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Abstract

The relationship between architecture and
performance is critical for improving the ef-
ficiency of neural architecture design, yet
few efforts have been devoted to understand-
ing this relationship between architecture
and performance, especially architecture-
performance joint distribution. In this paper,
we propose Semi-Supervised Generative Ad-
versarial Networks Neural Architecture De-
sign Method or SemiGAN-NAD to capture
the architecture-performance joint distribu-
tion with few performance labels. It is com-
posed of Bidirectional Transformer of Ar-
chitecture and Performance (Bi-Arch2Perf)
and Neural Architecture Conditional Gen-
eration (NACG). Bi-Arch2Perf is developed
to learn the joint distribution of architec-
ture and performance from bidirectional con-
ditional distribution through the adversar-
ial training of the discriminator, the archi-
tecture generator, and the performance pre-
dictor. Then, the incorporation of semi-
supervised learning optimizes the construc-
tion of Bi-Arch2Perf by utilizing a large
amount of architecture information with-
out performance annotation in search space.
Based on the learned bidirectional relation-
ship, the performance of architecture is pre-
dicted by NACG in high-performance ar-
chitecture space to efficiently discover well-
promising neural architectures. The exper-
imental results on NAS benchmarks demon-
strate that SemiGAN-NAD achieves compet-
itive performance with reduced evaluation
time compared with the latest NAS methods.
Moreover, the high-performance architecture

Proceedings of the 27*" International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

Zitu Liu
Shanghai University

Wenjie Tian
Shanghai University

signatures learned by Bi-Arch2Perf are also
illustrated in our experiments.

1 INTRODUCTION

Neural network has been witnessed impressive suc-
cesses in computer vision tasks, such as image clas-
sification ( , ; , ) and object
detection ( , ). However, the well-
designed neural architectures highly require expert ex-
perience with trial and error. It is extremely ineffi-
cient in real-world applications, which promotes the
research on Neural Architecture Search (NAS). NAS
attempts to design a high-performance neural architec-
ture with an automatic manner ( , ;
, ; , ). It has been success-
fully applied in various tasks, and aroused widespread
attention ( , ; , ).

The progress on architecture improvements ( ,
; , : , ) has been
observed that there exists a specific relationship be-
tween neural architecture and its performance, i.e.,
the performance of neural network heavily depends on
its architecture design. This is particularly important
for NAS, which still searches over all possible archi-
tectures in search space ( , ; ,
). Two basic questions arise in this relationship:
(1) How to efficiently determine the performance of
a given neural network? (2) What are architecture
signatures of high-performance neural networks?

( ) proposed a novel graph-based represen-
tation of neural network named relational graph to
understand the relationship between architecture and
performance in neural network. They found that the
performance is approximately a smooth function with
the average path length and clustering coefficient of
the relational graph ( , ; , ).
An inspiration is whether this relationship can be in-
tuitively understood through capturing the joint dis-
tribution of architecture and performance.

In order to learn this joint distribution, existing meth-
ods built performance predictor to determine the per-
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Figure 1: The process of SemiGAN-NAD. It consists of Bi-Arch2Perf and NACG. Bi-Arch2Perf is built on the
adversarial training of Architecture Generator (AG), Performance Predictor (PP) and Discriminator (D). After
Bi-Arch2Perf has been built, NACG discovers high-performance architecture through architecture generation by

AG and performance prediction by PP.

formance of a given architecture, and embedded the
constructed predictor into NAS to improve the effi-
ciency of architecture search. ( ) pro-
posed a gradient-based optimization method for neural
architecture, which performs the optimization within
continuous space. ( ) proposed the fea-
ture tensor representation of neural network and fur-
ther built LeNet-5 performance predictors for rank-
ing different architectures. ( ) and

( ) employed graph neural network to con-
struct performance predictor. Moreover,
( ) and ( ) considered the insuf-
ficiency of architectures and their corresponding real
performance, and proposed a semi-supervised perfor-
mance predictor to utilize the architectures without
performance annotation. The above works paid more
attention to the conditional distribution from architec-
ture to performance. However, the distribution from
performance to architecture is also especially impor-
tant in the relationship between architecture and per-
formance. Therefore, it can learn comprehensive joint
distribution to discover architecture signatures of high-
performance neural networks, thereby accurately un-
derstanding the architecture-performance relationship
in neural network.

Conditional GAN (CGAN) ( ,

) generates data with a specific mode by intro-
ducing label information. One of its key features is
generic nature in sampling from an unspecified distri-
bution underlying the given data. This feature fits well
when datasets are collected without knowing a prior
distribution, such as in the case of the conditional dis-
tribution from performance to architecture in neural
network. Therefore, it provides a promising approach
to capture the architecture-performance relationship.

