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Abstract

Kernel-based optimal transport (OT) estima-
tors offer an alternative, functional estima-
tion procedure to address OT problems from
samples. Recent works suggest that these es-
timators are more statistically efficient than
plug-in (linear programming-based) OT esti-
mators when comparing probability measures
in high-dimensions (Vacher et al.| 2021)). Un-
fortunately, that statistical benefit comes at
a very steep computational price: because
their computation relies on the short-step
interior-point method (SSIPM), which comes
with a large iteration count in practice, these
estimators quickly become intractable w.r.t.
sample size n. To scale these estimators
to larger n, we propose a nonsmooth fixed-
point model for the kernel-based OT prob-
lem, and show that it can be efficiently solved
via a specialized semismooth Newton (SSN)
method: We show, exploring the problem’s
structure, that the per-iteration cost of per-
forming one SSN step can be significantly re-
duced in practice. We prove that our SSN
method achieves a global convergence rate
of O(1/vk), and a local quadratic conver-
gence rate under standard regularity condi-
tions. We show substantial speedups over
SSIPM on both synthetic and real datasets.

1 Introduction

Optimal transport (OT) theory (Santambrogiol [2015])
provides a principled framework to compare probabil-
ity distributions. OT has been used extensively in
machine learning and related fields, notably for gen-
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erative modeling (Montavon et all |2016; |[Arjovsky
et all 2017 |Genevay et al. |2018; [Salimans et al.|
2018; | Tolstikhin et al.| |2018]), classification and clus-
tering (Frogner et all [2015; |Srivastava et al., |2015;
Ho et al.l 2017)), or domain adaptation (Courty et al.|
2016}, 12017, [Redko et al.l 2019)), see |Peyré and Cuturi
(2019). OT is also impactful in applied areas such as
neuroimaging (Janati et al., [2020) and cell trajectory
prediction (Schiebinger et al.,[2019;|Yang et al., 2020).

Curse of Dimensionality. In most applications,
the OT problem is seeded with the squared Euclidean
distance as the ground cost, and instantiated with n
samples. In that regime, OT estimation is known
to suffer from the curse of dimensionality (Dudleyl
1969; [Fournier and Guillin, 2015} [Weed and Bach|
2019)): The standard plug-in estimator for the OT ob-
jective, which runs a linear program on those sam-
ples, converges to its population value at a rate of
O(n~2/?) (Chizat et al.l [2020), hindering the adoption
of OT in machine learning. Practitioners are aware
of such limitations and use alternative computational
schemes that improve computational complexity while
carrying out statistical regularization.

Regularization. Quite a few works propose to reg-
ularize the OT problem: using entropy (Cuturi, [2013;
Genevay et al., 2019; Mena and Niles-Weed} [2019)),
low-dimensional projections (Rabin et al., 2011} Bon-
neel et al.| |2015; [Paty and Cuturi, 2019; [Kolouri et al.|
2019} [Nadjahi et al., [2020; Lin et all [2020) [2021}
Niles-Weed and Rigollet, 2022), bootstrap [Sommer-
feld and Munk| (2018); [Fatras et al. (2020) or neural
networks (Amos et al.| 2017} Makkuva et al.| 2020} Ko-
rotin et al.l|2021)). The sample complexity of entropic
OT is bounded by O(e~%?n=1/2) for a regularization
strength € > 0, while that of projected OT is bounded
by O(n~1/*) for projection dimension k < d. Although
these bounds may seem dimension-free w.r.t. n, they
deteriorate when 7 is small or k is large, losing rele-
vance to the original OT problem (Chizat et al.l2020).
Minibatch approaches are mostly used as fitting loss,
while neural approaches are used with no guarantees.
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Leveraging Smoothness. Alternative approaches
build on strong smoothness assumptions on poten-
tials or maps, such as wavelet-based estimators (Weed
and Berthet| 2019; [Hutter and Rigollet, 2021} |[Deb
et al., [2021; Manole et all |2021)), which are mini-
max optimal but algorithmically intractable. These
approaches stand in contrast to, e.g., entropic map es-
timators (Pooladian and Niles-Weed}, |2021)) which are
cheap but still suffer from the curse of dimensionality.
Recently, Vacher et al.| (2021) closed this statistical-
computational gap by designing an estimator that re-
lies on kernel sums-of-squares, showing that it can
be computed using a short-step interior-point method
(SSIPM), with polynomial-time complexity guaran-
tee. Unfortunately, the SSIPM is known to be ineffec-
tive [Potra and Wright| (2000)), requiring a large num-
ber of iterations as sample size grows. This issue was
specifically pointed out in (Vacher et al.| [2021, p.11-
12), and we do observe it experimentally (see Fig. |3).

Scaling up Kernel-based OT. While Vacher
et al./[s method holds several promises on the statis-
tical front, it does lack an efficient implementation.
Such an implementation is needed if one wants to show
that these theoretical benefits do translate into prac-
tical advantages. [Muzellec et al.| (2021)) proposed to
improve this computational outlook with an additional
relaxation. Their mollified problem can be solved with
simple gradient-based methods, but presents, however,
a significant departure from the original kernel-based
estimator and its guarantees. We follow in their foot-
steps but focus directly on improving the computa-
tional efficiency of [Vacher et alls estimator. We ad-
dress [Vacher et al.[s original problem using the semis-
mooth Newton (SSN) method (Mifflin, |1977; |Qi and
Sunl, 1993, 1999; Ulbrich, [2011). Our contribution is
therefore purely computational: Since our approach
targets the same optimization problem, our estimators
inherit the statistical guarantees proved in (Vacher
et al. |2021). Note that SSN methods were recently
used in an OT context by [Liu et al.| (2022)), but in the
unrelated setting of solving the multiscale min-cost-
flow problem on grids.

Contributions. We propose a nonsmooth equation
model for kernel-based OT problems. We use it to
devise a specialized SSN method to compute kernel-
based OT estimators, and prove a global rate of
O(1/Vk) (Theorem and a local quadratic rate
under standard regularity conditions (Theorem .
We show how to significantly reduce the per-iteration
cost of our algorithm by exploiting structure. Finally,
we validate experimentally that SSN is substantially
faster than SSIPM on both synthetic and real data,
and use our estimators to produce OT (Monge) map

estimators, benchmarked on single-cell data.

