
No-Regret Algorithms for Safe Bayesian
Optimization with Monotonicity Constraints

Arpan Losalka Jonathan Scarlett
National University of Singapore National University of Singapore

Abstract

We consider the problem of sequentially max-
imizing an unknown function f over a set of
actions of the form (s,x), where the selected
actions must satisfy a safety constraint with
respect to an unknown safety function g. We
model f and g as lying in a reproducing ker-
nel Hilbert space (RKHS), which facilitates
the use of Gaussian process methods. While
existing works for this setting have provided
algorithms that are guaranteed to identify a
near-optimal safe action, the problem of at-
taining low cumulative regret has remained
largely unexplored, with a key challenge be-
ing that expanding the safe region can in-
cur high regret. To address this challenge,
we show that if g is monotone with respect
to just the single variable s (with no such
constraint on f), sublinear regret becomes
achievable with our proposed algorithm. In
addition, we show that a modified version of
our algorithm is able to attain sublinear re-
gret (for suitably defined notions of regret)
for the task of finding a near-optimal s corre-
sponding to every x, as opposed to only find-
ing the global safe optimum. Our findings
are supported with empirical evaluations on
various objective and safety functions.

1 INTRODUCTION

Sequential optimization of an unknown function is an
important task with many applications, and comes
with an interesting set of challenges in the scenario
that function queries are expensive. Bayesian opti-
mization is a popular approach for this task, with ap-

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

plications including robotics (Lizotte et al., 2007), en-
vironmental monitoring (Srinivas et al., 2012), adap-
tive clinical trial design (Takahashi and Suzuki, 2021),
hyperparameter tuning in machine learning (Snoek
et al., 2012) and recommendation systems (Vanchi-
nathan et al., 2014), among others.

This black-box optimization problem becomes even
more challenging when considering a safety constraint
along with the optimization objective. One impor-
tant notion of safety that has been considered in the
literature is to only allow actions for which an un-
known safety function takes values above a pre-defined
safety threshold (Sui et al., 2015). Various methods
have been proposed for this task, such as SafeOpt
(Sui et al., 2015), StageOpt (Sui et al., 2018) and
SafeOpt-MC (Berkenkamp et al., 2021), among oth-
ers. The core idea of these algorithms is to start from
a safe seed set of inputs, and cautiously expand the
set and identify the most promising regions within it,
in order to reach the optimal action. Accordingly, the
main performance metrics considered have been ex-
panding the safe set as much as possible and returning
a single near-optimal action. In contrast, the goal of
small cumulative regret has remained relatively unex-
plored in safe settings, despite being the most widely-
adopted performance measure in the vanilla setting. A
key difficulty in the safe setting is that expanding the
set of known safe points is “purely explorative” and
may require sampling many highly suboptimal points.

In this work, we consider the scenario where the safety
function g is known to increase monotonically with re-
spect to a safety variable s ∈ DS , while the objec-
tive function f is distinct from g and need not have
any such structure. We show that with this mild
assumption, strong guarantees on the cumulative re-
gret become possible. We also introduce other notions
of regret associated with finding the best s for every
x ∈ DX separately, and we show that our algorithms
can be simplified (while maintaining similar guaran-
tees) when both f and g are monotone in s.

No-Regret Algorithms for Safe Bayesian Optimization

Motivating Applications: Consider the problem
of an adaptive Phase I/II clinical trial design for the
purpose of finding drug doses that simultaneously sat-
isfy safety constraints with respect to drug toxicity,
as well as achieve optimal efficacy (Berry, 2012). A
common structure exhibited by the toxicity of various
classes of drugs is that it increases monotonically as a
function of the drug dosage (Chevret, 2006). While the
efficacy may also increase similarly, it is not the case
in general, especially when drug combinations are used
(Cai et al., 2014). In such a scenario, the problem of
finding the optimal safe drug dose fits our problem for-
mulation, since both toxicity (g) and efficacy (f) are
unknown functions of the drug doses (with s denot-
ing dosage of one drug, and x denoting that of other
drugs). Here, we need to optimize f while satisfying
the toxicity threshold g(s,x) ≤ h, and regret mini-
mization in this setting implies that we not only find
the optimum (minimizing simple regret), but we also
maximize benefits to the trial participants simultane-
ously (minimizing cumulative regret).

The requirement of a trial may also be to find the op-
timal dose for a range of patient’s characteristics (e.g.,
age group, gender, etc.). In this case, our alternate
problem setting is relevant, where we want to find
the optimum s (dose) for every x (patient’s charac-
teristics), while satisfying safety constraints (toxicity
threshold). The problem formulation also extends nat-
urally when considering drug-combinations, as long as
monotonic behavior of drug toxicity holds with respect
to at least one drug dose.

Another application area suited to the goal of choosing
parameters to optimize performance (with respect to
f) while ensuring safety (with respect to g) is robotics
(Berkenkamp et al., 2017). Here, the notion of a
“safety variable” s might be explicitly incorporated
into the system by design, i.e., we have a controllable
variable that directly dictates “how cautiously” the
task is performed. Alternatively, certain variables such
as acceleration and torque might be implicitly con-
nected to safety and naturally provide our required
monotonicity constraint.

Related Work: The problem of safe Bayesian op-
timization was first considered by Sui et al. (2015),
who proposed the SafeOpt algorithm for this task.
This algorithm, as well as other algorithms that were
proposed subsequently such as StageOpt (Sui et al.,
2018), SafeOpt-MC (Berkenkamp et al., 2021), and
GOOSE (Turchetta et al., 2019), aims to expand a
safe seed set widely enough to guarantee identifying a
near-optimal safe point (excluding those from regions
that are “unreachable”). Extensions have also been
provided to reinforcement learning (Turchetta et al.,

2016; Berkenkamp et al., 2017; Turchetta et al., 2020).

A distinct approach that can give low cumulative re-
gret was proposed in (Amani et al., 2021), but since
it expands the safe set in a “one-shot” manner, it is
only suited to kernels that are finite-dimensional or
extremely smooth. Improvements over the above al-
gorithms are also possible for safety functions modeled
by dynamical systems (Baumann et al., 2021; Sukhija
et al., 2022), but our focus is on static functions. We
refer the reader to (Losalka and Scarlett, 2023) for fur-
ther discussion on all of these works.

The closest work to ours is that of Losalka and Scar-
lett (2023), who also use monotonicity of the unknown
function f with respect to a safety variable s, and de-
sign the M-SafeUCB algorithm. While they prove a
sublinear regret bound, the applicability of the algo-
rithm is limited by the fact that the safety constraint
is defined with respect to f itself. In the more general
setting where f and g are distinct, their algorithm is
only directly suitable when both f and g are mono-
tone in s (see Section 3 for further details). A naive
strategy for overcoming this would be to explore using
g and then pass the resulting safe set to an optimizer
for f , but the former step may already incur high cu-
mulative regret with respect to f . Overall, our more
general setting significantly complicates both the algo-
rithm design and the theoretical analysis.

Contributions: Our main contributions are sum-
marized as follows.

1. We introduce the problem of safe optimization
of an unknown function f when the safety func-
tion g is known to be monotone with respect to
a safety variable s. We propose an algorithm, M-
SafeOpt, which uses a novel acquisition function
designed to balance exploration and exploitation,
along with the elimination of provably suboptimal
x’s, to attain sublinear cumulative regret.

2. We consider an alternative setting where the goal
is to find the optimal action corresponding to ev-
ery x ∈ DX (i.e., the best safe s for every x),
and adapt our algorithm for this task. We pro-
vide modified cumulative regret notions capturing
both the degree of optimality of sampled points
and a worst-case notion over all x (see Section 2
for details), with both guaranteed to be sublinear.

3. We show how our algorithm can be simplified in
the scenario that both f and g increase monoton-
ically with respect to s, while attaining the same
theoretical guarantees for the goal of safe opti-
mization across the input domain. Alternatively,
when the goal is to optimize s for every x, we
show how further simplification recovers the M-

Arpan Losalka, Jonathan Scarlett

SafeUCB algorithm and its guarantees.

4. We empirically evaluate our proposed algorithms
on various synthetic functions, showing significant
improvements over several natural baselines.

2 PROBLEM STATEMENT

We consider the problem of sequentially maximizing
an unknown function f : D → R over a set of actions
D = DS×DX while satisfying a given safety constraint
with respect to another unknown function g : D → R,
where DX ⊂ Rd is a compact set and DS = [0, 1]. The
function g is assumed to increase monotonically in the
first argument s ∈ DS .

At each round t, the algorithm selects an action
(st,xt) ∈ DS ×DX , and subsequently observes a noisy

evaluation of the objective function yft = f(st,xt)+ϵft ,
as well as that of the safety function, ygt = g(st,xt)+ϵgt .
At round t, the selected action is a function of the his-
tory Ht−1 = {(sk,xk, y

f
k , y

g
k) : k = 1, . . . , t− 1}, and is

required to satisfy the safety condition1 g(st,xt) ≤ h
as formalized below.

Goal: We consider two distinct objectives: (i) find-
ing the global safe optimum, or (ii) finding the op-
timal f -value for every x ∈ DX . In both cases,
an algorithm must satisfy the safety constraint: (iii)
g(st,xt) ≤ h ∀t ≥ 1 with high probability.

When the goal is to sequentially maximize f over D
(goal (i)), we consider the following definition of cu-
mulative regret:

RT =

T∑
t=1

rt, with rt = f(s∗,x∗)− f(st,xt), (1)

where (s∗,x∗) = argmax(s,x)∈D:g(s,x)≤h f(s,x) is an
optimal safe action. This matches the standard cu-
mulative regret notion in black-box optimization, but
restricted to safe actions.

When the goal is to find the optimal f -value for every
x ∈ DX , we consider the following modified definition:

R′
T =

T∑
t=1

r′t, with r′t = f(s
(xt)
∗ ,xt)− f(st,xt), (2)

where s
(x)
∗ = argmaxs∈DS :g(s,x)≤h f(s,x) denotes the

optimal safe s given x. Note that this definition varies
from the usual notion of regret used in bandit prob-
lems. We use this formulation here to evaluate whether
an algorithm achieves sublinear regret with respect to

1Several existing works instead require g(st,xt) ≥ h;
but this is inconsequential because g(·) and h can both
simply be replaced by their negations.

whichever (st,xt) it chooses in each round t. How-
ever, minimizing this quantity alone would not result
in a complete evaluation of the algorithm for this goal.
This is because, for example, it may choose to select
the same x in every round, and minimize regret only
with respect to this x. Given that we want the al-
gorithm to simultaneously find the maximum f -value
for every x for goal (ii), we additionally specify the
following quantity that we also seek to minimize:

RX
T =

T∑
t=1

rXt , with rXt = max
x∈DX

(
f(s

(x)
∗ ,x)−f(ŝ(x)t ,x)

)
,

(3)

where ŝ
(x)
t denotes the algorithm’s “best guess” of the

optimal safe s ∈ DS for a given x after round t (see

Section 3 for our specific choice of ŝ
(x)
t).

While minimizing R′
T ensures that the algorithm

makes progressively better choices, minimizing RX
T en-

sures that for every x ∈ DX , the f -values of the best
actions estimated by the algorithm get progressively
closer to the true optima. Note that neither of these
two objectives implies the other, since one specifically
concerns the actions selected (R′

T), while the other
only evaluates the current best estimates (RX

T). Intu-
itively, simultaneous minimization of both implies that
not only does the algorithm get better at estimating
the optimal action for every x (which may be achieved
with pure exploration as well), it also does so by mak-
ing progressively better choices (thus trading between
exploration and exploitation).

Assumptions: We adopt the standard assumption
that f and g have bounded norm in the reproducing
kernel Hilbert space (RKHS) of functions D → R,
with positive semi-definite kernel functions kf , kg :
D × D → R respectively, where D = DS × DX . We
denote the RKHS by Hkf

(D), and its inner prod-
uct by ⟨f, kf ((s,x), ·)⟩kf

, and the RKHS norm by

||f ||kf
=
√
⟨f, f⟩kf

.

To capture the smoothness of f , we assume a known
upper bound Bf on the RKHS norm of the un-
known target function, i.e., ||f ||kf

≤ Bf . Simi-
larly, we assume a known upper bound Bg for the
safety function g, i.e., ||g||kg

≤ Bg. We also
adopt the standard assumption of bounded variance:
kf ((s,x), (s,x)), kg((s,x), (s,x)) ≤ 1 ∀(s,x) ∈ D.
In addition, similar to Losalka and Scarlett (2023), we
make the following assumptions regarding the function
domain, monotonicity, and safety:

1. DS = [0, 1] is continuous, while DX can be either
discrete or continuous;

2. the function g is monotonically increasing in the

No-Regret Algorithms for Safe Bayesian Optimization

first argument, i.e., for all x ∈ DX , g(s,x) is an
increasing function of s ∈ DS ;

3. the action (0,x) is safe for every x in the domain,
i.e., for all x ∈ DX , g(0,x) ≤ h.

Our algorithms can easily be adapted to avoid the
third assumption, as long as we have access to an ini-
tial safe seed set. However, assuming s = 0 to be safe
allows us to measure regret with respect to the global
safe maximizer, rather than restricting to a “reach-
able” set. We believe this assumption is natural, as
s = 0 is the most cautious choice for any x.

To derive meaningful regret bounds in our setting, it
turns out to be useful to impose bounds on the maxi-
mum growth of f(·,x) for fixed x, as well as the min-
imum growth of g(·,x) for fixed x. (In Appendix C.1,
we argue that such requirements cannot be avoided in
general.) Accordingly, we define Lf > 0 and L′

g > 0
to be the corresponding bounds on the growth rates,
so that ∀x ∈ DX ,∀s′ < s,

f(s,x)− f(s′,x) ≤ Lf |s− s′|, and (4)

g(s,x)− g(s′,x) ≥ L′
g|s− s′|. (5)

We will consider algorithms that know Lf and L′
g; triv-

ially, any upper bound on the former or lower bound on
the latter also remains valid. The existence of Lf is a
milder assumption than having a global Lipschitz con-
stant, because it only concerns the growth with respect
to s (known global Lipschitz constants are common in
existing algorithms such as SafeOpt, SafeOpt-MC
and StageOpt).

Lastly, we make the standard assumption that
the noise sequence {ϵft }t≥1 is conditionally Rf -sub-
Gaussian for a fixed constant Rf ≥ 0, i.e.,

∀t ≥ 0,∀λf ∈ R,E
[
eλf ϵ

f
t |Ft−1

]
≤ exp

(
λ2
fR

2
f

2

)
,

(6)
where Ft−1 is the σ-algebra generated by the random
variables {sk,xk, ϵ

f
k}t−1

k=1 and xt (similarly, {ϵgt }t≥1 is
Rg-sub-Gaussian).

3 PROPOSED ALGORITHMS

Gaussian Process Model: Our RKHS modeling
assumption naturally lends itself to the use of Gaussian
process (GP) methods. Specifically, our algorithms
use the zero-mean GP models GP(0, kf) and GP(0, kg)
for f and g, along with an associated noise variance
parameters λf , λg > 0 (which may differ from Rf , Rg).