In this paper, we investigate the approach of in-
corporating GAN with performance predictor under
semi-supervised learning to capture the architecture-
performance joint distribution for understanding the
relationship between architecture and its performance
comprehensively, and propose a novel efficient Semi-
Supervised Generative Adversarial Networks Neural
Architecture Design Method (SemiGAN-NAD). It is
composed of Bidirectional Transformer of Architec-
ture and Performance (Bi-Arch2Perf) and Neural Ar-
chitecture Conditional Generation (NACG). The Bi-
Arch2Perf can learn the joint distribution of architec-
ture and performance from bidirectional conditional
distribution through the adversarial training of the
discriminator, the architecture generator and the per-
formance predictor. The semi-supervised architecture
loss is introduced for optimizing the construction of Bi-
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Arch2Perf by utilizing a large amount of architecture
information without performance annotation in search
space. Then, based on the bidirectional relationship
learned from Bi-Arch2Perf, NACG employs the ar-
chitecture generator to discover high-performance ar-
chitecture space to qualitatively generate neural ar-
chitectures with high performance and the perfor-
mance predictor to quantitatively predict the perfor-
mance of these architectures for designing promising
neural architectures. Finally, the experimental eval-
uations conducted on NAS-Bench-101, NAS-Bench-
201, and NAS-Bench-301 demonstrate that SemiGAN-
NAD successfully discovers high-performance neural
architectures that can compete with the latest meth-
ods in terms of accuracy, while requiring less eval-
uation time. Furthermore, the experimental results
also indicate that the architecture signatures of the
high-performance neural networks obtained through
our method are close to that of top architectures on
the NAS datasets.

2 RELATED WORKS

The goal of NAS is to quickly and accurately sample
high-performance architectures from the search space.
The reinforcement learning based NAS method (
, ) and the evolutionary algorithm based
NAS method ( ) ) can discover archi-
tectures that are superior to those designed manually
on the datasets. However, the search process of these
methods is based on the discrete architecture search
space, resulting in low efficiency. Consequently, NAO
( , ) maps the discrete encoding of the
architecture to a continuous space through LSTM and
predicts the accuracy of the architecture representa-
tion through performance predictor. It performs archi-
tecture optimization in the continuous space through
gradient ascent to find high-performance architectures.
On this basis, SeimNAS ( , ) uses a semi
supervised strategy to train a performance predictor.
It employs some architectures with performance labels
to train the initial performance predictor. Then, it
conducts the performance prediction on unlabeled ar-
chitectures and integrates the outcomes into the train-
ing set to retrain the performance predictor. Arch2Vec
( , ) utilizes unsupervised architecture
representation learning to construct the continuous
space, learning architecture representations without
their labels. This helps to map architectures with simi-
lar performance to the same regions in the latent space,
improving the efficiency of downstream architecture
search. Recently, NAS methods based on generation
strategy have become popular. GA-NAS ( ,
) incorporates adversarial learning, where its gen-
erator is iteratively trained to continuously sample in

more important regions of the search space and learn
the distribution of winning architectures. Its discrim-
inator distinguish the winning architectures from ran-
domly generated ones in each iteration. Similarly, AG-
Net ( , ) optimizes the architecture
representation space via weighted retraining for effi-
cient architecture search, using only generator and per-
formance predictor.

Compared with the above methods of learning the con-
ditional distribution from architecture to performance,
we incorporate the performance predictor into the
training process of GAN and learn the architecture-
performance joint distribution in a semi supervised
manner to explore the bidirectional relationship be-
tween architecture and performance. Then we use con-
ditional generation to find high-performance architec-
tures.

3 METHODS

This paper proposes SemiGAN-NAD, as shown in
Figure 1, to efficiently design high-performance neu-
ral architecture based on bidirectional architecture-
performance relationship. It is composed of Bidirec-
tional Transformer of Architecture and Performance
(Bi-Arch2Perf) and Neural Architecture Conditional
Generation (NACG). Inspired by TripleGAN ( ,

), Bi-Arch2Perf is built on the adversarial train-
ing of Architecture Generator (AG), Performance
Predictor (PP), and Discriminator (D) under semi-
supervised learning to learn the joint distribution
of architecture and performance. Based on the Bi-
Arch2Perf, NACG is proposed for efficient architecture
design through high-performance architecture genera-
tion by AG and performance prediction by PP.

3.1 Bi-Arch2Perf: Bidirectional Transformer
of Architecture and Performance

3.1.1 Extended Adversarial Training for
Learning Bidirectional Relationship

Suppose that a neural network can be viewed as Di-
rected Acyclic Graph consisting of N nodes and F
edges, where each node represents the operation of
a layer in neural network (e.g., convolution, pool-
ing), and each edge represents the connection between
nodes. Let us denote a neural architecture to be adja-
cency matrix A € RV*N that represents edge connec-
tion, and one-hot operation matrix X € RN*F that
represents the category of node operation. The joint
distribution of architecture and performance can be
decomposed into two conditional distributions as fol-
lows:

