂

[
Σ∗

r 0
0 0

]
V ∗⊤
r̂

∥∥∥∥2
F

(19)

=
1

2

∥∥∥∥[Λ(t) 0
0 β(t)LIr̂−r

]
−

[
Σ∗

r 0
0 0

]∥∥∥∥2
F

(20)

where Σ∗
r is the leading r principal submatrix Σ∗. Then, Equation (20) implies that updating the factor W̃L(t)

is equivalent to updating a diagonal matrix of dimensions r̂ and multiplying by U∗
r̂ (and respectively W̃1(t) with

V ∗⊤
r̂ ). To this end, we will consider updating the diagonal entries to show that the decomposition holds for t+1.

Inductive Step. We will first consider the top-r components. Notice that the i-th diagonal entry ∀i ∈ [r] of
the l-th layer matrix ∀l ∈ [L] are all scalars (and hence are all the same), and so the update steps for the i-th
entry are given by

λi(t+ 1) = λi(t)− η ·
(
λi(t)

L − σ∗
i

)
· λi(t)L−1

= λi(t) ·
(
1− η · (λi(t)L − σ∗

i ) · λ(t)L−2
i

)
.

Thus, the i-th entry of Λ(t) is given by λi(t)
L for 1 ≤ i ≤ r. Similarly, the update steps for the last r̂ − r

elements are given by

β(t+ 1) = β(t)− η ·
(
β(t)L · β(t)L−1

)
= β(t) ·

(
1− η · β(t)2(L−1)

)
,

which gives us β(t)L for the last r̂ − r elements. This completes the proof.

Corollary 1. Let WL:1(0) denote the original DLN at t = 0 initialized with orthogonal weights according to

Equation (3) and W̃L:1(0) denote the compressed DLN at t = 0. Then, we have

∥WL:1(0)−M∗∥2F ≥ ∥W̃L:1(0)−M∗∥2F. (21)
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Proof. Let WL:1(0) = ULΣL:1V
⊤
1 and M∗ = U∗Σ∗V ∗⊤ denote the SVD of WL:1(0) and M∗, respectively.

Since WL:1(0) is a product of orthogonal matrices scaled by ϵ, its singular values are ΣL:1 = ϵLId. Then, we
have

∥WL:1(0)−M∗∥2F ≥ ∥ΣL:1 −Σ∗∥2F (By Lemma 1)

= ∥ϵLId −Σ∗∥2F
≥ ∥ϵLIr̂ −Σ∗

r̂∥2F (r̂ ≤ d)

= ∥W̃L:1(0)−M∗∥2F. (Theorem 1 at t = 0)

This proves the result.

B.2 Deferred Proofs for Incremental Learning

In this section, we provide the deferred proofs from Section 3.2. Recall that in this analysis, we will consider
running gradient flow over the original network in Equation (1) with A = Id and over the compressed network in
Equation (7). Before we present our proof for our main result, we first restate a result from Arora et al. (2019),
which characterizes change in singular values of the original network WL:1(t).

Proposition 1 (Arora et al. (2019)). Consider running gradient flow over the deep matrix factorization problem
defined in Equation (1) with A = Id and L ≥ 2. The end-to-end weight matrix can be expressed as

WL:1(t) = U(t)S(t)V ⊤(t), (22)

where U(t) and V (t) are orthonormal matrices and S(t) is a diagonal matrix. Denote σi(t) as the i-th entry of
the matrix S(t). Then, each σi(t) for all i = 1, . . . , d has the following gradient flow trajectory:

σ̇i(t) = −L · (σ2
i (t))

1−1/L · ⟨∇WL:1
ℓ(Θ(t)),ui(t)v

⊤
i (t)⟩, (23)

where ui(t) and ui(t) denotes the i-th column of U(t) and V (t) respectively and

∇WL:1
ℓ(Θ) = WL:1 −M∗. (24)

We would like to remark that in order to directly use this result, we need to assume that the factor matrices are
balanced at initialization, i.e.,

W⊤
l+1(0)Wl+1(0) = Wl(0)W

⊤
l (0), l = 1, . . . , L− 1.

Since we are using orthogonal initialization scaled with a small constant ϵ > 0, we immediately satisfy this
condition. Equipped with this result, we introduce our main result.