For both f and g, upon observing t noisy values
y1, . . . , yt, the associated posterior update equations

are:

µt(s,x) = kt(s,x)
T (Kt + λI)

−1
yt, (7)

kt((s,x), (s
′,x′)) = k ((s,x), (s′,x′))

−kt(s,x)T (Kt + λI)−1kt(s
′,x′), (8)

σ2
t (s,x) = kt((s,x), (s,x)), (9)

where yt = [yi]i≤t, kt(·) = [k((si,xi), ·)]i≤t, Kt =
[k((si,xi), (sj ,xj))]i,j≤t, k ∈ {kf , kg}. When consid-
ering f and g we suitably substitute k ∈ {kf , kg},
λ ∈ {λf , λg}, and yi ∈ {yfi , ygi } respectively.

Algorithm Design: As discussed in Section 2, we
consider multiple goals for our algorithms. In this
section, we first outline the general structure of our
proposed algorithms, and subsequently describe each
specific algorithm in further detail.

The key ideas behind our algorithms are to (i) elimi-
nate suboptimal x’s in every round, (ii) limit the ex-
pansion of the safe set only to the regions where a
“better” action may be found, and (iii) use an acquisi-
tion function that tries to reduce uncertainty in the set
of actions that could either help expand the safe set
or maximize the objective function. Ideas (i) and (ii)
exploit the monotonicity of g in s, and distinguish our
algorithm from existing ones such as SafeOpt (which
uses idea (iii) but not (i)–(ii)).

Our algorithms use confidence bounds of the following
standard form:

UCBf
t−1(s,x) = µf

t−1(s,x) + βf
t σ

f
t−1(s,x), (10)

LCBf
t−1(s,x) = µf

t−1(s,x)− βf
t σ

f
t−1(s,x), (11)

where UCB and LCB denote the upper and lower
confidence bound respectively, βf

t is a time-dependent
constant (and analogously with g in place of f). We

keep βf
t (and βg

t) generic here, but consider the UCB
and LCB providing high-probability upper and lower
bounds on f (and g). See Section 4 for specific choices.

In each round t = 1, . . . , T , the main steps of our al-
gorithms are as follows.

1. Determine the set of actions St that can currently
be classified as safe with high probability:

St =
{
(s,x) ∈ D : UCBg

t−1(s,x) ≤ h
}

∪
{
(0,x) : x ∈ DX

}
.

(12)

2. Reduce the domain of x’s under consideration by
eliminating any x ∈ Dt−1

X that satisfies an elimi-
nation criteria, elimt(x) = true (detailed below)
to form the set Dt

X (starting with D0
X = DX):

Dt
X = Dt−1

X \
{
x ∈ Dt−1

X : elimt(x) = true
}
.

(13)

Arpan Losalka, Jonathan Scarlett

3. For every x ∈ Dt
X , find the s-values on the cur-

rent “safe boundary”, given by the highest s ∈ DS
such that safety is guaranteed with high probabil-

ity (denoted by s
(x)
t). Form the set Gt with these

(s
(x)
t ,x) pairs if there is a possibility of expan-

sion to a more optimal f -value (as decided by a
function expdt(s,x)). Mathematically, we have:

s
(x)
t = max

{
s ∈ DS : (s,x) ∈ St

}
, (14)

Gt =
{
(s

(x)
t ,x) : x ∈ Dt

X , expdt(s,x) = true
}
.

(15)

4. For every x ∈ Dt
X , find a safe action that max-

imizes UCBf
t−1(s,x), and form the set of such

maximizers, Mt, as follows:

ŝ
(x)
t = argmax

s∈DS :s≤s
(x)
t

UCBf
t−1(s,x), (16)

Mt =
{
(ŝ

(x)
t ,x) : x ∈ Dt

X
}
. (17)

Note that we use the same notation as in (3) here

(i.e., ŝ
(x)
t), because our proposed algorithms use

the maximizer (over s) of UCBf
t−1(s,x) as the cur-

rent estimate of the optimal safe s for a given x.

5. Use an acquisition function acqt(s,x) to select an
action as follows:

(st,xt) = argmax
(s,x)

acqt(s,x). (18)

Next, we describe the three key functions, elimt, expdt
and acqt, which vary corresponding to the different
problem settings as discussed earlier.

Case 1: Maximizing f across D: We first con-
sider the most standard cumulative regret notion, cor-
responding to RT in (1). In this case, the three func-
tions in Algorithm 1 are defined as follows:

• elimt : We eliminate x’s that are suboptimal ac-
cording to the confidence bounds. For defining
suboptimality, we first define the following term:

s
(x)
t = max

{
s ∈ DS :

LCBg
t−1(s

(x)
t ,x) + L′

g|s− s
(x)
t | ≤ h

}
.
(19)

s
(x)
t essentially indicates the highest s ∈ DS for
which the safety function could be at most h op-
timistically (since even with the minimum growth

rate, g exceeds h beyond s
(x)
t).

Suboptimality of x is decided based on the fol-
lowing two conditions: (i) the highest UCBf

t−1 for
the (s,x)’s currently known to be safe is lower

Algorithm 1 M-SafeOpt

1: Input: Prior GP(0, kf), GP(0, kg), parameters

λf , λg, Lf , L
′
g, {βf

t }t≥1, {βg
t }t≥1

2: D0
X = DX

3: for t = 1, . . . , T do
4: Dt

X = Dt−1
X \ {x ∈ Dt−1

X : elimt(x) = true}
5: ▷ eliminate all suboptimal x to form Dt

X
6: Gt = ∅
7: Mt = ∅
8: for x ∈ Dt

X do ▷ find max. safe s∀x ∈ Dt
X

9: if UCBg
t−1(s,x) > h∀s ∈ DS then

10: s
(x)
t = 0

11: else if ∃s ∈ DS : UCBg
t−1(s,x) = h then

12: s
(x)
t = max{s ∈ DS ,UCBg

t−1(s,x) = h}
13: else
14: s

(x)
t = 1

15: end if
16: if expdt(s

(x)
t ,x) is true then ▷ form Gt

17: Gt = Gt ∪ {(s(x)t ,x)}
18: end if
19: ŝ

(x)
t = argmax

s∈DS :s≤s
(x)
t

UCBf
t−1(s,x)

20: Mt = Mt ∪ {(ŝ(x)t ,x)} ▷ form Mt

21: end for
22: (st,xt) = argmax(s,x):x∈Dt

X
acqt(s,x)

23: Update posterior to get µf
t , σ

f
t , µ

g
t , σ

g
t

24: end for

than the LCBf
t−1-value of some (s′,x′) known to

be safe, and (ii) the maximum possible f -value

at (s
(x)
t ,x) is less than the LCBf

t−1-value of some
(s′,x′) known to be safe. Thus, elimt(x) is true
if both of the following conditions hold:

(i) max
s≤s

(x)
t

{UCBf
t−1(s,x)}

< max
(s′,x′)∈St

{
LCBf

t−1(s
′,x′)

}
, (20)

(ii) UCBf
t−1(s

(x)
t ,x) + Lf |s(x)t − s

(x)
t |

≤ max
(s′,x′)∈St

{
LCBf

t−1(s
′,x′)

}
. (21)

These criteria ensure that even when being opti-
mistic, any safe action corresponding to x (either
within the current safe region as in (20), or after
expanding further as in (21)) cannot result in a
higher f -value than f(s′,x′).

• expdt : We include an action (s
(x)
t ,x) in the set

Gt only if expanding to s
(x)
t could optimistically

lead to a better f -value than the one currently
found. Thus, expdt(x) is set to true if the follow-

No-Regret Algorithms for Safe Bayesian Optimization

ing condition holds:

UCBf
t−1(s

(x)
t ,x) + Lf |s(x)t − s

(x)
t |

> max
(s′,x′)∈St

{
LCBf

t−1(s
′,x′)

}
. (22)

• acqt : We define the acquisition function as:

acqt(s,x) (23)

=


max

{
βf
t σ

f
t−1(s,x), β

g
t σ

g
t−1(s,x)

}
,

if (s,x) ∈ Gt;

βf
t σ

f
t−1(s,x), if (s,x) ∈Mt and (s,x) /∈ Gt;

0, otherwise,

in order to reduce uncertainty of f within the
potential maximizers Mt, and reduce the uncer-
tainty of both f and g in the expander set Gt.

Case 2: Maximizing f for every x ∈ DX : Sup-
pose that the goal is to find the optimal safe s for every
x (goal (ii) in Section 2). In this case, we modify elimt
and expdt as follows, while keeping acqt unchanged.

• elimt : Since we want to find the optimal action
corresponding to every x, we should not eliminate
any x’s from consideration in this case. Thus, we
define elimt(x) = false ∀x ∈ DX .

• expdt : With a similar motivation to Case 1,
expdt(x) is set to true if the following holds:

UCBf
t−1(s

(x)
t ,x) + Lf |s(x)t − s

(x)
t |

> max
s≤s

(x)
t

{LCBf
t−1(s,x)}, (24)

where s
(x)
t is the highest “potentially safe” s as

earlier (see (19)). The condition (24) states that

the optimistic f -value at s
(x)
t is better than a pes-

simistic value among the s known to be safe given
x. Note that unlike Case 1, we use x on both
sides and do not compare to any x′ ̸= x; this is
because here we must find the best s for every x.

Case 3: Both f and g are monotone: Here we
consider the scenario where both f and g are mono-
tonically increasing functions in s. As a first sub-case,
we again consider the goal (1) associated with finding
a global safe maximizer. While the same algorithm as
case 1 would work here as well, we find that the algo-
rithm can be simplified substantially. Since we know
that the optimal f -value will be found along the safe
boundary, there is no requirement to separately main-
tain the set Mt.

We simplify the three key functions in Algorithm 1 as
follows. First, for defining elimt, it suffices to consider

(21) only. Next, we always expand for any x that is not
eliminated, i.e., ∀x ∈ Dt

X , expdt is set to true. Finally,
the acquisition function is simplified as follows:

acqt(s,x) (25)

=

{
max

{
βf
t σ

f
t−1(s,x), β

g
t σ

g
t−1(s,x)

}
, if (s,x) ∈ Gt;

0, otherwise.

As a second sub-case, with both f and g still being
monotone, we may consider the task of finding the best
(highest) s for every x. In this scenario, removing the
elimination step altogether, setting expdt(x) = false

when s
(x)
t = 1, and modifying the acquisition func-

tion to only consider σg
t−1 essentially results in the M-

SafeUCB algorithm of Losalka and Scarlett (2023).
In Appendix A.6, we show how their theoretical guar-
antees can be recovered as a special case of ours.

Extensions: In Appendix C.2, we outline several
straightforward extensions of our algorithm, includ-
ing multiple safety functions, joint RKHS modeling of
(f, g), and the presence of contextual variables.

4 THEORETICAL RESULTS

Our theoretical analysis relies on the widely-used no-
tion of information gain, which we define separately
for f and g as follows:

γf
t := max

A⊂D:|A|=t
I(yfA; fA), (26)

γg
t := max

A⊂D:|A|=t
I(ygA; gA), (27)

where I(yfA; fA) denotes the mutual information be-

tween fA = [f(s,x)](s,x)∈A and yfA = fA + ϵfA, and

where ϵfA ∼ N (0, λfI) (similarly, for I(ygA; gA)). The
information gain essentially captures the amount of
uncertainty reduction in the function as a result of ob-
serving t noisy evaluations.

Recall that our confidence bounds (10)–(11) depend

on parameters βf
t and βg

t that have been generic until
now. We will state our results keeping them generic,
but requiring their validity; formally, we say that
(βf

t , β
g
t) provide (1−δ)-valid confidence bounds if, with

probability at least 1− δ, for all (s,x) ∈ D, t ≥ 1,

|µf
t−1(s,x)− f(s,x)| ≤ βtσ

f
t−1(s,x), and (28)

|µg
t−1(s,x)− g(s,x)| ≤ βtσ

g
t−1(s,x). (29)

Additionally, our proofs rely on the βt-terms being
non-decreasing. The following lemma from Chowd-
hury and Gopalan (2017) (namely, their Theorem 2
and a union bound over f and g) provides a well-

known such choice of (βf
t , β

g
t); we will also mention

an alternative below.

Arpan Losalka, Jonathan Scarlett

Lemma 1. For any δ > 0, the parameters

βf
t = Bf +Rf

√
2(γf

t−1 + 1 + ln (2/δ)), and (30)

βg
t = Bg +Rg

√
2(γg

t−1 + 1 + ln (2/δ)) (31)

provide (1− δ)-valid confidence bounds.

We are now ready to state our main theorems, all of
which are proved in Appendix A. Recall that our three
regret notions RT , R

′
T , and RX

T are defined in (1)–(3),
and Lf , L

′
g are defined in (4)–(5).

Theorem 1. Under the setup and assumptions of Sec-
tion 2 and any non-decreasing βf

t , β
g
t providing (1−δ)-

valid confidence bounds, Algorithm 1 (in both case 1
and case 3) satisfies the following with probability at
least 1− δ:

RT = O

((
1 +

Lf

L′
g

)(
βg
T

√
Tγg

T + βf
T

√
Tγf

T

))
.

(32)

Theorem 2. Under the setup and assumptions of Sec-
tion 2 and any non-decreasing βf

t , β
g
t providing (1−δ)-

valid confidence bounds, Algorithm 1 (in case 2) satis-
fies the following with probability at least 1− δ:

R′
T = O

((
1 +

Lf

L′
g

)(
βg
T

√
Tγg

T + βf
T

√
Tγf

T

))
.

(33)

Theorem 3. Under the setup and assumptions of Sec-
tion 2, and any non-decreasing βf

t , β
g
t providing (1−δ)-

valid confidence bounds, Algorithm 1 (in case 2) satis-
fies the following with probability at least 1− δ:

RX
T = O

((
1 +

Lf

L′
g

)(
βg
T

√
Tγg

T + βf
T

√
Tγf

T

))
.

(34)

We note that the above regret bounds can be refined
to the following form:

RT = O

(
βf
T

√
Tγf

T +
Lf

L′
g

βg
T

√
Tγg

T

)
(35)

by modifying the acquisition function as follows:

acqt(s,x) = max{βf
t σ

f
t−1(s,x), (Lf/L

′
g)β

g
t σ

g
t−1(s,x)}

(36)
if (s,x) ∈ Gt (with the other cases remaining un-
changed in (23) and (25)). This refined bound applies
to RT (in both case 1 and case 3), R′

T (in case 2),
and RX

T (in case 2), and provides desirable properties
with respect to the scaling of f and g. (See Appendix
A.5 for a proof of the validity of the refined regret
bounds, and a discussion on the scaling properties.)

However, this comes with the trade-off of having to
incorporate the constants Lf and L′

g into the acquisi-
tion function. This introduces additional dependence
of the algorithm on these constants, which may be
undesirable. Therefore, we we primarily focus on the
algorithm with the earlier acquisition function (18),
which has similar sublinear regret guarantees.