p(A,X, y) :p(y)p(AvX|y)7 (1)
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p(A, X, y) = p(A, X)p(y|4, X), (2)
where y represents the performance of neural net-
work. p(A, X|y) and p(y|A4, X) are captured by Ar-
chitecture Generator AG and Performance Predictor
PP respectively. When a neural architecture is drawn
from p(A, X), PP produces a pseudo performance fol-
lowing the conditional distribution p(y|A, X). There-
fore, a pseudo architecture-performance pair can
be viewed as sampling from the joint distribution
Ppp(A, X, y) = p(A4, X)p(y|A4,X). Similarly, a pseudo
architecture-performance pair also can be sampled
from pag(A, X,y) = p(y)p(A, X|y). Tt first draws y
from p(y), and transforms the architecture latent vari-
ables z4, operation latent variable zx and conditions
y to neural architecture, i.e.,(A,X) = AG(y, z4,2x)
where z4 ~ p,(z4) and zx ~ p.(zx) are sampled
from prior distribution. In order to estimate these two
conditional distributions jointly, discriminator D takes
the pseudo architecture-performance pairs produced
by PP and AG as negative samples, and the ones
sampled from the real architecture-performance dis-
tribution as positive samples. Then, D distinguishes
whether an input pair is a positive sample. The joint
distribution learned by Bi-Arch2Perf is defined as:

p(AvX, y) = CYPPP<A»Xa y)+(1ia)pAG(Aa Xa y)? (3)

where ppp(A4,X,y) and pag(A,X,y) represent the
joint distribution captured by PP and AG. « € (0,1)
is a constant that controls the relative importance
of them. The adversarial training objective of Bi-
Arch2Perf can be defined as follows:

JRin max V(PP,AG,D) = A1 +ala+(1—a)As, (4)

A= B g)npea l0g D(2,y)],
Az = E(ﬁ’y)NPPP(Iyy) UOg(l - D(:C, PP(Q’:)))], (5)
A?’ = E(‘Tvy)"‘PAG (z,y) [log(l - D(AG(ya Z)v y))]a

where z = (A, X) and z = (24, 2x). A1 denotes that
D maximizes its ability to identify positive samples,
i.e., architectural-performance pairs in the dataset. Ao
denotes that PP enables negative samples it produces
to be discriminated as positive samples by D. PP pro-
vides performance labels for given architectures, which
are then fed into D as negative samples. A3 denotes
that AG enables it to generate negative samples that
can be discriminated by D as positive samples. Specif-
ically, AG produces architectures that satisfy the given
performance constraints, which are then treated as
negative samples by D.

3.1.2 Semi-supervised Architecture Loss for
Conveying Unlabeled Architecture
Information

Since the expensive cost of annotating a neural archi-
tecture with its real performance, the training set for

Bi-Arch2Perf is insufficient. Several valid neural ar-
chitectures without performance annotations can easy
to be sampled from search space. In order to utilize
the invaluable information of these architectures, semi-
supervised learning is integrated to optimize the train-
ing process of Bi-Arch2Perf. Intuitively, a good perfor-
mance predictor PP can provide labeled architecture-
performance data through predicting performance for
architectures without annotations beyond the training
set, thereby promoting the training process of archi-
tecture generator AG and discriminator D. Thus, the
objective function of D is redefined as:

max b1+ afs + (1 — a)Bs, (6)

51 = E(x,y)wp(x,y) [IOgD(l" y)]v
BQ = EIuNPu(A,X)[lOg(]‘ - D(.’Eu, gpp))]? (7)
ﬂ?’ = Epr(y) [log(l - D(AG(@, ZA, ZX)? g))L

where z = (A, X) and z,, = (A4, Xy). Aand X are the
adjacency matrix and operation matrix of architecture
with annotation respectively. A, and X, represent
the ones of architecture without annotation. g rep-
resents the performance rank of architecture and g,
represents the performance rank corresponding to the
output of PP. 3 trains D to identify real samples as
positive samples, using real architecture-performance
pairs of the dataset. (o trains D to identify negative
samples provided by performance predictor PP as neg-
ative samples. In negative samples, architectures are
z, and performance labels are ¢, representing the
performance ranks of x,. f3 trains D to identify neg-
ative samples provided by architecture generator AG
as negative samples. (2 and (3 can incorporate the
information from architectures without annotation as
adversarial loss. Moreover, the goal of PP is to accu-
rately predict the performance of architecture. There-
fore, its objective function consists of two parts: ad-
versarial loss and performance prediction loss, which
are defined as follows:

I}}gl avyr + vz + apys, (8)

Y1 = Ezurvpu(A,X) [log(l - D('/E’U«’ gpp))]a
Y2 = E(A,X,y)wp(A,X,y)”y - PP(AvA)()”%a (9)
¥s = Byp ly — PP(AG(24, 2x,9))lI3,

where «a, € (0,1) is a constant that balances the pre-
diction accuracy of real architecture-performance pairs
and pseudo ones. < is adversarial loss, which trains
PP to provide negative samples that can be classified
as positive samples by D. -~ is one part of perfor-
mance prediction loss, which minimizes the difference
between predicted and real performance of architec-
tures. <3 is another part of performance prediction
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loss, in which PP predicts the performance for ar-
chitectures generated by AG under performance con-
ditions g corresponding to y. The purpose of 3 is
to accurately predict the performance of architectures
generated by AG. Here, Mean Square Error (MSE)
is used to compute the loss. Moreover, the objective
function of AG is defined as follows:

a}gl(l _O‘)Ey~p(y) [log(1-D(AG(y, 24, 2x),9))]. (10)

It represents AG generates architectures under per-
formance conditions, and inputs pseudo architecture-
performance pairs to D for obtaining the adversar-
ial loss. It trains AG to make negative samples pro-
vided by AG convince D. Herein, the joint distribu-
tion can be learned through the adversarial training of
Bi-Arch2Perf.