Organization. The remainder is organized as fol-
lows. In Section [3] we present the nonsmooth equation
model for computing the kernel-based OT estimators
and define the optimality notion based on the residual
map. In Section[d] we propose and analyze the special-
ized SSN algorithm for computing the kernel-based OT
estimators and prove that our algorithm achieves the
global and local convergence rate guarantees. In Sec-
tion [0, we conduct the experiments on both synthetic
and real datasets, demonstrating that our algorithm
can effectively compute the kernel-based OT estima-
tors and is more efficient than short-step interior-point
methods. In Section [6 we conclude this paper. In the
supplementary material, we provide additional exper-
imental results, and missing proofs for key results.

2 Further Related Works

Semismooth Newton (SSN) methods (Ulbrich, 2011))
are a class of powerful and versatile algorithms for
solving constrained optimization problems with PDEs,
and variational inequalities (VIs). The notion of semi-
smoothness was introduced by Mifflin| (1977) for real-
valued functions and then extended to vector-valued
mappings by Qi and Sun| (1993). A pioneering work
on the SSN method was due to [Solodov_and Svaiter
(1999)), in which the authors proposed a globally con-
vergent Newton method by exploiting the structure of
monotonicity and established a local superlinear con-
vergence rate under the conditions that the generalized
Jacobian is semismooth and nonsingular at the global
optimal solution. The convergence rate guarantee was
later extended in [Zhou and Toh| (2005)) to the setting
where the generalized Jacobian is not nonsingular.

The SSN methods have received significant amount
of attention due to its wide success in solving several
structured convex problems to a high accuracy. In par-
ticular, such approach has been successfully applied to
solving large-scale SDPs (Zhao et al.,|2010;|Yang et al.|
2015), LASSO (Li et al2018)), nearest correlation ma-
trix estimation (Qi and Sunl 2011)), clustering (Wang
et al.l [2010)), sparse inverse covariance selection (Yang
et al.,2013) and composite convex minimization (Xiao
et al., 2018). The closest works to ours is |Liu et al.
(2022), who developed a fast SSN method to compute
the plug-in OT estimator by exploring the sparsity and
multiscale structure of its linear programming (LP)
formulation. All of their experiments are run on 2D
image grids. In contrast, our methods uses SSN to
target a regularized, dual RKHS (functional) formula-
tion, useful in higher dimensions. To our knowledge,
this paper is the first to apply the SSN method to com-
puting the kernel-based OT estimator and prove the
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convergence rate guarantees.

3 Background: Kernel-Based OT

We formally define the OT problem and review the
kernel-based OT estimator proposed by |Vacher et al.
(2021). Let X and Y be two bounded domains in R?
and let Z(X) and Z(Y) be the set of Borel probabil-
ity measures in X and Y. Suppose that p € Z(X),
ve P(Y) and (i, v) is the set of couplings between
@ and v, the primal OT problem is:

T =1 inf —y||?
orer) =4 (| nt [ eyl dnten)

while its dual formulation is stated as follows,

sup [y u(z)dp(z) + [i v(y)dv(y),
u,v€C(R?)

st glle—yl? > u@) + o), ¥(@,y) € X x Y,

where C(R?) is the set of continuous functions on R,
Note that the supremum can be attained and the cor-
responding optimal dual functions u, and v, are re-
ferred to as the Kantorovich potentials (Santambro-
giol 2015)). This problem has a continuous constraint
set, since 3llz — yl|* > u(z) + v(y) must be satisfied
on X x Y. A natural approach is to take n points
{(Z1,51), -+, (@n,n)} € X xY and consider the con-
straints $|Z; — 4;[|? > w(@;) + v(g;) for all 1 < i < n.
However, it can not leverage the smoothness of po-
tentials (Aubin-Frankowski and Szabd, 2020), yield-
ing an error of Q(n~1/9). [Vacher et al.| overcome this
difficulty by replacing the inequality constraints with
equivalent equality constraints, and considering these
constraints over n points. Following their work, we use
the following assumptions on the support sets X,Y
and the densities of 1 and v.

Assumption 3.1 Let d > 1 be the dimension and
let m > 2d 4+ 2 be the order of smoothness. Then,
we assume that (i) the support sets X, Y are convex,
bounded, and open with Lipschitz boundaries; (ii) the
densities of u, v are finite, bounded away from zero and
m-times differentiable.

Assumption [3.1] guarantees that the potentials u, and
vy have a similar order of differentiability (De Philip-
pis and Figalli, |2014), leading to an effective way to
represent v and v via a reproducing Kernel Hilbert
space (RKHS). In particular, we define H*(Z) := {f €
LAZ) | | fllme(z) = Xjajes 1D fllLzz) < 400} and
remark that H*(Z) C Ck(Z) for any s > % + k,
where £ > 0 is integer-valued. This guarantees that
H™ (X)), H""(Y) and H™(X xY) are RKHS under
Assumption (Paulsen and Raghupathi, 2016)) and

they are associated with three bounded continuous fea-
ture maps ¢x : X — H™ (X)), ¢y : Y — H™TL(Y)
and ¢xy : X xY — H™(X xY). For simplic-
ity, we let Hy = H™(X), Hy = H™(Y) and
Hxy = H™(X xY). Vacher et al| (2021, Corollary 7)
shows that (i) uy, € Hx and v, € Hy with

/MWMm:wwmm/wwwwzw%mw
X X

where w, = [y ¢x(x)dp(x) and w, = [, ¢y (y)dv(y)
are kernel mean embeddings; (ii) A, € ST (HXy)E ex-
ists and satisfies the equality constraint as follows:

sllz—yl? —ua(@)—v.(y) = (dxv (@, 9), Auxy (2,9)) ., -

Putting these pieces yields a representation theorem
for estimating the OT distance. Indeed, under As-
sumption [3.I] the dual OT problem is equivalent to
the RKHS-based problem given by

max
u,v, A

st gl =yl —u(z) —v(y)
= <¢xy(fﬂ,y),A¢xy($,y)>ny~

<u7 wN>Hx + <U’ wV>HY’
(3.1)

The above equation offers two advantages: (i) The
equality constraint can be well approximated under
Assumption (i) RKHSs allow the kernel trick:
computing parameters are expressed in terms of kernel
functions that correspond to

(Ox (), dx (2")) Hy s
(oy (W), by (V') Hy »
(pxv (%, y), dxv (T, ¥') Hxy s

kx(xz,2")

ky (y,y") =
kxy((z,y), (2',y") =

where the kernel functions are explicit and can be com-
puted in O(d) given the samples. The final step is to
approximate Eq. (3.1) using the data x4, . .

