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Abstract

Finding Minimal Unsatisfiable Subsets
(MUSes) of boolean constraints is a com-
mon problem in infeasibility analysis of
over-constrained systems. However, because
of the exponential search space of the
problem, enumerating MUSes is extremely
time-consuming in real applications. In this
work, we propose to prune formulas using
a learned model to speed up MUS enumer-
ation. We represent formulas as graphs and
then develop a graph-based learning model
to predict which part of the formula should
be pruned. Importantly, the training of our
model does not require labeled data. It
does not even require training data from the
target application because it extrapolates
to data with different distributions. In our
experiments we combine our model with
existing MUS enumerators and validate its
effectiveness in multiple benchmarks includ-
ing a set of real-world problems outside
our training distribution. The experiment
results show that our method significantly
accelerates MUS enumeration on average on
these benchmark problems.

1 INTRODUCTION

Many problems in computer science and operations
research are often formulated as constraint satisfac-
tion problems. When a system is over-constrained and
has no satisfying solutions, identifying and enumer-
ating Minimal Unsatisfiable Subsets (MUSes) of the
constraint set is one way to analyze the system and
understand the unsatisfiability. Example applications
include circuit error diagnosis (Han and Lee, 1999),
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symbolic bounded model checking (Clarke et al., 2000;
Ghassabani et al., 2017) and formal equivalence check-
ing (Cohen et al., 2010). Additionally, MUSes may
also be used to identify inconsistencies between the en-
vironment and domain knowledge (Goel et al., 2022)
in planning tasks. A wide range of constraint satis-
faction problems are represented as boolean formulas,
which often take the Conjunctive Normal Form (CNF).
Then, a MUS of a formula is an unsatisfiable subset
of the clauses in the formula, with the added property
that removing any single clause from this subset ren-
ders it satisfiable. MUS enumeration aims to find all
MUSes in a formula.

However, MUS enumeration poses itself as a prob-
lem harder than a satisfiability decision problem. In
practice, the enumeration problem is mainly addressed
by search-based algorithms, which face a large search
space containing exponentially many combinations of
clauses (Ignatiev et al., 2015). Given the large space,
a search often requires many steps involving calls to
satisfiability solvers (Liffiton et al., 2016). A promis-
ing direction of speeding up the enumeration is to re-
duce the search space (e.g. exploring subsets that are
more likely to be unsatisfiable (Bend́ık et al., 2018;
Belov et al., 2013)). However, manual design of search
heuristics faces various difficulties.

Recently, neural methods have been proposed to ad-
dress hard graph problems (Khalil et al., 2017; Li et al.,
2018; Sato et al., 2019) such as the traveling salesper-
son problem (Shi and Zhang, 2022) and the maximum
independent set problem (Schuetz et al., 2022). Of-
ten these problems are addressed using Graph Neural
Networks (GNNs) (Zhou et al., 2020). At the same
time, there has been increasing interests in applying
neural networks to problems involving logic and rea-
soning (Hitzler et al., 2022). Previous work on neu-
ral SAT-solving (Selsam et al., 2018) shows promising
results in extrapolation beyond the training distribu-
tion. We find that this parallel development presents
an opportunity for MUS enumeration: we can repre-
sent a formula as a graph and then leverage the power
of GNNs to accelerate MUS enumeration. As learn-
ing models, GNNs have the ability to identify patterns
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that are relevant to satisfiability and possibly MUSes.

In this work, we propose a learning-based pruning
model, Graph Pruning for Enumeration of Minimal
Unsatisfiable Subsets (GRAPE-MUST), to accelerate
MUS enumeration. In particular, GRAPE-MUST rep-
resents a formula as a graph and then learns a GNN
to prune the formula via its graph form. With this
generic pruning procedure, it can be combined with
most existing MUS enumeration algorithms and re-
duce their search spaces.

The training objective of GRAPE-MUST aims to re-
duce clauses in a formula while keeping it unsat-
isfiable. This design avoids the need of true la-
bels in model training. We further train a GRAPE-
MUST model with a large number of random formu-
las from our specially designed generative procedure.
The trained model improves enumeration performance
even in tasks without training formulas. During test-
ing time, the pruning procedure only takes a small
fraction of the overall running time that includes the
enumeration time, but it speeds up the enumeration
procedure significantly for a wide range of problems.

We validate the effectiveness of our approach by com-
bining our method with existing MUS enumerators
in multiple benchmarks including random formulas,
graph coloring problems and problems from a logistics
planning domain. We also find that GRAPE-MUST
shows promising extrapolation performance on larger
problems than ones it was trained on. This suggests
that training GRAPE-MUST on smaller problems can
be a viable strategy for accelerating MUS enumera-
tion in larger problems. Finally, we demonstrate that
GRAPE-MUST can also generalize across data distri-
butions by improving enumeration performance in a
collection of hard problems from the 2011 SAT com-
petition MUS Track using a model trained on ran-
dom formulas. This result has a strong implication:
a trained GRAPE-MUST has the potential to acceler-
ate MUS enumeration for a wide range of tasks without
the need for training formulas or retraining for differ-
ent tasks.