3.2 NACG: Neural Architecture Conditional
Generation

In order to design high-performance neural architec-
ture efficiently, Neural Architecture Conditional Gen-
eration (NACG) is proposed based on Bi-Arch2Perf.
Specially, Bi-Arch2Perf is built based on N architec-
ture with performance annotation and the remaining
architecture without annotation in search space. Ar-
chitecture generator AG is to qualitatively generate
architecture under the performance condition within
a certain range instead of a specific value. Therefore,
the performance of N architectures is discretized to
obtain the corresponding categories (0-4). Category 0
indicates the category with the highest performance.
The discretization can be defined as follows:

) [(t+0.02~y)/0.02], y>t—0.06 (1)

T y<t—0.06"
where y represents the real performance (validation
or test accuracy for different NAS datasets), and
represents the discretized category that implies the
performance rank of an architecture. t represents the
customized bottom bound of category 0 depending on
different datasets (e.g., set 0.93 for NAS-bench-101).
Based on the discrete performance, AG performs qual-
itative architecture generation under performance con-
ditions.

When Bi-Arch2Perf has been trained, NACG gener-
ates architectures under given high-performance con-
ditions through AG, and predicts the performance of
architectures through PP. Then, it selects top K
neural architectures with the highest predicted per-
formance for final validation. These K neural net-
works are trained on the training set and evaluated
on validation or test set to get accuracy in datasets.
Finally, NACG selects the best architecture with the

highest accuracy. This strategy can improve the ro-
bustness of NACG, since it allows NACG to utilize
a more reliable measurement to select the final neural
architecture. Moreover, NACG produces architectures
in high-performance space learned by AG. Therefore,
the number of architectures for final evaluation can be
small.

4 EXPERIMENTS

4.1 Experiments Datasets

The experiments are conducted on NAS benchmarks,
including NAS-Bench-101 ( , ), NAS-
Bench-201 ( , ) and NAS-Bench-
301 ( , ), to evaluate the effectiveness
of SemiGAN-NAD. Details of datasets are provided in
Supplementary Materials Section A.

4.2 Experiments Setup

The experiments from two aspects are conducted: neu-
ral architecture design and architecture generation re-
spectively. In the neural architecture design compari-
son experiments (Section 4.3.1), 0.025% (105) architec-
tures with performance annotation are sampled from
NAS-Bench-101. The number of final evaluation archi-
tectures K is set as 5. The constants o and ¢, in equa-
tions of Section 3.1 are both set as 0.5. To execute ex-
periments on NAS-Bench-301, following arch2vec (

, ), normal cells and reduction cells are the
same, and we randomly sample 600,000 unique ar-
chitectures in this search space. Following AG-NET

, ), performance queries are gener-
ated by the XGBoost surrogate model of NAS-Bench-
301. The architecture generation experiments are dis-
cussed in Section 4.3.2 and Section 4.3.3. More im-
plementation details, including training process infor-
mation, model information, and technical limitations,
can be found in Supplementary Materials Section C.

4.3 Experimental Results and Analysis

4.3.1 Comparison of Neural Architecture

Design Performance

The goal of SemiGAN-NAD is to efficiently find high-
performance neural architecture through conditional
architecture generation and performance prediction.
In order to verify the efficiency and effectiveness of
SemiGAN-NAD for finding high-performance architec-
ture, we compare our method with traditional NAS
methods including Random Search (RS), Reinforce-
ment Learning (RL), Bayesian Optimization (BO),
Regularized Evolution (RE) and Gradient Descent
(NAO ( , )), as well as the latest meth-
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ods such as SeimNAS ( , ), Arch2Vec
( , ), GA-NAS ( , ), AG-
Net ( , ) and PRE-NAS ( ,

)- (2022) and (2020)

provide the experimental results for traditional meth-
ods, and we reimplement some latest methods. NAS-
Bench-{101, 201, 301} is used to query the accuracy
of architectures. The experiment results are shown in
Table 1, Table 2 and Table 3. For all methods in the
tables, we report their best results.

Table 1: The test accuracy comparison of CIFAR-10
on NAS-Bench-101. “*’ Obtained through our repli-
cation. The bolded numbers mark the optimal query
times and test accuracy.