Theorem 2. Let M∗ ∈ Rd×d be a rank-r matrix and such that r̂ ∈ N with r̂ ≥ r. Suppose that we run gradient
flow with respect to the original DLN in Equation (1) with A = Id and with respect to the compressed network
defined in Equation (7). Then, if Assumption 1 holds such that cvec = 0, we have that ∀t ≥ 0,

∥WL:1(t)−M∗∥2F ≥ ∥W̃L:1(t)−M∗∥2F. (25)

Proof. For clarity, we organize the proof into subsections.

Notation & Assumptions. By Assumption 1, let us define a sequence of time points torig1 ≤ torig2 ≤ . . . ≤ torigr

and tcomp
1 ≤ tcomp

2 ≤ . . . ≤ tcomp
r in which the i-th principal components are fitted up to some precision defined

by corigval , c
orig
vec and ccomp

val , ccomp
vec for both the original and compressed network, respectively. Recall that ti denotes

the time in which i-th principal components are fitted and when the (i+ 1)-th components start being learned.
We assume that corigvec = 0 and that for all t < ti,

σi+1(t) = σ̃i+1(t) = ϵL,

where σi(t) and σ̃i(t) denotes the i-th singular value of the original and compressed network, respectively. Notice
that by Theorem 1, we have that ũi(t) = u∗

i and ṽi(t) = v∗
i for all t, where ũi(t) and ṽi(t) denote the i-th

left and right singular vector of W̃L:1(t) respectively, and so ccomp
vec = 0 by definition. The second assumption

states that the singular values are learned incrementally, and that the trailing (i + 1) to d singular values stay
at initialization until all the first i singular values are learned.
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Roadmap of Proof. Notice that by using Lemma 1, we can write the inequality in Equation (25) as

∥WL:1(t)−M∗∥2F ≥
r̂∑

i=1

(σi(t)− σ∗
i )

2 ≥
?

r̂∑
i=1

(σ̃i(t)− σ∗
i )

2 = ∥W̃L:1(t)−M∗∥2F.

Then, to establish the result, we will show that

r̂∑
i=1

(σi(t)− σ∗
i )

2 ≥
r̂∑

i=1

(σ̃i(t)− σ∗
i )

2.

To do this, we will first show that tcomp
i ≤ torigi for all i ∈ [r] using mathematical induction, as that would imply

that the singular values of the compressed network are learned faster, leading to a lower recovery error. Then,
we will show that the inequality also holds for all j ∈ [r + 1, r̂].

Base Case. Let torig0 and tcomp
0 denote the initial time points. For the base case, the initialization gives us

torig0 = tcomp
0 = 0.

Inductive Hypothesis. By the inductive hypothesis, suppose that torigi ≥ tcomp
i such that the i-th principal

components of the compressed network are fitted faster than the original network.

Inductive Step (Top-r Components). For the inductive step, we need to show torigi+1 ≥ tcomp
i+1 . We will do

this by analyzing the dynamics of the singular values of both networks.

Notice that by the inductive hypothesis and by assumption, for all t < tcomp
i ≤ torigi , we have

σi+1(t) = σ̃i+1(t) = ϵL. (26)

Then, for all t > torigi ≥ tcomp
i , by Proposition 1, the gradient dynamics of σi+1(t) are governed by

σ̇i+1(t) = −L · (σ2
i+1(t))

1−1/L · ⟨∇WL:1
ℓ(Θ(t)),ui+1(t)v

⊤
i+1(t)⟩,

= −L · (σ2
i+1(t))

1−1/L · (u⊤
i+1(t)WL:1(t)vi+1(t)− u⊤

i+1(t)M
∗vi+1(t))

= −L · (σ2
i+1(t))

1−1/L · (σi+1(t)− u⊤
i+1(t)M

∗vi+1(t))

≤ −L · (σ2
i+1(t))

1−1/L · (σi+1(t)− σ∗
i+1),

where the last inequality follows from that corigvec = 0 and so u⊤
i+1(t) and v⊤

i+1(t) are vectors that are orthogonal
to span{u∗

j , 1 ≤ j ≤ i} and span{v∗
j , 1 ≤ j ≤ i}, such that u⊤

i+1(t)M
∗vi+1(t) is at most σ∗

i+1.

