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Abstract

Fitting autoregressive moving average
(ARMA) time series models requires model
identification before parameter estimation.
Model identification involves determining
the order of the autoregressive and moving
average components which is generally per-
formed by inspection of the autocorrelation
and partial autocorrelation functions or
other offline methods. In this work, we regu-
larize the parameter estimation optimization
problem with a non-smooth hierarchical
sparsity-inducing penalty based on two
path graphs that allow performing model
identification and parameter estimation
simultaneously. A proximal block coordi-
nate descent algorithm is then proposed to
solve the underlying optimization problem
efficiently. The resulting model satisfies
the required stationarity and invertibility
conditions for ARMA models. Numerical
results supporting the proposed method are
also presented.

1 INTRODUCTION

ARIMA time series models have a multitude of ap-
plications, e.g., in epidemiological surveillance (Zhang
et al., 2014), water resource management (Wang et al.,
2015), transportation systems (Billings and Yang,
2006), drought forecasting (Han et al., 2010), stock
price forecasting (Adebiyi et al., 2014), business plan-
ning (Calheiros et al., 2014), and power systems (Chen
et al., 2009), to name a few. Even the emergence of
deep neural networks and their customized architec-
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tures for time series modeling, e.g., Recurrent Neural
Nets (RNN) and Long Short-Term Memory (LSTM)
has not decreased the popularity of ARIMA mod-
els (Makridakis et al., 2018).

Fitting ARMA(p, q) time series models requires a two-
step process: 1. Model identification, 2. Parameter es-
timation. The model identification step determines the
order of the autoregressive (AR) component (p) and
the moving average (MA) component (q). Next, given
the underlying ARMA model, the parameters are esti-
mated by solving an optimization problem for the max-
imum likelihood or least square estimates (Box et al.,
2015; Del Castillo, 2002). We should note that ARMA
models are used to model stationary processes; how-
ever, there exists a more general class of ARIMA mod-
els for homogeneous nonstationary processes (which
are stationary in the mean). Such processes become
stationary after d times differencing; hence, the corre-
sponding ARIMA(p, d, q) model includes differencing
of order d. The results of this paper are mainly for
stationary processes with potential extension to the
homogeneous nonstationary processes.

Model identification is primarily based on visual in-
spection of the sample autocorrelation function (ACF)
and partial autocorrelation (PACF) plots. For the
AR(p) process, the sample ACF follows an exponen-
tial decay, and the sample PACF cuts off after lag p,
while for the MA(q) process, the sample ACF cuts
off after lag q and the sample PACF decays exponen-
tially (Del Castillo, 2002). When the process involves
both AR and MA components, it is more difficult to
identify the correct orders. After model identifica-
tion, parameters are estimated by minimizing a loss
function (e.g., negative log-likelihood or least square).
Some works, e.g., Box et al. (2015), recommended an
iterative approach between the model identification
and parameter estimation which involves inspection of
the residuals from the fitted model to make sure that
they are indeed white noise.

In many of today’s applications, ARMA models should
be fitted to many times series data {yjt }Jj=1 with J be-
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ing very large, e.g., the demand data for more than
thousands of products. If demand is uncorrelated
across different products, fitting vector ARMA mod-
els is unnecessary, and separate models are preferable.
In such scenarios, model identifications become a sig-
nificant challenge in the modeling process. This work
proposes a novel approach to fit ARMA models that
allows automating the fitting procedure by merging
the model identification step into the parameter esti-
mation. Indeed, with the aid of a single tuning param-
eter, the proposed algorithm allows data to identify an
appropriate model.

1.1 CONTRIBUTIONS

The contributions of this work are as follows:

• We develop a novel approach to fit ARMA time
series models that identifies the model by tuning
a single continuous parameter (λ). This approach
merges model identification with parameter es-
timation by introducing a hierarchical sparsity-
inducing penalty into the optimization problem.
The sparsity-inducing penalty preserves the hier-
archical model structure, e.g., it does not allow
the second AR parameter to be nonzero when the
first AR parameter is zero.

• We propose an efficient proximal block coordinate
descent (BCD) algorithm to solve the underlying
nonsmooth and nonconvex optimization problem
to a stationary point – see Algorithm 2. The prox-
imal map of the nonsmooth hierarchical sparsity-
inducing penalty is shown to be separable on the
AR and MA components.

• The proposed approach automates the ARMA
time series modeling, does not require offline
model identification and allows ARMA time se-
ries modeling for a large number of time series
data.

1.2 Related Work

Model identification to determine the order of the time
series model through regularization with `1-norm (also
known as Lasso regularization) is performed for uni-
variate AR models in Wang et al. (2007); Nardi and
Rinaldo (2011). Extensions of such methods for vec-
tor AR (VAR) models are also considered in Hsu et al.
(2008). By smart tuning of the regularization parame-
ter, Ren and Zhang (2010) proposed an adaptive Lasso
regularizer for VAR models with provable asymptotic
properties – see also Chan and Chen (2011) for an
adaptive ARMA model selection. This line of research
utilizes `1-penalty to induce sparsity in the parameters

of the time series model to select a subset of the model
parameters. However, naive usage of `1-penalty results
in models that lack the hierarchical structure. Hierar-
chically structured models are those in which higher-
order parameters (in both the AR and MA compo-
nents) are allowed to be nonzero when lower-order pa-
rameters are nonzero (as a necessary condition). This
is similar to regression modeling where for better in-
terpretability, one prefers to have higher-order inter-
actions in the model only if the lower-level ones are
included in the model.