Methods #Queries Test Acc (%)  Search Strategy
RS 1000 93.54 Random
RL 1000 93.58 Reinforce
BO 1000 93.72 Bayesian
RE 1000 93.72 Evolution
NAO 1000 93.74 Gradient Decent
SemiNAS* 110 93.24 -
Arch2vec-RL* 150 93.78 Reinforce
Arch2vec-BO* 150 93.76 Bayesian
GA-NAS 378 94.23 Generation
AG-Net 192 94.18 Generation
SemiGAN-NAD (ours) 110 94.06 Generation

The second column represents the number of queries
in NAS-Bench-101, NAS-Bench-201 and NAS-Bench-
301, which can be equivalent to the architecture eval-
uation process. Table 1 shows the comparison results
on NAS-Bench-101. It can be seen that SemiGAN-
NAD achieves 94.06% test accuracy, which increased
by 0.52%, 0.48%, 0.34%, 0.34%, 0.32% than RS, RL,
BO, RE, NAO methods respectively. SemiGAN-NAD
has an absolute advantage in terms of query times,
using only 110 queries, while these traditional meth-
ods use 1000 queries, resulting in a reduction of over
89% in queries. Compared with the latest methods,
SemiGAN-NAD outperforms Arch2Vec and SemiNAS
by 0.28% and 0.82% respectively. Although SemiNAS
also incorporates the semi-supervised strategy, it is al-
most only a performance predictor. The advantage of
SemiGAN-NAD lies in its ability to effectively gener-
ate high-performance architectures via capturing the
architecture-performance joint distribution. Concur-
rently, SemiGAN-NAD achieves similar test accuracy
to the state-of-the-art method (GA-NAS) with a gap of
less than 0.17%, but our unique advantage stems from
leveraging semi-supervised learning to mitigate anno-
tation costs. Therefore, SemiGAN-NAD uses a mini-
mum number of queries to obtain similar or higher ac-
curacy than most of the comparison methods, demon-
strating its competitiveness against the best method.

To understand whether SemiGAN-NAD can gener-
alize to different datasets, it is compared with the
test accuracy of NAS methods on NAS-Bench-201,
which has architecture performance pairs for CIFAR-
10, CIFAR-100 and ImageNet16-120 datasets. In Ta-
ble 2, compared with traditional methods, the test ac-
curacy of SemiGAN-NAD is higher than RS, RL and
BO on CIFAR-10, and RS, RL on CIFAR-100. On
ImageNet16-120, it can be seen that SemiGAN-NAD
achieves an improvement of 0.49% test accuracy than
RE with less computation. Compared with the latest
methods, SemiGAN-NAD achieves higher test accu-
racy than SemiNAS on three datasets, with the same
queries. Meanwhile, SemiGAN-NAD is similar to the
state-of-the-art methods (Arch2vec-RL on CIFAR-10
and CIFAR-100, GA-NAS on ImageNet16-120) with
test accuracy. Particularly, the difference between
SemiGAN-NAD and the best method on ImageNet16-
120 is only 0.33%, and 0.32% on CIFAR-10. Notably,
SemiGAN-NAD requires minimal queries in all meth-
ods. Therefore, SemiGAN-NAD provides an effective
and efficient neural architecture design strategy.

To further evaluate the performance, we evaluate the
performance of SemiGAN-NAD on NAS-Bench-301, as
shown in Table 3. NAS-Bench-301 has a search space
of at least 10° architectures, which is multiple orders
of magnitude larger than those of other benchmarks.
Its search space is harder to learn, but closer to reality.
The validation accuracy achieved by SemiGAN-NAD
is better than almost all baselines, with the same or
fewer queries. Although AG-Net maintains the highest
validation accuracy, SemiGAN-NAD differs from it by
only 0.06% and requires fewer queries.

Test/Val Acc is the crucial criterion for evaluating the
performance of NAS methods, there is an upper limit
to the accuracy of the NAS datasets (

, ). The difference between the
best results of the latest NAS methods and the upper
limit are mostly no more than 1%. This is a reason
why the results of our method do not seem signifi-
cant enough, but our exploration of generating high-
performance architectures is significant. SemiGAN-
NAD provides a new idea of learning architecture rep-
resentation space by learning the joint distribution of
architecture and performance, which is sufficient to
compete with the best methods. It has a notable re-
sult in large search space (NAS-Bench-301). Although
most methods on small search spaces (NAS-Bench-
{101, 201}) are prone to learn the implicit laws of
datasets and thus obtain favorable results, our method
also has some advantages. We believe that this may
provide a new insight for architecture design.



Yue Liu, Ziyi Yu, Zitu Liu, Wenjie Tian

Table 2: The test accuracy comparison on NAS-Bench-201.