For all of the above theorems, our regret bounds have
the same βT

√
TγT form (with f or g superscripts) as

GP-UCB (Srinivas et al., 2012) and other related al-
gorithms (e.g., (Chowdhury and Gopalan, 2017)), and
hence also the same bounds when applied to specific
kernels. For instance, for the squared exponential ker-
nel, we have γT = O(lnd+1 T) (Srinivas et al., 2012),
which implies sublinear regret via Lemma 1.

For the Matérn-ν kernel, we have γT = O
(
T

d
2ν+d log T

)
(Vakili et al., 2021). Since βT is also linear in γT
in Lemma 1, this only guarantees sublinear regret if

d
2ν+d < 1

2 , i.e., ν > d
2 . Fortunately, alternative confi-

dence bounds have recently been given that guarantee
sublinear regret without this restriction (Whitehouse
et al., 2023), and we can directly make use of these
since our theorems are stated in terms of generic con-
fidence bounds. The changes required for these varia-
tions are identical to the vanilla setting without safety
constraints, so we do not repeat them.

5 EXPERIMENTS

In this section, we present empirical results to com-
plement our theoretical findings, by running the M-
SafeOpt algorithm (in Case 1 and Case 2) and com-
paring with baseline algorithms 2. The primary goal of
the experiments is to (i) verify that our cumulative re-
gret notions demonstrate sublinear behavior, (ii) verify
that unsafe actions are not sampled, and (iii) demon-
strate performance gains over existing algorithms.
We primarily use SafeOpt-MC (Berkenkamp et al.,
2021) and the purely exploratory PredVar (Schreiter
et al., 2015) algorithms for comparisons. SafeOpt
(Sui et al., 2015) andM-SafeUCB (Losalka and Scar-
lett, 2023) are skipped, since they are designed to work
with a single function f . Additional experimental re-
sults are provided in Appendix B.1, and the details
(e.g., descriptions of baselines, choices of kernels and
βt) are given in Appendix B.2.

Simulated Clinical Trial: For this experiment, we
use the logistic function as a model of the dose-toxicity
and dose-efficacy behaviors. Specifically, following Cai

2The code is available at https://github.com/
arpanlosalka/m-safeopt.

No-Regret Algorithms for Safe Bayesian Optimization

0.0 0.2 0.4 0.6 0.8 1.0
s

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

x

Objective function

0.0 0.2 0.4 0.6 0.8 1.0
s

x

Safety function

0.005

0.045

0.085

0.125

0.165

0.205

0.245

0.285

0.325

0.365

0.498

0.552

0.606

0.660

0.714

0.768

0.822

0.876

0.930

0.984

0.0 0.2 0.4 0.6 0.8 1.0
s

0.0

0.2

0.4

0.6

0.8

1.0

x

Objective function

0.0 0.2 0.4 0.6 0.8 1.0
s

x

Safety function

4.48

3.84

3.20

2.56

1.92

1.28

0.64

0.00

0.64

0.00

0.56

1.12

1.68

2.24

2.80

3.36

3.92

4.48

5.04

0.0 0.2 0.4 0.6 0.8 1.0
s

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

x

Objective function

0.0 0.2 0.4 0.6 0.8 1.0
s

x
Safety function

0.005

0.045

0.085

0.125

0.165

0.205

0.245

0.285

0.325

0.365

0.498

0.552

0.606

0.660

0.714

0.768

0.822

0.876

0.930

0.984

0.0 0.2 0.4 0.6 0.8 1.0
s

0.0

0.2

0.4

0.6

0.8

1.0

x

Objective function

0.0 0.2 0.4 0.6 0.8 1.0
s

x

Safety function

4.48

3.84

3.20

2.56

1.92

1.28

0.64

0.00

0.64

0.00

0.56

1.12

1.68

2.24

2.80

3.36

3.92

4.48

5.04

Simulated clinical trial (feff , gtox) Synthetic 2D functions (fsyn1
, gsyn1

)

Figure 1: Actions sampled by M-SafeOpt3 in case 1 (top row) and case 2 (bottom row), along with the safe
boundaries discovered in blue and true safe boundaries in red (2nd and 4th column). In case 2, the 1st and 3rd

columns also show the optimal s discovered for every x in cyan, and the true optimal s-values in magenta.

0 10 20 30 40 50 60 70 80
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
t
/t

M-SAFEOPT (Inst.)
SAFEOPT-MC (Inst.)
PREDVAR (Inst.)
M-SAFEOPT
SAFEOPT-MC
PREDVAR

0 10 20 30 40 50 60 70 80
t

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

R
' t
/t

M-SAFEOPT (Inst.)
SAFEOPT-MC (Inst.)
PREDVAR (Inst.)
M-SAFEOPT
SAFEOPT-MC
PREDVAR

0 10 20 30 40 50 60 70 80
t

0.00

0.02

0.04

0.06

0.08

0.10

R
t

/t

M-SAFEOPT (Inst.)
SAFEOPT-MC (Inst.)
PREDVAR (Inst.)
M-SAFEOPT
SAFEOPT-MC
PREDVAR

0 20 40 60 80 100 120
t

0

1

2

3

4

5

6

R
t
/t

M-SAFEOPT (Inst.)
SAFEOPT-MC (Inst.)
PREDVAR (Inst.)
M-SAFEOPT
SAFEOPT-MC
PREDVAR

0 20 40 60 80 100 120
t

0

1

2

3

4

5

6

R
' t
/t

M-SAFEOPT (Inst.)
SAFEOPT-MC (Inst.)
PREDVAR (Inst.)
M-SAFEOPT
SAFEOPT-MC
PREDVAR

0 20 40 60 80 100 120
t

0

1

2

3

4

5

6

R
t

/t

M-SAFEOPT (Inst.)
SAFEOPT-MC (Inst.)
PREDVAR (Inst.)
M-SAFEOPT
SAFEOPT-MC
PREDVAR

Figure 2: The top row shows the regret plots for the simulated clinical trial experiment, and the bottom row
shows that for the synthetic 2D experiment for M-SafeOpt, along with baseline algorithms. The first column
shows the plot for Rt/t (for Case 1), while columns 2 and 3 show R′

t/t and RX
t /t (for Case 2). The corresponding

instantaneous regret values are shown using markers.

Arpan Losalka, Jonathan Scarlett

et al. (2014), we use the functions

feff(d1, d2) =
{
1 + eθ

f
0−θf

1 d1−θf
2 d2−θf

3 d
2
1−θf

4 d
2
2

}−1

(37)

and gtox(d1, d2) =
{
1 + e−θg

1d1−θg
2d2

}−1

, (38)

where d1 (s) and d2 (x) denote the dosage of two
drugs, and θi’s denote suitable parameters (see Ap-
pendix B.2 for details). While gtox increases mono-
tonically with the dosage of both drugs, the efficacy
peaks at an intermediate dose level of the drugs and
then decreases.

Synthetic 2D function: In this section, we use the
scaled Branin function from (Picheny et al., 2013) as
the objective function fsyn1 . It has a more complex
optimization surface, with three local optima over the
domain considered, D = [0, 1]2. For the safety func-
tion gsyn1

, we use a slightly modified form of fsyn2

from (Losalka and Scarlett, 2023), such that optimiza-
tion becomes more challenging for both goal (i) (global
optimization) and goal (ii) (optimization ∀x).

Observations: For both the above experiments, we
observe in Figure 1 that unsafe actions are not sam-
pled, and for both goal (i) and goal (ii), the samples
of M-SafeOpt tend to be near the optimal actions
instead of unnecessarily exploring suboptimal regions
of the input space.

The regret plots in Figure 2 demonstrate that M-
SafeOpt achieves sublinear regret (for suitable no-
tions of regret, depending on the goal), whereas the
baseline algorithms fail to do so (except for RX

T). Both
of the baseline algorithms continue to explore subopti-
mal regions, either near the safe boundary (SafeOpt-
MC) or throughout the safe region (PredVar), and
this gets reflected in the Rt/t and R′

t/t plots. However,
they perform well with respect to RX

t , which consid-
ers only the best action discovered, and not the action
chosen in each round for evaluation. As discussed in
Section 2, our goal (ii) naturally leads to a requirement
of both R′

T and RX
T being small, rather than either of

them alone.

Next, we highlight some observations regarding the
performance of M-SafeOpt based on our experi-
ments. (See Appendix B.1.1 for further discussion on
SafeOpt-MC and PredVar.)

• M-SafeOpt (Case 1), when used for goal (i) (as
in Section 2) is able to eliminate suboptimal x’s
(via elimt) and converge quickly to the regions
in which there is a higher probability of finding
the safe optimal action. For instance, this can

3See Appendix B.1 for similar plots with the baselines.

be observed for x ∈ [1, 2] in row 1-column 1 of
Figure 1 for (feff , gtox) and for x ∈ [0.9, 1] in row
1-column 3 for (fsyn1

, gsyn1
), where the algorithm

stops exploring once it has located better actions
near/at the true optimum.

• M-SafeOpt (in Case 1 and Case 2) also limits
unnecessary expansion beyond the currently dis-
covered safe boundary (via expdt), helping the al-
gorithm to converge to the optimal region quicker
that SafeOpt . For instance, this is observed for
x ∈ [0, 0.25] in row 1-column 2 (Case 1) of Figure
1 for (feff , gtox), and similarly in row 2-column 2
of the same figure (Case 2).

• The safe boundary eventually discovered by M-
SafeOpt (in both Case 1 and Case 2) tends to
diverge from the true safe boundary with respect
to g. This is also due to elimination and limiting
expansion. Note that when no x can be elimi-
nated (in Case 2), the same phenomenon (e.g.,
x ∈ [0, 0.25] in row 2-column 2 of Figure 1) can
be observed due to non-expansion of suboptimal
x’s.

• In Case 2 (for goal (ii)), M-SafeOpt is able to
find the optimal s for every x ∈ DX almost ex-
actly (as seen in Figure 1, and also reflected in
the regret plot in the third column of Figure 2
with respect to RX

t), while making progressively
better choices (as evidenced by the performance
with respect to R′

t in column 2 in Figure 2).

6 CONCLUSION

In this work, we have shown how monotonicity of the
unknown safety function in a single safety variable
allows us to develop a no-regret safe black-box opti-
mization algorithm. We provided several variations of
our algorithm that work with different goals of prac-
tical relevance. Like many GP-based algorithms, our
techniques are primarily suited to low dimensions, and
variations suited to higher dimensions would be of in-
terest. Other potential areas of future work include
exploring other helpful structures of g beyond mono-
tonicity, and studying extensions to more general set-
tings such as reinforcement learning.

Acknowledgement

This work was supported by the Singapore Ministry
of Education Academic Research Fund Tier 1 under
grant number A-8000872-00-00.

No-Regret Algorithms for Safe Bayesian Optimization

References

Daniel J Lizotte, Tao Wang, Michael H Bowling,
Dale Schuurmans, et al. Automatic gait optimiza-
tion with Gaussian process regression. In Inter-
national Joint Conference on Artificial Intelligence,
volume 7, pages 944–949, 2007.

Niranjan Srinivas, Andreas Krause, Sham M Kakade,
and Matthias W Seeger. Information-theoretic re-
gret bounds for Gaussian process optimization in the
bandit setting. IEEE Transactions on Information
Theory, 58(5):3250–3265, 2012.

Ami Takahashi and Taiji Suzuki. Bayesian optimiza-
tion for estimating the maximum tolerated dose in
Phase I clinical trials. Contemporary Clinical Trials
Communications, 21:100753, 2021.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams.
Practical Bayesian optimization of machine learning
algorithms. Advances in Neural Information Pro-
cessing Systems, 25, 2012.

Hastagiri P Vanchinathan, Isidor Nikolic, Fabio
De Bona, and Andreas Krause. Explore-exploit
in top-n recommender systems via Gaussian pro-
cesses. In ACM Conference on Recommender Sys-
tems, pages 225–232, 2014.

Yanan Sui, Alkis Gotovos, Joel Burdick, and An-
dreas Krause. Safe exploration for optimization with
Gaussian processes. In International Conference on
Machine Learning, pages 997–1005. PMLR, 2015.

Yanan Sui, Vincent Zhuang, Joel Burdick, and Yisong
Yue. Stagewise safe Bayesian optimization with
Gaussian processes. In International Conference on
Machine Learning, pages 4781–4789. PMLR, 2018.

Felix Berkenkamp, Andreas Krause, and Angela P
Schoellig. Bayesian optimization with safety con-
straints: Safe and automatic parameter tuning in
robotics. Machine Learning, pages 1–35, 2021.

Donald A Berry. Adaptive clinical trials in oncol-
ogy. Nature reviews Clinical oncology, 9(4):199–207,
2012.

S. Chevret. Statistical Methods for Dose-Finding Ex-
periments. Statistics in Practice. Wiley, 2006.

Chunyan Cai, Ying Yuan, and Yuan Ji. A Bayesian
dose finding design for oncology clinical trials of
combinational biological agents. Journal of the
Royal Statistical Society Series C: Applied Statis-
tics, 63(1):159–173, 2014.

Felix Berkenkamp, Matteo Turchetta, Angela Schoel-
lig, and Andreas Krause. Safe model-based rein-
forcement learning with stability guarantees. Ad-
vances in Neural Information Processing Systems,
30, 2017.

Matteo Turchetta, Felix Berkenkamp, and Andreas
Krause. Safe exploration for interactive machine
learning. Advances in Neural Information Process-
ing Systems, 32, 2019.

Matteo Turchetta, Felix Berkenkamp, and Andreas
Krause. Safe exploration in finite Markov deci-
sion processes with Gaussian processes. Advances in
Neural Information Processing Systems, 29, 2016.

Matteo Turchetta, Andrey Kolobov, Shital Shah, An-
dreas Krause, and Alekh Agarwal. Safe reinforce-
ment learning via curriculum induction. Advances in
Neural Information Processing Systems, 33:12151–
12162, 2020.

Sanae Amani, Mahnoosh Alizadeh, and Christos
Thrampoulidis. Regret bounds for safe Gaussian
process bandit optimization. In IEEE International
Symposium on Information Theory (ISIT), pages
527–532, 2021.

Dominik Baumann, Alonso Marco, Matteo Turchetta,
and Sebastian Trimpe. GoSafe: Globally optimal
safe robot learning. 2021 IEEE International Con-
ference on Robotics and Automation (ICRA), pages
4452–4458, 2021.

Bhavya Sukhija, Matteo Turchetta, David Lindner,
Andreas Krause, Sebastian Trimpe, and Dominik
Baumann. GoSafeOpt: Scalable safe exploration for
global optimization of dynamical systems. Artif. In-
tell., 320:103922, 2022.

Arpan Losalka and Jonathan Scarlett. Benefits of
monotonicity in safe exploration with Gaussian pro-
cesses. In Uncertainty in Artificial Intelligence,
pages 1304–1314. PMLR, 2023.