To keep the benefits and simplicity of fitting ARMA
models using Lasso-type penalties and also to en-
force the desired hierarchical structure in the identi-
fied model, few works looked into hierarchical sparsity-
inducing penalties for time series modeling. Nichol-
son et al. (2014) consider a hierarchical lag structure
(HLag) for VAR models utilizing the group lasso with
nested groups and use an iterative soft-thresholding
algorithm to solve the underlying problem. Further-
more, Wilms et al. (2017) consider a vector ARMA
model and propose to measure the complexity of the
model based on a user-defined strongly convex func-
tion that can then be used as a regularizer for model
identification. Their parameter estimation is a two-
phase process: first, the unobservable errors are es-
timated by fitting a pure VAR(∞) model; next, the
approximate lagged errors are used as the covariates
for the MA component which results in a least-square
problem regularized with `1 or HLag penalty.

1.3 Notations

Lowercase boldface letters denote vectors, and upper-
case Greek letters denote sets, except for B which de-
notes the back-shift operator. The set of all real and
complex numbers are denoted by R and C, respec-
tively. Given a set g ⊆ G, |g| denotes its cardinality
and gc denotes its complement. Given β ∈ Rd and
g ⊆ {1, · · · , d}, βg ∈ R|g| is a vector with its elements
selected from β over the index set g.

2 PROBLEM DEFINITION

We consider a stationary ARMA(p, q) time series pro-
cess with a zero mean as

yt =φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p

− θ1εt−1 − θ2εt−2 − · · · − θqεt−q + εt,
(1)

where φ`, with ` = 1, . . . , p are the parameters of the
AR component, and θ`, with ` = 1, . . . , q are the pa-
rameters of the MA component, and εt is a white noise
with zero mean and variance σ2. The process (1) can



Yin Liu, Sam Davanloo Tajbakhsh

also be written as

P pφ(B)yt = P qθ (B)εt, (2)

where B is the back-shift operator, i.e., Byt = yt−1, and

P dα(z) , 1− α1z − α2z
2 − · · · − αdzd, (3)

is a polynomial of degree d with the parameter α. The
process (2) is stationary if the AR component is sta-
tionary which is the case if all roots of the P pφ(z) poly-
nomial are outside the unit circle; furthermore, the
process is invertible if the MA component is invertible
which is the case if all roots of the P dθ (z) polynomial
are outside the unit circle (Del Castillo, 2002). Re-
quiring the two polynomials to have roots outside of
the unit circle in the B space translates to some con-
straints on φ = [φ1, · · · , φp]> and θ = [θ1, · · · , θq]>,
i.e., φ ∈ X pφ ⊆ Rp and θ ∈ X qθ ⊆ Rq, where X dα is
defined as

X dα , {α ∈ Rd : ∀z ∈ C, P dα(z) = 0⇒ |z| > 1}. (4)

We note that there is also another (maybe more com-
mon) representation for X dα based on the monic poly-
nomial

P̄ dα(z) , zd + α1z
d−1 + · · ·+ αd−1z + αd, (5)

of degree d, where it can be shown that

X dα = {α ∈ Rd : ∀z ∈ C, P̄ dα(z) = 0⇒ |z| < 1}. (6)

Note that the new representation requires roots of
the polynomial to be inside the unit circle. For
an arbitrary d, the geometrical complexity of X dα
makes projection onto this set very difficult (Com-
bettes and Trussell, 1992). Indeed, Combettes and
Trussell (1992) discussed that X dα is open, bounded,
and not necessarily convex – see also Moses and Liu
(1991); Blondel et al. (2012). To deal with the open-
ness of X dα, it is common to approximate it with a
closed set from inside – see (12). However, projection
onto this set or its approximation may not be unique
due to its potential nonconvexity. A method for pro-
jection onto the X dα set was developed in Moses and
Liu (1991). While their scheme is easy to implement,
the convergence of this iterative method is slower than
the steepest descent method – see also Combettes and
Trussell (1992). To conclude, imposing stationarity
and invertibility of the model is performed by project-
ing φ and θ onto (inner approximate of) X pφ and X qθ ,
respectively, which may not be unique.

The above discussion is for an ARMA model that is
already identified, i.e., p and q are known. For a model

that is not identified, we also need

• if φ` = 0 then φ`′ = 0, ∀` < `′,

(or equivalently) if φ`′ 6= 0 then φ` 6= 0, ∀` < `′,

• if θ` = 0 then θ`′ = 0, ∀` < `′,

(or equivalently) if θ`′ 6= 0 then θ` 6= 0, ∀` < `′,

(7)

i.e., the sparsity of φ and θ follow hierarchical struc-
tures.

Before discussing how these sparsity structures are en-
forced, we will briefly discuss the loss function for fit-
ting ARMA models. Given an identified model, i.e., p
and q are known, fitting ARMA models are generally
performed by finding the conditional maximum likeli-
hood or conditional least-square estimates, which are
close to each other assuming that εt in (1) follows a
Normal distribution and the data size T is reasonably
large. The conditional least-square estimate (for an
identified model) requires solving

min
φ,θ
L(φ,θ) =

1

2

T∑
t=max{p,q}

ε̂2t =
1

2

T∑
t=max{p,q}

(
yt − ŷt|t−1(φ,θ)

)2
s.t. φ ∈ X pφ, θ ∈ X qθ , (8)

where ŷt|t−1(φ,θ) is the model prediction for yt using

the data {yt}t−1
t=1, and is called conditional since it de-

pends on the p initial values for yt and q initial values
for εt. Note that in the absence of MA terms (i.e.,
q = 0), the objective function of (8) is convex in the
parameters of the AR model φ. However, if q > 0 then
the objective function of (8) is also nonconvex, and op-
timization routines are not guaranteed to converge to
the global optimum (Hamilton, 1994; Box et al., 2015;
Benidir and Picinbono, 1990; Georgiou and Lindquist,
2008). To sum up, in its most general case, problem
(8) involves nonconvex minimization over a nonconvex
set and, hence, it is difficult to solve.