~
° xnsample

poand Y1, Yngpe ~ ¥, and the filling points
{(Z1,51),---, (@n,0n)} € X x Y. Indeed, we define
[1‘ = nsaiqme Z?;almple 5301‘ and 19 = nsmlnple Z?;almple 5yi=
and use (u, wy) gy + (v, Wy) g, instead of (u,w,)my +
(v,w,)g, where w; = —t 1 Sorsmerte g (z;) and
cample
wy = — : Soremete gy (y;). We also impose the pe-
sample

nalization terms for u, v, and A to alleviate the error
induced by sampling the corresponding equality con-
straints. Then, the resulting problem with regulariza-
tion parameters A, Ay > 0 is summarized as follows:

max

max  {u, wa) e + (0, Ws) ry

;A}Tl”({l) N /\2(||~u||§1x +~||v||§1y)’
st gll@ - sz‘ - u(Z;) — 7{(:‘/%‘2
= (oxv(Zi,¥i), Adxy (Zi, Ui)) Hxy -

(3.2)

IWe refer to S+(ny) as the set of linear, positive and
self-adjoint operators on Hxy .
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Focusing on the case of ngample = O(n), we let i, and
U be the unique maximizers of Eq. (3.2). Then, the
estimator for OT(u, ) we consider corresponds to

6—Tn = <ﬁ*,wﬂ>HX + <@*7w,;>Hy. (33)

Remark 3.2 It follows from |Vacher et al| (2021,
Corollary 3) that the norm of empirical potentials can
be controlled using \; = ©(n=/?) and Ay = O(n~1/?)
in high probability and the statistical rate is O(n=1/?).
Compared with plug-in OT estimators, the kernel-
based OT estimators are better when sample size n is
small (estimator is still tractable) and dimension d is
large (statistical rates are O(n=%/%) and O(n=/2) for
plug-in and kernel-based estimators, respectively).

Remark 3.3 The entropic OT estimators achieve the
rate of O(n='/2) for fized ¢ (Genevay et all, |2019).
Such a rate blows up exponentially fast to infinity as
e — 0 if one wants to approrimate non-reqularized
OT. Hence, entropic OT estimators are only statisti-
cally efficient for fized, and fairly large, values of €.
In contrast, kernel-based OT estimators do not suffer
from such a blow-up. While the constants depend expo-
nentially in d, they are fized, and the rate of O(n=1/?)
is valid for approximating non-regularized OT.

Eq. is an infinite-dimensional problem and is thus
difficult to solve. Thanks to |Vacher et al.| (2021} The-
orem 15), we have that the dual problem of Eq.
can be presented in a finite-dimensional space and
strong duality holds true. Indeed, we define @ € R™*"
with Qij = kx((i“(f]) + ky(:lji,gj)7 and z € R"
with z; = wﬂ(i’z) + wf,(gl) — )\QHjl — ]]iHZ, and q2 =
lwall3r, + llws |l #y , where we have

wp(Z:) T EZ?{“ " kx (x5, 74),

~ e le ~
wp (yl2) = Nsample Zj;dlmp e kY (yJ7 yi)a
||wﬂH§Ix = m 1< <neampre KX (T T5);
||w[/||HY = 712 1§ivj§nsample kY (yl’ y]).

sample

We define K € R**"™ with Kij = kxy((i‘i7 ’gz), ({fﬁj, :l]j))
and R as an upper triangular matrix for the Cholesky
decomposition of K. We let ®; be the i** column of
R. Then, the dual problem of Eq. reads:

L TN - L AT, @
e O 2tk (3.4)

Suppose that 4 is one such minimizer, we have

2

—N n N - -
OT =4 — 52> Ailwa(d:) + wa (i)
=1

To the best of our knowledge, the only method pro-
posed to solve Eq. is the SSIPM, for which the
required number of iterations is known to grow as
n grows. To avoid this issue, [Muzellec et al.| (2021)
proposed solving an unconstrained relaxation model,
which allows for the application of gradient-based
methods. However, the estimators obtained from solv-
ing such relaxations lack any statistical guarantee.

4 Method and Analysis

In this section, we derive our algorithm and provide
a convergence rate analysis. We define first a suitable
root function that is optimized by kernel-based OT,
and apply the regularized SSN method. We improve
the computation of each SSN step by exploring the spe-
cial structure of the generalized Jacobian of that func-
tion. We also safeguard the regularized SSN method
using a min-max method to achieve a global rate.

4.1 A nonsmooth equation model for
kernel-based OT

We define the operator ® : R"*™ — R™ and its adjoint

O* : R™ —» R™™™ as

(X, @127) n

(X) = : () =) e
(X,®,01) i=1

Clearly, Eq. (3.4) can be reformulated as the following

optimization problem given by

min max

1T 1.7 q>
vekn xesn D @2 2t an
i

—(X, 2% (y) + Al

(4.1)

We denote w = (v, X) as a vector-matrix pair and let
R:R™ x R"™™ — R™ x R"*™ be given by

Q) — sz - a(X)
Blw) = (X ~projsy (X~ (#°0) + m))) -4

where ST = {X € R"™": X = 0, X7 = X}. Then, we
measure the optimality of w by monitoring || R(w)]|,
as supported by the following proposition linking R to

minimizers of Eq. (3.4)).

Proposition 4.1 A point 7 is an optimal solution of

Eq. (3.4) if and only if v = (’Ay,f() satisfies R(w) =0
for some X € ST.