Methods #Queries Test Acc (%) Search Strategy
CIFAR-10 CIFAR-100 ImageNet16-120
RS 400 94.12 72.82 46.12 Random
RL 400 94.13 72.92 46.16 Reinforce
BO 400 94.13 73.27 46.06 Bayesian
RE 400 94.27 73.41 46.27 Evolution
NAO - - - - Gradient Decent
SemiNAS* 160 93.68 72.20 46.03 -
Arch2vec-RL 400 94.54 73.93 46.54 Reinforce
Arch2vec-BO 400 94.42 73.67 46.64 Bayesian
GA-NAS 444 94.39 73.45 47.09 Generation
AG-Net 400 94.37 73.51 46.42 Generation
PRE-NAS 500 94.38 73.24 46.37 Evolution
SemiGAN-NAD (ours) 160 94.22 73.22 46.76 Generation
Ground Truth Best Ours

Table 3: The validation accuracy comparison of
CIFAR-10 on NAS-Bench-301.

Methods #Queries  Val. Acc (%)  Search Strategy
RS 192 94.31 Random
RL - - Reinforce
BO 192 94.71 Bayesian
RE 192 94.75 Evolution
NAO - - Gradient Decent
SemiNAS* 150 94.37 -
Arch2vec-RL* 150 94.54 Reinforce
Arch2vec-BO* 150 94.54 Bayesian
GA-NAS - - Generation
AG-Net 192 94.79 Generation
PRE-NAS - - Evolution
SemiGAN-NAD (ours) 150 94.73 Generation

4.3.2 Analysis of Generated
High-performance Architecture

The architecture generator AG in Bi-Arch2Perf
can find high-performance architecture space for
SemiGAN-NAD. In order to verify its results, 5000
architecture latent variables and operation latent vari-
ables are sampled from standard normal distribution
to generate neural architectures with class 0 (high-
performance) as the condition.

The valid architectures that conform to the constraints
of NAS-Bench-101 search space account for 36.73% in
generated architectures. Thus, the valid architectures
are compared with architectures in NAS-Bench-101.
Table 4 gives the average proportion of the valid ar-
chitectures with validation accuracy greater than 93%
and 93.5% respectively, i.e., 70.30% and 65.58%, which
are much higher than NAS-Bench-101 (only 15.49%
and 7.34%). Similarly, we also count the proportions
of architectures with test accuracy greater than 93%
and 93.5%. They are 56.53% and 9.92% higher than
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Figure 2: Comparison of top architectures generated
by SemiGAN-NAD with ground truth on NAS-Bench-
101 CIFAR-10 test accuracy. ‘X’ marks operations
with the highest probability for nodes.

those in NAS-Bench-101. Therefore, it can be con-
cluded that AG can obtain high-performance archi-
tecture space under the given architecture condition,
which can improve the effectiveness of the architecture
design of SemiGAN-NAD. Additional detailed analysis
is provided in Supplementary Material Section B.

4.3.3 Distribution Analysis of Generated
High-performance Architectures

Following the statistical approach of L2NAS (Mills
et al., 2021), we compare high-performance archi-
tectures generated by our method with ground-truth
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Table 4: The comparison of generated architectures under the high-performance condition and the architectures

in NAS-Bench-101.

Arch. space Val.Acc>93% Val.Acc>93.5% Test Acc>93%  Test Ace>93.5%
NAS-Bench-101  15.49% 7.34% 6.46% 1.03%
Ours 70.30% 65.58% 62.99% 10.95%

Ground Truth Best Ours

none

skip_connect

nor_conv_1x1

avg_pool_3x3

(a) Cifar-10

none

skip_connect

nor_conv_1x1

avg_pool_3x3

(b) Cifar-100

none

skip_connect

nor_conv_1x1 X
nor_conv_3x%X3

avg_pool_3x3

(c) Imagenet16-120

y /ﬂ\x.\ ,,(\’L z /'“%(\\/T“&X}'“?\'L/ﬂ\’b

,\/,‘\X.\/,“'L v\/w(\’b‘\\’z“z;xz“?&)‘\’b

Figure 3: Comparison of top architectures generated
by SemiGAN-NAD with ground truth on NAS-Bench-
201 test accuracy. Each figure indicates the distri-
bution of edge operations. Rows indicate operations,

columns indicate edges. ‘i’ means input, and ‘n’ de-
notes an intermediate node.

best architectures. Figure 2 and Figure 3 illustrate
the comparison results on NAS-Bench-101 and NAS-
Bench-201 respectively. The number of top architec-
tures is set to 64, and the values are normalized be-
tween 0 and 1 by dividing by the maximum value.
Darker color indicates higher values. ‘X’ marks the
high probability edges and nodes, associated with the
best architecture.