This paper intends to provide a solution that preserves
the hierarchical sparsity structure and is not concerned
with the nonconvexities of the objective function and
the feasible region. In the next section, we propose
a method that allows learning p and q within the pa-
rameter estimation step.

3 PROPOSED METHOD

Before discussing the proposed method, we should
briefly discuss the notion of hierarchical sparsity. Let
D = (S, E) be a Directed Acyclic Graph (DAG) where
S = {s1, · · · , sn} is the set of graph nodes and E be
the set of ordered pair of nodes denoting edges where
each pair denotes an edge from the node in the first
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element to the node in the second element. Each si is
an index set of the parameters of the model such that
si ∩ sj = ∅, ∀(i, j) and ∪ni=1si = {1, · · · , d} where d
is the number of parameters. DAG shows the sparsity
structures of interest in the parent/child relationship.
Assuming one variable per node, the variable in a child
node can only be nonzero if the variable in the par-
ent node is nonzero. For instance, given a parameter
β ∈ R3, the top plot in Figure 1 requires β1 6= 0 if
β2 6= 0 (β2 = 0 if β1 = 0); similarly, β2 6= 0 if β3 6= 0
(β3 = 0 if β2 = 0). For a DAG that contains more than
one variable per node (e.g. the bottom plot in Fig-
ure 1), two different hierarchies can be considered: 1.
Strong hierarchy: the parameters in the child node can
only be nonzero if all of the parameters in its parent
node(s) are nonzero. 2. Weak hierarchy: the parame-
ters in the child node can be nonzero if at least one of
the parameters in its parent node(s) is nonzero (Bien
et al., 2013). For more information about hierarchical
sparsity structures refer to Zhao et al. (2009); Jenatton
et al. (2011b,a); Bach et al. (2012); Yan et al. (2017).

s2={2} s3={3}s1={1}

s1={1,2,3} s2={4,5}

Figure 1: Path graphs showing hierarchical sparsities:
(Top) A graph with a variable per node for β ∈ R3. (Bot-
tom) A graph with multiple variables per node for β ∈ R5.

3.1 Hierarchical Sparsity for ARMA Models

In this work, we want to include the model identifi-
cation of ARMA models in the parameter estimation
step. We assume the knowledge about some upper
bounds on the true p∗ and q∗, i.e., p̄ ≥ p∗ and q̄ ≥ q∗,
respectively. Considering ARMA(p̄, q̄), the estimated
parameters should satisfy the condition (7). To do
so, we define two path graphs as shown in Figure 2.
Since this DAG consists of two path graphs and there is
only one variable in each node, weak and strong hierar-
chies are equivalent. Enforcing the sparsity structure
shown in Figure 2 exactly requires introducing binary
variables into the optimization problem (8) and solv-
ing a Mixed Integer Program (MIP). For instance, to
model the parent/child hierarchy between φ1 and φ2,
one needs to introduce a binary variable z ∈ {0, 1}
and two constraints as zε ≤ |φ1| and |φ2| ≤ zµ for
some reasonably small and large parameters ε and µ,
respectively. Provided that the underlying optimiza-
tion problem is already very difficult to solve, intro-
ducing p̄ + q̄ − 2 binary variable makes the problem
even more challenging. Hence, despite the significant

Figure 2: DAG for the ARMA(p̄, q̄) process. The red
dotted rectangles illustrate the ascending grouping scheme
for the LOG penalty.

recent advances in MIP algorithms (see e.g., Manzour
et al. (2019); Bertsimas et al. (2016); Mazumder and
Radchenko (2017); Bertsimas and Van Parys (2017)),
we use a convex nonsmooth regularizer that induces
hierarchical sparsity structures of interest.

3.2 Latent Overlapping Group (LOG) Lasso

The hierarchical sparsity structure shown in Figure 2
is induced by regularizing the objective function in (8)

by the LOG penalty – see Jacob et al. (2009). Let β ,
[φ,θ] ∈ R(p̄+q̄) denote all of the ARMA parameters.
The LOG penalty function is defined as

ΩLOG(β) = (9)

inf
ν(g), g∈G

{∑
g∈G

wg

∥∥∥ν(g)
∥∥∥

2
s.t.

∑
g∈G

ν(g) = β, ν
(g)
gc = 0

}
,

where

G =
{
{1}, {1, 2}, · · · , {1, · · · , p̄}, {p̄+ 1},

{p̄+ 1, p̄+ 2}, · · · , {p̄+ 1, · · · , p̄+ q̄}
}
,

g ∈ G is itself a set, ν(g) ∈ R(p̄+q̄) is a latent vector
indexed by g, and wg is the weight for the group g.

ν
(g)
gc selects the elements of ν(g) based on the index gc.

The groups inside G are shown with the red dotted
rectangles in Figure 2, i.e., for each node, there is a
group containing this node and all of its ascendants.

It is known that `2-norm induces block sparsity; hence,
the LOG penalty tries to find block sparse combina-
tions of the latent variables that sum up to β (Ja-
cob et al., 2009; Yan et al., 2017). For instance,
for an ARMA model with p̄ = 2 and q̄ = 2, G =
{{1}, {1, 2}, {3}, {3, 4}}, the objective of the infimum

is |ν{1}1 |+
∥∥∥[ν
{1,2}
1 ,ν

{1,2}
2 ]

∥∥∥+ |ν{3}3 |+
∥∥∥[ν
{3,4}
3 ,ν

{3,4}
4 ]

∥∥∥
(where for simplicity wg = 1, ∀g ∈ G) and the con-
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straints are
ν
{1}
1

0
0
0

+


ν
{1,2}
1

ν
{1,2}
2

0
0

+


0
0

ν
{3}
3

0

+


0
0

ν
{3,4}
3

ν
{3,4}
4

 =


φ1

φ2

θ1

θ2

 .