Proposition shows that we can recover a kernel-
based OT estimator by solving the nonsmooth equa-
tion model R(w) = 0.

Regularized SSN method. Since R is Lipschitz,
Rademacher’s theorem guarantess that R is almost
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everywhere differentiable.
Jacobians (Clarkel, {1990).

We introduce generalized

Definition 4.1 Suppose R is Lipschitz and Dy is the
set of differentiable points of R. The B-subdifferential
at w is OpR(w) := {limy_ o VF(wk) | w* €
Dg,w* — w} and the generalized Jacobian at w is
OR(w) = conv(dpR(w)) where conv is the convex hull.

The regularized SSN method for solving R(w) = 0 is
as follows: Having the vector wy, we compute wg1 =
wg + Awy where Awy, is obtained by solving

(T + 1) [Awy]) = —ry, (4.3)

where Jj, € OR(wy), r, = R(wy) and T is the identity.
The parameter is chosen as uyr = 0i||rg|| to stabilize
the SSN method in practice. If R is continuously dif-
ferentiable and 6; = 0, the regularized SSN method
reduces to the classical regularized Newton method
which attains a local quadratic rate. Although the
regularized SSN method is divergent in general (Kum-
mer}, |1988)), its local superlinear rate has been proved
if R is strongly semi-smooth (Qi and Sunl [1993; [Zhou
and Toh| |2005; Xiao et al.| [2018)).

4.2 Properties of the nonsmooth map R

Generalized Jacobian. Let us focus on the struc-
ture of the generalized Jacobian of R(w). Using the
definition of S¥, one has proj sn (Z) = P,Xo PT where

T
Z=pPyP" = (P, Ps) <20a an) (%) . (4.4)

with ¥ = diag(oy,...,0,), with the sets of indices
of positive and nonpositive eigenvalues of Z written
a={i|lo;>0tand a={1,...,n}\ .

We define a generalized operator M(Z) € dproj sn (Z)
using its application to an n X n matrix S:

M(Z)[S] = P(Qo (PTSP))PT for all S € S,

where the o symbol denotes a Hadamard product and

Q= (E%“ naa) with E,, being a matrix of ones
Naa 0

ai‘faj for all (i,7) € a x @. Note that all

entries of € lie in the interval (0,1]. In general, it

is nontrivial to characterize the generalized Jacobian

OR(w) exactly but we can compute an element J (w) €

OR(w) using M(-) as defined before.

and n;; =

We next introduce the definition of the (strong) semis-
moothness of an operator.

Definition 4.2 Suppose that R is Lipschitz, we say it
is (strongly) semismooth at w if (i) R is directionally

Algorithm 1 Solving Eq. (4.3) where r, = (r},r3))

L1 (@07 + Tilr?)) and a® = 1.

pp+1

2: Solve (iQ + prZ + @7}@*)*1&1 = q! inexactly and
compute @ = Mclﬂ(a2 + Tr[a?]), where Ti[] is com-
puted using the trick (Zhao et al.| [2010]).

3: Compute the direction Awy, = (Awi, Aw}) by Aw}, =
@' and Awi = a® — Ti[®*(@)].

Lol
1t a =—r, —

differentiable at w; and (i) for any J € OR(w+ Aw),
we let Aw — 0 and have
HR(erAw)*R(l‘U)*J[Aw]H -0,

[[Aw]
\|R(w+Aw‘)|ZR(”'L;))—J[Aw]H <C.

(semismooth)

(strongly semismooth)

The following proposition characterizes the residual
map given in Eq. (4.2) and guarantees that the SSN
method is suitable to solve R(w) = 0.

Proposition 4.2 The residual map R in Eq. (4.2)) is
strongly semismooth.

4.3 Newton updates

We discuss how to compute the Newton direction Awy
efficiently. From a computational point of view, it is
not practical to solve the linear system in Eq.
exactly. Thus, we seek an approximation step Awy by
solving Eq. approximately such that

(T + D) [Awk] + re || < 7min{1, &llrg ||| Awg [}, (4.5)

where 0 < 7,k < 1 are some positive constants and ||-|
is defined for a vector-matrix pair w = (v, X) (i.e.,
llwl = [|7ll2 + | X||F where || - ||2 is Euclidean norm
and | - || is Frobenius norm). Since Jj in Eq.
is nonsymmetric and its dimension is large, we use the
Schur complement formula to transform Eq. into
a smaller symmetric system. If we vectorize the vector-
matrix pailﬂ Aw, the operators M(Z) and ® can be
expressed as matrices:

o7 ® of
M(Z) = PTPT e R™*"° | A = € RV

o @ oT
where P = P ® P and T’ = diag(vec(Q)).

We next provide a key lemma on the matrix form of
Ji + pil at a given iterate wy = (g, Xk)-

Lemma 4.3 Given wy = (g, Xx), we compute Zy, =
X — (" (k) + A1) and use Eq. (4.4) to obtain Py,
Yk, ap and ai. We then obtain Q, P, = Pr ® Py

If w = (v,X) is a vector-matrix pair, we define
vec(w) = (y; vec(X)) as its vectorization.
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and Ty, = diag(vec(Qx)).
Ji + prl is given by

Then, the matrixz form of

(Jp + upI)™' = C1BCy, where

B I 0 (1 A (A+ATy)
Cl_(—TkAT I)’ 02_(0 T ’

B ((2§2Q+uk1+ATkAT)1 0 >

- 1 )
0 pr+1 (I + Tk)

with T}, = I:’kLkIBkT where L is a diagonal matriz with

(Lg)i = % and (T'x):i € (0,1] is then denoted

as the i diagonal entry of T}.

As a consequence of Lemma the solution of
Eq. can be obtained by solving one certain sym-
metric linear system with the matrix i@ + pid +
AT, AT. We remark that this system is well-defined
since both Q and AT, A” are positive semidefinite and
the coefficient uy is chosen such that i@ + ppd +
AT, AT is invertible. This also shows that Eq. is
well-defined.