2 RELATED WORK

Finding MUSes is a well-studied problem in the field
of constraint satisfaction. Even though the problem is
fundamentally computationally hard (Ignatiev et al.,
2015), its practical usefulness has motivated the devel-
opment of a number of domain agnostic algorithms.
These algorithms are concerned with either extract-
ing a single MUS from a given constraint set (Belov
and Marques-Silva, 2012; Nadel et al., 2014) or with
enumerating multiple MUSes, with algorithms in the
latter usually building on top of the former (Bend́ık

and Černá, 2020). Since full enumeration of MUSes
is often intractable, algorithms for online enumeration
(Liffiton et al., 2016; Bend́ık et al., 2018, 2016) have
been developed that promise to produce at least some
MUSes in reasonable time. Our work aims to improve
enumeration speed of these online algorithms in prob-
lems with boolean constraints and variables.

Recently neural methods have been applied in logical
reasoning (Hitzler et al., 2022). Such examples in-
clude neural satisfiability solvers (Guo et al., 2022; Li
and Si, 2022), neural theorem provers (Paliwal et al.,
2020), and neural model counters (Abboud et al.,
2020). These methods often represent problems in
graphs and apply GNNs (Welling and Kipf, 2016) to
identify structural patterns in these problems.

GNNs have been shown to be successful in address-
ing hard graph problems (Ma et al., 2021). Exam-
ples include the traveling salesperson problem (Shi
and Zhang, 2022), maximum cut and independent
set (Schuetz et al., 2022; Toenshoff et al., 2021) and
graph edit distance (Liu et al., 2022). In these prob-
lems, GNNs can learn common graph patterns from a
large number of problems and assist a solver in finding
good solutions. They achieve this by providing search
heuristics (Shi and Zhang, 2022) or reducing the prob-
lem search space (Liu et al., 2022).

3 BACKGROUND

Consider a constraint satisfaction problem in CNF
over a set of boolean variables U = {ui ∈ {T, F}, i =
1 . . . N} with clause set C = {ci : i = 1 . . .M}. Each
clause c ∈ C is a disjunction c =

∨n
i=1 li where each

literal li is either a variable ui or the negation of a
variable ¬ui. The full formula S =

∧M
i=1 ci is the con-

junction of all clauses.

A boolean CNF formula is satisfiable if there exists an
assignment to the variables in U such that the formula
S evaluates to true. A boolean CNF formula is unsat-
isfiable if there is no such assignment to the variables.

Definition 1 A Minimal Unsatisfiable Subset (MUS)
of a set of clauses C is a clause subset M ⊆ C s.t. M
is unsatisfiable, and M\{c} is satisfiable ∀c ∈M .

A single MUS is often viewed as one minimal expla-
nation of why C is unsatisfiable. It is often desirable
to enumerate multiple MUSes to locate good explana-
tions. In this work we focus on accelerating the enu-
meration of MUSes, aiming specifically to aid practical
applications in which full enumeration is computation-
ally infeasible.

Proposition 1 Given an unsatisfiable subset C ′ ⊆ C,
if M is a MUS of C ′ then M is a MUS of C.
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This proposition is well known (e.g. (Bend́ık and
Černá, 2020)), and here we formalize it to facilitate
discussion. In fact, it is commonly used in MUS enu-
meration algorithms that use a seed-shrink procedure
(Bend́ık and Černá, 2020; Liffiton et al., 2016; Bend́ık
et al., 2016, 2018). This procedure looks for an initial
seed C ′ ⊆ C that is unsatisfiable, and then repeat-
edly shrinks C ′ by removing clauses until it becomes
a MUS.

Definition 2 A clause c ∈ C ′ is critical for an unsat-
isfiable subset C ′ ⊆ C if C ′\{c} is satisfiable.

Critical clauses are important in MUS enumeration
as they tend to be involved in many MUSes of C and
some solvers use them in their search strategy (Bend́ık
et al., 2018).

4 METHOD

In this section we develop a neural method to acceler-
ate searching algorithms in the enumeration of MUSes.
In particular, we will prune the clause set C to get a
smaller clause set C ′ that is still unsatisfiable. From
that point, searching algorithms can be applied to enu-
merate MUSes in C ′ according to Proposition 1. Our
main strategy is to represent formulas as graphs and
then treat the pruning problem as a node labeling
problem.

4.1 CNF Formulas As Attributed Graphs

We represent CNF formulas as Literal Clause Graphs
(Guo et al., 2022). Consider a propositional formula
S = (U,C) in CNF with variable set U and clause set
C. To construct an attributed graph G = (V,E,X)
from a formula, we treat variables and their negations
as one node type and clauses as another node type. We
also have two types of edges: the first type connects
variables to their negations, and the second type con-
nects variables or their negations to a clause if they ap-
pear in that clause. Formally, we construct the graph
G = (V,E,X) from the formula S = (U,C) with the
node set:

V = V1 ∪ V2 with

V1 = {ui|i = 1...N} ∪ {¬ui|i = 1...N}, V2 = C
(1)

and the edge set:

E = E1 ∪ E2 with

E1 = {(uk, cj)|uk ∈ cj , j = 1...M},
E2 = {(ui, ūi)|i = 1...N}.

(2)

Each node and each edge are associated with one-hot
vectors indicating their types. All node and edge types

are recorded respectively in two matrices X = (XV ∈
{0, 1}|V |×2, XE ∈ {0, 1}|E|×2) that encode the node
and edge types in a one-hot manner. The graph rep-
resentation G = (V,E,X) keeps all information of
the formula since one can recover the formula from
the attributed graph. We denote the procedure by
G = grep(S) for easy reference later.

4.2 CNF Pruning Via Graph Pruning

Using our graph formulation we can achieve formula
pruning through graph pruning, that is, pruning nodes
in V2 corresponds to removing clauses from C.