3.3 The Proposed Hierarchically Sparse
Learning Problem

The proposed Hierarchically Sparse (HS) learning
problem is

min
φ,θ

L(φ,θ) + λΩLOG(φ,θ)

s.t. φ ∈ X pφ, θ ∈ X qθ ,
(HS-ARMA)

where λ > 0 is a tuning parameter, X pφ and X qθ are de-
fined in (4), and ΩLOG(·) is defined in (9). λ controls
the tradeoff between the loss and penalty functions
and, hence, allows model identification and parame-
ter estimation simultaneously. Increasing λ results in
sparser models where the resulted nested model sat-
isfies the hierarchical sparsity structure shown in Fig-
ure 2. As discussed in Section 3.1, p̄ and q̄ are some
upper bounds on the true p∗ and q∗ and are known a
priori.

Given the convex nonsmooth function ΩLOG(·), we
propose to solve (HS-ARMA) using a proximal
method (Nesterov, 2013; Beck and Teboulle, 2009;
Parikh et al., 2014). Similar to gradient methods
which require iterative evaluation of the gradient,
proximal methods require iterative evaluation of the
proximal operator. Proximal operator of the ΩLOG(b)
at b ∈ R(p̄+q̄) is defined as

proxλΩLOG
(b) , argmin

β∈R(p̄+q̄)

{
λΩLOG(β) +

1

2
‖β − b‖22

}
.

(10)
Zhang et al. (2022) developed a two-block alternating
direction method of multiplier (ADMM) with a shar-
ing scheme (Boyd et al., 2011) to solve (10) – see Algo-
rithm 1. The proposed algorithm can be parallelized
over all groups in G in the update of the first block;
furthermore, it converges linearly – see Zhang et al.
(2022) for more details.

Let ΩAR
LOG and ΩMA

LOG be the LOG penalties for the pure
AR, i.e, ARMA(p̄, 0), and pure MA, i.e, ARMA(0, q̄),
models, respectively. In Lemma 3.1 below, we show
that the proximal operator of ΩLOG is separable over
φ and θ.

Lemma 3.1. The proximal operator of the LOG
penalty defined over the ARMA DAG is separable, i.e.,
proxΩLOG

(b1,b2) = (proxΩAR
LOG

(b1),proxΩMA
LOG

(b2)).

Algorithm 1 Evaluating proxλΩLOG
(b)

Require: b, λ, α, wg ∀g ∈ G
1: k = 0, U0

.g = 0, X2,0
.g = 0 ∀g ∈ G

2: while stopping criterion not met do
3: k ← k + 1
4: X1,k+1

gg ← proxλwg‖·‖2
(X2,k

gg − Ukgg), ∀g ∈ G
5: X1,k+1

gcg ← 0, ∀g ∈ G
6: x̄2,k+1 ← 1

|G|+ρ

(
b + ρ

|G|
∑
g∈G(X1,k+1

.g + Uk.g)
)

7: X2,k+1
.g ← x̄2,k+1 + X1,k+1

.g + Uk.g −
(1/|G|)

∑
g∈G(X1,k+1

.g + Uk.g), ∀g ∈ G
8: Uk+1

.g = Uk.g + (α/ρ)
(

1
|G|
∑
g∈G(X1,k+1

.g + Uk.g) −
x̄2
)
, ∀g ∈ G.

9: end while
10: β =

∑
g∈G X

1,k+1
.g

Output: β

Proof. With a slight abuse of notation, let GAR be the
set of groups for ΩAR

LOG such that
∑
g∈GAR ν(g) = φ

(the top path graph in Figure 2). Similarly, let GMA be
the set of groups for ΩMA

LOG such that
∑
g∈GMA ω(g) =

θ. Given that the objective of the infimum in the
definition of ΩLOG for the ARMA DAG is separable
in GAR and GMA, we have ΩLOG(φ,θ) = ΩAR

LOG(φ) +
ΩMA

LOG(θ). Hence, the result follows from the separable
sum property of the proximal operator.

Indeed, in Algorithm 2, the proximal operator of LOG
is not evaluated in one step while the algorithm eval-
uates proxλΩAR

LOG
and proxλΩMA

LOG
sequentially in a

Gauss-Seidel manner.

Algorithm 2 Proximal BCD to solve (HS-ARMA)

Require: λ, p̄, q̄,φ0 ∈ X
p̄
φ,θ0 ∈ X q̄θ

1: k = 1
2: while stopping criterion not met do
3: φk+1/2 ← proxλΩAR

LOG
(φk − γk∇φL(φk,θk))

(prox is calculated by Algorithm 1)

4: p← card({i : φ
k+1/2
i 6= 0})

5: φk+1 ← ProjX̃p
φ

(φk+1/2)

6: θk+1/2 ← proxλΩMA
LOG

(θk − γk∇θL(φk+1,θk))

(prox is calculated by Algorithm 1)

7: q ← card({i : θ
k+1/2
i 6= 0})

8: θk+1 ← ProjX̃q
θ

(θk+1/2)

9: k ← k + 1
10: end while
Output: (φk,θk)

The algorithm to solve problem (HS-ARMA) is a two-
block proximal block coordinate descent (BCD) with
projection, shown in Algorithm 2. From (1), since εt =
yt − φ>yt−1

t−p − θ
>εt−1

t−q where yt−1
t−p = [yt−1, · · · , yt−p]
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and εt−1
t−q = [εt−1, · · · , εt−q], we have

∇φL(φ,θ) = −
T∑

t=max{p̄,q̄}

(yt − φ>yt−1
t−p − θ

>εt−1
t−q)y

t−1
t−p,

(11a)

∇θL(φ,θ) = −
T∑

t=max{p̄,q̄}

(yt − φ>yt−1
t−p − θ

>εt−1
t−q)ε

t−1
t−q.

