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Abstract

The Laplacian-constrained Gaussian Markov
Random Field (LGMRF) is a common mul-
tivariate statistical model for learning a
weighted sparse dependency graph from
given data. This graph learning problem can
be formulated as a maximum likelihood esti-
mation (MLE) of the precision matrix, sub-
ject to Laplacian structural constraints, with
a sparsity-inducing penalty term. This pa-
per aims to solve this learning problem accu-
rately and efficiently. First, since the com-
monly used `1-norm penalty is inappropri-
ate in this setting and may lead to a com-
plete graph, we employ the nonconvex min-
imax concave penalty (MCP), which pro-
motes sparse solutions with lower estima-
tion bias. Second, as opposed to existing
first-order methods for this problem, we de-
velop a second-order proximal Newton ap-
proach to obtain an efficient solver, utiliz-
ing several algorithmic features, such as us-
ing conjugate gradients, preconditioning, and
splitting to active/free sets. Numerical ex-
periments demonstrate the advantages of the
proposed method in terms of both computa-
tional complexity and graph learning accu-
racy compared to existing methods.

1 INTRODUCTION

Graphs are fundamental mathematical structures used
in various fields to represent data, signals, and pro-
cesses. Weighted graphs naturally arise when process-
ing networked data applications, such as computer,
social, sensor, energy, transportation, and biological
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networks (Newman, 2010), where the data is inher-
ently related to a graph associated with the underly-
ing network. As a result, graph learning is used in a
wide range of applications, both for virtual, data-based
networks and for physical networks of infrastructures;
the latter include the brain (Vecchio et al., 2017), fi-
nancial analysis (Giudici and Spelta, 2016), and elec-
trical networks (Deka et al., 2018). In this context,
a fundamental graph learning problem is the estima-
tion of the Laplacian matrix, which plays a central
role in spectral graph theory (Chung, 1997) and ma-
chine learning (Von Luxburg, 2007). Moreover, in the
field of graph signal processing (GSP) (Shuman et al.,
2013), the Laplacian matrix is used to extend basic sig-
nal processing operations, such as filtering (Milanfar,
2012), sampling (Anis et al., 2016), and signal recov-
ery (Narang and Ortega, 2012; Kroizer et al., 2022).
Therefore, accurate and efficient Laplacian learning is
extremely valuable for data processing in networks.

Gaussian Markov Random Fields (GMRFs) (Rue and
Held, 2005) are probabilistic graphical models that
have been studied extensively over the last two decades
(Banerjee et al., 2006; Hsieh et al., 2013, 2011). In
particular, there has been a significant effort to de-
velop approaches for learning sparse precision matrices
under GMRF models, where this precision represents
a graph topology. The graphical LASSO (GLASSO)
(Friedman et al., 2008) is a widely-used approach to es-
timate the sparse precision matrix using `1-norm reg-
ularization. Laplacian-constrained GMRF (LGMRF)
models are a specific type of GMRF, in which the pre-
cision is a Laplacian matrix. Laplacian constraints
imply that smooth signals, which have similar values
for nodes connected by large weights, have a higher
probability (Ying et al., 2020b). Smooth graph sig-
nals are common in various network applications, such
as power systems (Dabush et al., 2023; Drayer and
Routtenberg, 2020). Thus, LGMRF models have been
widely studied in semi-supervised learning frameworks
(Zhu et al., 2003), to analyze real-world datasets (Car-
doso and Palomar, 2020), and in GSP (Dong et al.,
2016; Egilmez et al., 2017).
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The estimation of standard and Laplacian-constrained
GMRF models are closely related. However, the ex-
tension of GLASSO and similar GMRF estimation al-
gorithms to the case of LGMRF, which also consid-
ers the Laplacian constraints, is not straightforward.
For example, since the Laplacian matrix is sparse in
many applications, then, similar to the GLASSO ap-
proach, `1-norm regularization methods were used to
promote the Laplacian sparsity (Egilmez et al., 2017;
Kumar et al., 2019; Liu et al., 2019; Zhao et al., 2019).
However, it was recently shown that the `1-norm is
an inappropriate penalty for promoting the sparsity
of the precision matrix under the LGMRF model, as
it leads to an inaccurate recovery of the connectiv-
ity pattern of the graph (Ying et al., 2020a). Thus,
to properly address the Laplacian estimation prob-
lem, other sparsity-promoting penalty terms should
be used (Ying et al., 2020a,b). However, these ex-
isting methods are of first-order (i.e., gradient-based),
while in general GMRF estimation literature (Ozto-
prak et al., 2012; Hsieh et al., 2013, 2011; Treister and
Turek, 2014) it is known that second-order methods,
i.e., proximal Newton (Lee et al., 2014), yield better
performance in terms of run time. In such approaches,
a quadratic approximation is applied on the smooth
part, while the non-smooth regularization term re-
mains intact. This exploits a connection between the
gradient and Hessian of the MLE objective and hence
is efficient for GMRF estimation. The work of Hassan-
Moghaddam et al. (2016) employs a second-order ap-
proach for Laplacian-constrained topology identifica-
tion. However, it is based on the convex `1-norm
penalty, which was found inappropriate for LGMRF
(Ying et al., 2020a), and the edge weights are not
constrained to be nonnegative, which may result in
non-Laplacian solutions. Therefore, there is a need for
second-order methods for Laplacian learning that uti-
lize proper regularization (to yield accurate sparsity
patterns) and are efficient in run time.

Contribution. In this paper, we present an efficient
graph estimation method for the LGMRF model based
on the proximal Newton approach. Our method in-
volves solving a nonconvex penalized MLE problem
with MCP penalty, instead of the commonly-used `1-
norm penalty. At each iteration, the smooth part of
the objective is approximated by a second-order Taylor
expansion around the current precision matrix, while
the non-smooth penalty and Laplacian constraints re-
main intact. The resulting Newton problem is a penal-
ized quadratic minimization under linear constraints
to guarantee that the next iterate is a Laplacian ma-
trix. To the best of our knowledge, the proposed
method is the first proximal Newton method for the
LGMRF model estimation. Furthermore, our frame-
work includes two nontrivial algorithmic novelties in

this context. First, the inner, constrained, Newton
problem is solved by a projected nonlinear conjugate
gradient method. This yields a significant computa-
tional speedup over gradient-based first-order meth-
ods. Second, we introduce a diagonal preconditioner
to improve the performance further. We show some
theoretical results regarding the problem and the al-
gorithms we propose. Furthermore, we demonstrate
the effectiveness of the proposed method in learning
sparse graphs through numerical experiments.

Organization and notation. The rest of this pa-
per is organized as follows. In Section 2, we describe
the considered Laplacian learning problem, simplify
its formulation, and discuss the sparsity-promoting
penalty function. In Section 3, we develop the pro-
posed NewGLE method. Simulations are shown in
Section 5 and the paper is concluded in Section 6.

In the rest of this paper we denote vectors and ma-
trices in boldface lowercase and uppercase letters, re-
spectively. The elements of the vectors 1 and 0 are
ones and zeros, respectively. The notations ‖ · ‖F, | · |,
⊗, (·)T , (·)−1, (·)†, | · |+, and Tr(·) denote the Frobe-
nius norm, determinant operator, Kronecker prod-
uct, transpose, inverse, Moore-Penrose pseudo-inverse,
pseudo-determinant, and trace, respectively. The sets
Sp and Sp+ are of real symmetric and real positive
semi-definite p × p matrices, respectively. For matrix
A ∈ Rp×p, ∇Af ∈ Rp×p and ∇2

Af ∈ Rp2×p2 are the
gradient and Hessian of the scalar function f(A).

2 PROBLEM FORMULATION

In this section, we formulate the considered Laplacian
learning problem. We start with definitions related
to GSP. Then, we present the LGMRF and formu-
late the graph estimation problem under the LGMRF
and MLE in Subsection 2.1. The sparsity-promoting
penalty function is discussed in Subsection 2.2.

We consider an undirected, connected, and weighted
graph G (V, E), where V = {1, . . . , p} and E =
{1, . . . ,m} are the set of vertices and the set of edges,
respectively. The nonnegative weighted adjacency ma-
trix of the graph, W, has the (i, j)-th element wi,j > 0
if vertex i and j are connected, and zero otherwise.
From spectral graph theory (Chung, 1997), the rank
of the Laplacian matrix for a connected graph with p
nodes is p − 1. Thus, the set of Laplacian matrices
for connected graphs can be defined as (Ying et al.,
2020b)

L =

{
L ∈ Sp+

∣∣∣ Li,j ≤ 0,∀i 6= j, i, j = 1, . . . , p
L1 = 0, rank (L) = p− 1

}
. (1)
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2.1 GMRF and Constrained MLE

In this paper, we use the formulation of the graph
estimation problem based on the probabilistic graphi-
cal model (Koller and Friedman, 2009; Banerjee et al.,
2008). We assume that the data samples are obtained
from a zero-mean Gaussian distribution parametrized
by a positive semi-definite precision matrix, L, i.e.,
x ∼ N

(
0,L†

)
, where N (µ,Σ) denotes the normal

distribution with mean µ and covariance matrix Σ.
This defines an improper LGMRF model (Kumar
et al., 2019) with parameters (0,L), where the pre-
cision matrix is L ∈ L and L is defined in (1).

Given n independent and identically distributed (i.i.d.)
samples x1, . . . ,xn drawn from an LGMRF, our goal is
to find the constrained MLE of L based on these sam-
ples and under the Laplacian constraints. The MLE
can be found by solving the following constrained min-
imization of the negative log-likelihood (Ying et al.,
2021):

L̂MLE = argmin
L∈L

{Tr(LS)− log |L|+} , (2)

where S
4
= 1

n

∑n
i=1 xix

T
i is the empirical covariance

matrix.