In Figure 2(a), the top-9 edges with the highest val-
ues are marked since NAS-Bench-101 allows up to 9
edges in a cell. Although the edge distribution of
SemiGAN-NAD hits 6 out of 9 marks ‘X’ in the ground
truth, SemiGAN-NAD tends to find high-performance
architectures in relatively compact structures. In Fig-
ure 2(b), the operations of the highest probability on
three nodes remain consistent. Therefore, the distri-
butions produced by top-64 architectures are close to
the ground truth. It implies that SemiGAN-NAD can

effectively generate high-performance and lightweight
architectures. In Figure 3, we mark the most possible
operation on each edge, and the distributions of edge
operations have a small gap with the ground truth.
In Figure 3(a) and (b), SemiGAN-NAD and ground
truth agree on the first three of the six edges, and
both suggest that the first three edges of the high-
performance architecture should use nor_conv_3x3 or
skip_connect. On the last two edges, SemiGAN-NAD
prefers nor_conv_1x1. In Figure 3(c), SemiGAN-NAD
hits 4 out of 6 marks in the ground truth. The joint
distribution learned by SemiGAN-NAD is limited by
the distribution of the sampled data, thus our gener-
ator generates architectures that are optimal for the
sampled data within the learned distribution. This
may be the reason why our generated architectures
contain more nor_conv_1x1. Furthermore, our results
also provide evidence that SemiGAN-NAD is capable
of generating architectures with certain performance
advantages while utilizing fewer parameters.

5 CONCLUSION AND FUTURE
WORK

In order to efficiently design high-performance archi-
tecture, it is necessary to understand the relation-
ship between architecture and performance. Here, we
propose SemiGAN-NAD, which is composed of Bi-
Arch2Perf and NACG. Bi-Arch2Perf is constructed
with the adversarial training of performance predic-
tor, architecture generator and discriminator to cap-
ture the joint distribution from conditional distribu-
tion of architecture and performance in both two di-
rections. NACG can predict the performance of archi-
tecture in high-performance architecture space to ef-
ficiently discover well-promising neural architectures.
The experiment results show that SemiGAN-NAD ob-
tains comparable accuracies compared with the latest
NAS methods when using a small number of queries
in NAS-Bench-101, NAS-Bench-201 and NAS-Bench-
301. Meanwhile, the high-performance architecture
signatures we obtained are similar to those of the top
architectures in the datasets. For future work, the
causal approach can be introduced to explain the re-
lationship between architecture and performance, and
then improve the interpretability of NAS.
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A NAS Datasets

NAS-Bench-101 contains 423K neural architectures, which are both trained on CIFAR-10 for image classification
from scratch to full convergence to get validation and test accuracy. NAS-Bench-101 is a cell-based search space.
The cell can take on DAG structure, which consists of at most 7 nodes and 9 edges with the first node as input
and the last node as output. The operation type of intermediate nodes can be selected from 3 x 3 convolution
(kernel size is 3), 1 x 1 convolution and 3 x 3 max pooling. Moreover, in NAS-Bench-101, the architecture
performance evaluation is repeated over 3 random initialization, and the average validation accuracy of three
times is used to build Bi-Arch2Perf. The accuracy query of architecture from NAS-Bench-101 is equivalent to
the architecture evaluation process.

NAS-Bench-201 contains all 15,625 unique neural architectures in the search space. The search space is an
acyclic directed graph with 4 nodes and 6 edges. Each edge corresponds to an operation selected from the set
of 5 possible options: conv 1 x 1, conv 3 x 3, avgpool 3 x 3, skip-connect and zeroize. This search space is
applicable to almost all up-to-date NAS algorithms. Note although the search space of NAS-Bench-201 is more
general, it is smaller than that of NAS-Bench-101. Each architecture is trained for 200 epochs and evaluated on 3
image datasets: CIFAR10, CIFAR100, ImageNet16-120. The evaluation is repeated over 3 random initialization
seeds. We can access the training accuracy /loss, validation accuracy/loss after every training epoch, the final
test accuracy/loss, the number of parameters as well as FLOPs from the dataset. The dataset and its API can
be downloaded from https://github.com/D-X-Y /NAS-Bench-201.

NAS-Bench-301 provides a surrogate benchmark, which allows for fast evaluation of NAS methods on the DARTS
( , ) search space by querying the validation accuracy on CIFAR-10 image classification task. In
NAS-Bench-301, each cell has 7 nodes (2 input nodes, 4 intermediate nodes and 1 output node) and 8 non-empty
operation edges. The node represents feature maps, and the edge uses one of the following operations: 3 x 3
and 5 x 5 separable convolutions, 3 x 3 and 5 x 5 dilated separable convolutions, 3 x 3 max pooling, 3 x 3
average pooling and skip connection. The input nodes receive outputs from the previous cells, each intermediate
node has two incoming edges and the output node receives the outputs of all intermediate nodes. About 10'®
architectures exist in the search space.