(11b)

The gradient updates are passed to proximal opera-
tors as arguments which are indeed proximal gradient
steps (Beck and Teboulle, 2009; Parikh et al., 2014).
Note that the solution of the proximal operators is
sparse vectors that conform to the hierarchical spar-
sity of Figure 2.

The solutions of the proximal gradient steps for the
AR and MA components, i.e., φk+1/2 and θk+1/2 are
not necessarily stationary or invertible, respectively.
The stationarity and invertibility of AR and MA are
regained by projection on X pφ and X qθ where p and q
are the order of AR and MA components from the
proximal steps. For the projection, we use the sec-
ond definition of X dα in (6). Since X dα is an open set,
following Combettes and Trussell (1992), we find its
approximation with a closed set from inside as

X̃ dα(δ) ,{α ∈ Rd : ∀z ∈ C, P̄ dα(z) = 0

⇒ −1 + δ ≤ z ≤ 1− δ},
(12)

where δ > 0 determines the approximation gap. Eu-
clidean projection on X̃ pφ(δ) and X̃ qθ (δ) sets guarantee

stationarity and invertibility of φt+1 and θt+1, respec-
tively. Note that these projections do not change the
sparsity of the parameters.

Finally, note that εt in the objective of (HS-ARMA)
is calculated based on ARMA(p̄, q̄). Hence, while the
iterates φt+1 and θt+1 are feasible with respect to X pφ
and X qθ , respectively, we need to show (φk+1,θk+1) ∈
X p̄φ ×X

q̄
θ . This is established in Lemma 3.2 below.

Lemma 3.2. For any d ∈ {1, 2, ...}, we have X dα ⊆
X d+1

α .

Proof. Proof follows from the definition of X dα in (4),
and that if α ∈ X dα then [α, 0] ∈ X d+1

α .

Therefore, {X dα}d̄d=1 is a sequence of nested sets as

X 1
α ⊆ · · · ⊆ X d̄α. However, the reverse is not true, i.e.,
α ∈ X dα is not sufficient for [α1, · · · , αd−1] ∈ X d−1

α ,
which can be shown by counter examples.

3.4 A Note on the Optimization Problem
(HS-ARMA)

Problem (HS-ARMA) requires nonconvex and non-
smooth optimization over a nonconvex set. To be spe-
cific, if q = 0 the loss function is convex in φ; other-
wise, L(φ,θ) is nonconvex in both φ and θ. Indeed,
when q > 0 the objective function is a polynomial func-
tion of degree T −max{p, q}. The ΩLOG(φ,θ) penalty
is jointly convex but nonsmooth unction. Finally, X pφ
and X qθ are open nonconvex sets and their approxima-

tions X̃ pφ and X̃ qθ (defined in (12)) are closed but still
nonconvex sets.

To deal with nonconvexities of X̃ pφ and X̃ qθ , one may
try to approximate them with some inscribed convex
sets which require generalizations of the potato peeling
problem (Goodman, 1981) and the algorithm in Chang
and Yap (1986) to non-polygon geometries – see also
Cabello et al. (2017). Note that optimization over the
convex hulls of these sets may result in nonstationary
or noninvertible solutions.

Under some convex approximations of the sets X̃ pφ and

X̃ qθ , the problem under investigation is a nonconvex
nonsmooth optimization over a convex set. For such
a setting, algorithms are settled with finding solutions
that satisfy some necessary optimality conditions, e.g.,
stationary solutions which are those that lack a feasi-
ble descent direction. To the best of our knowledge,
the only study that provides a method that converges
to stationary points in this setting is Razaviyayn et al.
(2013), which involves iterative minimization of a con-
sistent majorizer of the objective function over the fea-
sible set.

4 NUMERICAL STUDIES

The corresponding code is provided in https://

github.com/Yin-LIU/ARMA_identify_proximal.

4.1 Synthetic Data Generation Process

To generate a stationary and an invertible
ARMA(p∗, q∗) model, we first generate p∗ + q∗

numbers uniformly at random on [−1,−0.1] ∪ [0.1, 1]
for all parameters. The samples are then rejected
if the stationary and invertibility conditions, based
on (6), are not satisfied. Given an accepted sampled
parameter (φ∗,i,θ∗,i), a realization of the time series
with length T = 4000 is simulated with a zero mean
and variance equal to one.

https://github.com/Yin-LIU/ARMA_identify_proximal
https://github.com/Yin-LIU/ARMA_identify_proximal
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Table 1: The mean (standard deviation) of HS-ARMA estimation errors. Boldface numbers are the minimum
mean error for each model (row). Parameter estimates are obtained by the proximal BCD Algorithm 2.