Sparsity plays an important role in high-dimensional
learning, which helps avoid over-fitting and improves
the identification of the relationships among data, es-
pecially where S is low rank. In particular, the Lapla-
cian is a sparse matrix in various applications, e.g.
electrical networks (Halihal and Routtenberg, 2022;
Grotas et al., 2019). A sparse graph estimation prob-
lem under the LGMRF model can be formulated by
adding a sparse penalty function to the estimator in
(2), which results in

minimize
L∈L

Tr(LS)− log |L|+ + ρ (L;λ) , (3)

where ρ (L;λ) is a general sparsity-promoting penalty
function and λ is a tuning parameter.

The objective function in (3) (or in (2)) involves the
pseudo-determinant term, since the target matrix L
is a singular matrix. As a result, the optimization
problem becomes hard to solve (Holbrook, 2018). As a
remedy to this problem, it is demonstrated in (Egilmez
et al., 2017) that if L ∈ L, then we can use the relation

|L|+ = |L + J|, (4)

where J = 1
p11T . By substituting (4) in (3), the prob-

lem is simplified. In addition, in the following the-
orem we show that the rank and the positive semi-
definiteness constraints in (1) are redundant. The
proof appears in Appendix 7.

Theorem 1. The optimization problem

minimize
L∈F

Tr(LS)− log |L + J|+ ρ (L;λ) , (5)

where the feasible set is given by

F =

{
L ∈ Sp

∣∣∣ Li,j ≤ 0,∀i 6= j, i, j = 1, . . . , p
L1 = 0

}
. (6)

is equivalent to the optimization problem stated in (3).

2.2 Sparsity Promoting Penalty Functions

Recent works like (Egilmez et al., 2017) introduced
the `1-norm penalized MLE under the LGMRF model
to estimate a sparse graph. The choice of ρ in (5)
as ‖L‖1,off, the absolute sum of all off-diagonal ele-
ments of L, results in the same objective function as
in the well-known GLASSO problem but where the
feasible set is restricted to L ∈ F . However, unlike in
GLASSO, under Laplacian constraints the `1-norm is
ineffective in promoting a sparse solution. In particu-
lar, it is shown by Ying et al. (2020a) that substituting
ρ (L;λ) = λ‖L‖1,off in the objective of (5) and choos-
ing the penalty parameter λ to be large enough leads
to a fully-connected (complete) graph as the solution.
Moreover, Ying et al. (2020a) show in their numerical
experiments that the number of the estimated posi-
tive edges increases as λ increases. An intuitive expla-
nation for this phenomenon is that the `1-norm pro-
motes sparsity uniformly on all off-diagonal entrances
of the matrix. Hence, for λ > 0, minimizing the `1-
norm separately with a positive definite constraint, as
in GLASSO, leads to a diagonal matrix with a positive
diagonal. However, unlike a regular GMRF model, the
Laplacian constraints, L1 = 0 and Li,j ≤ 0, for i 6= j,
relate the off-diagonal entries with the diagonal entries
of L. Hence, minimizing the `1-norm would lead to the
zeros matrix. Therefore, as λ increases, the eigenvalues
of L get closer to zero, and the − log | · | term in the ob-
jective function increases significantly. Since `1-norm
penalizes all off-diagonal elements in a uniform way,
to prevent a significant increase of the objective func-
tion, the minimization process inserts relatively small
(in absolute value) negative numbers, even for zero el-
ements in the ground-truth Laplacian matrix. This
way, both the `1-norm and the expression − log | · | in
the optimization problem remain relatively small.

Alternative approaches using nonconvex penalties,
such as clipped absolute deviation (SCAD) (Fan and
Li, 2001) and the minimax concave penalty (MCP)
(Zhang, 2010a), have been proposed to alleviate this
issue. These penalty functions penalize the elements in
the precision matrix more selectively than the `1-norm,
such that elements that receive significant values from
the MLE will receive insignificant penalties, while ele-
ments closer to zero will receive a greater penalty. In
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this paper, we use the MCP penalty function, which
is applied on the off-diagonal entries of L as follows:

ρMCP (L;λ) =
∑

i 6=j
MCP (Lij ; γ, λ) , (7)

where the MCP (·) is a scalar function, defined as

MCP (x; γ, λ) =

{
λ|x| − x2

2γ if |x| ≤ γλ
1
2γλ

2 if |x| > γλ
. (8)

The function is constant and has a derivative of 0 for
values larger than γλ in magnitude, hence only ele-
ments smaller than γλ are affected by ρMCP ().

To conclude, our goal in this paper is to develop an
efficient algorithm for finding the constrained MLE of
the Laplacian matrix, which is the precision matrix of
the LGMRF model. This is done by solving the opti-
mization problem in (5) with ρ (L;λ) = ρMCP (L;λ),
defined in (7). I.e., the problem we solve is given by:

minimize
L∈F

Tr(LS)− log |L + J|+ ρMCP (L;λ), (9)

where F is defined in (6).

3 METHOD

In this section, we develop the proposed proximal New-
ton method for the graph Laplacian estimation, named
NewGLE, that aims to solve (9) efficiently using a
proximal Newton approach adopted to the problem.
First, we define the constrained Newton optimization
problem for the graph learning in Subsection 3.1, keep-
ing the Laplacian constraints when finding the Newton
direction. Then, in Subsection 3.2, we present the ap-
proach that maps a Laplacian matrix to a vector and
simplifies the set of constraints. Next, we describe the
idea of restricting the Newton direction into a “free
set” in Subsection 3.3. This constitutes the NewGLE
method, which is summarized in Algorithm 1. Follow-
ing that, we present our inner solver for finding the
Newton direction, which is composed of the nonlinear
projected conjugate gradient that is used together with
a diagonal preconditioner, in Subsection 3.4 and Ap-
pendix 9. Finally, we provide an algorithm (Algorithm
2 in the Appendix) for finding the Newton direction.

3.1 Proximal Newton for Graph Laplacian
Estimation

In the “proximal Newton” approach, a quadratic ap-
proximation is applied on the smooth part of the ob-
jective function, while leaving the non-smooth term in-
tact, in order to obtain the Newton descent direction.
This approach is considered to be among the state-
of-the-art methods for solving the GLASSO problem

(Rolfs et al., 2012; Hsieh et al., 2013, 2011; Mazumder
and Hastie, 2012; Treister et al., 2016), which is highly
related to our problem in (9). The advantage of this
method lies in the treatment of the log det term (as we
show next), which appears in both problems. However,
the GLASSO methods cannot be applied to our graph
learning problems because we aim to estimate a pre-
cision matrix that satisfies the Laplacian constraints
(and is singular). In contrast, the learned precision
matrix under the GMRF model in GLASSO is a gen-
eral positive definite matrix. In addition, we consider
the MCP penalty, while the above mentioned methods
consider the `1-norm penalty, which is not suitable for
our case, as discussed in Subsection 2.2.

In our proximal Newton approach we design a con-
strained Newton problem, where the smooth part of
the objective function in (9) is

f (L) = Tr(LS)− log |L + J|, (10)

and the penalty function, ρMCP (L;λ), is the non-
smooth term. At the t-th iteration of the proximal
Newton approach, the smooth part of the objective
is approximated by a second-order Taylor expansion
around the current estimation L(t). To this end, we
use the gradient and Hessian of f(L) that are given by
(Hsieh et al., 2014; Chin et al., 2013)

∇Lf = S−Q, ∇2
Lf = Q⊗Q, (11)

where ⊗ is the Kronecker product and Q = (L + J)
−1

.

The gradient in (11) already shows the main difficulty
in solving the optimization problem in (9): it contains
Q, the inverse of the matrix L + J, which is expensive
to compute. The advantage of the proximal Newton
approach for this problem is the low overhead: by cal-
culating Q in ∇Lf(L), we also get part of the Hessian
computation at the same cost.

In the same spirit of the proximal Newton approach, in
addition to the penalty term, we also keep the Lapla-
cian constraint intact in the Newton problem. That is,
at iteration t, the Newton direction ∆(t) solves the con-
strained penalized quadratic minimization problem:

minimize
∆∈Sp

f(L(t)) + Tr(∆ (S−Q)) +
1

2
Tr(∆Q∆Q)

+
1

2
‖ε ·∆‖2F + ρMCP (L(t) + ∆;λ)

s.t. L(t) + ∆ ∈ F ,
(12)

where Q =
(
L(t) + J

)−1
. It should be noted that for

the sake of simplicity, we use the notation Q instead
of Q(t), although Q is updated with the iteration t.
Note that the gradient and Hessian of f(·) in (11) at
the iterate L(t) are featured in the second and third
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terms in (12), respectively. The first term of (12) is
constant and can be ignored. Altogether, the objective
function in (12) is quadratic with the MCP sparsity-
promoting penalty. In addition, we have a constraint
to guarantee that the next update of L is feasible, i.e.,(
L(t) + ∆

)
∈ F . The fourth term, with a small and

symmetric weight matrix ε ≥ 0 penalizes the squares
of the off-diagonals of ∆. This term is used for the
stabilization of the iterative solution of (12), and to
make sure that the Hessian of (12) is positive definite,
since ρMCP is concave—more details are given later
on in the analysis in Appendix 10.4. The advantage of
solving (12) with ρMCP intact, as opposed to majoriz-
ing ρMCP (e.g., using its gradient instead) is that the
underlying gradient-based iterative solver of (12) has
access to the curvature of ρMCP and to its behavior in
the sub-sections in its definition (8).