We formulate the pruning problem as a node labeling
problem. We learn a model pθ(y|G) parameterized
by θ, and the model predicts a vector y ∈ {0, 1}M
of labels for nodes only in V2, then y indicates which
nodes to keep after pruning. Formally, y decides the
pruned subset C ′ ⊆ C.

C ′ = {ci|ci ∈ C, yi = 1} (3)

From the pruned clause set C ′, we obtain the pruned
formula S′ = (U ′, C ′). Here U ′ only contains variables
involved in C ′.

To get a differentiable training objective later, we treat
the model pθ(y|G) as a distribution of y. Here we use a
simple model that treats yi-s as independent Bernoulli
random variables. The probabilities of y are computed
from the input G by a neural network, and θ denotes
its learnable parameters. More complex y may better
capture patterns in the graph but usually require more
complex parameterizations and more computations.

With the pruning procedure above, the model pθ(y|G)
essentially defines a distribution pθ(S

′|S).

4.3 Optimization

We now need to form a training objective and learn
parameters of the pruning model pθ(S

′|S). Since data
labeling requires expensive searching procedures, we
use a weak supervision scheme that does not need la-
beled data. A pruned formula S′ should be small and
unsatisfiable. We first design a loss function guided by
this principle.

Loss function Given a formula S = (U,C), the
loss function loss(S′;S) computes a loss value for the
pruned formula S′ = (U ′, C ′) by:

loss(S′;S) =

1 if SAT(S′)(
|C′|
|C|

)2
otherwise

. (4)

Here SAT(S′) corresponds to a query to a satisfiability
solver on S′ that returns true if a satisfying assignment
is found and false otherwise.
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Figure 1: Graph pruning for MUS enumeration. CNF formulas are represented as Literal Clause Graphs and
the clause nodes are pruned. The resulting graph is converted back into a formula and MUSes are enumerated.
Green denotes two MUSes in the formula. Red denotes clauses that can be pruned without affecting the MUSes.
c2 is a critical constraint

The loss function equally weighs two types of unde-
sirable pruned formulas: if S′ is satisfiable, then the
prediction is not usable and receives a penalty of 1;
and if there is no pruning and S′ = S, again it re-
ceives a penalty of 1. Otherwise, the penalty is a
function of the ratio of the number of clauses in the
pruned formula to the original formula. This encour-
ages the model to prune as many clauses as possible,
while maintaining unsatisfiability. This loss function
will consider critical clauses (Definition 2) automat-
ically: removing critical clauses of C produces sat-
isfiable formulas and thus incurs high penalties. As
a result, it encourages the learning model to shrink
the formulas while keeping such critical clauses intact.
While this loss does not penalize destroying MUSes, it
avoids searching for MUSes during training and thus
enables better scalability. We further discuss this issue
in later sections.

Learning Objective The loss function loss(S′; S) is
not differentiable with respect to S′, and there is not
a straightforward continuous relaxation of it. To get a
differentiable learning objective, we take the expecta-
tion of the loss using the distribution pθ(S

′|S).

L(θ;S) = ES′∼pθ(S′|S)[loss(S′;S)]. (5)

Then we can draw a few Monte Carlo samples of S′

and estimate the gradient with respect to θ through
the score function estimator (Williams, 1992).

∇θL(θ;S) = ES′∼pθ(S′|S)[loss(S′;S) · ∇θ log pθ(S
′|S)].

Though the score function estimator often has large
variance, it works well in our experiments. We will
explore techniques to reduce the variance in the future.

4.4 Model Architecture

We now present our implementation of the graph prun-
ing model pθ(y|G) with GNNs. To facilitate the scala-
bility of our method, we use a lightweight architecture

with a relatively small memory footprint. Along with
node features XV indicating node types, we also ap-
pend random node features to improve the expressive-
ness of the network (Abboud et al., 2021; Sato et al.,
2021). So the input to the GNN is:

H0 = [XV , R], R ∈ RN×dr ∼ N (0, I). (6)

Then we use an L-layer GNN with heterogeneous mes-
sage passing layers (Wang et al., 2022) to compute
node representations Z ∈ RN×do for each node type,
where do is the output dimension of the GNN.

Z = gnn(G,H0). (7)

Here gnn(·) denotes the function of the GNN. Finally,
we use a simple MLP to predict probabilities of node
labels y, which indicate which clauses in C to keep in
the pruned formula.

µ = mlp(Z), y ∼ Bernoulli(µ). (8)

Here the MLP applies to each node representations to
compute a probability value.

We take a “conservative-to-aggressive” strategy to
train the model. We initialize the bias in the last
layer of the MLP to a moderate negative value (e.g.
−3) and network weights to small values. This results
in the model initially assigning a pruning probability
around 0.05 to all nodes, which means the initial model
does little pruning to all formulas. Then as the model
learns to minimize the loss, it becomes more aggres-
sive and prunes formulas to get smaller unsatisfiable
formulas. This strategy avoids initial models that are
too aggressive and cannot get unsatisfiable formulas
as such models cannot improve through small updates
and are hard to optimize.

4.5 Randomized Formula Generation From
Problem Statistics

For tasks without training formulas, we generate ran-
dom formulas as the training data to train our model.
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However, it is non-trivial to generate formulas that
are like real problems. Pure random formulas that are
unsatisfiable tend to have small MUSes.