(p∗, q∗)
λ0

0.5 1 2 3 5 10

(3,2) 0.62 (0.350) 0.38 (0.392) 0.54 (0.451) 0.59 (0.438) 0.63 (0.394) 0.77 (0.338)
(3,3) 0.64 (0.494) 0.74 (0.518) 0.85 (0.491) 0.92 (0.486) 1.05 (0.393) 1.05 (0.355)
(2,6) 0.79 (0.326) 0.58 (0.324) 0.46 (0.339) 0.64 (0.368) 0.92 (0.390) 1.04(0.435)
(6,6) 0.69 (0.414) 0.79 (0.518) 1.10 (0.477) 1.25 (0.468) 1.32 (0.420) 1.29 (0.344)
(8,5) 0.87 (0.307) 0.99 (0.426) 1.22 (0.492) 1.41 (0.586) 1.57 (0.492) 1.48 (0.502)

4.2 Model Identification and Parameter
Estimation Accuracy

To evaluate the estimation error of the proposed
method, we simulate n = 20 realizations of ARMA
models with orders (p∗, q∗) such that p∗ ≤ p̄ = 10 and
q∗ ≤ q̄ = 10 following our discussion in Section 4.1.
The tuning parameter of the ΩLOG penalty is set as
λ = λ0

√
T with λ0 ∈ {0.5, 1, 2, 3, 5, 10} and wg in its

definition is set to |g|1/2. The estimation error is calcu-

lated as ελ0 = ‖(φ̂λ0
, θ̂λ0)− (φ∗,θ∗)‖2, where (φ∗,θ∗)

are the true and (φ̂, θ̂) are the estimated parameters
based on Algorithm 2. Table 1 reports the mean and
standard deviation of the estimation errors for differ-
ent λ0 values.

To provide a better understanding of the quality of
parameter estimates and how they conform to the in-
duced sparsity structure in Figure 2, we conducted an-
other study. First, we sampled one realization from 10
different ARMA(3,2) models. Then, with p̄ = q̄ = 5
and λ0 ∈ {0.5, 1, 2, 3, 5, 10}, the HS-ARMA param-

eter estimates (φ̂
i

λ0
, θ̂
i

λ0
) are calculated using Algo-

rithm 2 and reported along with the true parame-
ters (φ∗,i,θ∗,i) in Table 2 in Appendix A, where i is
the simulation index. Simple tuning of λ0 allows the
method to correctly identify the true orders (p∗, q∗)
and the estimated parameters conform to the under-
lying sparsity structure. Furthermore, the estimation
errors are reasonably small. We also compared the es-
timation errors with pre-identified models where their
parameters are estimated using a package – see Figure
3. The mean of the HS-ARMA estimation error lies
between those of the correctly and incorrectly identi-
fied (by one order in the AR component) models. For
some samples with λ0 around 2 or 3, the error of HS-
ARMA is very close to the correctly identified ARMA
model.

4.3 Prediction Performance

We also compare the prediction performance of
the HS-ARMA with those of correctly and incor-
rectly identified models using 10 realizations of one

0 1 2 3 4 5 6 7 8 9 10

0

0

0.5

1

1.5

2

2.5

Average of HS-ARMA estimation

Average of misidentified model ARMA(2,2)

Average of correctly identified model ARMA(3,2)

Figure 3: The estimation error of HS-ARMA and two
pre-identified models. The three thicker lines are the mean
estimation errors and the thinner lines represent estimation
errors for each sample.

ARMA(3,2) model. For each realization, the esti-
mated parameters with λ0 ∈ {0.5, 1, 2, 3, 5} are used to
forecast the process for the next 20 time points. Note
that λ0 = 10 is omitted because the fitted parameters
were too sparse. Figure 4 illustrates the Root Mean
Square Error (RMSE) for these methods.

For some λ0, the RMSE of HS-ARMA is smaller than
that of the correctly identified ARMA model. Fur-
thermore, all HS-ARMA predictions for different λ0

values have significantly lower RMSE compared to the
incorrectly identified model.

4.4 Comparison with Other Methods

We also compare our method with the one proposed by
Wilms et al. (2017) (the “bigtime” R package) which
also considers the hierarchical lag penalty, namely H-
Lag penalty, and the lasso `1 penalty. While the un-
derlying optimization problem and the algorithm to
solve it are fundamentally different than those pro-
posed in this work, we believe the method in Wilms
et al. (2017) specifically with the H-Lag penalty is the
best benchmark for the proposed method. The param-
eter estimation method in Wilms et al. (2017) has two
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0

Figure 4: Prediction RMSEs for the HS-ARMA method
vs. the correctly and incorrectly identified models. Each
grey thin line is the RMSE of HS-ARMA with one λ0 from
{0.5, 1, 2, 3, 5} from ten realizations and the black thick line
is the average of the grey lines. The green and red lines
are the RMSEs from the ten realizations for correctly and
incorrectly identified models.

different phases. In the first phase, their method esti-
mates a pure AR model, since every invertible ARMA
process can be represented by an AR(∞) model. The
estimated AR model is used to approximate the un-
observed error terms which are used as the covariates
of the MA component. In the second phase, a least-
square objective regularized with a sparsity-inducing
penalty is used to estimate the parameters of the final
model.

We consider 9 different combinations of ARMA(p, q)
models with p, q ∈ {2, 5, 8}. For each combination, we
construct four scenarios where the maximum absolute
value of the roots of AR and MA components are cho-
sen to be either 0.5 (invertible/stationary process) or
0.99 (close to none invertible/stationary process). In
each scenario, we randomly generate an ARMA model
and simulate 20 time series of length 200. Following
the setting in Wilms et al. (2017), the maximum po-
tential lag p̄ = q̄ = b0.75

√
(T )c = 10, and AR and

MA penalty coefficients λp and λq belong to 10 log-
arithmically spaced points between 1 and 100. The
best combination of λp and λq parameters are deter-
mined by Bayesian Information Criterion (BIC). For
each combination of (p, q), the RMSEs are averaged
over the final selected models. The results are pre-
sented in Figure 5. In most cases, H-Lag penalty has
lower RMSEs compared to the `1 penalty; however,
the proposed HS-ARMA method has the lowest RM-
SEs in all 9 cases.