Sayak Ray Chowdhury and Aditya Gopalan. On
kernelized multi-armed bandits. In International
Conference on Machine Learning, pages 844–853.
PMLR, 2017.

Sattar Vakili, Kia Khezeli, and Victor Picheny. On in-
formation gain and regret bounds in Gaussian pro-
cess bandits. In International Conference on Artifi-
cial Intelligence and Statistics, pages 82–90. PMLR,
2021.

Justin Whitehouse, Zhiwei Steven Wu, and Aaditya
Ramdas. On the sublinear regret of GP-UCB. arXiv
preprint arXiv:2307.07539, 2023.

Jens Schreiter, Duy Nguyen-Tuong, Mona Eberts,
Bastian Bischoff, Heiner Markert, and Marc Tou-
ssaint. Safe exploration for active learning with
Gaussian processes. In Joint European Conference
on Machine Learning and Knowledge Discovery in
Databases, pages 133–149. Springer, 2015.

Victor Picheny, Tobias Wagner, and David Gins-
bourger. A benchmark of kriging-based infill criteria

Arpan Losalka, Jonathan Scarlett

for noisy optimization. Structural and multidisci-
plinary optimization, 48:607–626, 2013.

Greg Brockman, Vicki Cheung, Ludwig Pettersson,
Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI gym. arXiv preprint
arXiv:1606.01540, 2016.

Abdel-Rahman Hedar. Global optimization test
problems. http://www-optima.amp.i.kyoto-u.

ac.jp/member/student/hedar/Hedar_files/

TestGO.htm, 2013. Accessed: 2024-02-20.

Victor Picheny, Joel Berkeley, Henry B. Moss, Hrvoje
Stojic, Uri Granta, Sebastian W. Ober, Artem Arte-
mev, Khurram Ghani, Alexander Goodall, Andrei
Paleyes, Sattar Vakili, Sergio Pascual-Diaz, Stratis
Markou, Jixiang Qing, Nasrulloh R. B. S Loka, and
Ivo Couckuyt. Trieste: Efficiently exploring the
depths of black-box functions with tensorflow, 2023.
URL https://arxiv.org/abs/2302.08436.

Shubhanshu Shekhar and Tara Javidi. Multi-scale
zero-order optimization of smooth functions in an
RKHS. arXiv preprint arXiv:2005.04832, 2020.

CHECKLIST

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions.
[Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Not Applicable]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator if your work uses ex-
isting assets. [Yes]

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Appli-
cable]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]

No-Regret Algorithms for Safe Bayesian Optimization

Appendix
A PROOFS

In this section, we present the proofs for the three theorems.

A.1 Proof of Theorem 1 (Case 1)

Let (s∗,x∗) denote the optimal action (or any one such action if there are multiple). Recall the definition of

s
(x)
t = max

{
s ∈ DS : (s,x) ∈ St

}
from (14).

For deriving the following results, we assume the validity of the confidence bounds, which are known to hold
with probability at least 1−δ. That is, we condition on (28) and (29) both being true. To characterize the regret
incurred at a given time instant t, we will split the analysis into two cases: (i) the optimal action (s∗,x∗) /∈ St,
i.e., UCBg

t−1(s∗,x∗) > h, and (ii) (s∗,x∗) ∈ St, i.e., UCBg
t−1(s∗,x∗) ≤ h.

A.1.1 Regret for (s∗,x∗) /∈ St

First, we consider the regret incurred in rounds where (s∗,x∗) /∈ St. Since the optimal point (s∗,x∗) is safe by
definition, we have

g(s∗,x∗) ≤ h. (39)

Next, recall the definition of the set St from (12), and the definition of s
(x)
t in (14). Intuitively, St consists of all

actions that can be classified as safe via UCBg
t−1 and the safety threshold h, while s

(x)
t corresponds to the action

on the current “safe boundary” for a specific x.

The following cases may arise: (i) UCBg
t−1(s

(x)
t ,x) > h (e.g., in the initial rounds when s

(x)
t = 0), (ii)

UCBg
t−1(s

(x)
t ,x) = h (when UCBg

t−1(s,x) “crosses” h for some s), or (iii) UCBg
t−1(s

(x)
t ,x) < h (for s

(x)
t = 1

when g(1,x) < h). In the following, we first consider the rounds for which either (i) or (ii) holds for (s
(xt)
t ,xt),

i.e, for the specific xt chosen at round t. Thereafter, we show how the results that we derive also continue to
remain valid when (iii) holds.

Since we are assuming that either (i) or (ii) holds for (s
(xt)
t ,xt) and that (s∗,x∗) /∈ St (for now), we have the

following:

UCBg
t−1(s

(xt)
t ,xt) ≥ h, (40)

UCBg
t−1(s

(x∗)
t ,x∗) ≥ h.. (41)

In more detail, (41) follows because the condition (s∗,x∗) /∈ St states that (s∗,x∗) has not been discovered as

safe by the algorithm, meaning it cannot be that UCBg
t−1(s

(x∗)
t ,x∗) < h.

Bounding |s(xt)
t − s

(xt)
t |. By the definition of s

(x)
t in (19), the following holds:

LCBg
t−1(s

(xt)
t ,xt) + L′

g|s(xt)
t − s

(xt)
t | ≤ h, (42)

where strict inequality (i.e., LCBg
t−1(s

(xt)
t ,xt) + L′

g|s(xt)
t − s

(xt)
t | < h) may hold when s

(xt)
t = 1.

Therefore, we deduce the following:

L′
g|s(xt)

t − s
(xt)
t | ≤ h− LCBg

t−1(s
(xt)
t ,xt)

≤ UCBg
t−1(s

(xt)
t ,xt)− LCBg

t−1(s
(xt)
t ,xt) (by (40))

= 2βg
t σ

g
t (s

(xt)
t ,xt) (by (10) and (11))

=⇒ |s(xt)
t − s

(xt)
t | ≤ 2βg

t σ
g
t (s

(xt)
t ,xt)/L

′
g. (43)

Arpan Losalka, Jonathan Scarlett

This result upper bounds the distance of s
(xt)
t from s

(xt)
t in terms of the width of the confidence interval at

(s
(xt)
t ,x).

Note that (43) holds trivially if UCBg
t−1(s

(xt)
t ,xt) < h (i.e., if (40) does not hold). This is because the UCBg

t−1-
value being less than h for an action on the current “safe boundary” implies that the algorithm has discovered

(s,xt) to be safe for all s ∈ DS , and hence s
(xt)
t = 1. This would also imply that s

(x)
t = 1 (following (19)), thus

giving |s(xt)
t − s

(xt)
t | = 0.

Bounding |s∗ − s
(x∗)
t |. Similarly to the above, due to the safety of the optimal action, we have the following:

L′
g|s∗ − s

(x∗)
t | ≤ g(s∗,x∗)− g(s

(x∗)
t ,x∗) (by definition of L′

g)

≤ h− LCBg
t−1(s

(x∗)
t ,x∗) (by (29) and (39))

≤ UCBg
t−1(s

(x∗)
t ,x∗)− LCBg

t−1(s
(x∗)
t ,x∗) (by (41))

= 2βg
t σ

g
t−1(s

(x∗)
t ,x∗) (by (10) and (11))

=⇒ |s∗ − s
(x∗)
t | ≤ 2βg

t σ
g
t−1(s

(x∗)
t ,x∗)/L

′
g. (44)

This result upper bounds the distance of s∗ from s
(x∗)
t in terms of the width of the confidence interval at

(s
(x∗)
t ,x∗).

Bounding instantaneous regret. We consider the instantaneous regret f(s∗,x∗) − f(st,xt) in each round
t, and split it as a sum of three terms, which we proceed to bound individually:

f(s∗,x∗)−f(st,xt) =
(
f(s∗,x∗)− f(s

(x∗)
t ,x∗)

)
+
(
f(s

(x∗)
t ,x∗)− f(s

(xt)
t ,xt)

)
+
(
f(s

(xt)
t ,xt)− f(st,xt)

)
. (45)

In some cases, we will also use a near-identical decomposition with ŝ
(xt)
t (from (16)) replacing s

(xt)
t (depending

on the criteria for xt not being eliminated at round t) as follows:

f(s∗,x∗)−f(st,xt) =
(
f(s∗,x∗)− f(s

(x∗)
t ,x∗)

)
+
(
f(s

(x∗)
t ,x∗)− f(ŝ

(xt)
t ,xt)

)
+
(
f(ŝ

(xt)
t ,xt)− f(st,xt)

)
. (46)

We also note that given the acquisition function in (23), (st,xt) being chosen at round t implies that

max
{
βg
t σ

g
t−1(st,xt), β

f
t σ

f
t−1(st,xt)

}
≥ max

{
max

(s,x)∈Gt

{
βg
t σ

g
t−1(s,x)

}
, max
(s,x)∈Gt∪Mt

{
βf
t σ

f
t−1(s,x)

}}
. (47)

We bound the first term in (45) as follows:

f(s∗,x∗)− f(s
(x∗)
t ,x∗) ≤ Lf |s∗ − s

(x∗)
t | (by definition of Lf)

≤ 2(Lf/L
′
g)β

g
t σ

g
t−1(s

(x∗)
t ,x∗) (by (44))

≤ 2(Lf/L
′
g) ·max{βg

t σ
g
t−1(st,xt), β

f
t σ

f
t−1(st,xt)} (by (47)). (48)

We now consider the second term in (45). Since xt was chosen instead of x∗, we have that xt was not eliminated.
This implies that at least one of the two elimination criteria did not hold (note that both (20) and (21) must
hold for xt to be eliminated). If (20) did not hold, then we have

f(s
(x∗)
t ,x∗)− f(ŝ

(xt)
t ,xt) ≤ UCBf

t−1(s
(x∗)
t ,x∗)− LCBf

t−1(ŝ
(xt)
t ,xt)

= LCBf
t−1(s

(x∗)
t ,x∗) + 2βf

t σ
f
t−1(s

(x∗)
t ,x∗)

−UCBf
t−1(ŝ

(xt)
t ,xt) + 2βf

t σ
f
t−1(ŝ

(xt)
t ,xt)

≤ 2βf
t σ

f
t−1(s

(x∗)
t ,x∗) + 2βf

t σ
f
t−1(ŝ

(xt)
t ,xt) (by (20) being false) (49)

≤ 4 ·max{βg
t σ

g
t−1(st,xt), β

f
t σ

f
t−1(st,xt)} (by (47)) (50)

No-Regret Algorithms for Safe Bayesian Optimization

Alternatively, if (21) did not hold, then we have

f(s
(x∗)
t ,x∗)− f(s

(xt)
t ,xt) ≤ UCBf

t−1(s
(x∗)
t ,x∗)− LCBf

t−1(s
(xt)
t ,xt)

= LCBf
t−1(s

(x∗)
t ,x∗) + 2βf

t σ
f
t−1(s

(x∗)
t ,x∗)

−UCBf
t−1(s

(xt)
t ,xt) + 2βf

t σ
f
t−1(s

(xt)
t ,xt)

≤ 2βf
t σ

f
t−1(s

(x∗)
t ,x∗) + 2βf

t σ
f
t−1(s

(xt)
t ,xt) + Lf |s(xt)

t − s
(xt)
t | (by (21) being false) (51)

≤ 2βf
t σ

f
t−1(s

(x∗)
t ,x∗) + 2βf

t σ
f
t−1(s

(xt)
t ,xt) + 2(Lf/L

′
g)β

g
t σ

g
t (s

(xt)
t ,xt) (by (43)) (52)

≤ 4 ·max
{
βg
t σ

g
t−1(st,xt), β

f
t σ

f
t−1(st,xt)

}
(53)

+ 2(Lf/L
′
g)max

{
βg
t σ

g
t−1(st,xt), β

f
t σ

f
t−1(st,xt)

}
(by (47)). (54)

Finally, we consider the third term in (45). Suppose again that xt remained non-eliminated due to (20) being
false. In this case, we have:

f(s
(xt)
t ,xt)− f(st,xt) ≤

{
0, (if st = s

(xt)
t)

UCBf
t−1(s

(xt)
t ,xt)− LCBf

t−1(ŝ
(xt)
t ,xt), (if st = ŝ

(xt)
t)

≤ max{0,UCBf
t−1(s

(xt)
t ,xt)−UCBf

t−1(ŝ
(xt)
t ,xt) + 2βf

t σ
f
t−1(ŝ

(xt)
t ,xt)}

≤ 2βf
t σ

f
t−1(ŝ

(xt)
t ,xt) (55)

≤ 2 ·max{βg
t σ

g
t−1(st,xt), β

f
t σ

f
t−1(st,xt)} (by (47)), (56)

where (55) holds because UCBf
t−1(ŝ

(xt)
t ,xt) ≥ UCBf

t−1(s
(xt)
t ,xt) by the definition of ŝ

(xt)
t in (16). Regarding the

first step above, we note that either st = s
(xt)
t or st = ŝ

(xt)
t must hold, because the actions chosen in any round

must belong to either Gt or Mt.