In this work, we devise a randomized procedure that
generates formulas with similar clause lengths and
clause-to-variable ratio with that from target tasks.
We also consciously try to control sizes of MUSes in
these formulas. According to the target clause-to-
variable ratio, we first decide the number of variables
and a lower bound of the number of clauses. The
generation procedure then proceeds by sampling one
clause at a time and adding it to the formula only if
the resulting clause-set is satisfiable.

Algorithm 1 Prune a CNF formula

Input S = (U,C), µ, k
Output S′ = (U ′, C′)

1: tmax ← max(µ)
2: tmin ← min(µ)
3: T ← {tmin + i× tmax−tmin

k
|i = 0 . . . k}

4: l = 0, r = k
5: while l < r do
6: t← T [b r−l

2
c]

7: y← µ ≤ t
8: S′ ← Prune(S,y) . using eq. 3
9: if SAT (S′) then

10: l← b r−l
2
c

11: else
12: r ← b r−l

2
c

13: end if
14: end while
15: return S′

This procedure is repeated until the lower bound is
reached. After that point, we continue to add clauses
until the formula becomes unsatisfiable. The literals in
each clause are uniformly sampled, and the length of
the clause is randomly decided according to the target
clause length distribution.

This procedure yields problems that resemble the data
distribution, specifically in clause lengths and clause-
to-variable ratios. Without satisfiability checking, ran-
dom clauses tend to make MUSes smaller. Our proce-
dure guarantees satisfiability initially and thus tends
to generate formulas with larger MUSes than pure ran-
dom formulas of the same lengths. The procedure does
require a large number of calls to a SAT solver, but
many problems can be generated in parallel and we
only need to generate a training set once for a wide
range of problems.

4.6 Test-time Pruning

In testing time, we use a deterministic procedure to
compute a valid pruning vector y to avoid random-

ness. We apply a threshold t to truncate the proba-
bility vector µ to get y. Then we check whether the
pruned formula S′ from y is satisfiable or not. We
then proceed to search for the smallest threshold value
(most aggressive pruning) that yields an unsatisfiable
formula using binary search. The search is conducted
over threshold values from min(µ) to max(µ) over k
equally sized steps, with k being a hyperparameter not
related to the size of S. This procedure is formally de-
scribed by Algorithm 1. In the worst case, t = max(µ)
will give S′ = S without pruning. There are O(log k)
SAT calls, which is typically much less than SAT calls
in MUS searching algorithms.

After we have obtained the pruned formula S′, we
run a MUS enumeration algorithm on S′ to enumer-
ate MUSes of S. The main gain is that time saved by
running the enumeration algorithm on a smaller for-
mula S′. While some MUSes may be destroyed dur-
ing pruning, we deem this a reasonable compromise
as in practical problems enumerating all MUSes is al-
ready prohibitively expensive. Our experiments show
that our pruning allows for more MUSes to be found
within the same time-limit in both synthetic and real-
life problems.

5 EXPERIMENTS

In this section, we evaluate the effectiveness of the pro-
posed pruning strategy in MUS enumeration tasks.
We first check whether applying a pruning model
before an enumeration algorithm improves the algo-
rithm’s performance in enumerating MUSes. We also
investigate the generalization ability of our model by
evaluating a trained pruning model on formulas from
a distribution different from the training distribution.
Finally, we evaluate the feasibility of using a model
trained on random formulas on a benchmark of chal-
lenging MUS enumeration problems from the litera-
ture, thus reducing the need to train a model on each
new problem distribution.

Datasets We evaluate GRAPE-MUST on four
datasets including both randomly generated and real-
world problems. We use the following datasets:

Random Formulas. We generate formulas using the
procedure described in (Selsam et al., 2018), resulting
in formulas with about 700 clauses. Exact generation
parameters are available in the appendix.

Logistics Planning. We use a standard logistics plan-
ning problem with variable numbers of cities, ad-
dresses, airplanes, airports and trucks. We create ran-
dom initial and goal states and also vary the number
of deliveries in a given timeframe. We only keep in-
feasible problems and then use MADAGASCAR (Rin-
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tanen, 2014) to translate our planning problems into
boolean CNF formulas. The derived formulas have
about 800-1200 variables and 8000-15000 clauses. Ex-
act generation parameters, domain file and conversion
parameters are available in the appendix.

Graph Coloring. To generate random graph coloring
problems, we first sample a random graph with 10 to
30 nodes from the Erdős-Rényi model with edge prob-
ability 0.8, and then randomly choose a color number
between 4 and 7. Then, we convert formulas to SAT
using a standard translation procedure described in
the appendix. We only sample unsatisfiable formulas
by discarding any satisfiable ones. The resulting for-
mulas have up to 210 variables and up to about 2500
clauses.

Hard problems from SAT Competition 2011 MUS
track.1. This benchmark contains problems from vari-
ous applications such as planning, software and hard-
ware verification that vary in size from a few hundred
to millions of clauses and variables. We limit our inves-
tigation to problems in the benchmark that we deem
hard: They contain at least 105 clauses and a state-
of-the-art enumerator identifies at most 103 MUSes
within a 2 hour time limit without exhausting the
number of MUSes in the formulas. Given these crite-
ria, we evaluate GRAPE-MUST on 63 problems from
this benchmark.

For each of the first three datasets, we test enumera-
tion algorithms on 500 randomly generated problems
and repeat each experiment 5 times. As a separate
note, these problems do not pose significant difficul-
ties to modern SAT solvers such as Glucose-3.0 (Au-
demard and Simon, 2009), which can evaluate their
satisfiability within 10 milliseconds.