B Analysis of Generated High-performance Architecture

In order to discover the architecture signatures of high-performance neural networks and interpret the neural
network modeling process, the valid architectures generated by AG are statistically analyzed from two aspects:
(1) the cell whether includes the operation of 3 x 3 max pooling, 1 x 1 convolution and 3 x 3 convolution. (2)
skip connection: the shortest path length from the input node to the output node. Figure 4 shows the results
of 3 x 3 max pooling, 1 x 1 convolution and 3 x 3 convolution in generated architectures respectively. It can be
observed that most generated high-performance architectures contain 3 x 3 convolution (1373), which accounts
for 74.78% in valid architectures. 1 x 1 convolution and 3 x 3 max pooling only account for 5.88% (108) and
3.21% (59). Therefore, this result indicates that compared with 3 x 3 max pooling and 1 X 1 convolution, 3 x 3
convolution appears more frequently in high-performance neural architectures, and it can also help the neural
network to obtain better performance.
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8 108
with pooling with 1x1 conv
1777 without pooling 1728 without 1x1 conv
463

with 3x3 conv

1373 without 3x3 conv

Figure 4: Generated architectures whether include 3 x 3 max pooling operation, 1 x 1 convolution operation and
3 x 3 convolution operation.

Next, the shortest path length of the input and output node in valid architectures is calculated by Breadth-First
Search in graph. From Figure 5, it illustrates that the architectures with the shortest path length of 1 account
for 70.81% (1300) in generated architecture, and 2 account for 24.73%. Moreover, the longer the shortest path
length is, the smaller the ratio in generated architectures is, and AG does not generate architectures with the
shortest path length of 5 and 6 under the high-performance condition. Therefore, it can be concluded that the
generated high-performance architectures tend to choose the neural architecture with a shorter shortest path
length between the input and output node, which indicates the importance of skip connection. It inspires us to
add skip connection operation appropriately when designing neural architecture.

1400 1300
1200
1000

800

600

454
400

The number of architectures

200
79
3 0 0

é 1 2 3 4 5 6

Shortest path length from input node to output node

Figure 5: The comparison of the shortest path length of the input and output nodes in generated architectures
by AG.

Moreover, three architectures with the highest test accuracy in NAS-Bench-101 are visualized in Figure 6 to verify
the correctness of the architecture signatures found by AG. For the rank 1 neural architecture (94.32%), the
shortest path length of the input and output node is 1, and the input node is connected with the other four nodes
in this architecture. Moreover, three of the five variable nodes adopt the 3 x 3 convolution operation. For the
rank 2 neural architecture, the shortest path length of the input and output node is 1, and there are connections
from the input node to all other nodes in this architecture. Meanwhile, the 3 x 3 convolution operation is adopted
in all variable nodes. For rank 3 neural architecture, the shortest path length between the input and output
node is also 1, and the input node is connected to all other nodes in this architecture. Two of the three variable
nodes chose the 3 x 3 convolution operation. Therefore, it can be concluded that the high-performance neural
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architectures are more inclined to add skip connection and 3 x 3 convolution compared with 1 x 1 convolution
and 3 x 3 max pooling operation, which verifies the correctness of the high-performance architecture space found
by AG, thereby promoting the neural architecture design of SemiGAN-NAD.

@ accuracy: 94.32% @ accuracy: 94.23% accuracy: 94.22%
rank: 1 rank: 2 rank: 3
A A
) e ()

Figure 6: The top three neural architectures with the highest test accuracy in NAS-Bench-101.

C Implementation Details

For the training process information, we train the model components alternately when learning the architecture-
performance joint distribution. The discriminator, the architecture generator and the performance predictor are
trained once in turn in each batch of every epoch. Due to the rapid convergence of the loss, the entire model
can be trained for a maximum of 60 epochs and a minimum of 40 epochs. In each batch, the architecture
generator provides the same number of negative samples as the number of samples with performance labels.
The adversarial loss is calculated using the cross-entropy loss. In NAS-Bench-101, the validation accuracy of
the architecture is used for training and evaluating the output of the condition generation, and finally the test
accuracy corresponding to the validation accuracy is used as the result of the architecture search. In NAS-Bench-
201, test accuracy is employed in the whole process. In NAS-Bench-301, only the validation accuracy can be
accessed. We use a NVIDIA GTX 1660 Ti in all experiments.

For the model information, the discriminator extracts the features of the architecture using a 3-layer Graph
Isomorphism Network (GIN) and connects the features obtained from each layer to obtain the architecture
feature. The architecture feature is concatenated with the embedding of the architecture performance rank to
obtain the sample representation. The discriminator then utilizes the linear layers and the sigmod activation
function to judge the probability that the sample is a positive sample. The settings of GIN follows arch2vec
( , ). The architecture generator generates an architecture by sampling architecture latent variables
from the standard normal distribution, along with a given conditional performance rank. The dimensions of the
latent variable and the embedding performance rank are both 16. The architecture generator first transforms
the input into the architecture. To further ensure the validity of the generated architecture, a 5-layer GIN is
employed for feature extraction. Subsequently, the extracted feature is transformed into an architecture. The
transformation operation uses the linear layers. The performance predictor uses a 4-layer GIN and connects the
features of each layer. It outputs the architecture performance prediction by the linear layers.

In terms of the technical limitations, our method involves conditional generation of architecture. The architecture
latent variables are randomly sampled from distributions. Compared with other methods, this process may have
lower scalability efficiency in new datasets or downstream tasks. However, the rich literature on the search
strategy may inspire us to make improvements in the future.
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