Next, if xt remained non-eliminated due to (21) being false, then we can bound the third term in (46) as
follows:

f(ŝ
(xt)
t ,xt)− f(st,xt) ≤

{
0, (if st = ŝ

(xt)
t)

UCBf
t−1(ŝ

(xt)
t ,xt)− LCBf

t−1(s
(xt)
t ,xt), (if st = s

(xt)
t)

≤ max{0,LCBf
t−1(ŝ

(xt)
t ,xt)−UCBf

t−1(s
(xt)
t ,xt)

+ 2βf
t σ

f
t−1(s

(xt)
t ,xt) + 2βf

t σ
f
t−1(s

(xt)
t ,xt)}

≤ max{0, Lf |s(xt)
t − s

(xt)
t |+ 2βf

t σ
f
t−1(s

(xt)
t ,xt) + 2βf

t σ
f
t−1(s

(xt)
t ,xt)} (by (21) being false)

≤ 2(Lf/L
′
g)β

g
t σ

g
t−1(s

(xt)
t ,xt) + 2βf

t σ
f
t−1(s

(xt)
t ,xt) + 2βf

t σ
f
t−1(s

(xt)
t ,xt) (by (43)) (57)

≤ 2(Lf/L
′
g)max{βg

t σ
g
t−1(st,xt), β

f
t σ

f
t−1(st,xt)} (58)

+ 4 ·max{βg
t σ

g
t−1(st,xt), β

f
t σ

f
t−1(st,xt)} (by (47)). (59)

Combining the above three terms, we obtain the following bound on the instantaneous regret incurred by the
algorithm (irrespective of whether (st,xt) ∈ Gt or (st,xt) ∈Mt, and irrespective of the condition that caused xt

to remain non-eliminated):

f(s∗,x∗)− f(st,xt) ≤
(
8 +

6Lf

L′
g

)
max{βg

t σ
g
t−1(st,xt), β

f
t σ

f
t−1(st,xt)}. (60)

A.1.2 Regret for (s∗,x∗) ∈ St

Next, we consider (s∗,x∗) ∈ St, i.e., UCBg
t−1(s∗,x∗) ≤ h. In this case, it must hold that s∗ ≤ s

(x∗)
t (since s

(x∗)
t

is defined as the “highest” safe s for x∗ in (14)). Thus, we have

UCBf
t−1(s∗,x∗) ≤ UCBf

t−1(ŝ
(x∗)
t ,x∗), (61)

Arpan Losalka, Jonathan Scarlett

since ŝ
(x∗)
t is the maximizer of UCBf

t−1(·,x∗) over s ≤ s
(x∗)
t . In this case, we can bound the instantaneous regret

(45) directly as follows:

f(s∗,x∗)− f(st,xt) ≤ UCBf
t−1(s∗,x∗)− LCBf

t−1(st,xt)

≤ UCBf
t−1(ŝ

(x∗)
t ,x∗)−UCBf

t−1(st,xt) + 2βf
t σ

f
t−1(st,xt) (by (61)

= LCBf
t−1(ŝ

(x∗)
t ,x∗)−UCBf

t−1(st,xt)

+ 2βf
t σ

f
t−1(st,xt) + 2βf

t σ
f
t−1(ŝ

(x∗)
t ,x∗) (by (10))

≤ Lf |s(xt)
t − s

(xt)
t |+ 2βf

t σ
f
t−1(st,xt) + 2βf

t σ
f
t−1(ŝ

(x∗)
t ,x∗) (see (64) below) (62)

≤ 2(Lf/L
′
g)β

g
t σ

g
t−1(s

(xt)
t ,xt) + 2βf

t σ
f
t−1(st,xt) + 2βf

t σ
f
t−1(ŝ

(x∗)
t ,x∗) (by (43))

≤ 2(Lf/L
′
g)max

{
βg
t σ

g
t−1(st,xt), β

f
t σ

f
t−1(st,xt)

}
+ 4 ·max

{
βg
t σ

g
t−1(st,xt), β

f
t σ

f
t−1(st,xt)

}
(by (47)), (63)

where (62) holds because of the following:

LCBf
t−1(ŝ

(x∗)
t ,x∗)−UCBf

t−1(st,xt)

≤
{
max

{
0, Lf |s(xt)

t − s
(xt)
t |

}
, if st = ŝ

(xt)
t (since elimt(xt) = false))

Lf |s(xt)
t − s

(xt)
t |, if st = s

(xt)
t (since expdt(xt) = true) .

(64)

Here, we again use the fact that either st = ŝ
(xt)
t or st = s

(xt)
t (as the action (st,xt) chosen at round t must

belong to either Mt or Gt). Therefore, either (20) or (21) must be false when st = ŝ
(xt)
t (since xt was not

eliminated), and (22) must be true when st = s
(xt)
t (since an action on the safe boundary is only chosen if it

considered “potentially beneficial” to expand, as decided by expdt).

A.1.3 Bounding the cumulative regret

Summing the instantaneous regret terms in (60) and (63) from t = 1, . . . , T , we get the following:

RT =

T∑
t=1

(f(s∗,x∗)− f(st,xt)) ≤
(
8 +

6Lf

L′
g

) T∑
t=1

max
{
βg
t σ

g
t−1(st,xt), β

f
t σ

f
t−1(st,xt)

}
(65)

≤
(
8 +

6Lf

L′
g

) T∑
t=1

(
βg
t σ

g
t−1(st,xt) + βf

t σ
f
t−1(st,xt)

)
(66)

≤
(
8 +

6Lf

L′
g

)(
βg
T

T∑
t=1

σg
t−1(st,xt) + βf

T

T∑
t=1

σf
t−1(st,xt)

)
, (67)

where we used the assumption that βf
t , β

g
t are non-decreasing with respect to t. Then, from Lemma 4 of

(Chowdhury and Gopalan, 2017), we have the standard bounds:

T∑
t=1

σg
t−1 (st,xt) = O

(√
Tγg

T

)
, (68)

T∑
t=1

σf
t−1 (st,xt) = O

(√
Tγf

T

)
. (69)

Hence, with probability at least 1− δ,

RT = O

((
1 +

Lf

L′
g

)(
βg
T

√
Tγg

T + βf
T

√
Tγf

T

))
. (70)

No-Regret Algorithms for Safe Bayesian Optimization

Specifically, for the choice of βf and βg from Lemma 1, we have the following:

RT = O

(
Bg

(
1 +

Lf

L′
g

)√
Tγg

T +Rg

(
1 +

Lf

L′
g

)√
Tγg

T (γg
T + ln(1/δ))

+Bf

(
1 +

Lf

L′
g

)√
Tγf

T +Rf

(
1 +

Lf

L′
g

)√
Tγf

T

(
γf
T + ln(1/δ)

)
, (71)

where βg
T ≤ Bg +Rg

√
2 (γg

T + 1 + ln(2/δ)) since γg
t is monotonically increasing (and similarly for βf

T).

A.2 Proof of Theorem 1 (Case 3)

This case turns out to be a minor variation of the above, so we omit the full details and only describe the
differences. First, we note that the initial results derived with respect to the safety function g hold in this case
as well. Specifically, (39) to (44) are valid because of the same arguments as presented in the previous proof.

Next, (47) also holds given the modified acquisition function for case 3, with the only change being that the set
Mt is not considered here. Also, note that the optimal safe action is guaranteed to lie on the “safe boundary” in
this case. We first consider the scenario where (s∗,x∗) /∈ St, which implies that (48) holds without modification.

Since the elimination criteria is simplified, following (50), we now have

f(s
(x∗)
t ,x∗)− f(s

(xt)
t ,xt) ≤

(
4 +

2Lf

L′
g

)
max

{
βg
t σ

g
t−1(st,xt), β

f
t σ

f
t−1(st,xt)

}
. (72)

Finally, since st = s
(xt)
t for all t ≥ 1 in this case, we can combine (48) and (72) to obtain a bound on the

instantaneous regret as follows:

f(s∗,x∗)− f(st,xt) ≤
(
4 +

4Lf

L′
g

)
max

{
βg
t σ

g
t−1(st,xt), β

f
t σ

f
t−1(st,xt)

}
. (73)

It may also hold that (s∗,x∗) ∈ St when s∗ = 1. In this case, we bound the instantaneous regret directly as
follows:

f(s∗,x∗)− f(st,xt) ≤ UCBf
t−1(s∗,x∗)− LCBf

t−1(st,xt)

= UCBf
t−1(s∗,x∗)−UCBf

t−1(st,xt) + 2βf
t σ

f
t−1(st,xt)

= LCBf
t−1(s∗,x∗)−UCBf

t−1(st,xt) + 2βf
t σ

f
t−1(st,xt) + 2βf

t σ
f
t−1(s∗,x∗)

≤ 2βf
t σ

f
t−1(st,xt) + 2βf

t σ
f
t−1(s∗,x∗) (by (21) being false, and since s

(x∗)
t = s

(x∗)
t)

≤ 4 ·max
{
βg
t σ

g
t−1(st,xt), β

f
t σ

f
t−1(st,xt)

}
(by (47)). (74)

The cumulative regret bound follows similarly to the previous proof by summing over the instantaneous regret
terms in (73) and (74).

A.3 Proof of Theorem 2

Similar to the proof of Theorem 1, we split the proof into two possible scenarios based on the chosen xt in each

round: (i) (s
(xt)
∗ ,xt) /∈ St, i.e., UCBg

t−1(s
(xt)
∗ ,xt) > h and (ii) (s

(xt)
∗ ,xt) ∈ St, i.e., UCBg

t−1(s
(xt)
∗ ,xt) ≤ h.

A.3.1 Regret for (s
(xt)
∗ ,xt) /∈ St

Following the proof of Theorem 1, several results concerning the safety function g hold. Specifically, the inequal-
ities not concerning x∗ from (40) to (43) continue to hold for the modified algorithm, due to the same arguments
as presented earlier (with (41) skipped). However, for finding the regret r′t here, we now consider the optimal

s corresponding to xt (i.e., s
(xt)
∗) as defined in (2), instead of the global safe optimum action. The inequalities

derived earlier are modified accordingly as follows.

Arpan Losalka, Jonathan Scarlett

Corresponding to (39), we now have

g(s
(xt)
∗ ,xt) ≤ h. (75)

Moreover, from (75) and (40), we have:

L′
g|s(xt)

∗ − s
(xt)
t | ≤ g(s

(xt)
∗ ,xt)− g(s

(xt)
t ,xt) (by the definition of L′

g)

≤ h− LCBg
t−1(s

(xt)
t ,xt) (by (75))

≤ UCBg
t−1(s

(xt)
t ,xt)− LCBg

t−1(s
(xt)
t ,xt) (by (40)

= 2βg
t σ

g
t−1(s

(xt)
t ,xt)

=⇒ |s(xt)
∗ − s

(xt)
t | ≤ 2βg

t σ
g
t−1(s

(xt)
t ,xt)/L

′
g. (76)

Next, with respect to the objective function f , we have

f(s
(xt)
∗ ,xt)− f(s

(xt)
t ,xt) ≤ Lf |s(xt)

∗ − s
(xt)
t | (by definition of Lf)

≤ 2(Lf/L
′
g)β

g
t σ

g
t−1(s

(xt)
t ,xt) (by (76)). (77)

In addition, we have the following:

f(s
(xt)
t ,xt)− f(st,xt) ≤

{
0, (if st = s

(xt)
t)

UCBf
t−1(s

(xt)
t ,xt)− LCBf

t−1(ŝ
(xt)
t ,xt), (if st = ŝ

(xt)
t , by (28))

(78)

≤ UCBf
t−1(ŝ

(xt)
t ,xt)− LCBf

t−1(ŝ
(xt)
t ,xt) (79)

≤ 2βf
t σ

f
t−1(ŝ

(xt)
t ,xt), (80)

where we again use the fact that the chosen action must belong to either Gt (i.e, st = s
(xt)
t) orMt (i.e., st = ŝ

(xt)
t).

Adding (77) and (80), we obtain

f(s
(xt)
∗ ,xt)− f(st,xt) ≤ 2(Lf/L

′
g)β

g
t σ

g
t−1(s

(xt)
t ,xt) + 2βf

t σ
f
t−1(ŝ

(xt)
t ,xt)

≤
(
2 +

2Lf

L′
g

)
max{βg

t σ
g
t−1(st,xt), β

f
t σ

f
t−1(st,xt)}. (81)

A.3.2 Regret for (s
(xt)
∗ ,xt) ∈ St

When (s
(xt)
∗ ,xt) ∈ St, similarly to earlier as in (61), we have:

UCBf
t−1(s

(xt)
∗ ,xt) ≤ UCBf

t−1(ŝ
(xt),xt). (82)

In this case, we can bound the instantaneous regret r′t = f(s
(xt)
∗ ,xt)− f(st,xt) directly as follows:

f(s
(xt)
∗ ,xt)− f(st,xt) ≤ UCBf

t−1(s
(xt)
∗ ,xt)− LCBf

t−1(st,xt) (by (28))

≤
{
2βf

t σ
f
t−1(ŝ

(xt),xt), if st = ŝ
(xt)
t , (by (82))

UCBf
t−1(s

(xt)
∗ ,xt)− LCBf

t−1(s
(xt)
t ,xt), if st = s

(xt)
t .

(83)

Furthermore, we have the following when st = s
(xt)
t :

UCBf
t−1(s

(xt)
∗ ,xt)− LCBf

t−1(s
(xt)
t ,xt) ≤ LCBf

t−1(s
(xt)
∗ ,xt)−UCBf

t−1(s
(xt)
t ,xt) (84)

2βf
t σ

f
t−1(s

(xt)
∗ ,xt) + 2βf

t σ
f
t−1(s

(xt)
t ,xt) (85)

≤ Lf |s(xt)
t − s

(xt)
t |+ 2βf

t σ
f
t−1(s

(xt)
∗ ,xt) + 2βf

t σ
f
t−1(s

(xt)
t ,xt) (by (24)) (86)

≤ 2(Lf/L
′
g)β

g
t σ

g
t−1(s

(xt)
t ,xt) + 2βf

t σ
f
t−1(s

(xt)
∗ ,xt) + 2βf

t σ
f
t−1(s

(xt)
t ,xt) (by (43)) (87)

≤ 2
(
(Lf/L

′
g) + 2

)
max{βg

t σ
g
t−1(st,xt), β

f
t σ

f
t−1(st,xt)} (by (47)). (88)

No-Regret Algorithms for Safe Bayesian Optimization

Combining this with (83), we obtain

f(s
(xt)
∗ ,xt)− f(st,xt) ≤ 2

(
(Lf/L

′
g) + 2

)
max{βg

t σ
g
t−1(st,xt), β

f
t σ

f
t−1(st,xt)}. (89)

Finally, combining the results from t = 1, . . . , T , we can conclude that

R′
T =

T∑
t=1

r′t =

T∑
t=1

(
f(s

(xt)
∗ ,xt)− f(st,xt)

)
(90)

≤ 2
(
(Lf/L

′
g) + 2

)
max

{
βg
t σ

g
t−1(st,xt), β

f
t σ

f
t−1(st,xt)

}
. (91)

As before, we can use Lemma 4 from (Chowdhury and Gopalan, 2017) to conclude that with probability at least
1− δ,

R′
T = O

((
1 +

Lf

L′
g

)(
βg
T

√
Tγg

T + βf
T

√
Tγf

T

))
.

A.4 Proof of Theorem 3

All results concerning the safety function g from the previous theorem’s proof hold here. However, when consid-
ering the objective function f , note that we are no longer concerned with the instantaneous regret incurred with

respect to the action chosen by the algorithm. Instead, we now consider the best estimate ŝ
(x)
t for any given x

at round t, and try to bound the worst-case (over x ∈ DX) simple regret incurred by the algorithm.

Suppose that the worst-case simple regret is incurred by x = xt at round t, i.e.,

xt = argmax
x∈Dt

X

{
f(s

(x)
∗ ,x)− f(ŝ

(x)
t ,x)

}
. (92)

We again proceed to split the analysis into two cases.