Enumeration Algorithms We apply the pruning
strategy to three contemporary online MUS enumer-
ation algorithms: MARCO (Liffiton et al., 2016),
TOME (Bend́ık et al., 2016), and REMUS (Bend́ık
et al., 2018). All three algorithms are available as part
of the MUST (Bend́ık and Černá, 2020) toolbox.

Model Hyperparameters We use the GraphConv
operator (Morris et al., 2019) to implement message
passing in heterogeneous graphs formed by formulas.
In all experiments we use five message passing layers
with 64 hidden units. We use two layers for the MLP
with ReLU activations. We train the models for a max-
imum of 2 million formulas with early stopping and use
the Adam optimizer with a learning rate of 0.0001 and
a batch size of 32. At test time, we set k = 10 in algo-
rithm 1 to compute the pruning. All our experiments

1http://www.cril.univ-artois.fr/SAT11/

are carried out on a server with 4 NVIDIA RTX 2080Ti
GPUs, and an Intel(R) Core(TM) i9-9940X processor
with 130 GB of memory.

5.1 Improving Enumeration Performance

In this section we present the results of our first ex-
periment. We run three existing MUS enumeration
algorithms and compare performances of each algo-
rithm with and without our pruning step. We run
all three algorithms with the same default parameters
in all problems. We evaluate the algorithms on the
three aforementioned datasets. The evaluation metric
is the average number of MUSes enumerated within a
fixed time budget: the larger, the better. The running
time of GRAPE-MUST on GPUs is included within
the time-budget. In our experiments, we record three
average numbers for three time budgets: 1, 2, and 5
seconds. We also run smaller scale experiments for a 30
minute time-budget and present the results as well as
pruning statistics in the appendix. We note that these
classes of problems are not very challenging to MUS
enumerators at the problem size and time limit used in
this experiment. Still, we believe that the results are
indicative of the effectiveness of pruning in accelerat-
ing MUS enumeration. Performance improvement in
more challenging problems is shown in following sec-
tions.

The experiment results from the three datasets are
tabulated in Table 1, 2, and 3. These results show
that GRAPE-MUST allows MARCO and REMUS to
find more MUSes on all three datasets. On the Graph
Coloring dataset, REMUS with pruning nearly dou-
bles the number of MUSes found by REMUS alone
across all timeouts. It also helps TOME to find more
MUSes on two datasets, Random Formulas and Logis-
tics Planning. Only on the Graph Coloring dataset,
pruning actually harms the performance of TOME.
Importantly REMUS is the strongest algorithm among
the three (Bend́ık and Cerná, 2018), and our pruning
model improves REMUS on all three datasets, making
GRAPE-MUST+REMUS the strongest configuration.

Further analysis shows how the three algorithms ben-
efit differently from a prior pruning step. REMUS
invests significant computation in finding small un-
satisfiable subsets and heavily depends on critical
constraints. GRAPE-MUST learns to prune non-
critical constraints, which makes finding and using
critical constraints easier for REMUS. Compared to
REMUS, MARCO benefits less from pruning in all
three tasks. MARCO’s search strategy tends to start
from large unsatisfiable subsets and shrinks them to
find MUSes with many SAT calls. Since single SAT
calls are in practice not as expensive in boolean prob-
lems, MARCO’s less aggressive seed-searching strat-
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Solver 1 (s) 2 (s) 5 (s)
MARCO 230.85± 8.79 465.24± 16.41 1145.92± 36.0

GRAPE-MUST + MARCO 231.35± 8.32 469.24± 15.5 1157.69± 34.03
REMUS 891.28± 29.83 1933.27± 60.64 5188.03± 149.6

GRAPE-MUST + REMUS 1171.74± 33.1 2400.03± 64.73 6055.5± 152.93
TOME 156.08± 5.25 303.58± 9.89 723.29± 23.32

GRAPE-MUST + TOME 175.9± 6.0 347.56± 11.74 848.8± 27.96

Table 1: Average number of MUSes enumerated for random problems in 1, 2 and 5 seconds for different solvers
with and without pruning. Bold indicates higher average.

Solver 1 (s) 2 (s) 5 (s)
MARCO 148.45± 16.72 288.07± 31.17 648.67± 65.36

GRAPE-MUST + MARCO 163.58± 20.34 312.88± 37.33 680.44± 75.44
REMUS 151.42± 14.19 322.12± 31.43 814.14± 77.16

GRAPE-MUST + REMUS 245.25± 32.96 535.82± 72.2 1321.94± 160.1
TOME 56.25± 3.68 109.92± 6.76 253.19± 13.64

GRAPE-MUST + TOME 67.85± 5.73 130.8± 10.77 313.76± 24.07

Table 2: Average number of MUSes enumerated for logistics planning problems in 1, 2 and 5 seconds for different
solvers with and without pruning. Bold indicates higher average.

egy means it does not benefit as much from pruning
as REMUS. TOME builds chains of subsets of the for-
mula and looks for the smallest unsatisfiable one in the
chain (Bend́ık et al., 2016). The sparsity induced by
pruning may make it harder for TOME to find fully un-
satisfiable chains, requiring it to perform binary search
or build new chains more often. It is also important to
note that TOME enjoys the weakest negative correla-
tion between number of constraints and MUSes enu-
merated (Bend́ık and Cerná, 2018), making positive
effects of pruning easier to mask.