We define 7 and Q as the operator form of Tj =
Py L, PF and Q and write rj, = (r}, 72) explicitly where
ri € R™ and r € R™*"™. Then, we have

vec(a) = — (é m(é—k AT)) vec(rg)

_ { = v}~ gt (@0 £ T,

== Tk:'

The next step consists in solving a new symmetric lin-
ear system and is given by

—1
Q. T
vec(a) = (2*2 + il + ATA ) 0 vec(a),
0 (I + Ty)

which leads to

{ i' = (53, Q + mI + 2T, @*)'a,
&2 - ILk1+1 ((12 + E[aZ])

Compared to Eq. whose matrix form has size
(n?+n) x (n?+n), we remark that the one in the step
above is smaller with the size of n x n and can be effi-
ciently solved using conjugate gradient (CG) or sym-
metric quasi-minimal residual (QMR) methods (Kel-
ley, [1995; Saad, 2003). The final step is to compute
the Newton direction Awy, = (Awj, Aw?) as follows,

vee(Awg) = (_ !

Algorithm 2 Our specialized SSN method

1: Input: 7,K, a2 > a1 > 0, Bo,51 < 1, B2 > 1 and
0,0 > 0.

: Initialization: vg = wp € R™ x S8} and 6y > 0.

for k=0,1,2,... do
Update vit1 from v using one-step EG.
Select Ji € OR(wy).
Solve the linear system in Eq. approximately
such that Awy satisfies Eq. .
Compute Wrt+1 = wr + Awg.
Update 0+1 in the adaptive manner.
Set Wrt1 = Wkt1 if |‘R(’l[~]k+1)|l < HR(UkJrl)H is sat-
isfied. Otherwise, set wr+1 = Vg41.

10: end for

It remains to provide an efficient manner to compute
Ti[]. Since Ty, is defined as the operator form of 7' =
Py L PL, we have

TelS] = Pu(¥y o (PLSP)) Py,

where Uy, is determined by px and Qg: Indeed,

Qk _ <E%k04k nasak) = \I/k; _ (l}kfakak é()lg()ék> ,

Qo ap Qg

where we have &;; = —™%2— for any (4,]) € ag X ay.
J

prt1l—m;
Following|Zhao et al.| (2010)), we use the decomposition
Te[S] = G + G where U = Pi(:, a4,)TS and

G = Pk(Z,ak)(ﬁ(UPk(:, Ozk))Pk(:, Ozk)T

+£O¢kdk o (Upk(:v&k))Pk(:’ ak)T)'

The number of flops for computing 75[S] is 8|ay|n?.
If |ag| > ag, we use Tg[S] = H%S - Pk((;%kE — U)o
(PTSP))PL with 8|a|n? flops. Thus, we obtain an
inexact solution of Eq. efficiently whenever |oy|
or |ay| is small. We present the scheme for computing
an inexact SSN direction in Algorithm We propose
a rule for updating ), where py, = 6i||rr|| will be used
in Eq. . It is summarized as follows:

maX{Qv /Boek}7
Opr1 =

if pr > | Awgl|?,
if ar || Awg]|* < pr < az||Awy |,
otherwise.

10k,
min{@, ﬂg@kL

where p, = —(R(wy, + Awg), Awg), Bo < 1,581,602 > 1
and 6,6 > 0. Intuitively, ), can control the quality of
Awy, and the larger value of 0 gives a slow yet stable
convergence. The small value of ”A’q’l}i’“kﬂz implies that
Awy, is bad and we shall increase 6y,.

Remark 4.4 We see that the per-iteration cost is sig-
nificantly reduced since we have shown that solving the
linear system in Eq. whose matriz form has size
(n?+n) x (n?+n) can be equivalently reduced to solv-
g a much smaller linear system whose matriz form
has size n X n. Such equivalent reduction is based on
Lemmal].3 whose proof is summarized in Appendiz[C,
This is one key contribution of our paper.
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Figure 1: Visualization of the OT map with nsample = n € {50, 100, 200}.
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Figure 2: Visualization of the constraint: (left, middle) estimated, with nsample = n € {50,100}, (right) ground truth.

4.4 Algorithm

We summarize our approach in Algorithm [2] We gen-
erate a sequence of iterates by alternating between ex-
tragradient (EG) method (Facchinei and Pang, 2007}

2022) and the regularized SSN method.

We maintain an auxiliary sequence of iterates {Uk}k20~
This sequence is directly generated by the EG method
for solving the min-max problem in Eq. and
is used to safeguard the regularized SSN method to
achieve a global convergence rate. In particular, we
start with vg = wy € R"™ x S} and perform the kth
iteration as follows,

1. Update vgyq from vy via 1-step EG.
2. Update wy41 from wy via 1-step regularized SSN.

3. Set w41 = Wrt1 i ||R(Wg+1)]| < ||R(vk+1)] and
Wg41 = Vg4+1 otherwise.

Remark 4.5 The per-iteration cost would be O(n?)
at worst case but it can be much cheaper in practice.
Indeed, the O(n?) cost comes from exactly solving the
n X n linear system. In our experiment, we use CG
to approximately solve this linear system and set the
mazximum iteration number as 20. We can see that
the average number of CG steps is less than 5. Also,

our implementation can be improved by exploring the
potentially sparsity of Q, A and Ty. In contrast, the
linear system at each IPM step becomes severely ill-
conditioned as the barrier parameter decreases and the
matriz factorization has to be done exactly to achieve
high precision. Therefore, our method suffers from the
same per-iteration cost as IPM at worst case but can be
more flexible and efficient from a practical viewpoint.

Remark 4.6 Although computing such auziliary se-
quence results in extra cost, we can argue that it is not
an issue in both theory and practice. Indeed, Theo-
rem[{.8 guarantees the existence of a local region where
1-step reqularized SSN can reduce the residue norm
at a quadratic rate. This implies that |R(Wk+1)| <
IR (vi+1)|| will always hold when k is sufficiently large
and wi+1 = Vi1 will not never hold. This encour-
ages us to stop computing the auxiliary sequence after
the iterates enter the local region and only perform the
reqularized SSN steps. In our experiment, we also find
that the iterates are mostly generated by regularized
SSN steps. However, it is tricky to implement such
strategy since it is hard to check if the generated iter-
ates enter the local region. If we stop computing such
auxiliary sequence too early, our algorithm is likely to
diverge. To show the power of regularized SSN steps,
we also compare our algorithm with pure EG steps in

Appendiz |E (see Figure @



Running heading title breaks the line

4.5 Convergence Analysis

We establish the convergence guarantee of Algorithm 2]
in the following theorems.