Once the Newton problem is approximately solved,
yielding the direction ∆(t), it is added to L(t) employ-
ing a linesearch procedure to sufficiently reduce the
objective in (9). To this end, the updated iterate is

L(t+1) = L(t) + α(t)∆(t), (13)

where the parameter α(t) is obtained by a backtrack-
ing linesearch using Armijo’s rule (Armijo, 1966).
We state the following theorem on such a proximal
quadratic solution process, where we approximate the
true Hessians by SPD matrices M(t) whose eigenvalues
are bounded by λMmin and λMmax from below and above,
respectively. The proof appears in Appendix 10.

Theorem 2. Let {L(t)} be a series of points pro-
duced by a sequence of proximal quadratic minimiza-
tions, constrained by F , with some SPD matrices 0 ≺
λMminI � M(t) � λMmaxI as the approximate Hessian
(as in (35)), followed by the linesearch (13), starting
from L(0) ∈ F . Then any limit point L̄ of {L(t)} is a
stationary point of (9).

The theorem shows that if we choose M(t) such that
λMmin > γ−1, then the method monotonically converges
to a stationary point of (9). Note that M(t) are matri-
ces we choose for the solution, and are not part of the
problem, so this requirement can easily be fulfilled. In
the next section, we simplify problem (12) to ease the
treatment of the constraints.

3.2 Laplacian parameterization

To simplify the Laplacian structural constraints in
(12), we use a linear operator that maps a vector
w ∈ Rp(p−1)/2 to a matrix P (w) ∈ Rp×p.

Definition 1. The linear operator P : Rp(p−1)/2 7→

Rp×p is defined as (Ying et al., 2020a)

P (w)i,j =


−wk i > j
P (w)j,i i < j

−
∑
j 6=i P (w)i,j i = j

, (14)

where k = i− j + j−1
2 (2p− j) for i > j.

The operator P defines a linear mapping from a non-
negative weight vector w ≥ 0 to a Laplacian matrix
P (w) ∈ F , defined in (6). Using this parametrization,
we rewrite the optimization problem in (12) such that
the decision variable is a vector instead of a matrix. In
particular, in Appendix 8, we show that (12) is equiv-
alent to the following simpler vector-parameterized
Newton problem that we solve

minimize
δ∈Rp(p−1)/2

fN (δ)
4
= Tr(P (δ) (S−Q))

+
1

2
Tr(P (δ) QP (δ) Q) + ‖ε̃� δ‖22

+ 2ρ̃MCP (w + δ;λ)

s.t. δ ≥ −w,

(15)

where ε̃ ∈ Rp(p−1)/2 is the vectorized upper triangle
of ε (without the diagonal) and ρ̃MCP is given by

ρ̃MCP (w;λ)
4
=

p(p−1)/2∑
k=1

MCP (wk; γ, λ) (16)

and MCP (x; γ, λ) is defined in (8). The only remain-
ing constraint in (15) is an inequality constraint, which
simplifies the projection onto the feasible space.

3.3 Restricting the updates to free sets

To ease the minimization of (9) we limit the mini-
mization of the Newton problem to a “free set” of
variables, while keeping the rest as zeros. This idea
was suggested in (Hsieh et al., 2011) for the GLASSO
problem that includes the `1-norm penalty. The free
set of a matrix L is defined as

Free (L) =
{
k : Li,j 6= 0 ∨ [S−Q]i,j > λ

}
, (17)

where ∨ denotes the logistic OR operator and the re-
lation between (i, j) and k appears in Definition (1).
This set comes from the subgradient of the `1-norm
term, in addition to the non-positivity constraint—the
zero elements that are not in Free (L) will remain zero
after a (projected) coordinate descent update. Be-
cause the subgradient of the MCP penalty is identi-
cal to that of `1-norm at zero, the free set is defined in
the same way as for the `1-norm. As L(t) approaches a
solution L̄, Free

(
L(t)

)
approaches

{
(i, j) : L̄i,j = 0

}
.

Restricting (15) to the free set variables improves the
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Hessian’s condition number and decreases the number
of iterations needed to solve (15).

So far, we have discussed the outer iteration of the
proposed method, which is summarized in Algorithm
1.

Algorithm 1: NewGLE

Input: Empirical covariance matrix S
Result: Estimated Laplacian matrix L̂
Initialization: Set L(0) ∈ L
while Stopping criterion is not achieved do

• Compute Q =
(
L(t) + J

)−1
.

• Define Free
(
L(t)

)
as in (17).

• Find the Newton direction δ(t) by solving
(15) restricted to Free

(
L(t)

)
. % by Alg. 2

• Update: L(t+1) = L(t) + αP
(
δ(t)
)
, where α

is achieved by linesearch.

end

3.4 Solution of the Newton problem

To get the Newton direction for the t-th iteration,
we approximately solve the quadratic, linearly con-
strained and MCP-regularized problem in (15) using
an iterative method. We use the nonlinear conju-
gate gradient (NLCG) method and modify it for our
case. Specifically, we use the variant by Dai and Yuan
(1999), and since (15) is linearly constrained we add
projections between the iterations. Moreover, to speed
up the convergence, we use NLCG together with a di-
agonal preconditioner, using the diagonal of the Hes-
sian, as suggested in (Zibulevsky and Elad, 2010) for
the LASSO problem.

The projected and preconditioned NLCG algorithm is
the inner and most computationally expensive part of
Algorithm 1. The algorithm itself and its details are
given in Appendix 9. A key element of the approach is
the diagonal preconditioner D, which is applied by re-
placing the gradient (∇δfN ) in the search direction by
D−1 · ∇δfN . The matrix D is defined as the diagonal
of the Hessian of fN (δ), i.e.

Dk,k =
(

[Q]i,i + [Q]j,j − 2 [Q]i,j

)2

+ ε̃2
k, (18)

where the relation between (i, j) and k appears in Def-
inition 1. For the full derivation of the Hessian diago-
nal, please refer to Appendix 9. Note that the operator
D is diagonal, so calculating its inverse is trivial.

4 MORE RELATED WORKS

GMRF estimation with `1 regularization. The
`1 regularized MLE under the GMRF model has been

extensively studied recently (see (d’Aspremont et al.,
2008; Friedman et al., 2008; Rolfs et al., 2012; Hsieh
et al., 2013, 2011; Treister et al., 2016; Shalom et al.,
2023) and references therein). Some of these meth-
ods include a proximal Newton approach. However,
these methods cannot be directly applied to the graph
learning problem, as the goal here is to learn a Lapla-
cian precision matrix as opposed to a general positive
definite matrix.

The `1 regularization bias and its alternatives.
One drawback of the mentioned approaches is that the
`1 penalty causes an estimation bias, which is rele-
vant to several variable selection problems, e.g., least
squares minimization and precision estimation under
`1 priors. To reduce the `1 bias, two-stage meth-
ods, nonconvex penalties, and hard-thresholding ap-
proaches have been introduced for least squares vari-
able selection (Zhang, 2010a; Breheny and Huang,
2011; Loh and Wainwright, 2013) and GMRF estima-
tion (Chen et al., 2018; Lam and Fan, 2009; Shen et al.,
2012; Finder et al., 2022). Several of these methods use
nonconvex penalties, such as SCAD, MCP, and capped
`1-norm (Zhang, 2010b). Different algorithms have
been proposed to solve the resulting nonconvex prob-
lems, e.g., minimization-maximization (Hunter and Li,
2005), local quadratic and linear approximations (Fan
and Li, 2001; Zou and Li, 2008).

LGMRF estimation. The recent works (Egilmez
et al., 2017; Kumar et al., 2019; Liu et al., 2019; Zhao
et al., 2019) investigate the `1-norm penalized MLE
under the LGMRF model to estimate a graph Lapla-
cian from data. However, it has been shown recently
that imposing an `1-norm penalty to the Laplacian-
constrained MLE produces an unexpected behavior:
the number of nonzero graph weights grows as the reg-
ularization parameter increases (Ying et al., 2020a).

To alleviate this issue, nonconvex penalties, such as the
MCP, have been proposed together with LGMRF esti-
mation. These methods are first-order (i.e., gradient-
based) methods that do not take Hessian informa-
tion into account, and, thus, are expected to con-
verge slower than second-order methods. For example,
the work of Koyakumaru et al. (2023) suggests adding
Tikhonov regularization to convexify the cost function
and use the primal-dual splitting method to solve the
optimization problem. However, as the Tikhonov reg-
ularization parameter increases, the bias of the esti-
mation increases as well. Another approach in (Ying
et al., 2020a,b; Vieyra, 2022) uses a nonconvex estima-
tion method by solving a sequence of weighted `1-norm
penalized subproblems, according to a majorization-
minimization framework. In each majorization step,
the `1-norm weights are updated, and then in the min-
imization step, the `1-penalized function is minimized
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by the projected gradient descent (PGD) method. The
approach in (Ying et al., 2021; Tugnait, 2021) requires
solving two subproblems: The first is an initial esti-
mator of the precision matrix, e.g., the MLE. Then,
the estimation is used to define the `1 weights for the
second subproblem. Both stages are solved by PGD.

All the abovementioned methods are gradient-based
methods that do not consider Hessian information.
On the other hand, the experience with the closely
related GMRF estimation problem suggests that prox-
imal Newton approaches would result in superior com-
putational efficiency compared to those methods.

5 EXPERIMENTAL RESULTS

In this section, we present experimental results for the
evaluation of the proposed method. We define the ex-
perimental setup in Subsection 5.1. Then, we present
the results in terms of graph learning performance and
computational efficiency in Subsections 5.2 and 5.3, re-
spectively. Our MATLAB code is publicly available
on GitHub at https://github.com/BGUCompSci/

GraphLaplacianEstimationProxNewton.