4.5 Real Time Series Prediction

We also implement the proposed HS-ARMA method
on the real dataset, which is the Netflix stock prices

(2,2) (2,5) (2,8) (5,2) (5,5) (5,8) (8,2) (8,5) (8,8)

(p*,q*)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
M

S
E

HS-ARMA (proposed)

H-Lag penalty
L1 penalty

Figure 5: Comparison of the proposed HS-ARMA
method with the hierarchical lag (H-Lag) and `1
penalty methods from Wilms et al. (2017).

from 4/15/2020 to 9/24/2021 with a total of 355 data
points. To evaluate the influence of the penalty pa-
rameter of HS-ARMA, the model is fitted with differ-
ent combinations of λAR and λMA. After the ARMA
model is identified by HS-ARMA, we evaluate the per-
formance of this model by different criteria, including
AIC, AICc, and BIC. The results are presented in Fig-
ure 6. It is obvious that a larger penalty parameter
will enforce the lower order of the ARMA model and
the best model occurs when the value of the param-
eter is set properly. The advantage of HS-ARMA is
that the search in the continuous λ parameter space
can be performed more efficiently compared to a brute-
force grid search. For instance, the proposed algorithm
can be easily incorporated into a hyperparameter opti-
mization method (e.g., Franceschi et al. (2018)) with a
polynomial time solution to find the optimal λ values.

5 CONCLUDING REMARKS

This work presents a new learning framework that al-
lows model identification and parameter estimation for
ARMA time series models simultaneously. To do so,
we use a hierarchical sparsity-inducing penalty, namely
the Latent Overlapping Group (LOG) lasso, in the ob-
jective of the parameter estimation problem. While
the addition of a nonsmooth (but convex) function
to the objective of an already difficult nonconvex op-
timization seems restrictive, we propose a proximal
block coordinate descent (BCD) algorithm that can
solve the problem to a potential stationary point effi-
ciently. Numerical simulation studies confirm the ca-
pabilities of the proposed learning framework to iden-
tify the true model and estimate its parameters with
reasonably high accuracy.

We believe that this study sheds some light on the hard
optimization problem behind the parameter estima-
tion of ARMA time series models (see our discussion
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Figure 6: HS-ARMA fitting performance for the Netflix stock data. The identified ARMA(p, q) models are
shown inside the parentheses.

in Section 3.4). Furthermore, we hope it motivates fu-
ture studies to look into the convergence analysis of the
proposed proximal BCD or other algorithms for such
problem structures. Finally, the proposed framework
can be extended to fit vector ARMA (VARMA) mod-
els where the underlying path graphs would contain
multiple variables per node (see e.g. the bottom plot
in Figure 1), which we also leave for future studies.
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Appendix A EXPERIMENT RESULTS

Table 2: Model identification and parameter estimation accuracy of the HS-ARMA method for ten simula-
tions from ARMA(3,2) (one realization each). Parameters are estimated using the proximal BCD Algorithm 2.
Boldface columns denote the best identified models with the lowest estimation errors.

λ0 λ0

(φ∗,1, θ∗,1) 0.5 1 2 3 5 10 (φ∗,2, θ∗,2) 0.5 1 2 3 5 10

φ1 -0.16 -0.23 -0.22 -0.25 -0.10 0.01 0.05 0.13 0.24 0.18 0.10 0.08 0.04 -0.14
φ2 -0.98 -0.53 -0.60 -0.83 -0.99 -0.99 -0.99 0.42 0.41 0.44 0.45 0.46 0.48 0.53
φ3 -0.22 -0.21 -0.24 -0.32 -0.16 -0.05 -0.01 -0.44 -0.51 -0.50 -0.42 -0.39 -0.34 -0.15
φ4 0.00 0.44 0.38 0.15 0.00 0.00 0.00 0.00 0.04 0.01 0.00 0.00 0.00 0.00
φ5 0.00 0.10 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
θ1 -0.45 -0.38 -0.38 -0.35 -0.46 -0.51 -0.50 0.49 0.37 0.43 0.50 0.51 0.55 0.68
θ2 0.91 0.38 0.44 0.64 0.89 0.92 0.85 0.34 0.28 0.29 0.31 0.30 0.28 0.26
θ3 0.00 0.29 0.27 0.20 0.00 -0.03 0.00 0.00 -0.03 0.00 0.00 0.00 0.00 0.00
θ4 0.00 -0.45 -0.40 -0.20 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
θ5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ελ0 0.98 0.82 0.35 0.10 0.21 0.31 0.20 0.13 0.06 0.09 0.16 0.37

λ0 λ0

(φ∗,3, θ∗,3) 0.5 1 2 3 5 10 (φ∗,4, θ∗,4) 0.5 1 2 3 5 10

φ1 -0.64 -0.48 -0.46 -0.47 -0.55 -0.66 -0.75 -0.88 -0.12 -0.18 -0.37 -0.51 -0.15 -0.16
φ2 -0.70 -0.25 -0.33 -0.46 -0.57 -0.61 -0.40 -0.28 0.13 0.18 0.18 0.07 0.28 0.24
φ3 -0.56 -0.25 -0.29 -0.37 -0.46 -0.45 -0.24 0.37 0.35 0.41 0.47 0.43 0.29 0.27
φ4 0.00 0.33 0.26 0.14 0.04 0.00 0.01 0.00 -0.39 -0.34 -0.18 -0.11 -0.21 -0.07
φ5 0.00 0.18 0.11 0.00 0.00 0.00 0.00 0.00 0.07 0.03 0.00 0.00 0.00 0.00
θ1 -0.49 -0.61 -0.63 -0.62 -0.55 -0.44 -0.28 0.84 0.09 0.14 0.32 0.46 0.03 0.00
θ2 0.49 0.20 0.29 0.39 0.41 0.30 0.00 0.57 0.19 0.14 0.14 0.24 0.00 0.00
θ3 0.00 0.11 0.07 0.00 0.00 0.00 0.01 0.00 -0.19 -0.24 -0.19 -0.06 0.00 0.00
θ4 0.00 -0.15 -0.09 0.00 0.00 0.00 0.01 0.00 0.17 0.10 0.00 0.00 0.00 0.00
θ5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
ελ0 0.76 0.61 0.46 0.57 0.30 0.81 1.29 1.24 0.98 0.74 1.41 1.36