A.4.1 Regret for (s
(xt)
∗ ,xt) /∈ St

First, we consider (s
(xt)
∗ ,xt) /∈ St. In this case,

f(s
(xt)
∗ ,xt)− f(s

(xt)
t ,xt) ≤ Lf |s(xt)

∗ − s
(xt)
t | (by definition of Lf) (93)

≤ 2(Lf/L
′
g)β

g
t σ

g
t−1(s

(xt)
t ,xt) (by (76)). (94)

Next, we derive the following:

f(s
(xt)
t ,xt)− f(ŝ

(xt)
t ,xt) ≤ UCBf

t−1(s
(xt)
t ,xt)− LCBf

t−1(ŝ
(xt)
t ,xt) (95)

≤ UCBf
t−1(s

(xt)
t ,xt)−UCBf

t−1(ŝ
(xt)
t ,xt) + 2βf

t σ
f
t−1(ŝ

(xt)
t ,xt) (96)

≤ 2βf
t σ

f
t−1(ŝ

(xt)
t ,xt) (by (16)). (97)

Adding (94) and (97), we have a bound on the worst-case simple regret incurred at round t as follows:

f(s
(xt)
∗ ,xt)− f(ŝ

(xt)
t ,xt) ≤ 2(Lf/L

′
g)β

g
t σ

g
t−1(s

(xt)
t ,xt) + 2βf

t σ
f
t−1(ŝ

(xt)
t ,xt). (98)

A.4.2 Regret for (s
(xt)
∗ ,xt) ∈ St

When (s
(xt)
∗ ,xt) ∈ St, we can bound the instantaneous regret rXt directly, as follows:

rXt = f(s
(xt)
∗ ,xt)− f(ŝ

(xt)
t ,xt) ≤ UCBf

t−1(s
(xt)
∗ ,xt)− LCBf

t−1(ŝ
(xt)
t ,xt) (99)

≤ UCBf
t−1(s

(xt)
∗ ,xt)−UCBf

t−1(ŝ
(xt)
t ,xt) + 2βf

t σ
f
t−1(ŝ

(xt)
t ,xt) (100)

≤ 2βf
t σ

f
t−1(ŝ

(xt)
t ,xt) (by (16)). (101)

Arpan Losalka, Jonathan Scarlett

Therefore, considering the cumulative worst-case simple regret for t = 1, . . . , T , we have:

RX
T =

T∑
t=1

rXt =

T∑
t=1

(
f(s

(xt)
∗ ,xt)− f(ŝt,xt)

)
(102)

≤ 2(Lf/L
′
g)β

g
t σ

g
t−1(s

(xt)
t ,xt) + 2βf

t σ
f
t−1(ŝ

(xt)
t ,xt) (103)

≤ 2
(
(Lf/L

′
g) + 1

)
max{βg

t σ
g
t−1(st,xt), β

f
t σ

f
t−1(st,xt)}. (104)

Once again, we can use Lemma 4 from (Chowdhury and Gopalan, 2017) to conclude that with probability at
least 1− δ,

RX
T = O

((
1 +

Lf

L′
g

)(
βg
T

√
Tγg

T + βf
T

√
Tγf

T

))
. (105)

A.5 Refining the Regret Bounds

In this section, we discuss an alternative acquisition function, defined as:

acqt(s,x) = max{βf
t σ

f
t−1(s,x), (Lf/L

′
g)β

g
t σ

g
t−1(s,x)}, , if (s,x) ∈ Gt. (106)

Note that we only redefine the function for (s,x) ∈ Gt, while the function remains unchanged for the other
cases (as stated in (23) and (25)). This acquisition function provides certain desirable scaling properties of our
theoretical guarantees, as discussed below.

We note that the proofs of all theorems eventually used the acquisition function for establishing bounds of the
following form (such as in (50), (63) and (74)):

βf
t σ

f
t−1(z) ≤ max{βf

t σ
f
t−1(st,xt), β

f
t σ

f
t−1(st,xt)}, (107)

(Lf/L
′
g)β

g
t σ

g
t−1(z) ≤ (Lf/L

′
g)max{βf

t σ
f
t−1(st,xt), β

f
t σ

f
t−1(st,xt)}, (108)

where z denotes some safe action (depending on the corresponding equation in our earlier proofs),
while the other steps of the proofs did not depend on the acquisition function’s definition. The
max{βf

t σ
f
t−1(st,xt), β

f
t σ

f
t−1(st,xt)} terms were then upper bounded by their sum (such as in (66)) as follows:

max{βf
t σ

f
t−1(st,xt), β

g
t σ

g
t−1(st,xt)} ≤ βf

t σ
f
t−1(st,xt) + βg

t σ
g
t−1(st,xt), (109)

(Lf/L
′
g)max{βf

t σ
f
t−1(st,xt), β

g
t σ

g
t−1(st,xt)} ≤ (Lf/L

′
g)β

f
t σ

f
t−1(st,xt) + (Lf/L

′
g)β

g
t σ

g
t−1(st,xt). (110)

Note that these steps introduced the factor (Lf/L
′
g) into the f -terms as well, resulting in the regret bounds

stated in our theorems.

With the alternative acquisition function given in (36), our proofs can instead use the following refined steps:

βf
t σ

f
t−1(z) ≤ max{βf

t σ
f
t−1(st,xt), (Lf/L

′
g)β

g
t σ

g
t−1(st,xt)}, (111)

(Lf/L
′
g)β

g
t σ

g
t−1(z) ≤ max{βf

t σ
f
t−1(st,xt), (Lf/L

′
g)β

g
t σ

g
t−1(st,xt)}. (112)

Again using the fact that the maximum of the two terms is upper bounded by their sum, we can derive the
following:

βf
t σ

f
t−1(z) ≤ βf

t σ
f
t−1(st,xt) + (Lf/L

′
g)β

g
t σ

g
t−1(st,xt), (113)

(Lf/L
′
g)β

g
t σ

g
t−1(z) ≤ βf

t σ
f
t−1(st,xt) + (Lf/L

′
g)β

g
t σ

g
t−1(st,xt). (114)

Therefore, when applying Lemma 4 from (Chowdhury and Gopalan, 2017), the (Lf/L
′
g) factor only gets multi-

plied with the βg
T

√
Tγg

T term, and not the βf
T

√
Tγf

T term. Hence, we get the following regret bound for RT in

case 1 and case 3 (similarly for R′
T and RX

T in case 2):

RT = O

(
βf
T

√
Tγf

T +
Lf

L′
g

βg
T

√
Tγg

T

)
. (115)

No-Regret Algorithms for Safe Bayesian Optimization

Behavior with respect to rescaling: To motivate the notion of rescaling f and/or g, we argue a certain
equivalence between the following two problems for arbitrary c > 0:

(i) function f with RKHS norm Bf and noise level Rf ;

(ii) function cf with RKHS norm cBf and noise level cRf .

The equivalence comes from the fact that observations yft for problem (ii) can be obtained from those for problem
(i) by simply multiplying by c (or vice versa by dividing). Hence, any algorithm for problem (ii) can be applied
to problem (i), and vice versa. The only difference is that in problem (ii) the regret is scaled by c compared to
problem (i). In contrast, if g, Bg, and Rg are similarly scaled (as well as h) then a similar equivalence holds
without any change in the regret (which is measured only with respect to f).

In accordance with this discussion, a regret bound should ideally scale linearly when f (and Bf , Rf) is scaled,
and should stay unchanged when g is scaled. This behavior is indeed observed in the refined regret bounds that
we derived above: Scaling f by c results in scaling βf

T and Lf by c, thereby scaling the regret bound by c as well.
However, scaling g scales βg

T and L′
g by c, and thus, the regret bound remains unchanged due to cancellation of

the factor c. Although this scaling property of the regret bounds holds with the modified acquisition function,
it comes at the cost of an additional dependence of the algorithm on Lf and L′

g. Since this may not be desirable
in practice due to unavailability of good estimates of these constants, we use the original forms of the acquisition
in our theorems and experiments.

A.6 Recovering the Guarantees of M-SAFEUCB

As noted in Section 3 under Case 3, modifying the functions elimt, expdt and acqt suitably gives us the M-
SafeUCB algorithm of Losalka and Scarlett (2023) for the goal of finding the optimal s for every x ∈ DX , when
both f and g are known to be monotone with respect to s. Specifically, Theorem 1 in (Losalka and Scarlett,
2023) gives a bound on a suitably-defined notion of cumulative regret, and Theorem 2 in (Losalka and Scarlett,
2023) states that the entire safe boundary will be accurately identified after a certain number of rounds.

To achieve this goal, we set elimt(x) = false for every x, set expdt(x) = true for every x (except when

s
(x)
t = 1), and set the acquisition function to be the same as that in (25), except that here we only use σg

t−1 here

and omit σf
t−1. Note that these choices imply that the algorithm does not need to use the constants Lf and L′

g.

We suppose that the algorithm is run using only the safety function g, which is reasonable since for each x, the

best s for f is the same as the best s for g (since both are monotone), namely, s
(x)
∗ = max{s ∈ DS : g(s,x) ≤ h}.

Furthermore, since we do not consider f in the algorithm in this case, we define ŝ
(x)
t as the safe maximizer of

UCBg
t−1(·,x) instead of UCBf

t−1(·,x).

Attaining Theorem 1 of (Losalka and Scarlett, 2023). Referring back to the proof for Theorem 2, (75)

holds for all x ∈ DX by the definition of the optimal safe s, i.e., s
(x)
∗ . Also, note that (s

(x)
∗ ,x) /∈ St in this case

for any x ∈ DX (when the confidence bounds are valid), since the optimal actions lie on the “safe boundary”
(due to the monotonicity of both f and g). Therefore, the following can be derived by similar reasoning as that
used in (76):

rgt := g(s
(xt)
∗ ,xt)− g(st,xt)

≤ h− LCBg
t−1(st,xt) (by (75))

≤ UCBg
t−1(st,xt)− LCBg

t−1(st,xt) (by (40)

= 2βg
t σ

g
t−1(st,xt), (116)

where rgt is the instantaneous regret incurred by the algorithm by choosing (st,xt) at round t. Note that st = s
(xt)
t

for every t in this case (since all actions must be chosen from the set Gt), and UCBg
t−1(st,xt) < h does not hold

(since any (s
(x)
t ,x) such that s

(x)
t = 1 is never selected with the redefined expdt). Also note that the problem

setting of (Losalka and Scarlett, 2023) precludes the scenario where g is safe over the entire input domain D;
thus, excluding actions with s

(x)
t = 1 does not lead to the situation that the algorithm is unable to chose any

action in some round t.

Arpan Losalka, Jonathan Scarlett

In the case that f = g, we readily obtain Theorem 1 from (Losalka and Scarlett, 2023) by summing rgt over
t = 1, . . . , T , and using Lemma 4 from (Chowdhury and Gopalan, 2017). Similar to the setup in (Losalka and
Scarlett, 2023), this derivation does not require L′

g > 0 (i.e., g only needs to be non-decreasing rather than
strictly increasing in this case). A similar argument also applies in the case that f ̸= g and both f and g are
monotone with respect to s, but in this more general case, we need to that assume L′

g > 0 (and Lf <∞) for the

reasons discussed in Section C.1, and the final regret bound incurs a 1+
Lf

L′
g
factor in the same way as Theorems

1–3. The algorithm itself does not need to know Lf and L′
g.

Attaining Theorem 2 of (Losalka and Scarlett, 2023). We refer to the proof of our Theorem 3 and

consider the regret analysis for (s
(xt)
∗ ,xt) /∈ St only (for the same reason as above). Note that given the design

of the algorithm, we have st = s
(x)
t = ŝ

(x)
t , i.e., for any x, the s on the current “safe boundary” is also the one

that maximizes UCBg
t−1.

Furthermore, we note that if s
(x)
t = 1 for any x ∈ DX , that would imply that for this specific value of x, (s,x)

is safe for every s ∈ DS (based on validity of our confidence bounds). Accordingly, in the following, we only

consider x ∈ DX for which s
(x)
t < 1.

Based on the discussion above, the worst-case (with respect to x) suboptimality of the algorithm’s best guess
(of the optimal s) can be bounded as follows:

max
x:s

(x)
t <1

{
g(s

(x)
∗ ,x)− g(ŝ

(x)
t ,x)

}
≤ max

x:s
(x)
t <1

{
h− LCB(ŝ

(x)
t ,x)

}
≤ max

x:s
(x)
t <1

{
UCB(s

(x)
t ,x)− LCB(ŝ

(x)
t ,x)

}
(since UCB(s

(x)
t ,x) ≥ h when s

(x)
t < 1)

≤ max
x:s

(x)
t <1

{
2βg

t σ
g
t−1(s

(x)
t ,x)

}
(since ŝ

(x)
t = s

(x)
t , and UCB(s

(x)
t ,x) ≤ UCB(s

(x)
t ,x))

= 2βg
t σ

g
t−1(st,xt) (since acqt maximizes σg

t−1(s,x) over (s,x) ∈ Gt). (117)

As earlier, applying Lemma 4 from Chowdhury and Gopalan (2017) upper bounds the cumulative value of the
worst-case regret derived in (117). Doing so essentially recovers Theorem 2 of Losalka and Scarlett (2023)
(with f = g), with the difference that their result is not based on a cumulative measure, but rather based on
returning the best estimate of s for each x after all queries have been taken. However, the latter follows as a

simple consequence of the former by letting the final ŝ
(x)
t be the maximum among {ŝ(x)t }Tt=1 (and thus the one

with the lowest regret), using the fact that the minimum regret is no higher than the average (with respect to
t ∼ Uniform(1, . . . , T)), and noting that such an average is precisely 1

T times the cumulative regret.

B ADDITIONAL EXPERIMENTS AND DETAILS

We first provide additional experimental results in Section B.1. The additional experimental details (e.g., choice
of kernel and description of baselines) are deferred to Section B.2.

B.1 Additional Experimental Results

Actions Sampled by Baselines. In this section, we first present the actions sampled by SafeOpt-MC and
PredVar in Figure 3 (similar to Figure 1, which shows the actions selected by M-SafeOpt). While PredVar
samples actions throughout the safe set in order to reduce uncertainty with respect to both f and g, SafeOpt-
MC samples either close to the “safe boundary” (potential expanders) or among the potential maximizers. See
Appendix B.1.1 for further discussion on the performance of these two algorithms, and how they compare with
M-SafeOpt.

Effect of Lf and L′
g: In this section, we evaluate the performance of M-SafeOpt in the scenario that the

parameters Lf and L′
g used in the algorithm differ from the corresponding true values. As mentioned in Section

No-Regret Algorithms for Safe Bayesian Optimization

0.0 0.2 0.4 0.6 0.8 1.0
s

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

x

Objective function

0.0 0.2 0.4 0.6 0.8 1.0
s

x

Safety function

0.005

0.045

0.085

0.125

0.165

0.205

0.245

0.285

0.325

0.365

0.498

0.552

0.606

0.660

0.714

0.768

0.822

0.876

0.930

0.984

0.0 0.2 0.4 0.6 0.8 1.0
s

0.0

0.2

0.4

0.6

0.8

1.0

x

Objective function

0.0 0.2 0.4 0.6 0.8 1.0
s

x

Safety function

4.48

3.84

3.20

2.56

1.92

1.28

0.64

0.00

0.64

0.00

0.56

1.12

1.68

2.24

2.80

3.36

3.92

4.48

5.04

0.0 0.2 0.4 0.6 0.8 1.0
s

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

x

Objective function

0.0 0.2 0.4 0.6 0.8 1.0
s

x
Safety function

0.005

0.045

0.085

0.125

0.165

0.205

0.245

0.285

0.325

0.365

0.498

0.552

0.606

0.660

0.714

0.768

0.822

0.876

0.930

0.984

0.0 0.2 0.4 0.6 0.8 1.0
s

0.0

0.2

0.4

0.6

0.8

1.0

x

Objective function

0.0 0.2 0.4 0.6 0.8 1.0
s

x

Safety function

4.48

3.84

3.20

2.56

1.92

1.28

0.64

0.00

0.64

0.00

0.56

1.12

1.68

2.24

2.80

3.36

3.92

4.48

5.04

Figure 3: The first two columns shows the actions sampled by the SafeOpt (row 1) and PredVar (row 2)
algorithms for the simulated clinical trial experiment, while the last two columns shows the corresponding plots
for the synthetic 2D experiment (from Section 5). The true safe boundary is shown in red and the boundary
discovered by the algorithm is shown in blue (in columns 2 and 4).