5.1 Experimental setup

We compare the performance of the following methods:

• MLE, defined in (2), where the objective function
does not include any sparsity-promoting penalty.

• Nonconvex Graph Learning (NGL) with MCP
(Ying et al., 2020b), which solves a sequence of
weighted `1-norm penalized subproblems via the
majorization-minimization framework.

• Adaptive Laplacian-constrained Precision matrix
Estimation (ALPE) (Ying et al., 2021), which is
based on a weighted `1-norm-regularized MLE.
The weights are precalculated using the MLE.

• PGD for solving (9) using the Projected Gradient
Descent method. We developed this method to
demonstrate the advantages of using the second-
order approximation.

• The proposed method (NewGLE) for the MCP-
regularized MLE, which is summarized in Algo-
rithm 1 and Algorithm 2 (in Appendix 9). We
used γ = 1.01 and ε = 0, and to start the solu-
tion we applied a few PGD iterations, which were
taken into account in the results.

The regularization parameter, λ, is fine-tuned for each
method for the best performance. In addition, all algo-

rithms use the convergence criterion ‖L
(t+1)−L(t)‖F
‖L(t+1)‖F

≤ ε
with the tolerance ε = 10−4. All the experiments were
conducted on a machine with 2 Intel Xeon E5-2660
2.0GHz processors with 28 cores and 512GB RAM.

We use the relative error (RE) and F-score (FS) to
evaluate the performance of the algorithms, where

RE = ‖L̄−L∗‖F
‖L∗‖F in which L̄ and L∗ denote the esti-

mated and true precision matrices, respectively, and
FS = 2tp

2tp+fp+fn , where the true-positive (tp), false-

positive (fp), and false-negative (fn) detection of graph
edges are calculated by comparing the supports of L̄
and L∗. The F-score takes values in [0, 1], where 1
indicates perfect recovery of the support.

We generated several datasets based on different
graph-based models. To create the datasets, we first
created a graph, and then its associated Laplacian ma-
trix, L∗, is used to generate independent data sam-
ples from the Gaussian distribution N

(
0, (L∗)†

)
. The

graph connectivity is based on two options: 1) a ran-
dom planar graph consisting of p = 1, 000 nodes (Treis-
ter et al., 2016), and 2) a random Barabasi-Albert
graph (Zadorozhnyi and Yudin, 2012) of degree 2 with
p = 100 nodes. The edge weights for both graph mod-
els are uniformly sampled from the range [0.5, 2]. The
curves in Figs. 1 and 5 are the results of an average
of 10 Monte Carlo realizations, and Fig. 2 shows the
results of an average of 50 realizations. The standard
deviation of all plots in these figures is less than 0.002,
which is also approximately the gap between the two
leading methods.

5.2 Results - graph learning performance
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Figure 1: Performance comparisons under (a) RE, (b)
F-score with different sample size ratios n/p for planar
graphs with 1,000 nodes.

Figures 1 and 2 show the graph learning performance
of different methods for learning the topology of planar
graphs with 1,000 nodes (Fig. 1) and of Barabasi-
Albert graphs of degree two with 100 nodes (Fig. 2).
The performance is presented in terms of RE and F-
score versus the sample size ratio n/p, where n is the
number of data samples used to calculate the sample
covariance matrix, S, and p is the number of nodes.

Figures 1(a) and 2(a) show that the REs of all the
estimators decrease as the sample size ratio, n/p, in-

https://github.com/BGUCompSci/GraphLaplacianEstimationProxNewton
https://github.com/BGUCompSci/GraphLaplacianEstimationProxNewton
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Figure 2: Performance comparisons in terms of (a) RE,
and (b) F-score with different sample size ratios n/p
for Barabasi-Albert graph of degree 2 with 100 nodes.

creases. Figures 1(b) and 2(b) show that the F-score of
all the methods increases as the sample size ratio n/p
increases. Figures 1 and 2 show that the proposed
NewGLE method outperforms all compared methods
(ALPE, NGL, PGD, and MLE) in both the RE and F-
score senses. It should be noted that in 1(b) the com-
parison with the MLE has been removed since it has a
significantly lower F-score than the other methods and
in order to highlight the differences between the other
methods. As shown in Figs. 1(b) and 2(b) for a small
sample size ratio, the methods do not provide a perfect
F-score. This is because there may not be enough data
samples to recover the graph connectivity effectively.
Still, the proposed NewGLE method consistently out-
performs all compared methods in the F-score sense,
especially when the sample size ratio is small. This
outcome is significant in large-scale problems since, in
these cases, the sample size ratio is usually small.

5.3 Results - Computational Costs
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Figure 3: Run-time performance comparisons under
RE with a sample size ratio (a) n/p = 0.5 and (b)
n/p = 15 for random planar graphs with 1,000 nodes.

Figures 3-5 compare the computational efficiency of
the proposed NewGLE method with the other meth-
ods in terms of run time. These experiments were con-
ducted on relatively large planar graphs of p = 1, 000
nodes so that the measuring times less depend on mi-
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Figure 4: Run-time performance comparisons under
F-score with a sample size ratio (a) n/p = 0.5 and (b)
n/p = 15 for random planar graphs with 1,000 nodes.
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Figure 5: Average convergence times over sample size
ratio n/p for random planar graphs with 1,000 nodes.

nor implementation details. Figure 3 shows the con-
vergence of the compared methods in terms of RE
for two sample size ratios: (a) n/p = 0.5, and (b)
n/p = 15. Notably, the proposed method converges
significantly faster than the other methods in both
cases, while the difference between the methods is
more significant for the case when the sample size ratio
is smaller, n/p = 0.5.

Figure 4 shows the F-score of the compared meth-
ods during two realizations: (a) with sample size ratio
n/p = 0.5, and (b) with sample size ratio n/p = 15.
Notably, the proposed method reached the highest F-
score and got it significantly faster than the run time
taken for the other methods to achieve their highest F-
score values. In addition, it can be seen that in the case
of n/p = 15, all the methods succeeded in estimating
the connectivity of the graph, and the NewGLE, PGD,
and ALPE methods managed to estimate it perfectly
(i.e., F-score = 1). In addition, it can be seen that the
advantage of the proposed method is more notable for
a smaller sample size ratio, i.e., n/p = 0.5. Addition-
ally, the results presented in Figs. 3 and 4 reveal that
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while the RE and F-score performance of the ALPE
method, as demonstrated in Subsection (5.2), is com-
mendable and comparable to the proposed method,
the implementation of the ALPE method necessitates
a significant investment in computational resources to
effectively learn a graph, as measured by RE and F-
score metrics. The reason for this is that the ALPE
method requires an estimation of the weights, which
are used for sparsity-promoting regularization.

Finally, Fig. 5 presents the average convergence time
for each method over the sample size ratio n/p. It
shows that the average convergence time of all estima-
tors decreases as the sample size ratio n/p increases. In
addition, it emphasizes the significant advantage of the
proposed method in terms of computational efficiency,
especially when there are few samples and the sample
size ratio is small (i.e., n/p ≤ 1), which is typically the
case in large-scale problems. More experiments for real
data are presented in Fig. 7 in the Appendix, demon-
strating the computational efficiency of NewGLE.

5.4 Ablation Study

In this section, we provide some intuition on different
features of our method. Specifically, we demonstrate
the influence of the following three choices:

1. The free set mechanism.

2. The nonlinear conjugate gradients method for the
constrained Newton problem.

3. The influence of the ε parameters.

4. The influence of the diagonal preconditioner.

We show the performance using the random planar
graph example with p = 1, 000 nodes and n = 500 sam-
ples. Each run includes the NewGLE method without
one of the algorithmic features. The regularization pa-
rameter for the experiment is λ = 0.25, which is the
best performing choice in terms of the error and F-
score for this case. Figure 6 shows a typical instance
of this example, demonstrating the behavior of New-
GLE without each of the features. All the results are
comparable in their accuracy (error and F-scores). It
is clear that the most important feature in our study
is the usage of nonlinear projected conjugate gradients
for solving the inner Newton problem. Without it (i.e.,
using preconditioned gradient descent), the method
is much slower. The second most important feature
is the diagonal preconditioner, which approximately
halves the cost in this example, and is significant also
in other cases in our experience. The use of the free
set imposes only a minor improvement in this example
and is the less dominant feature. The use of ε slows

10 20 30 40 50 60 70

Time [sec]

10-4

10-3

10-2

10-1

R
e
la

ti
v
e
 D

e
c
re

a
s
e

Relative Decrease in Objective Value

NewGLE

NewGLE w/o Free Set

NewGLE w/o CG

NewGLE w/o eps

NewGLE w/o Prec

Figure 6: Ablation study of computational times ver-
sus algorithmic choices.

down the algorithm a bit, but it is important for the-
oretical stability, according to our theory in Theorem
2.

6 CONCLUSION

In this paper, we developed a proximal Newton
method for minimizing a regularized maximum likeli-
hood objective function for estimating a sparse graph
Laplacian precision matrix from data distributed ac-
cording to an LGMRF model. Our method is based
on a second-order approximation of the smooth part of
the objective function, while keeping the regularization
and constraints intact. Methods of this type have been
proven to be efficient for estimating standard GMRF
models using `1-norm penalty, while in our case, the
estimation is also subject to Laplacian constraint. Fur-
thermore, we used the nonconvex MCP function to
promote the sparsity of the resulting graph without
introducing a significant bias. Beyond the quadratic
approximation itself, we used three algorithmic fea-
tures to treat the Newton problem at each iteration
efficiently: 1) we used a free/active set splitting, (2)
we used a nonlinear conjugate gradient method, and
(3) we used diagonal preconditioning. This resulted
in an accurate and efficient estimation of the sparse
weighted graph.