Continued on next page
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Table 2 – continued from previous page

λ0 λ0

(φ∗,5, θ∗,5) 0.5 1 2 3 5 10 (φ∗,6, θ∗,6) 0.5 1 2 3 5 10

φ1 -0.19 -0.32 -0.37 -0.37 -0.51 -0.53 -0.53 -0.58 -0.21 -0.25 -0.43 -0.57 -0.57 -0.53
φ2 0.55 0.04 0.06 -0.12 -0.20 -0.21 -0.20 0.61 0.57 0.67 0.67 0.60 0.60 0.63
φ3 0.52 0.05 0.13 0.16 0.14 0.13 0.01 0.85 0.48 0.58 0.74 0.82 0.81 0.78
φ4 0.00 -0.16 -0.11 -0.10 -0.06 -0.01 0.00 0.00 -0.17 -0.20 -0.12 0.00 0.00 -0.01
φ5 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.19 0.09 0.00 0.00 0.00 0.00
θ1 -0.30 -0.17 -0.12 -0.13 0.00 0.00 0.00 0.24 -0.16 -0.12 0.05 0.19 0.18 0.08
θ2 -0.64 -0.18 -0.24 -0.01 0.00 0.00 0.00 0.23 0.40 0.29 0.21 0.18 0.13 0.01
θ3 0.00 0.22 0.16 0.00 0.00 0.00 0.00 0.00 -0.06 -0.05 -0.01 0.00 0.00 0.00
θ4 0.00 -0.03 -0.02 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00
θ5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ελ0 0.89 0.77 1.11 1.15 1.16 1.20 0.73 0.60 0.26 0.09 0.14 0.32

λ0 λ0

(φ∗,7, θ∗,7) 0.5 1 2 3 5 10 (φ∗,8, θ∗,8) 0.5 1 2 3 5 10

φ1 -0.34 0.03 -0.02 0.05 0.24 0.41 0.39 0.92 0.83 0.83 0.88 0.93 0.93 0.93
φ2 -0.53 -0.54 -0.61 -0.68 -0.78 -0.84 -0.82 0.91 0.70 0.78 0.96 0.91 0.90 0.89
φ3 -0.65 -0.39 -0.40 -0.31 -0.13 0.00 0.00 -0.88 -0.50 -0.58 -0.83 -0.87 -0.87 -0.86
φ4 0.00 0.13 0.05 0.00 0.00 0.00 0.00 0.00 0.19 0.12 -0.04 0.00 0.00 -0.01
φ5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.27 -0.20 0.00 0.00 0.00 -0.01
θ1 0.32 -0.03 0.01 -0.04 -0.24 -0.47 -0.37 0.73 0.81 0.81 0.76 0.67 0.64 0.57
θ2 -0.49 -0.47 -0.42 -0.34 -0.19 -0.02 -0.01 0.21 0.58 0.50 0.21 0.13 0.10 0.01
θ3 0.00 0.12 0.09 0.05 0.00 0.00 0.00 0.00 0.25 0.18 0.00 0.00 0.00 0.00
θ4 0.00 -0.05 -0.02 -0.01 0.00 0.00 0.00 0.00 0.05 0.03 0.00 0.00 0.00 0.00
θ5 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ελ0

0.61 0.53 0.64 1.19 1.39 1.29 0.72 0.53 0.05 0.11 0.16 0.25

λ0 λ0

(φ∗,9, θ∗,9) 0.5 1 2 3 5 10 (φ∗,10, θ∗,10) 0.5 1 2 3 5 10

φ1 -0.76 -0.66 -0.64 -0.75 -0.81 -0.83 -0.89 0.67 0.21 0.26 0.37 0.56 0.81 1.04
φ2 -0.46 -0.22 -0.29 -0.44 -0.45 -0.42 -0.41 0.20 0.16 0.22 0.34 0.30 0.00 -0.33
φ3 -0.59 -0.38 -0.45 -0.58 -0.55 -0.49 -0.42 -0.41 -0.05 -0.10 -0.30 -0.44 -0.29 -0.09
φ4 0.00 0.19 0.15 0.00 0.00 0.00 0.00 0.00 -0.18 -0.21 -0.14 -0.01 0.00 0.00
φ5 0.00 0.11 0.05 0.00 0.00 0.00 0.00 0.00 -0.15 -0.09 0.00 0.00 0.00 0.00
θ1 -0.84 -0.90 -0.92 -0.82 -0.76 -0.74 -0.62 -0.57 -0.13 -0.18 -0.29 -0.47 -0.74 -0.90
θ2 0.17 0.06 0.15 0.15 0.09 0.03 0.00 -0.30 -0.23 -0.30 -0.43 -0.40 -0.14 0.00
θ3 0.00 0.09 0.03 0.00 0.00 0.01 0.00 0.00 -0.37 -0.32 -0.12 0.00 0.00 -0.01
θ4 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 -0.05 0.00 0.00 0.00 0.00 0.00
θ5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ελ0

0.42 0.30 0.05 0.15 0.25 0.36 0.85 0.72 0.45 0.12 0.48 0.78
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