These results, consistent with the 30-minute runs
shown in the appendix, indicate that while GRAPE-
MUST is beneficial to MUS enumeration in many
cases, the choice of underlying solver matters and RE-
MUS is consistently the best choice in our problems.

5.2 Extrapolation To Larger Problems

In this experiment we investigate the extrapolation ca-
pability of our model to see if it can successfully prune
formulas of larger sizes than the ones used for training.

Experiment Settings We use the same model
trained on randomly generated formulas with 100 vari-
ables as in section 5.1. We evaluate the model on
formulas with 100, 150, 200, 250 and 300 variables.
We evaluate the solvers on 500 formulas of each size
and measure the absolute and relative improvement in
MUS enumeration performance.

Results Figure 2 shows the relative and absolute
improvement in MUS enumeration for each solver us-
ing GRAPE-MUST. Pruning generalizes well to larger
problems, with the average problem size reduction
only decreasing by about 7 percentage points from 100

to 300 variables. A table with size reduction figures
and enumeration results is available in the appendix.

Consistent with previous results, pruning benefits RE-
MUS significantly more than the other solvers, and
here, MARCO benefits the least. Particularly, figure
2 (left) indicates that for REMUS the improvement is
largest in formulas of around 200 clauses. However,
in very large formulas the effect of pruning diminishes
as even pruned problems become too large for the 5-
second timeout. As shown in 2 (right), the number
of MUSes found by all solvers in the largest formulas
within the time limit is very small, resulting in large
variance in the effect of pruning. Nevertheless, the
results up to 200-250 formulas suggest that training
GRAPE-MUST on smaller problems can be a viable
strategy for improving the MUS enumeration perfor-
mance of REMUS even in larger instances.

5.3 Performance Improvement In
Benchmark Problems

In this experiment we evaluate a model trained on ran-
domly generated formulas on a collection of hard prob-
lems from the 2011 SAT competition MUS enumera-
tion benchmark problems.

Experiment Settings We scale up our model to use
6 hidden layers and a latent dimension of 128 units.
We train the model on random formulas generated as
described in section 4.5. We obtain the dataset statis-
tics from the entire SAT Competition 2011 MUS track
problem set and no additional information from the
dataset is used for training. We train the model on
2 million formulas with 50 to 10000 variables and use
k = 100 to compute the pruning at test time. We
evaluate the model on 63 problems as described in
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Solver 1 (s) 2 (s) 5 (s)
MARCO 113.97± 13.59 196.27± 24.27 439.55± 56.51

GRAPE-MUST + MARCO 119.62± 16.92 231.34± 33.39 514.68± 74.22
REMUS 216.13± 24.05 423.62± 50.3 971.27± 111.76

GRAPE-MUST + REMUS 428.55± 65.89 958.15± 145.02 2371.07± 358.77
TOME 115.96± 13.99 195.96± 22.96 385.97± 42.59

GRAPE-MUST + TOME 81.39± 11.35 154.72± 21.89 339.01± 46.81

Table 3: Average number of MUSes enumerated for graph coloring problems in 1, 2 and 5 seconds for different
solvers with and without pruning. Bold indicates higher average.

(a) Percent improvement in MUS enumeration (b) Absolute improvement in MUS enumeration

Figure 2: Extrapolation to larger formulas. Relative (a) and absolute (b) improvement over the base solvers using
GRAPE-MUST on formulas of increasing size at a 5-second timeout. Despite the distribution shift, REMUS
benefits proportionally more from pruning in formulas up to 200 variables as the smaller size of the pruned
formulas accelerates enumeration. MARCO and REMUS maintain a small improvement across all formulas. As
indicated by (b) the variance in (a) increases rapidly with formula size as the actual number of MUSes found
becomes very small.

Figure 3: Comparison between REMUS and GRAPE-
MUST+REMUS on hard benchmark problems. Red
line indicates equal number of MUSes. Overall
GRAPE-MUST enables the discovery of more MUSes.

the beginning of this section. We compare the perfor-
mance of the highest performing enumerator (Bend́ık
and Černá, 2020) REMUS with and without pruning
using a timeout of 2 hours.

Results Figure 3 summarizes the performance of the
two methods in the benchmark. Out of 63 problems,
GRAPE-MUST enables the discovery of more MUSes

in 30 problems, results in no change in 21 and in per-
formance decrease in 12 problems. Interestingly in
2 problems in which REMUS alone finds no MUSes
within the time limit, GRAPE-MUST enables the enu-
meration of 2349 and 30 MUSes respectively.

On average, GRAPE-MUST removes 9444 clauses
from the problems, which corresponds to about 1%
of the problem size. Compared to previous experi-
ments this is a small reduction (see appendix). How-
ever, pruning 1% of randomly chosen clauses from
the benchmark problems invariably yields satisfiable
problems. This suggests that GRAPE-MUST is able
to identify non-critical constraints in the benchmark
problems despite the difference from the training dis-
tribution. In almost all failure cases, the pruning re-
moves less than 0.1% of the clauses, indicating that
the effort put into pruning the problems had mini-
mal effect, only taking time away from MUS enumera-
tion. Furthermore, comparisons against naive pruning
heuristics (see appendix), show that GRAPE-MUST
is more general and robust in real-world problems.

Overall this experiment indicates that training
GRAPE-MUST on random formulas is a viable strat-
egy for accelerating MUS enumeration in difficult real-
world problems. We are therefore releasing the trained
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GRAPE-MUST model along with the training code2.