Numerical studies demonstrated the effectiveness of
the proposed algorithm in terms of accuracy and com-
putational complexity. The proposed method outper-
formed recent methods in terms of convergence time,
while achieving similar or better F-scores and relative
errors, particularly for problems with a small sample
size ratio (i.e., n/p < 1). The plausible performance of
the proposed method is particularly important in high-
dimensional problems, where computational efficiency
is crucial, and sample scarcity is a common issue.
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vanović, M. R. (2016). Topology identification of
undirected consensus networks via sparse inverse co-
variance estimation. In 2016 IEEE 55th Conference
on Decision and Control (CDC), pages 4624–4629.

Holbrook, A. (2018). Differentiating the pseudo de-
terminant. Linear Algebra and its Applications,
548:293–304.



Y. Medvedovsky, E. Treister, T. Routtenberg

Horn, R. A. and Johnson, C. R. (2012). Matrix anal-
ysis. Cambridge university press.

Hsieh, C.-J., Dhillon, I., Ravikumar, P., and Sustik, M.
(2011). Sparse inverse covariance matrix estimation
using quadratic approximation. Neural information
processing systems, 24.

Hsieh, C.-J., Sustik, M. A., Dhillon, I. S., and Raviku-
mar, P. (2014). QUIC: quadratic approximation for
sparse inverse covariance estimation. Journal of Ma-
chine Learning Research, 15(1):2911–2947.

Hsieh, C.-J., Sustik, M. A., Dhillon, I. S., Ravikumar,
P. K., and Poldrack, R. (2013). BIG & QUIC: Sparse
inverse covariance estimation for a million variables.
Advances in neural information processing systems,
26.

Hunter, D. R. and Li, R. (2005). Variable selection us-
ing MM algorithms. Annals of statistics, 33(4):1617.

Koller, D. and Friedman, N. (2009). Probabilistic
graphical models: principles and techniques. MIT
press.

Koyakumaru, T., Yukawa, M., Pavez, E., and Or-
tega, A. (2023). Learning sparse graph with min-
imax concave penalty under Gaussian Markov ran-
dom fields. IEICE Transaction on Fundamentals
of Electronics, Communications and Computer Sci-
ences, 106(1):23–34.

Kroizer, A., Routtenberg, T., and Eldar, Y. C. (2022).
Bayesian estimation of graph signals. IEEE Trans-
actions on Signal Processing, 70:2207–2223.

Kumar, S., Ying, J., de Miranda Cardoso, J. V., and
Palomar, D. (2019). Structured graph learning via
Laplacian spectral constraints. Neural information
processing systems, 32.

Lam, C. and Fan, J. (2009). Sparsistency and rates of
convergence in large covariance matrix estimation.
The Annals of statistics, 37(6B):4254–4278.

Lee, J. D., Sun, Y., and Saunders, M. A. (2014). Prox-
imal Newton-type methods for minimizing com-
posite functions. SIAM Journal on Optimization,
24(3):1420–1443.

Li, L. and Toh, K.-C. (2010). An inexact interior
point method for l1-regularized sparse covariance se-
lection. Mathematical Programming Computation,
2:291–315.

Liu, T., Hoang, M. T., Yang, Y., and Pesavento,
M. (2019). A block coordinate descent algorithm
for sparse gaussian graphical model inference with
Laplacian constraints. In International Workshop
on Computational Advances in Multi-Sensor Adap-
tive Processing (CAMSAP), pages 236–240.

Loh, P.-L. and Wainwright, M. J. (2013). Regularized
M-estimators with nonconvexity: Statistical and al-
gorithmic theory for local optima. Advances in Neu-
ral Information Processing Systems, 26.

Mazumder, R. and Hastie, T. (2012). Exact covari-
ance thresholding into connected components for
large-scale graphical lasso. The Journal of Machine
Learning Research, 13(1):781–794.

Milanfar, P. (2012). A tour of modern image filtering:
New insights and methods, both practical and theo-
retical. IEEE signal processing magazine, 30(1):106–
128.

Narang, S. K. and Ortega, A. (2012). Perfect recon-
struction two-channel wavelet filter banks for graph
structured data. IEEE Transactions on Signal Pro-
cessing, 60(6):2786–2799.

Newman, M. (2010). Networks: An Introduction. Ox-
ford University Press, Inc., New York, NY, USA.

Oztoprak, F., Nocedal, J., Rennie, S., and Olsen, P. A.
(2012). Newton-like methods for sparse inverse co-
variance estimation. Neural information processing
systems, 25.

Rolfs, B., Rajaratnam, B., Guillot, D., Wong, I., and
Maleki, A. (2012). Iterative thresholding algorithm
for sparse inverse covariance estimation. Advances
in Neural Information Processing Systems, 25.

Rue, H. and Held, L. (2005). Gaussian Markov ran-
dom fields: theory and applications. Chapman and
Hall/CRC.

Shalom, G., Treister, E., and Yavneh, I. (2023).
pISTA: preconditioned iterative soft thresholding al-
gorithm for graphical Lasso. SIAM Journal on Sci-
entific Computing, 0(0):S445–S466.

Shen, X., Pan, W., and Zhu, Y. (2012). Likelihood-
based selection and sharp parameter estimation.
Journal of the American Statistical Association,
107(497):223–232.

Shuman, D. I., Narang, S. K., Frossard, P., Ortega,
A., and Vandergheynst, P. (2013). The emerging
field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other ir-
regular domains. IEEE signal processing magazine,
30(3):83–98.

Treister, E. and Turek, J. S. (2014). A block-
coordinate descent approach for large-scale sparse
inverse covariance estimation. In Advances in neu-
ral information processing systems, pages 927–935.

Treister, E., Turek, J. S., and Yavneh, I. (2016). A
multilevel framework for sparse optimization with
application to inverse covariance estimation and lo-
gistic regression. SIAM Journal on Scientific Com-
puting, 38(5):S566–S592.



Efficient Graph Laplacian Estimation by Proximal Newton

Tugnait, J. K. (2021). Sparse graph learning un-
der Laplacian-related constraints. IEEE Access,
9:151067–151079.

Vecchio, F., Miraglia, F., and Rossini, P. M. (2017).
Connectome: Graph theory application in func-
tional brain network architecture. Clinical neuro-
physiology practice, 2:206–213.

Vieyra, M. V. (2022). Robust estimation of Lapla-
cian constrained Gaussian graphical models with
trimmed non-convex regularization. In ICML 2022-
Workshop on Principles of Distribution Shift.

Von Luxburg, U. (2007). A tutorial on spectral clus-
tering. Statistics and computing, 17(4):395–416.

Ying, J., Cardoso, J. V. d. M., and Palomar, D. P.
(2020a). Does the `1-norm learn a sparse graph un-
der Laplacian constrained graphical models? arXiv
preprint arXiv:2006.14925.

Ying, J., de M. Cardoso, J. V., and Palomar, D.
(2020b). Nonconvex sparse graph learning under
Laplacian constrained graphical model. Advances
in Neural Information Processing Systems, 33:7101–
7113.

Ying, J., de Miranda Cardoso, J. V., and Palomar,
D. (2021). Minimax estimation of Laplacian con-
strained precision matrices. In International Confer-
ence on Artificial Intelligence and Statistics, pages
3736–3744. PMLR.

Zadorozhnyi, V. N. and Yudin, E. B. (2012). Struc-
tural properties of the scale-free barabasi-albert
graph. Automation and Remote Control, 73:702–
716.

Zhang, C.-H. (2010a). Nearly unbiased variable selec-
tion under minimax concave penalty. The Annals of
statistics, 38(2):894–942.

Zhang, T. (2010b). Analysis of multi-stage convex re-
laxation for sparse regularization. Journal of Ma-
chine Learning Research, 11(3).

Zhao, L., Wang, Y., Kumar, S., and Palomar, D. P.
(2019). Optimization algorithms for graph Lapla-
cian estimation via ADMM and MM. IEEE Trans-
actions on Signal Processing, 67(16):4231–4244.

Zhu, X., Lafferty, J., and Ghahramani, Z. (2003).
Combining active learning and semi-supervised
learning using gaussian fields and harmonic func-
tions. In ICML 2003 workshop on the continuum
from labeled to unlabeled data in machine learning
and data mining, volume 3.

Zibulevsky, M. and Elad, M. (2010). L1-l2 optimiza-
tion in signal and image processing. IEEE Signal
Processing Magazine, 27(3):76–88.

Zou, H. and Li, R. (2008). One-step sparse estimates in
nonconcave penalized likelihood models. The Annals
of statistics, 36(4):1509–1533.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
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7 PROOF OF THEOREM 1

In this section we prove Theorem 1 (which is also repeated below). We note that this property was used in the
works (Egilmez et al., 2017; Ying et al., 2020b) without explicit proof, and here we provide it.

Theorem 1 The optimization problem

minimize
L∈F

Tr(LS)− log |L + J|+ ρ (L;λ) ,

where the feasible set is given by

F =
{

L ∈ Sp
∣∣∣ Li,j ≤ 0,∀i 6= j, i, j = 1, . . . , p, L1 = 0

}
.

is equivalent to the optimization problem stated in (3).

Proof. Since the objective functions in (3) and in (5) are identical (through (4)), it remains to prove that the
feasible sets (solution spaces) of the two problems are equal under this objective function. It should be noted
that there are two distinctions between the feasible sets L and F in problems (3) and (5), respectively. The first
is that L includes a positive semi-definite (PSD) constraint (i.e., L ∈ Sp+), and the second is that L includes a
rank constraint (i.e., rank (L) = p− 1).