Theorem 4.7 Suppose that {wy}r>0 i a sequence of
iterates generated by Algorithm [4 Then, the residu-
als of {wy} k>0 converge to 0 at a rate of 1/Vk, i.c.,

IR(w)|| = O(1/VE).

In the context of constrained convex-concave min-max
optimization,|Cai et al.[(2022) has proved the O(1/vk)
last-iterate convergence rate of the EG, matching the
lower bounds (Golowich et al. 2020bla). Since the
kernel-based OT estimation can be solved as a min-
max problem, the global convergence rate in Theo-
rem demonstrates the efficiency of Algorithm [2 It
remains unclear whether or not we can improve these
results by exploring special structure of Eq. (£.)).

Moreover, such global rate depends on the smoothness
parameter of Eq. rather than the condition num-
ber of original formulation of Eq. . The explicit
dependence on A; and As is unknown since the results
of |Cai et al.| (2022) does not provide the dependence
on these problem parameters. Yet, our experiment has
shown that our method behaves well when the sample
size is medium (~1000) which is sufficient for kernel-
based OT estimation in most cases.

Theorem 4.8 Suppose that {wy}x>0 i a sequence of
iterates generated by Algorithm[Z Then, the residual
norm at {wk}kzo converge to 0 at a quadratic rate,
i.e., |[R(wis1)|| < C||R(wi)||* for some constant C >
0, if the initial point wy is sufficiently close to w* with
R(w*) = 0 and every element of OR(w*) is invertible.

Similar to classical Newton methods which are key in-
gredients for IPM, the regularized SSN methods enjoy
the weak dependence on problem conditioning; see |Qi
and Sun| (1993) for the details.

Remark 4.9 Our algorithm becomes inefficient when
€ is small but has better dependence on n than IPM.
This is more desirable since the large n is necessary
to ensure good statistical approximation (see|Muzellec
et al| (2021, Page 11-12) for details). Such trade-off
between n and 1/€¢ has occurred in the computation of
plug-in estimators: despite worse dependence on 1/e,
the Sinkhorn method is recognized as more efficient
than IPM in practice since many applications require
low-accurate solution (e ~ 1072) when the sample size
n is large. In addition, we remark that our algorithm
does not downgrade the value of IPM since the latter
one is more suitable when € is small.

5 Experiments

We present experimental results for kernel-based OT
estimators run with our SSN algorithm. The base-
line approach is the SSIPM (Vacher et al.l 2021); we
exclude the gradient-based method (Muzellec et al.|
2021) from our experiment since it solves a different re-
laxation model. All experiments were conducted on a
MacBook Pro with an Intel Core 19 2.4GHz and 16GB
memory. For Algorithm we set ap = 1076, oy = 1.0,
60 == 05, Bl = 1.2 and 52 = 5.

SSIPM vs SSN on Synthetic data. Following the
setup in|Vacher et al.| (2021)), we draw nsample Samples
from p and ngample Samples from v, where p is a mix-
ture of 3 d-dimensional Gaussian distributions and v
is a mixture of 5 d-dimensional Gaussian distributions.
Then, we sample n filling samples from a 2d Sobol se-
quence. We also set the bandwidth ¢? = 0.005 and
parameters A\ = % and Ay = \/nsi.m Focusing on
1-dimensional setting, we report the visualization re-
sults in Figure [T]and [ and verify that the inferred OT
map gets closer to the true OT map as the number of
filling points and data samples increase.

By varying the dimension d € {2, 5,10}, we report the
computation efficiency results in Figure[3] It indicates
that the our new algorithm is more efficient than the
IPM as the number of filling points increases, with
smaller variance in computation time (seconds). Here,
we used the residue norm || R(w)|| as the measurement
and terminated IPM and our method when ||R(w)]| is
below than the threshold 0.005. Although our method
can scale to the case of 1000 samples which is relatively
small compared to entropic OT methods, these results
do start to open up some possibilities.

Entropic OT vs Kernel OT on Single-cell data.
Comparing kernel-based OT estimators with plug-in
OT estimators on synthetic data has been conducted
in |Vacher et al.| (2021)); Muzellec et al| (2021) and
the results show that the kernel-based OT estimators
behave better when the number of samples is small.
We validate this claim using the real-world 4i datasets
from Bunne et al.| (2021, which track unaligned pop-
ulations of cells before and after perturbations. Our
experiments are conducted on 15 datasets with differ-
ent drug perturbations. We consider as a baseline ap-
proach [Pooladian and Niles-Weeds entropic map es-
timator, as implemented in the OTT package (Cuturi
et al [2022). We use their default implementation,
which relies on an adaptive choice for the entropic reg-
ularization parameter €.

Due to space limits, we only present the results on
6 datasets in Figure [ and defer the results on other
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Figure 3: Comparisons of mean computation time of IPM vs. our algorithm (SSN) on CPU time.
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Figure 4: Performance of entropic map (using 0TT) vs. kernel-based OT estimators computed with the SSN algorithm on
6 drug perturbation datasets. X-axis represent the number of training samples and Y-axis represents the error induced

by OT map T on test samples in terms of OT distance.

datasets to Appendix [F] We observe that kernel-based
OT estimators (computed using our SSN method)
achieve satisfactory performance and behave better
when the number of training samples is small; indeed,
they are better on 6 datasets, comparable on 5 datasets
and worse on 4 datasets. While we do expect that the
entropic estimator will eventually scale, and outper-
form our algorithm as the number of training samples
increases, these experiments show that kernel-based
OT estimation provides a fairly effective alternative
when the number of training samples is small, which
is consistent with previous observations on synthetic
data (Vacher et al., 2021 |[Muzellec et al [2021). These
results therefore validate the sample efficiency of our
algorithm for computing kernel-based OT Monge map
estimators in small n large d regimes. Note that the
performance drop on the palbocilib dataset for large
sample sizes agrees with this. To speculate, the larger
gap might be because of a low-rank structure within

the palbocilib data, which can be better exploited by
entropic regularized methods.