0 10 20 30 40 50 60 70 80

t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
t
/t

c = 0.1
c = 0.5
c = 2.0
c = 5.0
true Lf,L'g

0 10 20 30 40 50 60 70 80

t

0.00

0.05

0.10

0.15

0.20

0.25

R
' t

/t

c = 0.1
c = 0.5
c = 2.0
c = 5.0
true Lf,L'g

0 20 40 60 80 100

t

0

1

2

3

4

5

6
R
t
/t

c = 0.1
c = 0.5
c = 2.0
c = 5.0
true Lf,L'g

Figure 4: The first column shows the normalized cumulative regret, Rt/t, incurred by M-SafeOpt for the
simulated clinical trial experiment for different values of c (where Lf is set to cLf , and L′

g is set to L′
g/c), while

the second column shows that for R′
t/t. The third column corresponds to the synthetic 2D experiment (showing

Rt/t). The instantaneous regret values are shown using markers.

2, an overestimate of Lf and an underestimate of L′
g also allow our theoretical guarantees to hold (since (4) and

(5) remain valid). Therefore, we design this set of experiments by varying the values of Lf and L′
g as follows:

Lf ← cLf , L
′
g ← L′

g/c with c ∈ {2, 5}. Additionally, to see how M-SafeOpt performs in the reverse scenario,
i.e., Lf is underestimated and L′

g is overestimated, we also consider c ∈ {0.1, 0.5}.
Intuitively, c > 1 implies that the algorithm becomes more cautious when setting elimt = true and expdt =
false, and thus, the regret is expected to converge slower than that with c = 1. This is also observed in our
experiments, as shown in Figure 4.

On the other hand, c < 1 leads to more aggressive elimination of x’s and expansion of actions on the “safe
boundary”. This may cause the regret to converge faster (as is also the case in Figure 4). However, this may
come at the expense of failing to explore potentially optimal regions due to improper elimination/non-expansion
based on the incorrect estimates. In the present scenario with “well-behaved” objective and safety functions,

Arpan Losalka, Jonathan Scarlett

0 10 20 30 40 50 60 70 80
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
t
/t

M-SAFEOPT (Inst.)
SAFEOPT-MC (Inst.)
PREDVAR (Inst.)
M-SAFEOPT
SAFEOPT-MC
PREDVAR

0 20 40 60 80 100
t

0

2

4

6

8

R
t
/t

M-SAFEOPT (Inst.)
SAFEOPT-MC (Inst.)
PREDVAR (Inst.)
M-SAFEOPT
SAFEOPT-MC
PREDVAR

Figure 5: The first column shows the normalized cumulative regret, Rt/t, for the synthetic 3D experiment,
while the second column shows that for the pendulum swing-up experiment. The corresponding instantaneous
regret values are shown using markers.

this behavior tends to be avoided.

We also note that it is possible to be more robust to such choices of Lf and L′
g (c < 1), and also possibly imprecise

knowledge of the kernel, by making the following change to the algorithm: eliminate x’s from the whole set DX
(instead of the previous set Dt

X) in each round, such that any x that may have been incorrectly eliminated in
a specific round still has a chance to be recovered once the confidence bounds are refined in subsequent rounds.
In view of this improved robustness, we adopt this strategy in our implementation.

In the rest of this subsection, we compare the performance of M-SafeOpt with the baseline algorithms on two
other problems – one with a three dimensional input domain, and another being a modification of the pendulum
swing-up problem, a classic control task (Brockman et al., 2016).

Synthetic 3D Functions. For this experiment, we used the Hartmann-3 function (Hedar, 2013) as the ob-
jective function fsyn3D

, along with the following safety function:

gsyn3D
(s,x) = s+ x2

1 + x3
2, (118)

where x = (x1, x2). The domain is set to be [0, 1]3, and is discretized into 75 × 75 × 75 linearly spaced points.
We set the safety threshold to h = 2, such that gsyn3D

satisfies the assumptions of our problem setup, i.e.,
monotonicity with respect to s, and safety for s = 0 for all values of x ∈ DX . The function evaluations are set
to be noiseless.

The results of running M-SafeOpt, along with the baseline algorithms, are presented in Figure 5. Similar
to our previous experiments, we see that M-SafeOpt is able to converge to the global safe optimum while
attaining sublinear regret, whereas the regret incurred by SafeOpt-MC and PredVar is not sublinear, since
they continue to explore suboptimal regions.

Pendulum Swing-up Problem. For this problem, we consider the pendulum swing-up problem, which is a
classic control problem available as an OpenAI Gym environment (Brockman et al., 2016). The task is to apply
torque to the free end of a pendulum such that it swings and stays in the upright position, i.e., it attains an
angular velocity of zero when it reaches this position. We adapt the problem to our setup as follows. The initial
angle (x) of the pendulum lies within the range DX = [−2π + π/36,−π − π/36] (with angle = 0 denoting the
upright position), and the torque (s) lies in DS = [0, 1] (s is scaled up by a factor of 40 to calculate the motion,
so that the upright position is attainable). The torque is applied only once at the beginning, while the episode
is run for 100 time steps.

No-Regret Algorithms for Safe Bayesian Optimization

0 20 40 60 80 100
t

0

1

2

3

4

5

R
' t

/t

M-SAFEOPT (Inst.)
SAFEOPT-MC (Inst.)
PREDVAR (Inst.)
M-SAFEOPT
SAFEOPT-MC
PREDVAR

0 20 40 60 80 100
t

0

1

2

3

4

5

6

7

R
t
/t

M-SAFEOPT (Inst.)
SAFEOPT-MC (Inst.)
PREDVAR (Inst.)
M-SAFEOPT
SAFEOPT-MC
PREDVAR

Figure 6: The first column shows the normalized cumulative regret, R′
t/t, for the pendulum swing-up experiment,

while the second column shows that for RX
t /t when running M-SafeOpt (Case 2) along with the baseline

algorithms. The corresponding instantaneous regret values are shown using markers.

The reward function is defined as follows (similar to (Losalka and Scarlett, 2023)):

fn(s,x) =

{
−θ2n(s,x)− θ̇2

n(s,x)
10 − s2

1000 , if θn(s,x) ≤ 0

−θ̇up(s,x) if θn(s,x) > 0,
(119)

f(s,x) = max
n≤100

fn(s,x), (120)

where θn(s,x) and θ̇n(s,x) denote the angle and angular velocity of the pendulum at the nth time step, and
θ̇up(s,x) denotes the angular velocity of the pendulum when it crosses the upright position, starting with an
initial angle and torque of x and s respectively.

The safety function is set to be equal to the maximum magnitude of the angular velocity attained by the
pendulum at any time step during the episode:

g(s,x) = max
n≤100

|θ̇n(s,x)|, (121)

and the safety threshold is set to h = 9. In this experiment, we consider noisy queries for both f and g, namely,
additive N (0, 0.05) noise.

The initial angular velocity is always set to zero such that our safety assumption is satisfied (s = 0 being safe
for every x); this is because the threshold magnitude of velocity is unattainable for any value of the initial angle
(x ∈ DX), unless a positive torque (s > 0) is applied. One episode (with 100 time steps) is simulated to calculate
the reward and safety values in every iteration of optimization.

The input domain is discretized into 100× 100 linearly spaced points, and the results of running M-SafeOpt,
along with the baseline algorithms are presented in Figure 5. In this case, M-SafeOpt and SafeOpt-MC
behave similarly, whereas PredVar incurs higher regret due to its exploratory nature.

B.1.1 Further Discussion

With respect to the performance of the baseline algorithms SafeOpt-MC and PredVar , we highlight the
following observations:

• SafeOpt-MC tries to simultaneously explore the potentially optimal regions (Mt) and actions that could
potentially expand the safe set (Gt) as seen via the actions sampled in Figure 3. However, it expands while
being “blind” to the objective function f (i.e., it does not try to evaluate the suboptimality of the potential
expanders). This appears to be unavoidable in the general scenario, since without any known structure on g
(e.g., monotonicity), it is not possible to predict which region of the input domain may contain the optimal
safe action; hence, the entire reachable safe set must be explored by SafeOpt. This is reflected in the

Arpan Losalka, Jonathan Scarlett

performance of SafeOpt with respect to Rt and R′
t (e.g., see the first and second columns of Figure 2, and

the corresponding plots in Figure 5 and 6).

• Due to its exploratory nature, PredVar performs well in terms of RX
t (as observed in the third column

in Figure 2), i.e., it is able to identify a near-optimal s for each x ∈ DX . However, for the same reason,
it performs poorly with respect to Rt and R′

t, i.e., it does not make progressively “better” choices (since
it tries to reduce uncertainty over f and g over St without considering potential optimality separately), as
observed in the first and second columns of Figure 2, as well as both plots in Figure 5 and the first column
of Figure 6.

B.2 Details of Experiments

In this section, we describe the details of the setup of our experiments, including the details of the objective and
safety functions, and the implementation details of the algorithms.

B.2.1 Experimental Setup

Simulated Clinical Trial. For this experiment, we consider the dose efficacy (feff) and dose toxicity (gtox)

functions as described in (37) and (38) respectively. Specifically, the values of θi’s are set as follows: θ
f
0 = 1, θf1 =

2, θf2 = 1, θf3 = −4, θf4 = −1, θg1 = 2, θg2 = 1 to give us the functions shown in Figure 1. As stated in Section 5,
we assume that d1 and d2 represent the dosages of two different drugs that are administered as a combination
in a clinical trial. For drug combinations, it is common to observe non-monotonic behavior of the efficacy (e.g.,
immunotherapy trials (Cai et al., 2014)). Since the toxicity increases monotonically with respect to both d1 and
d2 in this experiment, either could be treated as the safety variable s. We use d1 as the safety variable in our
implementation, and try to find the global safe optimal dose combination for goal (i) (as in Section 2).

For goal (ii) (as in Section 2), the same functions are used in our experiment. Since we need to find the optimal
safe d1 for every d2 in this case. From the perspective of practical relevance, it may be more sensible to interpret
d2 as the age of patients, so that the goal translates to finding the optimal dose (d1) for every age (d2). However,
from the perspective of evaluation of the algorithms, the proposed meaning/interpretation of each variable does
not have any quantitative effect.

The input domain is set to be [0, 1] × [0, 2], which is discretized into 200 × 200 linearly spaced points in the
domain. The function evaluations observed by the algorithm are noiseless. The safety function gtox(s,x) satisfies
the assumptions of our problem setup, i.e., strict monotonicity with respect to s, and safety at s = 0 for all
x ∈ DX . However, feff is non-monotonic in both s and x.

Synthetic 2D Functions. We consider the following synthetic functions:

fsyn1
= α ·

(
(x− bs2 + cs− 6)2 + 10(1− t) cos(s) + ∆

)
, (122)

gsyn1
= 2s(ey sin(10y) + sin(5y) + 5)/3, (123)

where the parameters are set to the following values: α = 1/51.95,∆ = −44.81, b = 5.1/4π2, c = 5/π, t = 1/8π
as per those used for defining the scaled Branin function (Picheny et al., 2013). y is set to x+ 1/3 for defining
gsyn1

, so that one of the three local optima of the objective function gets excluded from the safe region. We use
these functions due to the presence of multiple local optima (of fsyn1

), less smooth optimization surfaces for both
fsyn1

and gsyn1
(compared to feff and gtox), and difficulty in eliminating x’s and/or terminating expansion due to

presence of near-optimal actions in the unsafe region close to safe boundary. This makes it more difficult for the
algorithm to identify and eliminate suboptimal regions of the input space. The function evaluations observed by
the algorithm are noiseless.

The input domain is set to be [0, 1]× [0, 1], and is discretized into 200×200 linearly spaced points in the domain.
The function evaluations observed by the algorithm are noiseless. The safety function gsyn1

(s,x) satisfies strict
monotonicity with respect to s, and safety at s = 0 for all x ∈ DX .

B.2.2 Implementation Details

In all our experiments, βt
f and βt

g are set to a constant value of 3 in all rounds t ≥ 1. The use of a constant β
is fairly common in the Bayesian optimization/safe Bayesian optimization literature, since the theoretical values

No-Regret Algorithms for Safe Bayesian Optimization

tend to be overly cautious to aid the derivation of theoretical guarantees.

We use the Trieste library for Bayesian optimization in our implementations (Picheny et al., 2023). All experi-
ments are repeated 5 times, and the plots in Figure 2 and 5 show the mean values of the corresponding notions
of regret (both instantaneous and cumulative), along with the standard deviations via error bars.

Gaussian Process Model. In all our experiments, the Gaussian process models for both f and g use the
Matérn- 52 kernel, with the length scales and variance of the kernel set to be trainable. A log-normal prior is
used for both the variance and the length scales with a standard deviation 1. The mean values for the length
scales are set to 0.2, and that for the variance is set to 1 for the simulated clinical trial and the synthetic 3D
experiments, and 9 for the experiment with the synthetic 2D functions. The GP models assumes a low noise level
of 10−5 for numerical stability (except for the pendulum swing-up experiment, where the algorithm observes noisy
evaluations of f and g, the noise being sampled from N (0, 0.05) and the GP model assumes a noise level with
variance 0.05). Seeking minimal manual tuning, the choices of parameters mostly follow the recommendations
in (Picheny et al., 2023).

M-SafeOpt Algorithm. For implementing our M-SafeOpt algorithm, we first find the values of Lf and L′
g

by computing the gradients of f and g over a finely discretized grid of points in the input space. We directly use
these values unless stated otherwise, but we recall that Appendix B.1 also explores the algorithm’s robustness
to misspecified values.

We also note that while our theory holds for continuous x, our implementation relies on discretization of x due
to the explicit for-loop over x. For continuous domains, alternative approaches involving approximations are
possible; however, we do not claim the validity of our theoretical guarantees for such variations. A few such
alternatives are discussed in Appendix C.2 in (Losalka and Scarlett, 2023) for the case that f = g, and similar
approaches can also be adopted in our setting with distinct f and g.