6 CONCLUSION

In this work we have introduced a method that uses
learning-based graph pruning to accelerate the enu-
meration of MUSes from unsatisfiable CNF formulas.
The main approach is converting CNF formulas to
graphs and then formulating the pruning problem as
a node labeling problem. To achieve this, we have de-
signed a loss function and a differentiable objective to
train a pruning model. Extensive experimental results
show that MUS enumeration algorithms benefit from
pruning in most cases, despite the possibility of de-
stroying some MUSes. The learned model is also able
to extrapolate to problems larger than ones in its train-
ing data. Interestingly, GRAPE-MUST trained on
random formulas is able to generalize across data dis-
tributions, improving MUS enumeration performance
on hard real-world problems without the need of large
datasets.

This work opens up several possible research directions
to further explore the use of learning models in accel-
erating MUS enumeration. First, future work can con-
duct a thorough investigation of the effect of destroy-
ing MUSes during pruning. We do not conduct such
an investigation in this work due to the potentially ex-
ponential number of MUSes in unsatisfiable formulas
and the challenge of finding even a small number of
them in hard problems. However, as research in this
area develops it is imperative that we better under-
stand this trade-off and its effect on downstream tasks.
For instance, recent work on approximate MUS count-
ing (Bend́ık and Meel, 2020) can inform loss function
design for pruning models to minimize the potential
loss of MUSes.

Further investigation of the trade-off between prun-
ing time and counting time may also be beneficial.
In this work, we assume conditional independence be-
tween clauses when deciding on pruning, which lim-
its the expressiveness of the model but enables more
efficient training and inference. Future work can ex-
plore more complex models that capture the dependen-
cies between clauses and evaluate their effectiveness in
practice.

Another direction would be to generalize the proposed
approach to other constraint satisfaction domains such
as Satisfiability Modulo Theories (SMT). While solvers
like REMUS, MARCO and TOME are agnostic to the
underlying domain, our graph-pruning step relies on
graph representations of boolean CNF formulas. Fu-
ture work can devise compact representations for other

2https://github.com/tufts-ml/GRAPE-MUST

domains, as well as models with appropriate inductive
biases. Then, our training procedure can applied for
problems in those domains.
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(2016). Tunable online mus/mss enumeration. arXiv
preprint arXiv:1606.03289.
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external libraries. [Yes]
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(a) Statements of the full set of assumptions of
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(b) Complete proofs of all theoretical results.
[Not Applicable]

(c) Clear explanations of any assumptions. [Not
Applicable]

3. For all figures and tables that present empirical
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(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]
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statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]
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(b) The license information of the assets, if ap-
plicable. [Yes]
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(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
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(b) Descriptions of potential participant risks,
with links to Institutional Review Board
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(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]
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Appendix

Problem Generation

In this section we provide details on the problem gen-
eration parameters for our experiments.

Problem Pruning %
Random Formulas 32.22% ± 0.83%
Logistics Planning 36.27% ± 1.56%

Graph Coloring(4-7) 30.18% ± 1.00%

Table 4: Average percentage of the original formula
pruned by GRAPE-MUST.

Random Problems We use the same generation
procedure as (Selsam et al., 2018). As mentioned in
the main text, we generate formulas with 30-100 vari-
ables for our first experiment and larger formulas for
testing Extrapolation. In our problem generation we
set the parameter of the geometric distribution to 0.3.
This has the effect of generating formulas with slightly
more literals per clause than in (Selsam et al., 2018).
We find that this correlates with larger MUSes, which
increases the difficulty of the search in our problem.

# Variables Pruning %
100 30.22% ± 0.83%
150 29.16% ± 1.14%
200 27.68% ± 1.26%
250 24.28% ± 1.45%
300 23.48% ± 1.48%

Table 5: Average percentage of the original formula
pruned by GRAPE-MUST.

Graph coloring The generation parameters are
summarized in the text. We follow a standard SAT en-
coding for graph coloring problems: Each node is asso-
ciated with at-least-1 and at-most-one constraints for
the colors. Each edge is represented by K clauses for K
colors, forbidding adjacent nodes to share that color.
To plot pruned graph coloring formulas as graphs, the
pruned formula is further processed for visualization
using pure literal elimination to remove clauses that
are trivially satisfiable.

Logistics planning The domain file for the
logistics planning problem is available along-side
our code. Unfortunately we could not obtain
permission to distribute the planner with our
code in time, however it is available online at
https://research.ics.aalto.fi/software/sat/madagascar/
freely for academic purposes. We generate trajec-
tories of up to 5 steps with 5 to 10 packages, 1

airplane, 2 airports, 2 cities, 2 locations, and 2 trucks,
which are all matched randomly with each other
in the initial and goal states. We use the following
command line options to generate the problems:
-P 0 -1 -O -S 1 -F <steps>-1 -T <steps>

Longer Timeout Experiment

In this section we show the results from a smaller scale
experiment with a longer timeout. We use the same
problem generation parameters as in the main text,
but we use a 30 minute timeout instead. The results
are shown in Table 7.

In random problems, pruned formulas still result in
more MUSes found by Marco and Remus, but the dif-
ference is proportionally smaller than in shorter time
limits. In fact, Tome finds almost the same number
of MUSes in both formulas on average. Similarly, in
logistics planning problems pruning still benefits all
solvers but the effect is not as strong in the longer
time limit. In graph coloring problems, pruning still
offers significant benefit to Marco and Remus, while
it seems to disrupt Tome’s search strategy consistent
with our experiment in section 5.1.