6 Concluding Remarks

In this paper, we propose a nonsmooth equation model
for computing kernel-based OT estimators and show
that its special problem structure allows it to be
solved in an efficient manner using a SSN method.
Specifically, we propose a specialized SSN method
that achieves low per-iteration cost by exploiting such
structure, and prove a global sublinear rate and a lo-
cal quadratic rate under standard regularity condi-
tions. Experimental results on synthetic data show
that our algorithm is more efficient than the short-step
IPM (Vacher et al.,[2021)), and the results on real data
demonstrate its effectiveness. We hope this progress
can motivate further improvements and/or modifica-
tions of kernel-based OT approaches.
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A Proof of Proposition

We first prove that 4 is an optimal solution of Eq. (3.4)) if & = (¥, X) satisfies R(w) = 0 for some X = 0. Indeed,
by the definition of R from Eq. (4.2), we have

iQW - mz - (I’(X) =0, (A1)

and

X —projsy (X — (®*(§) + M) =0. (A.2)
By the definition of proj sy We have
(X = projr (X — (27(4) + AuD)), projgn (X — (2*(3) + A1) = X + (2*(3) + A1) = 0 for all X = 0,
Plugging Eq. into the above inequality yields that
(X — X, *(§) + M I) >0 for all X = 0.

By setting X = 0 and X = 2X, we have (X, ®*(3) + \I) < 0 and (X, ®*(§) + A1) > 0. Thus, we have

(X, () + M) =0, (X, ®*(3) 4+ M\I) >0 forall X = 0. (A.3)
Suppose that v € R™ satisfies that ®* () + A1 = 0, we have

0 B (- )T (01 - s - 2(X))
= (FTer-3572) - (771 - 55472) - (= DTG - A) - (=) Te(X)

(ivTQv - iv”) - <iﬁTQ@ - i@%) — (=9 eX)

IN

Since ®* is the adjoint of ®, we have (y — 4)T®(X) = (X, ®*(y) — ®*(5)). By combining this equality with
O*(v) + A1 = 0 and the first equality in Eq. (A.3), we have

(v =) T®(X) = (X, ®*(7) + MI) — (X, ®*(§) + A1) > 0.

Thus, we have
1 T 1 2T e 1 AT 2
OS(EV QY — 2>\2’7 Z+4>\2) (m’Y QY — 557 Z+fT2)~
Combining the above inequality with the second inequality in Eq. (A.3)) yields the desired result.

It suffices to prove that satisfies R(w) = 0 for some X = 0 if 4 is an optimal solution of Eq. (3-4). Indeed, we
write that Y . | 4, ®; ® + M7= 0and

1 5TOA LT
w7 Q’Y 2/\27 Z+4/\2 s vt ny 2)\27 Z+4)\2

for all v € R" satisfying that > ., %@i@; 4+ A1l > 0. Then, the KKT condition guarantees that there exists
some X = 0 satisfying that
Zz 1%‘I> @ + M1 = 0,
Q7 — mp7 — (X)) = 0, (A.4)
(X D*(§) + A\ I) 0.

The first and third inequalities guarantee that

(X — X, ®*(3) + M\ I) >0 for all X = 0.

By letting X = Projs (X — (9*(4) + A1), we have

(projen (X — (@*(3) + M D)) — X, @*(3) + Aul) > 0. (A.5)
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Recall that the definition of proj st implies that
(X = projss (X — (9°(3) + M D), projsy (X — (@*(3) + M) = X + (@*(5) + A1)} > 0 for all X = 0,

By letting X = X, we have
Iprojss (X — (€(3) + M 1)) — X[I? < (X — projs, (X — (9*(3) + M), @ () + MI) £ 0.
Combining the above inequality with the second equality in Eq. (A.4) yields that
QY — 52— 2(X) =0, X —projs; (X — (@*(4) + MI)) = 0.

Combining these inequalities with the definition of R implies R(w) = 0 and hence the desired result.

B Proof of Proposition

The strong semismoothness of R follows from the derivation given in [Sun and Sun| (2002)) to establish the
semismoothness of projection operators. Indeed, the projection over a positive semidefinite cone is guaranteed
to be strongly semismooth (Sun and Sunl [2002, Corollary 4.15). Thus, we have that proj31(~) is strongly
semismooth. Since the strong semismoothness is closed under scalar multiplication, summation and composition,
the residual map R is strongly semismooth.

C Proof of Lemma 4.3

As stated in Lemma we compute Z = Xi — (P*(yx) + A1) and the spectral decomposition of Zj (cf.
Eq. { . to obtain Pk, Y and the sets of the indices of positive and nonpositive eigenvalues aj and a,. We
then compute Qj, using X, ap and @ and finally obtain that P, =P.® P, and T}, = diag(vec(Q2x)). Thus, we
can write the matrix form of J; + uxl as

Q + pil —A )
T+ el = 2
kot b (P TWPTAT  Py((u + 1) —Ty)PT

For simplicity, we let W}, = ﬁkfkf’,;r and D, = Pk((uk +1)I- Fk)I:’];r . Then, the Schur complement trick implies
that

1 —1
1 _ EQ +,LL]€I —A
(Jk + :ukj) - ( WkAT Dy,

- I 0\ ((555Q + mI +AD "W AT)™H 0 I AD;!
- \-D;'WRAT I 0 pt)\o I )°

Define T}, = PkLk]:’,;r where Ly is a diagonal matrix with (Lg); = % and (') € (0,1] is the i*h

(I +Ty) and D;'W = Tj. Using

diagonal entry of I'y. By the definition of W} and Dy, we have D,:l = o
these two identities, we can further obtain that

(Jp + pxd) ™

B ( I o) ((2;2Q+MkI+ATkAT)1 0 )(1 Hl(A+,4Tk)>

T O\-TRAT T 0 ﬁ(IJer) 0 I

This completes the proof.