To address the PSD constraint in problem (3), we observe that the constraints L1 = 0, and [L]i,j ≤ 0 for i 6= j
are present. Therefore, it follows that every matrix L ∈ F is a diagonally dominant matrix with positive diagonal
entries. Hence, requiring symmetry is sufficient to ensure that the minimizer of (5) is PSD as well (Horn and
Johnson, 2012).

Next, we show that for any graph Laplacian L ∈ F , adding the constraint rank (L) = p− 1 is either equivalent
to rank (L + J) = p, or that the matrix (L + J) is non-singular under the considered objective function. To this
end, we note that any L ∈ F admits an eigenvalue decomposition UΛLUT , where U is p × p matrix of the
eigenvectors of L, and ΛL is a diagonal eigenvalue matrix as follows

ΛL = diag
(

[0, λ2, . . . , λp]
T
)
, (19)

where 0, λ2, . . . , λp are the eigenvalues of L. The rank of L is the number of positive eigenvalues. In addi-
tion, the first eigenvector of L is 1√

p1 and it corresponds to the eigenvalue λ1 = 0. On the other hand, an

eigendecomposition of J can be UΛJUT , where

ΛJ = diag
(

[1, 0, . . . , 0]
T
)

(20)

and the eigenvector of J that is associated with the single nonzero eigenvalue is 1√
p1—the same one as in L.

Hence, for the same eigenvector matrix U, the eigenvalues of the matrix L+J are 1, λ2, . . . , λp, and rank (L + J) =
rank (L) + 1. Hence, to conclude, if L ∈ F and (L + J) is a non-singular matrix, then rank (L) = p− 1.

Now we come to the last part of the proof. Assume by contradiction that the minimizer of (5) satisfies that the
matrix (L + J) is singular, then the expression − log (|L + J|) in the objective approaches infinity. Thus, any
other matrix L ∈ F for which the matrix (L + J) is a non-singular matrix will yield a lower (finite) objective
value in (5). Hence it can be concluded that the solution of (5) satisfies that the (L + J) matrix is non-singular,
i.e., rank (L + J) = p and hence rank (L) = p− 1.
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8 DERIVATION OF THE PARAMETERIZED NEWTON PROBLEM

First, we simplify the writing constraints of (12). We assume that the previous iterate L(t) satisfies the con-
straints, and by definition L(t+1) will satisfy them as well. To achieve that we also choose L(0) ∈ F . Based on
the definition of F in (6), under the assumption that L(t) satisfies the constraints, in order to obtain an update
L(t+1) that satisfy these constraints, we require the following conditions on the variable ∆:

• L(t) + ∆ ∈ Sp. Hence, we require that ∆ ∈ Sp.

• The off-diagonal elements should satisfy
[
L(t) + ∆

]
i,j
≤ 0, ∀i 6= j. Hence, we require that ∆i,j ≤ −L

(t)
i,j .

•
(
L(t) + ∆

)
1 = 0. Assuming that L(t)1 = 0, then we only need to require ∆1 = 0.

By substituting these conditions in (12) and removing the constant term in the objective, we can rewrite the
Newton problem from (12) as follows:

minimize
∆∈Sp

Tr(∆ (S−Q)) +
1

2
Tr(∆Q∆Q) +

1

2
‖ε�∆‖2F + ρMCP

(
L(t) + ∆;λ

)
s.t. ∆i,j ≤ −L

(t)
i,j ,∀i 6= j

∆1 = 0.

(21)

Next, we further simplify the problem by replacing the symmetric unknown matrix ∆ ∈ Sp with a vector
δ ∈ Rp(p−1)/2 by using Definition 1 of the linear operator P : Rp(p−1)/2. According to this definition, given
any w ≥ 0, P (w) satisfies

∑
j P (w)i,j = 0 for any i ∈ {1, . . . , p}, and P (w)i,j = P (w)j,i for any i 6= j. In

other words, P (w) is a Laplacian matrix for any w which has nonnegative values. The simple example below
illustrates the definition of P. Let w = [w1, w2, w3] ∈ R3 be a nonnegative vector. Then

P (w) =

∑i=1,2 wi −w1 −w2

−w1

∑
i=1,3 wi −w3

−w2 −w3

∑
i=2,3 wi

 . (22)

Since the Laplacian is a symmetric matrix, we can rewrite the sparse promoting term in (21) as:

ρMCP (P (w) ;λ)
(a)
=
∑
i6=j

MCP (Lij ; γ, λ)

(b)
= 2

∑
i>j

MCP (Lij ; γ, λ)

(c)
= 2

p(p−1)/2∑
k=1

MCP (−wk; γ, λ)

(d)
= 2ρ̃mcp (w;λ) ,

(23)

where L = P (w). In (23), (a) is obtained by substituting (7), (b) is obtained from the symmetry of L (i.e., since
L ∈ Sp), and (c) is obtained by substituting (14). Finally, (d) is obtained since ρ̃MCP (w;λ) defined in (16) is
an even function. Noting that for w, δ ∈ Rp(p−1)/2, such that L = P (w) and ∆ = P (δ), we can write:

• ρmcp (L + ∆;λ)
(23)
= 2ρ̃mcp (w + δ;λ).

• ∆ ∈
{

∆ ∈ Sp|∆1 = 0,∆i,j ≤ −L
(k)
i,j ,∀i 6= j

}
(14)⇐⇒ δ ∈

{
δ ∈ Rp(p−1)/2| δ ≥ −w

}
.

• 1
2‖ε�∆‖2F = ‖ε̃� δ‖22, which holds trivially because the diagonal of ε is 0 and it is symmetric.

Hence, (21), which is equivalent to (12), is also equivalent to (15), which is the problem we solve in practice in
the inner Newton problem.
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9 NONLINEAR PRECONDITIONED CONJUGATE GRADIENTS

Generally, iterates of projection methods are obtained by

δ(t+1) = ΠU

{
δ(t) + ζd(t)

}
, (24)

where δ(t) is the current iterate, d(t) is the descent (search) direction, ζ > 0 is a step-size parameter, U is some
feasible set, and ΠU {v} is a projection of v onto U . That is, using the `2 norm we have Π{v} = arg minx ‖x−v‖2.
Since there is only a nonnegativity constraint in (15), the projection here is simple to calculate and is given by:

Πv+w≥0 {v} = max {v,−w} . (25)

The step-size ζ > 0 is computed by a linesearch procedure, and the descent direction d(t) is given by

d(t) =

{
−∇δfN

(
δ(t)
)

if t = 0
−∇δfN

(
δ(t)
)

+ βtd
(t−1) if t > 0

, (26)

where βt is a scalar and fN (δ(t)) is the objective defined in (15) at the point δ(t). Since 1952, there have been
many formulas for the scalar βt, and in this paper, we use the DY method (Dai and Yuan, 1999), given by

βDYt = max

0,
‖∇δf (t)

N ‖22(
∇δf (t)

N −∇δf
(t−1)
N

)T
d(t−1)

 . (27)

One remarkable property of the DY method is that it produces a descent direction at each iteration and converges
globally for convex problems in the case where linesearch is used (Dai and Yuan, 1999).

To apply the projected NLCG, the gradient of fN (δ) (defined in (15)) is needed and is given by

∇δfN = P∗ (∇∆fN ) = P∗ (S−Q + QP (δ) Q) + 2ε̃2 � δ + 2∇δρ̃mcp (w + δ;λ) , (28)

where P (δ) = ∆, and P∗ is the adjoint of P, that is

[P∗ (Y)]k
4
= Yii + Yjj − Yij − Yji (29)

for k as in Definition 1. Here we see the advantage of the proximal Newton approach. In (28) the gradient of ρ̃
is computed at w + δ, instead of w alone if we were to naively majorize ρ̃ in the outer Newton problem. So, the
inner solver is able to adapt to the curvature of ρ̃ and to the different sections in its definition.

9.1 Diagonal Preconditioning

The NLCG method that we use in this work is essentially an accelerated gradient-based method. To further
accelerate it with rather minimal computational effort, a diagonal approximation to the Hessian can be used,
acting as a preconditioner in the NLCG method. The aim of the diagonal preconditioner is to properly scale the
gradient and speed up the rate of convergence of the iterative inner method for the Newton direction. In this
paper, we suggest using the diagonal of the Hessian with respect to δ as a preconditioner with NLCG. Below we
show the derivation of this preconditioner.

Our diagonal preconditioner matrix, D, is defined as the diagonal of the Hessian of fN . To ease the derivation,
we ignore the ε term of (15) in this section. Following the Hessian of f at (11) and considering the linear operator

P as a matrix in Rp2×p(p−1)/2 (i.e., ignoring the vector-to-matrix reshaping in its definition), the Hessian of fN
is

HN = P> (Q⊗Q)P ∈ Rp(p−1)/2×p(p−1)/2. (30)

To get its (k, k) diagonal entry for our preconditioner, we multiply HN by a unit vector from both sides:

[D]k,k = [HN ]k,k = eTkHNek, (31)
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where ek ∈ Rp(p−1)/2 is the unit vector of zeros, except the k-th entry, which equals 1. Equivalently to (31), we
can write

[HN ]k,k = Tr(P(ek)QP(ek)Q), (32)

where the matrix P(ek) ∈ Rp×p is a matrix that is essentially the reshape of the k-th column of the operator P,
if we consider it as a matrix. If we look at the example of (22), then taking k = 1 corresponds to

P(e1) =

 1 −1 0
−1 1 0

0 0 0

 .
Note that k = 1 in (22) influences only the 2× 2 sub-matrix of the indices (1, 2) in P(e1). More generally, P(ek)
results in a matrix of zeros, except a 2 × 2 nonzero submatrix of the indices (i, j) where k corresponds to the
pair (i, j) according to Definition 1. Hence, multiplying P(ek)Q, will result in a matrix of zeros except the i-th
and j-th rows, which are equal to qi − qj and qj − qi, respectively, where qi is the i-th column/row of (the
symmetric) Q. According to (32) we now have

[HN ]k,k = Tr
(
(P(ek)Q)2

)
= Tr

((
[Q]i,i − [Q]j,i [Q]i,j − [Q]j,j
[Q]j,i − [Q]i,i [Q]j,j − [Q]j,i

)2
)

=
(

[Q]i,i + [Q]j,j − 2 [Q]i,j

)2

= [D]k,k, (33)

where (i, j) corresponds to the index k according to Definition 1. In the last equality we used the symmetry
of Q, i.e., [Q]j,i = [Q]i,j . Below, Algorithm 2 summarizes the projected and preconditioned NLCG method for
solving (12). Note that the linesearch in the last bullet of the algorithm is applied before the projection, hence
taking a smaller steplength ξ means we effectively enlarge the Hessian approximation at each step.