Overall, while even in longer time limits solvers with
different search strategies interact with GRAPE-
MUST differently, the combination GRAPE-
MUST+REMUS consistently outperforms other
methods in our experiments. Furthermore, the results
from random and logistics planning problems indicate
that given enough time, the speed-up due to pruning
may diminish. However, as demonstrated in section
5.3, in realistic problems with a standard time limit
of 2 hours GRAPE-MUST offers significant benefit to
MUS enumeration in most cases.

Extrapolation Experiment Additional Tables

Here we show the reduction and enumeration results
for the extrapolation experiment in additional detail.

Table 5 Shows that formula pruning performance is
fairly consistent even in larger problem sizes, with the
pruning percentage decreasing by about 7 percentage
points when the problem, size is tripled. This indicates
that the pruning method that the model has learned
is able to generalize to larger problems and can there-
fore be used to accelerate MUS enumeration on larger
problems.

Table 6 Shows the detailed MUS enumeration perfor-
mance before and after pruning for the extrapolation
experiment. As discussed in the main text, GRAPE-
MUST is able to accelerate MUS enumeration espe-
cially for REMUS in larger problems. Interestingly,
around 200 variables, the improvement of REMUS is
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Solver 100 vars. 150 vars. 200 vars. 250 vars. 300 vars.
MARCO 1145.92± 36.0 348.56± 17.84 103.0± 8.13 55.6± 7.52 19.33± 3.31

GRAPE-MUST + MARCO 1157.69± 34.03 357.43± 17.98 108.21± 8.47 60.31± 8.7 20.25± 3.31
Remus 5188.03± 149.6 1493.73± 77.36 404.66± 35.97 156.41± 19.74 63.29± 14.78

GRAPE-MUST + REMUS 1157.69± 34.03 2216.71± 91.92 630.75± 50.52 220.49± 25.72 66.38± 11.69
Tome 723.29± 23.32 218.99± 9.81 68.02± 4.56 30.31± 3.03 11.13± 1.75

GRAPE-MUST + TOME 848.8± 27.96 244.87± 11.11 76.67± 5.03 35.56± 3.42 12.86± 2.02

Table 6: Enumeration results from the extrapolation experiment.

Solver (30 mins.) Random Problems Logistics Planning Graph Coloring
Marco 96220± 7129 172933.72± 16285.18 128638.94± 23702.68

GRAPE-MUST + Marco 97254± 6822 177356.60± 16373.36 176703.96± 31061.28
Remus 484033± 25554 82774.54± 5690.20 8965.48± 1121.03

GRAPE-MUST + Remus 504056± 28010 87825.64± 6239.49 15525.12± 3201.24
Tome 73644± 3318 24403.12± 2843.69 72476.06± 16174.54

GRAPE-MUST + Tome 73442± 3719 25903.40± 2842.90 54981.82± 12340.48

Table 7: Average number of MUSes found by each solver in 30 minutes.

even higher than previous results, indicating a sweet-
spot between extrapolation ability and problem size.

Pruning Statistics

Table 4 shows the average percentage of clauses pruned
by our model. We can see that GRAPE-MUST actu-
ally prunes a significant fraction of the clauses in the
original formulas. We have also tried a random prun-
ing method that randomly removes the same fraction
of clauses, and the resulting formulas are mostly satis-
fiable. This provides further evidence that our pruning
model can effectively identify non-critical constraints.

Comparison With Naive Pruning

We devise the following two naive strategies and apply
them to the collection of hard problems from the 2011
SAT competition MUS enumeration benchmark used
in the main text. To make the comparison with our
method fair, both strategies involve O(1) SAT calls
with respect to the problem size. We use the following
two strategies to rank clauses:

• Clause-length based: Given a problem S = (U,C)
Let lmax = maxc∈C |c| and lmin = minc∈C |c|.
Then, taking K=100 equally sized integer steps
between lmax and lmin search for the smallest
clause length l∗ such that C ′ = c ∈ C, |c| ≤ l∗ and
S′ = (C ′, U ′) is unsatisfiable. Return S′.

• Variable frequency based: Compute the frequency
in which each variable (and its negation) appear in
the clauses of S. Then, each clause is scored by the
negative average frequency of the variables (and
their negations) in it. As a result, clauses with
variables appearing in few other clauses receive

higher scores. Then, prune the formula as in the
previous strategy, only using clause scores instead
of length to decide pruning. This replaces scores
produced by our GNN.

The first strategy produces on average formulas 0.08%
smaller than the original formulas, with most problems
not being successfully pruned. Most problems failed
to be pruned after a single SAT call, taking little time
from MUS enumeration. As a result, 55 of the bench-
mark problems have the same number of MUSes enu-
merated between the two methods. The clause-length
strategy improves enumeration in 5 problems and re-
duces the number of MUSes found in 3 problems. In-
terestingly, in one of the problems where the first strat-
egy succeeds, REMUS finds 1 MUS, GRAPE-MUST
+ REMUS finds 13 and Strategy 1 + REMUS finds
134. This may suggest that for some problems, naive
heuristics like clause-length may be viable strategies,
however it is not clear how to decide in which prob-
lems to use it and it does not generalize well. Since
GRAPE-MUST is a learning model trained on diffi-
cult random problems, its learned heuristic is much
more widely applicable, even if better problem-specific
heuristics may exist. The second strategy prunes no
formulas successfully, and so we do not run MUS enu-
meration.