D Proof of Theorem (4.7

We can see from the scheme of Algorithm [2] that
[R(wr) | < [ B(vg)]| for all k =0,
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where the iterates {vy}x>0 are generated by applying the extragradient (EG) method for solving the min-max
optimization problem in Eq. (4.1). We also have that (Cai et al.| (2022, Theorem 3) guarantees that ||R(vg)|| =
O(1/Vk). Putting these pieces together yields that

IR(ws)|| = O(1/Vk).

This completes the proof.

E Proof of Theorem [4.§|

We analyze the convergence property for one-step SSN step as follows,
Wht1 = W + Awg,
where i = 0| R(wy)]| and
1(Tk + ) [Awg] + R(wy)|] < 7min{1, 5| R(wg) || [ Awp |} (E.1)

Since R is strongly smooth (cf. Proposition |4.2]), we have

[ R(w+Aw)—R(w) =T [Aw]| C,

A .
Awl? as Aw — 0

Since wy is sufficiently close to w* with R(w*) = 0 and the global convergence guarantee holds (cf. Theorem[4.7)),
we have

| R(wr, + Awg) — R(wy) — Te[Awg]|| < 20| Awy|.

which implies that
IR(wir1) [l = | Rlwr + Awg)|| < [|R(we) + Tu[Awg][| + 20| Awgl|*. (E2)
Plugging Eq. (E.1) into Eq. (E.2) yields that

[B(wks1)| 20| Awg|1* + ol Aw, || + 75| R(wre) | Awr: | (E.3)

<
< 20| Awg | + (O + TrR)|| R(ws) ||| Awy]|-

Since wy is sufficiently close to w* with R(w*) = 0 and every element of OR(w*) is invertible, we have that there
exists some § > 0 such that

1(Tk + i) [Awg]|] = 6| Awg]].
The above equation together with Eq. (E.1)) yields that
[Awk]| < 51(Te + D) [Awi]l| < 5 (1 + 76] Awg ) [ R(wg)]- (E4)

Plugging Eq. (E.4) into Eq. (E.3) yields that
IR )l < IR (28 (0 + rrllAwg])? + 47 (1 + a Awy))

Note that ||Awg|| — 0 and 6y, is bounded. Thus, we have ||R(wi41)| = O(||R(wy)]?).

From the above arguments, we see that the quadratic convergence rate can be achieved if Algorithm [2| performs
the SSN step when the initial iterate zo is sufficiently close to w* with R(w*) = 0. This implies that the
safeguarding steps will never affect in local sense where Algorithm [2| generates {wy}x>0 by performing the SSN
steps only. So Algorithm [2] achieves the local quadratic convergence. This completes the proof.
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Figure 5: Performance of pure EG and our algorithm for solving kernel-based OT problems with the varying sample size
n € {50,100, 200, 500, 1000, 2000}. The numerical results are presented as residue norm v.s. time (seconds).

F Additional Experiments

We compare our method with the pure extragradient (EG) method and summarize the numerical results in
Figure |5 In particular, we find that our method consistently outperforms the pure EG method and can output
a high-accurate solution in terms of the residue norm. The experimental setup is the same as that used in the
main context. Indeed, we fix the dimension d = 10 and the bandwidth 02 = 0.005, and vary the sample size
n € {50, 100, 200, 500, 1000, 2000}. For the EG method, we tune the stepsize and set it as 0.01.

We also describe our setup for the experiment on the real-world 4i datasets from Bunne et al.| (2021). Indeed,
we draw the unperturbed/perturbed samples for training from 15 cell datasets as follows,

k
L1y oy Tngampre ™ Hunperturbs Y1y - -+ Yngample ™ Vperturb for 1 <k < 15.

where z;,y; € R*® and Nunpcrturb7V§erturb represent the unperturbed cells and k*" perturbed cells. For our
algorithm, we generate 256 filling points and compare our method with the default implementation in OTT
package (Cuturi et al. [2022)). Here, the value of entropic parameter is automatically selected by 0TT package.

Both our algorithm and OTT capture the OT map T from training samples. Then, we fix the number of test
samples as m = 200 and use the OT distance to measure the differences between % Z;n:1 Or(z,) and i Z;’;l dg;5
where £1,...,Zm ~ tunperturb a0d 1, . . ., G ~ Vgerturb are unperturbed/perturbed samples for testing,. Figure@
reports the results on 15 single-cell datasets.
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Figure 6: Performance of 0TT and kernel-based OT estimators computed by our algorithm on all of 15 drug perturbation
datasets. X-axis represent the number of training samples and Y'-axis represents the error induced by OT map T on test
samples in terms of OT distance.
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Checklist

1. For all models and algorithms presented, check if you include:

(a) A clear description of the mathematical setting, assumptions, algorithm, and/or model. [Yes]

(b) An analysis of the properties and complexity (time, space, sample size) of any algorithm. [Yes]

(c) (Optional) Anonymized source code, with specification of all dependencies, including external libraries.
[Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of all theoretical results. [Yes]
(b) Complete proofs of all theoretical results. [Yes]
(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical results, check if you include:

(a) The code, data, and instructions needed to reproduce the main experimental results (either in the
supplemental material or as a URL). [Yes]

(b) All the training details (e.g., data splits, hyperparameters, how they were chosen). [Yes]

(¢) A clear definition of the specific measure or statistics and error bars (e.g., with respect to the random
seed after running experiments multiple times). [Yes]

(d) A description of the computing infrastructure used. (e.g., type of GPUs, internal cluster, or cloud
provider). [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets, check if you
include:

(a) Citations of the creator If your work uses existing assets. [Yes]

(b) The license information of the assets, if applicable. [Not Applicable]

(c) New assets either in the supplemental material or as a URL, if applicable. [Not Applicable]

(d) Information about consent from data providers/curators. [Yes|

(e) Discussion of sensible content if applicable, e.g., personally identifiable information or offensive content.
[Not Applicable]

5. If you used crowdsourcing or conducted research with human subjects, check if you include:

(a) The full text of instructions given to participants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks, with links to Institutional Review Board (IRB) approvals if
applicable. [Not Applicable]

(c) The estimated hourly wage paid to participants and the total amount spent on participant compensa-
tion. [Not Applicable]
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