Algorithm 2: Projected & preconditioned NLCG

Input: L(t) = P (w) ,Q,Free
(
L(t)

)
, λ

Result: Newton direction ∆(t)

Initialization: Set δ(0) = 0
while Stopping criterion is not achieved do

• Compute the preconditioner D as in (33).

• Compute the gradient ∇δfN as in (28).

• Apply the preconditioner g =
(
D−1 · ∇δfN

)
.

• Zero non-free elements: gk ← 0 ∀k ∈ Free
(
L(t)

)
.

• Compute d as in (26), with g in the role of ∇δfN .

• Update: δ(t+1) = max
(
δ(t) + ζd,−w

)
, where ζ achieved by linesearch.

end
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10 CONVERGENCE GUARANTEES: PROOF OF THEOREM 2

In this section, we provide theoretical proof for the convergence of our method to a stationary point (Theorem
2). We note that the MCP penalty is nonconvex; hence one typically gets to a local minimum using a monotone
series of iterations. Some results in our convergence proof follow (Hsieh et al., 2014) (e.g., Lemma 1 and Lemma
3). However, in the work (Hsieh et al., 2014), the `1 norm is used as a penalty, and the proof heavily relies on its
convexity. Here, we had to adapt the proofs for these Lemmas to the concave MCP penalty, which is far from
trivial and has not been done before, to the best of our knowledge.

This section is organized as follows. In subsection 10.1 we define the considered setup of proximal methods
for MCP regularized penalties. In subsection 10.2 we provide some spectral bounds on our problem, which are
needed for the proofs that follow. In subsection 10.3 we provide a lemma proving that our method is a fixed
point iteration. In subsection 10.4 we prove that the objective value sufficiently decreases between the iterations,
which is the main point needed for the convergence proof. Lastly, in subsection 10.5 we finalize the convergence
proof given the previous auxiliary lemmas.

10.1 The Proximal Methods Setup

Let us write the problem (9) as follows

minimize
L∈F

F (L) = f(L) + ρMCP (L;λ) , (34)

where f is the smooth part of the objective, defined in (10), F and ρMCP (L;λ) are defined in (6) and (7),
respectively. In the setup of general proximal methods, at each iteration t, we minimize the penalized and
constrained quadratic objective, as follows:

∆(t) = argmin
∆∈Sp

G(∆) = f(L(t)) +
〈
∇f(L(t)),∆〉+

1

2

〈
∆,∆〉M(t) + ρMCP

(
L(t) + ∆;λ

)
s.t. (L(t) + ∆) ∈ F ,

(35)

where M(t) is some positive definite matrix that is an approximation of the true Hessian, or the true Hessian
itself. In particular, Proximal Gradient Descent uses M = I, while proximal Newton will have M = ∇2f(L) +
diag(vec(ε)), as in (12) and Algorithm 1. Once the quadratic problem (35) is solved, we apply linesearch as in
(13), finding a step size α(t) that ensures a reduction in the objective F . We now prove the convergence of this
framework to our Laplacian estimation problem.

Optimality Conditions We can state that by the definition of F our optimality condition is given by
0 ∈ ∂F (L∗)

∂L∗
i,j

+ µi,j , i > j

L∗j,i = L∗i,j ≥ 0, i 6= j
L∗i,i =

∑
j 6=i−L∗i,j i = 1, ..., p

, (36)

where ∂F (L∗)
∂Li,j

= [∇f ]i,j +
∂MCP (L∗

ij ;γ,λ)

∂Lij
is the sub-differential of F w.r.t Li,j , µi,j ≥ 0 is an inequality Lagrange

multiplier for the constraint Li,j ≤ 0, and the sub-differential of the MCP function in (8) is given by

∂MCP (x; γ, λ)

∂x
=


∈ [−λ, λ] x = 0
λ · sign (x)− x

γ 0 < |x| ≤ γλ
0 |x| > γλ

. (37)

If the conditions in (36) are fulfilled, then L∗ is a stationary point of (9). Since the MCP penalty is nonconvex,
we expect (9) to have multiple minima, and we show that Algorithm 1 converges to one of them. We initialize
our algorithm with L(0) ∈ F and keep L(t) ∈ F in all iterations.

10.2 Spectral Bounds

Let us first note that the − log det(L + J) term in (9) acts as a barrier function. That is, if L + J gets closer
to being singular, then det(L + J)→ 0 and therefore, F (L)→∞ following the log term. Therefore, we can say
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that as long as F (L(t)) is bounded, there exists some β1 > 0 for which L(t) + J � β1I for all t. Furthermore, by
(Ying et al., 2021), we have that for every Laplacian matrix L

〈S,L〉 = 〈v,w〉, (38)

where L = Pw, w ≥ 0, and

vk = [P∗S]k =

[
P∗ 1

n

n∑
q=1

xqx
T
q

]
k

=
1

n

n∑
q=1

([xq]i − [xq]i)
2
> 0 (39)

holds with a very high probability, and P∗ is the adjoint of P in (29). Following that, we have

〈v,w〉 ≥ min
j
{vj}

∑
q

wq =
1

2
min
j
{vj}Tr(L). (40)

Now, for any L ∈ F such that F (L) ≤ F (L(0)) we have

Tr(LS)− log |L|+ + ρ (L;λ) ≤ F (L(0)),

and since ρ (L;λ) ≥ 0 we can write:
Tr(LS) ≤ F (L(0)) + log |L|+.

Furthermore, using (40) and log |L|+ ≤ (p− 1) log(λmax(L)), we get

min
k
{vk}

1

2
λmax(L) ≤ min

k
{vk}

1

2
Tr(L) ≤ F (L(0)) + (p− 1) log(λmax(L)). (41)

Now, since in (41) the left-had-side grows much faster than the right-hand-side, then there is and upper-bound
on λmax(L), depending on S and L(0), assuming (39). Hence, we can conclude that if the iterations {L(t)} are
monotonically decreasing starting from L(0) ∈ F , there exist upper and lower bounds

β1I � L(t) + J � β2I. (42)

This also means that the level set R = {L ∈ F : F (L) ≤ F (L(0))} is compact, and the Hessian is bounded, i.e.,
∇2f(L) = (L + J)−1 ⊗ (L + J)−1 � 1

β2
1
I = θI, where θ > 0. The last upper bound comes from the properties of

eigenvalues of Kronecker products.

We summarize the conclusions above in the following lemma:

Lemma 1. Assume that the iterations L(t) are monotonically decreasing with respect to the objective in (34),
starting from a feasible L(0). Then there exist constants β1, β2 such that β1I � L(t) + J � β2I, and the level-set
R = {L ∈ F : F (L) ≤ F (L(0))} is compact. Also, the Hessian is bounded: ∇2f(L) � 1

β2
1
I = θI

10.3 Fixed Point Iteration

The following lemma shows that if L(t) is feasible, and the quadratic minimization (35) ends with ∆(t) = 0, then
L(t) is a minimum point of (34).

Lemma 2. Assume that L(t) ∈ F . If ∆(t) = 0 is a minimizer of G(∆) in (35), then L(t+1) = L(t) is a minimizer
of F (L) in (34).

Proof. Since ∆(t) is a minimizer of (35), the following optimality conditions are held
0 ∈ ∂G(∆(t))

∂∆i,j
+ µi,j , i > j

L
(t)
j,i + ∆

(t)
j,i = L

(t)
i,j + ∆

(t)
i,j ≥ 0, i 6= j

L
(t)
i,i + ∆

(t)
i,i =

∑
j 6=i−(L

(t)
i,j + ∆

(t)
i,j ) i = 1, ..., p

, (43)

where ∂G(∆)
∂∆i,j

= [∇f ]i,j + [〈M∆〉]i,j +
∂MCP (L

(t)
i,j+∆i,j ;γ,λ)

∂∆ij
, and 〈M∆〉 denotes a matrix vector multiplication of

M with the vectorized ∆, i.e., mat(M · vec(∆)). Placing ∆(t) = 0 in (43) yields the same conditions as in (36)
regardless of the specific choice of the matrix M � 0, hence L(t) is a stationary point of (34).
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10.4 Sufficient Decrease in Objective

We now show that we have a decrease in the objective F following the minimization in (35) and the linesearch
in (13). This lemma is the key to our convergence proof.