Similarly, notice that for the compressed network, we have for times t > tcomp
i ,

˙̃σi+1(t) = −L · (σ̃2
i+1(t))

1−1/L · ⟨∇
W̃L:1

ℓ(Θ̃(t)),u∗
i+1v

∗⊤
i+1⟩, (27)

= −L · (σ2
i+1(t))

1−1/L · (u∗⊤
i+1W̃L:1(t)v

∗
i+1 − u∗⊤

i+1M
∗v∗

i+1) (28)

= −L · (σ̃2
i+1(t))

1−1/L · (σ̃i+1(t)− σ∗
i+1). (29)

Therefore by the comparison theorem for ODEs (Theorem 1.3 of Teschl (2012)) we have that

ϵL ≤ σi+1(t) ≤ σ̃i+1(t) ≤ σ∗
i+1, ∀t > torigi , (30)

Then, for all t in tcomp
i ≤ t ≤ torigi , the singular values of the compressed network follow the dynamics outlined

in Equation (27), whereas the singular value of the original network stays at initialization by assumption. Thus,

ϵL = σi+1(t) ≤ σ̃i+1(t) ≤ σ∗
i+1. (31)

Hence, by combining Equation (26), Equation (30), Equation (31), we have that for torigi+1 ≥ t
comp
i+1 for all i ∈ [r].
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Figure 22: Visual illustration of the proof technique for Theorem 2. The proof involves showing that
tcomp
i ≤ torigi , which amounts to showing that the singular values of the compressed network fits the target value
faster than the original network.

Inductive Step (Residual Components). For the remaining residual singular values, notice that ∀t > torigr ,
the dynamics of the residual singular values ∀j ∈ [r + 1, r̂] are governed by

σ̇j(t) = −L · (σ2
j (t))

1−1/L · ⟨∇WL:1
ℓ(Θ(t)),uj(t)v

⊤
j (t)⟩,

= −L · (σ2
j (t))

1−1/L · (u⊤
j (t)WL:1(t)vj(t)− u⊤

j (t)M
∗vj(t))

= −L · (σ2
j (t))

1−1/L · (σj(t)− u⊤
j (t)M

∗vj(t))

= −L · (σ2
j (t))

1−1/L · σj(t),

which is identical to that of the compressed network, and so torigi+1 ≥ t
comp
i+1 for all i ∈ [r + 1, r̂].

Thus,

(σi(t)− σ∗
i )

2 ≥ (σ̃i(t)− σ∗
j )

2, ∀i ∈ [r̂], (32)

and so we have

∥WL:1(t)−M∗∥2F ≥
r̂∑

i=1

(σi(t)− σ∗
i )

2 ≥
r̂∑

i=1

(σ̃i(t)− σ∗
i )

2 = ∥W̃L:1(t)−M∗∥2F,

which completes the proof.

Remarks. In Figure 22, we provide a visual illustration of the proof technique. Here, we can clearly see
that tcomp

i ≤ torigi , which leads to the lower recovery error at the same time instance t. To rigorously show

that tcomp
i ≤ torigi , we relied on using the gradient flow result stated in Proposition 1 and the incremental

learning assumption presented in Assumption 1. We justified the use of Assumption 1 in the beginning of
Appendix A.1, where we showed that the principal components of the DLN are fitted incrementally, and that
generally, cvec = cval = 0 (see Figure 13).

B.3 Auxiliary Results

Lemma 1. Consider two matrices A,B ∈ Rd1×d2 and their respective compact singular value decompositions
(SVD) A = UAΣAV

⊤
A and B = UBΣBV

⊤
B . We have that

∥A−B∥2F ≥ ∥ΣA −ΣB∥2F.
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Proof. By using the definition of the Frobenius norm, we have

∥A−B∥2F = ∥UAΣAV
⊤
A −UBΣBV

⊤
B ∥2F

= tr(Σ2
A)− 2 tr(A⊤B) + tr(Σ2

B)

≥ tr(Σ2
A)− 2 tr(ΣAΣB) + tr(Σ2

B) (Von-Neumann Inequality)

= ∥ΣA −ΣB∥2F.

This proves the desired result.