SafeOpt Algorithm. For implementing the SafeOpt algorithm (Sui et al., 2015), we specifically use the
variant proposed by Berkenkamp et al. (2021), SafeOpt-MC, that works with distinct objective and safety
functions. To incorporate the knowledge of monotonicity of g in the implementation, we explicitly define the set
Gt of potential expanders as the set of actions on the current “safe boundary” as discovered by the algorithm

and as defined by M-SafeOpt. The only difference is that in this case, we remove any action with s
(x)
t = 1 from

Gt; this is because SafeOpt defines Gt as the set of actions that could potentially expand the current safe set

of actions, whereas s
(x)
t = 1 implies that g(s,x) has been discovered to be safe for every s ∈ DS already. On the

other hand, the set of potential maximizers, Mt, is computed exactly as defined in (Sui et al., 2015). We avoid
using Lipschitz constants, instead relying on the modification proposed by (Berkenkamp et al., 2017).

PredVar Algorithm. For the PredVar algorithm, we conceptually rely on (Schreiter et al., 2015), while
extending the algorithm to consider multiple functions simultaneously. We define the the currently known safe
region in the same way as that in M-SafeOpt. The acquisition function uses the maximum among the width
of the confidence intervals given by the GP models for f and g for all actions in the safe set St. Thus, PredVar
behaves as a purely exploratory algorithm that tries to minimize variance across the safe input domain for both
f and g simultaneously, while also expanding the safe set.

C DISCUSSION

C.1 Necessity of Lf and L′
g

Recall that we assume a minimum growth rate of g with respect to s (i.e., L′
g > 0) and a a maximum growth

rate of f with respect to s (i.e., Lf <∞). Here we argue that these assumptions (or similar) are in fact essential
for attaining meaningful regret bounds in our setting.

To see this, we consider the highly simplified special case in which there is only a single choice of x (i.e., |DX | = 1),
and the goal is to maximize f with respect to s ∈ [0, 1] alone, subject to safety. When L′

g = 0, we can encounter
a situation such as that shown on Figure 7, where g is flat with a value extremely close to h, say h − ϵ. For
arbitrarily small ϵ, it is arbitrarily hard to identify (to within a constant accuracy, say ±0.01) the value of s at

Arpan Losalka, Jonathan Scarlett

<latexit sha1_base64="A6MHavCK5B6TGPVrudNI/oKglgo=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtSTaWGIUJIEL2VvmYMPe3mV3z4Rc+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSATXxnW/ncLa+sbmVnG7tLO7t39QPjxq6zhVDFssFrHqBFSj4BJbhhuBnUQhjQKBj8H4ZuY/PqHSPJYPZpKgH9Gh5CFn1Fjpvjqq9ssVt+bOQVaJl5MK5Gj2y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnXa95FzburVxrXeRxFOIFTOAcPLqEBt9CEFjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AGG+o1M</latexit>

h

<latexit sha1_base64="zkN5WHmfALQe7cYv92kJHHpO/Ss=">AAAB9HicbVA9TwJBEJ3zE/ELtbTZCCY2kjsKtSTaWGIiHwlcyN4ywIa9vXN3j4Rc+B02Fhpj64+x89+4wBUKvmSSl/dmMjMviAXXxnW/nbX1jc2t7dxOfndv/+CwcHTc0FGiGNZZJCLVCqhGwSXWDTcCW7FCGgYCm8HobuY3x6g0j+SjmcToh3QgeZ8zaqzkl4aXlQ7GmotIlrqFolt25yCrxMtIETLUuoWvTi9iSYjSMEG1bntubPyUKsOZwGm+k2iMKRvRAbYtlTRE7afzo6fk3Co90o+ULWnIXP09kdJQ60kY2M6QmqFe9mbif147Mf0bP+UyTgxKtljUTwQxEZklQHpcITNiYgllittbCRtSRZmxOeVtCN7yy6ukUSl7V2XvoVKs3mZx5OAUzuACPLiGKtxDDerA4Ame4RXenLHz4rw7H4vWNSebOYE/cD5/AK7TkWU=</latexit>

h� 2✏

<latexit sha1_base64="ww1m/71/AOg74kI3hleclyeKi4M=">AAAB8nicbZC7TsMwFIZPyq2UW4GRxaJCYqqSDsBYwcJYLr1IaVQ57klr1Ykj20Gqqj4GCwMIsfI0bLwNbpsBWn7J0qf/nCOf84ep4Nq47rdTWFvf2Nwqbpd2dvf2D8qHRy0tM8WwyaSQqhNSjYIn2DTcCOykCmkcCmyHo5tZvf2ESnOZPJpxikFMBwmPOKPGWv4DjZDc48Byr1xxq+5cZBW8HCqQq9Erf3X7kmUxJoYJqrXvuakJJlQZzgROS91MY0rZiA7Qt5jQGHUwma88JWfW6ZNIKvsSQ+bu74kJjbUex6HtjKkZ6uXazPyv5mcmugomPEkzgwlbfBRlghhJZveTPlfIjBhboExxuythQ6ooMzalkg3BWz55FVq1qndR9e5qlfp1HkcRTuAUzsGDS6jDLTSgCQwkPMMrvDnGeXHenY9Fa8HJZ47hj5zPH8rmkO8=</latexit>

Safe Region

<latexit sha1_base64="39weLUTAWX/Yc/8kolt8heVAIJw=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtSTaWGKUjwQuZG/Zgw17e5fdOSMh/AQbC42x9RfZ+W9c4AoFXzLJy3szmZkXJFIYdN1vJ7e2vrG5ld8u7Ozu7R8UD4+aJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzcxvPXJtRKwecJxwP6IDJULBKFrpvvxU7hVLbsWdg6wSLyMlyFDvFb+6/ZilEVfIJDWm47kJ+hOqUTDJp4VuanhC2YgOeMdSRSNu/Mn81Ck5s0qfhLG2pZDM1d8TExoZM44C2xlRHJplbyb+53VSDK/8iVBJilyxxaIwlQRjMvub9IXmDOXYEsq0sLcSNqSaMrTpFGwI3vLLq6RZrXgXFe+uWqpdZ3Hk4QRO4Rw8uIQa3EIdGsBgAM/wCm+OdF6cd+dj0Zpzsplj+APn8wefSo1c</latexit>x

<latexit sha1_base64="+s6v4vyXnMB6DHp8L3FXwuRmFdc=">AAAB7XicbVA9TwJBEJ3DL8Qv1NJmI5hgQ+4o1JJoY4mJfCRwIXvLHqzs7V5294zkwn+wsdAYW/+Pnf/GBa5Q8CWTvLw3k5l5QcyZNq777eTW1jc2t/LbhZ3dvf2D4uFRS8tEEdokkkvVCbCmnAnaNMxw2okVxVHAaTsY38z89iNVmklxbyYx9SM8FCxkBBsrtcph5em83C+W3Ko7B1olXkZKkKHRL371BpIkERWGcKx113Nj46dYGUY4nRZ6iaYxJmM8pF1LBY6o9tP5tVN0ZpUBCqWyJQyaq78nUhxpPYkC2xlhM9LL3kz8z+smJrzyUybixFBBFovChCMj0ex1NGCKEsMnlmCimL0VkRFWmBgbUMGG4C2/vEpatap3UfXuaqX6dRZHHk7gFCrgwSXU4RYa0AQCD/AMr/DmSOfFeXc+Fq05J5s5hj9wPn8AJp+OMQ==</latexit>

f(x)

<latexit sha1_base64="A6MHavCK5B6TGPVrudNI/oKglgo=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtSTaWGIUJIEL2VvmYMPe3mV3z4Rc+Ak2Fhpj6y+y89+4wBUKvmSSl/dmMjMvSATXxnW/ncLa+sbmVnG7tLO7t39QPjxq6zhVDFssFrHqBFSj4BJbhhuBnUQhjQKBj8H4ZuY/PqHSPJYPZpKgH9Gh5CFn1Fjpvjqq9ssVt+bOQVaJl5MK5Gj2y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnXa95FzburVxrXeRxFOIFTOAcPLqEBt9CEFjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AGG+o1M</latexit>

h

<latexit sha1_base64="ww1m/71/AOg74kI3hleclyeKi4M=">AAAB8nicbZC7TsMwFIZPyq2UW4GRxaJCYqqSDsBYwcJYLr1IaVQ57klr1Ykj20Gqqj4GCwMIsfI0bLwNbpsBWn7J0qf/nCOf84ep4Nq47rdTWFvf2Nwqbpd2dvf2D8qHRy0tM8WwyaSQqhNSjYIn2DTcCOykCmkcCmyHo5tZvf2ESnOZPJpxikFMBwmPOKPGWv4DjZDc48Byr1xxq+5cZBW8HCqQq9Erf3X7kmUxJoYJqrXvuakJJlQZzgROS91MY0rZiA7Qt5jQGHUwma88JWfW6ZNIKvsSQ+bu74kJjbUex6HtjKkZ6uXazPyv5mcmugomPEkzgwlbfBRlghhJZveTPlfIjBhboExxuythQ6ooMzalkg3BWz55FVq1qndR9e5qlfp1HkcRTuAUzsGDS6jDLTSgCQwkPMMrvDnGeXHenY9Fa8HJZ47hj5zPH8rmkO8=</latexit>

Safe Region

<latexit sha1_base64="PSTGapQXdsBktF21fWBGYZFwkb8=">AAAB73icbVDLSsNAFL2pr1pfUZduBluhgpSk4GNZdOOygn1AG8pkOmmHTiZxZiKW0J9w40IRt/6OO//GaZuFth64cDjnXu69x485U9pxvq3cyura+kZ+s7C1vbO7Z+8fNFWUSEIbJOKRbPtYUc4EbWimOW3HkuLQ57Tlj26mfuuRSsUica/HMfVCPBAsYARrI7VLg7I6ezot9eyiU3FmQMvEzUgRMtR79le3H5EkpEITjpXquE6svRRLzQink0I3UTTGZIQHtGOowCFVXjq7d4JOjNJHQSRNCY1m6u+JFIdKjUPfdIZYD9WiNxX/8zqJDq68lIk40VSQ+aIg4UhHaPo86jNJieZjQzCRzNyKyBBLTLSJqGBCcBdfXibNasW9qJzfVYu16yyOPBzBMZTBhUuowS3UoQEEODzDK7xZD9aL9W59zFtzVjZzCH9gff4AaA6O6Q==</latexit>

g(s, x)

<latexit sha1_base64="jdXHRvS1+7xSwlIF9gOjwRJqTvk=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIph4IrskPo5ELx4xyiOBDZkdZmHC7OxmpteEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSKFQdf9dnJr6xubW/ntws7u3v5B8fCoaeJUM95gsYx1O6CGS6F4AwVK3k40p1EgeSsY3c781hPXRsTqEccJ9yM6UCIUjKKVHsqm3CuW3Io7B1klXkZKkKHeK351+zFLI66QSWpMx3MT9CdUo2CSTwvd1PCEshEd8I6likbc+JP5qVNyZpU+CWNtSyGZq78nJjQyZhwFtjOiODTL3kz8z+ukGF77E6GSFLlii0VhKgnGZPY36QvNGcqxJZRpYW8lbEg1ZWjTKdgQvOWXV0mzWvEuKxf31VLtJosjDydwCufgwRXU4A7q0AAGA3iGV3hzpPPivDsfi9ack80cwx84nz+Y+Y1b</latexit>s

<latexit sha1_base64="+5EgkCPOuAqvnk0ZEiwfzbVLwCA=">AAAB83icbVDLSgNBEJyNrxhfUY9eBhPBi2E34OMY9OIxgnlAdgmzk95kyOzMMjMrhCW/4cWDIl79GW/+jZNkD5pY0FBUddPdFSacaeO6305hbX1jc6u4XdrZ3ds/KB8etbVMFYUWlVyqbkg0cCagZZjh0E0UkDjk0AnHdzO/8wRKMykezSSBICZDwSJGibGSXx1d+JBoxqWo9ssVt+bOgVeJl5MKytHsl7/8gaRpDMJQTrTueW5igowowyiHaclPNSSEjskQepYKEoMOsvnNU3xmlQGOpLIlDJ6rvycyEms9iUPbGRMz0sveTPzP66UmugkyJpLUgKCLRVHKsZF4FgAeMAXU8IklhCpmb8V0RBShxsZUsiF4yy+vkna95l3VLh/qlcZtHkcRnaBTdI48dI0a6B41UQtRlKBn9IrenNR5cd6dj0VrwclnjtEfOJ8/PN6RLQ==</latexit>

h� ✏

Figure 7: Example of a function where identifying the safe boundary (i.e., the highest safe s) can be arbitrarily
hard.

which the function crosses from safe to unsafe.3 On the other hand, if f is not flat (i.e, Lf > 0), then accurately
identifying that crossing point is crucial for optimizing f .

Along similar lines, even if we have L′
g > 0, having Lf = ∞ would imply that even a minuscule amount of

inaccuracy with respect to identifying the safe boundary (which is almost always unavoidable, particularly in
the noisy setting) can lead to strict suboptimality with respect to f due to abrupt changes.

Thus, the assumptions L′
g > 0 and Lf < ∞, or possibly similar kinds of assumptions with different specific

details, are essential for the goals of our paper. We note that while the assumption L′
g > 0 is somewhat specific

to our setting, growth rate upper bounds (i.e., Lipschitz constants) are much more common, e.g., as used by
existing algorithms such as SafeOpt. Moreover, for many commonly-considered kernels (e.g., Matérn with
ν > 1), Lipschitz continuity with respect to s and x is automatically guaranteed for any function in the RKHS
(e.g., see Remark 5 of Shekhar and Javidi (2020)).

As a side note, we point out that strict monotonicity of g(·,x) alone may not directly imply L′
g > 0, either due

to the presence of a global minimum at g(0,x), or due to inflection points. For example, g(s,x) = s2 is strictly
monotonically increasing in s, but the minimum value of the partial derivative with respect to s is 0. While
strict monotonicity still implies (5) for some L′

g > 0 when s > s′, the difference is that L′
g needs to vary with s′

(and possibly approach 0 as s′ approaches s).

C.2 Variations and Extensions

In our paper, we have modeled f and g separately for clarity of exposition. However, we can easily handle joint
modeling (e.g., to capture correlations between f and g) in the same way as existing works such as (Berkenkamp
et al., 2021): We simply define h(·, ·, 1) = f(·, ·) and h(·, ·, 2) = g(·, ·), and assume that the “expanded” function
h(s,x, i) has a low RKHS norm (instead of f and g separately). The existing confidence bounds can then simply
be applied to h, rather than to f and g separately.

In certain applications, the current problem setup may need to be extended to consider context variables ct that
cannot be “selected”, but are rather provided by the environment in every round (e.g., a patient’s blood sugar
level in the adaptive clinical trial application). Furthermore, safety may be dictated by multiple safety functions
g1, g2, . . . , gl, instead of a single function g. In both these scenarios, we note that our algorithms can be readily
extended following the ideas proposed in (Berkenkamp et al., 2021), assuming each gi satisfies our monotonicity
assumption.

3For instance, supposing additive Gaussian noise, it is well-known that Θ
(

1
ϵ2

)
queries are needed to distinguish between

function values of h+ ϵ and h− ϵ, and similarly for other values in between the two.