Lemma 3. Assume that the Hessian is bounded, ∇2f � θI for θ > 0. Also assume that the iterates {L(t)} are
defined by (35) followed by a linesearch (13), starting from L(0) ∈ F , with M(t) satisfying M(t) � λMminI � γ−1I,
where λMmin is a constant and γ is the MCP parameter. Then

F (L(t+1))− F (L(t)) ≤ −c · ‖∆(t)‖2F , (44)

where c > 0. Furthermore, the linesearch parameter α(t) in (13) can be chosen to be bounded away from zero,
i.e., α(t) ≥ αmin > 0.

Proof. For ∆(t), the solution of (35), and some linesearch parameter 0 < α < 1 we have:〈
∇f(L(t)),∆

〉
+ 1

2

〈
∆(t),∆(t)〉M(t) + ρMCP

(
L(t) + ∆(t);λ

)
≤ 〈∇f(L(t)), α∆(t)〉+ 1

2 〈α∆(t), α∆(t)〉M(t) + ρMCP

(
L(t) + α∆(t);λ

)
.

(45)

That is because the objective in (35) is lower for ∆(t) than for α∆(t) (because ∆(t) is assumed to be the minimum).
Also, since F is convex, then L(t) + α∆ ∈ F . Thus, we have

(1− α)
〈
∇f(L(t)),∆

〉
+ (1− α2)

1

2

〈
∆,∆〉M(t) + ρMCP

(
L(t) + ∆;λ

)
− ρMCP

(
L(t) + α∆;λ

)
≤ 0. (46)

After dividing by (1− α) > 0 we get:〈
∇f(L(t)),∆

〉
≤ −(1 + α)

1

2

〈
∆,∆〉M(t) −

1

1− α

(
ρMCP

(
L(t) + ∆;λ

)
− ρMCP

(
L(t) + α∆;λ

))
. (47)

Now, by the definition of MCP in (8), for every x, y such that sign(x) = sign(x + y) the function is twice
differentiable in the interval (x, x+ y), and we can write

MCP (x+ y) = MCP (x) +MCP ′(x)y − 1

2γ
(ωy)2, (48)

where 0 ≤ ω ≤ 1. Given that the feasible F states that L(t) ≤ 0 and L(t) + ∆ ≤ 0 at all times, we can write

ρMCP

(
L(t) + ∆;λ

)
= ρMCP

(
L(t);λ

)
+ 〈∇ρMCP ,∆〉 −

1

2γ
〈Ω�∆,Ω�∆〉 (49)

where 0 ≤ Ω ≤ 1 is a matrix of the ω values as in (48), and � is an element-wise product. Similarly, let

ρMCP

(
L(t) + α∆;λ

)
= ρMCP

(
L(t);λ

)
+ 〈∇ρMCP , α∆〉 − 1

2γ
〈Ωα � α∆,Ωα � α∆〉, (50)

where 0 ≤ Ωα ≤ 1. To show a decrease in the function F following the solution of (35) and a linesearch, we write

F (L(t) + α∆(t))− F (L(t)) =f(L(t) + α∆(t)) + ρMCP

(
L(t) + α∆;λ

)
− f(L(t))− ρMCP

(
L(t);λ

)
(51)

=〈∇f(L(t)), α∆(t)〉+
1

2
〈α∆(t), α∆(t)〉∇2f(L(t)) +O(‖∆‖3) (52)

+ ρMCP

(
L(t) + α∆;λ

)
− ρMCP

(
L(t);λ

)
≤− α(1 + α)

2

〈
∆,∆〉M(t) +

1

2
〈α∆(t), α∆(t)〉∇2f(L(t)) +O(‖∆‖3) (53)

− α

1− α

(
ρMCP

(
L(t) + ∆;λ

)
− ρMCP

(
L(t) + α∆;λ

))
+ ρMCP

(
L(t) + α∆;λ

)
− ρMCP

(
L(t);λ

)
.
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Equation (52) is a simple Taylor expansion, and the inequality in (53) stems from (47). At this point, we will
focus on the last two lines of (53):

− α

1− α

(
ρMCP

(
L(t) + ∆;λ

)
− ρMCP

(
L(t) + α∆;λ

))
+ ρMCP

(
L(t) + α∆;λ

)
− ρMCP

(
L(t);λ

)
(54)

=
1

1− α

(
(1− α+ α)ρMCP

(
L(t) + α∆;λ

)
− αρMCP

(
L(t) + ∆;λ

))
− ρMCP

(
L(t);λ

)
(55)

=
1

1− α

(
(1− α)ρMCP

(
L(t);λ

)
− 1

2γ
〈α2Ω2

α − αΩ2 �∆,∆〉
)
− ρMCP

(
L(t);λ

)
(56)

=
1

1− α

(
− 1

2γ
〈α2Ω2

α − αΩ2 �∆,∆〉
)
≤ α

2γ
〈max{Ω2

α,Ω
2} �∆,∆〉 ≤ α

2γ
〈∆,∆〉, (57)

where Ωα and Ω are defined in (49)-(50). Going back to the bound on the decrease in F in (53) we get:

F (L(t) + α∆(t))− F (L(t)) ≤− α(1 + α)

2

〈
∆,∆〉M(t) +

1

2
〈α∆(t), α∆(t)〉∇2f(L(t)) +

α

2γ
〈∆,∆〉+O(‖∆‖3) (58)

=− α

2
〈∆,∆〉(M(t)−γ−1I) −

α2

2
〈∆,∆〉(M(t)−∇2f(L(t))) +O(‖∆‖3). (59)

Two conditions are needed to keep the above bound negative and guarantee a decrease in the objective. One is
by having M(t) � γ−1I, which is easy to guarantee, e.g., via the choice of ε in our case. The other condition,
assuming that we have M(t) � γ−1I, can be written as

α(M− γ−1) + α2∇2f(L(t)) � 0,

and then we have

F (L(t) + α∆(t))− F (L(t)) ≤ −α(λMmin −
1

γ
− αθ)‖∆(t)‖2F . (60)

where θ is the upper bound on the Hessian, and λMmin > γ−1 is the smallest eigenvalue of M. This value is

negative for any 0 ≤ αmin < λM
min−γ

−1

θ .

The result above is relevant to Algorithm 1, where we have M(t) = ∇2f(L(t)) + diag(ε2). Hence, the second
term in (59) almost vanishes if ε is small. On the other hand, ε allows us to make sure that the first term in
(59) remains negative. We note that one can also monitor which entries are in the concave region of the MCP
(smaller than γλ in magnitude) and set some value of εi,j for them only, following (57).

The analysis above essentially is also suitable for Algorithm 2 if we set βt = 0, i.e., use a projected quasi-Newton
method with D as a diagonal approximation to the Hessian. This is because in Algorithm 2, the Newton problem
is also a smooth objective with an MCP prior and positivity constraints, and the change of variables to δ is only
for convenience of symmetry and does not change the problem.

10.5 Convergence

Before stating the main convergence theorem, we prove the following auxiliary lemma:

Lemma 4. Let {L(t)} be series of points produced by (35) followed by the linesearch (13), with λMmaxI �M(t) �
λMminI � 0. Let {L(tj)} be any converging subseries of {L(t)} and let L̄ be its limit. Then L̄ is a stationary point
of F in (9).

Proof. Since the sub-series {L(tj)} convergences to L̄, then {F (L(tj))} convergences to F (L̄). Therefore,
{F (L(tj+1))−F (L(tj))} → 0, which implies following (60) that ||L(tj)−L(tj+1)||2F → 0 and limj→∞ L(tj+1) = L̄.
According to (35) and the linesearch (13), L(t+1) = L(t) + α(t)∆(t) and because, ||L(tj+1) − L(tj)||2F → 0 and
α ≥ αmin > 0, this implies ||∆(t)||2F → 0. We know that ∆(t) satisfies (43), and by taking the limit as j → ∞
and using Lemma 2 we get that L̄ is a stationary point of (9).

Now, after providing the auxiliary lemmas above, we are ready to state the convergence theorem.
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Figure 7: Convergence plots for the Lymph, Arabidopsis, Leukemia, and Hereditary BC datasets (left to right). The

relative decrease is measured by |F (L(t))−F (L(0))|
|F (L∗)−F (L(0))|

Theorem 2. Let {L(t)} be a series of points produced by a proximal quadratic minimization, constrained by F
with some SPD matrices 0 ≺ λMminI �M(t) � λMmaxI as the Hessian (as in (35)), followed by the linesearch (13),
starting from L(0) ∈ F . Then any limit point L̄ of {L(t)} is a stationary point of (9).

Proof. By Lemma 3, the series F (L(t)) is monotonically decreasing, hence it is also convergent as F is bounded
from below. Since the level set R is compact by Lemma 1, and L(t) is bounded in R, there is a converging
subseries {L(tj)}, which let L̄ be its limit point. By Lemma 4, L̄ is a stationary point of F in (9). Since
F is continuous then F (L(tj)) −→ F (L̄). Since the limit of {L(t)} and F (L(t)) equal to that of any of their
corresponding subseries, then {L(t)} −→ L̄ and F (L(t)) −→ F (L̄).

11 RESULTS USING REAL DATA

In this subsection, we examine several gene expression datasets that are commonly used in research related to
model selection, classification, and graphical models. These datasets are genetic regulatory networks, in which
individual genes are represented as nodes in a graph, with the edges denoting the conditional dependencies be-
tween their expression profiles. It is important to note that these datasets can consist of thousands of genes while
the number of samples is limited. This requires sparsity assumptions to enable the topology identification. De-
tailed information regarding the datasets, namely Lymph, Arabidopsis, Leukemia, and Hereditary BC datasets,
can be found in (Li and Toh, 2010). As there is no ground truth in this case, we show convergence plots of the
different methods in Fig. 7. It can be seen that for these real data simulations, the proposed method converges
significantly faster than the other methods.
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